Validating the Airspace Concept Evaluation System for Different Weather Days
NASA Technical Reports Server (NTRS)
Zelinski, Shannon; Meyn, Larry
2006-01-01
This paper extends the process for validating the Airspace Concept Evaluation System using real-world historical flight operational data. System inputs such as flight plans and airport en-route capacities, are generated and processed to create a realistic reproduction of a single day's operations within the National Airspace System. System outputs such as airport throughput, delays, and en-route sector loads are then compared to real world operational metrics and delay statistics for the reproduced day. The process is repeated for 4 historical days with high and low traffic volume and delay attributed to weather. These 4 days are simulated using default en-route capacities and variable en-route capacities used to emulate weather. The validation results show that default enroute capacity simulations are closer to real-world data for low weather days than high weather days. The use of reduced variable enroute capacities adds a large delay bias to ACES but delay trends between weather days are better represented.
Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine
2015-01-01
Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.
Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra
2014-02-15
The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.
78 FR 52838 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... Maintenance Planning Data (MPD) Document. Repeat the test thereafter at intervals not to exceed 7,500 flight... by loss of fuel system suction feed capability on one engine, and in-flight shutdown of the engine...-101, before further flight, perform all related testing and corrective actions, and repeat the...
The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR
NASA Astrophysics Data System (ADS)
Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori
2006-09-01
This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.
Passenger comfort during terminal-area flight maneuvers. M.S. Thesis.
NASA Technical Reports Server (NTRS)
Schoonover, W. E., Jr.
1976-01-01
A series of flight experiments was conducted to obtain passenger subjective responses to closely controlled and repeatable flight maneuvers. In 8 test flights, reactions were obtained from 30 passenger subjects to a wide range of terminal-area maneuvers, including descents, turns, decelerations, and combinations thereof. Analysis of the passenger rating variance indicated that the objective of a repeatable flight passenger environment was achieved. Multiple linear regression models developed from the test data were used to define maneuver motion boundaries for specified degrees of passenger acceptance.
ERIC Educational Resources Information Center
Smithsonian Institution, Washington, DC. National Air And Space Museum.
This material presents the historical perspectives of flight and student activities for grades K-3 prepared by the National Air and Space Museum (NASM) and National Aeronautics and Space Administration (NASA). Sections included are: (1) "Historical Perspective of Flight"; (2) "Discovery Vocabulary" (listing the terms found in the first section);…
Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent
NASA Technical Reports Server (NTRS)
Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.
2008-01-01
For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.
2013-12-11
Name/Title of Video: Marshall Space Flight Center Historic Resource Reel Description: A brief collection of film and video b-roll of historic events and programs associated with NASA's Marshall Space Flight Center in Huntsville, Ala. For more information and/or more footage of these events, please contact the Marshall Center Public & Employee Communications Office. Graphic Information:file footage PAO Name:News Chief Jennifer Stanfield or MSFC Historian Mike Wright Phone Number:256-544-0034 Email Address: jennifer.stanfield@nasa.gov or mike.d.wright@nasa.gov
Monitoring selective logging in western Amazonia with repeat lidar flights
H.E. Andersen; S.E. Reutebuch; R.J. McGaughey; M.V.N. d' Oliveira; M. Keller
2014-01-01
The objective of this study was to test the use of repeat flight, airborne laser scanning data (lidar) for estimating changes associated with low-impact selective logging (approx. 10-15 m3 ha−1 = 5-7% of total standing volume harvested) in natural tropical forests in the Western Brazilian Amazon. Specifically, we investigated change in area...
An Accurate Co-registration Method for Airborne Repeat-pass InSAR
NASA Astrophysics Data System (ADS)
Dong, X. T.; Zhao, Y. H.; Yue, X. J.; Han, C. M.
2017-10-01
Interferometric Synthetic Aperture Radar (InSAR) technology plays a significant role in topographic mapping and surface deformation detection. Comparing with spaceborne repeat-pass InSAR, airborne repeat-pass InSAR solves the problems of long revisit time and low-resolution images. Due to the advantages of flexible, accurate, and fast obtaining abundant information, airborne repeat-pass InSAR is significant in deformation monitoring of shallow ground. In order to getting precise ground elevation information and interferometric coherence of deformation monitoring from master and slave images, accurate co-registration must be promised. Because of side looking, repeat observing path and long baseline, there are very different initial slant ranges and flight heights between repeat flight paths. The differences of initial slant ranges and flight height lead to the pixels, located identical coordinates on master and slave images, correspond to different size of ground resolution cells. The mismatching phenomenon performs very obvious on the long slant range parts of master image and slave image. In order to resolving the different sizes of pixels and getting accurate co-registration results, a new method is proposed based on Range-Doppler (RD) imaging model. VV-Polarization C-band airborne repeat-pass InSAR images were used in experiment. The experiment result shows that the proposed method leads to superior co-registration accuracy.
Muscle fatigue caused by repeated aerial combat maneuvering exercises.
Oksa, J; Hämäläinen, O; Rissanen, S; Salminen, M; Kuronen, P
1999-06-01
Little is known about the development of in-flight muscular fatigue during repeated flights. This study was conducted to evaluate muscular fatigue in different upper body and neck muscles during repeated aerial combat maneuvering exercises. Six pilots volunteered as test subjects. They performed one-to-one dog fight exercise three times (1 pilot, four times) in one day. During the flights, the pilots' electromyographic activity (EMG) was measured from the abdomen, back, neck and lateral neck. The mean muscular strain for each muscle was calculated. Before the first flight and after each flight, the maximal isometric strength of each muscle was measured. The results showed that maximal isometric strength between the first and last measurement decreased in the back, neck (p < 0.05) and lateral neck muscles. While the G-stress remained the same, the muscular strain during exercises increased in every muscle, but was significant only in neck and lateral neck (p < 0.05-0.01). Due to these changes, the fatigue index in the neck and lateral neck muscles was 2.0-2.1, and 1.3-1.4 (1.0 = no fatigue) in the abdomen and back muscles. Repeated aerial combat maneuvering exercises caused fatigue in every muscle studied. The fatigue was greater in the neck area, which may increase the risk for neck injuries, and may reduce mission effectiveness. The fighter pilots' muscular strength and endurance in the neck area are subjected to very high demands, especially if exercises are repeated several times. The recovery of the neck muscles from fatigue after repetitive exercises should receive special attention.
NASA Technical Reports Server (NTRS)
Evans, Antony D.; Sridhar, Banavar; McNally, David
2016-01-01
The Dynamic Weather Routes (DWR) tool is a ground-based trajectory automation system that continuously and automatically analyzes active in-flight aircraft in en route airspace to find simple modifications to flight plan routes that can save significant flying time, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. Trials of the DWR system have shown that significant delay savings are possible. However, some DWR advised routes are also rejected by dispatchers or modified before being accepted. Similarly, of those sent by dispatchers to flight crews as proposed route change requests, many are not accepted by air traffic control, or are modified before implementation as Center route amendments. Such actions suggest that the operational acceptability of DWR advised route corrections could be improved, which may reduce workload and increase delay savings. This paper analyzes the historical usage of different flight routings, varying from simple waypoint pairs to lengthy strings of waypoints incorporating jet routes, in order to improve DWR route acceptability. An approach is developed that can be incorporated into DWR, advising routings with high historical usage and savings potential similar to that of the nominal DWR advisory. It is hypothesized that modifying a nominal DWR routing to one that is commonly used, and nearby, will result in more actual savings since common routings are generally familiar and operationally acceptable to air traffic control. The approach allows routing segments with high historical usage to be concatenated to form routes that meet all DWR constraints. The relevance of a route's historical usage to its acceptance by dispatchers and air traffic control is quantified by analyzing historical DWR data. Results indicate that while historical usage may be less of a concern to flight dispatchers accepting or rejecting DWR advised route corrections, it may be important to air traffic control acceptance of DWR routes.
76 FR 81890 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... inspection interval for these inspections is 1,400 flight cycles. The compliance times for the initial... repetitive inspection interval for these inspections is either 4,000 flight cycles or 12,000 flight cycles..., 2009. Repeat the inspections thereafter at intervals not to exceed 1,400 flight cycles. Doing the...
Lessons from 30 Years of Flight Software
NASA Technical Reports Server (NTRS)
McComas, David C.
2015-01-01
This presentation takes a brief historical look at flight software over the past 30 years, extracts lessons learned and shows how many of the lessons learned are embodied in the Flight Software product line called the core Flight System (cFS). It also captures the lessons learned from developing and applying the cFS.
Gunnarsdottir, Holmfridur K; Sveinsdottir, Herdis; Bernburg, Jon Gunnar; Fridriksdottir, Hildur; Tomasson, Kristinn
2006-01-01
Health-related lifestyle, harassment at work, and self-assessed health of female flight attendants in comparison to that of female nurses and female primary school teachers were surveyed. A higher proportion of flight attendants than nurses or teachers were smokers, 26% vs. 15% and 17% respectively; and consumed alcohol at least once a week, 40% vs. 21% and 16%. Repeated sexual harassment at work was more common among the flight attendants, 31% vs. 8% and 4%; whereas bullying, physical violence and threats were less prevalent among the flight attendants (12%) than among nurses (19%). Flight attendants were on average somewhat taller, but weighed on average less, 63.8 kg vs. 72.4 kg and 72.7 kg respectively. Repeated exposure to sexual harassment, bullying, violence and threats was related to less physical and psychological well-being in all the groups. Teachers scored on average significantly lower than did the flight attendants on general health and physical well-being, while nurses did not.
Use of off-the-shelf PC-based flight simulators for aviation human factors research.
DOT National Transportation Integrated Search
1996-04-01
Flight simulation has historically been an expensive proposition, particularly if out-the-window views were desired. Advances in computer technology have allowed a modular, off-the-shelf flight simulation (based on 80486 processors or Pentiums) to be...
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Roger Crouch (center), a payload specialist, talks to the media prior to the launch of Space Shuttle Discovery on the historic Return to Flight mission STS- 114. He has flown on two Shuttle missions, STS-83 and STS-94. STS-114 is the 114th Space Shuttle flight and the 31st for Discovery. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.
Credit USAF, ca. 1943. Original housed in the Muroc Flight ...
Credit USAF, ca. 1943. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Historic view looking north across southwest end of swimming pool as army personnel work on finishing the pool bottom. View looks towards Mess Hall (T-10) on Second Street - Edwards Air Force Base, North Base, Swimming Pool, Second Street, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Glasgow, S. D.; Kittredge, K. B.
2003-01-01
A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.
DOT National Transportation Integrated Search
2008-01-01
In 1903 Orville and Wilbur Wright made the first powered : flight. These two brothers from Ohio used experimentation, : exacting science, and perseverance to achieve their historic : breakthrough. Their twelve-second : flight on December 17 led to th...
The Exploration of Mars by Humans: Why Mars? Why Humans?
NASA Technical Reports Server (NTRS)
Levine, Joel S.
2011-01-01
As we commemorate the 50th anniversary of Yuri Gagarin's historic flight in 1961, the first flight of a human in space, plans are underway for another historic human mission. Plans are being developed for a human mission to Mars. Once we reach Mars, the human species will become the first two-planet species. Both the Bush Administration (in 2004) and the Obama Administration (in 2010) proposed a human mission to Mars as a national goal of the United States.
Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.
Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai
2017-08-01
This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.
Development of the X-33 Aerodynamic Uncertainty Model
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.
1998-01-01
An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.
2008-10-24
Veterans of the X-15 flight research program, most of them now retired, reunited at Dryden on the 40th anniversary of the last X-15 flight on Oct. 24, 1968 for a historical colloquium on the X-15 by noted aerospace historian and author Dennis Jenkins on Oct. 24, 2008. Gathered in front of the replica of X-15 #3 the were (from left) Johnny Armstrong, Betty Love, Paul Reukauf, Bob Hoey, Dave Stoddard, Dean Webb, Vince Capasso, Bill Dana (who flew the last flight), John McTigue and T.D. Barnes. Jenkins, the author of "X-15: Extending the Frontiers of Flight," maintained during his presentation that despite setbacks, the X-15 program became the most successful of all the X-plane research programs due to the can-do, fix-the-problem and go-fly-again attitude of the X-15's cadre of engineers and technicians.
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND ...
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND AND THE SURROUNDING ELECTRONICS AND EQUIPMENT TRAILERS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE ...
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE A-4 ENGINE AND ROCKET PROPULSION TEST STAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Kurkina, L M; Tigranian, R A
1982-01-01
The content of ammonia, glutamine, urea, glutamic acid, aspartic acid, and GABA was measured to study nitrogen metabolism. Soon after recovery (6-10 hours after recovery) the content of the above compounds in brain tissues increased, except for GABA whose content decreased. Similar but more marked changes were seen in the brain of control rats exposed to a repeated immobilization stress-effect. These changes were still greater in the flight rats exposed to a repeated immobilization stress-effect postflight. It is suggested that the postflight changes of the above parameters of nitrogen metabolism are induced by stress-agents inherent in space flight and recovery.
G incapacitation in aerobatic pilots : a flight hazard.
DOT National Transportation Integrated Search
1982-10-01
This report presents some historical perspectives of aerobatics and the physiological effects of G acceleration, especially as pertain to in-flight loss of consciousness (LOC) by the pilot. Several accidents and incidents are reviewed to illustrate t...
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH ...
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH A REDSTONE ROCKET BEING FUELED AND PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
32. HISTORIC VIEW OF GERMAN ROCKET SOCIETY VETERAN KURT HEINISCH ...
32. HISTORIC VIEW OF GERMAN ROCKET SOCIETY VETERAN KURT HEINISCH IN CONTROL ROOM AT TEST STAND NO. 1, PEENEMUENDE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND ...
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND WITH THE MERCURY REDSTONE ROCKET FULLY ASSEMBLED AND BEING PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
23. HISTORIC VIEW OF ONE STICK REPULSOR OF RAKETENFLUGPLATZ GROUP. ...
23. HISTORIC VIEW OF ONE STICK REPULSOR OF RAKETENFLUGPLATZ GROUP. POSSIBLY 1931, THE STAND IS FOR LAUNCHING NOT FOR STATIC TESTS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Credit USAF, ca. 1943. Original housed in the Muroc Flight ...
Credit USAF, ca. 1943. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Historic view looking northeast along southeast edge of swimming pool during construction. The wavy edge of the pool visible here remains as a ground surface feature in 1995. Building in the background is the second Bachelor Officers' Quarters (T-15) built in 1943 - Edwards Air Force Base, North Base, Swimming Pool, Second Street, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Simmons, D. B.; Marchbanks, M. P., Jr.; Quick, M. J.
1982-01-01
The results of an effort to thoroughly and objectively analyze the statistical and historical information gathered during the development of the Shuttle Orbiter Primary Flight Software are given. The particular areas of interest include cost of the software, reliability of the software, requirements for the software and how the requirements changed during development of the system. Data related to the current version of the software system produced some interesting results. Suggestions are made for the saving of additional data which will allow additional investigation.
UAVSAR Active Electronically Scanned Array
NASA Technical Reports Server (NTRS)
Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.
2011-01-01
The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection
18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE ...
18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE VEREIN FUER RAUMSCHIFFAHRT (GERMAN SOCIETY FOR SPACE TRAVEL), DRIVES HIS ROCKET CAR IN 1931. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ...
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ROCKET DURING TEST FIRING NUMBER 2. NOTE THE FLAME BEING EMITTED FROM THE BOTTOM OF THE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.
2010-01-01
Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.
NASA Technical Reports Server (NTRS)
Glasgow, Shaun; Kittredge, Ken
2003-01-01
A thermal interface material is one of the many tools that are often used as part of the thermal control scheme for space-based applications. These materials are placed between, for example, an avionics box and a cold plate, in order to improve the conduction heat transfer so that proper temperatures can be maintained. Historically at Marshall Space Flight Center, CHO-THERM@ 1671 has primarily been used for applications where an interface material was deemed necessary. However, there have been numerous alternatives come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and they do not take into consideration other design issues such as off-gassing, electrical conduction or isolation, etc. This paper details the materials tested, test apparatus, procedures, and results of these tests.
ERIC Educational Resources Information Center
Uslabar, Ken
1992-01-01
Presents an activity in which students explore the geography, science and technology, and societal issues related to the historic flight of James Banning and Thomas Allen; the first African-American men to fly across the United States in 1932. Provides a lesson plan and a geographic map that traces the flight. (MDH)
Introduction to Flight: An Experiment in Adult Education.
ERIC Educational Resources Information Center
Aviation/Space, 1979
1979-01-01
This is a three-day refresher course. Its intended audience is composed of personnel active in aerospace related fields, but who may not have a degree in aerospace engineering, and aerospace engineers who want to review the fundamentals of flight and gain a historical perspective. (BB)
48. HISTORIC CLOSEUP VIEW OF THE REDSTONE ROCKET IN THE ...
48. HISTORIC CLOSE-UP VIEW OF THE REDSTONE ROCKET IN THE TEST STAND, WITH THE TAIL SECTION REMOVED, REVEALING THE ROCKET ENGINE WITH SOME OF THE TESTING SENSORS ATTACHED. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
28. HISTORIC VIEW OF A3 ROCKET IN TEST STAND NO. ...
28. HISTORIC VIEW OF A-3 ROCKET IN TEST STAND NO. 3 AT KUMMERSDORF (THE LARGEST TEST STAND AT KUMMERSDORF). THE STAND WAS MOBILE, SINCE IT MOVED ALONG RAILS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Historic First Landing of NASA's P-3B in Antarctica
2014-01-03
NASA's first ever historic P-3B landing in McMurdo Station, Antarctica on the sea ice runway, which occurred on Nov. 16, 2013. It took the craft 5 days to reach Antarctica from the NASA Wallops Flight Facility in Wallops Island, Virginia. You can see the IceBridge Team waiting to greet the flight crew as they taxied for the very first time right up to the IceBridge team tents. Credit: NASA/Justin Miller/Indiana University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
1992-09-12
A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.
Thermal structures: Four decades of progress
NASA Technical Reports Server (NTRS)
Thornton, Earl A.
1990-01-01
Since the first supersonic flight in October 1947, the United States has designed, developed and flown flight vehicles within increasingly severe aerothermal environments. Over this period, major advances in engineering capabilities have occurred that will enable the design of thermal structures for high speed flight vehicles in the twenty-first century. Progress in thermal-structures is surveyed for the last four decades to provide a historical perspective for future efforts.
DOT National Transportation Integrated Search
1985-09-30
This document reports the findings of the U.S. test team's participation in the Helicopter Noise Measurement Repeatability Program (HNMRP) conducted under the direction of the International Civil Aviation Organization's (ICAO) Committee on Aviation E...
19. Interior view showing flight simulator partition and rear overhead ...
19. Interior view showing flight simulator partition and rear overhead door, dock no. 493. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE
19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC ...
19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC TEST. THE ROCKET IS SITTING ON A SCALE. VALIER IS MEASURING THRUST BY ADDING WEIGHT LIKE THE ONE IN HIS RIGHT HAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Dietary Effects on Cognition and Pilots' Flight Performance.
Lindseth, Glenda N; Lindseth, Paul D; Jensen, Warren C; Petros, Thomas V; Helland, Brian D; Fossum, Debra L
2011-01-01
The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg's mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer ( p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets.
Challenges in Rotorcraft Acoustic Flight Prediction and Validation
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2003-01-01
Challenges associated with rotorcraft acoustic flight prediction and validation are examined. First, an outline of a state-of-the-art rotorcraft aeroacoustic prediction methodology is presented. Components including rotorcraft aeromechanics, high resolution reconstruction, and rotorcraft acoustic prediction arc discussed. Next, to illustrate challenges and issues involved, a case study is presented in which an analysis of flight data from a specific XV-15 tiltrotor acoustic flight test is discussed in detail. Issues related to validation of methodologies using flight test data are discussed. Primary flight parameters such as velocity, altitude, and attitude are discussed and compared for repeated flight conditions. Other measured steady state flight conditions are examined for consistency and steadiness. A representative example prediction is presented and suggestions are made for future research.
14 CFR 25.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stations and voice communications of other crewmembers on the flight deck when directed to those stations... as practicable when recorded under flight cockpit noise conditions and played back. Repeated aural or... pilot station. (2) For the second channel from each boom, mask, or hand-held microphone, headset, or...
NASA Technical Reports Server (NTRS)
Hymer, W. C.; Grindeland, R.; Vale, W.; Sawchenko, P.; Ilyina-Kakueva, E. I.
1994-01-01
Changes in the musculoskeletal, immune, vascular, and endocrine system of the rat occur as a result of short-term spaceflight. Since pituitary gland growth hormone (GH) plays a role in the control of these systems, and since the results of an earlier spaceflight mission (Spacelab 3, 1985) showed that GH cell function was compromised in a number of post-flight tests, we repeated and extended the 1985 experiment in two subsequent spaceflights: the 12.5 day mission of Cosmos 1887 (in 1987) and the 14 day mission of Cosmos 2044 (in 1989). The results of these later two flight experiments are the subject of this report. They document repeatable and significant changes in the GH cell system of the spaceflown rat in several post-flight tests.
Historical aspects of human presence in Space
NASA Astrophysics Data System (ADS)
Harsch, V.
2007-02-01
Purpose: This paper presents the development of human presence in Space from its beginnings. Study hypotheses were based on historical findings on scientific, medical, cultural, and political aspects of manned Space flight due to the different attitudes of Space minded nations and organizations. Impacts of aerospace medicine on the advances of biomedical sciences will be touched upon, as well as the historical development of aviation and Space medical achievements which are described briefly and visions for future developments are given. Methods: An overview was gained by literature-study, archives research and oral history taking. Results: Aviation Medicine evolved parallel to Man's ability to fly. War-triggered advancements in aviation brought mankind to the edge of space-equivalent conditions within a few decades of the first motor-flight, which took place in the USA in 1903 [V. Harsch, Aerospace medicine in Germany: from the very beginnings, Aviation and Space Environment Medicine 71 (2000) 447-450 [1
NASA Report to Educators, Volume 3, Number 2, June 1975.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
In this document, a historical development of the space exploration activities of the United States and of the Soviet Union is provided. In particular, communications leading to the cooperative space agreement developed in 1972 are described. The article describes in detail the flight plan for the Apollo-Soyuz space flight. (CP)
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH ...
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH THE COLD CALIBRATION TOWER CONSTRUCTED TO THE LEFT OF THE ROCKET AND AN ACCESS PLATFORM BUILT TO REACH THE TOP OF THE ROCKET MORE EASILY. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Results of the 1983 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1984-01-01
The 1983 solar cell calibration balloon flight was successfully completed and met all objectives of the program. Thirty-four modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. Cell calibration data are tabulated as well as the repeatability of standard solar cell BFS-17A (35 flights over a 21-year period).
Infrared Imaging Of Flows Seeded With SF6
NASA Technical Reports Server (NTRS)
Manuel, Gregory S.; Daryabeigi, Kamran; Alderfer, David W.; Obara, Clifford J.
1993-01-01
Novel technique enables repeated measurements of flow patterns during flight. Wing-tip vorticity studied in flight by observing infrared emissions from SF6 gas entrained in wing-tip flow. System makes vortical flows visible throughout all altitude and speed ranges of all subsonic aircraft. Also useful for transonic and supersonic speeds. Primary application is testing of aircraft in flight, also proves useful in testing fast land vehicles and structures or devices subject to strong winds.
Dietary Effects on Cognition and Pilots’ Flight Performance
Lindseth, Glenda N.; Lindseth, Paul D.; Jensen, Warren C.; Petros, Thomas V.; Helland, Brian D.; Fossum, Debra L.
2017-01-01
The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg’s mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer (p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets. PMID:29353985
Results of the 1970 balloon flight solar cell standardization program
NASA Technical Reports Server (NTRS)
Greenwood, R. F.
1972-01-01
For the eighth consective year, high-altitude calibration of solar cells was accomplished with the aid of free-flight balloons. Flights were conducted to an altitude of 36,576 m which is above 99.5% of earth's atmosphere where all water vapor levels and significant ozone bands are absent. Solar cells calibrated in this manner are significant used as intensity references in solar simulators and in terrestrial sunlight. Discussed is the method employed for high altitude balloon flight solar cell calibration. Also presented are data collected on 52 standard solar cells on two flights conducted in 1970. Solar cells flown repeatedly on successive flights have shown correlation of better than + or - 1.0%.
1992-09-12
A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.
Deep-Space Ka-Band Flight Experience
NASA Astrophysics Data System (ADS)
Morabito, D. D.
2017-11-01
Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.
14 CFR Appendix B to Part 420 - Method for Defining a Flight Corridor
Code of Federal Regulations, 2010 CFR
2010-01-01
... trajectory simulation software. Trajectory time intervals shall be no greater than one second. If an... applicant shall construct a launch area of a flight corridor using the processes and equations of this paragraph for each trajectory position. An applicant shall repeat these processes at time points on the...
1983-09-15
there is obvious dif- ficulty in intepreting these results. In the absence of degradation in system performance, it would be difficult to argue that...standard deviation during instru- 2 .441 ment take-off 3 -.218 4 .596 5 .831 6 -.916 0 44 0~i FILMED 3-85 DTIC
NASA Technical Reports Server (NTRS)
Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)
2004-01-01
The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.
NASA Technical Reports Server (NTRS)
Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)
2004-01-01
The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.
For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.
Historic vegetation changes in Lincoln County, New Mexico: The Albuquerque Banquet Presentation
E. Hollis Fuchs
2008-01-01
(Please note, this is an abstract only) Repeat photography will demonstrate that since European settlement commenced, the native vegetation of Lincoln County, New Mexico has dramatically changed. Numerous historic photographs have been re-taken, demonstrating how landscapes and ecosystems have changed, not just between early European settlement until the present, but...
Orion’s first flight on This Week @NASA - December 8, 2014
2014-12-08
The successful first flight test of NASA’s Orion spacecraft on Dec. 5 not only was a historic moment for the agency – but also was a critical step on NASA’s Journey to Mars. Orion rode to space from Cape Canaveral Air Force Station on a Delta IV heavy rocket with no crew, but loaded with about 1,200 sensors. The flight test basically was a compilation of the riskiest events that will happen when astronauts fly on Orion on deep space missions. Also, Journey to Mars briefing, 1st SLS flight barrel and Commercial crew milestone.
Memoirs of an Aeronautical Engineer: Flight Tests at Ames Research Center: 1940-1970
NASA Technical Reports Server (NTRS)
Anderson, Seth B.
2002-01-01
Seth worked over a period of several years to prepare this monograph-collecting information, drafting the text, and finding and selecting the historic photographs. He describes the beginnings of flight research as he knew it at Ames Research Center, recalls numerous World War II programs, relates his experiences with powered-lift aircraft, and concludes with his impressions of two international flight research efforts. His comprehensive collection of large-format photographs of the airplanes and people involved in the various flight activities related in the text constitutes a compelling part of his work.
Optimized Dual Expander Aerospike Rocket
2011-03-01
manufacturability, and mission effectiveness . Despite the advantages, the bell nozzle does not optimally operate at all altitudes of flight . Furthermore...aerospike include high cooling requirements of the spike, manufacturing difficulties, and lack of historical data and flight experience [23]. Since a...Ratio; taken from Martin [4] Carlile [37] conducted a high pressure, regeneratively cooled thrust chamber experimental investigation. The experiment
20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT ...
20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT TO RIGHT: RUDOLF NEBEL, FRANZ RITTER, UNKNOWN, KURT HEINISCH, UNKNOWN, HERMANN OBERTH, UNKNOWN, KLAUS RIEDEL, WERNHER VON BRAUN, UNKNOWN, KLAUS RIEDEL HOLDS EARLY VERSION OR MODEL FOR THE MINIMUM ROCKET, 'MIRAK'. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY ...
17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY HERMANN OBERTH AND RUDOLF NEBEL FOR THE MOVIE DIE FRAU IM MOND (THE WOMAN ON THE MOON). THE LAUNCH STAND WAS MODIFIED BY THE VFR FOR THE FIRST TEST STAND AT RAKETENFLUGPLATZ NEAR BERLIN. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Alabama Historically Black Colleges and Universities Roundtable Discussion
2017-09-27
Representatives of the state of Alabama, academia, and industry listen and take part in a panel discussion led by NASA Marshall Space Flight Center's Ruth Jones as part of the first Alabama Historically Black Colleges and Universities Roundtable Discussion. The event focused on drawing more minorities, specifically women, into academic fields and careers in science, technology, engineering and mathematics.
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ...
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ROCKET BEING PREPARED FOR TESTING. NOTE THE LOAD CELL APPARATUS ABOVE THE ROCKET AND THE EQUIPMENT PLATFORM TO THE LEFT OF THE LOAD CELL HAVE BEEN ENCLOSED FOR PROTECTION FROM THE CLIMATE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
25. HISTORIC VIEW OF A2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR ...
25. HISTORIC VIEW OF A-2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR GN2 CONTAINER. AT TEST STAND NO. 1 IN KUMMERSDORF. THE STAND WAS DESIGNED & CONSTRUCTED IN 1932. ROCKET IS BEING TANKED WITH LOX PRECEDING A STATIC FIRING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH ...
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH AT THE TEST STAND. NOTE THE MOTORIZED LIFT TO THE LEFT OF THE TEST STAND, USED TO ACCESS THE INSTRUMENTATION PLATFORM ('BIRDCAGE') MOUNTED ON TOP OF THE ROCKET DURING TEST FIRINGS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
STS-71 crew addresses news media
NASA Technical Reports Server (NTRS)
1995-01-01
Following their arrival at KSC's Shuttle Landing Facility, the STS-71 flight crew takes a moment to address news media gathered to greet them. The journey from Johnson Space Center in Houston brings the flight crew one step closer to an historic spaceflight, the first docking of the U.S. Space Shuttle with the Russian Space Station Mir. The countdown clock already has begun ticking toward liftoff of the Shuttle Atlantis on that flight, currently scheduled for June 23 at 5:08 p.m. EDT.
A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.
1982-01-01
A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.
1997-08-01
have difficulties dealing with the stress of the flight training environment. The DMT presents subjects with repeated subliminal exposure to a...ability (i.e., visual and auditory ) and flight training performance. Also, there have been some reports of success for using a variety of tests (e.g...has reported moderate correlations (.22 to .54) between a measure of dual-tasking ability (i.e., visual and auditory ) and flight training performance
Restoring fire suppressed Texas pak woodlands to historic conditions using prescribed fire
Jeff C. Sparks; Michael C. Stambaugh; Eric L. Keith
2012-01-01
Comparable to many oak ecosystems across the eastern United States, oak woodlands in Texas display characteristics of changing composition and structure due to altered fire regimes. Information describing historic fire regimes suggests woodlands underwent relatively frequent and repeated burning prior to major Euro-American influence in the early 19th century. Oak...
Lower Body Negative Pressure: Historical Perspective, Research Findings, and Clinical Applications.
Crystal, George J; Salem, M Ramez
2015-04-01
Lower body negative pressure (LBNP) is a technique that redistributes blood from the upper body to the dependent regions of the pelvis and legs, thus reducing central venous pressure and venous return. The subject is placed in a cylindrical air-tight metal tank, which is sealed at the level of the iliac crests, and subatmospheric pressure is produced using a vacuum pump. This article reviews the historical background, physiological effects, research findings, and clinical applications of LBNP. LBNP is found in both the basic science and clinical literature, encompassing its diverse investigational and clinical applications. The first references to LBNP were in 1952 describing its effectiveness in inducing hypotensive anesthesia. Major interest in LBNP began in the mid 1960s when it was used to characterize the cardiovascular responses to hemorrhage and orthostatic stress, especially that associated with the weightlessness of space flight; these studies have continued to the present day. Advantages of LBNP for such experimental studies include the following: (1) The degree of central hypovolemia is easily controlled and has a rapid onset and reversal. (2) The technique is repeatable, reproducible, and noninvasive. (3) No exogenous pharmacologic agent is required to produce venous pooling. (4) The findings are independent of gravity. In recent years, a few institutions have applied LBNP clinically to diagnose abnormalities in cardiovascular autonomic function and, when combined with echocardiography, to uncover changes in cardiac performance through analysis of Starling curves. Copyright © 2015 Anesthesia History Association. Published by Elsevier Inc. All rights reserved.
Remembering or Misremembering? Historicity and the Case of "So Far from the Bamboo Grove"
ERIC Educational Resources Information Center
Lee, Sung-Ae
2008-01-01
A recent controversy in the USA centres on classroom use of Yoko Kawashima Watkins's semi-autobiographical "So Far from the Bamboo Grove" (1986), a novel focused on the flight of Japanese settler families to Japan after the liberation of Korea at the end of World War II. Taught in a literary and historical vacuum under the thematic…
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND ...
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND IN ITS CONFIGURATION FOR THE MERCURY-REDSTONE TESTING PROGRAM. NOTE THE MERCURY CAPSULE BEING ASSEMBLED IN THE FOREGROUND, ALSO NOTE THE LOAD CELL APPARATUS ON THE GROUND IN THE RIGHT OF THE PHOTOGRAPH. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND ...
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND AND ROCKET DURING TEST FIRING NUMBER 10. NOTE THE NUMBER ALONG THE TOP RAIL OF THE STAND JUST TO THE RIGHT OF THE ROCKET, THIS NUMBER INDICATES WHAT NUMBER TEST IS BEING CONDUCTED. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Jorgensen, Chuck; Wheeler, Kevin
2002-03-01
Recent developments in neuroelectronics are applied to aviation and airplane flight control instruments. Electromyographic control has been applied to flight simulations using the autopilot interface in order to use gestures to give bank and pitch commands to the autopilot. In other demonstrations, direct rate control was used to perform repeated successful landings and the damage-adaptive capability of inner-loop neural and propulsion-based controls was utilized.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
..., dated October 15, 2007. Repeat the inspections thereafter at intervals not to exceed 4,000 flight cycles... inspections thereafter at intervals not to exceed 4,000 flight cycles. (i) For airplanes on which an...], requiring the accomplishment of inspections of, and in case of crack findings, corrective actions on, the...
Return to flight SSME test at A2 test stand
2004-07-16
The Space Shuttle Main Engine (SSME) reached a historic milestone July 16, 2004, when a successful flight acceptance test was conducted at NASA Stennis Space Center (SSC). The engine tested today is the first complete engine to be tested and shipped in its entirety to Kennedy Space Center for installation on Space Shuttle Discovery for STS-114, NASA's Return to Flight mission. The engine test, which began about 3:59 p.m. CDT, ran for 520 seconds (8 minutes), the length of time it takes for the Space Shuttle to reach orbit.
2004-01-26
NASA's historic B-52 mother ship carried the X-43A and its Pegasus booster rocket on a captive carry flight from Edwards Air Force Base Jan. 26, 2004. The X-43A and its booster remained mated to the B-52 throughout the two-hour flight, intended to check its readiness for launch. The hydrogen-fueled aircraft is autonomous and has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
Credit USAF, ca. 1945. Original housed in the Muroc Flight ...
Credit USAF, ca. 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View looks north at a hutment typical of several structures erected at the Muroc Flight Test Base (North Base) ca. 1943-1945. Similar structures, Buildings T-61, T-62 and T-63, lie in the distance behind T-40 - Edwards Air Force Base, North Base, Barracks T-40, Second & A Streets, Boron, Kern County, CA
75 FR 22503 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-400 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... an inrush current less than or equal to 1.6 amps, before further flight, replace the vane with a new... AOA vane is found to have an inrush current greater than 1.6 amps, repeat the measurement of the vane... the serviceable AOA transducer is-- Then repeat the measurement-- More than 1.60 amps, but less than...
ERIC Educational Resources Information Center
Olio, Brenda K.
Wilbur and Orville Wright undertook the first test airplane flight on December 17, 1903, at the Outer Banks of North Carolina. Their success represented the culmination of four years of painstaking research and trials in which they designed and improved their flying machines at home in Dayton, Ohio, and tested them each year near Kitty Hawk, North…
Redstone Test Stand Accepted Into National Register of Historical Places
NASA Technical Reports Server (NTRS)
1976-01-01
On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand are Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, as he is accepting a certificate of registration from Madison County Commission Chairman James Record, and Huntsville architect Harvie Jones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.
Gaussian Processes for Prediction of Homing Pigeon Flight Trajectories
NASA Astrophysics Data System (ADS)
Mann, Richard; Freeman, Robin; Osborne, Michael; Garnett, Roman; Meade, Jessica; Armstrong, Chris; Biro, Dora; Guilford, Tim; Roberts, Stephen
2009-12-01
We construct and apply a stochastic Gaussian Process (GP) model of flight trajectory generation for pigeons trained to home from specific release sites. The model shows increasing predictive power as the birds become familiar with the sites, mirroring the animal's learning process. We show how the increasing similarity between successive flight trajectories can be used to infer, with increasing accuracy, an idealised route that captures the repeated spatial aspects of the bird's flight. We subsequently use techniques associated with reduced-rank GP approximations to objectively identify the key waypoints used by each bird to memorise its idiosyncratic habitual route between the release site and the home loft.
Opportunities to Foster Efficient Communication in Labor and Delivery Using Simulation.
Daniels, Kay; Hamilton, Colleen; Crowe, Susan; Lipman, Steven S; Halamek, Louis P; Lee, Henry C
2017-01-01
Introduction Communication errors are an important contributing factor in adverse outcomes in labor and delivery (L&D) units. The objective of this study was to identify common lapses in verbal communication using simulated obstetrical scenarios and propose alternative formats for communication. Methods Health care professionals in L&D participated in three simulated clinical scenarios. Scenarios were recorded and reviewed to identify questions repeated within and across scenarios. Questions that were repeated more than once due to ineffective communication were identified. The frequency with which the questions were asked across simulations was identified. Results Questions were commonly repeated both within and across 27 simulated scenarios. The median number of questions asked was 27 per simulated scenario. Commonly repeated questions focused on three general topics: (1) historical data/information (i.e., estimated gestational age), (2) maternal clinical status (i.e., estimated blood loss), and (3) personnel (i.e., "Has anesthesiologist been called?"). Conclusion Inefficient verbal communication exists in the process of transferring information during obstetric emergencies. These findings can inform improved training and development of information displays to improve teamwork and communication. A visual display that can report static historical information and specific dynamic clinical data may facilitate optimal human performance.
A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
1999-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.
Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
2001-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
Results of the 1999 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2000-01-01
The 1999 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 14, 1999, and July 6, 1999. All objectives of the flight program were met. Fifty-seven modules were carried to an altitude of approximately equal to 120,000 ft (36.6 km). Full I-V curves were measured on five of these modules, and output at a fixed load was measured on forty-three modules (forty-five cells), with some modules repeated on the second flight. This data was corrected to 28 C and to 1 AU (1.496 x 10 (exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
In-Flight System Identification
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.
2002-10-26
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as an Alabama Historic Civil Engineering Landmark. The site was desinated as such in 1979.
The history of in-flight exercise in the US manned space program
NASA Technical Reports Server (NTRS)
Moore, Thomas P.
1989-01-01
A historical perspective on in-flight exercise in the U.S. manned space program is given. We have learned a great deal in the 25 years since the inception of Project Mercury. But, as we look forward to a Space Station and long-duration space flight, we must recognize the challenge that lies ahead. The importance of maintenance of the crewmember's physical condition during long stays in weightlessness is a prime concern that should not be minimized. The challenge lies in the design and development of exercise equipment and protocols that will prevent or minimize the deleterious sequelae of long-duration space flight while maximizing valuable on-orbit crew time.
Readiness for First Crewed Flight
NASA Technical Reports Server (NTRS)
Schaible, Dawn M.
2011-01-01
The NASA Engineering and Safety Center (NESC) was requested to develop a generic framework for evaluating whether any given program has sufficiently complete and balanced plans in place to allow crewmembers to fly safely on a human spaceflight system for the first time (i.e., first crewed flight). The NESC assembled a small team which included experts with experience developing robotic and human spaceflight and aviation systems through first crewed test flight and into operational capability. The NESC team conducted a historical review of the steps leading up to the first crewed flights of Mercury through the Space Shuttle. Benchmarking was also conducted with the United States (U.S.) Air Force and U.S. Navy. This report contains documentation of that review.
SRB environment evaluation and analysis. Volume 1: Redesigned SRB flight heating evaluation
NASA Technical Reports Server (NTRS)
Crain, William K.
1991-01-01
Following the Space Shuttle STS-51L disaster on January 28, 1986, a considerable redesign effort was launched on the Solid Rocket Booster. This effort culminated in three instrumented flights, STS-26R, 27R, and 29R, beginning in September of 1989. Aeroheating data were obtained on these flights in the form of pressure, heat flux, and gas temperature probe measurements. These data were analyzed from an ascent and reentry heating point of view. The flight data were verified, compared with historic and theoretical results, and scaled to design. Impact of these results on the current design environment set was assessed and recommendations made. This report documents this effort.
NASA Technical Reports Server (NTRS)
1978-01-01
The role of flight instrumentation and control systems in the advancement of civil aviation to the safest form of commercial transportation is discussed. Safety, cost reduction, and increased capabilities provided by recent developments are emphasized. Cost/performance considerations are considered in terms of determining the relative values of comparable systems or the absolute worth of a system.
A historical overview of flight flutter testing
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.
1995-01-01
This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, digital data preprocessing, and parameter identification algorithms (for frequency and damping estimates from the response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, comments regarding the direction of future developments and needs are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
..., repeat the inspection required by paragraph (f) of this AD at intervals not to exceed 9,000 landings, in... inspection required by paragraph (f) of this AD at intervals not to exceed 9,000 landings, in accordance with..., dated October 15, 2007. Repeat the inspections thereafter at intervals not to exceed 4,000 flight cycles...
2016-04-01
environment. Modeling is suitable for well- characterized parts, and stochastic modeling techniques can be used for sensitivity analysis and generating a...large cohort of trials to spot unusual cases. However, deployment repeatability is inherently a nonlinear phenomenon, which makes modeling difficult...recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force. 1. Test the flight model
Parsons, Michael H; Blumstein, Daniel T
2010-05-05
Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area. We evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75+/-3.97 g food remained as compared to the tap water control, X = 209.0+/-107.0 g (P<0.001). Macropodids fled more when encountering a urine treatment, X = 4.50+/-2.08 flights, as compared to the control, X = 0 flights (P<0.001). There was no difference in effect between urine or feces treatments (P>0.5). Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R(2) = 83.8; P<0.001). Responses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been experimentally observed among medium or large vertebrates - where a local response is observed spatially and an area effect is revealed over time.
Spaceflight-Induced Intracranial Hypertension: An Overview
NASA Technical Reports Server (NTRS)
Traver, William J.
2011-01-01
This slide presentation is an overview of the some of the known results of spaceflight induced intracranial hypertension. Historical information from Gemini 5, Apollo, and the space shuttle programs indicated that some vision impairment was reported and a comparison between these historical missions and present missions is included. Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight. Views illustrate the occurrence of Optic Disc Edema, Globe Flattening, and Choroidal Folds. There are views of the Arachnoid Granulations and Venous return, and the question of spinal or venous compliance issues is discussed. The question of increased blood flow and its relation to increased Cerebrospinal fluid (CSF) is raised. Most observed on-orbit papilledema does not progress, and this might be a function of plateau homeostasis for the higher level of intracranial pressure. There are seven cases of astronauts experiencing in flight and post flight symptoms, which are summarized and follow-up is reviewed along with a comparison of the treatment options. The question is "is there other involvement besides vision," and other Clinical implications are raised,
NASA aircraft technician Don Herman completes placement of the first official U.S. Centennial of Fli
NASA Technical Reports Server (NTRS)
2002-01-01
NASA aircraft technician Don Herman completes placement of the first official U.S. Centennial of Flight Commission logo on an aircraft. The honored recipient is NASA Dryden Flight Research Center's Active Aeroelastic Wing (AAW) F/A-18 research aircraft, which is poised to begin wing-warping research flights harkening back to the Wright brothers. The Centennial of Flight Commission was created by the U.S.Congress in 1999 to serve as a national and international source of information about activities to commemorate the centennial of the Wright Brothers' first powered flight on the sands of Kitty Hawk, North Carolina, on December 17, 1903. Centennial activities are scheduled for 2003 in both North Carolina and Dayton, Ohio, home of the Wrights. In addition to these celebrations, numerous historical and educational projects are anticipated on the subject of aviation and aeronautics that will be an important legacy of the centennial of powered flight.
NASA aircraft technician Donte Warren completes placement of the first official U.S. Centennial of F
NASA Technical Reports Server (NTRS)
2002-01-01
NASA aircraft technician Donte Warren completes placement of the first official U.S. Centennial of Flight Commission logo on an aircraft. The honored recipient is NASA Dryden Flight Research Center's Active Aeroelastic Wing (AAW) F/A-18 research aircraft, which is poised to begin wing-warping research flights harkening back to the Wright brothers. The Centennial of Flight Commission was created by the U.S.Congress in 1999 to serve as a national and international source of information about activities to commemorate the centennial of the Wright Brothers' first powered flight on the sands of Kitty Hawk, North Carolina, on December 17, 1903. Centennial activities are scheduled for 2003 in both North Carolina and Dayton, Ohio, home of the Wrights. In addition to these celebrations, numerous historical and educational projects are anticipated on the subject of aviation and aeronautics that will be an important legacy of the centennial of powered flight.
Orion Pad Abort 1 GN and C Design and Development
NASA Technical Reports Server (NTRS)
Medina, Edgar A.; Stachowiak, Susan J.
2010-01-01
The first flight test of the Orion Abort Flight Test project is scheduled to launch in Spring 2010. This flight test is known as Pad Abort 1 (PA-1) and it is intended to accomplish a series of flight test objectives, including demonstrating the capability of the Launch Abort System (LAS) to propel the Crew Module (CM) to a safe distance from a launch vehicle during a pad abort. The PA-1 Flight Test Article (FTA) is actively controlled by a guidance, navigation, and control (GN&C) system for much of its flight. The purpose of this paper is to describe the design, development, and analysis of the PA-1 GN&C system. A description of the technical solutions that were developed to meet the challenge of satisfying many competing requirements is presented. A historical perspective of how the Orion LAV compares to the Apollo Launch Escape Vehicle (LEV) design will also be included.
NASA Technical Reports Server (NTRS)
Powers, Sheryll Goecke
1997-01-01
This monograph discusses the working and living environment of women involved with flight research at NASA Dryden Flight Research Center during the late 1940s and early 1950s. The women engineers, their work and the airplanes they worked on from 1960 to December 1995 are highlighted. The labor intensive data gathering and analysis procedures and instrumentation used before the age of digital computers are explained by showing and describing typical instrumentation found on the X-series aircraft from the X-1 through the X-15. The data reduction technique used to obtain the Mach number position error curve for the X-1 aircraft and which documents the historic first flight to exceed the speed of sound is described and a Mach number and altitude plot from an X-15 flight is shown.
Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons
NASA Technical Reports Server (NTRS)
Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.
2008-01-01
Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.
10. Credit USAF, 1945. Original housed in the Muroc Flight ...
10. Credit USAF, 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of jet engine rotor balancing machine with engine rotor in place for balancing operations. Original caption reads "Balancing bucket wheel of jet engine, Muroc Flight Test Base, Oct. 1945"; personnel not identified. Location where photograph was taken not determined, but presumed to be in shops of Building 4505. - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
Results of the 2000 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2001-01-01
The 2000 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 27, 2000, and July 5, 2000. All objectives of the flight program were met. Sixty-two modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on sixteen of these modules, and output at a fixed load was measured on thirty-seven modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. This data was corrected to 28 C and to 1 AU (1.496x10(exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
Vulnerability of Bread-Baskets to Weather Shocks
NASA Astrophysics Data System (ADS)
Gerber, J. S.; Ray, D. K.; West, P. C.; Foley, J. A.
2013-12-01
Many analyses of food security consider broad trends in food supply (crop production, crop use) and demand (changing diets, population growth.) However, if past shocks to the food system due to weather events (i.e. droughts) were to repeat themselves today, the resulting famines could be far more serious due to increased concentration of grain production in vulnerable bread-baskets, and decreased resilience of global and regional food systems (i.e. lower stocks, dependence on fewer crops). The present research project takes advantage of high-resolution historical weather datasets to assess probabilities of historically observed droughts repeating themselves in one or more of today's bread-basket regions. Using recently developed relationships between weather and crop yield, we consider the likelihood of region-wide crop failures under current conditions, and also under various climate scenarios.
Review of Orbiter Flight Boundary Layer Transition Data
NASA Technical Reports Server (NTRS)
Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.
2006-01-01
In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.
A Concept for Directing Combat Air Operations
2014-08-01
the OV-10 Bronco , en- tered combat. From that time the OV-10 has repeatedly justified its worth as a specially designed combat aircraft. The airborne...Historical Highlight to reequip. Until the Bronco arrived, the aircraft which filled the requirement had been hand-me-down or off-the-shelf commercial...Journal | 168 Historical Highlight provement in the mobility and quality of the TACS ground ele - ments. This program is evolutionary and requires
Flight performance in night-flying sweat bees suffers at low light levels.
Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J
2007-11-01
The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.
Designing for Annual Spacelift Performance
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Zapata, Edgar
2017-01-01
This paper presents a methodology for approaching space launch system design from a total architectural point of view. This different approach to conceptual design is contrasted with traditional approaches that focus on a single set of metrics for flight system performance, i.e., payload lift per flight, vehicle mass, specific impulse, etc. The approach presented works with a larger set of metrics, including annual system lift, or "spacelift" performance. Spacelift performance is more inclusive of the flight production capability of the total architecture, i.e., the flight and ground systems working together as a whole to produce flights on a repeated basis. In the proposed methodology, spacelift performance becomes an important design-for-support parameter for flight system concepts and truly advanced spaceport architectures of the future. The paper covers examples of existing system spacelift performance as benchmarks, points out specific attributes of space transportation systems that must be greatly improved over these existing designs, and outlines current activity in this area.
The space shuttle launch vehicle aerodynamic verification challenges
NASA Technical Reports Server (NTRS)
Wallace, R. O.; Austin, L. D.; Hondros, J. G.; Surber, T. E.; Gaines, L. M.; Hamilton, J. T.
1985-01-01
The Space Shuttle aerodynamics and performance communities were challenged to verify the Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements. Historically, launch vehicle flight test programs which faced these same challenges were unmanned instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight test program made these challenges more complex because of the unique aerodynamic configuration powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not verify the aerodynamics or performance preflight predictions of the first flight of the Space Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and verified system performance. The aerodynamics community also was challenged to understand the discrepancy between the wind tunnel and flight defined aerodynamics. The preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses challenges which led to the SSV system performance verification and which will lead to the verification of the operational ascent aerodynamics data base are presented.
Affordable/Acceptable Supersonic Flight: Is It Near?
NASA Technical Reports Server (NTRS)
Darden, Christine M.
2003-01-01
The author takes a historical look at supersonic flight and humankind's first encounter with the sonic boom. A review is given from the 1950s to the present of the quest to understand the sonic boom, quantify its disturbance on humans and structures, and minimize its effect through aircraft design and operation. Finally, the author reminds readers that sonic boom is only one factor, though critical, in enabling an economically viable commercial supersonic aircraft.
NASA-marks 5th anniversary of first lunar landing
NASA Technical Reports Server (NTRS)
1974-01-01
The accomplishments of the Apollo 11 Flight are presented as a tribute to the fifth anniversary of the first landing on the moon. The document contains: (1) a general description of the Apollo 11 Flight, (2) Presidential statements, (3) Apollo historical summary, (4) Apollo mission facts, (5) information on astronauts who are no longer in the program, and (6) transcripts of the landing sequence and first extravehicular activities on the moon.
Credit USAF. Original housed in the Muroc Flight Test Base, ...
Credit USAF. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View captioned as "7 Sept 1945, BH-5 Base Ordinance Motor Repair Shop" with gas station and gasoline pump. View looks roughly northwest - Edwards Air Force Base, North Base, Motor Repair Shop T-16, Third & C Streets, Boron, Kern County, CA
Credit USAF, 7 September 1945. Original housed in the Muroc ...
Credit USAF, 7 September 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of the mess hall, looking to the north. Sign over door reads "MFTB Muroc Flight Test Base Base Mess." - Edwards Air Force Base, North Base, Base Mess Hall T-27, Third Street, Boron, Kern County, CA
7. Credit USAF, 1945. Original housed in the Muroc Flight ...
7. Credit USAF, 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Interior view in shop wing on south side of hangar. Original caption reads "7 Sept. 1945, BH-10, Hangar No. 4 4505 Machine Shop." - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA
2000-10-26
This plaque, located on the grounds of Marshall Space Flight Center in Huntsville, Alabama,commemorates the designation of the Saturn V Rocket as a National Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers in 1980.
Chapter 10 : flying into the future.
DOT National Transportation Integrated Search
2008-01-01
Since the Wright brothers historic flight, aviation has been a vital : national resource for the United States its strategic, economic, : and social importance remains unsurpassed. Aviation is critical : to our national well-being and interest...
Methods for analysis of passenger trip performance in a complex networked transportation system
NASA Astrophysics Data System (ADS)
Wang, Danyi
2007-12-01
The purpose of the Air Transportation System (ATS) is to provide safe and efficient transportation service of passengers and cargo. The on-time performance of a passenger's trip is a critical performance measurement of the Quality of Service (QOS) provided by any Air Transportation System. QOS has been correlated with airline profitability, productivity, customer loyalty and customer satisfaction (Heskett et al. 1994). Btatu and Barnhart have shown that official government and airline on-time performance metrics (i.e. flight-centric measures of air transportation) fail to accurately reflect the passenger experience (Btatu and Barnhart, 2005). Flight-based metrics do not include the trip delays accrued by passengers who were re-booked due to cancelled flights or missed connections. Also, flight-based metrics do not quantify the magnitude of the delay (only the likelihood) and thus fails to provide the consumer with a useful assessment of the impact of a delay. Passenger-centric metrics have not been developed because of the unavailability of airline proprietary data, which is also protected by anti-trust collusion concerns and civil liberty privacy restrictions. Moveover, the growth of the ATS is trending out of the historical range. The objectives of this research were to (1) estimate ATS-wide passenger trip delay using publicly accessible flight data, and (2) investigate passenger trip dynamics out of the range of historical data by building a passenger flow simulation model to predict impact on passenger trip time given anticipated changes in the future. The first objective enables researchers to conduct historical analysis on passenger on-time performance without proprietary itinerary data, and the second objective enables researchers to conduct experiments outside the range of historic data. The estimated passenger trip delay was for 1,030 routes between the 35 busiest airports in the United States in 2006. The major findings of this research are listed as follows: 1. High passenger trip delays are disproportionately generated by cancelled flights and missed connections. Passengers scheduled on cancelled flights or missed connections represent 3 percent of total enplanements, but generated 45 percent of total passenger trip delay. On average, passengers scheduled on cancelled flights experienced 607 minutes delay, and passengers who missed the connections experienced 341 minutes delay in 2006. The heavily skewed distribution of passenger trip delay reveals the fact that a small proportion of passengers experience heavy delays, which can not be reflected by flight-based performance metrics. 2. Trend analysis for passenger trip delays from 2000 to 2006 shows the increase in flight operations slowed down and leveled off in 2006, while enplanements kept increasing. This is due to the continuous increase in load factor. Load factor has increased from 69% in 2003 to 80% in 2006. Passenger performance is very sensitive to changes in flight operations: annual total passenger trip delay was increased by 17% and 7% from 2004 to 2005, and from 2005 to 2006, while flight operations barely increased (0.5% from 2004 to 2005, and no increase from 2005 to 2006) during the same time period. 3. Passenger trip delay is shown to have an asymmetric performance of passenger trip delay in terms of routes. Seventeen percent of the 1030 routes generated 50 percent of total passenger trip delays. An interesting observation is that routes between the New York metropolitan area and the Washington D.C. metropolitan area have the highest average passenger trip delays in the system. 4. In terms of airports, there is also an asymmetric performance of passenger trip delay. Nine of the 35 busiest airports generated 50 percent of total passenger trip delays. Some airports, especially major hubs, impact the passenger trip delays significantly more than others. Recognition of this asymmetric performance can help reduce the total passenger trip delay propagation in the air transportation network by making changes primarily in major airports, such as Atlanta, GA (ATL), Chicago O'Hare (ORD) and Newark (EWR) airports. 5. Congestion Flight Delay, Load Factor, Flight Cancellation Time, and Airline Cooperation Policy are the most significant factors affecting total passenger trip delay in the system.
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.
1990-01-01
The secretory capacity of growth hormone (GH) and prolactin (PRL) cells prepared from rats flown in space on the 12.5 day mission of Cosmos 1887 and the 14 day mission of Cosmos 2044 was evaluated in several post-flight tests on Earth. The results showed statistically significant and repeatable decrements in hormone release, especially when biological assays (rather than immunological assays) were used in the tests. Significant and repeatable intracellular changes in GH cells from the flight animals were also found; most important were increases in the GH-specific cytoplasmic staining intensities and cytoplasmic areas occupied by hormore. Tail suspension of rats for 14 days, an established model for mimicking musculo-skeletal changes seen in spaceflown rats, results in some changes in GH and PRL cell function that were similar to those from spaceflown animals. Our results add to a growing body of data that described deconditioning of physiological systems in spaceflight and provide insights into the time frame that might be required for readaptation of the GH/PRL cell system upon return to Earth.
Proceedings of the X-15 First Flight 30th Anniversary Celebration
NASA Technical Reports Server (NTRS)
1991-01-01
A technical symposium and pilot's panel discussion were held on June 8, 1989, to commemorate the 30th anniversary of the first free flight of the X-15 rocket-powered research aircraft. The symposium featured technical presentations by former key government and industry participants in the advocacy, design, manufacturing, and flight research program activities. The X-15's technical contributions to the X-30 are cited. The panel discussion participants included seven of the eight surviving research pilots who flew the X-15 experimental aircraft to world altitude and speed records which still stand. Pilot's remarks include descriptions of their most memorable X-15 flight experience. The report also includes a historical perspective of the X-15.
NASA Technical Reports Server (NTRS)
Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.
1989-01-01
A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control derivatives were adequately determined by the flight test procedure and the MSR analysis method discussed herein.
NASA Astrophysics Data System (ADS)
Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.
2015-12-01
Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out <200 m from Pahoa Village road. Over 150,000 m3of lava were added to the study site during our period of observations, with maximum vertical inflation >4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.
Pettit, Benjamin; Flack, Andrea; Freeman, Robin; Guilford, Tim; Biro, Dora
2013-01-07
For animals that travel in groups, the directional choices of conspecifics are potentially a rich source of information for spatial learning. In this study, we investigate how the opportunity to follow a locally experienced demonstrator affects route learning by pigeons over repeated homing flights. This test of social influences on navigation takes advantage of the individually distinctive routes that pigeons establish when trained alone. We found that pigeons learn routes just as effectively while flying with a partner as control pigeons do while flying alone. However, rather than learning the exact route of the demonstrator, the paired routes shifted over repeated flights, which suggests that the birds with less local experience also took an active role in the navigational task. The efficiency of the original routes was a key factor in how far they shifted, with less efficient routes undergoing the greatest changes. In this context, inefficient routes are unlikely to be maintained through repeated rounds of social transmission, and instead more efficient routes are achieved because of the interaction between social learning and information pooling.
Intraindividual variability of boldness is repeatable across contexts in a wild lizard.
Highcock, Laura; Carter, Alecia J
2014-01-01
Animals do not behave in exactly the same way when repeatedly tested in the same context or situation, even once systematic variation, such as habituation, has been controlled for. This unpredictability is called intraindividual variability (IIV) and has been little studied in animals. Here we investigated how IIV in boldness (estimated by flight initiation distances) changed across two seasons--the dry, non-breeding season and the wet, breeding season--in a wild population of the Namibian rock agama, Agama planiceps. We found significant differences in IIV both between individuals and seasons, and IIV was higher in the wet season, suggesting plasticity in IIV. Further, IIV was highly repeatable (r = 0.61) between seasons and we found strong negative correlations between consistent individual differences in flight initiation distances, i.e. their boldness, and individuals' IIVs. We suggest that to understand personality in animals, researchers should generate a personality 'profile' that includes not only the relative level of a trait (i.e. its personality), but also its plasticity and variability under natural conditions.
Development of load spectra for Airbus A330/A340 full scale fatigue tests
NASA Technical Reports Server (NTRS)
Schmidt, H.-J.; Nielsen, Thomas
1994-01-01
For substantiation of the recently certified medium range Airbus A330 and long range A340 the full scale fatigue tests are in progress. The airframe structures of both aircraft types are tested by one set of A340 specimens. The development of the fatigue test spectra for the two major test specimens which are the center fuselage and wing test and the rear fuselage test is described. The applied test load spectra allow a realistic simulation of flight, ground and pressurization loads and the finalization of the tests within the pre-defined test period. The paper contains details about the 1 g and incremental flight and ground loads and the establishment of the flight-by-flight test program, i.e., the definition of flight types, distribution of loads within the flights and randomization of flight types in repeated blocks. Special attention is given to procedures applied for acceleration of the tests, e.g. omission of lower spectrum loads and a general increase of all loads by ten percent.
Astronautics and aeronautics, 1970. Chronology on science, technology, and policy
NASA Technical Reports Server (NTRS)
1972-01-01
An immediate reference to aerospace-related events of 1970 is provided to help historians in preserving historical accuracy and precision. Chronologies of major NASA launches, and manned space flights for 1970 are included.
Expanded R&D by Jet-engine-steering Revolution
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2017-11-01
Since 1987 [1,2,3,4,5] the global jet engine community is facing the historical fact that jet engine steering is gradually replacing canards and the common, often dangerous and obsolete, aerodynamic-only flight control - a fact that (i) has already affected the defense-industrial complex in the US, Russia, China, Japan, S-Korea and India, (ii) has integrated the traditional jet-engine components R&D with advanced aero-electro-physics, stealth technology, thrust vectoring aerodynamics and material science. Moreover, this military revolution is historically due to expand into the civil transport jets domain, [6,7,8,9]. The historical aim of the JES-Revolution remains the same: Replace the common, stall-spin sensitive canards [6] and Aerodynamic-Only-Obsolete-Flight Control ("AOOF Control"). Invented about 100 years ago for propeller-driven air vehicles, it has already been partially replaced for failure to function in WVR-combat post-stall domain, and for the following reasons: In comparison with complete Tail-Less, Canard-Less, Stealth-JES (Figure 5 and References [1,2,3,4,5,6]), the common AOOF Control increases drag, weight, fuel consumption, complexity, cost, and reduces flight safety, stealth, [Low Detectability] and provides zero post-stall, WVR air combat capability while its CANARDS KILL LD & REDUCE JES. Examples of stealth fighter aircraft that have already replaced canards and AOOF-Control where JES provides at least 64 to 0 KILL-RATIO advantage over AOOF-Controlled conventional fighter aircraft: The U.S. JES F-22 and, apparently, the Russian JES-Su-T-50 & 35S, China 2016-J-31, Indian HAL AMCA & FGFA, Japanese JES IHHI ATD-X, S-Korean JES KF-X. Cf. X-44 in Figure 5. Consequently, the jet engine is no longer defined as providing only brute force forward. Instead, it successfully competes with and wins over the wrong, dominating AOOF-Control, at least as a backup flight control whose sole factual domain is currently a well-established, primary flight controller RE any post-stall, super-agility, [2,3,4,5,6,7,8,9].
2010-10-27
BILL NEWSOM, an eminent, but now retired, medical microbiologist, provides a personal but engaging review of infections and our attempts to control them. it is a fascinating social history of what has become an essential service, and Newsom highlights the need to be aware of past struggles and avoid repeating mistakes.
Strategy And The Spreadsheet: Optimizing The Total Army To Satisfy Both
2016-02-11
historically reduces military end strength at the conclusion of major conflicts. The Budget Control Act of 2011 imposed sequestration spending limits on...the military that began the process of drawing down the military through fiscal year 2021. While the 2016 defense budget delays sequestration cuts... budget by a wide margin, has started repeating a historical cycle of budget driven defense cuts. The Army’s large force represents an attractive
Robotic Exploration: The Role of Science Autonomy
NASA Technical Reports Server (NTRS)
Roush, Ted L.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Historical mission operations have involved: (1) commands transmitted to the craft; (2) execution of commands; (3) return of scientific data; (4) evaluation of these data by scientists; and (5) recommendations for future mission activity by scientists. This cycle is repeated throughout the mission with command opportunities once or twice per day. For a rover, this historical cycle is not amenable to rapid long range traverses or rapid response to any novel or unexpected situations.
NASA Technical Reports Server (NTRS)
Smith, Robert C.
2006-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.
NASA Technical Reports Server (NTRS)
1994-01-01
This is an overview of the White Sands Test Facility's role in ensuring the safety and reliability of materials and hardware slated for launch aboard the Space Shuttle. Engine firings, orbital flights debris impact tests, and propulsion tests are featured as well as illustrating how they provide flight safety testing for the Johnson Space Center, other NASA centers, and various government agencies. It also contains a historical perspective and highlights of major programs that have been participated in as part of NASA.
Redstone Test Stand Accepted Into National Register of Historical Places
NASA Technical Reports Server (NTRS)
1976-01-01
On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand along with their wives are (left to right), Madison County Commission Chairman James Record, Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, (holding certificate), Ed, Buckbee, Space and Rocket Center Director; Harvie Jones, Huntsville Architect; Dick Smith; and Joe Jones.
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1974-01-01
The historical and technical aspects of the major networks which comprise the NASA tracking and data acquisition system are considered in a complete reference work which traces the origin and growth of STADAN, MSFN, and NASCOM up to mid-1971. The roles of these networks in both the Gemini and Apollo programs are discussed, and the separate developmental trends are identified for each network.
The messianic idea and messianic delusion.
Perez, L
1978-01-01
The messianic delusional syndrome repeats an historical prototype that manifests itself in each patient with individual changes. The syndrome expresses a serious impairment of identity and reflects a social, cultural and religious reality through generations. The regularities of its clinical features comprise a delusional system, centered on the patient's conviction that he has been chosen by God for a special and intransferable mission. The patient has special powers for carrying out this mission. He is a savior and announces resurrection. His delusions have a clear symbolic character. For the patient's social group, the messianic idea is an attempt at annulling the effect of oppression or persecution that have become unbearable for the individual. They represent a flight from the human sphere and an attempt to be God. The patient's behavior is in consonance with this purpose; it expresses itself, on the one hand, through preaching repentance and compassion and, on the other hand, the patient gives up his earthly links and replaces them by parental relations with God. In the above-mentioned context, the author analyzes the different elements of the religious conception in the Christian, Moslem and Jewish religions, and the way each of them expresses itself in the general symptomatology.
Ares I and Ares I-X Stage Separation Aerodynamic Testing
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T.; Niskey, Charles J.
2011-01-01
The aerodynamics of the Ares I crew launch vehicle (CLV) and Ares I-X flight test vehicle (FTV) during stage separation was characterized by testing 1%-scale models at the Arnold Engineering Development Center s (AEDC) von Karman Gas Dynamics Facility (VKF) Tunnel A at Mach numbers of 4.5 and 5.5. To fill a large matrix of data points in an efficient manner, an injection system supported the upper stage and a captive trajectory system (CTS) was utilized as a support system for the first stage located downstream of the upper stage. In an overall extremely successful test, this complex experimental setup associated with advanced postprocessing of the wind tunnel data has enabled the construction of a multi-dimensional aerodynamic database for the analysis and simulation of the critical phase of stage separation at high supersonic Mach numbers. Additionally, an extensive set of data from repeated wind tunnel runs was gathered purposefully to ensure that the experimental uncertainty would be accurately quantified in this type of flow where few historical data is available for comparison on this type of vehicle and where Reynolds-averaged Navier-Stokes (RANS) computational simulations remain far from being a reliable source of static aerodynamic data.
A retrospective perspective: evaluating population changes by repeating historic bird surveys
Igl, Lawrence D.; Johnson, Douglas H.
2005-01-01
Acquiring an accurate picture of the changes in bird populations often involves a tradeoff between the time and effort required to complete the surveys and the number of years spent surveying the bird populations. An alternative approach to long-term monitoring efforts is to collect current data and contrast those with data collected earlier in a similar fashion on the same study site(s). To evaluate changes in bird populations, we repeated two extensive surveys, one in North Dakota (1967 vs. 1992-1993) and the other in the Platte River Valley of Nebraska (1979-1980 vs. 2001), where large areas of native vegetation had been converted to agriculture. We use these examples and others from the literature to illustrate the advantages and disadvantages of using historical data as a frame of reference for population changes.
JPL, NASA and the Historical Record: Key Events/Documents in Lunar and Mars Exploration
NASA Technical Reports Server (NTRS)
Hooks, Michael Q.
1999-01-01
This document represents a presentation about the Jet Propulsion Laboratory (JPL) historical archives in the area of Lunar and Martian Exploration. The JPL archives documents the history of JPL's flight projects, research and development activities and administrative operations. The archives are in a variety of format. The presentation reviews the information available through the JPL archives web site, information available through the Regional Planetary Image Facility web site, and the information on past missions available through the web sites. The presentation also reviews the NASA historical resources at the NASA History Office and the National Archives and Records Administration.
Young, Nicholas; Pebody, Richard; Smith, Gillian; Olowokure, Babatunde; Shankar, Giri; Hoschler, Katja; Galiano, Monica; Green, Helen; Wallensten, Anders; Hogan, Angela; Oliver, Isabel
2014-01-01
Background Transporting over two billion passengers per year, global airline travel has the potential to spread emerging infectious diseases, both via transportation of infectious cases and through in-flight transmission. Current World Health Organization (WHO) guidance recommends contact tracing of passengers seated within two rows of a case of influenza during air travel. Objectives The objectives of this study were to describe flight-related transmission of influenza A(H1N1)pdm09 during a commercial flight carrying the first cases reported in the United Kingdom and to test the specific hypothesis that passengers seated within two rows of an infectious case are at greater risk of infection. Methods An historical cohort study, supplemented by contact tracing, enhanced surveillance data and laboratory testing, was used to establish a case status for passengers on board the flight. Results Data were available for 239 of 278 (86·0%) of passengers on the flight, of whom six were considered infectious in-flight and one immune. The attack rate (AR) was 10 of 232 (4·3%; 95% CI 1·7–6·9%). There was no evidence that the AR for those seated within two rows of an infectious case was different from those who were not (relative risk 0·9; 95% CI 0·2–3·1; P = 1·00). Laboratory testing using PCR and/or serology, available for 118 of 239 (49·4%) of the passengers, was largely consistent with clinically defined case status. Conclusions This study of A(H1N1)pdm09 does not support current WHO guidance regarding the contact tracing of passengers seated within two rows of an infectious case of influenza during air travel. PMID:24373291
Young, Nicholas; Pebody, Richard; Smith, Gillian; Olowokure, Babatunde; Shankar, Giri; Hoschler, Katja; Galiano, Monica; Green, Helen; Wallensten, Anders; Hogan, Angela; Oliver, Isabel
2014-01-01
Transporting over two billion passengers per year, global airline travel has the potential to spread emerging infectious diseases, both via transportation of infectious cases and through in-flight transmission. Current World Health Organization (WHO) guidance recommends contact tracing of passengers seated within two rows of a case of influenza during air travel. The objectives of this study were to describe flight-related transmission of influenza A(H1N1)pdm09 during a commercial flight carrying the first cases reported in the United Kingdom and to test the specific hypothesis that passengers seated within two rows of an infectious case are at greater risk of infection. An historical cohort study, supplemented by contact tracing, enhanced surveillance data and laboratory testing, was used to establish a case status for passengers on board the flight. Data were available for 239 of 278 (86·0%) of passengers on the flight, of whom six were considered infectious in-flight and one immune. The attack rate (AR) was 10 of 232 (4·3%; 95% CI 1·7-6·9%). There was no evidence that the AR for those seated within two rows of an infectious case was different from those who were not (relative risk 0·9; 95% CI 0·2-3·1; P = 1·00). Laboratory testing using PCR and/or serology, available for 118 of 239 (49·4%) of the passengers, was largely consistent with clinically defined case status. This study of A(H1N1)pdm09 does not support current WHO guidance regarding the contact tracing of passengers seated within two rows of an infectious case of influenza during air travel. © 2013 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
The Max Launch Abort System - Concept, Flight Test, and Evolution
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
2014-01-01
The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.
Results of the 2001 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.
2002-01-01
The 2001 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 26, 2001, and July 4, 2001. Fifty-nine modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on nineteen of these modules, and output at a fixed load was measured on thirty-two modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. The data from the fixed load cells on the first flight was not usable. The temperature dependence of the first-flight data was erratic and we were unable to find a way to extract accurate calibration values. The I-V data from the first flight was good, however, and all data from the second flight was also good. The data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8)km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
Dream Chaser Departs NASA Armstrong
2018-04-05
SNC Dream Chaser is lifted on to a truck in NASA Armstrong’s historic space shuttle hangar where the spacecraft stayed as it was being prepared for testing and flights. Dream Chaser is in Colorado at a SNC facility.
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2007-01-01
There is a general consensus building that historically high fuel prices and greater public awareness of the emissions that result from burning fuel are going to be long-term concerns for those who design, build, and operate airliners. The possibility of saving both fuel and reducing emissions has rekindled interest in breaking very long-range airline flights into multiple stages or even adopting in-flight refueling. It is likely that staging will result in lower fuel burn, and recent published reports have suggested that the savings are substantial, particularly if the airliner is designed from the outset for this kind of operation. Given that staging runs against the design and operation historical trend, this result begs for further attention. This paper will examine the staging question, examining both analytic and numeric performance estimation methodologies to quantify the likely amount of fuel savings that can be expected and the resulting design impacts on the airliner.
Cost estimation model for advanced planetary programs, fourth edition
NASA Technical Reports Server (NTRS)
Spadoni, D. J.
1983-01-01
The development of the planetary program cost model is discussed. The Model was updated to incorporate cost data from the most recent US planetary flight projects and extensively revised to more accurately capture the information in the historical cost data base. This data base is comprised of the historical cost data for 13 unmanned lunar and planetary flight programs. The revision was made with a two fold objective: to increase the flexibility of the model in its ability to deal with the broad scope of scenarios under consideration for future missions, and to maintain and possibly improve upon the confidence in the model's capabilities with an expected accuracy of 20%. The Model development included a labor/cost proxy analysis, selection of the functional forms of the estimating relationships, and test statistics. An analysis of the Model is discussed and two sample applications of the cost model are presented.
Validation of the Integrated Medical Model Using Historical Space Flight Data
NASA Technical Reports Server (NTRS)
Kerstman, Eric L.; Minard, Charles G.; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.
2010-01-01
The Integrated Medical Model (IMM) utilizes Monte Carlo methodologies to predict the occurrence of medical events, utilization of resources, and clinical outcomes during space flight. Real-world data may be used to demonstrate the accuracy of the model. For this analysis, IMM predictions were compared to data from historical shuttle missions, not yet included as model source input. Initial goodness of fit test-ing on International Space Station data suggests that the IMM may overestimate the number of occurrences for three of the 83 medical conditions in the model. The IMM did not underestimate the occurrence of any medical condition. Initial comparisons with shuttle data demonstrate the importance of understanding crew preference (i.e., preferred analgesic) for accurately predicting the utilization of re-sources. The initial analysis demonstrates the validity of the IMM for its intended use and highlights areas for improvement.
High-rise construction in historical cities through the example of Saint Petersburg
NASA Astrophysics Data System (ADS)
Granstrem, Maria; Zolotareva, Milena; Slavina, Tatyana
2018-03-01
The article sets forth results of the landscape visual analysis of the interaction of high-rise construction facilities with the environment of historical urban spaces. A toxic connection of high-rise construction facilities with the established urban landscape was analyzed and recorded. One of the latest stages of the reconstruction of historical cities, which penetrated many European countries at the end of the 20th century, also started in the beginning of the 21st century in Russia, where the reconstruction of historical facilities and territories became one of the leading trends of architectural activity. Therefore, problems of the interaction between the old city and new high-rise construction nearby historical centers are extremely relevant for Russian architects. Specific features of Russian high-rise construction within visual borders of historical cities, developed at the turn of the 20th-21st centuries, repeat past urban-planning mistakes spread in Europe in the second half of the 20th century. High-rise construction in close proximity to historical centers of cities violates an established scale and destroys a historical city silhouette.
NASA Technical Reports Server (NTRS)
1995-01-01
On this fifth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hadfield, were awakened to the theme from the movie '2001: A Space Odyssey.' The Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Sergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, and shuttle astronauts are shown giving each other plaques and presents to commemorate their historic docking event and the start towards the development of the International Space Station. There is a press conference from Moscow by a one of the officers of the Russian Space Agency with both flight crews and an additional separate press interview of the crews by Canadian reporters. There is video footage of the two docked spacecraft taken from various angles.
NASA Astrophysics Data System (ADS)
1995-11-01
On this fifth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hatfield, were awakened to the theme from the movie 2001: A Space Odyssey'. The Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Sergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, and shuttle astronauts are shown giving each other plaques and presents to commemorate their historic docking event and the start towards the development of the International Space Station. There is a press conference from Moscow by a one of the officers of the Russian Space Agency with both flight crews and an additional separate press interview of the crews by Canadian reporters. There is video footage of the two docked spacecraft taken from various angles.
NASA Dryden Flight Research Center: We Fly What Others Only Imagine
NASA Technical Reports Server (NTRS)
Ennix-Sandhu, Kimberly
2006-01-01
A powerpoint presentation of NASA Dryden's historical and future flight programs is shown. The contents include: 1) Getting To Know NASA; 2) Our Namesake; 3) To Fly What Others Only Imagine; 4) Dryden's Mission: Advancing Technology and Science Through Flight; 5) X-1 The First of the Rocket-Powered Research Aircraft; 6) X-1 Landing; 7) Lunar Landing Research Vehicle (LLRV) Liftoff and Landing; 8) Linear Aerospike SR-71 Experiment (LASRE) Ground Test; 9) M2-F1 (The Flying Bathtub); 10) M2-F2 Drop Test; 11) Enterprise Space Shuttle Prototype; 12) Space Shuttle Columbia STS-1; 13) STS-114 Landing-August 2005; 14) Crew Exploration Vehicle (CEV); 15) What You Can Do To Succeed!; and 16) NASA Dryden Flight Research Center: This is What We Do!
Integration Testing of Space Flight Systems
NASA Technical Reports Server (NTRS)
Sowards, Stephanie; Honeycutt, Timothy
2008-01-01
This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).
Ares I-X Post Flight Ignition Overpressure Review
NASA Technical Reports Server (NTRS)
Alvord, David A.
2010-01-01
Ignition Overpressure (IOP) is an unsteady fluid flow and acoustic phenomena caused by the rapid expansion of gas from the rocket nozzle within a ducted launching space resulting in an initially higher amplitude pressure wave. This wave is potentially dangerous to the structural integrity of the vehicle. An in-depth look at the IOP environments resulting from the Ares I-X Solid Rocket Booster configuration showed high correlation between the pre-flight predictions and post-flight analysis results. Correlation between the chamber pressure and IOP transients showed successful acoustic mitigation, containing the strongest IOP waves below the Mobile Launch Pad deck. The flight data allowed subsequent verification and validation of Ares I-X unsteady fluid ducted launcher predictions, computational fluid dynamic models, and strong correlation with historical Shuttle data.
NASA Astrophysics Data System (ADS)
King, David, Jr.; Manson, Russell; Trout, Joseph; Decicco, Nicholas; Rios, Manny
2015-04-01
Wake vortices are generated by airplanes in flight. These vortices decay slowly and may persist for several minutes after their creation. These vortices and associated smaller scale turbulent structures present a hazard to incoming flights. It is for this reason that incoming flights are timed to arrive after these vortices have dissipated. Local weather conditions, mainly prevailing winds, can affect the transport and evolution of these vortices; therefore, there is a need to fully understand localized wind patterns at the airport-sized mircoscale. Here we have undertaken a computational investigation into the impacts of localized wind flows and physical structures on the velocity field at Atlantic City International Airport. The simulations are undertaken in OpenFOAM, an open source computational fluid dynamics software package, using an optimized geometric mesh of the airport. Initial conditions for the simulations are based on historical data with the option to run simulations based on projected weather conditions imported from the Weather Research & Forcasting (WRF) Model. Sub-grid scale turbulence is modeled using a Large Eddy Simulation (LES) approach. The initial results gathered from the WRF Model simulations and historical weather data analysis are presented elsewhere.
Parsons, Michael H.; Blumstein, Daniel T.
2010-01-01
Background Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area. Methodology/Principal Findings We evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75±3.97 g food remained as compared to the tap water control, X = 209.0±107.0 g (P<0.001). Macropodids fled more when encountering a urine treatment, X = 4.50±2.08 flights, as compared to the control, X = 0 flights (P<0.001). There was no difference in effect between urine or feces treatments (P>0.5). Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R 2 = 83.8; P<0.001). Conclusions/Significance Responses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been experimentally observed among medium or large vertebrates − where a local response is observed spatially and an area effect is revealed over time. PMID:20463952
Partial gravity reaction experiment sysytem on graund using multi-Copter
NASA Astrophysics Data System (ADS)
Hasegawa, Katsuya; Maeda, Naoko
2016-07-01
In order to enable further space exploration into the space, Moon, Mars, and other planets, it is essential to understand the physiological response to low gravity environments. However, We made low gravity environment for studies using the satellite parabolic flight and drop tower. It is very expensive experiment that low gravity physiological response. Because, it requires rockets and airplanes and dedicated Tower, low gravity conditions test have not been conducted sufficiently due to the extraordinary high cost for conducting experiments. The study present is to develop the radio-controlled multicopter system that is used for the controlled falling flight vehicle (not free fall). During the controlled falling, the payload is exposed to a certain level of low gravity. 1) G profile: low gravity from 0 g to 1 g that will last approximately 5seconds, 50 kg. 2) Supply limited imaging techniques, high-speed or normal video and X ray images. 3) Wireless transmission of up to 64 channels of analog and digital signals. This vehicle is designed for experimentation on various model organisms, from cells to animals and plants. The multicopter flight system enables conducting experiments in low gravity conditions with less than 1% of the budget for spaceflight or parabolic flights. Experiment is possible to perform repeated many times in one day. We can expect reproducible results from many repeated trials at the lowest cost.
NASA Astrophysics Data System (ADS)
Molnia, B. F.
2016-12-01
For 50 years I have investigated glacier dynamics and attempted to convey this information to others. Since 2000, my focus has been on capturing and documenting decadal and century-scale Alaskan glacier and landscape change using precision repeat photography and on broadly communicate these results through simple, aesthetically compelling, unambiguous visualizations. As a young geologist, I spent the summer of 1968 on the Juneau Icefield, photographing its surface features and margins. Since then, I have taken 150,000 photographs of Alaskan glaciers and collected 5,000 historical Alaskan photographs taken by other, the earliest dating back to 1883. This database and my passion for photographing glaciers became the basis for an on-going investigation aimed at visually documenting glacier and landscapes change at more than 200 previously photographed Alaskan locations in Glacier Bay and Kenai Fjords National Parks, Prince William Sound, and the Coast Mountains. Repeat photography is a technique in which a historical and a modern photograph, both having similar fields of view, are compared and contrasted to quantitatively and qualitatively determine their similarities and differences. In precision repeat photography, both photographs have the same field of view, ideally being photographed from the identical location. Since 2000, I have conducted nearly 20 field campaigns to systematically revisit and re-photograph more than 225 fields of view previously captured in the historical photographs. As aesthetics are important in successfully communicating what has changed, substantial time and effort is invested in capturing new, comparable, generally cloud free photographs at each revisited site. The resulting modern images are then paired with similar field-of-view historical images to produce compelling, aesthetic photo pairs which depict long-term glacier, landscape, and ecosystem changes. As a few sites have multiple historical images, photo triplets or quadruplets are sometimes possible. Several approaches have been tried to produce aesthetic compelling visualization. These have included sliders, dissolves, adjacent pairs, a website, and DVDs. Providing high resolution pairs to users and letting them adapt the images to their individual needs has also been very successful.
Potable water supply in U.S. manned space missions
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Straub, John E., II
1992-01-01
A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.
2011-04-20
Stennis Space Center Deputy Director Rick Gilbrech (far right) welcomes members of the STS-133 shuttle mission crew during an April 20 visit. The mission was the final flight for the space shuttle Discovery, which now becomes the first of the three-orbiter fleet to be retired. During the visit to Stennis, Mission Commander Steven Lindsey ( l to r), Pilot Eric Boe and mission specialists Alvin Drew, Steven Bowen, Michael Barratt and Nicole Stott recapped their historic flight and thanked site employees for providing main engines that performed 'as advertised.'
2006-02-08
KENNEDY SPACE CENTER, FLA. - On NASA Kennedy Space Center’s Shuttle Landing Facility runway, the Virgin Atlantic GlobalFlyer, piloted by Steve Fossett, begins its takeoff as a nearby helicopter films the historic event for audiences in the United Kingdom. Fossett is attempting a record-breaking solo flight, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. This is the second attempt in two days after a fuel leak was detected Feb. 7. The actual launch time was 7:22 a.m. Feb. 8.
The Space Shuttle Discovery, atop a specially modified Boeing 747
2005-08-21
JSC2005-E-36604 (21 August 2005) --- The Space Shuttle Discovery, atop a specially modified Boeing 747, was photographed following touch down at NASA Kennedy Space Centers (KSC) Shuttle Landing Facility on Aug. 21, 2005 after a ferry flight from Edwards Air Force Base in California, where the shuttle landed Aug. 9. The 747, known as the Shuttle Carrier Aircraft (SCA), brought Discovery home to KSC after completing the historic STS-114 Return to Flight mission.
Aeroelasticity - Frontiers and beyond /von Karman Lecture/
NASA Technical Reports Server (NTRS)
Garrick, I. E.
1976-01-01
The lecture aims at giving a broad survey of the current reaches of aeroelasticity with some narrower views for the specialist. After a short historical review of concepts for orientation, several topics are briefly presented. These touch on current flight vehicles having special points of aeroelastic interest; recent developments in the active control of aeroelastic response including control of flutter; remarks on the unsteady aerodynamics of arbitrary configurations; problems of the space shuttle related to aeroelasticity; and aeroelastic response in flight.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Against a sunrise-painted sky at NASA Kennedy Space Center, Miles OBrien (left), co-anchor on CNNs American Morning, talks on air with NASA Administrator Mike Griffin about the pending launch of Space Shuttle Discovery on the historic Return to Flight mission STS-114. It is the 114th Space Shuttle flight and the 31st for Discovery. The 12-day mission is expected to end with touchdown at the Shuttle Landing Facility at 11:06 a.m. July 25.
40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE ...
40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE THE LOAD CELL APPARATUS LOCATED ABOVE THE ROCKET. THE SPACE BETWEEN THE BOTTOM OF THE LOAD CELL APPARATUS AND THE TOP OF THE ROCKET IS THE DIFFERENCE IN SIZE BETWEEN THE REDSTONE ROCKET AND ITS DECEDENT THE JUPITER C ROCKET. THE GAP IS FILLED WITH A SPACER WHEN THEY TEST A REDSTONE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Swank, Jean (Technical Monitor); Parke, William
2002-01-01
This newsletter from NASA Goddard Space Flight Center (GSFC) announces measurements of the magnetic field of a magnetar. The magnetic field was approx. 10(exp 15) gauss, up to 10 times more powerful than previous estimates. The newsletter also describes how the star's magnetic field slows its rotation, and how starquakes emit protons, which are trapped in this neutron star's magnetic field, and make it a soft gamma repeater (SGR).
Effects of hydration on cognitive function of pilots.
Lindseth, Paul D; Lindseth, Glenda N; Petros, Thomas V; Jensen, Warren C; Caspers, Julie
2013-07-01
The objective of this study was to examine the effect of fluid intake and possible dehydration on cognitive flight performance of pilots. A repeated-measures, counterbalanced, mixed study design was used to examine differences in working memory, spatial orientation, and cognitive flight performance of 40 randomly selected healthy pilots after having high and low fluid intakes. Serial weights were also analyzed to determine differences in cognitive flight performance of the dehydrated (1-3% weight loss) and hydrated study participants. Results showed flight performance and spatial cognition test scores were significantly (p < 0.05) poorer for pilots who had low fluid intakes and experienced dehydration in comparison to the hydrated pilots. These findings indicate fluid intake differences resulting in dehydration may have safety implications because peak cognitive performance among pilots is critical for flight safety. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Simulator platform motion -- the need revisited
DOT National Transportation Integrated Search
1997-05-13
The need to provide increased access to flight simulator training for U.S. regional airlines, which historically have been limited by cost considerations in the use of such equipment for pilot recurrent training, is discussed. In light of that need, ...
2000-10-26
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.
NASA Astrophysics Data System (ADS)
Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea
2009-12-01
This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.
Repeatability and uncertainty analyses of light gas gun test data
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Cooper, David
1994-01-01
All large spacecraft are susceptible to high-speed impacts by meteoroids and pieces of orbiting space debris which can damage flight-critical systems and in turn lead to catastrophic failure. One way to obtain information on the response of a structure to a meteoroid impact or an orbital debris impact is to simulate the impact conditions of interest in the laboratory and analyze the resulting damage to a target structure. As part of the Phase B and C/D development activities for the Space Station Freedom, 950 impact tests were performed using the NASA/Marshall Space Flight Center (MSFC) light gas gun from 1985-1991. This paper presents the results of impact phenomena repeatability and data uncertainty studies performed using the information obtained from those tests. The results of these studies can be used to assess the utility of individual current and future NASA/MSFC impact test results in the design of long-duration spacecraft.
UAV-based L-band SAR with precision flight path control
NASA Astrophysics Data System (ADS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Gregory A.; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul A.
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes1. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 m tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
UAV-Based L-Band SAR with Precision Flight Path Control
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul
2004-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Mace, Thomas H.; Lou, Yunling
2009-01-01
NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.
[Plasma and tissue lipids in rats after a flight on the Kosmos-1129 biosatellite].
Ahlers, J; Tigranian, R A; D'jatelinka, J; Smajda, B; Toropila, M
1982-01-01
Concentrations of triglycerides, total cholesterol, lipid phosphorus and nonesterified fatty acids were measured in blood plasma, liver, thymus, bone marrow and adipose tissues of rats flown for 18.5 days onboard the biosatellite Cosmos-1129. This exposure was accompanied by increases in lipomobilization, content of total cholesterol and lipid phosphorus in plasma, and triglycerides in the thymus and bone marrow. The postflight exposure to repeated stresses demonstrated changes in the lipid content in all animal groups, especially in flight rats.
2006-09-25
Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors
2006-09-25
Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors
2000-10-26
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Dynamic Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.
2000-10-26
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Launch Vehicle as a National Historic Landmark. The site was designated as such in 1984 by the National Park Service of the United States Department of the Interior.
2000-10-26
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama commemorates the Neutral Buoyancy Space Simulator as a National Historic Landmark. The site was designated as such in 1986 by the National Park Service of the United States Department of the Interior.
NASA Technical Reports Server (NTRS)
Maisel, J. E.
1984-01-01
A historical overview of electrical power systems used in the U.S. manned spacecraft and some of the U.S. unmanned spacecraft is presented in this investigation. A time frame of approximately 25 years, the period for 1959 to 1984, is covered in this report. Results indicate that the nominal bus voltage was 28 volts dc in most spacecraft and all other voltage levels were derived from this voltage through such techniques as voltage inversion or rectification, or a combination. Most spacecraft used solar arrays for the main source of power except for those spacecraft that had a relatively short flight duration, or deep spaceprobes that were designed for very long flight duration. Fuel cells were used on Gemini, Apollo, and Space Shuttle (short duration flights) while radioisotope thermoelectric generators were employed on the Pioneer, Jupiter/Saturn, Viking Lander, and Voyager spacecraft (long duration flights). The main dc bus voltage was unregulated on the manned spacecraft with voltage regulation provided at the user loads. A combination of regulated, semiregulated, and unregulated buses were used on the unmanned spacecraft depending on the type of load. For example, scientific instruments were usually connected to regulated buses while fans, relays, etc. were energized from an unregulated bus. Different forms of voltage regulation, such as shunt, buck/boot, and pulse-width modulated regulators, were used. This report includes a comprehensive bibliography on spacecraft electrical power systems for the space programs investigated.
Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.
2014-01-01
In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.
The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral
NASA Technical Reports Server (NTRS)
Wood, Bill; Pate, Dennis; Thelen, David
2010-01-01
This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.
2016-05-05
Following a naming dedication ceremony May 5, 2016 - the 55th anniversary of Alan Shepard's historic rocket launch - NASA Langley Research Center's newest building is known as the Katherine G. Johnson Computational Research Facility, honoring the "human computer" who successfully calculated the trajectories for America's first space flights.
ERIC Educational Resources Information Center
Eisley, J. G.
1971-01-01
Describes a course for non-engineering students as an introduction to: (1) the physical principles of flight within the atmosphere and in space, (2) the major historical developments in the conquest of air and space, and (3) the current state of aeronautical developments. (Author/TS)
NASA Technical Reports Server (NTRS)
Rahman, Shamim
2005-01-01
Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.
2000-10-16
This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the designation of the Propulsion and Structural Test Facility as a National Historic Landmark by the National Park Service of the United States Interior. The site was designated as a landmark in 1985.
A spacefaring people: Perspectives on early spaceflight
NASA Technical Reports Server (NTRS)
Roland, A.
1985-01-01
The early years of space flight are discussed. An historical perspective is offered. Satellites and politics, management of large scale technology, the state of the literature of space, the domestic and international ramifications of space activity, and rationales for space exploration are discussed.
CLOSEUP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, ...
CLOSE-UP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, NOTE THE INTERPRETIVE SIGN EXPLAINING THE HISTORIC NATURE OF THE SATURN I TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
1994-01-01
An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.
Cell proliferation inhibition in reduced gravity
NASA Technical Reports Server (NTRS)
Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1994-01-01
Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.
Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel
2018-09-01
The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P < 0.001) compared to force-platform-derived power but good correspondence between methods was observed (Intra-class correlation coefficient [ICC] = 0.69). IMU-derived power exhibited good reliability (ICC = 0.67). Velocity-derived jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.
Status of a UAVSAR designed for repeat pass interferometry for deformation measurements
NASA Technical Reports Server (NTRS)
Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose
2005-01-01
NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Tischler, Mark B.
1997-01-01
Historically, component-type flight mechanics simulation models of helicopters have been unable to satisfactorily predict the roll response to pitch stick input and the pitch response to roll stick input off-axes responses. In the study presented here, simple first-order low-pass filtering of the elemental lift and drag forces was considered as a means of improving the correlation. The method was applied to a blade-element model of the AH-64 APache, and responses of the modified model were compared with flight data in hover and forward flight. Results indicate that significant improvement in the off-axes responses can be achieved in hover. In forward flight, however, the best correlation in the longitudinal and lateral off-axes responses required different values of the filter time constant for each axis. A compromise value was selected and was shown to result in good overall improvement in the off-axes responses. The paper describes both the method and the model used for its implementation, and presents results obtained at hover and in forward flight.
Effect of multi-temporal forest cover change trajectories on forest plant diversity
One of the principal tenets of landscape ecology is that forest loss and fragmentation negatively affects biodiversity. However, historical fluctuations in forest cover resulting from repeated cycles of deforestation and reforestation are likely important in influencing patterns ...
Connecting the Past and Present: Reading History.
ERIC Educational Resources Information Center
Zarnowski, Myra
Educational theorists repeatedly call for more hands-on, authentic, interpretative instruction in social studies. They characterize such instruction as "helping students understand the knowledge construction process" or teaching students "to construct their own historical narratives." While there have been some exceptions, most…
Review of the potential of silanes as rocket/scramjet fuels
NASA Astrophysics Data System (ADS)
Hidding, Bernhard; Pfitzner, Michael; Simone, Domenico; Bruno, Claudio
2008-07-01
Experimental use as well as theoretical considerations regarding silanes as fuels for spacecrafts and supersonic flight are reviewed. The historical circumstances leading to the utilization of monosilane as a fuel additive for scramjets are highlighted and milestones in the chemical research on silanes are summarized. Recent developments such as the use of monosilane as an ignition aid in the NASA X-43A scramjet flights as well as general progress in silicon hydride research, including liquid higher silanes and the resulting potential for the propulsion field are discussed.
2012-02-20
The Ohio State University Vice President for Research Dr. Caroline Whitacre, standing right, moderates the first panel discussion during NASA's Future Forum with NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, Ohio State University Graduate Research Associate Vijay Gadepally, Sen. John Glenn, NASA Administrator Charles Bolden, and NASA 2009 Astronaut Candidate and Flight Surgeon Serena Auñón, seated right, at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
2006-02-08
KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Shuttle Landing Facility, Steve Fossett is happy and eager to start what he hopes will be a historic flight in the Virgin Atlantic GlobalFlyer he is strapped into. Fossett will pilot the GlobalFlyer on a record-breaking attempt by flying solo, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. This is the second attempt in two days after a fuel leak was detected Feb. 7. The expected time of takeoff is 7 a.m. Photo credit: NASA/Kim Shiflett
2006-02-08
KENNEDY SPACE CENTER, FLA. - A Beechcraft Starship aircraft precedes the takeoff of the Virgin Atlantic GlobalFlyer from NASA Kennedy Space Center’s Shuttle Landing Facility. Photographers on board the Beachcraft will capture the historic event from the air. Pilot Steve Fossett is attempting a record-breaking solo flight, non-stop without refueling, to surpass the current record for the longest flight of any aircraft. This is the second attempt in two days after a fuel leak was detected Feb. 7. The actual launch time was 7:22 a.m. Feb. 8.
Perez, Cristina R; Moye, John K; Cacela, Dave; Dean, Karen M; Pritsos, Chris A
2017-11-01
The Deepwater Horizon oil spill was the largest in U.S. history, contaminating thousands of miles of coastal habitat and affecting the lives of many avian species. The Gulf of Mexico is a critical bird migration route area and migrants that were oiled but did not suffer mortality as a direct result of the spill faced unpredictable fates. This study utilized homing pigeons as a surrogate species for migratory birds to investigate the effects a single low level external oiling event has on the flight performance and behavior of birds flying repeated 161 km flights. Data from GPS data loggers showed that lightly oiled pigeons changed their flight paths, increased their flight durations by 2.6 fold, increased their flight distances by 28 km and subsequently decreased their route efficiencies. Oiled birds also exhibited reduced rate of weight gain between flights. Our data suggest that contaminated birds surviving the oil spill may have experienced flight impairment and reduced refueling abilities, likely reducing overall migration speed. Our findings contribute new information on how oil spills affect avian species, as the effects of oil on the flight behavior of long distance free-flying birds have not been previously described. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of Flight Attendant Technical Knowledge
NASA Technical Reports Server (NTRS)
Dunbar, Melisa G.; Chute, Rebecca D.; Rosekind, Mark (Technical Monitor)
1997-01-01
Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or lessen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research indicates that flight attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports. Chute and Wiener describe five factors which may produce communication barriers between cockpit and cabin crews: the historical background of aviation, the physical separation of the two crews, psychosocial issues, regulatory factors, and organizational factors. By examining these areas of division we can identify possible bridges and address the implications of deficient cockpit/cabin communication on flight safety. Flight attendant operational knowledge may provide some mitigation of these barriers. The present study explored both flight attendant technical knowledge and flight attendant and pilot expectations of flight attendant technical knowledge. To assess the technical knowledge of cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily completed a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendant operational knowledge and pilots' and flight attendants' expected and desired levels of technical knowledge. Implications for training will be discussed.
Impact of digital systems technology on man-vehicle systems research
NASA Technical Reports Server (NTRS)
Bretoi, R. N.
1983-01-01
The present study, based on a NASA technology assessment, examines the effect of new technologies on trends in crew-systems design and their implications from the vantage point of man-vehicle systems research. Those technologies that are most relevant to future trends in crew-systems design are considered along with problems associated with the introduction of rapidly changing technologies and systems concepts from a human-factors point of view. The technologies discussed include information processing, displays and controls, flight and propulsion control, flight and systems management, air traffic control, training and simulation, and flight and resource management. The historical evolution of cockpit systems design is used to illustrate past and possible future trends in man-vehicle systems research.
NASA Technical Reports Server (NTRS)
Dupont, S.
1979-01-01
The historical origin and general history of vertical current total energy variometer, including its optimum airspeed selector ring are reviewed, and some later developments of it are discussed. Polars of three sailplanes of different spans are charted for straight and circling flight, then plotted to reveal their parabolic anomaly and the effect of circling flight sink rate. These effects are further analyzed for their influence on the transient compensation of NETTO variometers as well as the speed ring. Some other disturbances due to the quality of sailplane preparation and flight dynamics are listed. Conclusions are drawn about the problems to pilots from imperfect NETTO variometer compensation and its effect on the maximization of ground speed from the speed ring. A modification for improvements to the speed ring and computer is suggested.
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn speaks to guest at NASA's Future Forum at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
Liquid Rocket Engine Testing - Historical Lecture: Simulated Altitude Testing at AEDC
NASA Technical Reports Server (NTRS)
Dougherty, N. S.
2010-01-01
The span of history covered is from 1958 to the present. The outline of this lecture draws from historical examples of liquid propulsion testing done at AEDC primarily for NASA's Marshall Space Flight Center (NASA/MSFC) in the Saturn/Apollo Program and for USAF Space and Missile Systems dual-use customers. NASA has made dual use of Air Force launch vehicles, Test Ranges and Tracking Systems, and liquid rocket altitude test chambers / facilities. Examples are drawn from the Apollo/ Saturn vehicles and the testing of their liquid propulsion systems. Other examples are given to extend to the family of the current ELVs and Evolved ELVs (EELVs), in this case, primarily to their Upper Stages. The outline begins with tests of the XLR 99 Engine for the X-15 aircraft, tests for vehicle / engine induced environments during flight in the atmosphere and in Space, and vehicle staging at high altitude. The discussion is from the author's perspective and background in developmental testing.
Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging
NASA Technical Reports Server (NTRS)
Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.
2017-01-01
Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.
NASA Technical Reports Server (NTRS)
Erickson, G. E.
1982-01-01
Six degree of freedom studies were utilized to extract a band of yawing and rolling moment coefficients from the F/A-18 aircraft flight records. These were compared with 0.06 scale model data obtained in a 16T wind tunnel facility. The results, indicate the flight test yawing moment data exhibit an improvement over the wind tunnel data to near neutral stability and a significant reduction in lateral stability (again to anear neutral level). These data are consistent with the flight test results since the motion was characterized by a relatively slo departure. Flight tests repeated the slow yaw departure at M 0.3. Only 0.16 scale model wind tunnel data showed levels of lateral stability similar to the flight test results. Accordingly, geometric modifications were investigated on the 0.16 scale model in the 30x60 foot wind tunnel to improve high angle of attack lateral stability.
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
Analysis of in-flight acoustic data for a twin-engined turboprop airplane
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Wilby, E. G.
1988-01-01
Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.
SERT 2 hollow cathode multiple restarts in space
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Finke, R. C.
1973-01-01
Future missions, both station keeping and primary electric propulsion, will require multiple thrust restarts after periods of inactivity from a few hours to over one year. Although not a part of the original SERT 2 (Space Electric Rocket Test) flight objective, the opportunity to demonstrate multiple cathode restarts in space became available following completion of thruster running. Both neutralizer and main cathodes of each flight thruster were restarted repeatedly following storage periods up to 490 days. No deterioration of cathode heaters was noted nor was any change required in starting voltages or currents.
George, K; Rhone, J; Beitman, A; Cucinotta, F A
2013-08-30
Human missions onboard the International Space Station (ISS) are increasing in duration and several astronauts have now participated in second ISS increments. The radiation environment in space is very different from terrestrial radiation exposure and it is still unclear if space flight effects and radiation from repeat missions are simply additive, which potentially confounds the assessment of the cumulative risk of radiation exposure. It has been shown that single space missions of a few months or more on the ISS can induce measureable increases in the yield of chromosome damage in the blood lymphocytes of astronauts, and it appears that cytogenetic biodosimetry can be used reliably to estimate equivalent dose and radiation risk. We have now obtained direct in vivo measurements of chromosome damage in blood lymphocytes of five astronauts before and after their first and second long duration space flights. Chromosome damage was assessed by fluorescence in situ hybridization technique using three different chromosome painting probes. All astronauts showed an increase in total exchanges and translocations after both the first and second flight. Biological dose measured using either individual assessment or a population assessment supports an additive risk model. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Flight Phenology of Two Coptotermes Species (Isoptera: Rhinotermitidae) in Southeastern Florida.
Chouvenc, Thomas; Scheffrahn, Rudolf H; Mullins, Aaron J; Su, Nan-Yao
2017-08-01
The dispersal flight activity ("swarming") of two invasive subterranean termite species, Coptotermes gestroi (Wasmann) and Coptotermes formosanus Shiraki, was monitored in metropolitan southeastern Florida, where both species are now sympatric and major structural pests. Historical records of alates collected in the area showed that the two species have distinct peaks of flight activity, from mid-February to late April for C. gestroi, and from early April to late June for C. formosanus. However, an overlap of the two dispersal flight seasons has been observed since at least 2005. The daily monitoring of dispersal flight events in southeastern Florida in 2014, 2015, and 2016 confirmed that simultaneous flights occurred several times each year. In addition, environmental conditions for favorable flights were identified, and it was established that low temperature was the primary factor inhibiting both species from dispersal flights, while all other factors had little impact on the occurrence of major dispersal flight events. However, both species shared similar temperature requirements for favorable dispersal flight conditions despite distinct peaks of activity over time. The analysis of sex ratios and average weights of the alates suggests that intrinsic colony factors are important for the timing of the maturation of alates, and that once a cohort of individuals is ready to disperse, a flight may occur as soon as the environmental conditions are favorable. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn address questions from the press during a briefing at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Apollo 11 Astronaut Neil Armstrong speaks during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Underwood, Matthew C.; Guminsky, Michael D.
2015-01-01
Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.
Changes in the fungal autoflora of Apollo astronauts.
Taylor, G R; Henney, M R; Ellis, W L
1973-11-01
Specimens were repeatedly obtained for mycological examination from the skin, throat, urine, and feces of the six astronauts who conducted the Apollo 14 and Apollo 15 lunar exploration missions. Analysis of preflight data demonstrates that the process of severely restricting opportunities from colonization for 3 weeks before flight resulted in a 50% reduction in the number of isolated species. Postflight data indicate that exposure to the space flight environment for up to 2 weeks resulted in an even greater reduction with a relative increase in the potential pathogen Candida albicans. No incidences of microbial shock were observed when crewmembers were quarantined for 16 days after completion of the space flight. Intercrew transfer of particular species could not be demonstrated because most species were not consistently recovered.
Preliminary analysis of STS-2 entry flight data
NASA Technical Reports Server (NTRS)
1982-01-01
A preliminary analysis of the data obtained during the entry of the STS-2 flight was completed. The stability and control derivatives from STS-2 were examined. Questions still remain throughout the flight envelope and the area below Mach 3 needs more study. With three controls operating in a high gain feedback system, it is difficult to separate the individual effects of each of the controls. Analysis of the aerothermal data shows that wing structural-temperature measurements are generally repeatable and consistent with the trajectories. The measured wing upper surface temperatures are in reasonable agreement with Dryden predictions but wing lower surface temperatures are higher than Dryden predictions. Heating and heat transfer models will be adjusted to improve the temperature prediction capability for future trajectories.
Krizova, Iva; Schultz, Julia; Nemec, Ivan; Cabala, Radomir; Hynek, Radovan; Kuckova, Stepanka
2018-01-01
Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.
Determination of stores pointing error due to wing flexibility under flight load
NASA Technical Reports Server (NTRS)
Lokos, William A.; Bahm, Catherine M.; Heinle, Robert A.
1995-01-01
The in-flight elastic wing twist of a fighter-type aircraft was studied to provide for an improved on-board real-time computed prediction of pointing variations of three wing store stations. This is an important capability to correct sensor pod alignment variation or to establish initial conditions of iron bombs or smart weapons prior to release. The original algorithm was based upon coarse measurements. The electro-optical Flight Deflection Measurement System measured the deformed wing shape in flight under maneuver loads to provide a higher resolution database from which an improved twist prediction algorithm could be developed. The FDMS produced excellent repeatable data. In addition, a NASTRAN finite-element analysis was performed to provide additional elastic deformation data. The FDMS data combined with the NASTRAN analysis indicated that an improved prediction algorithm could be derived by using a different set of aircraft parameters, namely normal acceleration, stores configuration, Mach number, and gross weight.
Determining XV-15 aeroelastic modes from flight data with frequency-domain methods
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1993-01-01
The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.
NASA Astrophysics Data System (ADS)
Çaktı, Eser; Ercan, Tülay; Dar, Emrullah
2017-04-01
Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.
Remotely Piloted Aircraft for Research
NASA Technical Reports Server (NTRS)
Rezek, T. W.
1985-01-01
NASA Technical Memorandum presents overview of remotely-piloted research vehicle (RPRV) activities. Controlled from ground, vehicles allow new concepts tried without subjecting pilots to danger. Critical role of pilot in flight testing with RPRV's demonstrated repeatedly, and many system anomalies uncovered with no risk to human life.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Lieberman, Diana; Lieberman, Milton; Hartshorn, Gary S.; Peralta, Rodolfo
1990-01-01
Thermal infrared Multispectral Scanner (TIMS) data were collected at a resolution of 5 to 10 m from a tropical rain forest over an elevation gradient from 35 to 2700 m in the Braulio Carrillo National Park in Costa Rica. Flight lines were repeated with a 15 to 30 minute time difference for measurement of forest canopy thermal response over time. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Techniques for using calibrated aircraft-based thermal scanner data to examine tropical forest canopy thermal properties are described. Forest canopy temperature changes over time assessed between repeated, duplicated flight lines were combined with estimates of surface radiative energy measurements from towers above the forest canopy to determine temperature spatial variability, calculate Thermal Response Numbers (TRN), and estimate evapotranspiration along the elevation gradient from selected one hectare forest inventory plots.
Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Boyer, Diane E.; Turner, Raymond M.
2011-01-01
A significant amount of research conducted in the Sonoran Desert of North America has documented, both anecdotally and empirically, major vegetation changes over the past century due to human land use activities. However, many studies lack coincidental landscape-scale data characterizing the spatial and temporal manifestation of these changes. Vegetation changes in a binational (USA and Mexico) watershed were documented using a series of four land cover maps (1979-2009) derived from multispectral satellite imagery. Cover changes are compared to georeferenced, repeat oblique photographs dating from the late 19th century to present. Results indicate the expansion of grassland over the past 20 years following nearly a century of decline. Historical repeat photography documents early-mid 20th century mesquite invasions, but recent land cover data and rephotography demonstrate declines in xeroriparian/riparian mesquite communities in recent decades. These vegetation changes are variable over the landscape and influenced by topography and land management.
Villarreal, M.L.; Norman, L.M.; Webb, R.H.; Boyer, D.E.; Turner, R.M.
2011-01-01
A significant amount of research conducted in the Sonoran Desert of North America has documented, both anecdotally and empirically, major vegetation changes over the past century due to human land use activities. However, many studies lack coincidental landscape-scale data characterizing the spatial and temporal manifestation of these changes. Vegetation changes in a binational (USA and Mexico) watershed were documented using a series of four land cover maps (1979-2009) derived from multispectral satellite imagery. Cover changes are compared to georeferenced, repeat oblique photographs dating from the late 19th century to present. Results indicate the expansion of grassland over the past 20 years following nearly a century of decline. Historical repeat photography documents early-mid 20th century mesquite invasions, but recent land cover data and rephotography demonstrate declines in xeroriparian/riparian mesquite communities in recent decades. These vegetation changes are variable over the landscape and influenced by topography and land management. ?? 2011 IEEE.
Whole-animal metabolic rate is a repeatable trait: a meta-analysis.
Nespolo, Roberto F; Franco, Marcela
2007-06-01
Repeatability studies are gaining considerable interest among physiological ecologists, particularly in traits affected by high environmental/residual variance, such as whole-animal metabolic rate (MR). The original definition of repeatability, known as the intraclass correlation coefficient, is computed from the components of variance obtained in a one-way ANOVA on several individuals from which two or more measurements are performed. An alternative estimation of repeatability, popular among physiological ecologists, is the Pearson product-moment correlation between two consecutive measurements. However, despite the more than 30 studies reporting repeatability of MR, so far there is not a definite synthesis indicating: (1) whether repeatability changes in different types of animals; (2) whether some kinds of metabolism are more repeatable than others; and most important, (3) whether metabolic rate is significantly repeatable. We performed a meta-analysis to address these questions, as well as to explore the historical trend in repeatability studies. Our results show that metabolic rate is significantly repeatable and its effect size is not statistically affected by any of the mentioned factors (i.e. repeatability of MR does not change in different species, type of metabolism, time between measurements, and number of individuals). The cumulative meta-analysis revealed that repeatability studies in MR have already reached an asymptotical effect size with no further change either in its magnitude and/or variance (i.e. additional studies will not contribute significantly to the estimator). There was no evidence of strong publication bias.
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn poses for a portrait shortly after doing live television interviews from the Ohio State University Union building on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of his historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn, left, and NASA Administrator Charles Bolden speak to guest at NASA's Future Forum at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
NASA Administrator Charles Bolden answers a question from the press during a briefing at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
77 FR 1549 - Order Limiting Scheduled Operations at Newark Liberty International Airport
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-10
.... DATES: Effective upon publication. The deadlines for temporary slot returns under this waiver are March... the minimum usage rules will not receive historic precedence for the following corresponding... interest. Carriers that temporarily reduce flights and elect to temporarily return slots to the FAA rather...
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn and his wife Annie listen to speakers during a reception at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn talks on stage during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn and his wife Annie talk during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
2011-10-01
ground (subsurface) deposits. Examples of prehistoric archaeological resources include village sites, campsites, lithic scatters, burials, hearths ...or hearth features), processing sites, caves and rock shelters, and petroglyph and pictograph sites. Examples of historic archaeological resources
Air Force Historical Research Agency
Command Capt Joseph J Merhar Jr collection Early Wright Brothers Flying Machines History of the 3rd Organizations Wings and Groups Squadrons and Flights Studies Documents Personal Papers Oral History Catalogue S. Fairchild Research Information Center Military Sites Air Force Link DefenseLINK Air Force History
An operations concept methodology to achieve low-cost mission operations
NASA Technical Reports Server (NTRS)
Ledbetter, Kenneth W.; Wall, Stephen D.
1993-01-01
Historically, the Mission Operations System (MOS) for a space mission has been designed last because it is needed last. This has usually meant that the ground system must adjust to the flight vehicle design, sometimes at a significant cost. As newer missions have increasingly longer flight operations lifetimes, the MOS becomes proportionally more difficult and more resource-consuming. We can no longer afford to design the MOS last. The MOS concept may well drive the spacecraft, instrument, and mission designs, as well as the ground system. A method to help avoid these difficulties, responding to the changing nature of mission operations is presented. Proper development and use of an Operations Concept document results in a combined flight and ground system design yielding enhanced operability and producing increased flexibility for less cost.
44. Communication equipment room, cable air dryer on left, motorola ...
44. Communication equipment room, cable air dryer on left, motorola base station (vhf) in center, telephone repeater group at right, looking west - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD
NASA Astrophysics Data System (ADS)
Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander
2017-04-01
Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding the rock glacier. Additionally, one of the challenges with processing snow cover imagery with SfM-MVS is dealing with the general homogeneity of the surface, which makes is difficult for automated-feature detection algorithms to identify key features for point matching. This challenge depends on the snow cover surface conditions, such as scale, lighting conditions (high vs. low contrast), and availability of snow-free features within a scene, among others. We attempt to explore this aspect by spatial modelling the factors influencing the precision and bias of the DEMs from image, flight, and terrain attributes.
Open Source and Design Thinking at NASA: A Vision for Future Software
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.
Development of an integrated set of research facilities for the support of research flight test
NASA Technical Reports Server (NTRS)
Moore, Archie L.; Harney, Constance D.
1988-01-01
The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.
NASA Astrophysics Data System (ADS)
Halprin, L.
Manned space flight has stagnated for over forty years. No humans have travelled beyond LEO since 1972. This paper examines the historical reasons for this situation, postulates a possible explanation and proposes a potential way forward. The science required for manned space flight has existed for a very long time. The Chinese first developed rockets almost a millennium ago. The Laws of Universal Gravitation were described by Newton in the 17th century, and the rocket equation was formulated by Tsiolkovsky over a hundred years ago. Advances in chemical, electronic and materials technologies enabled manned space flight fifty years ago. But it still required the political will to authorise the enormous expense of the undertaking. Since the original political impetus for manned space flight evaporated after men reached the moon, the enterprise has stagnated. A three stage model linking (a) the science and technology, (b) the economic resources and (c) the will or motivation is presented as a possible explanation. A way for progressing the enterprise of manned space flight beyond this three-way nexus is proposed. By accepting the propositions put forward in this paper, it is plausible that stakeholders may be empowered to push beyond the excuses that have retarded manned space flight for so long.
Flight Dynamics Mission Support and Quality Assurance Process
NASA Technical Reports Server (NTRS)
Oh, InHwan
1996-01-01
This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.
Abbott, Eduardo F; Thompson, Whitney; Pandian, T K; Zendejas, Benjamin; Farley, David R; Cook, David A
2017-11-01
Compare the effect of personalized feedback (PF) vs. task demonstration (TD), both delivered via video, on laparoscopic knot-tying skills and perceived workload; and evaluate the effect of repeated practice. General surgery interns and research fellows completed four repetitions of a simulated laparoscopic knot-tying task at one-month intervals. Midway between repetitions, participants received via e-mail either a TD video (demonstration by an expert) or a PF video (video of their own performance with voiceover from a blinded senior surgeon). Each participant received at least one video per format, with sequence randomly assigned. Outcomes included performance scores and NASA Task Load Index (NASA-TLX) scores. To evaluate the effectiveness of repeated practice, scores from these trainees on a separate delayed retention test were compared against historical controls who did not have scheduled repetitions. Twenty-one trainees completed the randomized study. Mean change in performance scores was significantly greater for those receiving PF (difference = 23.1 of 150 [95% confidence interval (CI): 0, 46.2], P = .05). Perceived workload was also significantly reduced (difference = -3.0 of 20 [95% CI: -5.8, -0.3], P = .04). Compared with historical controls (N = 93), the 21 with scheduled repeated practice had higher scores on the laparoscopic knot-tying assessment two weeks after the final repetition (difference = 1.5 of 10 [95% CI: 0.2, 2.8], P = .02). Personalized video feedback improves trainees' procedural performance and perceived workload compared with a task demonstration video. Brief monthly practice sessions support skill acquisition and retention.
An Indispensable Ingredient: Flight Research and Aircraft Design
NASA Technical Reports Server (NTRS)
Gorn, Michael H.
2003-01-01
Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:
NASA Technical Reports Server (NTRS)
Fuller, Sean; Dillon, William F.
2006-01-01
As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.
Jenni-Eiermann, Susanne; Hasselquist, Dennis; Lindström, Ake; Koolhaas, Anita; Piersma, Theunis
2009-01-01
During endurance flight most birds do not feed and have to rely on their body reserves. Fat and protein is catabolised to meet the high energetic demands. Even though the hormonal regulation of migration is complex and not yet fully understood, the adrenocortical hormone corticosterone crystallizes to play a major role in controlling physiological traits in migratory birds during flight. However, results from field studies are partially equivocal, not least because data from birds during endurance flight are hard to get and present mostly a momentary shot. A wind-tunnel experiment offered the possibility to measure repeatedly under controlled conditions the effect of long flights on the stress hormone corticosterone. In a long-distance migrating shorebird, the red knot Calidris canutus, we measured plasma concentrations of corticosterone within 3 min and after a restraint time of 30 min directly after 2h and 10h non-stop flights, respectively, and during rest. Baseline corticosterone levels were unchanged directly after the flights, indicating that endurance flight did not affect corticosterone levels. The adrenocortical response to restraint showed the typical rise in birds during rest, while birds after a 2 or 10h flight substantially decreased plasma corticosterone concentrations. We suggest that the negative adrenocortical response to restraint after flight is part of the mechanism to reduce the proteolytic effect of corticosterone to save muscle protein and to avoid muscle damaging effects.
Using Fuzzy Clustering for Real-time Space Flight Safety
NASA Technical Reports Server (NTRS)
Lee, Charles; Haskell, Richard E.; Hanna, Darrin; Alena, Richard L.
2004-01-01
To ensure space flight safety, it is necessary to monitor myriad sensor readings on the ground and in flight. Since a space shuttle has many sensors, monitoring data and drawing conclusions from information contained within the data in real time is challenging. The nature of the information can be critical to the success of the mission and safety of the crew and therefore, must be processed with minimal data-processing time. Data analysis algorithms could be used to synthesize sensor readings and compare data associated with normal operation with the data obtained that contain fault patterns to draw conclusions. Detecting abnormal operation during early stages in the transition from safe to unsafe operation requires a large amount of historical data that can be categorized into different classes (non-risk, risk). Even though the 40 years of shuttle flight program has accumulated volumes of historical data, these data don t comprehensively represent all possible fault patterns since fault patterns are usually unknown before the fault occurs. This paper presents a method that uses a similarity measure between fuzzy clusters to detect possible faults in real time. A clustering technique based on a fuzzy equivalence relation is used to characterize temporal data. Data collected during an initial time period are separated into clusters. These clusters are characterized by their centroids. Clusters formed during subsequent time periods are either merged with an existing cluster or added to the cluster list. The resulting list of cluster centroids, called a cluster group, characterizes the behavior of a particular set of temporal data. The degree to which new clusters formed in a subsequent time period are similar to the cluster group is characterized by a similarity measure, q. This method is applied to downlink data from Columbia flights. The results show that this technique can detect an unexpected fault that has not been present in the training data set.
Changes in the Fungal Autoflora of Apollo Astronauts
Taylor, Gerald R.; Henney, Mary R.; Ellis, Walter L.
1973-01-01
Specimens were repeatedly obtained for mycological examination from the skin, throat, urine, and feces of the six astronauts who conducted the Apollo 14 and Apollo 15 lunar exploration missions. Analysis of preflight data demonstrates that the process of severely restricting opportunities from colonization for 3 weeks before flight resulted in a 50% reduction in the number of isolated species. Postflight data indicate that exposure to the space flight environment for up to 2 weeks resulted in an even greater reduction with a relative increase in the potential pathogen Candida albicans. No incidences of microbial shock were observed when crewmembers were quarantined for 16 days after completion of the space flight. Intercrew transfer of particular species could not be demonstrated because most species were not consistently recovered. PMID:4762399
14 CFR 23.1457 - Cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... originating at the first and second pilot stations and voice communications of other crewmembers on the flight deck when directed to those stations. The microphone must be so located and, if necessary, the... conditions and played back. Repeated aural or visual playback of the record may be used in evaluating...
Modeling seasonal migration of fall armyworm moths
USDA-ARS?s Scientific Manuscript database
Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature, but must repeat a series of northward migratory flights each spring if it is to re-infest ...
Transient immune impairment after a simulated long-haul flight.
Wilder-Smith, Annelies; Mustafa, Fatima B; Peng, Chung Mien; Earnest, Arul; Koh, David; Lin, Gen; Hossain, Iqbal; MacAry, Paul A
2012-04-01
Almost 2 billion people travel aboard commercial airlines every year, with about 20% developing symptoms of the common cold within 1 wk after air travel. We hypothesize that hypobaric hypoxic conditions associated with air travel may contribute to immune impairment. We studied the effects of hypobaric hypoxic conditions during a simulated flight at 8000 ft (2438 m) cruising altitude on immune and stress markers in 52 healthy volunteers (mean age 31) before and on days 1, 4, and 7 after the flight. We did a cohort study using a generalized estimating equation to examine the differences in the repeated measures. Our findings show that the hypobaric hypoxic conditions of a 10-h overnight simulation flight are not associated with severe immune impairment or abnormal IgA or cortisol levels, but with transient impairment in some parameters: we observed a transient decrease in lymphocyte proliferative responses combined with an upregulation in CD69 and CD14 cells and a decrease in HLA-DR in the immediate days following the simulated flight that normalized by day 7 in most instances. These transient immune changes may contribute to an increased susceptibility to respiratory infections commonly seen after long-haul flights.
Sugar Metabolism in Hummingbirds and Nectar Bats.
Suarez, Raul K; Welch, Kenneth C
2017-07-12
Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the "sugar oxidation cascade", the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.
The U.S. Environmental Protection Agency (USEPA) used rock basket artificial substrates to sample benthic macroinvertebrates of the Ohio River from 1965-1971. The objective of this study was to repeat the rock basket surveys in 2002 to evaluate changes in the benthic assemblage ...
Advocacy: The Early Childhood Historian's Not-So-Hidden Agenda.
ERIC Educational Resources Information Center
Ranck, Edna Runnels
To examine how knowledge of history and politics informs the early education and child care field, this paper identifies sources of historical knowledge and unexamined underlying presuppositions frequently held by early childhood professionals which, if allowed to remain unchallenged, contribute to professional burn-out, repeated frustration at…
Flight investigation of cabin noise control treatments for a light turboprop aircraft
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Oneal, R. L.; Mixson, J. S.
1985-01-01
The in-flight evaluation of noise control treatments for a light, twin-engined turboprop aircraft presents several problems associated with data analysis and interpretation. These problems include data repeatability, propeller synchronization, spatial distributions of the exterior pressure field and acoustic treatment, and the presence of flanking paths. They are discussed here with regard to a specific aeroplane configuration. Measurements were made in an untreated cabin and in a cabin fitted with an experimental sidewall treatment. Results are presented in terms of the insertion loss provided by the treatment and comparison made with predictions based on laboratory measurements.
Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain
NASA Technical Reports Server (NTRS)
Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen
2011-01-01
A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.
Shearer, Gene; Clerici, Mario
2010-11-01
Multiple and frequent exposure to the human immunodeficiency virus (HIV) does not necessarily result in HIV infection. Approximately 15% of HIV exposed seronegative individuals repeatedly resist infection, a phenomenon that has been observed in all investigated HIV‐exposed cohorts. This brief report provides a limited historic perspective of the discovery of these cohorts and outlines some of the immunologic and genetic parameters that are associated with resistance. We raise the possibility that assessing immunologic parameters of the phenomenon might provide insights that might be relevant for effective AIDS vaccine design.
A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.
2011-01-01
Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.
Historical Review of Lower Body Negative Pressure Research in Space Medicine.
Campbell, Mark R; Charles, John B
2015-07-01
Cephalad redistribution of intravascular and extravascular fluid occurs as a result of weightlessness during spaceflight. This provokes cardiovascular, cardiopulmonary, and autonomic nervous system responses. The resulting altered functional state can result in orthostatic hypotension and intolerance upon landing and return to a gravity environment. In-flight lower body negative pressure (LBNP) transiently restores normal body fluid distribution. Early in the U.S. space program, LBNP was devised as a way to test for orthostatic intolerance. With the development of the Skylab Program and longer duration spaceflight, it was realized that it could provide a method of monitoring orthostatic intolerance in flight and predicting the post-landing orthostatic response. LBNP was also investigated not only as an in-flight cardiovascular orthostatic stress test, but also as a countermeasure to cardiovascular deconditioning on Soviet space stations, Skylab, and the Shuttle. It is still being used by the Russian program on the International Space Station as an end-of-flight countermeasure.
GEMINI-TITAN (GT)-9- TRAINING - AEROSPACE FLIGHT SIMULATOR - PILOT - TX
1966-03-01
S66-27990 (March 1966) --- Astronaut Eugene A. Cernan, pilot for the Gemini-9 spaceflight, works out procedures for his historic space excursion in a unique manned Aerospace Flight Simulator at LTV Corp. at Dallas, Texas. The LTV simulator is used frequently by NASA astronauts for a variety of space programs maneuvers to provide many of the sensations and visual scenes of actual spaceflight. Controlled through a complex of computers, the device makes it possible for the astronauts to work out procedures, solve problems and simulate missions in real time with great accuracy. The astronaut rides in a spacecraft-like gondola which moves in roll, pitch and yaw in response to his controls and accurate computer inputs. The simulator's usual spacecraft displays and canopy have been removed and AMU backpack complete with control electronics installed. The astronaut makes his simulated flight in an inflated pressure suit and with the NASA-developed Extravehicular Life Support system chest pack which will be used in the Gemini flight. Photo credit: NASA
Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.
Metabolic energy requirements for space flight
NASA Technical Reports Server (NTRS)
Lane, Helen W.
1992-01-01
The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.
Urolithiasis and Genitourinary Systems Issues for Spaceflight
NASA Astrophysics Data System (ADS)
Jones, Jeffrey A.; Sargsyan, Ashot; Pietryzk, Robert; Sams, C.; Stepaniak, Phillip; Whitson, P.
2008-09-01
Genitourinary medical events have shown to be an issue for both short duration and long duration spaceflight, and are anticipated to also be a potential issue for future exploration missions as well. This is based on actual historical pre-, in- and post-flight medical events, as well as assessment of what future flight challenges lay ahead. For this study, retrospective record review, as well as prospective studies of ultrasound and contingency management procedure development, and oral urinary stone prophylaxis were conducted. Results showed that the incidence of prior urinary calculi in- and post-flight was a risk driver for development of on-orbit countermeasures, as well as diagnostic and therapeutic methods for a possible in-flight calculus contingency. Oral potassium citrate and bisphosphonate preparations show promise for prophylaxis in spaceflight risk reduction. We conclude that a properly developed approach of selection, monitoring, and preventive medicine with effective countermeasures, along with early imaging diagnosis and minimally-invasive contingency intervention, should prevent issues such as urinary calculi from having a significant mission impact for exploration-class spaceflight.
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn, left, and NASA Administrator Charles Bolden address questions from the press during a briefing at Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
Flight to Freedom: One Family and the Story of the Underground Railroad.
ERIC Educational Resources Information Center
Horton, James Oliver
2001-01-01
Offers historical information on the underground railroad, a secret organization that attempted to move slaves from bondage to freedom. Focuses on William Still, one of the most effective organizers of the underground railroad, and the story of his family. Addresses the reunion between Still and his brother Peter. (CMK)
Build Your Own Wright Brothers' Glider
ERIC Educational Resources Information Center
Schimmel, Gordon; Hand, Jon; Ellis, Art
2003-01-01
A little more than one hundred years ago, Wilbur and Orville Wright began building models of airfoils and testing them in wind tunnels in their search for an efficient wing. Models continue to be used today by aerospace engineers to prove concepts and launch dreams. To celebrate the centennial of the Wright brothers' historic flight, the authors…
2017-09-27
Marshall’s Ruth Jones, a mishap investigation specialist, told her NASA story and spoke about minority statistics in science, technology, engineering and mathematics (STEM). Jones also led a panel discussing how to engage, encourage and draw more minority students in to STEM fields and careers.
2012-02-20
Ohio State University Graduate Research Associate Vijay Gadepally, left, listens as Sen. John Glenn talks during a NASA Future Forum panel discussion at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn and his wife Annie take the stage during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn and NASA Deputy Administrator Lori Garver pose for a photograph during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Ohio State University student Joanna Fedeli interviews Sen. John Glenn and his wife Annie during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn's wife Annie listens to an interviewers question during a celebration dinner at The Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Kussner, H G; Thalau, Karl
1933-01-01
The historical development of the rules for structural strength of aircraft in the leading countries is traced from the beginning of flight to date. The term "factor of safety" is critically analyzed; its replacement by probability considerations has been considered desirable.
2006-04-06
KENNEDY SPACE CENTER, FLA. - To honor the 25th anniversary of the first shuttle launch on April 12, 1981, STS-1 Commander John Young (left) and Pilot Bob Crippen (right) were invited to share their experiences with employees during a special presentation at Kennedy. Here, Young relates his feelings about making that historic flight. Photo credit: NASA/George Shelton
2006-04-06
KENNEDY SPACE CENTER, FLA. - To honor the 25th anniversary of the first shuttle launch on April 12, 1981, STS-1 Commander John Young (left) and Pilot Bob Crippen (right) were invited to share their experiences with employees during a special presentation at Kennedy. Here, Young relates his feelings about making that historic flight. Photo credit: NASA/George Shelton
Integrated Maintenance Information System Diagnostic Demonstration
1990-08-01
subject operating the PMA read the switch settings to himself, but forgot to tell the subject in the cockpit to recycle the radar;, so, they got the same...through page after page of the fault isolation manual or such things as their (informal) "flight control trivia " book of historical best options, which
Fight or Flight? Immigration, Competition, and Language Assistance Resources in Metropolitan Atlanta
ERIC Educational Resources Information Center
Tarasawa, Beth
2013-01-01
As the Latino/a immigrant population increases, racial conflict historically understood in terms of Black and White in the U.S. South has expanded to include new contestants in metro-Atlanta public schools. By examining market and sociological competition theoretical perspectives, this study investigates how language assistance resource…
14 CFR 232.2 - Answers to applications for review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... expected actual density of mail which will be tendered to the carrier if the order in question is upheld... order in question is upheld; (5) The volume (including density of mail, amount and types of containers... (including density of mail, amount and types of containers) of mail historically carried on the flight or...
EAARL Topography-Sagamore Hill National Historic Site
Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Travers, Laurinda J.
2007-01-01
This Web site contains lidar-derived bare earth (BE) and first return (FR) topography maps and GIS files for the Sagamore Hill National Historic Site. These lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.
EAARL topography: Thomas Stone National Historic Site
Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayegandhi, Amar; Patterson, Judd
2007-01-01
This Web site contains Lidar-derived topography (first return and bare earth) maps and GIS files for Thomas Stone National Historic Site in Maryland. These Lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.
1998-06-01
STS095-S-001 (June 1998) --- The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The space shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number "7" signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represnted by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Performance deterioration based on in-service engine data: JT9D jet engine diagnostics program
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1979-01-01
Results of analyses of engine performance deterioration trends and levels with respect to service usage are presented. Thirty-two JT9D-7A engines were selected for this purpose. The selection of this engine fleet provided the opportunity of obtaining engine performance data starting before the first flight through initial service such that the trend and levels of engine deterioration related to both short and long term deterioration could be more carefully defined. The performance data collected and analyzed included in-flight, on wing (ground), and test stand prerepair and postrepair performance calibrations with expanded instrumentation where feasible. The results of the analyses of these data were used to: (1) close gaps in previously obtained historical data as well as augment the historical data with more carefully obtained data; (2) refine preliminary models of performance deterioration with respect to usage; (3) establish an understanding of the relationships between ground and altitude performance deterioration trends; (4) refine preliminary recommendations concerning means to reduce and control deterioration; and (5) identify areas where additional effort is required to develop an understanding of complex deterioration issues.
Carr, David M; Ellsworth, Ashley A; Fisher, Gregory L; Valeriano, Wescley W; Vasco, Juan P; Guimarães, Paulo S S; de Andrade, Rodrigo R; da Silva, Elizabeth R; Rodrigues, Wagner N
2018-02-05
The iridescent wings of the Chalcopterix rutilans damselfly (Rambur) (Odonata, Polythoridae) are investigated with focused ion beam/scanning electron microscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. The electron microscopy images reveal a natural photonic crystal as the source of the varying colors. The photonic crystal has a consistent number and thickness (∼195 nm) of the repeat units on the ventral side of the wing, which is consistent with the red color visible from the bottom side of the wing in all regions. The dorsal side of the wing shows strong color variations ranging from red to blue depending on the region. In the electron microscopy images, the dorsal side of the wing exhibits varied number and thicknesses of the repeat units. The repeat unit spacings for the red, yellow/green, and blue regions are approximately 195, 180, and 145 nm, respectively. Three-dimensional analysis of the natural photonic crystals by time-of-flight secondary ion mass spectrometry reveals that changes in the relative levels of Na, K, and eumelanin are responsible for the varying dielectric constant needed to generate the photonic crystal. The photonic crystal also appears to be assembled with a chemical tricomponent layer structure due to the enhancement of the CH 6 N 3 + species at every other interface between the high/low dielectric constant layers.
Historic and Instrumental Records of Repeating Seismicity in the Gyeongju Area, Southeastern Korea
NASA Astrophysics Data System (ADS)
HAN, M.; Kim, K. H.; Kang, S. Y.; Son, M.; Park, J. H.; LI, Z.
2015-12-01
Gyeongju area located in southeastern Korea has experienced repeated seismicity. Historic records during the last 2000 years in the area indicate the earthquake with magnitude 6.7 caused damages of human life and property in 779. During the period of modern instrumental seismic records, the area also experienced numerous small- and moderate-magnitude earthquakes. For example, an earthquake with magnitude 4.3 occurring in 1997 provided a chance for nationwide evaluations of earthquake safety and the renewal of earthquake monitoring system in Korea. The area is still experiencing small earthquakes including magnitude 3.5 in September 2014. We applied waveform correlation detector to continuously recorded seismic data from July 2014 to December 2014 to identify any repeating earthquakes. Detected waveforms are carefully inspected and more than 230 potential events are identified. Eighty three earthquakes among them have been selected for precise determination of earthquake hypocenters. Focal mechanism solutions for representative events were also determined. We further compared the results with those obtained using earthquakes prior to 2013. It has been confirmed the earthquakes in the area are clustered in space. Similar waveforms, earthquake locations, and focal mechanism solutions identified in the study indicates an active faults in the area. Since the area hosts many critical infra-structures, micro-seismicity in the area requires extensive study to address earthquake hazard issues.
Consequences of repeated discovery and benign neglect of non-interaction of waves (NIW)
NASA Astrophysics Data System (ADS)
Roychoudhuri, ChandraSekhar
2017-08-01
This paper presents the historical background behind the repeated discovery and repeated ignoring of the generic important property of all propagating waves, the Non-Interaction of Waves (NIW). The focus will be on the implications of NIW in most of the major optical phenomena with brief hints of importance. We argue that the prevailing postulate of wave-particle duality becomes unnecessary, once we accept NIW. Semi-classical model of treating light-matter interactions should be the preferred approach since the quantumness actually arises from within the structure of the energy levels (bands) in materials. Waves, and wave equations, do not support bullet-like propagation. We follow the historical trend starting from the tenth century physicist Alhazen, to the seventeenth century Newton and Huygens, then to the nineteenth century Young and Fresnel. Then we jump to twentieth century physicists Planck, Einstein, Bose, Dirac and Feynman. Had we recognized and appreciated NIW property of waves from the time of Alhazen, the evolutionary history of physics would have been dramatically different from what we have today. The prevailing dominance of the postulate of wave-particle duality is keeping us confused from seeking out actual reality; and hence, we should abandon this concept and search out better models. The paper demonstrates that NIW provides us with a platform for deeper understanding of the nature of EM waves that we have missed; it is not just semantics.
Historical development of worldwide supersonic aircraft
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1979-01-01
Aerodynamic problems in the development of supersonic aircraft, their solutions, and innovative design features are presented. Studies of compressibility, introduction of jets, supersonic phenomena, transonic drag and lift, longitudinal and directional stability, dynamic pressure fields, and advent of the supersonic fighter are discussed. The flight research aircraft such as the Bell X-1 and the Douglas-558, the century series models, reconnaissance aircraft, the multimission tactical fighter, and the current generation fighters such as F-16 and F-18 are described. The SCAT program is considered, along with supersonic developments in Great Britain, France, and USSR. It is concluded that the sonic boom still appears to be an inherent problem of supersonic flight that particularly affects overland commercial flight, and efforts continue for increased efficiency for economic and performance gains and increased safety for military and civilian aircraft.
Cell-Mediated Immune Function and Cytokine Regulation During Space Flight
NASA Technical Reports Server (NTRS)
Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)
2000-01-01
The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.
NASA Technical Reports Server (NTRS)
Krabill, William B.
2004-01-01
The Arctic Ice Mapping group (Project AIM) at the NASA Goddard Space Flight Center Wallops Flight Facility has been conducting systematic topographic surveys of the Greenland Ice Sheet (GIs) since 1993, using scanning airborne laser altimeters combined with Global Positioning System (GPS) technology onboard NASA's P-3 aircraft. Flight lines have covered all major ice drainage basins, with repeating surveys after a 5-year interval during the decade of the 90's. Analysis of this data documented significant thinning in many areas near the ice sheet margins and an overall negative mass balance of the GIS (Science, 2000). In 2001, 2002, and 2003 many of these flight lines were re-surveyed, providing evidence of continued or accelerated thinning in all observed areas around the margin of the GIs. Additionally, however, a highly-anomalous snowfall was observed between 2002 and 2003 in SE Greenland - perhaps an indicator of a shift in the regional climate?
In-flight acoustic measurements on a light twin-engined turboprop airplane
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Mcdaniel, C. D.; Wilby, E. G.
1985-01-01
Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference.
NASA Astrophysics Data System (ADS)
Kvetňanský, R.; Vigaš, M.; Németh, Š.; Macho, L.; Tigranyan, R. A.
The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5-19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.
Museum genomics: low-cost and high-accuracy genetic data from historical specimens.
Rowe, Kevin C; Singhal, Sonal; Macmanes, Matthew D; Ayroles, Julien F; Morelli, Toni Lyn; Rubidge, Emily M; Bi, Ke; Moritz, Craig C
2011-11-01
Natural history collections are unparalleled repositories of geographical and temporal variation in faunal conditions. Molecular studies offer an opportunity to uncover much of this variation; however, genetic studies of historical museum specimens typically rely on extracting highly degraded and chemically modified DNA samples from skins, skulls or other dried samples. Despite this limitation, obtaining short fragments of DNA sequences using traditional PCR amplification of DNA has been the primary method for genetic study of historical specimens. Few laboratories have succeeded in obtaining genome-scale sequences from historical specimens and then only with considerable effort and cost. Here, we describe a low-cost approach using high-throughput next-generation sequencing to obtain reliable genome-scale sequence data from a traditionally preserved mammal skin and skull using a simple extraction protocol. We show that single-nucleotide polymorphisms (SNPs) from the genome sequences obtained independently from the skin and from the skull are highly repeatable compared to a reference genome. © 2011 Blackwell Publishing Ltd.
Human Immune Function and Microbial Pathogenesis in Human Spaceflight
NASA Technical Reports Server (NTRS)
Pierson, Duane J.; Ott, M.
2006-01-01
This oral presentation was requested by Conference conveners. The requested subject is microbial risk assessment considering changes in the human immune system during flight and microbial diversity of environmental samples aboard the International Space Station (ISS). The presentation will begin with an introduction discussing the goals and limitations of microbial risk assessment during flight. The main portion of the presentation will include changes in the immune system that have been published, historical data from microbial analyses, and initial modeling of the environmental flora aboard ISS. The presentation will conclude with future goals and techniques to enhance our ability to perform microbial risk assessment on long duration missions.
2011-03-22
At the Baikonur Cosmodrome in Kazakhstan, Expedition 27 Flight Engineer Ron Garan of NASA (left), Soyuz Commander Alexander Samokutyaev (center) and Flight Engineer Andrey Borisenko pose for pictures outside their Soyuz TMA-21 spacecraft during a check of its systems March 22, 2011. The Soyuz, which has been dubbed “Gagarin” and which bears the likeness of cosmonaut Yuri Gagarin, the first human in space, is scheduled for launch on April 5 (April 4, U.S. time), just one week shy of the 50th anniversary of Gagarin’s historic journey into space from the same launch pad that the Expedition 27 crew will begin their mission rom. NASA/Victor Zelentsov
Geological and historical evidence of irregular recurrent earthquakes in Japan.
Satake, Kenji
2015-10-28
Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).
Mission operations systems for planetary exploration
NASA Technical Reports Server (NTRS)
Mclaughlin, William I.; Wolff, Donna M.
1988-01-01
The purpose of the paper is twofold: (1) to present an overview of the processes comprising planetary mission operations as conducted at the Jet Propulsion Laboratory, and (2) to present a project-specific and historical context within which this evolving process functions. In order to accomplish these objectives, the generic uplink and downlink functions are described along with their specialization to current flight projects. Also, new multimission capabilities are outlined, including prototyping of advanced-capability software for subsequent incorporation into more automated future operations. Finally, a specific historical ground is provided by listing some major operations software plus a genealogy of planetary missions beginning with Mariner 2 in 1962.
Effect of Sampling Schedule on Pharmacokinetic Parameter Estimates of Promethazine in Astronauts
NASA Technical Reports Server (NTRS)
Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi
2005-01-01
Six astronauts on the Shuttle Transport System (STS) participated in an investigation on the pharmacokinetics of promethazine (PMZ), a medication used for the treatment of space motion sickness (SMS) during flight. Each crewmember completed the protocol once during flight and repeated thirty days after returned to Earth. Saliva samples were collected at scheduled times for 72 h after PMZ administration; more frequent samples were collected on the ground than during flight owing to schedule constraints in flight. PMZ concentrations in saliva were determined by a liquid chromatographic/mass spectrometric (LC-MS) assay and pharmacokinetic parameters (PKPs) were calculated using actual flight and ground-based data sets and using time-matched sampling schedule on ground to that during flight. Volume of distribution (V(sub c)) and clearance (Cl(sub s),) decreased during flight compared to that from time-matched ground data set; however, Cl(sub s) and V(sub c) estimates were higher for all subjects when partial ground data sets were used for analysis. Area under the curve (AUC) normalized with administered dose was similar in flight and partial ground data; however AUC was significantly lower using time-matched sampling compared with the full data set on ground. Half life (t(sub 1/2)) was longest during flight, shorter with matched-sampling schedule on ground and shortest when complete data set from ground was used. Maximum concentration (C(sub max)), time for C(sub max), (t(sub max)), parameters of drug absorption, depicted a similar trend with lowest and longest respectively, during flight, lower with time-matched ground data and highest and shortest with full ground data.
Effect of sampling schedule on pharmacokinetic parameter estimates of promethazine in astronauts
NASA Astrophysics Data System (ADS)
Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi
2005-08-01
Six astronauts on the Shuttle Transport System (STS) participated in an investigation on the pharmacokinetics of promethazine (PMZ), a medication used for the treatment of space motion sickness (SMS) during flight. Each crewmember completed the protocol once during flight and repeated thirty days after returned to Earth. Saliva samples were collected at scheduled times for 72 h after PMZ administration; more frequent samples were collected on the ground than during flight owing to schedule constraints in flight. PMZ concentrations in saliva were determined by a liquid chromatographic/mass spectrometric (LC-MS) assay and pharmacokinetic parameters (PKPs) were calculated using actual flight and ground-based data sets and using time-matched sampling schedule on ground to that during flight. Volume of distribution (Vc) and clearance (Cls) decreased during flight compared to that from time-matched ground data set; however, ClS and Vc estimates were higher for all subjects when partial ground data sets were used for analysis. Area under the curve (AUC) normalized with administered dose was similar in flight and partial ground data; however AUC was significantly lower using time-matched sampling compared with the full data set on ground. Half life (t1/2) was longest during flight, shorter with matched-sampling schedule on ground and shortest when complete data set from ground was used. Maximum concentration (Cmax), time for Cmax (tmax), parameters of drug absorption, depicted a similar trend with lowest and longest respectively, during flight, lower with time- matched ground data and highest and shortest with full ground data.
Repeated aeromagnetic surveys in Shinmoe-dake volcano, Japan by using unmanned helicopter
NASA Astrophysics Data System (ADS)
Koyama, T.; Kaneko, T.; Ohminato, T.; Watanabe, A.; Takeo, M.; Yanagisawa, T.; Honda, Y.
2016-12-01
We repeatedly conducted aeromagnetic surveys at Shinmoe-dake volcano, Japan by using unmanned helicopter, and elucidated magnetization structure and its temporal change. At the beginning of 2011, Shinmoe-dake volcano has done magmatic eruptions. After ceasing activities of volcanic eruptions, the first aeromagnetic survey by an unmanned helicopter was performed in the western part of Shinmoe-dake volcano in May 2011. The advantage to use unmanned vehicle for volcanic survey is ability of the safe flight in lower altitude with precise tracks. It enable us forthcoming repeated survey on the same tracks and elucidate the temporal changes of the magnetic fields. The geomagnetic total intensity measurement flight was conducted by installing cesium optical pumping magnetometer on the helicopter, in which the measurement line intervals were almost 100 m and the altitudes were also fixed at almost 100 m above the ground except above the crater. Total measurement length was about 85 km. The data analysis revealed that the averaged magnetization is about 1.5 A/m, typical value of andesite rock, and some horizontal anomalies can be shown.After that, we conducted four repeated surveys so far, and notable temporal changes are detected just around the crater of Shinmoe-dake volcano due to gaining magnetization by cooling of lava which has accumulated in the crater at the 2011 eruptions. The cooling rate just follows square root of elapsed time from the eruptive events, and thus the cooling is being simply done by thermal diffusion. Magnetizing, however, goes on too fast to be done by thermal diffusion only at the surface of lava, and so the cooling may be very effectively done also inside the lava by evaporating water.In this paper, we'll show the detailed results of measurements and discuss the temporal changes of magnetization.
Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers
2015-01-01
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...
Ground-Based Photomonitoring of Ecoregional Ecological Changes in Northwestern Yunnan, China
James P. Lassoie; Kiran E. Goldman; Robert K. Moseley
2006-01-01
Barring abrupt natural or anthropogenic disasters, ecological changes in terrestrial landscapes proceed at a pace not readily detected by humans. The use of historical repeat photography can provide valuable information about such changes, but, these studies are opportunistic in that they must rely on old photographs. Hence, their ecological interpretative power is...
Origin of buds, branches, and sprouts
Kevin T. Smith
2014-01-01
Recent research shows that survivor trees in rural, managed forests rebuild broken crowns with new branches and foliage after ice storm injury (Shortle et al. 2014). Veteran trees in historic parks and landscapes show repeated cycles of crown loss and recovery (Fay 2002). Crown rebuilding or reiteration from sprouts is a physiological response with architectural...
In Futile Pursuit: Rejecting Mothers and Their Approval-Seeking Daughters.
ERIC Educational Resources Information Center
Gibson, Elaine
A pathological phenomenon repeatedly observed in some families is the most desperate efforts toward the most unpleasable parents made by the most rejected middle-aged children. Counselors working with these families find the daughters compulsively seeking the affection and approval their mothers have historically withheld. The aged and even senile…
Repeated insect outbreaks promote multi-cohort aspen mixedwood forests in Northern Minnesota, USA
Michael Reinikainen; Anthony W. D' Amato; Shawn. Fraver
2012-01-01
Characterizing the timing, severity, and agents of historic forest disturbances is critical to developing management and conservation strategies based on natural processes. Typically such information is derived from retrospective studies of remnant old-growth forests; however, this approach has limited application in regions dominated by secondary forests heavily...
Modeling early forest succession following clear-cutting in western Oregon.
Zhiqiang Yang; Warren B. Cohen; Mark E. Harmon
2005-01-01
In the Pacific Northwest, the process of conifer development after stand-replacing disturbance has important implications for many forest processes (e.g., carbon storage, nutrient cycling, and biodiversity). This paper examines conifer development in the Coast Range Province and Western Cascades Province of Oregon using repeat interpretation of historic aerial...
A Historical Perspective from "a" to "c"
ERIC Educational Resources Information Center
Edwards, Thomas G.; Ozgun-Koca, S. Asli
2010-01-01
Evolving technology has played an important part in a common quadratic-function lesson. Having been mentioned repeatedly in numerous reform documents, a recurring lesson has involved changing the parameters in f(x) = ax[superscript 2] + bx + c and studying the effects on the graph. In both NCTM Yearbooks and NCTM Standards documents, technology is…
The Evolution of Textbook Misconceptions about Darwin
ERIC Educational Resources Information Center
Rees, Paul A.
2007-01-01
Textbooks for GCE Advanced Level Biology have provided over-simplified and inaccurate accounts of Charles Darwin's contribution to the study of evolution over a period of many decades. They have credited him with field skills and insight that he did not possess, and repeated several historical inaccuracies. Darwin's strength was as a synthesiser…
Aboriginal Employment & Training Program Development--Toward an Internally Controlled Process.
ERIC Educational Resources Information Center
Stevenson, Phyllis Fay
A case study was conducted of the Peguis Adult High School program (PAHS), a community-based adult education in a Manitoba First Nation community for repeat dropouts and students who did not fit into regular high school. A literature review of the historical relationship between federal/provincial governments and First Nation communities examined…
S. R. Ranganathan's Theory of Reference Service.
ERIC Educational Resources Information Center
Varghese, Manoj M.
A study of S. R. Ranganathan's theory of reference service is undertaken by using an historical methodology. It was evident from the literature review that Ranganathan had established that reference service was the most important work and served as the hub of all library practices. There were six factors that were repeatedly considered by…
Return to the red planet: The Mars Observer Mission
NASA Technical Reports Server (NTRS)
French, Bevan M.; Young, Carolynn (Editor)
1993-01-01
An overview of the Mars Observer Mission is discussed. Highlights include: (1) the spacecraft; (2) the instrumentation and science experiments; (3) the countries involved; (4) the flight teams; and (5) the planet Mars itself (a brief history). Photographs and flow charts are included, along with diagrams of instrumentation and a brief historical narrative of space observation and exploration.
2012-02-20
NASA Administrator Charles Bolden, right, talks as Sen. John Glenn, and Ohio State University Graduate Research Associate Vijay Gadepally, left, listen during a NASA Future Forum panel discussion at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn, left, and Apollo 11 Astronaut Neil Armstrong are seen prior to the start of a dinner at Ohio State University that honored the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
50th Anniversary First American to Orbit Earth
2012-02-20
Sen. John Glenn's wife Annie, right, and NASA Deputy Administrator Lori Garver pose for a photograph during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The NASA News Center at NASA Kennedy Space Center hums with activity as workers and volunteers behind the counter help the media during launch activities for Return to Flight mission STS-114. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.
Lessons of History: Organizational Factors in Three Aviation Mishaps
NASA Technical Reports Server (NTRS)
Merlin, Peter William
2013-01-01
This presentation examines organizational factors that contributed to three aircraft mishaps and provides analysis of lessons learned. Three historical aviation mishaps were studied from a human factors perspective, and organizational factors identified and analyzed. These case studies provide valuable lessons for understanding the interaction of people with aircraft systems and with each other during flight operations.
Lewis's Woodpecker: Melanerpes lewis
Bret W. Tobalske; Kerri T. Vierling; Victoria A. Saab
2013-01-01
During the historic Lewis and Clark expedition, Meriwether Lewis wrote on 20 July 1805, "I saw a black woodpecker (or crow) today it is a distinct species of woodpecker; it has a long tail and flys a good deal like the jay bird" (sic, Thwaites 1905). Subsequent observations of flight and vocalization reminded him of the Red-headed Woodpecker (Melanerpes...
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Satellite trucks are lined up in the parking lot at the NASA Kennedy Space Center News Center to cover the launch of Space Shuttle Discovery on Return to Flight mission STS-114. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.
NASA Technical Reports Server (NTRS)
Williams, Walter C.
1991-01-01
The historical events that led to the development of the X-15 research aircraft are presented. Some of the topics presented include: (1) manned airplane performance regions; (2) X-15 flight problems; (3) design characteristics for conceptual aircraft; (4) analysis of X-15 accident potential; (5) X-15 performance requirements; and (6) milestones in the development of the X-15.
Voice measures of workload in the advanced flight deck
NASA Technical Reports Server (NTRS)
Schneider, Sid J.; Alpert, Murray; Odonnell, Richard
1989-01-01
Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.
Ice lollies: An ice particle generated in supercooled conveyor belts
NASA Astrophysics Data System (ADS)
Keppas, S. Ch.; Crosier, J.; Choularton, T. W.; Bower, K. N.
2017-05-01
On 21 January 2009, a maturing low-pressure weather system approached the UK along with several associated frontal systems. As a part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate-Clouds project, an observational research flight took place in southern England, sampling the leading warm front of this system. During the flight, a distinctive hydrometeor type was repeatedly observed which has not been widely reported in previous studies. We refer to the hydrometeors as "drizzle-rimed columnar ice" or "ice lollies" for short due to their characteristic shape. We discuss the processes that led to their formation using in situ and remote sensing data.
Flight-Test-Determined Aerodynamic Force and Moment Characteristics of the X-43A at Mach 7.0
NASA Technical Reports Server (NTRS)
Davis. Marl C.; White, J. Terry
2006-01-01
The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets; frequency sweeps; and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80 to 0.95 and altitudes from 92,000 ft msl to sea level. The dynamic pressure varied from 1300 psf to 400 psf with the angle of attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel-test data. The X-43A flight-derived axial force was found to be 10 percent to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.
Echolocating bats use future-target information for optimal foraging.
Fujioka, Emyo; Aihara, Ikkyu; Sumiya, Miwa; Aihara, Kazuyuki; Hiryu, Shizuko
2016-04-26
When seeing or listening to an object, we aim our attention toward it. While capturing prey, many animal species focus their visual or acoustic attention toward the prey. However, for multiple prey items, the direction and timing of attention for effective foraging remain unknown. In this study, we adopted both experimental and mathematical methodology with microphone-array measurements and mathematical modeling analysis to quantify the attention of echolocating bats that were repeatedly capturing airborne insects in the field. Here we show that bats select rational flight paths to consecutively capture multiple prey items. Microphone-array measurements showed that bats direct their sonar attention not only to the immediate prey but also to the next prey. In addition, we found that a bat's attention in terms of its flight also aims toward the next prey even when approaching the immediate prey. Numerical simulations revealed a possibility that bats shift their flight attention to control suitable flight paths for consecutive capture. When a bat only aims its flight attention toward its immediate prey, it rarely succeeds in capturing the next prey. These findings indicate that bats gain increased benefit by distributing their attention among multiple targets and planning the future flight path based on additional information of the next prey. These experimental and mathematical studies allowed us to observe the process of decision making by bats during their natural flight dynamics.
X-43A Flight-Test-Determined Aerodynamic Force and Moment Characteristics at Mach 7.0
NASA Technical Reports Server (NTRS)
Davis, Mark C.; White, J. Terry
2008-01-01
The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80-0.95 and at altitudes from 92,000 ft mean sea level to sea level. The dynamic pressure varied from 1300 to 400 psf with the angle of attack ranging from 0 to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel test data. The X-43A flight-derived axial force was found to be 10-15%higher than prediction. Underpredictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.
[Bencao literature investigation of Polygonum multiflorum (Heshouwu)].
Liang, Li; Zheng, Jin-Sheng; Zhao, Zhong-Zhen
2016-12-01
Heshouwu, derived from the root of Polygonum multiflorum (=Fallopia multiflora), is widely used in the Chinese medicine market as a traditional tonic. The emergence of heshouwu material with a human shape reflects a pursuit of its supplementing effects. However, reports of Heshouwu toxicity have repeatedly surfaced in recent years, attracting widespread concern. To clarify the situation surrounding the safety and efficacy of Heshouwu, this research utilizes a systematic review of the text and illustrations in historical bencao (materia medica) literature to investigate the origin, botanical characteristics, actions and processing of Heshouwu, as well as the origin and historical evolution of Baishouwu ("white Heshouwu"). Copyright© by the Chinese Pharmaceutical Association.
Nocturnal insects use optic flow for flight control
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-01-01
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047
NASA Technical Reports Server (NTRS)
Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.
2003-01-01
As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.
Review of NASA's Hypersonic Research Engine Project
NASA Technical Reports Server (NTRS)
Andrews, Earl H.; Mackley, Ernest A.
1993-01-01
The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a hypersonic research ramjet/scramjet engine for high performance and to flight-test the developed concept over the speed range from Mach 3 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research aircraft, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of engine models then became the focus of the project. Two axisymmetric full-scale engine models having 18-inch-diameter cowls were fabricated and tested: a structural model and a combustion/propulsion model. A brief historical review of the project with salient features, typical data results, and lessons learned is presented.
A review of design issues specific to hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Sziroczak, D.; Smith, H.
2016-07-01
This paper provides an overview of the current technical issues and challenges associated with the design of hypersonic vehicles. Two distinct classes of vehicles are reviewed; Hypersonic Transports and Space Launchers, their common features and differences are examined. After a brief historical overview, the paper takes a multi-disciplinary approach to these vehicles, discusses various design aspects, and technical challenges. Operational issues are explored, including mission profiles, current and predicted markets, in addition to environmental effects and human factors. Technological issues are also reviewed, focusing on the three major challenge areas associated with these vehicles: aerothermodynamics, propulsion, and structures. In addition, matters of reliability and maintainability are also presented. The paper also reviews the certification and flight testing of these vehicles from a global perspective. Finally the current stakeholders in the field of hypersonic flight are presented, summarizing the active programs and promising concepts.
Bob McCall signs the Centennial of Flight mural in the artist's studio in Paradise Valley, Arizona.
2003-06-05
Artist Bob McCall signs the Centennial of Flight Mural in his Paradise Valley, Arizona Studio. The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Many of the epic flights represented in the painting took place in the skies over NASA Dryden Flight Research Center. An equally important goal of this celebration is to encourage the values that have characterized 100 years of aviation history: ingenuity, inventiveness, persistence, creativity and courage. These values hold true not just for pioneers of flight, but also for all pioneers of invention and innovation, and they will remain an important part of America's future. "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should all take note, I think, that in the grand scheme of things, one hundred years is a very short period of time. In that blink of an eye we've gone from Kitty Hawk to Tranquility Base and now look forward to our rovers traversing the surface of Mars. Despite the challenges we face, the future we envision, like the future depicted in the artwork of Bob McCall, is a future of boundless possibility. "
The dynamics of parabolic flight: flight characteristics and passenger percepts.
Karmali, Faisal; Shelhamer, Mark
2008-09-01
Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 4 of the four major tasks included in the study. Task 4 uses flight plan segment wind and temperature differences as indicators of dates and geographic areas for which significant forecast errors may have occurred. An in-depth analysis is then conducted for the days identified. The analysis show that significant errors occur in the operational forecast on 15 of the 33 arbitrarily selected days included in the study. Wind speeds in an area of maximum winds are underestimated by at least 20 to 25 kts. on 14 of these days. The analysis also show that there is a tendency to repeat the same forecast errors from prog to prog. Also, some perceived forecast errors from the flight plan comparisons could not be verified by visual inspection of the corresponding National Meteorological Center forecast and analyses charts, and it is likely that they are the result of weather data interpolation techniques or some other data processing procedure in the airlines' flight planning systems.
NREL Research Takes Off for International Space Station | News | NREL
Space Station May 16, 2017 Chatfield High School senior, Dominika Mroz inoculates algae in the school's Schroeder / NREL Experiments bear repeating, especially when they explode on their way to the International High School to the orbiting station disintegrated 139 seconds into its flight. That could have put an
Brain death and the historical understanding of bioethics.
Belkin, Gary S
2003-07-01
In a 1968 Report, the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death promulgated influential criteria for the idea and practice known as "brain death." Before and since the Committee met, brain death has been a focal point of visions and nightmares of medical progress, purpose, and moral authority. Critics of the Committee felt it was deaf to apparently central moral considerations and focused on the self-serving purpose of expanding transplantation. Historical characterizations of the uses and meanings of brain death and the work of the Committee have tended to echo these themes, which means also generally repeating a widely held bioethical self-understanding of how the field appeared-that is, as a necessary antidote of moral expertise. This paper looks at the Committee and finds that historical depictions of it have been skewed by such a bioethical agenda. Entertaining different possibilities as to the motives and historical circumstances behind the Report it famously produced may point to not only different histories of the Committee, but also different perspectives on the historical legacy and role of bioethics as a discourse for addressing anxieties about medicine.
Why Historical Injustice Must Be Taught in Schools
ERIC Educational Resources Information Center
Espindola, Juan
2017-01-01
In societies that have failed to confront past injustice, the most common justifications for the inclusion of history education within the school curriculum invoke the idea that those who cannot learn from the past are doomed to repeat it; or they appeal to goals such as reconciliation, or to the importance of recognizing and morally redressing…
ERIC Educational Resources Information Center
Danforth, Scot; Slocum, Laura; Dunkle, Jennifer
2010-01-01
It is often assumed that current disability constructs exist in conceptual isolation from one another. This article explores the tangled historical relationship between "mental retardation" and learning disability in the writings and speeches of special education pioneer Samuel A. Kirk. Beginning in the 1950s, Kirk repeatedly told an educability…
Limitations to the study of man in the United States space program
NASA Technical Reports Server (NTRS)
Bishop, Phillip A.; Greenisen, Mike
1992-01-01
Research on humans conducted during space flight is fraught both with great opportunities and great obstacles. The purpose of this paper is to review some of the limitations to United States research in space in the hope that an informed scientific community may lead to more rapid and efficient solution of these problems. Limitations arise because opportunities to study the same astronauts in well-controlled situations on repeated space flights are practically non-existent. Human research opportunities are further limited by the necessity of avoiding simultaneous mutually-interfereing experiments. Environmental factors including diet and other physiological perturbations concomitant with space flight also complicates research design and interpretation. Technical limitations to research methods and opportunities further restrict the development of the knowledge base. Finally, earth analogues of space travel all suffer from inadequacies. Though all of these obstacles will eventually be overcome; creativity, diligence, and persistence are required to further our knowledge of humans in space.
Issues related to line-oriented flight training
NASA Technical Reports Server (NTRS)
Lauber, J. K.
1981-01-01
The use of a training simulator along with carefully structured, detailed, line trip scenarios was envisioned by NASA as a means of providing a controllable, repeatable way to observe line crews in a highly realistic simulation of their working environment and obtain better understanding operationally significant human factors problems and issues. Relevant research done by the agency and the results of full-mission simulation scenarios revealed potential implications for flight training. Aspects to be considered in creating training programs closely related to the actual line environment with a total crew application in real world incident experiences include: (1) operational, environmental, equipment, and crew problems in scenario design; (2) real time line oriented flight training operation; (3) performance assessment and debriefing; (4) instructor qualification and training; and (5) other issues such as ub un initial, transition, and upgrade training; procedures developent and evaluation, and equipment evaluation.
Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.
Sachs, Gottfried; Traugott, Johannes; Nesterova, Anna P; Dell'Omo, Giacomo; Kümmeth, Franz; Heidrich, Wolfgang; Vyssotski, Alexei L; Bonadonna, Francesco
2012-01-01
Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion.
Aircraft stress sequence development: A complex engineering process made simple
NASA Technical Reports Server (NTRS)
Schrader, K. H.; Butts, D. G.; Sparks, W. A.
1994-01-01
Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.
Link!: Potential Field Guidance Algorithm for In-Flight Linking of Multi-Rotor Aircraft
NASA Technical Reports Server (NTRS)
Cooper, John R.; Rothhaar, Paul M.
2017-01-01
Link! is a multi-center NASA e ort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a potential field guidance algorithm for a group of multi-rotor vehicles to link to each other during flight. The linking is done in pairs. Each vehicle first selects a mate. Then the potential field is constructed with three rules: move towards the mate, avoid collisions with non-mates, and stay close to the rest of the group. Once a pair links, they are then considered to be a single vehicle. After each pair is linked, the process repeats until there is only one vehicle left. The paper contains simulation results for a system of 16 vehicles.
Flying at No Mechanical Energy Cost: Disclosing the Secret of Wandering Albatrosses
Sachs, Gottfried; Traugott, Johannes; Nesterova, Anna P.; Dell'Omo, Giacomo; Kümmeth, Franz; Heidrich, Wolfgang
2012-01-01
Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion. PMID:22957014
Mapping the Active Vents of Stromboli Volcano with an Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Turner, N.; Houghton, B. F.; von der Lieth, J.; Hort, M. K.; Taddeucci, J.; Kueppers, U.; Ricci, T.; Gaudin, D.
2016-12-01
We present a new detailed map of the active vents of Stromboli volcano obtained from UAV flights in May 2016, when the active NE and SW craters were repeatedly mapped. Due to high levels of gas emissions and frequent explosions, fine-scale measurements of vent geometry from single flights were challenging. However, the compilation of data acquired over 12 flights used with Structure from Motion software allowed us to create a 10 cm Digital Elevation Model (DEM) offering a non-obstructed view into the active craters. Such direct observations permits us to constrain parameters such as vent geometry and depth with an unprecedented precision, thus potentially reducing the uncertainty of models depending on such inputs (e.g. conduit and acoustic models). Furthermore, the low-cost and safety of UAVs allows mapping changes at small temporal and spatial resolutions, making this technique complementary to monitoring efforts at active volcanoes.
1985-04-01
Activities inside the laboratory module during the Spacelab-3 mission are shown in this photograph. Left to right are astronauts Robert Overmyer, Commander of the mission; Don Lind, Mission Specialist; Lodewijk van den Berg, Payload Specialist; and William Thornton, Mission Specialist. The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew did research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Challenger on April 29, 1985. The Marshall Space Flight Center had managing responsibilities of the mission.
Life of Pennzane and 815Z-Lubricated Instrument Bearings Cleaned with Non-CFC Solvents
NASA Technical Reports Server (NTRS)
Loewenthal, Stuart; Jones, William; Predmore, Roamer
1999-01-01
This report takes the form of two papers: (1) "Life of Pennzane and 815Z-Lubricated Instrument Bearings cleaned with Non-CFC Solvents" and (2) a published paper, entitled "Instrument bearing life with NON-CFC cleaners". Abstract for paper # 1 : Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-1 13 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under flight-like conditions with two space oils. A goal was to gain a better understanding of the lubricant surface chemistry effects with such solvents. A second objective was to obtain well-controlled, full-scale bearing life test data with a relatively new synthetic oil (Pennzane), touted as an improvement to Bray 815Z, an oil with considerable space flight history. The second paper, which serves as an attachment, is abstracted below: Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-113 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under flight-like conditions with two space oils. A goal was to gain a better understanding of the lubricant surface chemistry effects with such solvents. A second objective was to obtain well-controlled, full-scale bearing life test data with a relatively new synthetic oil (Pennzane), touted as an improvement to Bray 815Z, an oil with considerable space flight history.
An approach to software cost estimation
NASA Technical Reports Server (NTRS)
Mcgarry, F.; Page, J.; Card, D.; Rohleder, M.; Church, V.
1984-01-01
A general procedure for software cost estimation in any environment is outlined. The basic concepts of work and effort estimation are explained, some popular resource estimation models are reviewed, and the accuracy of source estimates is discussed. A software cost prediction procedure based on the experiences of the Software Engineering Laboratory in the flight dynamics area and incorporating management expertise, cost models, and historical data is described. The sources of information and relevant parameters available during each phase of the software life cycle are identified. The methodology suggested incorporates these elements into a customized management tool for software cost prediction. Detailed guidelines for estimation in the flight dynamics environment developed using this methodology are presented.
Welding in Space: Lessons Learned for Future In Space Repair Development
NASA Technical Reports Server (NTRS)
Russell, C. K.; Nunes, A. C.; Zimmerman, F. R.
2005-01-01
Welds have been made in the harsh environment of space only twice in the history of manned space flight. The United States conducted the M5 12 experiment on Skylab and the former Soviet Union conducted an Extravehicular Activity. Both experiments demonstrated electron beam welding. A third attempt to demonstrate and advance space welding was made by the Marshall Space Flight Center in the 90's but the experiment was demanifested as a Space Shuttle payload. This presentation summarizes the lessons learned from these three historical experiences in the areas of safety, design, operations and implementation so that welding in space can become an option for in space repair applications.
Flight Research: Problems Encountered and What They Should Teach Us
NASA Technical Reports Server (NTRS)
Thompson, Milton O.; Hunley, J. D.; Launius, Roger (Technical Monitor)
2000-01-01
The document by Milt Thompson that is reproduced here was an untitled rough draft found in Thompson's papers in the Dryden Historical Reference Collection. Internal evidence suggests that it was written around 1974. I have not attempted to second guess what Milt might have done in revising the paper, but I have made some minor stylistic changes to make it more readable without changing the sense of what Milt initially wrote. For the most part, I have not attempted to bring his comments up to date. For readers who may not be familiar with the history of what is today the NASA Dryden Flight Research Center and of its predecessor organizations, I have added a background section.
50th Anniversary First American to Orbit Earth
2012-02-20
NASA Administrator Charles Bolden, seated right, and Sen. John Glenn address questions from the press during a briefing at Ohio State University as John Glenn's wife Annie Glenn, seated in red, looks on Monday, Feb. 20, 2012, in Columbus, Ohio. Today marks the 50th anniversary of Glenn's historic flight. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Seligman, Amanda I.
2005-01-01
In the decades following World War II, cities across the United States saw an influx of African American families into otherwise homogeneously white areas. This racial transformation of urban neighborhoods led many whites to migrate to the suburbs, producing the phenomenon commonly known as white flight. In "Block by Block," Amanda I.…
1976-10-02
On October 02, 1976, Marshall Space Flight Center’s (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand are Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, as he is accepting a certificate of registration from Madison County Commission Chairman James Record, and Huntsville architect Harvie Jones.
Atrial Arrhythmias and Their Implications for Space Flight - Introduction
NASA Technical Reports Server (NTRS)
Polk, J. D.; Barr, Y. R.; Bauer, P.; Hamilton, D. R.; Kerstman, E.; Tarver, B.
2010-01-01
This panel will discuss the implications of atrial arrhythmias in astronauts from a variety of perspectives; including historical data, current practices, and future challenges for exploration class missions. The panelists will present case histories, outline the evolution of current NASA medical standards for atrial arrhythmias, discuss the use of predictive tools, and consider potential challenges for current and future missions.
NASA Technical Reports Server (NTRS)
1998-01-01
The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.
1998-06-08
The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.
Heleno, Ruben H.; Traveset, Anna; Nogales, Manuel
2015-01-01
Colonization across the Galápagos Islands by the carpenter bee (Xylocopa darwini) was reconstructed based on distribution of mitochondrial haplotypes (cytochrome oxidase II (COII) sequences) and haplotype lineages. A total of 12 haplotypes were found in 118 individuals of X. darwini. Distributional, phylogenetic and phylogeographic analyses suggest early colonization of most islands followed by historical isolation in two main groups: eastern and central-western islands. Evidence of recurrent inter-island colonization of haplotypes is largely lacking, despite strong flight capability and ecological amplitude of the species. Recent palaeogeographic data suggest that several of the current islands were connected in the past and thus the isolation pattern may have been even more pronounced. A contrast analysis was also carried out on 10 animal groups of the Galápagos Islands, and on haplotype colonization of seven animal and plant species from several oceanic archipelagos (the Galápagos, Azores, Canary Islands). New colonization metrics on the number of potential vs. inferred colonization events revealed that the Galápagos carpenter bee shows one of the most significant examples of geographic isolation. PMID:25807496
Sprayable Phase Change Coating Thermal Protection Material
NASA Technical Reports Server (NTRS)
Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj
2005-01-01
NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce the launch and processing costs of a reusable space vehicle to an affordable level, refurbishment costs must be substantially reduced. A key component of such a cost effective approach is the use of a reusable, phase change, thermal protection coating.
Integrated Medical Model Project - Overview and Summary of Historical Application
NASA Technical Reports Server (NTRS)
Myers, J.; Boley, L.; Butler, D.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.;
2015-01-01
Introduction: The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project. Methods: Figure 1 [see document] illustrates the IMM modeling system and scenario process. As illustrated, the IMM computational architecture is based on Probabilistic Risk Assessment techniques. Nineteen assumptions and limitations define the IMM application domain. Scenario definitions include crew medical attributes and mission specific details. The IMM forecasts probabilities of loss of crew life (LOCL), evacuation (EVAC), quality time lost during the mission, number of medical resources utilized and the number and type of medical events by combining scenario information with in-flight, analog, and terrestrial medical information stored in the iMED. In addition, the metrics provide the integrated information necessary to estimate optimized in-flight medical kit contents under constraints of mass and volume or acceptable level of mission risk. Results and Conclusions: Historically, IMM simulations support Science and Technology planning, Exploration mission planning, and ISS program operations by supplying simulation support, iMED data information, and subject matter expertise to Crew Health and Safety and the HRP. Upcoming release of IMM version 4.0 seeks to provide enhanced functionality to increase the quality of risk decisions made using the IMM through a more accurate representation of the real world system.
Wright Flyer detail in Bob McCall's Centennial of Flight mural
2003-06-05
The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Central to the composition is the 1903 Wright Flyer. "On Dec. 17, 1903, the Wright brothers inaugurated the aerial age with their successful first flights of a heavier-than-air flying machine at Kitty Hawk, N.C. This airplane, known as the Wright Flyer, sometimes referred to as the Kitty Hawk Flyer, was the product of a sophisticated four-year program of research and development conducted by Wilbur and Orville Wright beginning in 1899. During the Wrights' design and construction of their experimental aircraft, they also pioneered many of the basic tenets and techniques of modern aeronautical engineering, such as the use of a wind tunnel and flight testing as design tools. Their seminal accomplishment encompassed not only the breakthrough first flight of an airplane, but also the equally important achievement of establishing the foundation of aeronautical engineering." Dr. Peter Jakab, Curator of Aviation, National Air and Space Museum, Smithsonian Institution "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should
A review of flight simulation techniques
NASA Astrophysics Data System (ADS)
Baarspul, Max
After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.
2003-06-05
Bob Mccall and NASA Dryden Director Kevin Petersen stand by "Celebrating One Hundred Years of Powered Flight, 1903-2003", in the artist's studio in Paradise Valley, Arizona. The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Many of the epic flights represented in the painting took place in the skies over NASA Dryden Flight Research Center. An equally important goal of this celebration will be to encourage the values that have characterized 100 years of aviation history: ingenuity, inventiveness, persistence, creativity and courage. These values hold true not just for pioneers of flight, but also for all pioneers of invention and innovation, and they will remain an important part of America's future. "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should all take note, I think, that in the grand scheme of things, one hundred years is a very short period of time. In that blink of an eye we've gone from Kitty Hawk to Tranquility Base and now look forward to our rovers traversing the surface of Mars. Despite the challenges we face, the future we envision, like the fu
Artists Bob and Louise McCall in their studio in Paradise Valley, Arizona.
2003-06-05
Artists Bob and Louise McCall in their Paradise Valley, Arizona studio, in front of "Celebrating One Hundred Years of Powered Flight 1903-2003." The mural was created to celebrate the achievements of Wilbur and Orville Wright and to commemorate a century of powered flight. Many of the epic flights represented in the painting took place in the skies over NASA Dryden Flight Research Center. An equally important goal of this celebration is to encourage the values that have characterized 100 years of aviation history: ingenuity, inventiveness, persistence, creativity and courage. These values hold true not just for pioneers of flight, but also for all pioneers of invention and innovation, and they will remain an important part of America's future. "Celebrating One Hundred Years of Powered Flight, 1903-2003", documents many significant achievements in aeronautics and space flight from the dawn of powered flight to the present. Historic aircraft and spacecraft serve as the backdrop, highlighting six figures representing the human element that made these milestones possible. These figures stand, symbolically supported by the words of Wilbur Wright, "It is my belief that flight is possible…" The quote was taken from a letter written to his father on September 3rd, 1900, announcing Wilbur's intention to make "some experiments with a flying machine" at Kitty Hawk, North Carolina. "This year, Bob is helping us commemorate the Centennial of Flight with a beautiful mural slated for placement in our Dryden Flight Research Center that documents the history of flight from the Wright Flyer to the International Space Station. We should all take note, I think, that in the grand scheme of things, one hundred years is a very short period of time. In that blink of an eye we've gone from Kitty Hawk to Tranquility Base and now look forward to our rovers traversing the surface of Mars. Despite the challenges we face, the future we envision, like the future depicted in the artwork of Bo
Flights of Discovery: 50 Years at the NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Wallace, Lance E.
1996-01-01
As part of the NASA History Series, this report (NASA SP-4309) describes fifty years of aeronautical research at the NASA Dryden Flight Research Center. Starting with early efforts to exceed the speed of sound with the X-1 aircraft, and continuing through to the X-31 research aircraft, the report covers the flight activities of all of the major research aircraft and lifting bodies studied by NASA. Chapter One, 'A Place for Discovery', describes the facility itself and the surrounding Mojave Desert. Chapter Two, 'The Right Stuff', is about the people involved in the flight research programs. Chapter Three, 'Higher, Faster' summarizes the early years of transonic flight testing and the development of several lifting bodies. Chapter Four, 'Improving Efficiency, Maneuverability & Systems', outlines the development of aeronautical developments such as the supercritical wing, the mission adaptive wing, and various techniques for improving maneuverability fo winged aircraft. Chapter 5, 'Supporting National Efforts', shows how the research activities carried out at Dryden fit into NASA's programs across the country in supporting the space program, in safety and in problem solving related to aircraft design and aviation safety in general. Chapter Six, ' Future Directions' looks to future research building on the fifty year history of aeronautical research at the Dryden Flight Research Center. A glossary of acronyms and an appendix covering concepts and innovations are included. The report also contains many photographs providing a graphical perspective to the historical record.
NASA Astrophysics Data System (ADS)
Herd, A.; Wolff, M.
2012-01-01
Extended mission operations, such as human spaceflight to Mars provide an opportunity for take current human exploration beyond Low Earth Orbit, such as the operations undertaken on the International Space Station (ISS). This opportunity also presents a challenge in terms of extending what we currently understand as "remote operations" performed on ISS, offering learning beyond that gained from the successful moon- lander expeditions. As such there is a need to assess how the existing operations concept of ground support teams directing (and supporting) on-orbit ISS operations can be applied in the extended mission concept. The current mission support concept involves three interacting operations products - a short term plan, crew procedures and flight rules. Flight rules (for ISS operations) currently provide overall planning, engineering and operations constraints (including those derived from a safety perspective) in the form of a rule book. This paper will focus specifically on flight rules, and describe the current use of them, and assess the future role of flight rules to support exploration, including the deployment of decision support tools (DSTs) to ensure flight rule compliancy for missions with minimal ground support. Taking consideration of the historical development of pre-planned decisions, and their manifestation within the operations environment, combined with the extended remoteness of human exploration missions, we will propose a future development of this product and a platform on which it could be presented.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
Design Considerations for Attitude State Awareness and Prevention of Entry into Unusual Attitudes
NASA Technical Reports Server (NTRS)
Ellis, Kyle K. E.; Prinzel, Lawrence J., III; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel; Verstynen, Harry; Hubbs, Clay; Wilkerson, James
2017-01-01
Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of the worldwide transport airplane accidents (2001-2010) evinced that loss of attitude or energy state awareness was responsible for a large majority of the LOC-I events. A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that flight crew loss of attitude awareness or energy state awareness due to lack of external visual reference cues was a significant causal factor in 17 of the 18 reviewed flights. CAST recommended that "Virtual Day-Visual Meteorological Condition" (Virtual Day-VMC) displays be developed to provide the visual cues necessary to prevent loss-of-control resulting from flight crew spatial disorientation and loss of energy state awareness. Synthetic vision or equivalent systems (SVS) were identified for a design "safety enhancement" (SE-200). Part of this SE involves the conduct of research for developing minimum aviation system performance standards (MASPS) for these flight deck display technologies to aid flight crew attitude and energy state awareness similar to that of a virtual day-VMC-like environment. This paper will describe a novel experimental approach to evaluating a flight crew's ability to maintain attitude awareness and to prevent entry into unusual attitudes across several SVS optical flow design considerations. Flight crews were subjected to compound-event scenarios designed to elicit channelized attention and startle/surprise within the crew. These high-fidelity scenarios, designed from real-world events, enable evaluation of the efficacy of SVS at improving flight crew attitude awareness to reduce the occurrence of LOC-I incidents in commercial flight operations.
Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA.
Steffan, Shawn A; Singleton, Merritt E; Sojka, Jayne; Chasen, Elissa M; Deutsch, Annie E; Zalapa, Juan E; Guédot, Christelle
2017-02-26
The cranberry fruitworm ( Acrobasis vaccinii Riley), sparganothis fruitworm ( Sparganothis sulfureana Clemens), and blackheaded fireworm ( Rhopobota naevana Hübner) are historically significant pests of cranberries ( Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion) and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight) for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant's developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.
Peacock, Corey A; Weber, Raymond; Sanders, Gabriel J; Seo, Yongsuk; Kean, David; Pollock, Brandon S; Burns, Keith J; Cain, Mark; LaScola, Phillip; Glickman, Ellen L
2017-03-01
Hypoxia is a physiological state defined as a reduction in the distribution of oxygen to the tissues of the body. It has been considered a major factor in aviation safety worldwide because of its potential for pilot disorientation. Pilots are able to operate aircrafts up to 3810 m without the use of supplemental oxygen and may exhibit symptoms associated with hypoxia. To determine the effects of 3810 m on physiology, cognition and performance in pilots during a flight simulation. Ten healthy male pilots engaged in a counterbalanced experimental protocol comparing a 0-m normoxic condition (NORM) with a 3810-m hypoxic condition (HYP) on pilot physiology, cognition and flight performance. Repeated-measures analysis of variance demonstrated a significant (p ≤ 0.05) time by condition interaction for physiological and cognitive alterations during HYP. A paired-samples t test demonstrated no differences in pilot performance (p ≥ 0.05) between conditions. Pilots exhibited physiological and cognitive impairments; however, pilot performance was not affected by HYP.
Investigation of Slosh Dynamics on Flight and Ground Platforms
NASA Astrophysics Data System (ADS)
Vergalla, Michael; Zhou, Ran
The slosh dynamics in cryogenic fuel tanks under microgravity is a problem that severely affects the reliability of spacecraft launching. To investigate slosh dynamics and their effects on space vehicle dynamics three levels of testing are presently in progress. Platforms include a 3-DOF ground testing table, parabolic flights, sounding rockets and finally the International Space Station. Ground tests provide an economically viable platform for investigating rotational, translational, and coupled feed-back modes due to repeatable CNC motions. The parabolic flight campaign has conducted four successful flights aboard multiple aircraft using static and tethered slosh packages. Using the PANTHER II student designed rocket, a slosh package was launched as a payload. Finally with collaboration between Florida Institute of Technology and Massachusetts Institute of Technology SPHERES project, two test sessions investigating feedback using partially and fully filled propellant tanks have been completed aboard the In-ternational Space Station. Motion data from all tests will be input to in house Dynamic Mesh Model to further establish confidence in the versatility and accuracy of the method. The results show that it is necessary to construct additional hardware for slosh studies.
Taking the Heat: Handling the Shuttle's RCC Wing Panels
NASA Technical Reports Server (NTRS)
Stegles, Katrine S.
2008-01-01
Innovative inspection technology was developed to inspect the Reinforced Carbon-Carbon (RCC) wing panels on the vehicle, thus eliminating need to remove/reinstall all 44 RCC panels for inspections per processing flow. Manually holding inspection tools up to the RCC panels was a 3-person job with high risk of personnel injury and flight hardware damage. To further enhance ergonomics, reduce personnel/flight hardware risks, and improve repeatability, an inspection cart and fixture were constructed to physically secure the instruments for Inspectors during 652 inspection points per flow. The electric lift used to handle RCCs was also utilized to raise the heavy, bulky inspection equipment up to the wing leading edge.
Astronaut Guion S. Bluford and others participate in zero-g studies
1979-03-06
S79-28602 (2 March 1979) --- Astronaut candidate Guion S. Bluford and Aviation Safety Officer Charles F. Hayes got a unique perspective of their environment during a zero gravity flight. They are aboard a KC-135 aircraft, which flies a special pattern repeatedly to afford a series of 30-seconds-of-weightlessness sessions. Bluford and Hayes are being assisted by C. P. Stanley of the photography branch of the photographic technology division at Johnson Space Center (JSC). Some medical studies and a motion sickness experiment were conducted on this particular flight. Bluford is one of 20 scientist-astronaut candidates who began training at JSC in July of 1978. Photo credit: NASA
1979-03-01
Astronaut -Candidate (ASCAN) Guion S. Bluford and Aviation Safety Officer Charles F. Hayes got a unique perspective of their environment during a zero- gravity flight. They are aboard a KC-135 Aircraft, which flies a special pattern repeatedly to afford a series of 30-seconds-of-weightlessness sessions. Astronauts Bluford and Hayes are being assisted by C. P. Stanley of the Photography Branch of the Photographic Technology Division (PTD) at Johnson Space Center (JSC). Some medical studies and a Motion Sickness Experiment were conducted on this particular flight. Astronaut Bluford is one of 20 Scientist/ASCAN's who began training at JSC, 07/1978. 1. Dr. Jeffrey A. Hoffman - Zero-G 2. ASCAN Shannon Lucid - Zero-G 3. ASCAN Guion Bluford - Zero-G
Nicotine deprivation and pilot performance during simulated flight.
Mumenthaler, Martin S; Benowitz, Neal L; Taylor, Joy L; Friedman, Leah; Noda, Art; Yesavage, Jerome A
2010-07-01
Most airlines enforce no-smoking policies, potentially causing flight performance decrements in pilots who are smokers. We tested the hypotheses that nicotine withdrawal affects aircraft pilot performance within 12 h of smoking cessation and that chewing nicotine gum leads to significant relief of these withdrawal effects. There were 29 pilots, regular smokers, who were tested in a Frasca 141 flight simulator on two 13-h test days, each including three 75-min flights (0 hr, 6 hr, 12 hr) in a randomized, controlled trial. On the first day (baseline), all pilots smoked one cigarette per hour. On the second day, pilots were randomly assigned to one of four groups: (1) nicotine cigarettes; (2) nicotine gum; (3) placebo gum; (4) no cigarettes/no gum. Flight Summary Scores (FSS) were compared between groups with repeated measures ANOVAs. No statistically significant differences in overall simulator flight performance were revealed between pilots who smoked cigarettes and pilots who were not allowed to smoke cigarettes or chew nicotine gum, but there was a trend for pilots who were not allowed to smoke to perform worse. However, pilots who chewed placebo gum performed significantly worse during the 6-h (FSS = -0.03) as well as during the 12-h flight (FSS = -0.08) than pilots who chewed nicotine gum (FSS = 0.15 / 0.30, respectively). Results suggest that nicotine withdrawal effects can impair aircraft pilot performance within 12 h of smoking cessation and that during smoking abstinence chewing one stick of 4-mg nicotine gum per hour may lead to significantly better overall flight performance compared to chewing placebo gum.
Nocturnal insects use optic flow for flight control.
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-08-23
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society
Aerobic power and flight capacity in birds: a phylogenetic test of the heart-size hypothesis.
Nespolo, Roberto F; González-Lagos, César; Solano-Iguaran, Jaiber J; Elfwing, Magnus; Garitano-Zavala, Alvaro; Mañosa, Santiago; Alonso, Juan Carlos; Altimiras, Jordi
2018-01-09
Flight capacity is one of the most important innovations in animal evolution; it only evolved in insects, birds, mammals and the extinct pterodactyls. Given that powered flight represents a demanding aerobic activity, an efficient cardiovascular system is essential for the continuous delivery of oxygen to the pectoral muscles during flight. It is well known that the limiting step in the circulation is stroke volume (the volume of blood pumped from the ventricle to the body during each beat), which is determined by the size of the ventricle. Thus, the fresh mass of the heart represents a simple and repeatable anatomical measure of the aerobic power of an animal. Although several authors have compared heart masses across bird species, a phylogenetic comparative analysis is still lacking. By compiling heart sizes for 915 species and applying several statistical procedures controlling for body size and/or testing for adaptive trends in the dataset (e.g. model selection approaches, phylogenetic generalized linear models), we found that (residuals of) heart size is consistently associated with four categories of flight capacity. In general, our results indicate that species exhibiting continuous hovering flight (i.e. hummingbirds) have substantially larger hearts than other groups, species that use flapping flight and gliding show intermediate values, and that species categorized as poor flyers show the smallest values. Our study reveals that on a broad scale, routine flight modes seem to have shaped the energetic requirements of birds sufficiently to be anatomically detected at the comparative level. © 2018. Published by The Company of Biologists Ltd.
Dan A. Roberts; Jimmie R. Parrish; Frank P. Howe
2005-01-01
We present data on capture and recapture of neotropical migrants at constant-effort mist net sampling locations in Utah between 1994 and 2002. Data were collected in accordance with MAPS (Monitoring Avian Productivity and Survivorship) protocols. Since 1994, a total of 23,789 birds have been captured (i.e., total captures include new captures, recaptures, and unbanded...
Spatial Disorientation in Flight: Current Problems
1980-10-01
intimately involved with various sensory, cognitive , and emotional processes of habituation (Guedry,1971). While repeated exposure to patterns of...stimuli normally involved in orientation and the failure of a learned cognitive skill to compensate for mismatched signals. Recently, a new concept has...It is well known that under atypical stimulation, unusual environmental conditions, or stress, the first abilities to be impaired are learned cognitive
Autonomous Legged Hill and Stairwell Ascent
2011-11-01
environments with little burden to a human operator. Keywords: autonomous robot , hill climbing , stair climbing , sequential composition, hexapod, self...X-RHex robot on a set of stairs with laser scanner, IMU, wireless repeater, and handle payloads. making them useful for both climbing hills and...reconciliation into that more powerful (but restrictive) framework. 1) The Stair Climbing Behavior: RHex robots have been climbing single-flight stairs
Historical Gypsy Moth Defoliation Frequency
Gypsy moth populations may exist for many years at low densities such that it may be difficult to find any life stages. Then, for reasons that are not completely understood, populations may rise to very high densities and substantial defoliation of the canopy may occur. These data shows the historical frequency (1972-2002) pattern of gypsy moth defoliation as it spreads south and west from the New England states. forested areas with repeated annual defoliation become more stressed and are at increased risk of permanent damage. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Platform Precision Autopilot Overview and Flight Test Results
NASA Technical Reports Server (NTRS)
Lin, V.; Strovers, B.; Lee, J.; Beck, R.
2008-01-01
The Platform Precision Autopilot is an instrument landing system interfaced autopilot system, developed to enable an aircraft to repeatedly fly nearly the same trajectory hours, days, or weeks later. The Platform Precision Autopilot uses a novel design to interface with a NASA Gulfstream III jet by imitating the output of an instrument landing system approach. This technique minimizes, as much as possible, modifications to the baseline Gulfstream III jet and retains the safety features of the aircraft autopilot. The Platform Precision Autopilot requirement is to fly within a 5-m (16.4-ft) radius tube for distances to 200 km (108 nmi) in the presence of light turbulence for at least 90 percent of the time. This capability allows precise repeat-pass interferometry for the Uninhabited Aerial Vehicle Synthetic Aperture Radar program, whose primary objective is to develop a miniaturized, polarimetric, L-band synthetic aperture radar. Precise navigation is achieved using an accurate differential global positioning system developed by the Jet Propulsion Laboratory. Flight-testing has demonstrated the ability of the Platform Precision Autopilot to control the aircraft within the specified tolerance greater than 90 percent of the time in the presence of aircraft system noise and nonlinearities, constant pilot throttle adjustments, and light turbulence.
Effects of varying gravity levels in parabolic flight on the size-mass illusion.
Clément, Gilles
2014-01-01
When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.
Effects of Varying Gravity Levels in Parabolic Flight on the Size-Mass Illusion
Clément, Gilles
2014-01-01
When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects. PMID:24901519
Chutes and Fissures in Greenland
2015-05-12
Scientists and crew with NASA’s Operation IceBridge, which makes annual aerial surveys of polar ice, are wrapping up their seventh campaign over the Arctic. In spring 2015, the team began using a different research aircraft—an adapted C-130 Hercules. They also added four new high-priority targets in the rapidly changing region of northeast Greenland. Many of the flights, however, were routine. And that’s exactly the point; making measurements over the same path each year provides continuity between NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat) missions—the first of which ended in 2009 and the second of which is scheduled for launch in 2017. Repeat measurements show how a landscape changes over time. One area that has been surveyed repeatedly is northern Greenland’s Ryder Glacier. This photograph, taken during the IceBridge flight on May 6, 2015, shows a large moulin—dozens of meters across—atop this glacier. Moulins are holes in the ice sheet that drain melt water from the ice sheet’s surface to the bottom or out to the sea. Scientists are working to figure out what happens to melt water once it enters a moulin.
UAVSAR Instrument: Current Operations and Planned Upgrades
NASA Technical Reports Server (NTRS)
Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David
2011-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these
Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket
NASA Astrophysics Data System (ADS)
Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko
2005-07-01
A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.
NASA Astrophysics Data System (ADS)
Shi, Jinming; Lu, Weihong; Sun, Yeqing
2014-04-01
Rice seeds, after space flight and low dose heavy ion radiation treatment were cultured on ground. Leaves of the mature plants were obtained for examination of genomic/epigenomic mutations by using amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) method, respectively. The mutation sites were identified by fragment recovery and sequencing. The heritability of the mutations was detected in the next generation. Results showed that both space flight and low dose heavy ion radiation can induce significant alterations on rice genome and epigenome (P < 0.05). For both genetic and epigenetic assays, while there was no significant difference in mutation rates and their ability to be inherited to the next generation, the site of mutations differed between the space flight and radiation treated groups. More than 50% of the mutation sites were shared by two radiation treated groups, radiated with different LET value and dose, while only about 20% of the mutation sites were shared by space flight group and radiation treated group. Moreover, in space flight group, we found that DNA methylation changes were more prone to occur on CNG sequence than CG sequence. Sequencing results proved that both space flight and heavy ion radiation induced mutations were widely spread on rice genome including coding region and repeated region. Our study described and compared the characters of space flight and low dose heavy ion radiation induced genomic/epigenomic mutations. Our data revealed the mechanisms of application of space environment for mutagenesis and crop breeding. Furthermore, this work implicated that the nature of mutations induced under space flight conditions may involve factors beyond ion radiation.
NASA Technical Reports Server (NTRS)
Fisher, David F.
2007-01-01
Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included.
Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.
Claessens, Leon P A M; O'Connor, Patrick M; Unwin, David M
2009-01-01
Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.
Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism
Claessens, Leon P. A. M.; O'Connor, Patrick M.; Unwin, David M.
2009-01-01
Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation. PMID:19223979
Nutritional stress reduces flight performance and exploratory behavior in a butterfly.
Reim, Elisabeth; Eichhorn, Danny; Roy, Jan D; Steinhoff, Philip O M; Fischer, Klaus
2018-04-16
Anthropogenic global change, including agricultural intensification and climate change, poses a substantial challenge to many herbivores due to a reduced availability of feeding resources. The concomitant food stress is expected to detrimentally affect performance, amongst others in dispersal-related traits. Thus, while dispersal is of utmost importance to escape from deteriorating habitat conditions, such conditions may negatively feedback on the ability to do so. Therefore, we here investigate the impact of larval and adult food stress on traits related to dispersal ability, including morphology, physiology, flight performance, and exploratory behavior, in a butterfly. We show that inadequate nutrition during development and in the adult stage diminishes flight performance, despite some re-allocation of somatic resources. Detrimental effects of food stress on flight performance were mainly caused by reductions in body mass and storage reserves. Similar results were found for exploratory behavior. Furthermore, exploratory behavior was found to be (moderately) repeatable at the individual level, which might indicate the existence of a personality trait. This notion is further supported by the fact that flight performance and exploratory behavior were positively correlated, potentially suggesting the existence of a dispersal syndrome. In summary, our findings may have important implications for dispersal in natural environments, as the conditions requiring dispersal the most impair flight ability and thereby likely dispersal rates. © 2018 Institute of Zoology, Chinese Academy of Sciences.
Using historical photography to monitor and assess threats over time
Don Evans
2010-01-01
Analysis of aerial photography is perhaps the best way to assess changes in landcover conditions. In the United States, most national forests have repeat photography on approximately a 10-year cycle. Analysis of this rich photo record can reveal changes in insect damage, fuels buildup, unmanaged off-highway vehicle use, loss of open space, and other land-cover...
A retrospective perspective: evaluating population changes by repeating historic bird surveys
Lawrence D. Igl; Douglas H. Johnson
2005-01-01
Acquiring an accurate picture of the changes in bird populations often involves a trade-off between the time and effort required to complete the surveys and the number of years spent surveying the bird populations. An alternative approach to long-term monitoring efforts is to collect current data and contrast those with data collected earlier in a similar fashion on...
Visitor perceptions of and support for management actions at an urban national historic site
Julie A. Strack; Craig A. Miller
2009-01-01
This study examined visitor use patterns, perceptions of crowding, and preferences for mixed-use management plans for the Kennesaw Mountain Road at Kennesaw Mountain National Battlefield Park (KMNBP) outside Atlanta, GA. Survey data showed significant differences between first-time visitors to KMNBP and repeat visitors. Most felt that the road should have open access...
ERIC Educational Resources Information Center
Krieg, Susan; Whitehead, Kay
2015-01-01
Although international definitions of early childhood repeatedly refer to a birth-8 age span, there are complex, institutional divides within this age range. This paper explores the divide between pre-compulsory and compulsory early childhood institutions. In countries such as Finland this divide is not such an issue because children do not begin…
Trofimova, Irina; Krasikova, Alla
2016-12-01
Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.
Krasikova, Alla
2016-01-01
ABSTRACT Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription. PMID:27763817
NASA Astrophysics Data System (ADS)
Kramer, Natalie; Wohl, Ellen; Hess-Homeier, Brooke; Leisz, Stephen
2017-03-01
This study presents a case study of large wood transport on the great Slave River in northern Canada with the objective to better understand the processes of and variability in pulsed wood fluxes from large forested catchments. We use a varied approach, integrating field characterization of wood, historical anecdotes, repeat aerial imagery of stored wood, and time-lapse imagery of moving wood, for a robust analysis and synthesis of processes behind pulsed wood flux, from yearly uncongested export to rare congested wood floods. Repeat monitoring of known sites of temporary storage with new or historic imagery proved to be a very useful tool for constraining wood flux histories. Pulsed wood export on the Slave River is not an artifact of episodic recruitment from major up-basin disturbances, but rather reflects decadal- to half-century-scale discharge patterns that redistribute wood recruited from channel migration and bank slumping. We suggest that the multiyear flow history is of paramount importance for estimating wood flux magnitude, followed in declining importance by the yearly sequence of peaks and the magnitude and characteristics of the rising limb of individual floods.
A short history of Japanese historical seismology: past and the present
NASA Astrophysics Data System (ADS)
Matsu'ura, Ritsuko S.
2017-12-01
Since seismicity in Japan is fairly high, Japanese interest in historical seismicity can be traced back to the nineth century, only a few centuries after the formation of the ancient ruling state. A 1000 years later, 2 years earlier than the modern seismological society was founded, the research on historical seismology started in Japan in 1878. By the accumulation for the recent 140 years, the present Japanese seismologists can read many historical materials without reading cursive scripts. We have a convenient access to the historical information related to earthquakes, in the modern characters of 27,759 pages. We now have 214 epicenters of historical earthquakes from 599 ad to 1872. Among them, 134 events in the early modern period were assigned hypocentral depths and proper magnitudes. The intensity data of 8700 places by those events were estimated. These precise intensity data enabled us to compare the detailed source areas of pairs of repeated historical earthquakes, such as the 1703 Genroku earthquake with the 1923 Kanto earthquake, and the 1707 Hoei earthquake with the summation of the 1854 Ansei Tokai and Ansei Nankai earthquakes. It is revealed that the focal area of the former larger event cannot completely include those of the latter smaller earthquakes, although those were believed to be typical sets of characteristic interplate earthquakes at the Sagami trough and at the Nankai trough. Research on historical earthquakes is very important to assess the seismic hazard in the future. We still have one-fifth events of the early modern period to be analyzed in detail. The compilation of places experienced high intensities in the modern events is also necessary. For the ancient and medieval periods, many equivocal events are still left. The further advance of the interdisciplinary research on historical seismology is necessary.
50th Anniversary First American to Orbit Earth
2012-02-20
Captain Mark Kelly, commander of the space shuttle Endeavour’s final mission and husband of retired U.S. Representative Gabrielle Giffords, gives the keynote address during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Astronaut James Reilly is interviewed in the NASA News Center at NASA Kennedy Space Center by a television reporter during launch activities for Return to Flight mission STS-114. Reilly has flown on two Shuttle missions, STS-89 and STS-104. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.
Sen. Nelson, Bill [D-FL
2011-07-13
Senate - 07/13/2011 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
2012-02-20
Sen. John Glenn, right, talks during a NASA Future Forum panel discussion at The Ohio State University as NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, and Ohio State University Graduate Research Associate Vijay Gadepally look on, Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
United Nations High Commission for Refugees, Washington, DC.
This bibliography on refugees provides approximately 150 citations grouped under the following headings: (1) general historical works; (2) theory, classification typology, and definition; (3) persecution; (4) asylum and legal issues; (5) refugee politics and policies; (6) flight; (7) camps; (8) resettlement; (9) adjustment and assimilation; (10)…
2006-04-06
KENNEDY SPACE CENTER, FLA. - To honor the 25th anniversary of the first shuttle launch on April 12, 1981, STS-1 Commander John Young (seated, left) and Pilot Bob Crippen (right) were invited to share their experiences with employees during a special presentation at Kennedy. Kennedy's Deputy Director Bill Parsons (far left) introduced the two men. Here, Young relates his feelings about making that historic flight. Photo credit: NASA/George Shelton
Correlation of Spacecraft Mission and Project Costs
NASA Technical Reports Server (NTRS)
Swan, Christopher; Jarrett, Shawn
2007-01-01
A key component of any cost risk analysis is the level of correlation between individual elements of cost. This analysis supplements the available historical records with the cost estimates from the JPL Advanced Design Team. The costs from actual JPL flight projects are then used to validate the results, clearly indicating that, on average, the correlation between elements of cost is between 0.4 and 0.7.
Werner von Braun relaxes after successful Apollo 11 Saturn V launch
NASA Technical Reports Server (NTRS)
1969-01-01
Dr. Wernher von Braun, director of the Marshall Space Flight Center, Huntsville, Alabama, relaxes after the successful launch of Apollo 11 astronauts Neil A. Armstrong, Michael Collins and Edwin Aldrin Jr. today. Their historic lunar landing mission began at 9:32 a.m. EDT, July 16, 1969, when an Apollo/Saturn V space vehicle lifted off from the spaceport's Launch Complex 39A.
V/STOL Concepts and Developed Aircraft. Volume 1. A Historical Report (1940-1986)
1986-06-26
in this - direction. Generally, the propellants considered for use create logistic, safety and operational cost problems. Further, the very high...been expanded into multiplace transpcrt devices. The operational use of the individual lift systems creates an important distinction between them in...two separate, alternate thrust vectoring means tc control horizontal translational flight with attitude stabilization being created by the flier’s
The dynamics of parabolic flight: flight characteristics and passenger percepts
Karmali, Faisal; Shelhamer, Mark
2008-01-01
Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328
Weight, muscle and bone loss during space flight: another perspective.
Stein, T P
2013-09-01
Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission.
NASA Astrophysics Data System (ADS)
Lihoreau, Mathieu; Ings, Thomas C.; Chittka, Lars; Reynolds, Andy M.
2016-07-01
Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards.
Chutes and Fissures in Greenland
2015-05-12
Scientists and crew with NASA’s Operation IceBridge, which makes annual aerial surveys of polar ice, are wrapping up their seventh campaign over the Arctic. In spring 2015, the team began using a different research aircraft—an adapted C-130 Hercules. They also added four new high-priority targets in the rapidly changing region of northeast Greenland. Many of the flights, however, were routine. And that’s exactly the point; making measurements over the same path each year provides continuity between NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat) missions—the first of which ended in 2009 and the second of which is scheduled for launch in 2017. Repeat measurements show how a landscape changes over time. One area that has been surveyed repeatedly is northern Greenland’s Ryder Glacier. This photograph, taken during the IceBridge flight on May 6, 2015, shows a large moulin—dozens of meters across—atop this glacier. Moulins are holes in the ice sheet that drain melt water from the ice sheet’s surface to the bottom or out to the sea. Scientists are working to figure out what happens to melt water once it enters a moulin. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=85858&eocn... Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
View of the "handshake" of the SLP between the SSRMS and RMS during STS-100
2001-04-28
S100-E-5898 (28 April 2001) --- A STS-100 crew member with a digital still camera recorded this image of an historical event through an overhead window on the aft flight deck of the Space Shuttle Endeavour. A Canadian “handshake in space” occurred at 4:02 p.m (CDT), April 28, 2001, as the Canadian-built space station robotic arm – operated by Expedition Two flight engineer Susan J. Helms –transferred its launch cradle over to Endeavour’s robotic arm, with Canadian Space Agency astronaut Chris A. Hadfield at the controls. The exchange of the pallet from station arm to shuttle arm marked the first ever robotic-to-robotic transfer in space.
The transition of GTDS to the Unix workstation environment
NASA Technical Reports Server (NTRS)
Carter, D.; Metzinger, R.; Proulx, R.; Cefola, P.
1995-01-01
Future Flight Dynamics systems should take advantage of the possibilities provided by current and future generations of low-cost, high performance workstation computing environments with Graphical User Interface. The port of the existing mainframe Flight Dynamics systems to the workstation environment offers an economic approach for combining the tremendous engineering heritage that has been encapsulated in these systems with the advantages of the new computing environments. This paper will describe the successful transition of the Draper Laboratory R&D version of GTDS (Goddard Trajectory Determination System) from the IBM Mainframe to the Unix workstation environment. The approach will be a mix of historical timeline notes, descriptions of the technical problems overcome, and descriptions of associated SQA (software quality assurance) issues.
Segregation and Neighborhood Change in Northern Cities: New Historical GIS Data from 1900-1930.
Shertzer, Allison; Walsh, Randall P; Logan, John R
2016-01-01
Most quantitative research on segregation and neighborhood change in American cities prior to 1940 has utilized data published by the Census Bureau at the ward level. The transcription of census manuscripts has made it possible to aggregate individual records to a finer level, the enumeration district (ED). Advances in Geographic Information Systems (GIS) have facilitated mapping these data, opening new possibilities for historical GIS research. We report here the creation of a mapped public use data set for EDs in ten northern cities for each decade from 1900 to 1930. We illustrate a range of research topics that can now be pursued: recruitment into ethnic neighborhoods, the effects of comprehensive zoning on neighborhood change, and white flight from black neighbors.
Flight Period of Mountain Pine Beetle (Coleoptera: Curculionidae) in its Recently Expanded Range.
Bleiker, K P; Van Hezewijk, B H
2016-12-01
The ability to predict key phenological events, such as the timing of flight periods, is useful for the monitoring and management of insect pests. We used empirical data to describe the flight period of mountain pine beetle, Dendroctonus ponderosae Hopkins, in its recently expanded range east of the Rocky Mountains in Canada and developed a degree-day model based on the number of trapped beetles. Data were collected over four degrees of latitude and six years. The main flight period, when the middle 70% of the total number of beetles were caught, started during the second or third week of July, lasted 26 d, and peaked within 2 wk of starting. The best model accounted for 89% of the variation in the data. Mountain pine beetle's flight tended to start later and be more contracted at higher latitudes. The synchrony of mountain pine beetle's flight period in the expanded range appears to be comparable to the limited reports from the historic range, although it may start earlier. This suggests that conditions in the new range are suitable for a coordinated dispersal flight, which is critical for the beetle's strategy of overwhelming tree defenses by attacking en masse. Forest managers can use the model to support operational decisions, e.g., when to impose hauling restrictions to reduce the risk of spread through the transport of infested material, or the time frame for control programs. Understanding the flight period may also improve our ability to assess the response of mountain pine beetle to novel and changing climates in the future. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
McCaffrey, D. R.; Hopkinson, C.
2016-12-01
Historic photographs provide visual records of landscapes which pre-date aerial and satellite observations, but analysis of these photographs has largely been qualitative due to varying spatial scale within an oblique image. Recent technological advances, such as the WSL monoplotting tool, provide the ability to georeference single oblique images, allowing for quantitative spatial analysis of land cover change between historic photographs and contemporary repeat photographs. The WSL monoplotting tool was used to compare alpine land cover change between 12 photographs from a 1914 survey of the West Castle valley (Alberta, Canada; 49.3° N, 114.4° W) and 12 repeat photographs, collected in 2006 by the Mountain Legacy Project. We tested for correlations between land cover shifts over the 92 year observation period and geomorphic controls (e.g. elevation, slope, aspect), with a focus on vegetative change in the alpine treeline ecotone (ATE). A model of above ground biomass was generated using an airborne lidar observation of the valley (2014) and ground validated measurements of tree height, diameter at breast height, and leaf area index from 25 plots (400 m2). By creating a high resolution map of ATE dynamics over a 92 year interval and incorporating a model of above ground biomass, the relative magnitude of anthropogenic, orographic, and climatic controls on ATE can be explored. This research provides a unique opportunity to understand the impact that continued atmospheric warming could have on vegetative boundaries in sensitive alpine systems, such as the eastern slopes of the Rocky Mountains.
Ares I-X: Lessons for a New Era of Spaceflight
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2010-01-01
Since 2005, the Ares Projects at Marshall Space Flight Center (MSFC) have been developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Despite the President s intention to cancel the Constellation Program of which Ares is a part, this historic flight has produced a great amount of data and numerous lessons learned for any future launch vehicles. This paper will describe the accomplishments of Ares I-X and the lessons that other programs can glean from this successful mission. Ares I was designed to carry up to four astronauts to the International Space Station (ISS). It also was designed to be used with the Ares V cargo launch vehicle for a variety of missions beyond low-Earth orbit (LEO). The Ares I-X development flight test was conceived in 2006 to acquire early engineering and environment data during liftoff, ascent, and first stage recovery. The test achieved the following primary objectives: Demonstrated control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Performed an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrated assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrated First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterized the magnitude of integrated vehicle roll torque throughout First Stage flight.
The JT9D Jet Engine Diagnostics Program
NASA Technical Reports Server (NTRS)
Olsson, W. J.
1982-01-01
The various engine deterioration phenomena that affect JT9D performance retention were studied, and approaches to improve performance retention of engines were identified. The program included surveys of historical data, monitoring of in service engines, ground and flight testing of instrumented engines, analysis, and analytical modeling. Performance deterioration is made up of both short and long term modes, both of which are flight cycle related phenomena. Short term deterioration occurs primarily during airplane acceptance testing prior to delivery to the airline. This effect is caused by flight load and power induced clearance closures and engine deflections with resulting rubbing of airfoils and seals. Long term deterioration is caused by erosion of airfoils and gas path seals during ground operation and take off and by cyclic induced thermal distortion of the high pressure turbine airfoils. Studies of possible remedial approaches have shown that performance retention within 1 to 2 percent of initial revenue service performance can be achieved with a proper program of hot section and cold section maintenance.
Presidential Medal of Freedom ceremony on This Week @NASA – November 27, 2015
2015-11-27
During a Nov. 24 ceremony at the White House, former NASA mathematician and physicist Katherine Johnson was one of seventeen individuals to receive the Presidential Medal of Freedom from President Obama. It is the nation’s highest civilian honor – given for meritorious contributions to the security or national interests of the United States, to world peace, or to cultural or other significant public or private endeavors. Johnson's work influenced NASA space programs – from Project Mercury through the space shuttle. Her calculations were used for some of NASA’s most historic missions – including the 1961 flight of Alan Shepard, the first American in space; the 1962 flight during which John Glenn became the first American to orbit Earth; and the 1969 Apollo 11 mission to the moon. Also, Happy Thanksgiving, from space, Next space station crew prepares for launch, Anniversary of first 3-D part printed in space, First flight mirror installed on Webb telescope, Climate and marine study and more!
Morpheus Lander Roll Control System and Wind Modeling
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2014-01-01
The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.
Development of a stereo 3-D pictorial primary flight display
NASA Technical Reports Server (NTRS)
Nataupsky, Mark; Turner, Timothy L.; Lane, Harold; Crittenden, Lucille
1989-01-01
Computer-generated displays are becoming increasingly popular in aerospace applications. The use of stereo 3-D technology provides an opportunity to present depth perceptions which otherwise might be lacking. In addition, the third dimension could also be used as an additional dimension along which information can be encoded. Historically, the stereo 3-D displays have been used in entertainment, in experimental facilities, and in the handling of hazardous waste. In the last example, the source of the stereo images generally has been remotely controlled television camera pairs. The development of a stereo 3-D pictorial primary flight display used in a flight simulation environment is described. The applicability of stereo 3-D displays for aerospace crew stations to meet the anticipated needs for 2000 to 2020 time frame is investigated. Although, the actual equipment that could be used in an aerospace vehicle is not currently available, the lab research is necessary to determine where stereo 3-D enhances the display of information and how the displays should be formatted.
NASA's Hypersonic Research Engine Project: A review
NASA Technical Reports Server (NTRS)
Andrews, Earl H.; Mackley, Ernest A.
1994-01-01
The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.
Operation Everest II. Altitude Decompression Sickness during Repeated Altitude Exposure,
1986-05-01
Bends, Altitude, Hypobaric Chamber ILrJ " . .. . . " --" . .. " * .- . - - ’,, 3 INTRODUCTION Altitude Decompression Sickness (ADS) is a well...recognized and serious consequence of exposure to hypobaric conditions. It has been described during and after aircraft as well as hypobaric chamber flights...was noted in investigators during a recent study of chronic progressive hypoxia in a hypobaric chamber entitled Operation Everest II. The observations
STS-71 Pilot Charles J. Precort arrival in T-38
NASA Technical Reports Server (NTRS)
1995-01-01
STS-71 Pilot Charles J. Precourt arrives at the KSC Shuttle Landing Facility in one of the T-38 aircraft traditionally flown by the astronaut corps. The seven STS-71 crew members flew into KSC from Johnson Space Center as final preparations are under way toward the scheduled liftoff on June 23 of the Space Shuttle Atlantis on the first mission to dock with the Russian Space Station Mir. KSC-95EC-870 - Mir 19 Flight Engineer Nikolai M. Budarin arrives at KSC Mir 19 Flight Engineer Nikolai M. Budarin hitches a ride with STS-71 Pilot Charles J. Precourt in a T-38. Budarin, Precourt and the rest of the STS-71 crew arrived at KSC's Shuttle Landing Facility the same day the countdown clock began ticking toward a scheduled liftoff on Friday, June 23. During the historic flight of the Space Shuttle Atlantis on STS- 71, the crew will perform the first U.S. docking with the Russian Space Station Mir. Budarin and Mir 19 Mission Commander Anatoly Solovyev will transfer to Mir during the flight, and the three crew members currently on Mir will return to Earth in the orbiter.
2011-05-05
CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, invited guests tour the blockhouse at Complex 5/6 during a celebration of Alan Shepard's historic flight 50 years ago. From left are Robert Sieck, former shuttle launch director; Andy Anderson, former manager for communications in the Mercury Mission Control Center; Bob Moser, former chief test conductor for the Mercury-Redstone launches; and John Twigg, former backup chief test conductor for the Mercury-Redstone launches. The celebration was held at the launch site of the first U.S. manned spaceflight May 5, 1961, to mark the 50th anniversary of the flight. Fifty years ago, astronaut Alan Shepard lifted off inside the Mercury capsule, "Freedom 7," atop an 82-foot-tall Mercury-Redstone rocket at 9:34 a.m. EST, sending him on a remarkably successful, 15-minute suborbital flight. The event was attended by more than 200 workers from the original Mercury program and included a re-creation of Shepard's flight and recovery, as well as a tribute to his contributions as a moonwalker on the Apollo 14 lunar mission. For more information, visit www.nasa.gov/topics/history/milestones/index.html. Photo credit: NASA/Kim Shiflett
Separating the from the Imagined: Flight Research at the NACA and NASA, 1915-1998
NASA Technical Reports Server (NTRS)
Gorn, Michael H.
2000-01-01
One of the most important, but under-appreciated, aspects of the NACA/NASA mission is its aeronautical R&D efforts. Within a short time of the first flight of the Wright brothers in 1903, the United States government recognized the importance of fostering development in the new and critical field of aeronautics. NASA's predecessor, the National Advisory Committee for Aeronautics (NACA), was chartered by Congress in 1915 specifically "to supervise and direct the scientific study of the problems of flight, with a view to their practical solution. " This became an enormously important government research and development activity for the next half century, materially enhancing the development of aeronautics 'in America. The results of the NACA's research appeared in more than 16,000 research reports of one type or another, distributed widely for the benefit of all. Many of the reports documenting R&D conducted under NACA auspices are still being used today. Since the creation of NASA in 1958, the critical R&D function has continued but is not well known. This work documents the historical R&D program of the agency by focusing on flight research.
NASA Research Being Shared Through Live, Interactive Video Tours
NASA Technical Reports Server (NTRS)
Petersen, Ruth A.; Zona, Kathleen A.
2001-01-01
On June 2, 2000, the NASA Glenn Research Center Learning Technologies Project (LTP) coordinated the first live remote videoconferencing broadcast from a Glenn facility. The historic event from Glenn's Icing Research Tunnel featured wind tunnel technicians and researchers performing an icing experiment, obtaining results, and discussing the relevance to everyday flight operations and safety. After a brief overview of its history, students were able to "walk through" the tunnel, stand in the control room, and observe a live icing experiment that demonstrated how ice would grow on an airplane wing in flight through an icing cloud. The tour was interactive, with a spirited exchange of questions and explanations between the students and presenters. The virtual tour of the oldest and largest refrigerated icing research tunnel in the world was the second of a series of videoconferencing connections with the AP Physics students at Bay Village High School, Bay Village, Ohio. The first connection, called Aircraft Safety and Icing Research, introduced the Tailplane Icing Program. In an effort to improve aircraft safety by reducing the number of in-flight icing events, Glenn's Icing Branch uses its icing research aircraft to conduct flight tests. The presenter engaged the students in discussions of basic aircraft flight mechanics and the function of the horizontal tailplane, as well as the effect of ice on airfoil (wing or tail) surfaces. A brief video of actual flight footage provided a view of the pilot's actions and reactions and of the horizon during tailplane icing conditions.
Thucydides was Right: Defining the Future Threat
2015-04-01
and the historical parallel, because the former is fun- damentally empirically unsound . History does not repeat itself in ways essential for analogy...ADVANCING STRATEGIC THOUGHT SERIES THUCYDIDES WAS RIGHT: DEFINING THE FUTURE THREAT Colin S. Gray FOR THIS AND OTHER PUBLICATIONS, VISIT US AT...Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response
Historical Overview of Data Communication With Analysis of a Selective Repeat Protocol
1991-03-01
optical fiber have created international and national communications nets. Personal computers have effected , if not where, certainly how we conduct...Telecommunications entails disciplines, means and methodologies to communicate over distances, in effect to transmit voice, video, facimile, and computer data...having and will continue to have significant effect on the integration of data processing and the telecommunications industry. The high data transmission
ERIC Educational Resources Information Center
Ash, Mitchell G.
2006-01-01
Public debate on higher education reform today is dominated by competing views about what higher education institutions, particularly universities, are or should become. To a surprising extent, these views are based upon highly simplified characterisations of university history. The claims in question have been repeated so often that they have…
Overview of Pavement Management.
1987-01-01
what types of construction and maintenance have worked or failed in the past and can be used as a learning tool . Historical and current data can also be...basis. - Instant records. S- Reasonably good repeatability of results. Disadvantages are: - Need for frequent calibration. - Numerous operating...variations. 2.4 Performance There are other rating methods and numerous methods of 3 measuring road roughness, the use of which help to evaluate
Comparison of Postural Recovery Following Short and Long Duration Spaceflights
NASA Technical Reports Server (NTRS)
Wood, S. J.; Fiedler, J.; Taylor, L. C.; Kozlovskaya, I.; Black, F. O.; Paloski, W. H.
2010-01-01
INTRODUCTION: Post-flight postural ataxia reflects adaptive changes to vestibulo-spinal reflexes and control strategies adopted for movement in weightlessness. Quantitative measures obtained during computerized dynamic posturography (CDP) from US and Russian programs provide insight into the effect of spaceflight duration in terms of both the initial decrements and recovery of postural stability. METHODS: CDP was obtained on 117 crewmembers following Shuttle flights lasting 4-17 days, and on 64 crewmembers following long-duration missions lasting 48-380 days. Although the number and timing of sessions varied, the goal was to characterize postural recovery pooling similar measures from different research and flight medicine programs. This report focuses on eyes closed, head erect conditions with either a fixed or sway-referenced base of support. A smaller subset of subjects repeated the sway-referenced condition while making pitch head movements (+/- 20deg at 0.33Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Fall probability was modeled using Bayesian statistical methods to estimate parameters of a logit function. RESULTS: The standard Romberg condition was the least sensitive. Longer duration flights led to larger decrements in stability with sway-reference support during the first 1-2 days, although the timecourse of recovery was similar across flight duration with head erect. Head movements led to increased incidence of falls during the first week, with a significantly longer recovery following long duration flights. CONCLUSIONS: The diagnostic assessment of postural instability, and differences in the timecourse of postural recovery between short and long flight durations, are more pronounced during unstable support conditions requiring active head movements.
On-Orbit Prospective Echocardiography on International Space Station Crew
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David S.; Garcia, Kathleen M.; Melton, Shannon L.; Feiveson, Alan; Dulchavsky, Scott A.
2010-01-01
Introduction A prospective trial of echocardiography was conducted on of six crewmembers onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what "space normal" echocardiographic data is. Methods Each crewmember operator (n=6) had 2-hour preflight training. Baseline echocardiographic data were collected 55 to 167days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure - 114 days (34 -- 190)). On Orbit ultrasound operators used an e-learning system within 24h of these sessions. Expert assistance was provided using ultrasound video downlink and two-way voice. Testing was repeated 5 to 16 days after landing. Separate ANOVA was used on each echocardiographic variable (n=33). Within each ANOVA, three tests were made: a) effect of mission phase (preflight, in-flight, post flight); b) effect of echo technician (two technicians independently analyzed the data); c) interaction between mission phase and technician. Results Nine rejections of the null hypothesis (mission phase or technician or both had no effect) were discovered and considered for follow up. Of these, six rejections were for significant technician effects, not as a result of space flight. Three rejections of the null hypothesis (Aortic Valve time velocity integral, Mitral E wave Velocity and heart rate) were attributable to space flight, however determined not to be clinically significant. No rejections were due to the interaction between technician and space flight. Conclusion No consistent clinically significant effects of long-duration space flight were seen in echocardiographic variables of the given group of subjects.
The X-38 V-201 Fin Fold Actuation Mechanism
NASA Technical Reports Server (NTRS)
Lupo, Christian; Robertson, Brandan; Gafka, George
2004-01-01
The X-38 Vehicle 201 (V-201) is a space flight prototype lifting body vehicle that was designed to launch to orbit in the Space Shuttle orbiter payload bay. Although the project was cancelled in May 2003, many of the systems were nearly complete. This paper will describe the fin folding actuation mechanism flight subsystems and development units as well as lessons learned in the design, assembly, development testing, and qualification testing. The two vertical tail fins must be stowed (folded inboard) to allow the orbiter payload bay doors to close. The fin folding actuation mechanism is a remotely or extravehicular activity (EVA) actuated single fault tolerant system consisting of seven subsystems capable of repeatedly deploying or stowing the fins.
Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane
NASA Technical Reports Server (NTRS)
Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.
2002-01-01
The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.
Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.
Crew Systems Laboratory/Building 7. Historical Documentation
NASA Technical Reports Server (NTRS)
Slovinac, Patricia
2011-01-01
Building 7 is managed by the Crew and Thermal Systems Division of the JSC Engineering Directorate. Originally named the Life Systems Laboratory, it contained five major test facilities: two advanced environmental control laboratories and three human-rated vacuum chambers (8 , 11 , and the 20 ). These facilities supported flight crew familiarization and the testing and evaluation of hardware used in the early manned spaceflight programs, including Gemini, Apollo, and the ASTP.
An overview of some monoplanar missile programs
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1984-01-01
A historical review is presented of some monoplanar missile systems in which the vehicle flight control was similar to that for a conventional aircraft. The review is essentially chronological, beginning prior to World War I, and includes worldwise programs. Illustrative examples of aerodynamic research with monoplanar missiles are presented including some comparisons with cruciform missiles. Some examples of current programs are presented and some particular mission applications for monoplanar systems are discussed.
1976-10-02
On October 02, 1976, Marshall Space Flight Center’s (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand along with their wives are (left to right), Madison County Commission Chairman James Record, Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, (holding certificate), Ed, Buckbee, Space and Rocket Center Director; Harvie Jones, Huntsville Architect; Dick Smith; and Joe Jones.
4. Credit USAF, ca. 1945. Original housed in the Muroc ...
4. Credit USAF, ca. 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Photographic copy of photograph captioned "Hangar No. 2 Hydraulics Room." Location within Building 4402 not determined. - Edwards Air Force Base, North Base, Hangar No. 2, First & A Streets, Boron, Kern County, CA
Various views of STS-95 Senator John Glenn during training
1998-06-18
S98-08732 (9 April 1998) --- Holding a 35mm camera, U.S. Sen. John H. Glenn Jr. (D.-Ohio) gets a refresher course in photography from a JSC crew trainer (out of frame, right). The STS-95 payload specialist carried a 35mm camera on his historic MA-6 flight over 36 years ago. The photo was taken by Joe McNally, National Geographic, for NASA.
NASA Technical Reports Server (NTRS)
Harrington, James L., Jr.; Brown, Robin L.; Shukla, Pooja
1998-01-01
Seventh annual conference proceedings of the Minority University-SPace Interdisciplinary Network (MU-SPIN) conference. MU-SPIN is cosponsored by NASA Goddard Space Flight Center and the National Science Foundation, and is a comprehensive educational initiative for Historically Black Colleges and Universities, and minority universities. MU-SPIN focuses on the transfer of advanced computer networking technologies to these institutions and their use for supporting multidisciplinary research.
INFLIGHT (CREW ACTIVITY) - STS-41G
1984-10-14
S84-43433 (11 Oct 1984) --- Photographed through aft flight deck windows, this 70mm frame shows Astronauts David C. Leestma, left, and Kathryn D. Sullivan at the orbital refueling system (ORS) in the aft cargo bay. A wrist camera on the remote manipulator system (RMS) is perched to record the historic extravehicular activity (EVA). Dr. Sullivan's part of the EVA represented the first such feat for an American woman.
NASA Technical Reports Server (NTRS)
Hansen, James R. (Editor); Taylor, D. Bryan; Kinney, Jeremy; Lee, J. Lawrence
2003-01-01
This first volume, plus the succeeding five now in preparation, covers the impact of aerodynamic development on the evolution of the airplane in America. As the six-volume series will ultimately demonstrate, just as the airplane is a defining technology of the twentieth century, aerodynamics has been the defining element of the airplane. Volumes two through six will proceed in roughly chronological order, covering such developments as the biplane, the advent of commercial airliners, flying boats, rotary aircraft, supersonic flight, and hypersonic flight. This series is designed as an aeronautics companion to the Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program (NASA SP-4407) series of books. As with Exploring the Unknown, the documents collected during this research project were assembled from a diverse number of public and private sources. A major repository of primary source materials relative to the history of the civil space program is the NASA Historical Reference Collection in the NASA Headquarters History Office. Historical materials housed at NASA field centers, academic institutions, and Presidential libraries were other sources of documents considered for inclusion, as were papers in the archives of private individuals and corporations.
NASA Technical Reports Server (NTRS)
Donoue, George; Hoffman, Karla; Sherry, Lance; Ferguson, John; Kara, Abdul Qadar
2010-01-01
The air transportation system is a significant driver of the U.S. economy, providing safe, affordable, and rapid transportation. During the past three decades airspace and airport capacity has not grown in step with demand for air transportation; the failure to increase capacity at the same rate as the growth in demand results in unreliable service and systemic delay. This report describes the results of an analysis of airline strategic decision-making that affects geographic access, economic access, and airline finances, extending the analysis of these factors using historic data (from Part 1 of the report). The Airline Schedule Optimization Model (ASOM) was used to evaluate how exogenous factors (passenger demand, airline operating costs, and airport capacity limits) affect geographic access (markets-served, scheduled flights, aircraft size), economic access (airfares), airline finances (profit), and air transportation efficiency (aircraft size). This analysis captures the impact of the implementation of airport capacity limits, as well as the effect of increased hedged fuel prices, which serve as a proxy for increased costs per flight that might occur if auctions or congestion pricing are imposed; also incorporated are demand elasticity curves based on historical data that provide information about how passenger demand is affected by airfare changes.
Cohn, T.A.; Lane, W.L.; Baier, W.G.
1997-01-01
This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record; information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters, of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.
NASA Astrophysics Data System (ADS)
Cohn, T. A.; Lane, W. L.; Baier, W. G.
This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record; information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters, of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.
NASA Technical Reports Server (NTRS)
Graham, John B., Jr.
1958-01-01
Heat-transfer and pressure measurements were obtained from a flight test of a 1/18-scale model of the Titan intercontinental ballistic missile up to a Mach number of 3.86 and Reynolds number per foot of 23.5 x 10(exp 6) and are compared with the data of two previously tested 1/18-scale models. Boundary-layer transition was observed on the nose of the model. Van Driest's theory predicted heat-transfer coefficients reasonably well for the fully laminar flow but predictions made by Van Driest's theory for turbulent flow were considerably higher than the measurements when the skin was being heated. Comparison with the flight test of two similar models shows fair repeatability of the measurements for fully laminar or turbulent flow.
STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck
1991-08-11
STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.
Bioavailability of Promethazine during Spaceflight
NASA Technical Reports Server (NTRS)
Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi
2009-01-01
Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.
The Cognitive Consequences of Patterns of Information Flow
NASA Technical Reports Server (NTRS)
Hutchins, Edwin
1999-01-01
The flight deck of a moderm commercial airliner is a complex system consisting of two or more crew and a suite of technological devices. When everything goes right, all modem flight decks are easy to use. When things go sour, however, automated flight decks provide opportunities for new kinds of problems. A recent article in Aviation Week cited industry concern over the problem of verifying the safety of complex systems on automated, digital aircraft, stating that the industry must "guard against the kind of incident in which people and the automation seem to mismanage a minor occurrence or non-routine situation into larger trouble." The design of automated flight deck systems that flight crews find easy to use safely is a challenge in part because this design activity requires a theoretical perspective which can simultaneously cover the interactions of people with each other and with technology. In this paper, I will introduce some concepts that can be used to understand the flight deck as a system that is composed of two or more pilots and a complex suite of automated devices. As I will try to show, without a theory, we can repeat what seems to work, but we may not know why it worked or how to make it work in novel circumstances. Theory allows us to rise above the particulars of specific situations and makes the application of the roots of success in one setting applicable to other settings.
Uncertainty in georeferencing current and historic plant locations
McEachern, K.; Niessen, K.
2009-01-01
With shrinking habitats, weed invasions, and climate change, repeated surveys are becoming increasingly important for rare plant conservation and ecological restoration. We often need to relocate historical sites or provide locations for newly restored sites. Georeferencing is the technique of giving geographic coordinates to the location of a site. Georeferencing has been done historically using verbal descriptions or field maps that accompany voucher collections. New digital technology gives us more exact techniques for mapping and storing location information. Error still exists, however, and even georeferenced locations can be uncertain, especially if error information is not included with the observation. We review the concept of uncertainty in georeferencing and compare several institutional database systems for cataloging error and uncertainty with georeferenced locations. These concepts are widely discussed among geographers, but ecologists and restorationists need to become more aware of issues related to uncertainty to improve our use of spatial information in field studies. ?? 2009 by the Board of Regents of the University of Wisconsin System.
The British and curriculum development in West Africa: A historical discourse
NASA Astrophysics Data System (ADS)
Ofori-Attah, Kwabena Dei
2006-09-01
THE BRITISH AND CURRICULUM DEVELOPMENT IN WEST AFRICA: A HISTORICAL STUDY - Only recently have African nations begun to make their way towards establishing genuinely autonomous education systems incorporating elements of indigenous culture. The present study examines the historical development of curriculum in British West Africa in its links with the educational activities of the early Christian missionaries and the imposition of British colonial rule. For over 300 years, the curriculum content was essentially European in nature. African interests and cultural practices were largely excluded, as "bookwork" was favored over "handwork". The colonial curriculum also helped introduce a new social order to West Africa, leading to the rise of new local elites reading, writing, and speaking foreign European languages. This study explores how the idea of a "civilized" person, promoted through the colonial school curriculum, developed new local elites with different sets of values and expectations that often made them strangers in their own societies. It also describes the connection between this curriculum and the repeated failure of education-reform efforts.
On the Testing of Renovations Inside Historical Opera Houses
NASA Astrophysics Data System (ADS)
Fausti, P.; Prodi, N.
2002-11-01
Due to the large number of historical opera houses in Italy, many theatres have been renovated in the past, but still more will undergo major restoration in the near future. Unfortunately in this context, the quality and protection of acoustics is rarely considered as an issue of its own. As a consequence, the renovations are hardly ever accompanied by proper scientific and technical support. In this paper, the acoustical impact of works inside the Teatro Municipale "R.Valli" in Reggio Emilia, including the restoration of the main hall and the construction of a new acoustic shell, will be dealt with. Surveys were held in the theatre before renovation and were repeated with identical procedure and instruments after its completion. By means of a comparative analysis of the architectural project and of acoustical data, the impact of major changes in the theatre can be predicted. It is shown that this approach can help in drafting an operational scheme for safeguarding the acoustics of historical opera houses.
The historicity of the physics class: enactments, mimes and imitation
NASA Astrophysics Data System (ADS)
Bergwik, Staffan
2014-06-01
This essay discusses Anna Danielsson's article "In the physics class: university physics students' enactments of class and gender in the context of laboratory work". The situated co-construction of knowledge and identity forms the crucial vantage point and I argue that it is a point of intersection between the history of science and research in science education. The former can provide a valuable understanding of the historicity of learning science. I thus highlight the importance of knowledge as situated in time and space, for instance the importance of the historical division between "head and hand" clearly visible in the discourse of Danielsson's informants. Moreover, the article discusses how identity is produced in specific knowledge contexts through repeated performances. The article closes by briefly suggesting analytical alternatives, in particular "belonging" and "imitation". Both draw on post-structuralist ideas about the citational nature of identity. Belonging is created by citing and reinstating norms. Imitating knowledge, identity and norms is an issue that should be brought to the fore when we speak of education and training.
Validation Of The Airspace Concept Evaluation System Using Real World Data
NASA Technical Reports Server (NTRS)
Zelinski, Shannon
2005-01-01
This paper discusses the process of performing a validation of the Airspace Concept Evaluation System (ACES) using real world historical flight operational data. ACES inputs are generated from select real world data and processed to create a realistic reproduction of a single day of operations within the National Airspace System (NAS). ACES outputs are then compared to real world operational metrics and delay statistics for the reproduced day. Preliminary results indicate that ACES produces delays and airport operational metrics similar to the real world with minor variations of delay by phase of flight. ACES is a nation-wide fast-time simulation tool developed at NASA Ames Research Center. ACES models and simulates the NAS using interacting agents representing center control, terminal flow management, airports, individual flights, and other NAS elements. These agents pass messages between one another similar to real world communications. This distributed agent based system is designed to emulate the highly unpredictable nature of the NAS, making it a suitable tool to evaluate current and envisioned airspace concepts. To ensure that ACES produces the most realistic results, the system must be validated. There is no way to validate future concepts scenarios using real world historical data, but current day scenario validations increase confidence in the validity of future scenario results. Each operational day has unique weather and traffic demand schedules. The more a simulation utilizes the unique characteristic of a specific day, the more realistic the results should be. ACES is able to simulate the full scale demand traffic necessary to perform a validation using real world data. Through direct comparison with the real world, models may continuee to be improved and unusual trends and biases may be filtered out of the system or used to normalize the results of future concept simulations.
HyPlane for Space Tourism and Business Transportation
NASA Astrophysics Data System (ADS)
Savino, R.
In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.
NASA Technical Reports Server (NTRS)
1986-01-01
Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.
NASA's Observes Effects of Summer Melt on Greenland Ice Sheet
2017-12-08
NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Roberti, Gioachino; Ward, Brent; van Wyk de Vries, Benjamin; Perotti, Luigi; Giardino, Marco; Friele, Pierre; Clague, John
2017-04-01
Topographic modeling is becoming more accessible due to the development of structure from motion (SFM), and multi-view stereo (MVS) image matching algorithms in digital photogrammetry. Many studies are utilizing SFM-MVS with either UAV or hand-held consumer-grade digital cameras. However, little work has been done in using SFM-MVS with digitized historical air photos. Large databases of historical airphotos are available in university, public, and government libraries, commonly as paper copies. In many instances, the photos are in poor condition (i.e. deformed by humidity, scratched, or annotated). In addition, the negatives, as well as metadata on the camera and the flight mission, may be missing. Processing such photos using classic stereo-photogrammetry is difficult and in many instances impossible. Yet these photos can provide a valuable archive of geomorphic changes. In this study, we digitized over 1000 vertical air photos of the Mount Meager massif (British Columbia, Canada), acquired during flights between 1947 and 2006. We processed the scans using the commercial SFM-MVS software package PhotoScan. PhotoScan provided high-quality orthophotos (0.42-1.13 m/pixel) and DTMs (1-5 m/pixel). We used the orthophotos to document glacier retreat and deep-seated gravitational deformation over the 60-year photo period. Notably, we reconstructed geomorphic changes that led to the very large (˜50 x 106 m 3) 2010 failure of the south flank of Meager Peak and also documented other unstable areas that might fail catastrophically in the future. This technique can be applied to other photosets to provide rapid high-quality cartographic products that allow researchers to track landscape changes over large areas over the past century.
Leadership of interprofessional health and social care teams: a socio-historical analysis.
Reeves, Scott; Macmillan, Kathleen; van Soeren, Mary
2010-04-01
The aim of this paper is to explore some of the key socio-historical issues related to the leadership of interprofessional teams. Over the past quarter of a century, there have been repeated calls for collaboration to help improve the delivery of care. Interprofessional teamwork is regarded as a key approach to delivering high-quality, safe care. We draw upon historical documents to understand how modern health and social care professions emerged from 16th-century crafts guilds. We employ sociological theories to help analyse the nature of these professional developments for team leadership. As the forerunners of professions, crafts guilds were established on the basis of protection and promotion of their members. Such traits have been emphasized during the evolution of professions, which have resulted in strains for teamwork and leadership. Understanding a problem through a socio-historical analysis can assist management to understand the barriers to collaboration and team leadership. Nursing management is in a unique role to observe and broker team conflict. It is rare to examine these phenomena through a humanities/social sciences lens. This paper provides a rare perspective to foster understanding - an essential precursor to effective change management.
NASA Astrophysics Data System (ADS)
Aust, G.; Hordinsky, J. R.; Schmelzer, B.
1980-11-01
Vestibular disturbances in connection with space flight were reported by a majority of participating astronauts and cosmonauts. These include motion sickness symptoms in the first few days of the space flight, as well as standing, gait and orientation disturbances after the return to Earth.The Aerospace Medical Community has been trying to select those people that are particularly adapted to the above stresses or that can be further adapted through training programs. As the circle of selectees extends to women, the problem arises as to whether differences between men and women exist under the conditions of space flight.In seeking answers to this question we studied a group of 42 women and 44 men, who were further subdivided according to their subjective motion sickness sensitivity, as determined by a questionnaire. Using this material, 26 men and 22 women were designated as motion sickness resistant, and 18 men and 20 women were designated as nonresistant.The vestibular test battery given these test subjects consisted of caloric, rotatory, optokinetic, vestibulo-spinal and vestibulo-vegetative testing.Because of the mixed orthostatic and vestibular problems seen after space flights, we also studied the response of the vestibular apparatus during peripheral blood pooling as induced by lower body negative pressure.The collected historical and test data are analyzed in this paper with emphasis on the relationship to motion sickness tendency.
STS-114 Space Shuttle Discovery Performs Back Flip For Photography
NASA Technical Reports Server (NTRS)
2005-01-01
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
U.S. Centennial of Flight Commision: Born of Dreams - Inspired by Freedom
NASA Technical Reports Server (NTRS)
2004-01-01
The U.S. Centennial of Flight Commission developed and maintained a public web site that included activities related to the centennial of flight celebration and the history of aviation. The web site, www.centennialofflight.gov, was continually updated with educational and historical information, events, sights and sounds, and Commission information from its inception to June 2004. This DVD contains a 'snap shot' of the web site as of April 2004. The Web site on this DVD can be enjoyed without an Internet connection although in some places, you will be given links to online content. DVD content includes: 1) About the Commission - Information on the legislation, the Commissioners and Advisory Board members, news, the National Plans, meeting minutes and status reports; 2) Calendar of Events - A comprehensive list of activities, symposiums, exhibits, air shows, educational activities and more that took place through March 2004; 3) Wright Brothers History - The Library of Congress bibliography of Wright-related resources as well as the Chronology and Flight Log; the Brunsman articles; interactive learning modules from The Wright Experience; short informative essays and a series of links to other Wright brothers information sources. 4) History of Flight - Essays and images on the history of flight; 5) Sights and Sounds - Images, movies and special collections that capture the accomplishments of the Wright brothers and others who made significant contributions throughout the history of aviation and aerospace. As part of the NASA Art Program, a centennial song, 'Way Up There,' was commissioned; 6) Licensed Products - View collections of souvenirs and gift items to commemorate the 100th anniversary of the first powered flight; 7) Education - Resources that will help educators and their students celebrate 100 years of flight. Teachers can download Wright brothers posters and a Centennial of Flight bookmark, view live Web casts, and access an Educational Resources Center Matrix representing more than 50 government, industry and labor organizations promoting aviation and aerospace education.
NASA Technical Reports Server (NTRS)
McCoy, Allen H.
1998-01-01
Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-real time system identification was also demonstrated during the flight test program.
A Network-Based Algorithm for Clustering Multivariate Repeated Measures Data
NASA Technical Reports Server (NTRS)
Koslovsky, Matthew; Arellano, John; Schaefer, Caroline; Feiveson, Alan; Young, Millennia; Lee, Stuart
2017-01-01
The National Aeronautics and Space Administration (NASA) Astronaut Corps is a unique occupational cohort for which vast amounts of measures data have been collected repeatedly in research or operational studies pre-, in-, and post-flight, as well as during multiple clinical care visits. In exploratory analyses aimed at generating hypotheses regarding physiological changes associated with spaceflight exposure, such as impaired vision, it is of interest to identify anomalies and trends across these expansive datasets. Multivariate clustering algorithms for repeated measures data may help parse the data to identify homogeneous groups of astronauts that have higher risks for a particular physiological change. However, available clustering methods may not be able to accommodate the complex data structures found in NASA data, since the methods often rely on strict model assumptions, require equally-spaced and balanced assessment times, cannot accommodate missing data or differing time scales across variables, and cannot process continuous and discrete data simultaneously. To fill this gap, we propose a network-based, multivariate clustering algorithm for repeated measures data that can be tailored to fit various research settings. Using simulated data, we demonstrate how our method can be used to identify patterns in complex data structures found in practice.
Winiecki, A.L.; Kroop, D.C.; McGee, M.K.; Lenkszus, F.R.
1984-01-01
An analytical instrument and particularly a time-of-flight-mass spectrometer for processing a large number of analog signals irregularly spaced over a spectrum, with programmable masking of portions of the spectrum where signals are unlikely in order to reduce memory requirements and/or with a signal capturing assembly having a plurality of signal capturing devices fewer in number than the analog signals for use in repeated cycles within the data processing time period.
Winiecki, Alan L.; Kroop, David C.; McGee, Marilyn K.; Lenkszus, Frank R.
1986-01-01
An analytical instrument and particularly a time-of-flight-mass spectrometer for processing a large number of analog signals irregularly spaced over a spectrum, with programmable masking of portions of the spectrum where signals are unlikely in order to reduce memory requirements and/or with a signal capturing assembly having a plurality of signal capturing devices fewer in number than the analog signals for use in repeated cycles within the data processing time period.
A Broadband VHF-L Band Cavity-Backed Slot Spiral Antenna
2005-05-01
each new frequency. When the frequency list is completed, the Flight Test Engineer will contact the Test Technician and request any necessary...immediately required elsewhere. Frequency List ; 50.05 MHz, 144.05 MHz, 432.05 MHz, 902.05 MHz, 1.29605 GHz...Repeat Completed? (Y/N) Test Completed? (Y/N) Frequency List ; 50.05 MHz, 144.05 MHz, 432.05 MHz, 902.05 MHz, 1.29605 GHz
2010-01-01
Seemingly not . Repeated measures analysis of variance (ANOVA) for posttest - pretest score gain x training product interaction yielded a non-significant...Code 15. Supplemental Notes Work was accomplished under approved task AM-A-07-HRR-521 16. Abstract This research has two main...1 Purpose of This Research
NASA Remembers Astronaut Bruce McCandless II
2017-12-22
Former NASA Astronaut Bruce McCandless II, best known for his iconic free-floating spacewalk on a 1984 shuttle flight, died on Dec. 21 at the age of 80. A native of Boston, McCandless II attended the U.S. Naval Academy and served as a naval aviator before joining NASA in 1966. He served in support or backup roles during the Apollo and Skylab programs, including serving as the communicator from mission control to the Apollo 11 crew during their historic 1969 moonwalk. On Feb. 7, 1984, during the Space Shuttle Challenger’s STS-41B mission, he made the first, untethered, free flight spacewalk in the Manned Maneuvering Unit. In 1990, McCandless II was part of the crew on Space Shuttle Discovery’s STS-31 mission, which deployed the Hubble Space Telescope.
2006-12-13
KENNEDY SPACE CENTER, FLA. -- Firing Room 1 of the Launch Control Center has been stripped of its equipment in preparation for transforming it to support the launch operations for the Ares launch vehicles. The Shuttle Processing Transition Team has worked to decommission Firing Room 1, also known as FR1, for transfer to the Constellation Program. The transition includes removing all the computer systems currently in the room and installing new equipment and software. The room was recently renamed the Young/Crippen Firing Room to honor Commander John Young and Pilot Robert Crippen in tribute to the 25th anniversary of the first space shuttle flight on April 12, 1981. It was this firing room that launched the historic flight and the crew of STS-1, Young and Crippen. Photo credit: NASA/Jim Grossmann
2006-12-13
KENNEDY SPACE CENTER, FLA. -- Firing Room 1 of the Launch Control Center has been stripped of its equipment in preparation for transforming it to support the launch operations for the Ares launch vehicles. The Shuttle Processing Transition Team has worked to decommission Firing Room 1, also known as FR1, for transfer to the Constellation Program. The transition includes removing all the computer systems currently in the room and installing new equipment and software. The room was recently renamed the Young/Crippen Firing Room to honor Commander John Young and Pilot Robert Crippen in tribute to the 25th anniversary of the first space shuttle flight on April 12, 1981. It was this firing room that launched the historic flight and the crew of STS-1, Young and Crippen. Photo credit: NASA/Jim Grossmann
2006-12-13
KENNEDY SPACE CENTER, FLA. -- Firing Room 1 of the Launch Control Center has been stripped of its equipment in preparation for transforming it to support the launch operations for the Ares launch vehicles. The Shuttle Processing Transition Team has worked to decommission Firing Room 1, also known as FR1, for transfer to the Constellation Program. The transition includes removing all the computer systems currently in the room and installing new equipment and software. The room was recently renamed the Young/Crippen Firing Room to honor Commander John Young and Pilot Robert Crippen in tribute to the 25th anniversary of the first space shuttle flight on April 12, 1981. It was this firing room that launched the historic flight and the crew of STS-1, Young and Crippen. Photo credit: NASA/Jim Grossmann
Mission Success of U.S. Launch Vehicle Flights from a Propulsion Stage-Based Perspective: 1980-2015
NASA Technical Reports Server (NTRS)
Go, Susie; Lawrence, Scott L.; Mathias, Donovan L.; Powell, Ryann
2017-01-01
This report documents a study of the historical safety and reliability trends of U.S. space launch vehicles from 1980 to 2015. The launch data history is examined to determine whether propulsion technology choices drove launch system risk and is used to understand how different propulsion system failures manifested into different failure scenarios. The historical data is processed by launch vehicle stage, where a stage is limited by definition to a single propulsion technology, either liquid or solid. Results are aggregated in terms of failure trends and manifestations as a functions of different propulsion stages. Failure manifestations are analyzed in order to understand the types and frequencies of accident environments in which an abort system for a crewed vehicle would be required to operate.
ERIC Educational Resources Information Center
Huuki, Tuija; Renold, Emma
2016-01-01
Drawing on ethnographic multi-modal data of the gendered and sexual dynamics of pre-school play (age 6) in a rapidly declining fishing and farming community in North Finland, this paper offers a glimpse into our sense-making of a short video-recorded episode in which three boys repeatedly pile up on and demand a kiss from one of their girl…
ERIC Educational Resources Information Center
Navarick, Douglas J.
2012-01-01
In Milgram's (1963, 1965a, 1965b, 1974/2004) experiments on destructive obedience, an authority figure repeatedly ordered a resistant participant to deliver what seemed to be increasingly painful shocks to a confederate victim who demanded to be released. A three- stage behavioral model (aversive conditioning of contextual stimuli, emergence of a…
Impact of spring or fall repeated prescribed fire on growth of ponderosa pine in eastern Oregon, USA
Walter G. Thies; Douglas J. Westlind; Mark. Loewen
2013-01-01
Prescribed burning is used to reduce fuel loads and to return fire to its historic disturbance role in western forests. Managers need to know the effects of prescribed fire on tree growth. Growth of residual ponderosa pine (Pinus ponderosa Dougl. ex Laws.) was measured in an existing long-term study of the effects of season-of-prescribed burn in...
Mary A. Arthur; Beth A. Blankenship; Angela Schörgendorfer; David L. Loftis; Heather D. Alexander
2015-01-01
Without large scale disturbances to alter forest structure and open the canopy, historically oak-dominated forests of the central and Appalachian hardwood regions of eastern North America are shifting to dominance by shade-tolerant, âmesophyticâ species. In response, prescribed fire is applied with increasing frequency and spatial extent to decrease non-oak species and...
Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.
2013-01-01
Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.
Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements
NASA Technical Reports Server (NTRS)
Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)
2003-01-01
Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.
Wu, Meiping; Cao, Juliang; Zhang, Kaidong; Cai, Shaokun; Yu, Ruihang
2018-01-01
Quality assessment is an important part in the strapdown airborne gravimetry. Root mean square error (RMSE) evaluation method is a classical way to evaluate the gravimetry quality, but classical evaluation methods are preconditioned by extra flight or reference data. Thus, a method, which is able to largely conquer the premises of classical quality assessment methods and can be used in single survey line, has been developed in this paper. According to theoretical analysis, the method chooses the stability of two horizontal attitude angles, horizontal specific force and vertical specific force as the determinants of quality assessment method. The actual data, collected by SGA-WZ02 from 13 flights 21 lines in certain survey, was used to build the model and elaborate the method. To substantiate the performance of the quality assessment model, the model is applied in extra repeat line flights from two surveys. Compared with internal RMSE, standard deviation of assessment residuals are 0.23 mGal and 0.16 mGal in two surveys, which shows that the quality assessment method is reliable and stricter. The extra flights are not necessary by specially arranging the route of flights. The method, summarized from SGA-WZ02, is a feasible approach to assess gravimetry quality using single line data and is also suitable for other strapdown gravimeters. PMID:29373535