GFP-based fluorescence assay for CAG repeat instability in cultured human cells.
Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H
2014-01-01
Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.
GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells
Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.
2014-01-01
Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602
Single sperm analysis of the trinucleotide repeat in the Huntington`s disease gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeflang, E.P.; Zhang, L.; Hubert, R.
1994-09-01
Huntington`s disease (HD) is one of several genetic diseases caused by trinucleotide repeat expansion. The CAG repeat is very unstable, with size changes occurring in more than 80% of transmissions. The degree of instability of this repeat in the male germline can be determined by analysis of individual sperm cells. An easy and sensitive PCR assay has been developed to amplify this trinucleotide repeat region from single sperm using two rounds of PCR. As many as 90% of the single sperm show amplification for the HD repeat. The PCR product can be easily detected on an ethidium bromide-stained agarose gel.more » Single sperm samples from an HD patient with 18 and 49 repeats were studied. We observed size variations for the expanded alleles while the size of the normal allele in sperm is very consistent. We did not detect any significant bias in the amplification of normal alleles over the larger HD alleles. Our preliminary study supports the observation made by PCR of total sperm that instability of the HD trinucleotide repeat occurs in the germline. HD preimplantation diagnosis on single embryo blastomeres may also possible.« less
Mendez-Bermudez, Aaron; Hills, Mark; Pickett, Hilda A.; Phan, Anh Tuân; Mergny, Jean-Louis; Riou, Jean-François; Royle, Nicola J.
2009-01-01
A number of different processes that impact on telomere length dynamics have been identified but factors that affect the turnover of repeats located proximally within the telomeric DNA are poorly defined. We have identified a particular repeat type (CTAGGG) that is associated with an extraordinarily high mutation rate (20% per gamete) in the male germline. The mutation rate is affected by the length and sequence homogeneity of the (CTAGGG)n array. This level of instability was not seen with other sequence-variant repeats, including the TCAGGG repeat type that has the same composition. Telomeres carrying a (CTAGGG)n array are also highly unstable in somatic cells with the mutation process resulting in small gains or losses of repeats that also occasionally result in the deletion of the whole (CTAGGG)n array. These sequences are prone to quadruplex formation in vitro but adopt a different topology from (TTAGGG)n (see accompanying article). Interestingly, short (CTAGGG)2 oligonucleotides induce a DNA damage response (γH2AX foci) as efficiently as (TTAGGG)2 oligos in normal fibroblast cells, suggesting they recruit POT1 from the telomere. Moreover, in vitro assays show that (CTAGGG)n repeats bind POT1 more efficiently than (TTAGGG)n or (TCAGGG)n. We estimate that 7% of human telomeres contain (CTAGGG)n repeats and when present, they create additional problems that probably arise during telomere replication. PMID:19656953
Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability
Reddy, Kaalak; Schmidt, Monika H.M.; Geist, Jaimie M.; Thakkar, Neha P.; Panigrahi, Gagan B.; Wang, Yuh-Hwa; Pearson, Christopher E.
2014-01-01
R-loops, transcriptionally-induced RNA:DNA hybrids, occurring at repeat tracts (CTG)n, (CAG)n, (CGG)n, (CCG)n and (GAA)n, are associated with diseases including myotonic dystrophy, Huntington's disease, fragile X and Friedreich's ataxia. Many of these repeats are bidirectionally transcribed, allowing for single- and double-R-loop configurations, where either or both DNA strands may be RNA-bound. R-loops can trigger repeat instability at (CTG)·(CAG) repeats, but the mechanism of this is unclear. We demonstrate R-loop-mediated instability through processing of R-loops by HeLa and human neuron-like cell extracts. Double-R-loops induced greater instability than single-R-loops. Pre-treatment with RNase H only partially suppressed instability, supporting a model in which R-loops directly generate instability by aberrant processing, or via slipped-DNA formation upon RNA removal and its subsequent aberrant processing. Slipped-DNAs were observed to form following removal of the RNA from R-loops. Since transcriptionally-induced R-loops can occur in the absence of DNA replication, R-loop processing may be a source of repeat instability in the brain. Double-R-loop formation and processing to instability was extended to the expanded C9orf72 (GGGGCC)·(GGCCCC) repeats, known to cause amyotrophic lateral sclerosis and frontotemporal dementia, providing the first suggestion through which these repeats may become unstable. These findings provide a mechanistic basis for R-loop-mediated instability at disease-associated repeats. PMID:25147206
Bystander effects in radiation-induced genomic instability
NASA Technical Reports Server (NTRS)
Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian
2002-01-01
Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.
R-loops: targets for nuclease cleavage and repeat instability.
Freudenreich, Catherine H
2018-01-11
R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.
Demonstration of repeatability in a high-energy-density planar shear mixing layer experiment
Merritt, Elizabeth Catherine; Doss, Forrest William; Di Stefano, Carlos A.; ...
2017-03-11
On laser-driven platforms the assumption of experiment repeatability is particularly important due to a typically low data acquisition rate that doesn’t often allow for data redundancy. If the platform is repeatable, then measurements of the repeatable dynamics from multiple experiments can be treated as measurements of the same system. In high-energy-density hydrodynamic instability experiments the interface growth is assumed to be one of the repeatable aspects of the system. In this paper we demonstrate the repeatability of the instability growth in the counter-propagating shear experiment at the OMEGA laser facility, where the instability growth is characterized by the tracer layermore » thickness or mix-width evolution. Furthermore, in our previous experiment campaigns we have assumed the instability growth was repeatable enough to identify trends, but in this work we explicitly show that the mix-width measurements for nominally identical experiments are repeatable within the measurement error bars.« less
MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
Tomé, Stéphanie; Manley, Kevin; Simard, Jodie P; Clark, Greg W; Slean, Meghan M; Swami, Meera; Shelbourne, Peggy F; Tillier, Elisabeth R M; Monckton, Darren G; Messer, Anne; Pearson, Christopher E
2013-01-01
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases.
MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice
Simard, Jodie P.; Clark, Greg W.; Slean, Meghan M.; Swami, Meera; Shelbourne, Peggy F.; Tillier, Elisabeth R. M.; Monckton, Darren G.; Messer, Anne; Pearson, Christopher E.
2013-01-01
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases. PMID:23468640
Mason, Amanda G; Tomé, Stephanie; Simard, Jodie P; Libby, Randell T; Bammler, Theodor K; Beyer, Richard P; Morton, A Jennifer; Pearson, Christopher E; La Spada, Albert R
2014-03-15
Expansion of CAG/CTG trinucleotide repeats causes numerous inherited neurological disorders, including Huntington's disease (HD), several spinocerebellar ataxias and myotonic dystrophy type 1. Expanded repeats are genetically unstable with a propensity to further expand when transmitted from parents to offspring. For many alleles with expanded repeats, extensive somatic mosaicism has been documented. For CAG repeat diseases, dramatic instability has been documented in the striatum, with larger expansions noted with advancing age. In contrast, only modest instability occurs in the cerebellum. Using microarray expression analysis, we sought to identify the genetic basis of these regional instability differences by comparing gene expression in the striatum and cerebellum of aged wild-type C57BL/6J mice. We identified eight candidate genes enriched in cerebellum, and validated four--Pcna, Rpa1, Msh6 and Fen1--along with a highly associated interactor, Lig1. We also explored whether expression levels of mismatch repair (MMR) proteins are altered in a line of HD transgenic mice, R6/2, that is known to show pronounced regional repeat instability. Compared with wild-type littermates, MMR expression levels were not significantly altered in R6/2 mice regardless of age. Interestingly, expression levels of these candidates were significantly increased in the cerebellum of control and HD human samples in comparison to striatum. Together, our data suggest that elevated expression levels of DNA replication and repair proteins in cerebellum may act as a safeguard against repeat instability, and may account for the dramatically reduced somatic instability present in this brain region, compared with the marked instability observed in the striatum.
Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R.; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C.; Pinto, Ricardo Mouro
2017-01-01
Huntington’s disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. PMID:27913616
Neto, João Luís; Lee, Jong-Min; Afridi, Ali; Gillis, Tammy; Guide, Jolene R; Dempsey, Stephani; Lager, Brenda; Alonso, Isabel; Wheeler, Vanessa C; Pinto, Ricardo Mouro
2017-02-01
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in exon 1 of the HTT gene. Longer repeat sizes are associated with increased disease penetrance and earlier ages of onset. Intergenerationally unstable transmissions are common in HD families, partly underlying the genetic anticipation seen in this disorder. HD CAG knock-in mouse models also exhibit a propensity for intergenerational repeat size changes. In this work, we examine intergenerational instability of the CAG repeat in over 20,000 transmissions in the largest HD knock-in mouse model breeding datasets reported to date. We confirmed previous observations that parental sex drives the relative ratio of expansions and contractions. The large datasets further allowed us to distinguish effects of paternal CAG repeat length on the magnitude and frequency of expansions and contractions, as well as the identification of large repeat size jumps in the knock-in models. Distinct degrees of intergenerational instability were observed between knock-in mice of six background strains, indicating the occurrence of trans-acting genetic modifiers. We also found that lines harboring a neomycin resistance cassette upstream of Htt showed reduced expansion frequency, indicative of a contributing role for sequences in cis, with the expanded repeat as modifiers of intergenerational instability. These results provide a basis for further understanding of the mechanisms underlying intergenerational repeat instability. Copyright © 2017 by the Genetics Society of America.
Mammalian DNA enriched for replication origins is enriched for snap-back sequences.
Zannis-Hadjopoulos, M; Kaufmann, G; Martin, R G
1984-11-15
Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.
1994-09-01
Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onsetmore » and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.« less
Recent advances in assays for the fragile X-related disorders.
Hayward, Bruce E; Kumari, Daman; Usdin, Karen
2017-10-01
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Almaguer-Mederos, L E; Mesa, J M L; González-Zaldívar, Y; Almaguer-Gotay, D; Cuello-Almarales, D; Aguilera-Rodríguez, R; Falcón, N S; Gispert, S; Auburger, G; Velázquez-Pérez, L
2018-05-14
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by the unstable expansion of a CAG/CAA repeat in the ATXN2 gene, which normally encodes 22 glutamines (Q22). A large study was conducted to characterize the CAG/CAA repeat intergenerational instability in SCA2 families. Large normal alleles (LNA, Q24-31) were significantly more unstable upon maternal transmissions. In contrast, expanded alleles (EA, Q32-750) were significantly more unstable during paternal transmissions, in correlation with repeat length. Significant correlations were found between the instability and the age at conception in paternal transmissions. In conclusion, intergenerational instability at ATXN2 locus is influenced by the sex, repeat length and age at conception of the transmitting parent. These results have profound implications for genetic counseling services. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cleary, John D; Tomé, Stéphanie; López Castel, Arturo; Panigrahi, Gagan B; Foiry, Laurent; Hagerman, Katharine A; Sroka, Hana; Chitayat, David; Gourdon, Geneviève; Pearson, Christopher E
2010-09-01
Myotonic dystrophy, caused by DM1 CTG/CAG repeat expansions, shows varying instability levels between tissues and across ages within patients. We determined DNA replication profiles at the DM1 locus in patient fibroblasts and tissues from DM1 transgenic mice of various ages showing different instability. In patient cells, the repeat is flanked by two replication origins demarcated by CTCF sites, with replication diminished at the expansion. In mice, the expansion replicated from only the downstream origin (CAG as lagging template). In testes from mice of three different ages, replication toward the repeat paused at the earliest age and was relieved at later ages-coinciding with increased instability. Brain, pancreas and thymus replication varied with CpG methylation at DM1 CTCF sites. CTCF sites between progressing forks and repeats reduced replication depending on chromatin. Thus, varying replication progression may affect tissue- and age-specific repeat instability.
Expanded complexity of unstable repeat diseases
Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek
2015-01-01
Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field. PMID:23233240
Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17.
Gao, Rui; Matsuura, Tohru; Coolbaugh, Mary; Zühlke, Christine; Nakamura, Koichiro; Rasmussen, Astrid; Siciliano, Michael J; Ashizawa, Tetsuo; Lin, Xi
2008-02-01
Trinucleotide repeat expansions are dynamic mutations causing many neurological disorders, and their instability is influenced by multiple factors. Repeat configuration seems particularly important, and pure repeats are thought to be more unstable than interrupted repeats. But direct evidence is still lacking. Here, we presented strong support for this hypothesis from our studies on spinocerebellar ataxia type 17 (SCA17). SCA17 is a typical polyglutamine disease caused by CAG repeat expansion in TBP (TATA binding protein), and is unique in that the pure expanded polyglutamine tract is coded by either a simple configuration with long stretches of pure CAGs or a complex configuration containing CAA interruptions. By small pool PCR (SP-PCR) analysis of blood DNA from SCA17 patients of distinct racial backgrounds, we quantitatively assessed the instability of these two types of expanded alleles coding similar length of polyglutamine expansion. Mutation frequency in patients harboring pure CAG repeats is 2-3 folds of those with CAA interruptions. Interestingly, the pure CAG repeats showed both expansion and deletion while the interrupted repeats exhibited mostly deletion at a significantly lower frequency. These data strongly suggest that repeat configuration is a critical determinant for instability, and CAA interruptions might serve as a limiting element for further expansion of CAG repeats in SCA17 locus, suggesting a molecular basis for lack of anticipation in SCA17 families with interrupted CAG expansion.
Hills, Mark; Jeyapalan, Jennie N; Foxon, Jennifer L; Royle, Nicola J
2007-04-01
Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.
Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; Te Riele, Hein; Pook, Mark A
2012-04-01
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. Copyright © 2012 Elsevier Inc. All rights reserved.
Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; te Riele, Hein; Pook, Mark A.
2013-01-01
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. PMID:22289650
Disease-associated repeat instability and mismatch repair.
Schmidt, Monika H M; Pearson, Christopher E
2016-02-01
Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Somatic instability of the expanded allele of IT-15 from patients with Huntington disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stine, O.C.; Pleasant, N.; Ross, C.A.
1994-09-01
Huntington`s disease (HD) is an inherited neurodegenerative disorder caused by an expanded trinucleotide repeat in the gene IT-15. Although the expanded allele of IT-15 is unstable during gametogenesis, particularly, spermatogenesis, it is not clear if there is somatic stability. There are two reports of stability and one of instability. In order to test whether somatic instability occurs in the expansions found in HD, we have compared amplified genomic DNA isolated from either blood or distinct regions of autopsied brains of persons with Huntington disease. We find that somatic variation occurs in at least two ways. First, in cases with longermore » repeats (n > 47), the cerebellum often (8 of 9 cases) has a smaller number of repeats (2 to 10 less) than other tested regions of the brain. The larger the expanded allele, the larger the reduction in size of the repeat in the cerebellum (r=0.94, p<0.0001, df=12). Second, regardless of the repeat size, the number of amplification products from genomic DNA isolated from the cerebellum is smaller than that from genomic DNA from other forebrain regions such as the dorsal parietal cortex. As the length of the expanded allele increases, the number of amplification products increase in either tissue (r=0.86, p<0.001, df=12). Therefore our data demonstrates somatic instability especially for longer repeats.« less
Screening for microsatellite instability target genes in colorectal cancers
Vilkki, S; Launonen, V; Karhu, A; Sistonen, P; Vastrik, I; Aaltonen, L
2002-01-01
Background: Defects in the DNA repair system lead to genetic instability because replication errors are not corrected. This type of genetic instability is a key event in the malignant progression of HNPCC and a subset of sporadic colon cancers and mutation rates are particularly high at short repetitive sequences. Somatic deletions of coding mononucleotide repeats have been detected, for example, in the TGFßRII and BAX genes, and recently many novel target genes for microsatellite instability (MSI) have been proposed. Novel target genes are likely to be discovered in the future. More data should be created on background mutation rates in MSI tumours to evaluate mutation rates observed in the candidate target genes. Methods: Mutation rates in 14 neutral intronic repeats were evaluated in MSI tumours. Bioinformatic searches combined with keywords related to cancer and tumour suppressor or CRC related gene homology were used to find new candidate MSI target genes. By comparison of mutation frequencies observed in intronic mononucleotide repeats versus exonic coding repeats of potential MSI target genes, the significance of the exonic mutations was estimated. Results: As expected, the length of an intronic mononucleotide repeat correlated positively with the number of slippages for both G/C and A/T repeats (p=0.0020 and p=0.0012, respectively). BRCA1, CtBP1, and Rb1 associated CtIP and other candidates were found in a bioinformatic search combined with keywords related to cancer. Sequencing showed a significantly increased mutation rate in the exonic A9 repeat of CtIP (25/109=22.9%) as compared with similar intronic repeats (p≤0.001). Conclusions: We propose a new candidate MSI target gene CtIP to be evaluated in further studies. PMID:12414815
Bolzán, Alejandro D
2017-07-01
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes. Copyright © 2017 Elsevier B.V. All rights reserved.
DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.
Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed
2012-08-24
While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future.
DNA Mismatch Repair Complex MutSβ Promotes GAA·TTC Repeat Expansion in Human Cells*
Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed
2012-01-01
While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future. PMID:22787155
MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.
Campregher, Christoph; Schmid, Gerald; Ferk, Franziska; Knasmüller, Siegfried; Khare, Vineeta; Kortüm, Benedikt; Dammann, Kyle; Lang, Michaela; Scharl, Theresa; Spittler, Andreas; Roig, Andres I; Shay, Jerry W; Gerner, Christopher; Gasche, Christoph
2012-01-01
Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay. Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4)) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis.
MSH3-Deficiency Initiates EMAST without Oncogenic Transformation of Human Colon Epithelial Cells
Campregher, Christoph; Schmid, Gerald; Ferk, Franziska; Knasmüller, Siegfried; Khare, Vineeta; Kortüm, Benedikt; Dammann, Kyle; Lang, Michaela; Scharl, Theresa; Spittler, Andreas; Roig, Andres I.; Shay, Jerry W.; Gerner, Christopher; Gasche, Christoph
2012-01-01
Background/Aim Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. Methods HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay. Results Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10−4) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. Conclusions MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis. PMID:23209772
Landrian, Ivette; McFarland, Karen N; Liu, Jilin; Mulligan, Connie J; Rasmussen, Astrid; Ashizawa, Tetsuo
2017-01-01
Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5'-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3'-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5'-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5'-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.
Medintz, I L; Lee, C C; Wong, W W; Pirkola, K; Sidransky, D; Mathies, R A
2000-08-01
Microsatellite DNA loci are useful markers for the detection of loss of heterozygosity (LOH) and microsatellite instability (MI) associated with primary cancers. To carry out large-scale studies of LOH and MI in cancer progression, high-throughput instrumentation and assays with high accuracy and sensitivity need to be validated. DNA was extracted from 26 renal tumor and paired lymphocyte samples and amplified with two-color energy-transfer (ET) fluorescent primers specific for loci associated with cancer-induced chromosomal changes. PCR amplicons were separated on the MegaBACE-1000 96 capillary array electrophoresis (CAE) instrument and analyzed with MegaBACE Genetic Profiler v.1.0 software. Ninety-six separations were achieved in parallel in 75 minutes. Loss of heterozygosity was easily detected in tumor samples as was the gain/loss of microsatellite core repeats. Allelic ratios were determined with a precision of +/- 10% or better. Prior analysis of these samples with slab gel electrophoresis and radioisotope labeling had not detected these changes with as much sensitivity or precision. This study establishes the validity of this assay and the MegaBACE instrument for large-scale, high-throughput studies of the molecular genetic changes associated with cancer.
Impact of Compounding Error on Strategies for Subtyping Pathogenic Bacteria
Orfe, Lisa; Davis, Margaret A.; Lafrentz, Stacey; Kang, Min-Su
2008-01-01
Abstract Comparative-omics will identify a multitude of markers that can be used for intraspecific discrimination between strains of bacteria. It seems intuitive that with this plethora of markers we can construct higher resolution subtyping assays using discrete markers to define strain “barcodes.” Unfortunately, with each new marker added to an assay, overall assay robustness declines because errors are compounded exponentially. For example, the difference in accuracy of strain classification for an assay with 60 markers will change from 99.9% to 54.7% when average probe accuracy declines from 99.999% to 99.0%. To illustrate this effect empirically, we constructed a 19 probe bead-array for subtyping Listeria monocytogenes and showed that despite seemingly reliable individual probe accuracy (>97%), our best classification results at the strain level were <75%. A more robust strategy would use as few markers as possible to achieve strain discrimination. Consequently, we developed two variable number of tandem repeat (VNTR) assays (Vibrio parahaemolyticus and L. monocytogenes) and demonstrate that these assays along with a published assay (Salmonella enterica) produce robust results when products were machine scored. The discriminatory ability with four to seven VNTR loci was comparable to pulsed-field gel electrophoresis. Passage experiments showed some instability with ca. 5% of passaged lines showing evidence for new alleles within 30 days (V. parahaemolyticus and S. enterica). Changes were limited to a single locus and allele so conservative rules can be used to determine strain matching. Most importantly, VNTRs appear robust and portable and can clearly discriminate between strains with relatively few loci thereby limiting effects of compounding error. PMID:18713065
Pms2 Suppresses Large Expansions of the (GAA·TTC)n Sequence in Neuronal Tissues
Bourn, Rebecka L.; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.; Bidichandani, Sanjay I.
2012-01-01
Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)n sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)n sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)n sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)n sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)n sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway. PMID:23071719
Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues.
Bourn, Rebecka L; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A; Bidichandani, Sanjay I
2012-01-01
Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.
Gruber, Jodie; Whiting, Martin J; Brown, Gregory; Shine, Richard
2018-05-02
Behavioural response to repeated trials in captivity can be driven by many factors including rearing environment, population of origin, habituation to captivity/trial conditions and an individual's behavioural type (e.g., bold versus shy). We tested the effect of rearing environment (captive raised common-garden versus wild-caught) and population origin (range-edge versus range-front) on the responses of invasive cane toads (Rhinella marina) to repeated exploration and risk-taking assays in captivity. We found that behavioural responses to identical assays performed on two occasions were complex and showed few consistent patterns based on rearing environment or population of origin. However, behavioural traits were repeatable across Trial Blocks when all sample populations were grouped together, indicating general consistency in individual toad behaviour across repeated behavioural assays. Our findings exemplify the complexity and unpredictability of behavioural responses and their effects on the repeatability and interpretation of behavioural traits across repeated behavioural assays in captivity. To meaningfully interpret the results from repeated behavioural assays, we need to consider how multiple factors may affect behavioural responses to these tests and importantly, how these responses may affect the repeatability of behavioural traits across time. Copyright © 2018. Published by Elsevier B.V.
Chevanne, Damien; Saupe, Sven J; Clavé, Corinne; Paoletti, Mathieu
2010-05-06
Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family. HNWD proteins are STAND proteins (signal transduction NTPase with multiple domains) that display a WD-repeat domain controlling recognition specificity. Based on genomic sequence analysis of different P. anserina isolates, it was established that repeat regions of all members of the gene family are extremely polymorphic and undergoing concerted evolution arguing for frequent recombination within and between family members. Herein, we directly analyzed the genetic instability and diversification of this allorecognition gene family. We have constituted a collection of 143 spontaneous mutants of the het-R (HNWD2) and het-E (hnwd5) genes with altered recognition specificities. The vast majority of the mutants present rearrangements in the repeat arrays with deletions, duplications and other modifications as well as creation of novel repeat unit variants. We investigate the extreme genetic instability of these genes and provide a direct illustration of the diversification strategy of this eukaryotic allorecognition gene family.
Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad
2010-11-01
Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Investigation of microsatellite instability in Turkish breast cancer patients.
Demokan, Semra; Muslumanoglu, Mahmut; Yazici, H; Igci, Abdullah; Dalay, Nejat
2002-01-01
Multiple somatic and inherited genetic changes that lead to loss of growth control may contribute to the development of breast cancer. Microsatellites are tandem repeats of simple sequences that occur abundantly and at random throughout most eucaryotic genomes. Microsatellite instability (MI), characterized by the presence of random contractions or expansions in the length of simple sequence repeats or microsatellites, is observed in a variety of tumors. The aim of this study was to compare tumor DNA fingerprints with constitutional DNA fingerprints to investigate changes specific to breast cancer and evaluate its correlation with clinical characteristics. Tumor and normal tissue samples of 38 patients with breast cancer were investigated by comparing PCR-amplified microsatellite sequences D2S443 and D21S1436. Microsatellite instability at D21S1436 and D2S443 was found in 5 (13%) and 7 (18%) patients, respectively. Two patients displayed instability at both marker loci. No association was found between MI and age, family history, lymph node involvement and other clinical parameters.
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae
Putnam, Christopher D.; Kolodner, Richard D.
2017-01-01
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed. PMID:28684602
Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A
2016-03-01
The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.
2012-01-01
Background Several pre-erythrocytic malaria vaccines based on the circumsporozoite protein (CSP) antigen of Plasmodium falciparum are in clinical development. Vaccine immunogenicity is commonly evaluated by the determination of anti-CSP antibody levels using IgG-based assays, but no standard assay is available to allow comparison of the different vaccines. Methods The validation of an anti-CSP repeat region enzyme-linked immunosorbent assay (ELISA) is described. This assay is based on the binding of serum antibodies to R32LR, a recombinant protein composed of the repeat region of P. falciparum CSP. In addition to the original recombinant R32LR, an easy to purify recombinant His-tagged R32LR protein has been constructed to be used as solid phase antigen in the assay. Also, hybridoma cell lines have been generated producing human anti-R32LR monoclonal antibodies to be used as a potential inexhaustible source of anti-CSP repeats standard, instead of a reference serum. Results The anti-CSP repeats ELISA was shown to be robust, specific and linear within the analytical range, and adequately fulfilled all validation criteria as defined in the ICH guidelines. Furthermore, the coefficient of variation for repeatability and intermediate precision did not exceed 23%. Non-interference was demonstrated for R32LR-binding sera, and the assay was shown to be stable over time. Conclusions This ELISA, specific for antibodies directed against the CSP repeat region, can be used as a standard assay for the determination of humoral immunogenicity in the development of any CSP-based P. falciparum malaria vaccine. PMID:23173602
Role of Replication and CpG Methylation in Fragile X Syndrome CGG Deletions in Primate Cells
Nichol Edamura, Kerrie; Leonard, Michelle R.; Pearson, Christopher E.
2005-01-01
Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation. PMID:15625623
Environmental stress induces trinucleotide repeat mutagenesis in human cells
Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A.; Yotnda, Patricia; Wilson, John H.
2015-01-01
The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)—the cause of multiple human diseases—have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519
Environmental stress induces trinucleotide repeat mutagenesis in human cells.
Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H
2015-03-24
The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.
Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger
2012-01-01
Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Descriptive laboratory study. University clinical laboratory. Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Difference in scores between groups with stable and unstable ankles and between test repeats. Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus.
Repeater For A Digital-Communication Bus
NASA Technical Reports Server (NTRS)
Torres-Guzman, Esteban; Olson, Stephen; Heaps, Tim
1993-01-01
Digital repeater circuit designed to extend range of communication on MIL-STD-1553 bus beyond original maximum allowable length of 300 ft. Circuit provides two-way communication, one way at time, and conforms to specifications of MIL-STD-1553. Crosstalk and instability eliminated.
Acute Delayed Neurotoxicity Evaluation of Two Jet Engine Oils using a Modified Navy and EPA Protocol
1992-08-01
Clinical Observations..................................................... 9 Sacrifice and Histopathology ...Single Dose ............... 13 5 Neural Histop.-Ohologic Incidence Summary (Repeated Assay) ..................... 15 6 Neural Histopathologic Lesions...Average Severity Scores (Repeated Assay) ......... 16 7 Neural Histopathologic Incidence Summary (Single-Dose Assay) .................. 17 8 Neural
Ingham, Danielle; Diggle, Christine P; Berry, Ian; Bristow, Claire A; Hayward, Bruce E; Rahman, Nazneen; Markham, Alexander F; Sheridan, Eamonn G; Bonthron, David T; Carr, Ian M
2013-06-01
Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation. © 2013 Wiley Periodicals, Inc.
Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger
2012-01-01
Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus. PMID:23182010
Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C O; Goncharov, Nikolay V; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C; Kouprina, Natalay; Larionov, Vladimir
2016-03-22
Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene ("loss of signal" assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this "loss of signal" assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this "gain of signal" assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The "gain of signal" assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level.
Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C. O.; Goncharov, Nikolay V.; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C.; Kouprina, Natalay; Larionov, Vladimir
2016-01-01
Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene (“loss of signal” assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this “loss of signal” assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this “gain of signal” assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The “gain of signal” assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level. PMID:26943579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinsztein, D.C.; Leggo, J.; Whittaker, J.L.
1996-07-01
Abnormal CAG expansions in the IT-15 gene are associated with Huntington disease (HD). In the diagnostic setting it is necessary to define the limits of the CAG size ranges on normal and HD-associated chromosomes. Most large analyses that defined the limits of the normal and pathological size ranges employed PCR assays, which included the CAG repeats and a CCG repeat tract that was thought to be invariant. Many of these experiments found an overlap between the normal and disease size ranges. Subsequent findings that the CCG repeats vary by 9 trinucleotide lengths suggested that the limits of the normal andmore » disease size ranges should be reevaluated with assays that exclude the CCG polymorphism. Since patients with between 30 and 40 repeats are rare, a consortium was assembled to collect such individuals. All 178 samples were reanalyzed in Cambridge by using assays specific for the CAG repeats. We have optimized methods for reliable sizing of CAG repeats and show cases that demonstrate the dangers of using PCR assays that include both the CAG and CCG polymorphisms. Seven HD patients had 36 repeats, which confirms that this allele is associated with disease. Individuals without apparent symptoms or signs of HD were found at 36 repeats (aged 74, 78, 79, and 87 years), 37 repeats (aged 69 years), 38 repeats (aged 69 and 90 years), and 39 repeats (aged 67, 90, and 95 years). The detailed case histories of an exceptional case from this series will be presented: a 95-year-old man with 39 repeats who did not have classical features of HD. The apparently healthy survival into old age of some individuals with 36-39 repeats suggests that the HD mutation may not always be fully penetrant. 26 refs., 3 figs., 1 tab.« less
ERIC Educational Resources Information Center
van der Kloot, Willem A.; Spaans, Alexander M. J.; Heiser, Willem J.
2005-01-01
Hierarchical agglomerative cluster analysis (HACA) may yield different solutions under permutations of the input order of the data. This instability is caused by ties, either in the initial proximity matrix or arising during agglomeration. The authors recommend to repeat the analysis on a large number of random permutations of the rows and columns…
A simple and highly repeatable viral plaque assay for enterovirus 71.
Yin, Yingxian; Xu, Yi; Ou, Zhiying; Su, Ling; Xia, Huimin
2015-04-01
The classic plaque assay is a method for counting infectious viral particles, however its complexity limits its use in a variety of virological experiments. To simplify the operation and to improve the repeatability, we employed an improved plaque assay procedure based on Avicel to make the whole experiment easier and optimize the results on a model of Vero cells infection with Enterovirus 71(EV71). Clear plaques visible to the naked eyes can be formed on a 24-well plate or a 96-well plate without immunostaining. Following further improvement, this plaque assay procedure could be applied to other viruses, being both simple and repeatable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morales, Fernando; Vásquez, Melissa; Santamaría, Carolina; Cuenca, Patricia; Corrales, Eyleen; Monckton, Darren G
2016-04-01
Somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 is age-dependent, tissue-specific and expansion-biased, contributing toward the tissue-specificity and progressive nature of the symptoms. Previously, using regression modelling of repeat instability we showed that variation in the rate of somatic expansion in blood DNA contributes toward variation in age of onset, directly implicating somatic expansion in the disease pathway. Here, we confirm these results using a larger more genetically homogenous Costa Rican DM1 cohort (p<0.001). Interestingly, we also provide evidence that supports subtle sex-dependent differences in repeat length-dependent age at onset and somatic mutational dynamics. Previously, we demonstrated that variation in the rate of somatic expansion was a heritable quantitative trait. Given the important role that DNA mismatch repair genes play in mediating expansions in mouse models, we tested for modifier gene effects with 13 DNA mismatch gene polymorphisms (one each in MSH2, PMS2, MSH6 and MLH1; and nine in MSH3). After correcting for allele length and age effects, we identified three polymorphisms in MSH3 that were associated with variation in somatic instability: Rs26279 (p=0.003); Rs1677658 (p=0.009); and Rs10168 (p=0.031). However, only the association with Rs26279 remained significant after multiple testing correction. Although we revealed a statistically significant association between Rs26279 and somatic instability, we did not detect an association with the age at onset. Individuals with the A/A genotype for Rs26279 tended to show a greater propensity to expand the CTG repeat than other genotypes. Interestingly, this SNP results in an amino acid change in the critical ATPase domain of MSH3 and is potentially functionally dimorphic. These data suggest that MSH3 is a key player in generating somatic variation in DM1 patients and further highlight MSH3 as a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.
DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.
Thys, Ryan Griffin; Wang, Yuh-Hwa
2015-11-27
DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lyon, Elaine; Laver, Thomas; Yu, Ping; Jama, Mohamed; Young, Keith; Zoccoli, Michael; Marlowe, Natalia
2010-01-01
Population screening has been proposed for Fragile X syndrome to identify premutation carrier females and affected newborns. We developed a PCR-based assay capable of quickly detecting the presence or absence of an expanded FMR1 allele with high sensitivity and specificity. This assay combines a triplet repeat primed PCR with high-throughput automated capillary electrophoresis. We evaluated assay performance using archived samples sent for Fragile X diagnostic testing representing a range of Fragile X CGG-repeat expansions. Two hundred five previously genotyped samples were tested with the new assay. Data were analyzed for the presence of a trinucleotide “ladder” extending beyond 55 repeats, which was set as a cut-off to identify expanded FMR1 alleles. We identified expanded FMR1 alleles in 132 samples (59 premutation, 71 full mutation, 2 mosaics) and normal FMR1 alleles in 73 samples. We found 100% concordance with previous results from PCR and Southern blot analyses. In addition, we show feasibility of using this assay with DNA extracted from dried-blood spots. Using a single PCR combined with high-throughput fragment analysis on the automated capillary electrophoresis instrument, we developed a rapid and reproducible PCR-based laboratory assay that meets many of the requirements for a first-tier test for population screening. PMID:20431035
Boone, C W; Kelloff, G J
1994-01-01
The tissue changes offering the greatest immediate potential for development as surrogate endpoint biomarkers (SEBs) to be used in Phase II trials of cancer chemopreventive agents are those derived from the microscopic tissue changes pathologists use to make the diagnosis of preinvasive (intraepithelial) neoplasia. These changes comprise four categories: proliferative index, ploidy, nuclear morphometry (size, shape, texture, and pleomorphism), and nucleolar morphometry (number, size, shape, position, and pleomorphism). Computer-assisted image analysis (CIA) permits dozens of additional morphometric parameters to be developed. Other categories of candidate SEBs are: DNA and chromosomal structural changes associated with genomic instability, activation of oncogenes and inactivation of tumor suppressor genes, structural changes in differentiated molecules, and aberrations of growth factor/receptor structure and function. Self-perpetuating DNA breakage with secondary mutator mutations in genomic stability genes is a major mechanism by which the genomic instability characteristic of neoplasia occurs, and from which stem other basic neoplastic properties, including clonal evolution, along multiple pathways of genetic variation that are stochastically determined, continuously increasing proliferation, rate and extent of phenotypic heterogeneity. SEBs resulting from genomic instability include homogeneously staining regions, double minute chromosomes, micronuclei, dicentrics, gene amplification, loss of heterozygosity, and alterations in chromosome number. Newly developed assays for detecting genomic instability include comparative genomic hybridization using fluorescence in situ hybridization on > 20 micron-thick sections monitored by confocal laser scanning microscopy, assays for microsatellite instability, and restriction landmark genomic scanning. These assays offer promise for detecting the earliest molecular changes of neoplasia in normal-appearing epithelium prior to the onset of the dysplastic phase of intraepithelial neoplasia.
NASA Astrophysics Data System (ADS)
Morgan, W. F.
Astronauts based on the space station or on long-term space missions will be exposed to high Z radiations in the cosmic environment In order to evaluate the potentially deleterious effects of exposure to radiations commonly encountered in space we have developed and characterized a high throughput assay to detect mutation deletion events and or hyperrecombination in the progeny of exposed cells This assay is based on a plasmid vector containing a green fluorescence protein reporter construct We have shown that after stable transfection of the vector into human or hamster cells this construct can identify mutations specifically base changes and deletions as well as recombination events e g gene conversion or homologous recombination occurring as a result of exposure to ionizing radiation Our focus has been on those events occurring in the progeny of an irradiated cell that are potentially associated with radiation induced genomic instability rather than the more conventional assays that evaluate the direct immediate effects of radiation exposure Considerable time has been spent automating analysis of surviving colonies as a function of time after irradiation in order to determine when delayed instability is induced and the consequences of this delayed instability The assay is now automated permitting the evaluation of potentially rare events associated with low dose low dose rate radiations commonly encountered in space
Gao, Jin; Li, Jingjing; Yang, Minmin; Wu, Mingyuan; Tu, Ping; Yu, Yan; Han, Wei
2015-01-01
To determine the incidence of the positive neutralizing anti-human interleukin receptor antagonist (anti-IL-1Ra), a novel assay based on the proliferation of human melanoma A375.S2 cells was developed and validated. In the presence of a growth-limiting concentration of IL-1β, A375.S2 cells were able to regain proliferation following the addition of IL-1Ra in a concentration-dependent manner. This dose-response effect enabled the validation of a standard curve for calculation of the concentration of IL-1Ra or, inversely, the concentration of neutralizing anti-IL-1Ra antibodies in cell culture medium or sera. The assay used CCK-8 as an indicator of proliferation. The dose-response relationship between rhIL-1Ra (dose range of 5-75 ng/ml rhIL-1Ra) and A375.S2 cell proliferation was sigmoidal and fitted a four-parameter logistic model. The percent coefficients of variation (%CVs) of quality control samples were 12.5 and 11.9% for intra-assay repeatability and 14.5 and 19.5% for inter-assay repeatability, while the total accuracy was in the range of 97.2-103.6%. For the neutralization assay, the optimal sample dilution factor was found to be 40-fold and the reasonable standard for positive and negative decision was calculated to be 59.4% neutralization rate. The %CVs of quality control samples were 12.7 and 24.0% for intra-assay repeatability and 11.6 and 30.0% for inter-assay repeatability. Analysis using the assay showed that rats could produce neutralizing anti-IL-1Ra antibodies after repeated intramuscular injection with rhIL-1Ra, and this response was not significantly dependent on the dose injected.
Adaptive control reduces trip-induced forward gait instability among young adults.
Wang, Ting-Yun; Bhatt, Tanvi; Yang, Feng; Pai, Yi-Chung
2012-04-30
A vital functional plasticity of humans is their ability to adapt to threats to posture stability. The purpose of this study was to investigate adaptation to repeated trips in walking. Sixteen young adults were recruited and exposed to the sudden (electronic-mechanical) release of an obstacle, 11-cm in height, in the path of over ground walking during the mid-to-late left swing phase. Although none of the subjects fell on the first of eight unannounced, consecutive trips, all of them had to rely on compensatory step with a step length significantly longer than their regular to reduce their instability. In the subsequent trials, they were able to rapidly make adaptive adjustments in the control of their center-of-mass (COM) stability both proactively and reactively (i.e., before and after hitting or crossing the obstacle), such that the need for taking compensatory step was substantially diminished. The proactive adaptations included a reduced forward COM velocity that lessened forward instability in mid-to-late stance and an elevated toe clearance that reduced the likelihood of obstacle contact. The reactive adjustments were characterized by improved trunk control (by reducing its forward rotation) and limb support (by increasing hip height), and reduced forward instability (by both the posterior COM shift and the reduction in its forward velocity). These findings suggest that young adults can adapt appropriately to repeated trip perturbations and to reduce trip-induced excessive instability in both proactive and reactive manners. Copyright © 2012 Elsevier Ltd. All rights reserved.
A study of the Huntington's disease associated trinucleotide repeat in the Scottish population.
Barron, L H; Warner, J P; Porteous, M; Holloway, S; Simpson, S; Davidson, R; Brock, D J
1993-01-01
Accurate measurements of a specific CAG repeat sequence in the Huntington's disease (HD) gene in 337 HD patients and 229 normal controls from the Scottish population showed a range from 35 to 62 repeats in affected subjects and eight to 33 in normal subjects. A link between early onset of symptoms and very high repeat number was seen. For HD patients with the most common affected allele sizes (39 to 42 repeats) absolute repeat size was a poor index for the age at onset of symptoms. There was variability in the transmitted repeat size for both sexes in the HD size range. We observed a significant increase of repeat size for paternal transmission of the disease and greater instability for paternally transmitted CAG repeats in the HD size range. Images PMID:8133495
Ladeira, Carina; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel
2017-01-01
The links between diet and genomic instability have been under investigation for several decades, and evidence suggests a significant causal or preventive role for various dietary factors. This study investigates the influence of macronutrients (calories, protein, and glucides) and micronutrients, such as vitamins and minerals, as assessed by a food frequency questionnaire, on genotoxicity biomarkers measured by cytokinesis-blocked micronucleus assay and comet assay. The results found significant positive and negative correlations. Micronucleus frequency tends to increase with higher intake of caffeine, calcium, magnesium, zinc, and protein ( P < .05, Spearman correlation). Calorie and omega-6 intakes are negatively correlated with DNA damage measured by the comet assay. These results are somewhat controversial because some of the correlations found are contrary to dominant views in the literature; however, we suggest that unraveling the association between diet and genetic instability requires a much better understanding of the modulating role of macronutrients and micronutrients.
Microsatellite alterations as clonal markers for the detection of human cancer.
Mao, L; Lee, D J; Tockman, M S; Erozan, Y S; Askin, F; Sidransky, D
1994-01-01
Microsatellite instability has been reported to be an important feature of tumors from hereditary nonpolyposis colorectal carcinoma (HNPCC) patients. The recent discovery of genetic instability in small cell lung carcinoma, a neoplasm not associated with HNPCC, led us to investigate the possible presence of microsatellite alterations in other tumor types. We examined 52 microsatellite repeat sequences in the DNA of normal and tumor pairs from 100 head and neck, bladder, and lung cancer patients by the polymerase chain reaction. Although alterations were rare in dinucleotide repeats, larger (tri- or tetranucleotide) repeats were found to be more prone to expansion or deletion. We screened 100 tumors with a panel of nine tri- and tetranucleotide repeat markers and identified 26 (26%) that displayed alterations in at least one locus. This observation prompted us to examine the possibility of using microsatellite alterations as markers to detect clonal tumor-derived cell populations in pathologic samples. The identical microsatellite alterations detected in the primary tumors were successfully identified in corresponding urine, sputum, and surgical margins from affected patients. This study demonstrates that appropriately selected microsatellite loci are commonly altered in many cancers and can serve as clonal markers for their detection. Images PMID:7937908
Luo, Heng; Huang, Zhifang; Tang, Xiaolong; Yi, Jinhai; Chen, Shuiying; Yang, Andong; Yang, Jun
2016-01-01
The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work, a high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry method was developed to explore dynamic variation patterns of aconitum alkaloids in Fuzi during the process of decocting aconite root. The fragmentation patterns of aconitum alkaloids using ESI and collision-induced dissociation (CID) techniques were reported. This assay method was validated with respect to linearity (r2 > 0.9950), precision, repeatability, and accuracy (recovery rate between 94.6 and 107.9%).The result showed that the amounts of aconitum alkaloids in the decoction at different boiling time varied significantly. In the decoction process,the diester- type alkaloids in crude aconite roots have transformed into Benzoylaconines or aconines. PMID:27610167
Luo, Heng; Huang, Zhifang; Tang, Xiaolong; Yi, Jinhai; Chen, Shuiying; Yang, Andong; Yang, Jun
2016-01-01
The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work, a high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry method was developed to explore dynamic variation patterns of aconitum alkaloids in Fuzi during the process of decocting aconite root. The fragmentation patterns of aconitum alkaloids using ESI and collision-induced dissociation (CID) techniques were reported. This assay method was validated with respect to linearity (r(2) > 0.9950), precision, repeatability, and accuracy (recovery rate between 94.6 and 107.9%).The result showed that the amounts of aconitum alkaloids in the decoction at different boiling time varied significantly. In the decoction process,the diester- type alkaloids in crude aconite roots have transformed into Benzoylaconines or aconines.
Sailer, J; Imhof, H
2004-06-01
Shoulder instability is a common clinical feature leading to recurrent pain and limited range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging.
Méndez-Rebolledo, Guillermo; Guzmán-Muñoz, Eduardo; Gatica-Rojas, Valeska; Zbinden-Foncea, Hermann
2015-08-01
Motor control evaluation in subjects with functional ankle instability is questionable when both ankles of the same subject are compared (affected vs non-affected). To compare the postural control and reaction time of ankle muscles among: basketball players with FAI (instability group), basketball players without FAI (non-instability group) and healthy non-basketball-playing participants (control group). Case-control study. Laboratory. Instability (n = 10), non-instability (n = 10), and control groups (n = 11). Centre of pressure variables (area, velocity and sway) were measured with a force platform. Reaction time of ankle muscles was measured via electromyography. A one-way ANOVA demonstrated that there were significant differences between the instability and non-instability groups in the fibularis longus (p < 0.001), fibularis brevis (p = 0.031) and tibialis anterior (p = 0.049) muscles. Repeated-measures ANOVA and post hoc analysis determined significant differences for the area between the instability and non-instability groups (p = 0.001). Basketball players with FAI have reduced postural control and longer reaction time of the fibularis and tibialis anterior muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ribeyre, Cyril; Lopes, Judith; Boulé, Jean-Baptiste; Piazza, Aurèle; Guédin, Aurore; Zakian, Virginia A; Mergny, Jean-Louis; Nicolas, Alain
2009-05-01
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Delta cells. Hence, we conclude that CEB1 instability in pif1Delta cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.
Radiation-induced genomic instability: radiation quality and dose response
NASA Technical Reports Server (NTRS)
Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.
2003-01-01
Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.
Memory instability as a gateway to generalization
2018-01-01
Our present frequently resembles our past. Patterns of actions and events repeat throughout our lives like a motif. Identifying and exploiting these patterns are fundamental to many behaviours, from creating grammar to the application of skill across diverse situations. Such generalization may be dependent upon memory instability. Following their formation, memories are unstable and able to interact with one another, allowing, at least in principle, common features to be extracted. Exploiting these common features creates generalized knowledge that can be applied across varied circumstances. Memory instability explains many of the biological and behavioural conditions necessary for generalization and offers predictions for how generalization is produced. PMID:29554094
ERIC Educational Resources Information Center
Widyatmoko, C. Siswa; Tan, Edwin T.; Seyle, D. Conor; Mayawati, E. Haksi; Silver, Roxane Cohen
2011-01-01
The nation of Indonesia is in an area of geological instability, resulting in repeated and severe natural disasters. As a result, Indonesian residents are likely to be exposed repeatedly to significant traumatic events. Researchers and clinicians working in such areas face the challenge of assessing large groups of people exposed to trauma and…
Partin, Alan W; Van Neste, Leander; Klein, Eric A; Marks, Leonard S; Gee, Jason R; Troyer, Dean A; Rieger-Christ, Kimberly; Jones, J Stephen; Magi-Galluzzi, Cristina; Mangold, Leslie A; Trock, Bruce J; Lance, Raymond S; Bigley, Joseph W; Van Criekinge, Wim; Epstein, Jonathan I
2014-10-01
The DOCUMENT multicenter trial in the United States validated the performance of an epigenetic test as an independent predictor of prostate cancer risk to guide decision making for repeat biopsy. Confirming an increased negative predictive value could help avoid unnecessary repeat biopsies. We evaluated the archived, cancer negative prostate biopsy core tissue samples of 350 subjects from a total of 5 urological centers in the United States. All subjects underwent repeat biopsy within 24 months with a negative (controls) or positive (cases) histopathological result. Centralized blinded pathology evaluation of the 2 biopsy series was performed in all available subjects from each site. Biopsies were epigenetically profiled for GSTP1, APC and RASSF1 relative to the ACTB reference gene using quantitative methylation specific polymerase chain reaction. Predetermined analytical marker cutoffs were used to determine assay performance. Multivariate logistic regression was used to evaluate all risk factors. The epigenetic assay resulted in a negative predictive value of 88% (95% CI 85-91). In multivariate models correcting for age, prostate specific antigen, digital rectal examination, first biopsy histopathological characteristics and race the test proved to be the most significant independent predictor of patient outcome (OR 2.69, 95% CI 1.60-4.51). The DOCUMENT study validated that the epigenetic assay was a significant, independent predictor of prostate cancer detection in a repeat biopsy collected an average of 13 months after an initial negative result. Due to its 88% negative predictive value adding this epigenetic assay to other known risk factors may help decrease unnecessary repeat prostate biopsies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Guo, Jianhui; Zheng, Li; Liu, Wenyong; Wang, Xianshu; Wang, Zemin; Wang, Zehua; French, Amy J.; Kang, Dongchon; Chen, Lin; Thibodeau, Stephen N.; Liu, Wanguo
2013-01-01
The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA (mtDNA) replication and transcription. Disruption of TFAM results in heart failure and premature aging in mice. But very little is known about the role of TFAM in cancer development. Here, we report the identification of frequent frameshift mutations in the coding mononucleotide repeat of TFAM in sporadic colorectal cancer (CRC) cell lines and in primary tumors with microsatellite instability (MSI), but not in microsatellite stable (MSS) CRC cell lines and tumors. The presence of the TFAM truncating mutation, in CRC cells with MSI, reduced the TFAM protein level in vivo and in vitro and correlated with mtDNA depletion. Furthermore, forced overexpression of wild-type TFAM in RKO cells carrying a TFAM truncating mutation suppressed cell proliferation and inhibited RKO cell-induced xenograft tumor growth. Moreover, these cells showed more susceptibility to cisplatin-induced apoptosis due to an increase of cytochrome b (Cyt b) expression and its release from mitochondria. An interaction assay between TFAM and the heavy-strand promoter (HSP) of mitochondria revealed that mutant TFAM exhibited reduced binding to HSP, leading to reduction in Cyt b transcription. Collectively, these data provide evidence that a high incidence of TFAM truncating mutations leads to mitochondrial copy number reduction and mitochondrial instability, distinguishing most CRC with MSI from MSS CRC. These mutations may play an important role in tumorigenesis and cisplatin-induced apoptotic resistance of most microsatellite-unstable CRCs. PMID:21467167
Broxson, Christopher; Beckett, Joshua; Tornaletti, Silvia
2011-05-17
Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.
Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E
2012-12-07
Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.
Slean, Meghan M.; Panigrahi, Gagan B.; Castel, Arturo López; Pearson, August B.; Tomkinson, Alan E.; Pearson, Christopher E.
2016-01-01
Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats. PMID:27155933
Role of Macronutrients and Micronutrients in DNA Damage: Results From a Food Frequency Questionnaire
Ladeira, Carina; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel
2017-01-01
The links between diet and genomic instability have been under investigation for several decades, and evidence suggests a significant causal or preventive role for various dietary factors. This study investigates the influence of macronutrients (calories, protein, and glucides) and micronutrients, such as vitamins and minerals, as assessed by a food frequency questionnaire, on genotoxicity biomarkers measured by cytokinesis-blocked micronucleus assay and comet assay. The results found significant positive and negative correlations. Micronucleus frequency tends to increase with higher intake of caffeine, calcium, magnesium, zinc, and protein (P < .05, Spearman correlation). Calorie and omega-6 intakes are negatively correlated with DNA damage measured by the comet assay. These results are somewhat controversial because some of the correlations found are contrary to dominant views in the literature; however, we suggest that unraveling the association between diet and genetic instability requires a much better understanding of the modulating role of macronutrients and micronutrients. PMID:28469462
Barber, Ruth; Plumb, Mark A.; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E.
2002-01-01
Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans. PMID:11997464
The A-Like Faker Assay for Measuring Yeast Chromosome III Stability.
Novoa, Carolina A; Ang, J Sidney; Stirling, Peter C
2018-01-01
The ability to rapidly assess chromosome instability (CIN) has enabled profiling of most yeast genes for potential effects on genome stability. The A-like faker (ALF) assay is one of several qualitative and quantitative marker loss assays that indirectly measure loss or conversion of genetic material using a counterselection step. The ALF assay relies on the ability to count spurious mating events that occur upon loss of the MATα locus of haploid Saccharomyces cerevisiae strains. Here, we describe the deployment of the ALF assay for both rapid and simple qualitative, and more in-depth quantitative analysis allowing determination of absolute ALF frequencies.
Foot Health Facts for Athletes
... more likely to suffer repeated sprains, leading to chronic ankle instability. Achilles tendon disorders —Athletes are at high risk for developing disorders of the Achilles tendon. Achilles tendonitis , an inflammation of the tendon that runs down the back ...
Effect of buoyancy on appearance and characteristics of surface tension repeated auto-oscillations.
Kovalchuk, N M; Vollhardt, D
2005-08-11
The effect of buoyancy on spontaneous repeated nonlinear oscillations of surface tension, which appear at the free liquid interface by dissolution of a surfactant droplet under the interface, is considered on the basis of direct numerical simulation of the model system behavior. The oscillations are the result of periodically rising and fading Marangoni instability. The buoyancy force per se cannot lead to the oscillatory behavior in the considered system, but it influences strongly both the onset and decay of the instability and therefore, affects appearance and characteristics of the oscillations. If the surfactant solution density is smaller than the density of the pure liquid, then the buoyancy force leads to a considerable decrease of the induction period and the period of oscillations. The buoyancy force affects also the dependence of the oscillation characteristics on the system dimensions. The results of the simulations are compared with the available experimental data.
Koenigsberg, Harold W.; Denny, Bryan T.; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Jo Mayson, Sarah; Rimsky, Liza; New, Antonia S.; Goodman, Marianne; Siever, Larry J
2013-01-01
Objective Extreme emotional reactivity is a defining feature of borderline personality disorder, yet the neural-behavioral mechanisms underlying this affective instability are poorly understood. One possible contributor would be diminished ability to engage the mechanism of emotional habituation. We tested this hypothesis by examining behavioral and neural correlates of habituation in borderline patients, healthy controls, and a psychopathological control group of avoidant personality disorder patients. Method During fMRI scan acquisition, borderline patients, healthy controls and avoidant personality disorder patients viewed novel and repeated pictures, providing valence ratings at each presentation. Statistical parametric maps of the contrasts of activation during repeat versus novel negative picture viewing were compared between groups. Psychophysiological interaction analysis was employed to examine functional connectivity differences between groups. Results Unlike healthy controls, neither borderline nor avoidant personality disorder participants showed increased activity in dorsal anterior cingulate cortex when viewing repeat versus novel pictures. This failure to increase dorsal anterior cingulate activity was associated with greater affective instability in borderline participants. In addition, borderline and avoidant participants showed smaller insula-amygdala connectivity increases than healthy participants and did not show habituation in ratings of the emotional intensity of the images as did healthy participants. Borderline patients differed from avoidant patients in insula-ventral anterior cingulate connectivity during habituation. Conclusions Borderline patients fail to habituate to negative pictures as do healthy participants and differ from both healthy controls and avoidant patients in neural activity during habituation. A failure to effectively engage emotional habituation processes may contribute to affective instability in borderline patients. PMID:24275960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graaff, E. de; Willemsen, R.; Zhong, N.
The molecular mechanism of the fragile X syndrome is based on the expansion of an CGG repeat in the 5{prime} UTR of the FMR1 gene in the majority of fragile X patients. This repeat displays instability both between individuals and within an individual. We studied the instability of the CGG repeat and the expression of the FMR1 protein (FMRP) in several different tissues derived from a male fragile X patient. Using Southern blot analysis, only a full mutation is detected in 9 of the 11 tissues tested. The lung tumor contains a methylated premutation of 160 repeats, whereas in themore » testis, besides the full mutation, a premutation of 60 CGG repeats is detected. Immunohistochemistry of the testis revealed expression of FMR1 in the spermatogonia only, confirming the previous finding that, in the sperm cells of fragile X patients with a full mutation in their blood cells, only a premutation is present. Immunohistochemistry of brain and lung tissue revealed that 1% of the cells are expressing the FMRP. PCR analysis demonstrated the presence of a premutation of 160 repeats in these FMR1-expressing cells. This indicates that the tumor was derived from a lung cell containing a premutation. Remarkably, despite the methylation of the EagI and BssHII sites, FMRP expression is detected in the tumor. Methylation of both restriction sites has thus far resulted in a 100% correlation with the lack of FMR1 expression, but the results found in the tumor suggest that the CpGs in these restriction sites are not essential for regulation of FMR1 expression. This indicates a need for a more accurate study of the exact promoter of FMR1. 54 refs., 4 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Quincy; Orans, Jillian; Hast, Michael A.
2012-03-16
MutS{beta} is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutS{alpha} (MSH2-MSH6). Although mismatch recognition by MutS{alpha} has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutS{beta}. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification ofmore » recombinant human MutS{beta} and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported.« less
Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers
Udugama, Maheshi; Sanij, Elaine; Voon, Hsiao P. J.; Son, Jinbae; Hii, Linda; Henson, Jeremy D.; Chan, F. Lyn; Chang, Fiona T. M.; Liu, Yumei; Pearson, Richard B.; Kalitsis, Paul; Mann, Jeffrey R.; Collas, Philippe; Hannan, Ross D.; Wong, Lee H.
2018-01-01
ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers. PMID:29669917
Machado, Filipe Brum; Machado, Fabricio Brum; Faria, Milena Amendro; Lovatel, Viviane Lamim; Alves da Silva, Antonio Francisco; Radic, Claudia Pamela; De Brasi, Carlos Daniel; Rios, Álvaro Fabricio Lopes; de Sousa Lopes, Susana Marina Chuva; da Silveira, Leonardo Serafim; Ruiz-Miranda, Carlos Ramon; Ramos, Ester Silveira; Medina-Acosta, Enrique
2014-01-01
X-chromosome inactivation (XCI) is the epigenetic transcriptional silencing of an X-chromosome during the early stages of embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation for dosage-sensitive X-linked genes between females (XX) and males (XY). DNA methylation at the carbon-5 position of the cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5meCpG) in promoter regions is a key epigenetic marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat 230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5meCpG status correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5meCpG-based PCR assay that is highly concordant with the human androgen receptor (AR) exonic tandem CAG repeat-based standard HUMARA assay in discriminating active (Xa) from inactive (Xi) X-chromosomes. The RP2 onshore tandem GAAA repeat contains neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates approximately 0.8) and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is approximately 0.97, and this assay excels at determining the 5meCpG status of alleles at the Xp (RP2) and Xq (AR) chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of XCI in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the naturally occurring chimeric New World monkey marmoset (Callitrichidae) and found it to be informative. The RP2 onshore tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related hematopoietic malignancies and the clonality of cancers in human and nonhuman primates.
Machado, Filipe Brum; Machado, Fabricio Brum; Faria, Milena Amendro; Lovatel, Viviane Lamim; Alves da Silva, Antonio Francisco; Radic, Claudia Pamela; De Brasi, Carlos Daniel; Rios, Álvaro Fabricio Lopes; de Sousa Lopes, Susana Marina Chuva; da Silveira, Leonardo Serafim; Ruiz-Miranda, Carlos Ramon; Ramos, Ester Silveira; Medina-Acosta, Enrique
2014-01-01
X-chromosome inactivation (XCI) is the epigenetic transcriptional silencing of an X-chromosome during the early stages of embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation for dosage-sensitive X-linked genes between females (XX) and males (XY). DNA methylation at the carbon-5 position of the cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5meCpG) in promoter regions is a key epigenetic marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat 230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5meCpG status correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5meCpG-based PCR assay that is highly concordant with the human androgen receptor (AR) exonic tandem CAG repeat-based standard HUMARA assay in discriminating active (Xa) from inactive (Xi) X-chromosomes. The RP2 onshore tandem GAAA repeat contains neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates approximately 0.8) and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is approximately 0.97, and this assay excels at determining the 5meCpG status of alleles at the Xp (RP2) and Xq (AR) chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of XCI in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the naturally occurring chimeric New World monkey marmoset (Callitrichidae) and found it to be informative. The RP2 onshore tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related hematopoietic malignancies and the clonality of cancers in human and nonhuman primates. PMID:25078280
Spin bearing retainer design optimization
NASA Technical Reports Server (NTRS)
Boesiger, Edward A.; Warner, Mark H.
1991-01-01
The dynamics behavior of spin bearings for momentum wheels (control-moment gyroscope, reaction wheel assembly) is critical to satellite stability and life. Repeated bearing retainer instabilities hasten lubricant deterioration and can lead to premature bearing failure and/or unacceptable vibration. These instabilities are typically distinguished by increases in torque, temperature, audible noise, and vibration induced by increases into the bearing cartridge. Ball retainer design can be optimized to minimize these occurrences. A retainer was designed using a previously successful smaller retainer as an example. Analytical methods were then employed to predict its behavior and optimize its configuration.
NASA Technical Reports Server (NTRS)
Dugan, Lawrence C.; Bedford, Joel S.
2003-01-01
Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.
McKenzie, Jennifer Helen; Alwis, K Udeni; Sordillo, Joanne E; Kalluri, Kesava Srinivas; Milton, Donald Kirby
2011-06-01
Measurement of environmental endotoxin exposures is complicated by variability encountered using current biological assay methods arising in part from lot-to-lot variability of the Limulus-amebocyte lysate (LAL) reagents. Therefore, we investigated the lot-to-lot repeatability of commercially available recombinant Factor C (rFC) kits as an alternative to LAL. Specifically, we compared endotoxin estimates obtained from rFC assay of twenty indoor dust samples, using four different extraction and assay media, to endotoxin estimates previously obtained by Limulus amebocyte lysate (LAL) assay and amounts of 3-hydroxy fatty acids (3-OHFA) in lipopolysaccharide (LPS) using gas-chromatography mass spectroscopy (GC-MS). We found that lot-to-lot variability of the rFC assay kits does not significantly alter endotoxin estimates in house dust samples when performed using three of the four assay media tested and that choice of assay media significantly altered endotoxin estimates obtained by rFC assay of house dust samples. Our findings demonstrate lot-to-lot reproducibility of rFC assay of environmental samples and suggest that use of rFC assay performed with Tris buffer or water as the extraction and assay medium for measurement of endotoxin in dust samples may be a suitable choice for developing a standardized methodology.
Nakasa, Tomoyuki; Fukuhara, Kohei; Adachi, Nobuo; Ochi, Mitsuo
2008-05-01
Functional instability is defined as a repeated ankle inversion sprain and a giving way sensation. Previous studies have described the damage of sensori-motor control in ankle sprain as being a possible cause of functional instability. The aim of this study was to evaluate the inversion angle replication errors in patients with functional instability after ankle sprain. The difference between the index angle and replication angle was measured in 12 subjects with functional instability, with the aim of evaluating the replication error. As a control group, the replication errors of 17 healthy volunteers were investigated. The side-to-side differences of the replication errors were compared between both the groups, and the relationship between the side-to-side differences of the replication errors and the mechanical instability were statistically analyzed in the unstable group. The side-to-side difference of the replication errors was 1.0 +/- 0.7 degrees in the unstable group and 0.2 +/- 0.7 degrees in the control group. There was a statistically significant difference between both the groups. The side-to-side differences of the replication errors in the unstable group did not statistically correlate to the anterior talar translation and talar tilt. The patients with functional instability had the deficit of joint position sense in comparison with healthy volunteers. The replication error did not correlate to the mechanical instability. The patients with functional instability should be treated appropriately in spite of having less mechanical instability.
NASA Technical Reports Server (NTRS)
Limoli, C. L.; Corcoran, J. J.; Jordan, R.; Morgan, W. F.; Schwartz, J. L.
2001-01-01
Chromosome instability is a common occurrence in tumour cells. We examined the hypothesis that the elevated rate of mutation formation in unstable cells can lead to the development of clones of cells that are resistant to the cancer therapy. To test this hypothesis, we compared chromosome instability to radiation sensitivity in 30 independently isolated clones of GM10115 human-hamster hybrid cells. There was a broader distribution of radiosensitivity and a higher mean SF(2)in chromosomally unstable clones. Cytogenetic and DNA double-strand break rejoining assays suggest that sensitivity was a function of DNA repair efficiency. In the unstable population, the more radioresistant clones also had significantly lower plating efficiencies. These observations suggest that chromosome instability in GM10115 cells can lead to the development of cell variants that are more resistant to radiation. In addition, these results suggest that the process of chromosome breakage and recombination that accompanies chromosome instability might provide some selective pressure for more radioresistant variants. Copyright 2001 Cancer Research Campaign.
Buccal Micronucleus Cytome Assay in Sickle Cell Disease
Naga, Mallika Bokka Sri Satya; Gour, Shreya; Nallagutta, Nalini; Velidandla, Surekha; Manikya, Sangameshwar
2016-01-01
Introduction Sickle Cell Anaemia (SCA) is a commonly inherited blood disorder preceded by episodes of pain, chronic haemolytic anaemia and severe infections. The underlying phenomenon which causes this disease is the point mutation in the haemoglobin beta gene (Hbβ) found on chromosome 11 p. Increased oxidative stress leads to DNA damage. DNA damage occurring in such conditions can be studied by the buccal micronucleus cytome assay, which is a minimally invasive method for studying chromosomal instability, cell death and regenerative potential of human buccal tissue. Aim To evaluate genomic instability in patients with sickle cell disease by buccal micronucleus cytome assay. Materials and Methods The study included 40 sickle cell anemia patients (Group A) and 40 age and sex matched controls (Group B). Buccal swabs were collected and stained with Papanicolaou (PAP). Number of cells with micronucleus, binuclei, nuclear bud, pyknosis and karyolysis were counted in two groups as parameters for the evaluation of genome stability. Results All the analysis was done using t-test. A p-value of <0.001 was considered statistically significant. There was a statistically significant increase in micronuclei number in SCA patients when compared with controls. Karyolytic (un-nucleated) cell number in Group A was more than to those of the controls. Conclusion The results might suggest that patients with sickle cell anaemia have genome instability which is represented by the presence of micronuclei in the somatic cells. Presence of apoptotic cells might only indicate the bodily damage to the tissue as a result of the disease. PMID:27504413
Buccal Micronucleus Cytome Assay in Sickle Cell Disease.
Naga, Mallika Bokka Sri Satya; Gour, Shreya; Nallagutta, Nalini; Ealla, Kranti Kiran Reddy; Velidandla, Surekha; Manikya, Sangameshwar
2016-06-01
Sickle Cell Anaemia (SCA) is a commonly inherited blood disorder preceded by episodes of pain, chronic haemolytic anaemia and severe infections. The underlying phenomenon which causes this disease is the point mutation in the haemoglobin beta gene (Hbβ) found on chromosome 11 p. Increased oxidative stress leads to DNA damage. DNA damage occurring in such conditions can be studied by the buccal micronucleus cytome assay, which is a minimally invasive method for studying chromosomal instability, cell death and regenerative potential of human buccal tissue. To evaluate genomic instability in patients with sickle cell disease by buccal micronucleus cytome assay. The study included 40 sickle cell anemia patients (Group A) and 40 age and sex matched controls (Group B). Buccal swabs were collected and stained with Papanicolaou (PAP). Number of cells with micronucleus, binuclei, nuclear bud, pyknosis and karyolysis were counted in two groups as parameters for the evaluation of genome stability. All the analysis was done using t-test. A p-value of <0.001 was considered statistically significant. There was a statistically significant increase in micronuclei number in SCA patients when compared with controls. Karyolytic (un-nucleated) cell number in Group A was more than to those of the controls. The results might suggest that patients with sickle cell anaemia have genome instability which is represented by the presence of micronuclei in the somatic cells. Presence of apoptotic cells might only indicate the bodily damage to the tissue as a result of the disease.
Stewart, Grant D; Van Neste, Leander; Delvenne, Philippe; Delrée, Paul; Delga, Agnès; McNeill, S Alan; O'Donnell, Marie; Clark, James; Van Criekinge, Wim; Bigley, Joseph; Harrison, David J
2013-03-01
Concern about possible false-negative prostate biopsy histopathology findings often leads to rebiopsy. A quantitative methylation specific polymerase chain reaction assay panel, including GSTP1, APC and RASSF1, could increase the sensitivity of detecting cancer over that of pathological review alone, leading to a high negative predictive value and a decrease in unnecessary repeat biopsies. The MATLOC study blindly tested archived prostate biopsy needle core tissue samples of 498 subjects from the United Kingdom and Belgium with histopathologically negative prostate biopsies, followed by positive (cases) or negative (controls) repeat biopsy within 30 months. Clinical performance of the epigenetic marker panel, emphasizing negative predictive value, was assessed and cross-validated. Multivariate logistic regression was used to evaluate all risk factors. The epigenetic assay performed on the first negative biopsies of this retrospective review cohort resulted in a negative predictive value of 90% (95% CI 87-93). In a multivariate model correcting for patient age, prostate specific antigen, digital rectal examination and first biopsy histopathological characteristics the epigenetic assay was a significant independent predictor of patient outcome (OR 3.17, 95% CI 1.81-5.53). A multiplex quantitative methylation specific polymerase chain reaction assay determining the methylation status of GSTP1, APC and RASSF1 was strongly associated with repeat biopsy outcome up to 30 months after initial negative biopsy in men with suspicion of prostate cancer. Adding this epigenetic assay could improve the prostate cancer diagnostic process and decrease unnecessary repeat biopsies. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Thorley, Nicola; Adebayo, Michael; Smit, Erasmus; Radcliffe, Keith
2016-08-01
An unconfirmed positive treponemal enzyme immunoassay (enzyme immunoassay positive, Treponema pallidum particle agglutination negative and rapid plasma reagin negative) presents a clinical challenge to distinguish early syphilis infection from false-positive results. These cases are referred for syphilis line assay (INNO-LIA) and recalled for repeat syphilis serology. We performed a retrospective audit to establish the proportion of HIV-negative cases with unconfirmed positive enzyme immunoassay results, the proportion of these cases that received an INNO-LIA test and repeat syphilis serology testing and reviewed the clinical outcomes; 0.35% (80/22687) cases had an unconfirmed positive treponemal enzyme immunoassay result. Repeat syphilis serology was performed in 80% (64/80) cases, but no additional cases of syphilis were identified. Eighty-eight per cent (70/80) received an INNO-LIA test; 14% (5/37) unconfirmed enzyme immunoassay-positive cases with no prior history of syphilis were confirmed on INNO-LIA assay, supporting a diagnosis of latent syphilis. As a confirmatory treponemal test, the INNO-LIA assay may be more useful than repeat syphilis serological testing. © The Author(s) 2016.
A study on the trinucleotide repeat associated with Huntington`s disease in the Chinese
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bing-wen Soong; Jih-tsuu Wang
1994-09-01
Analysis of the polymorphic (CAG)n repeat in the hungingtin gene in the chinese confirmed the presence of an expanded repeat on all Huntington`s disease chromosomes. Measurement of the specific CAG repeat sequence in 34 HD chromosomes from 15 unrelated families and 190 control chromosomes from the Chinese population showed a range from 9 to 29 repeats in normal subjects and 40 to 58 in affected subjects. The size distributions of normal and affected alleles did not overlap. A clear correlation bewteen early onset of symptoms and very high repeat number was seen, but the spread of the age-at-onset in themore » major repeat range producing characteristic HD it too wide to be of diagnostic value. There was also variability in the transmitted repeat size for both sexes in the HD size range. Maternal HD alleles showed a moderate instability with a preponderance of size decrease, while paternal HD alleles had a tendency to increase in repeat size on transmission, the degree of which appeared proportional to the initial size.« less
Mikhailenko, V M; Diomina, E A; Muzalov, I I; Gerashchenko, B I
2013-03-01
The aim of this study was to investigate the ability of environmental nitrogen oxides or natural nitric oxide (NO) donors to modify free radicals ba-lance and development of genomic instability alone or in combination with ionizing radiation. Genotoxicity and cytogenetic abnormalities were assessed in vitro in peripheral blood lymphocytes (PBL) isolated from healthy humans or in vivo in rats PBL. Human PBL were treated with physiologically relevant NO donor - S-Nitrosoglutathione and X-ray irradiation. The inhalation treatment of animals with NO was carried out in chamber with purified gaseous NO mixed inside with air. Levels of S-Nitrosohemoglobin and methemoglobin in the blood were assessed with electron paramagnetic resonance. The total level of reactive oxygen and nitrogen species in PBL was determined fluorometrically, and serum levels of reactive oxygen species was determined by spectrophotometric assay. DNA damages were assessed by alkaline single-cell gel electrophoresis. The frequency of chromosomal aberrations in human PBL measured with the conventional cytogenetic assay in metaphase cells on short-term (52 h) and long-term (72 h) cultures. Environmental nitrogen oxides or release of NO from stable complexes with biomolecules (such as S-Nitrosothiols) intensified generation of free radicals, DNA damage and development of genomic instability alone or in combination with ionizing radiation. Treatment of PBL by S-Nitrosoglutathione caused prevalent induction of chromatid type but irradiation - chromosome aberrations. The dose dependence of chromatid-type aberrations observed in human PBL after combined influence of S-Nitrosoglutathione and ionizing radiation indicates a crucial role of NO in the formation of chromosomal instability. NO can deregulate free radicals balance resulted in genotoxic effect, posttranslational modification of repair enzymes and thus coordinated development of genomic instability and increase of cancer risk.
Mycobacterium tuberculosis promotes genomic instability in macrophages.
Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene
2018-03-01
Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection.
Modeling Zebrafish Developmental Toxicity using a Concurrent In vitro Assay Battery (SOT)
We describe the development of computational models that predict activity in a repeat-dose zebrafish embryo developmental toxicity assay using a combination of physico-chemical parameters and in vitro (human) assay measurements. The data set covered 986 chemicals including pestic...
NASA Astrophysics Data System (ADS)
Aizin, G. R.; Mikalopas, J.; Shur, M.
2016-05-01
An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.
Davis, Jessica L; Grenert, James P; Horvai, Andrew E
2014-06-01
Defects in mismatch repair proteins have been identified in Lynch syndrome-associated liposarcomas, as well as in rare sporadic sarcomas. However, it is unclear if mismatch repair defects have a role in sarcoma tumorigenesis. Microsatellite instability is a surrogate marker of mismatch repair defects. To determine whether sporadic dedifferentiated liposarcomas display microsatellite instability and, if so, to evaluate whether such instability differs between the lipogenic and nonlipogenic components of these tumors. The diagnoses of conventional dedifferentiated liposarcoma were confirmed by a combination of morphologic, immunophenotypic, and molecular studies. Standard fluorescence-based polymerase chain reaction, including 5 mononucleotide microsatellite markers (BAT25, BAT26, NR21, NR24, and MONO27), as well as 2 pentanucleotide repeat markers (Penta C and Penta D), was used to test for instability and loss of heterozygosity. We demonstrated only a single case (1 of 43) with microsatellite instability at one mononucleotide marker. No sarcomas showed high-level microsatellite instability. However, loss of heterozygosity at the pentanucleotide markers was observed in 8 of 43 cases. The presence of loss of heterozygosity was overrepresented in the nonlipogenic (dedifferentiated) components compared with the paired lipogenic (well differentiated) components. Mismatch repair defects do not contribute to sporadic dedifferentiated liposarcoma tumorigenesis. Whether the observed loss of heterozygosity drives tumorigenesis in liposarcoma, for example by affecting tumor suppressor or cell cycle regulator genes, remains to be determined.
NASA Astrophysics Data System (ADS)
Hirai, Kenichiro; Katoh, Yuto; Terada, Naoki; Kawai, Soshi
2018-02-01
Magnetic turbulence in accretion disks under ideal magnetohydrodynamic (MHD) conditions is expected to be driven by the magneto-rotational instability (MRI) followed by secondary parasitic instabilities. We develop a three-dimensional ideal MHD code that can accurately resolve turbulent structures, and carry out simulations with a net vertical magnetic field in a local shearing box disk model to investigate the role of parasitic instabilities in the formation process of magnetic turbulence. Our simulations reveal that a highly anisotropic Kelvin–Helmholtz (K–H) mode parasitic instability evolves just before the first peak in turbulent stress and then breaks large-scale shear flows created by MRI. The wavenumber of the enhanced parasitic instability is larger than the theoretical estimate, because the shear flow layers sometimes become thinner than those assumed in the linear analysis. We also find that interaction between antiparallel vortices caused by the K–H mode parasitic instability induces small-scale waves that break the shear flows. On the other hand, at repeated peaks in the nonlinear phase, anisotropic wavenumber spectra are observed only in the small wavenumber region and isotropic waves dominate at large wavenumbers unlike for the first peak. Restructured channel flows due to MRI at the peaks in nonlinear phase seem to be collapsed by the advection of small-scale shear structures into the restructured flow and resultant mixing.
The glucose oxidase-peroxidase assay for glucose
USDA-ARS?s Scientific Manuscript database
The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...
Genetic instability caused by loss of MutS homolog 3 in human colorectal cancer
Haugen, Astrid C.; Goel, Ajay; Yamada, Kanae; Marra, Giancarlo; Nguyen, Thuy-Phuong; Nagasaka, Takeshi; Kanazawa, Shinsaku; Koike, Junichi; Kikuchi, Yoshinori; Zhong, Xiaoling; Arita, Michitsune; Shibuya, Kazutoshi; Oshimura, Mitsuo; Hemmi, Hiromichi; Boland, Clement Richard; Koi, Minoru
2008-01-01
Microsatellite instability (MSI) is a hallmark of mismatch repair deficiency. High levels of MSI at mono- and dinucleotide repeats in colorectal cancer (CRC) are attributed to inactivation of the mismatch repair genes, hMLH1 and hMSH2. CRC with low levels of MSI (MSI-L) exists; however its molecular basis is unclear. There is another type of MSI - “elevated microsatellite alterations at selected tetranucleotide repeats” - (EMAST) where loci containing [AAAG]n or [ATAG]n repeats are unstable. EMAST is frequent in non-colorectal cancers; however the incidence of EMAST and its cause in CRC is not known. Here, we report that MSH3-knock-down or MSH3-deficient cells exhibit the EMAST phenotype and low levels of mutations at dinucleotide repeats. About 60% of 117 sporadic CRC cases exhibit EMAST. All of the cases defined as MSI-H (16 cases) exhibited high levels of EMAST. Among 101 non-MSI-H cases, all 19 cases of MSI-L and 35 of 82 cases of MSS exhibited EMAST. Although non-MSI-H CRC tissues contained MSH3-negative tumor cells ranging from 2-50% of the total tumor cell population, the tissues exhibiting EMAST contained more MSH3-negative cells (average 31.5%) than did the tissues not exhibiting EMAST (8.4%). Taken together, our results support the idea that MSH3-deficiency causes EMAST or EMAST with low levels of MSI at the loci with dinucleotide repeats in CRC. PMID:18922920
Marquardt, Björn; Garmann, Stefan; Schulte, Tobias; Witt, Kai-Axel; Steinbeck, Jörn; Pötzl, Wolfgang
2007-01-01
The purpose of this study was to evaluate the incidence and reasons of recurrent instability in patients with traumatic anterior shoulder instability and to document the clinical results with regard to the number of stabilizing procedures. Twenty-four patients with failed primary open or arthroscopic anterior shoulder stabilization were followed for a mean of 68 (36-114) months. Following recurrence of shoulder instability, eight patients chose not to be operated on again, whereas 16 underwent repeat stabilization. A persistent or recurrent Bankart lesion was found in all 16 patients and concomitant capsular redundancy in 4. After the first revision surgery, further instability occurred in 8 patients, and 6 of them were stabilized a third time. Only 7 patients (29%) achieved a good or excellent result according to the Rowe score. All shoulder scores improved after revision stabilization. However, the number of stabilizing procedures adversely affected the outcome scores, as well as postoperative range of motion and patient satisfaction. Recurrent instability after a primary stabilization procedure represents a difficult diagnostic and surgical challenge, and careful attention should be paid to address persistent or recurrent Bankart lesions and concomitant capsular reduncancy. A satisfying functional outcome can be expected mainly in patients with one revision surgery. Further stabilization attempts are associated with poorer objective and subjective results.
Caregiver instability and early life changes among infants reported to the child welfare system.
Casanueva, Cecilia; Dozier, Mary; Tueller, Stephen; Dolan, Melissa; Smith, Keith; Webb, Mary Bruce; Westbrook, T'pring; Harden, Brenda Jones
2014-03-01
This study describes the extent of caregiver instability (defined as a new placement for 1 week or longer in a different household and/or with a new caregiver) in a nationally representative sample of infants, followed for 5-7 years. Data were drawn from the National Survey of Child and Adolescent Well-Being (NSCAW), a longitudinal study of 5,501 children investigated for child maltreatment. The analysis sample was restricted to 1,196 infants. Overall, 85.6% of children who were infants at the time of the index maltreatment experienced at least one caregiver instability event during their first 2 years of life. Caregiver instability was associated with the child having a chronic health condition and the caregiver being older than 40 years of age at baseline. The levels of instability reported in this study from infancy to school entry are extremely high. Children with more risk factors were significantly more likely to experience caregiver instability than children with fewer risk factors. The repeated loss of a young child's primary caregiver or unavailable, neglectful care can be experienced as traumatic. Some evidence-based programs that are designed to work with young maltreated children can make a substantial positive difference in the lives of vulnerable infants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1
Savić Pavićević, Dušanka; Miladinović, Jelena; Brkušanin, Miloš; Šviković, Saša; Djurica, Svetlana; Brajušković, Goran; Romac, Stanka
2013-01-01
Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling. PMID:23586035
An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity
Tzeng, Tsai-Yu; Lin, I-Hsuan; Hsu, Ming-Ta
2016-01-01
Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2) and protection of telomeres protein 1 (POT1), whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity. PMID:27228173
CGG allele size somatic mosaicism and methylation in FMR1 premutation alleles
Pretto, Dalyir I.; Mendoza-Morales, Guadalupe; Lo, Joyce; Cao, Ru; Hadd, Andrew; Latham, Gary J.; Durbin-Johnson, Blythe; Hagerman, Randi; Tassone, Flora
2014-01-01
Background Greater than 200 CGG repeats in the 5′UTR of the FMR1 gene leads to epigenetic silencing and lack of the FMR1 protein, causing Fragile X Syndrome. Individuals carriers of a premutation (PM) allele with 55–200 CGG repeats are typically unmethylated and can present with clinical features defined as FMR1 associated conditions. Methods Blood samples from 17 male PM carriers were assessed clinically and molecularly by Southern Blot, Western Blot, PCR and QRT-PCR. Blood and brain tissue from additional 18 PM males were also similarly examined. Continuous outcomes were modeled using linear regression and binary outcomes were modeled using logistic regression. Results Methylated alleles were detected in different fractions of blood cells in all PM cases (n= 17). CGG repeat numbers correlated with percent of methylation and mRNA levels and, especially in the upper PM range, with greater number of clinical involvements. Inter/intra- tissue somatic instability and differences in percent methylation were observed between blood and fibroblasts (n=4) and also observed between blood and different brain regions in three of the 18 premutation cases examined. CGG repeat lengths in lymphocytes remained unchanged over a period of time ranging from 2–6 years, three cases for whom multiple samples were available. Conclusion In addition to CGG size instability, individuals with a PM expanded alleles can exhibit methylation and display more clinical features likely due to RNA toxicity and/or FMR1 silencing. The observed association between CGG repeat length and percent of methylation with the severity of the clinical phenotypes underscores the potential value of methylation in affected PM to further understand penetrance, inform diagnosis and to expand treatment options. PMID:24591415
Odahara, Masaki; Masuda, Yuichi; Sato, Mayuko; Wakazaki, Mayumi; Harada, Chizuru; Toyooka, Kiminori; Sekine, Yasuhiko
2015-01-01
Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO) mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8–79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA) instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12–63 bp) in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions. PMID:25769081
Løbersli, Inger; Haugum, Kjersti; Lindstedt, Bjørn-Arne
2012-01-01
Our laboratory has previously published two multiple-locus variable-number tandem-repeats analysis (MLVA) methods for rapid genotyping of Escherichia coli (E. coli), which are now in routine use for surveillance and outbreak detection. The first assay developed was specific for E. coli O157:H7; however this assay was not suitable for genotyping other E. coli serotypes. A new generic MLVA-assay was then developed with the capability of genotyping all E. coli serotypes. This generic E. coli MLVA (GECM7) was based on polymorphism in seven variable number of tandem repeats (VNTR) loci. GECM7 worked well with the majority of E. coli serotypes; however we wanted to increase the resolution for this method based in part of comparison with PFGE typing of E. coli O26:H11, where PFGE appeared to display higher resolution. The GECM7 method was improved by adding three new repeat-loci to a total of ten (GECM10), and a considerable increase in resolution was observed (from 296 to 507 genotypes on the same set of strains). Copyright © 2011 Elsevier B.V. All rights reserved.
Levitán, D; D'Onofrio, A
2012-09-01
A vertical Hele-Shaw cell was used to study the influence of temperature on Rayleigh-Taylor instabilities on reaction-diffusion fronts. The propagation of the chemical front can thus be observed, and experimental results can be obtained via image treatment. A chemical front produced by the coupling between molecular diffusion and the auto-catalysis of the chlorite-tetrathionate reaction, descends through the cell, consuming the reactants below while the product is formed above. Buoyancy-driven instabilities are formed due to the density difference between reactants and products, and the front takes a fingering pattern, whose growth rate has temperature dependence. In this study, the effect of temperature on the linear regime of the instability (that is, when the effects of such instability start to appear) was analyzed. To measure the instability, Fourier transform analysis is performed, in order to obtain the different wave numbers and their power as a function of time. Thus, the growth rate for each wave number and the most unstable wave number is obtained for each of the temperatures under study. Based on repeated experiments, a decrease in the growth rate for the most unstable wave number can be observed with the increase of temperature.
Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H
2017-10-23
Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (p< 0.05), suggesting a good relationship between the two core stability measures. Test-retest reliability was (ICC3,3) = 0.953 (p< 0.05), indicating excellent consistency between the repeated DNS-HS measurements. Criterion validity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.
Metsu, Sofie; Rainger, Jacqueline K; Debacker, Kim; Bernhard, Birgitta; Rooms, Liesbeth; Grafodatskaya, Daria; Weksberg, Rosanna; Fombonne, Eric; Taylor, Martin S; Scherer, Stephen W; Kooy, R Frank; FitzPatrick, David R
2014-11-01
We report de novo occurrence of the 7p11.2 folate-sensitive fragile site FRA7A in a male with an autistic spectrum disorder (ASD) due to a CGG-repeat expansion mutation (∼450 repeats) in a 5' intron of ZNF713. This expanded allele showed hypermethylation of the adjacent CpG island with reduced ZNF713 expression observed in a proband-derived lymphoblastoid cell line (LCL). His unaffected mother carried an unmethylated premutation (85 repeats). This CGG-repeat showed length polymorphism in control samples (five to 22 repeats). In a second unrelated family, three siblings with ASD and their unaffected father were found to carry FRA7A premutations, which were partially or mosaically methylated. In one of the affected siblings, mitotic instability of the premutation was observed. ZNF713 expression in LCLs in this family was increased in three of these four premutation carriers. A firm link cannot yet be established between ASD and the repeat expansion mutation but plausible pathogenic mechanisms are discussed. © 2014 WILEY PERIODICALS, INC.
NASA Astrophysics Data System (ADS)
Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.
2013-02-01
A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.
Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K
2013-02-01
A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G 2 phase premature chromosome condensation (G 2 -PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. MFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.
Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F
2012-03-01
Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.
[Induced germ line genomic instability at mini- and micro-satellites in animals].
Bezlepkin, V G; Gaziev, A I
2001-01-01
The recent data on the phenomenon of the induced germline genomic instability at mini- and microsatellites in animals were considered. Natural hypervariability of the minisatellites and microsatellites and their abundance in eukaryotic genome provide it's utility as the useful genetic markers for evaluation of the germline mutation frequency induced by treatment with different type of genotoxic factors at the low doses. High sensitivity of assays and possibility for direct determinations of the mutations, without the necessity to use extrapolation, are ensured. Some discussion is presented on the role of non-targeted mechanisms for the radiation-prone DNA lesions in the induction of germline genomic instability and also on the involving in this process the recombination events upon meiosis or during the early development stages of embryos. It is proposed that quantitative determination of germline genomic instability rate may be used as an acceptable variant for the genetic risk assessment and as indicator of increased probability for cancer and other pathologies at the offspring born to irradiated parents.
Mycobacterium tuberculosis promotes genomic instability in macrophages
Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene
2018-01-01
BACKGROUND Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. OBJECTIVES To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. METHODS We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. FINDINGS Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. MAIN CONCLUSIONS Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection. PMID:29412354
Nagarajan, Prabha; Prevost, Christopher T; Stein, Alexis; Kasimer, Rachel; Kalifa, Lidza; Sia, Elaine A
2017-06-01
The structure-specific nuclease, Rad27p/FEN1, plays a crucial role in DNA repair and replication mechanisms in the nucleus. Genetic assays using the rad27-∆ mutant have shown altered rates of DNA recombination, microsatellite instability, and point mutation in mitochondria. In this study, we examined the role of Rad27p in mitochondrial mutagenesis and double-strand break (DSB) repair in Saccharomyces cerevisiae Our findings show that Rad27p is essential for efficient mitochondrial DSB repair by a pathway that generates deletions at a region flanked by direct repeat sequences. Mutant analysis suggests that both exonuclease and endonuclease activities of Rad27p are required for its role in mitochondrial DSB repair. In addition, we found that the nuclease activities of Rad27p are required for the prevention of mitochondrial DNA (mtDNA) point mutations, and in the generation of spontaneous mtDNA rearrangements. Overall, our findings underscore the importance of Rad27p in the maintenance of mtDNA, and demonstrate that it participates in multiple DNA repair pathways in mitochondria, unlinked to nuclear phenotypes. Copyright © 2017 by the Genetics Society of America.
Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.
2017-03-01
Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.
NASA Astrophysics Data System (ADS)
Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.
2018-04-01
The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.
FORECAST MODEL FOR MODERATE EARTHQUAKES NEAR PARKFIELD, CALIFORNIA.
Stuart, William D.; Archuleta, Ralph J.; Lindh, Allan G.
1985-01-01
The paper outlines a procedure for using an earthquake instability model and repeated geodetic measurements to attempt an earthquake forecast. The procedure differs from other prediction methods, such as recognizing trends in data or assuming failure at a critical stress level, by using a self-contained instability model that simulates both preseismic and coseismic faulting in a natural way. In short, physical theory supplies a family of curves, and the field data select the member curves whose continuation into the future constitutes a prediction. Model inaccuracy and resolving power of the data determine the uncertainty of the selected curves and hence the uncertainty of the earthquake time.
Kim, Jung Eun; Choi, Sang Sik; Lee, Mi Kyoung; Lee, Dong Kyu; Cho, Seung Inn
2017-11-01
Kummell's disease, caused by osteonecrosis of the vertebral body, is a cause of vertebral collapse. In Kummell's disease, intravertebral instability from nonunion between the cement and bone after percutaneous vertebroplasty (PVP) can cause persistent severe pain and dysfunction. A 75-year-old woman presented with severe pain in the lower back, both buttocks, groin, and both posterior thighs for a period of 30 days. Lumbar radiographs and magnetic resonance images showed an acute compression fracture of the first lumbar vertebra with an intravertebral cleft filled with fluid. The patient underwent PVP for the L1 compression fracture; however, this failed to provide sufficient pain relief. The patient was re-evaluated with dynamic radiography, and intravertebral instability and bone cement displacement of the L1 vertebra were detected. Repeat PVP was performed. After the procedure, intravertebral instability was restored and her pain completely subsided. PVP is a good treatment choice for symptomatic Kummell's disease. However, there is no consensus on the best technique of injecting bone cement to achieve optimal results. It is important to inject more bone cement than the volume of the intravertebral cleft to prevent instability caused by nonunion in PVP for Kummell's disease. We report a case of failed PVP because of insufficient correction of intravertebral instability in Kummell's, along with a review of the literature. © 2017 World Institute of Pain.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability
NASA Astrophysics Data System (ADS)
Bosch, Pablo; Green, Stephen R.; Lehner, Luis
2016-04-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.
Bosch, Pablo; Green, Stephen R; Lehner, Luis
2016-04-08
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Repeat testing of low-level HIV-1 RNA: assay performance and implementation in clinical trials.
White, Kirsten; Garner, Will; Wei, Lilian; Eron, Joseph J; Zhong, Lijie; Miller, Michael D; Martin, Hal; Plummer, Andrew; Tran-Muchowski, Cecilia; Lindstrom, Kim; Porter, James; Piontkowsky, David; Light, Angela; Reiske, Heinz; Quirk, Erin
2018-05-15
Assess the performance of HIV-1 RNA repeat testing of stored samples in cases of low-level viremia during clinical trials. Prospective and retrospective analysis of randomized clinical trial samples and reference standards. To evaluate assay variability of the Cobas AmpliPrep/Cobas TaqMan HIV-1 Test, v2.0, three separate sources of samples were utilized: the World Health Organization (WHO) HIV reference standard (assayed using 50 independent measurements at six viral loads <200 copies/ml), retrospective analysis of four to six aliquots of plasma samples from four clinical trial participants, and prospective repeat testing of 120 samples from participants in randomized trials with low-level viremia. The TaqMan assay on the WHO HIV-1 RNA standards at viral loads <200 copies/ml performed within the expected variability according to assay specifications. However, standards with low viral loads of 36 and 18 copies/ml reported values of ≥ 50 copies/ml in 66 and 18% of tests, respectively. In participants treated with antiretrovirals who had unexpected viremia of 50-200 copies/ml after achieving <50 copies/ml, retesting of multiple aliquots of stored plasma found <50 copies/ml in nearly all cases upon retesting (14/15; 93%). Repeat testing was prospectively implemented in four clinical trials for all samples with virologic rebound of 50-200 copies/ml (n = 120 samples from 92 participants) from which 42% (50/120) had a retest result of less than 50 copies/ml and 58% (70/120) retested ≥ 50 copies/ml. The TaqMan HIV-1 RNA assay shows variability around 50 copies/ml that affects clinical trial results and may impact clinical practice. In participants with a history of viral load suppression, unexpected low-level viremia may be because of assay variability rather than low drug adherence or true virologic failure. Retesting a stored aliquot of the same sample may differentiate between assay variability and virologic failure as the source of viremia. This retesting strategy could save time, money, and anxiety for patients and their providers, as well as decrease follow-up clinic visits without increasing the risk of virologic failure and resistance development.
Vocational Interests and Big Five Traits as Predictors of Job Instability
ERIC Educational Resources Information Center
Wille, Bart; De Fruyt, Filip; Feys, Marjolein
2010-01-01
Although empirical research on this topic is scarce, personality traits and vocational interests have repeatedly been named as potential individual level predictors of job change. Using a long-term cohort study (N = 291), we examined RIASEC interest profiles and Big Five personality scores at the beginning of the professional career as predictors…
Improper ferroelectricity: A theoretical and experimental investigation
NASA Astrophysics Data System (ADS)
Hardy, J. R.; Ullman, F. G.
1984-02-01
A combined theoretical and experimental study has been made of the origins and properties of the improper ferroelectricity associated with structural modulations of non-zero wavelengths. Two classes of materials have been studied: rare earth molybdates (specifically, gadolinium molybdate: GMO), and potassium selenate and its isomorphs. In the former, the modulation is produced by a zone boundary phonon instability, and in the latter by the instability of a phonon of wave vector approximately two-thirds of the way to the zone-boundary. In the second case the initial result is a modulated structure whose repeat distance is not a rational multiple of the basic lattice repeat distance. This result is a modulated polarization which, when the basic modulation locks in to a rational multiple of the lattice spacing, becomes uniform, and improper ferroelectricity results. The origins of these effects have been elucidated by theoretical studies, initially semi-empirical, but subsequently from first-principles. These complemented the experimental work, which primarily used inelastic light scattering, uniaxial stress, and hydrostatic pressure, to probe the balance between the interionic forces through the effects on the phonons and dielectric properties.
Iwao, Kamizato; Masataka, Deie; Kohei, Fukuhara
2014-01-01
Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament. Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire. Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability. PMID:25401146
The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription
Balajee, Adayabalam S.; Machwe, Amrita; May, Alfred; Gray, Matthew D.; Oshima, Junko; Martin, George M.; Nehlin, Jan O.; Brosh, Robert; Orren, David K.; Bohr, Vilhelm A.
1999-01-01
Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype. PMID:10436020
Cinkilic, Nilufer; Tüzün, Ece; Çetintaş, Sibel Kahraman; Vatan, Özgür; Yılmaz, Dilek; Çavaş, Tolga; Tunç, Sema; Özkan, Lütfi; Bilaloğlu, Rahmi
2014-08-01
The present study was designed to determine the protective activity of cinnamic acid against induction by X-rays of genomic instability in normal human blood lymphocytes. This radio-protective activity was assessed by use of the cytokinesis-block micronucleus test and the alkaline comet assay, with human blood lymphocytes isolated from two healthy donors. A Siemens Mevatron MD2 (Siemens AG, USA, 1994) linear accelerator was used for the irradiation with 1 or 2 Gy. Treatment of the lymphocytes with cinnamic acid prior to irradiation reduced the number of micronuclei when compared with that in control samples. Treatment with cinnamic acid without irradiation did not increase the number of micronuclei and did not show a cytostatic effect in the lymphocytes. The results of the alkaline comet assay revealed that cinnamic acid reduces the DNA damage induced by X-rays, showing a significant radio-protective effect. Cinnamic acid decreased the frequency of irradiation-induced micronuclei by 16-55% and reduced DNA breakage by 17-50%, as determined by the alkaline comet assay. Cinnamic acid may thus act as a radio-protective compound, and future studies may focus on elucidating the mechanism by which cinnamic acid offers radioprotection. Copyright © 2014 Elsevier B.V. All rights reserved.
Manlutac, Anna Liza M; Giesick, Jill S; McVay, Patricia A
2013-12-01
HIV screening assays have gone through several generations of development in an effort to narrow the "window period" of detection. Utilizing a fourth generation HIV screening assay has the potential to detect earlier HIV infection, thus reducing HIV-1 transmission. To identify acute infections to decrease HIV transmission in San Diego County. Serum specimens were collected from clients seen by multiple submitters in San Diego County. All acceptable specimens were screened using the 4th Gen Combo Assay. Initially reactive specimens were repeated in duplicate and if repeatedly reactive, were confirmed by HIV-1 Immunofluorescent Antibody Assay (IFA). IFA negative/inconclusive specimens were sent for HIV-1 NAT and HIV-2 antibody testing to referral laboratories. BioRad Multispot HIV-1/HIV-2 Rapid Test was also performed on a subset of specimens. Of 14,559 specimens received in 20 months, 14,517 specimens were tested. Of the 14,517 specimens that were tested, a total of 279 (1.9%) specimens were CIA repeatedly reactive and 240 of the 279 confirmed by HIV-1 IFA. Thirty-nine gave IFA negative/inconclusive result and 30 were further tested for HIV-1 NAT and 36 for HIV-2 antibody. Thirteen specimens were considered false positives by CIA and 17 specimens were classified as acute infections. Eleven of 39 IFA negative/inconclusive specimens were further tested by Multispot. Five of the 11 were positive by Multispot. The fourth generation Abbott ARCHITECT HIV Ag/Ab Combo Assay identified 17 patients who may have been missed by the prior HIV-1 screening assay used at San Diego County Public Health Laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.
Malignant Tumors and Forensics – Dilemmas and Proposals
Budimlija, Zoran; Lu, Connie; Axler-DiPerte, Grace; Seifarth, Jessica; Popiolek, Dorota; Fogt, Franz; Prinz, Mechthild
2009-01-01
Aim To evaluate the effect of genetic instability and degradation in archived histology samples from cancerous tumors and to investigate the validity of short tandem repeat (STR) typing of these samples and its potential effect on human identification. Methods Two hundred and twenty eight slides of archival pathology tissues from 13 different types of malignant tumors were compared with healthy tissues from the same individuals. DNA analysis was performed using standard techniques for forensic STR analysis, PowerPlex®16 and Identifiler® on 2 distinct sample sets. Genetic instability was assessed by comparing reference tissues with cancerous tissues derived from the same individual. Loss of heterozygosity, a ≥50% reduction in heterozygosity ratio between healthy and diseased samples, and microsatellite instability, the presence of an additional allele not present in reference tissue, were assessed. The quality of profiles obtained with respect to completeness among the archived samples and degradation using the 2 platforms were also compared. Results Profiles obtained using the Identifiler® system were generally more complete, but showed 3-fold higher levels of instability (86%) than those obtained using PowerPlex® 16 (27%). Instances of genetic instability were distributed throughout all loci in both multiplex STR systems. Conclusion After having compared 2 widely used forensic chemistries, we suggest individual validation of each kit for use with samples likely to exhibit instability combined with fixation induced degradation or artifact. A “one size fits all” approach for interpretation of these samples among commercially available multiplexes is not recommended. PMID:19480018
Morel, B; Hautier, C A
2017-02-01
The aim of this study was to evaluate the influence of the fatigue on the machine scrum pushing sagittal forces during repeated scrums and to determine the origin of the knee extensor fatigue. Twelve elite U23 rugby union front row players performed six 6-s scrums every 30 s against a dynamic scrum machine with passive or active recovery. The peak, average, and the standard deviation of the force were measured. A neuromuscular testing procedure of the knee extensors was carried out before and immediately after the repeated scrum protocol including maximal voluntary force, evoked force, and voluntary activation. The average and peak forces did not decrease after six scrums with passive recovery. The standard deviation of the force increased by 70.2 ± 42.7% (P < 0.001). Maximal voluntary/evoked force and voluntary activation decreased (respectively 25.1 ± 7.0%, 14.6 ± 5.5%, and 24 ± 9.9%; P < 0.001). The standard deviation of the force did not increase with active recovery and was associated with lower decrease of maximal voluntary/evoked force and voluntary activation (respectively 12.8 ± 7.9%, 4.9 ± 6.5%, and 7.6 ± 4.1%; all P < 0.01). As a conclusion repeated scrummaging induced an increased machine scrum pushing instability associated with central and peripheral fatigue of the knee extensors. Active recovery seems to limit all these manifestations of fatigue. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bodiu, A
2014-01-01
THE OBJECT OF STUDY: Analysis of surgical treatment results in patients with recurrent lumbar disc herniation by transforaminal lumbar interbody fusion (TLIF) and repeated laminotomy and discectomy for the improvement of pain and disability. Data analysis was performed on a complex diagnosis and treatment of 56 patients with recurrent lumbar disc herniation who had previously underwent 1-3 lumbar disc surgeries. An MRI investigation with paramagnetic contrast agent (gadolinium) was used for the diagnosis and differentiation of epidural fibrosis, and a dynamic lateral X-ray investigation was carried out for the identification of segmental instability. The evolution period after the previous surgery was between 1 and 3 years after the index surgery. Pain expression degree and dynamics were assessed with the pain visual analog scale (VAS) in early and late postoperative periods. Postoperative success was assessed by using a modified MacNab scale. The follow-up recording period after the last operation was of at least 1 year, ranging from 1 to 4 years. The surgical treatment was effective in most cases, recording a reduction in pain expression level from 7.2-7.7 points on the VAS scale to 1.7-2.1 in the early period and 2.2-2.6 in the late period (1 year). Repeated surgery was effective in 21 of 30 (70%) cases who underwent decompression surgery without fusion and in 20 of 26 (76.9%) cases who underwent repeated surgery with transforaminal lumbar interbody fusion (TLIF). Overall, postoperative success was assessed by using a modified MacNab scale. Repeated surgery is a viable option for patients who have clinical manifestations of recurrent disc herniation. Investigation with contrast agent by MRI allows differentiating disk herniation recurrences from epidural fibrosis. Supplementing repeated discectomies and decompression with intervertebral transforaminal fusion provide superior clinical outcomes, especially in patients with clinical and radiological signs of lumbar segment instability.
Evaluation of Chromosomal Instability in Diabetic Rats Treated with Naringin
A. Bakheet, Saleh; M. Attia, Sabry
2011-01-01
We used the bone marrow DNA strand breaks, micronucleus formations, spermatocyte chromosomal aberrations, and sperm characteristic assays to investigate the chromosomal instability in somatic and germinal cells of diabetic rats treated with multiple doses of naringin. The obtained results revealed that naringin was neither cytotoxic nor genotoxic for the rats at all tested doses. Moreover, naringin significantly reduced the diabetes-induced chromosomal instability in somatic and germinal cells in a dose-dependent manner. In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation, accumulation of oxidized glutathione, reduction in reduced glutathione, and accumulation of intracellular reactive oxygen species. Treatment with naringin ameliorated these biochemical markers dose-dependently. In conclusion, naringin confers an appealing protective effect against diabetes-induced chromosomal instability towards rat somatic and germinal cells which might be explained partially via diminishing the de novo free radical generation induced by hyperglycemia. Thus, naringin might be a good candidate to reduce genotoxic risk associated with hyperglycemia and may provide decreases in the development of secondary malignancy and abnormal reproductive outcomes risks, which seems especially important for diabetic patients. PMID:21941606
Cheng, Y Ky; Lin, C Sw; Kwok, Y Ky; Chan, Y M; Lau, T K; Leung, T Y; Choy, K W
2017-04-01
There is significant morbidity associated with fragile X syndrome. Unfortunately, most maternal carriers are clinically silent during their reproductive years. Because of this, many experts have put forward the notion of preconception or prenatal fragile X carrier screening for females. This study aimed to determine the prevalence of fragile X syndrome pre-mutation and asymptomatic full-mutation carriers in a Chinese pregnant population, and the distribution of cytosine-guanine-guanine (CGG) repeat numbers using a robust fragile X mental retardation 1 (FMR1) polymerase chain reaction assay. This was a cross-sectional survey in prospectively recruited pregnant women from a university hospital in Hong Kong. Chinese pregnant women without a family history of fragile X syndrome were recruited between April 2013 and May 2015. A specific FMR1 polymerase chain reaction assay was performed on peripheral blood to determine the CGG repeat number of the FMR1 gene. Prenatal counselling was offered to full-mutation and pre-mutation carriers. In 2650 Chinese pregnant women, two individuals with pre-mutation alleles (0.08%, one in 1325) and one asymptomatic woman with full-mutation (0.04%, one in 2650) alleles were identified. The overall prevalence of pre-mutation and full-mutation alleles was 0.11% (1 in 883). Furthermore, 30 (1.1%) individuals with intermediate alleles were detected. In the 2617 women with normal CGG repeats, the most common CGG repeat allele was 30. The overall prevalence of pre-mutation and asymptomatic full-mutation carriers in the Chinese pregnant population was one in 883, detected by a new FMR1 polymerase chain reaction assay.
A Rapid and Quantitative Recombinase Activity Assay
USDA-ARS?s Scientific Manuscript database
We present here a comparison between the recombinase systems FLP-FRT and Cre-loxP. A transient excision based dual luciferase expression assay is used for its rapid and repeatable nature. The detection system was designed within an intron to remove the remaining recombinase recognition site and no...
Croager, Emma J.; Gout, Alexander M.; Abraham, Lawrence J.
2000-01-01
CD30, as a member of the tumor necrosis factor (TNF) receptor family, is expressed on the surface of activated lymphoid cells. CD30 overexpression is a characteristic of lymphoproliferative diseases such as Hodgkin’s/non-Hodgkin’s lymphomas, embryonal carcinoma, and a number of Th2-associated diseases. The CD30 gene has been mapped to a region of the murine genome that is involved in susceptibility to systemic lupus erythematosus. Functionally, CD30 may play a role in the deletion of autoreactive T cells. We were interested in determining the molecular nature of CD30 overexpression. Sequence comparison has revealed significant identity between the TATA-less human and murine CD30 promoters; they share a number of common consensus binding motifs. Transfection assays identified three regions of transcriptional importance; the region between position −1.2 kb and −336 bp, containing a CCAT microsatellite sequence, a conserved Sp1 site at positions −43 to −38, and a downstream promoter element (DPE) at positions +24 to +29. EMSA and DNase I footprinting showed specific DNA-protein interactions of the CD30 promoter with the Sp1 site and the CCAT repeat region. The DPE element was shown to be essential for start site selection. We conclude that the conserved Sp1 site at −43 to −38 is associated with maximum reporter gene activity, the DPE element is required for start site selection, and the CCAT tetranucleotide repeats act to repress transcription. We also have shown that the microsatellite is multiallelic, when we screened a random healthy population. Further studies are required to determine whether microsatellite instability in the repressor predisposes susceptible individuals to CD30 overexpression. PMID:10793083
Hofmann, Jerry; Kang, Michelle; Selzer, Rebecca; Green, Roland; Zhou, Mi; Zhong, Sheng; Zhang, Luoping; Smith, Martyn T.; Marsit, Carmen; Loh, Mignon; Buffler, Patricia; Yeh, Ru-Fang
2008-01-01
TEL-AML1 (ETV6-RUNX1) is the most common translocation in the childhood leukemias, and is a prenatal mutation in most children. This translocation has been detected at a high rate among newborns (∼1%); therefore the rate-limiting event for leukemia appears to be secondary mutations. A frequent such mutation in this subtype is partial deletion of chromosome 12p, trans from the translocation. Nine del(12p) breakpoints within six leukemia cases were sequenced to explore the etiology of this genetic event, and most involved cryptic sterile translocations. Twelve of 18 del(12p) parent sequences involved in these breakpoints were located in repeat regions (8 of these in Long Interspersed Nuclear Elements, or LINEs). This stands in contrast to TEL-AML1, in which only 21 of 110 previously assessed breakpoints (19%) occur in DNA repeats (P = 0.0001). An exploratory assessment of archived neonatal blood cards (ANB cards) revealed significantly more LINE CpG methylation in individuals at birth who were later diagnosed with TEL-AML1 leukemia, compared to individuals who did not contract leukemia (P = 0.01). Nontemplate nucleotides were also more frequent in del(12p) than in TEL-AML1 junctions (P = 0.004) suggesting formation by terminal deoxynucleotidyl transferase. Assessment of six ANB cards indicated that no del(12p) rearrangements backtracked to birth, although two of these patients were previously positive for TEL-AML1 using the same assay with comparable sensitivity. These data are compatible with the a two-stage natural history: TEL-AML1 occurs prenatally, and del(12p) occurs postnatally in more mature cells with a structure that suggests the involvement of retrotransposon instability. PMID:19047175
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-01-01
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed. PMID:26099720
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-06-23
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed.
Tidball, Andrew M.; Neely, M. Diana; Chamberlin, Reed; Aboud, Asad A.; Kumar, Kevin K.; Han, Bingying; Bryan, Miles R.; Aschner, Michael; Ess, Kevin C.; Bowman, Aaron B.
2016-01-01
Alterations in DNA damage response and repair have been observed in Huntington’s disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown. PMID:26982737
On the seismic response of instable rock slopes based on ambient vibration recordings
NASA Astrophysics Data System (ADS)
Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat
2017-09-01
Rock slope failures can lead to huge human and economic loss depending on their size and exact location. Reasonable hazard mitigation requires thorough understanding of the underlying slope driving mechanisms and its rock mass properties. Measurements of seismic ambient vibrations could improve the characterization and detection of rock instabilities since there is a link between seismic response and internal structure of the unstable rock mass. An unstable slope near the village Gondo has been investigated. The unstable part shows strongly amplified ground motion with respect to the stable part of the rock slope. The amplification values reach maximum factors of 70. The seismic response on the instable part is highly directional and polarized. Re-measurements have been taken 1 year later showing exactly the same results as the original measurements. Neither the amplified frequencies nor the amplification values have changed. Therefore, ambient vibration measurements are repeatable and stay the same, if the rock mass has not undergone any significant change in structure or volume, respectively. Additionally, four new points have been measured during the re-measuring campaign in order to better map the border of the instability.[Figure not available: see fulltext.
The evolution of chromosomal instability in Chinese hamster cells: a changing picture?
NASA Technical Reports Server (NTRS)
Ponnaiya, B.; Limoli, C. L.; Corcoran, J.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.
1998-01-01
PURPOSE: To investigate the kinetics of chromosomal instability induced in clones of Chinese hamster cells following X-irradiation. MATERIALS AND METHODS: X-irradiated clones of GM10115, human-hamster hybrid cells containing a single human chromosome 4 (HC4), have been previously established. These clones were defined as unstable if they contained > or = three subpopulations of cells with unique rearrangements of HC4 as detected by FISH. Stable and unstable clones were analysed by FISH and Giemsa staining at various times post-irradiation. RESULTS: While most of the stable clones continued to show chromosomal stability of HC4 over time, one became marginally unstable at approximately 45 population doublings post-irradiation. Clones exhibiting chromosomal instability had one of several fates. Many of the unstable clones were showed similar levels of instability over time. However, one unstable clone became stable with time in culture, while another became even more unstable over time. Cytogenetic analyses of all clones after Giemsa staining indicated that in some clones the hamster chromosomes were rearranged independent of HC4, demonstrating increased frequencies of chromatid breaks and dicentric chromosomes. The majority of the unstable clones also had higher yields of chromatid gaps. CONCLUSIONS: These data demonstrate the dynamic nature of chromosomal instability as measured by two different cytogenetic assays.
Stabilization of perfect and imperfect tandem repeats by single-strand DNA exonucleases
Feschenko, Vladimir V.; Rajman, Luis A.; Lovett, Susan T.
2003-01-01
Rearrangements between tandemly repeated DNA sequences are a common source of genetic instability. Such rearrangements underlie several human genetic diseases. In many organisms, the mismatch-repair (MMR) system functions to stabilize repeats when the repeat unit is short or when sequence imperfections are present between the repeats. We show here that the action of single-stranded DNA (ssDNA) exonucleases plays an additional, important role in stabilizing tandem repeats, independent of their role in MMR. For perfect repeats of ≈100 bp in Escherichia coli that are not susceptible to MMR, exonuclease (Exo)-I, ExoX, and RecJ exonuclease redundantly inhibit deletion. Our data suggest that >90% of potential deletion events are avoided by the combined action of these three exonucleases. Imperfect tandem repeats, less prone to rearrangements, are stabilized by both the MMR-pathway and ssDNA-specific exonucleases. For 100-bp repeats containing four mispairs, ExoI alone aborts most deletion events, even in the presence of a functional MMR system. By genetic analysis, we show that the inhibitory effect of ssDNA exonucleases on deletion formation is independent of the MutS and UvrD proteins. Exonuclease degradation of DNA displaced during the deletion process may abort slipped misalignment. Exonuclease action is therefore a significant force in genetic stabilization of many forms of repetitive DNA. PMID:12538867
O'Clock, George D
2016-08-01
Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.
Morel, Mike E; McBride, Simon E; Gomez, Maria P
2017-12-01
The suitability and stability of cervical cells in Novaprep media (NHQ) for certain HPV assays is unknown. We evaluated the accuracy of an automated HPV assay (Abbott RealTime HR HPV) for cervical cells prepared in NHQ and NHQ with a pre-treatment to mimic a worst case clinical use, compared to the assay manufacturers media; repeatability and reproducibility of HPV results and the stability of detectable HPV in NHQ over time compared to CE marked liquid based cytology preservatives. Cell lines were used to simulate patient samples. Cells stored in NHQ produced accurate, repeatable and reproducible results. Stability in NHQ was comparable to the best performing LBC, with at least 7 months' stability at 18-25°C, 2-8°C, -20°C and -80°C; and at least 3 months' stability at 40°C. Similar results were obtained for pre-treated NHQ except only 3.5 months' stability at 18-25°C. Cell line samples in all media and concentrations tested were detected appropriately by the assay. Based on this first stage validation analytical study, cervical cells stored in NHQ are suitable for the Realtime HPV assay. There should be no reservations for inclusion of NHQ in any further validation and clinical performance evaluation of this assay. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Wavelength selection beyond turing
NASA Astrophysics Data System (ADS)
Zelnik, Yuval R.; Tzuk, Omer
2017-06-01
Spatial patterns arising spontaneously due to internal processes are ubiquitous in nature, varying from periodic patterns of dryland vegetation to complex structures of bacterial colonies. Many of these patterns can be explained in the context of a Turing instability, where patterns emerge due to two locally interacting components that diffuse with different speeds in the medium. Turing patterns are multistable, meaning that many different patterns with different wavelengths are possible for the same set of parameters. Nevertheless, in a given region typically only one such wavelength is dominant. In the Turing instability region, random initial conditions will mostly lead to a wavelength that is similar to that of the leading eigenvector that arises from the linear stability analysis, but when venturing beyond, little is known about the pattern that will emerge. Using dryland vegetation as a case study, we use different models of drylands ecosystems to study the wavelength pattern that is selected in various scenarios beyond the Turing instability region, focusing on the phenomena of localized states and repeated local disturbances.
The role of zonal flows in disc gravito-turbulence
NASA Astrophysics Data System (ADS)
Vanon, R.
2018-07-01
The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling time-scale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.
The role of zonal flows in disc gravito-turbulence
NASA Astrophysics Data System (ADS)
Vanon, R.
2018-04-01
The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.
Kuni, B; Mussler, J; Kalkum, E; Schmitt, H; Wolf, S I
2016-09-01
To evaluate the effects of kinesiotape, non-elastic tape, and soft brace on segmental foot kinematics during drop landing in subjects with chronic ankle instability and healthy subjects. Controlled study with repeated measurements. Three-dimensional motion analysis laboratory. Twenty participants with chronic ankle instability and 20 healthy subjects. The subjects performed drop landings with 17 retroreflective markers on the foot and lower leg in four conditions: barefoot, with kinesiotape, with non-elastic tape and with a soft brace. Ranges of motion of foot segments using a foot measurement method. In participants with chronic ankle instability, midfoot movement in the frontal plane (inclination of the medial arch) was reduced significantly by non-elastic taping, but kinesiotaping and bracing had no effect. In healthy subjects, both non-elastic taping and bracing reduced that movement. In both groups, non-elastic taping and bracing reduced rearfoot excursion in inversion/eversion significantly, which indicates a stabilisation effect. No such effect was found with kinesiotaping. All three methods reduced maximum plantar flexion significantly. Non-elastic taping stabilised the midfoot best in patients with chronic ankle instability, while kinesiotaping did not influence foot kinematics other than to stabilise the rearfoot in the sagittal plane. ClinicalTrials.gov NCT01810471. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Stevanin, Giovanni; Cassa, Eloy; Cancel, Géraldine; Abbas, Nacer; Dürr, Alexandra; Jardim, Edymar; Agid, Yves; Sousa, Patricia S; Brice, Alexis
1995-01-01
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder which has been shown to result, in Japanese families, from the expansion of a CAG repeat in the MJD1 gene on chromosome 14q. We show that the same molecular mechanism is responsible for MJD in four large Brazilian kindreds of Portuguese descent. The behaviour of the mutation was evaluated in 28 affected and 19 asymptomatic gene carriers. The number of repeats in the expanded alleles ranged from 66 to 77 with a strong negative correlation with age at onset (r=0·79). A mean 1·6 repeats increase from generation to generation correlated with clinical anticipation. Instability of the CAG repeat was bidirectional, with expansions as well as contractions, and was more marked in paternal transmissions. Finally, linkage disequilibrium was complete at locus D14S280 in the four Portuguese-Brazilian kindreds and four previously reported French families with the same mutation, which suggests the existence of a common founder. PMID:8558567
Mouse assay for determination of arsenic bioavailability in contaminated soils.
Bradham, Karen D; Diamond, Gary L; Scheckel, Kirk G; Hughes, Michael F; Casteel, Stan W; Miller, Bradley W; Klotzbach, Julie M; Thayer, William C; Thomas, David J
2013-01-01
A mouse assay for measuring the relative bioavailability (RBA) of arsenic (As) in soil was developed. In this study, results are presented of RBA assays of 16 soils, including multiple assays of the same soils, which provide a quantitative assessment of reproducibility of mouse assay results, as well as a comparison of results from the mouse assay with results from a swine and monkey assay applied to the same test soils. The mouse assay is highly reproducible; three repeated assays on the same soils yielded RBA estimates that ranged from 1 to 3% of the group mean. The mouse, monkey, and swine models yielded similar results for some, but not all, test materials. RBA estimates for identical soils (nine test soils and three standard reference materials [SRM]) assayed in mice and swine were significantly correlated (r = 0.70). Swine RBA estimates for 6 of the 12 test materials were higher than those from the mouse assay. RBA estimates for three standard reference materials (SRM) were not statistically different (mouse/swine ratio ranged from 0.86-1). When four test soils from the same orchard were assessed in the mouse, monkey, and swine assays, the mean soil As RBA were not statistically different. Mouse and swine models predicted similar steady state urinary excretion fractions (UEF) for As of 62 and 74%, respectively, during repeated ingestion doses of sodium arsenate, the water-soluble As form used as the reference in the calculation of RBA. In the mouse assay, the UEF for water soluble As(V) (sodium arsenate) and As(III) (sodium [meta] arsenite) were 62% and 66%, respectively, suggesting similar absolute bioavailabilities for the two As species. The mouse assay can serve as a highly cost-effective alternative or supplement to monkey and swine assays for improving As risk assessments by providing site-specific assessments of RBA of As in soils.
Gancarcíková, M; Zemanová, Z; Brezinová, J; Berková, A; Vcelíková, S; Smigová, J; Michalová, K
2010-01-01
Human telomeres (discovery of telomere structure and function has been recently awarded The Nobel Prize) consist of approximately 5-12 kb of tandem repeated sequences (TTAGGG)n and associated proteins capping chromosome ends which prevent degradation, loss of genetic information, end-to-end fusion, senescence and apoptosis. Due to the end-replication problem, telomere repeats are lost with each cell division, eventually leading to genetic instability and cellular senescence when telomeres become critically short. Stabilization of the telomeric DNA through telomerase activation, unique reverse transcriptase, or activation of the alternative mechanism of telomere maintenance is essential if the cells are to survive and proliferate indefinitely. Telomerase is expressed during early development and remains fully active in specific germline cells, but is undetectable in most normal somatic cells. High level of telomerase activity is detected in almost 90% of human tumours and immortalized cell lines. The hematopoietic compartment may develop genetic instability as a consequence of telomere erosion, resulting in aplastic anaemia (AA) and increased risk of myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Genetic instability associated with telomere dysfunction (i.e. short telomeres) is an early event in carcinogenesis. The molecular cytogenetic method telomere/centromere fluorescence in situ hybridization (T/C-FISH) can be used to characterize the telomere length of hematopoietic cells. This review describes recent advances in the molecular characterization of telomere system, the regulation of telomerase activity in cancer pathogenesis and shows that the telomeric length could be a potential clinical marker of hematologic neoplasia and prognosis of disease.
Wen, Li-bin; Wen, Shi-fu; He, Kong-wang
2016-01-19
Porcine circovirus-like virus P1 is a newly discovered virus. To date, there has been no specific serological assay for use in the diagnosis of P1 infection. Because P1 has high homology to porcine circovirus type 2 (PCV2) at the nucleotide level, the C-terminal portion of the capsid protein (amino acids 73-114), a discriminative antigen, was expressed in a prokaryotic expression system. The recombinant product (rctCap), composed of three identical repeated domains, was shown to be strongly immunoreactive to P1-specific serum. This assay was validated by comparison with an indirect immunofluorescence assay (IFA). The diagnostic sensitivity and specificity of the rctCap enzyme-linked immunosorbent assay (ELISA) developed in this study are 93.6% and 98.3%, respectively, compared with the results from IFAs on 450 sera samples from pigs. The indirect ELISA that we developed with rctCap, the recombinant capsid fragment containing the 217-342 nt repeat domain, was sensitive, specific, and suitable for the large-scale detection of P1 infections in swine.
Ding, Wei; Bishop, Michelle E.; Lyn-Cook, Lascelles E.; Davis, Kelly J.; Manjanatha, Mugimane G.
2016-01-01
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals. PMID:27166647
Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G
2016-05-04
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.
Coping with Natural Disasters in Yogyakarta, Indonesia: A Study of Elementary School Seachers
ERIC Educational Resources Information Center
Seyle, D. Conor; Widyatmoko, C. Siswa; Silver, Roxane Cohen
2013-01-01
The nation of Indonesia is in an area of geological instability, resulting in repeated and severe natural disasters including earthquakes, volcanic eruptions, and tsunamis. Teachers, as adult authority figures and people with whom students spend a majority of their day, can play a major role in the lives of children in a disaster-prone community.…
Staphylococcus aureus Growth using Human Hemoglobin as an Iron Source
Pishchany, Gleb; Haley, Kathryn P.; Skaar, Eric P.
2013-01-01
S. aureus is a pathogenic bacterium that requires iron to carry out vital metabolic functions and cause disease. The most abundant reservoir of iron inside the human host is heme, which is the cofactor of hemoglobin. To acquire iron from hemoglobin, S. aureus utilizes an elaborate system known as the iron-regulated surface determinant (Isd) system1. Components of the Isd system first bind host hemoglobin, then extract and import heme, and finally liberate iron from heme in the bacterial cytoplasm2,3. This pathway has been dissected through numerous in vitro studies4-9. Further, the contribution of the Isd system to infection has been repeatedly demonstrated in mouse models8,10-14. Establishing the contribution of the Isd system to hemoglobin-derived iron acquisition and growth has proven to be more challenging. Growth assays using hemoglobin as a sole iron source are complicated by the instability of commercially available hemoglobin, contaminating free iron in the growth medium, and toxicity associated with iron chelators. Here we present a method that overcomes these limitations. High quality hemoglobin is prepared from fresh blood and is stored in liquid nitrogen. Purified hemoglobin is supplemented into iron-deplete medium mimicking the iron-poor environment encountered by pathogens inside the vertebrate host. By starving S. aureus of free iron and supplementing with a minimally manipulated form of hemoglobin we induce growth in a manner that is entirely dependent on the ability to bind hemoglobin, extract heme, pass heme through the bacterial cell envelope and degrade heme in the cytoplasm. This assay will be useful for researchers seeking to elucidate the mechanisms of hemoglobin-/heme-derived iron acquisition in S. aureus and possibly other bacterial pathogens. PMID:23426144
ATM kinase is required for telomere elongation in mouse and human cells
Lee, Stella Suyong; Bohrson, Craig; Pike, Alexandra Mims; Wheelan, Sarah Jo; Greider, Carol Widney
2015-01-01
Summary Short telomeres induce a DNA damage response, senescence and apoptosis; thus, maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease. PMID:26586427
Rangel, Nelson; Forero-Castro, Maribel; Rondón-Lagos, Milena
2017-01-01
Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers. PMID:28587191
MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB*
Bleymüller, Willem M.; Lämmermann, Nina; Ebbes, Maria; Maynard, Daniel; Geerds, Christina; Niemann, Hartmut H.
2016-01-01
The facultative intracellular pathogen Listeria monocytogenes causes listeriosis, a rare but life-threatening disease. Host cell entry begins with activation of the human receptor tyrosine kinase MET through the bacterial invasion protein InlB, which contains an internalin domain, a B-repeat, and three GW domains. The internalin domain is known to bind MET, but no interaction partner is known for the B-repeat. Adding the B-repeat to the internalin domain potentiates MET activation and is required to stimulate Madin-Darby canine kidney (MDCK) cell scatter. Therefore, it has been hypothesized that the B-repeat may bind a co-receptor on host cells. To test this hypothesis, we mutated residues that might be important for binding an interaction partner. We identified two adjacent residues in strand β2 of the β-grasp fold whose mutation abrogated induction of MDCK cell scatter. Biophysical analysis indicated that these mutations do not alter protein structure. We then tested these mutants in human HT-29 cells that, in contrast to the MDCK cells, were responsive to the internalin domain alone. These assays revealed a dominant negative effect, reducing the activity of a construct of the internalin domain and mutated B-repeat below that of the individual internalin domain. Phosphorylation assays of MET and its downstream targets AKT and ERK confirmed the dominant negative effect. Attempts to identify a host cell receptor for the B-repeat were not successful. We conclude that there is limited support for a co-receptor hypothesis and instead suggest that the B-repeat contributes to MET activation through low affinity homodimerization. PMID:27789707
Jain, Aklank; Bacolla, Albino; del Mundo, Imee M.; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M.
2013-01-01
Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA. PMID:24049074
Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M
2013-12-01
Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.
Ting, Aloysius Poh Leong; Low, Grace Kah Mun; Gopalakrishnan, Kalpana; Hande, M Prakash
2010-01-01
Abstract Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H2O2) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H2O2 exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H2O2. Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H2O2. Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. PMID:19840190
hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye
We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). Amore » super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.« less
Sundararajan, Rangapriya; Freudenreich, Catherine H.
2011-01-01
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275
Threshold-Switchable Particles (TSP’s) to Control Internal Hemorrhage
2011-12-01
solution was then centrifuged for 10 minutes at 3,500 RPM. The purified supernatant was collected and the malachite green assay (which quantifies...assay was performed again and both the malachite green and fluorescamine assays were perfomed to ensure that only free polyP was removed by the...and the pellet was washed and resuspended with 450 μL DI water. H. The centrifuging and washing was repeated twice. I. UV spectroscopy, malachite
Daniels, Sarah I; Sillé, Fenna C M; Goldbaum, Audrey; Yee, Brenda; Key, Ellen F; Zhang, Luoping; Smith, Martyn T; Thomas, Reuben
2014-12-01
Blood miRNAs are a new promising area of disease research, but variability in miRNA measurements may limit detection of true-positive findings. Here, we measured sources of miRNA variability and determine whether repeated measures can improve power to detect fold-change differences between comparison groups. Blood from healthy volunteers (N = 12) was collected at three time points. The miRNAs were extracted by a method predetermined to give the highest miRNA yield. Nine different miRNAs were quantified using different qPCR assays and analyzed using mixed models to identify sources of variability. A larger number of miRNAs from a publicly available blood miRNA microarray dataset with repeated measures were used for a bootstrapping procedure to investigate effects of repeated measures on power to detect fold changes in miRNA expression for a theoretical case-control study. Technical variability in qPCR replicates was identified as a significant source of variability (P < 0.05) for all nine miRNAs tested. Variability was larger in the TaqMan qPCR assays (SD = 0.15-0.61) versus the qScript qPCR assays (SD = 0.08-0.14). Inter- and intraindividual and extraction variability also contributed significantly for two miRNAs. The bootstrapping procedure demonstrated that repeated measures (20%-50% of N) increased detection of a 2-fold change for approximately 10% to 45% more miRNAs. Statistical power to detect small fold changes in blood miRNAs can be improved by accounting for sources of variability using repeated measures and choosing appropriate methods to minimize variability in miRNA quantification. This study demonstrates the importance of including repeated measures in experimental designs for blood miRNA research. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." ©2014 American Association for Cancer Research.
Fabre, Laetitia; Le Hello, Simon; Roux, Chrystelle; Issenhuth-Jeanjean, Sylvie; Weill, François-Xavier
2014-01-01
Background Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. Methodology Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. Principal findings We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. Conclusions The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples. PMID:24498453
Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong
2012-01-03
Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. The assay was performed with Bst DNA polymerase at 65°C for 1 h. The detection limit of the 529 bp-LAMP assay was as low as 0.6 fg of T. gondii DNA. The sensitivity of this assay was 100 and 1000 fold higher than that of the LAMP targeting B1 gene (B1-LAMP) and nested PCR targeting 529 bp repeat element (529 bp-nested PCR), respectively. The specificity of the 529 bp-LAMP assay was determined using the DNA samples of Trypanosoma evansi, Plasmodium falciparum, Paragonimus westermani, Schistosoma japonicum, Fasciola hepatica and Angiostrongylus cantonensis. No cross-reactivity with the DNA of any parasites was found. The assay was able to detect T. gondii DNA in all mouse blood samples at one day post infection (dpi). We report the following findings: (i) The detection limit of the 529 bp-LAMP assay is 0.6 fg of T. gondii DNA; (ii) The assay does not involve any cross-reactivity with the DNA of other parasites; (iii) This is the first report on the application of the LAMP assay for early diagnosis of toxoplasmosis in blood samples from experimentally infected mice. Due to its simplicity, sensitivity and cost-effectiveness for common use, we suggest that this assay should be used as an early diagnostic tool for health control of toxoplasmosis.
NASA Astrophysics Data System (ADS)
Kaganovich, Igor D.
2015-11-01
In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.
MutLα Heterodimers Modify the Molecular Phenotype of Friedreich Ataxia
Ezzatizadeh, Vahid; Sandi, Chiranjeevi; Sandi, Madhavi; Anjomani-Virmouni, Sara; Al-Mahdawi, Sahar; Pook, Mark A.
2014-01-01
Background Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. PMID:24971578
Warkentin, Theodore E; Sheppard, Jo-Ann I; Chu, F Victor; Kapoor, Anil; Crowther, Mark A; Gangji, Azim
2015-01-01
Repeated therapeutic plasma exchange (TPE) has been advocated to remove heparin-induced thrombocytopenia (HIT) IgG antibodies before cardiac/vascular surgery in patients who have serologically-confirmed acute or subacute HIT; for this situation, a negative platelet activation assay (eg, platelet serotonin-release assay [SRA]) has been recommended as the target serological end point to permit safe surgery. We compared reactivities in the SRA and an anti-PF4/heparin IgG-specific enzyme immunoassay (EIA), testing serial serum samples in a patient with recent (subacute) HIT who underwent serial TPE precardiac surgery, as well as for 15 other serially-diluted HIT sera. We observed that post-TPE/diluted HIT sera-when first testing SRA-negative-continue to test strongly positive by EIA-IgG. This dissociation between the platelet activation assay and a PF4-dependent immunoassay for HIT antibodies indicates that patients with subacute HIT undergoing repeated TPE before heparin reexposure should be tested by serial platelet activation assays even when their EIAs remain strongly positive. © 2015 by The American Society of Hematology.
Quantitative analysis of TALE-DNA interactions suggests polarity effects.
Meckler, Joshua F; Bhakta, Mital S; Kim, Moon-Soo; Ovadia, Robert; Habrian, Chris H; Zykovich, Artem; Yu, Abigail; Lockwood, Sarah H; Morbitzer, Robert; Elsäesser, Janett; Lahaye, Thomas; Segal, David J; Baldwin, Enoch P
2013-04-01
Transcription activator-like effectors (TALEs) have revolutionized the field of genome engineering. We present here a systematic assessment of TALE DNA recognition, using quantitative electrophoretic mobility shift assays and reporter gene activation assays. Within TALE proteins, tandem 34-amino acid repeats recognize one base pair each and direct sequence-specific DNA binding through repeat variable di-residues (RVDs). We found that RVD choice can affect affinity by four orders of magnitude, with the relative RVD contribution in the order NG > HD ≈ NN > NI > NK. The NN repeat preferred the base G over A, whereas the NK repeat bound G with 10(3)-fold lower affinity. We compared AvrBs3, a naturally occurring TALE that recognizes its target using some atypical RVD-base combinations, with a designed TALE that precisely matches 'standard' RVDs with the target bases. This comparison revealed unexpected differences in sensitivity to substitutions of the invariant 5'-T. Another surprising observation was that base mismatches at the 5' end of the target site had more disruptive effects on affinity than those at the 3' end, particularly in designed TALEs. These results provide evidence that TALE-DNA recognition exhibits a hitherto un-described polarity effect, in which the N-terminal repeats contribute more to affinity than C-terminal ones.
Tigchelaar, S; van Sambeeck, J; Koeter, S; van Kampen, A
2018-04-01
Trochlear osteotomy is a rarely performed procedure, only indicated in selected cases. Due to its nature, it can potentially lead to cartilage damage and subsequent early osteoarthritis. Satisfactory short-term results from lateral condyle-elevating osteotomy have previously been reported. The long-term effects of this procedure on clinical outcomes, patellar stability and radiological osteoarthritis are reported here. Sixteen patients (19 knees) with patellar instability due to trochlear dysplasia were included. An isolated lateral condyle-elevating trochlear osteotomy was performed between 1995 and 2002. All patients were re-examined at a minimum of 12-year follow-up. Three patients were lost to follow-up, and one patient underwent a patellofemoral arthroplasty 3 years post-operatively due to progressive osteoarthritis. Complete follow-up was therefore available in 12 patients (15 knees). Recurrent instability, VAS pain, WOMAC, Lysholm and Kujala scores were used as outcome measures. Radiological osteoarthritis was recorded using the Iwano and the Kellgren-Lawrence classifications. A repeated-measures ANOVA was used to test for repeated measures (pre-operative, 2-year and final follow-up), and Spearman's correlation coefficient for relationships between osteoarthritis and functional scores. At final follow-up, VAS pain showed a non-significant improvement from 52 to 25, and the median Kujala score was 78. Median Lysholm (54-71, p = 0.021) and WOMAC (78-96, p = 0.021) scores improved from the pre-operative assessment to final follow-up. There was no significant difference observed between clinical scores at the 2-year and final follow-up. Residual patellar instability was reported in four out of 15 knees. Three knees showed no patellofemoral osteoarthritis, eight knees had grade 1 and four knees grade 2. No correlation between VAS pain, Lysholm, WOMAC or Kujala scores and osteoarthritis could be identified (n.s.). A stand-alone lateral condyle-elevating trochleoplasty results in the significant improvement of most clinical scores; however, when performed as a stand-alone procedure, it leads to a high percentage of residual instability. In contrast to general belief, the development of patellofemoral osteoarthritis at 12-year follow-up did not exceed the findings from other trochleoplasty case series. Case series with no comparison group, Level IV.
Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark
2009-06-01
The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.
ROHHAD Syndrome: The Girl who Forgets to Breathe.
Sanklecha, Mukesh; Sundaresan, Suba; Udani, Vrajesh
2016-04-01
ROHHAD syndrome is an exceedingly rare cause of central hypoventilation. A 7-year-old girl with ROHHAD syndrome who had central hypoventilation, rapid weight gain, multiple cardiac arrests and hyperprolactinemia. She required prolonged and repeated ventilation, and finally died due to complications of ventilation. ROHHAD Syndrome should be suspected in any child who presents with obesity, behavioral changes or autonomic instability following a neural crest tumor.
Gonzalo, Susana; Kreienkamp, Ray
2016-01-01
The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases.
Fragile DNA Motifs Trigger Mutagenesis at Distant Chromosomal Loci in Saccharomyces cerevisiae
Saini, Natalie; Zhang, Yu; Nishida, Yuri; Sheng, Ziwei; Choudhury, Shilpa; Mieczkowski, Piotr; Lobachev, Kirill S.
2013-01-01
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes. PMID:23785298
Development and Characterization of a Low-Pressure Calibration System for Hypersonic Wind Tunnels
NASA Technical Reports Server (NTRS)
Green, Del L.; Everhart, Joel L.; Rhode, Matthew N.
2004-01-01
Minimization of uncertainty is essential for accurate ESP measurements at very low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources requires a well defined and controlled calibration method. A calibration system has been constructed and environmental control software developed to control experimentation to eliminate human induced error sources. The initial stability study of the calibration system shows a high degree of measurement accuracy and precision in temperature and pressure control. Control manometer drift and reference pressure instabilities induce uncertainty into the repeatability of voltage responses measured from the PSI System 8400 between calibrations. Methods of improving repeatability are possible through software programming and further experimentation.
Validation of a Rapid Bacteria Endospore Enumeration System for Planetary Protection Application
NASA Astrophysics Data System (ADS)
Chen, Fei; Kern, Roger; Kazarians, Gayane; Venkateswaran, Kasthuri
NASA monitors spacecraft surfaces to assure that the presence of bacterial endospores meets strict criteria at launch, to minimize the risk of inadvertent contamination of the surface of Mars. Currently, the only approved method for enumerating the spores is a culture based assay that requires three days to produce results. In order to meet the demanding schedules of spacecraft assembly, a more rapid spore detection assay is being considered as an alternate method to the NASA standard culture-based assay. The Millipore Rapid Microbiology Detection System (RMDS) has been used successfully for rapid bioburden enumeration in the pharmaceutical and food industries. The RMDS is rapid and simple, shows high sensitivity (to 1 colony forming unit [CFU]/sample), and correlates well with traditional culture-based methods. It combines membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and image analysis based on photon detection with a Charge Coupled Device (CCD) camera. In this study, we have optimized the assay conditions and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications. In order to select for spores, the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol. Seven species of Bacillus (nine strains) that have been repeatedly isolated from clean room environments were assayed. All strains were detected by the RMDS in 5 hours and these assay times were repeatedly demonstrated along with low image background noise. Validation experiments to compare the Rapid Sore Assay (RSA) and NASA standard assay (NSA) were also performed. The evaluation criteria were modeled after the FDA Guideline of Process Validation, and Analytical Test Methods. This body of research demonstrates that the Rapid Spore Assay (RSA) is quick, and of equivalent sensitivity to the NASA standard assay, potentially reducing the assay time for bacterial endospores from over 72 hours to less than 8 hours. Accordingly, JPL has produced a report recommending that NASA adopt the RSA method as a suitable alternative to the NASA standard assay.
Mlakar, Simona Jurkovic; Ostanek, Barbara
2011-01-01
Gilbert's syndrome is the most common hereditary disorder of bilirubin metabolism. The causative mutation in Caucasians is almost exclusively a (TA) dinucleotide insertion in the UGT1A1 promoter. Affected individuals are homozygous for the variant promoter and have 7 TA repeats instead of 6. Promoters with 5 and 8 TA repeats also exist but are extremely rare in Caucasians. The aim of our study was to develop denaturing high-performance liquid chromatography (DHPLC) assay for genotyping UGT1A1(TA)n polymorphism and to compare it with a previously described single-strand conformation polymorphism (SSCP) assay. Fifty DNA samples with common genotypes ((TA)6/6, (TA)6/7, (TA)7/7) as well as 7 samples with one of the following rare genotypes- (TA)5/6, (TA)5/7, (TA)6/8 or (TA)7/8 were amplified by polymerase chain reaction (PCR) and genotyped by DHPLC using sizing mode. All samples were previously genotyped by SSCP assay which was validated by sequencing analysis. All samples with either common or rare genotypes showed completely concordant results between DHPLC and SSCP assays. Our results show that sizing DHPLC assay is more efficient compared to classical SSCP assay due to shorter time of genotyping analysis, ability of genotyping increased number of samples per day, higher robustness, reproducibility and cost-effectiveness with no loss of accuracy in detection of all UGT1A1(TA)n genotypes. We developed a new DHPLC assay which is suitable for accurate, automated, highthroughput, robust genotyping of all UGT1A1(TA)n polymorphism variants, compared to a labour intensive and time-consuming SSCP assay.
Exciting an Initially Cold Asteroid Belt Through a Planetary Instability
NASA Astrophysics Data System (ADS)
Deienno, Rogerio; Izidoro, Andre; Morbidelli, Alessandro; Gomes, Rodney; Nesvorny, David; Raymond, Sean N.
2018-04-01
The main asteroid belt (MB) is low in mass but dynamically excited, with much larger eccentricities and inclinations than the planets. In recent years, the Grand Tack model has been the predominant model capable of reconciling the formation of the terrestrial planets with a depleted but excited MB. Despite this success, the Grand Tack is still not generally accepted because of uncertainties in orbital migration. It was recently proposed that chaotic early evolution of Jupiter and Saturn could excite the initially cold MB. However, hydrodynamical simulations predict that the giant planets should generally emerge from the gas disk phase on orbits characterized by resonant and regular motion. Here we propose a new mechanism to excite the MB during the giant planets' ('Nice model') instability, which is expected to have included repeated close encounters between Jupiter and one or more ice giants ('Jumping Jupiter' -- JJ). We show that when Jupiter temporarily reaches a high enough level of excitation, both in eccentricity and inclination, it induces strong forced vectors of eccentricity and inclination within the MB region. Because during the JJ instability Jupiter's orbit 'jumps' around, forced vectors keep changing both in magnitude and phase throughout the whole MB region. The entire cold primordial MB can thus be excited as a natural outcome of the JJ instability. Furthermore, we show that the subsequent evolution of the Solar System is capable of reshaping the resultant MB to its present day orbital state, and that a strong mass depletion is always associated to the JJ instability phase.
Fisher, David N.; James, Adèle; Rodríguez-Muñoz, Rolando; Tregenza, Tom
2015-01-01
Examining the relevance of ‘animal personality’ involves linking consistent among- and within-individual behavioural variation to fitness in the wild. Studies aiming to do this typically assay personality in captivity and rely on the assumption that measures of traits in the laboratory reflect their expression in nature. We examined this rarely tested assumption by comparing laboratory and field measurements of the behaviour of wild field crickets (Gryllus campestris) by continuously monitoring individual behaviour in nature, and repeatedly capturing the same individuals and measuring their behaviour in captivity. We focused on three traits that are frequently examined in personality studies: shyness, activity and exploration. All of them showed repeatability in the laboratory. Laboratory activity and exploration predicted the expression of their equivalent behaviours in the wild, but shyness did not. Traits in the wild were predictably influenced by environmental factors such as temperature and sunlight, but only activity showed appreciable within-individual repeatability. This suggests that some behaviours typically studied as personality traits can be accurately assayed in captivity, but the expression of others may be highly context-specific. Our results highlight the importance of validating the relevance of laboratory behavioural assays to analogous traits measured in the wild. PMID:26019161
Abstract
As a consequence of the routine surface water quality-monitoring program of Sao Paulo State (Brazil), which includes the Salmonella microsome mutagenicity assay as one of its parameters, we detected a river used as a drinking water source after treatment, that repeate...
Garcia, Melissa; Choi, Chan; Kim, Hyeong-Rok; Daoud, Yahya; Toiyama, Yuji; Takahashi, Masanobu; Goel, Ajay; Boland, C Richard; Koi, Minoru
2012-01-01
Colorectal cancer (CRC) cells frequently have low levels of microsatellite instability (MSI-L) and elevated microsatellite alterations at tetranucleotide repeats (EMAST), but little is known about the clinicopathological significance of these features. We observed that patients with stage II or III CRC with MSI-L and/or EMAST had a shorter times of recurrence-free survival than patients with high levels of MSI (MSI-H) (P=.0084) or with highly stable microsatellites (H-MSS) (P=.0415), based on Kaplan-Meier analysis. MSI-L and/or EMAST were independent predictors of recurrent distant metastasis from primary stage II or III colorectal tumors (Cox proportional hazard analysis hazard ratio, 1.83; 95% confidence interval, 1.06–3.15; P=.0301). PMID:22465427
Inagaki, Hidehito; Ohye, Tamae; Kogo, Hiroshi; Kato, Takema; Bolor, Hasbaira; Taniguchi, Mariko; Shaikh, Tamim H; Emanuel, Beverly S; Kurahashi, Hiroki
2009-02-01
Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.
Maire, Micheline; Reichert, Carolin F.; Gabel, Virginie; Viola, Antoine U.; Krebs, Julia; Strobel, Werner; Landolt, Hans-Peter; Bachmann, Valérie; Cajochen, Christian; Schmidt, Christina
2014-01-01
Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e., state instability) in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3). By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition) and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition) in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER35/5) experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses) in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER34/4). These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioral vulnerability. PMID:24639634
Cancel, Géraldine; Abbas, Nacer; Stevanin, Giovanni; Dürr, Alexandra; Chneiweiss, Hervé; Néri, Christian; Duyckaerts, Charles; Penet, Christiane; Cann, Howard M.; Agid, Yves; Brice, Alexis
1995-01-01
The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats. ImagesFigure 3Figure 5 PMID:7573040
Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novelli, G.; Sineo, L.; Pontieri, E.
Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PKmore » gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spink, Barbara C.; Bloom, Michael S.; Wu, Susan
The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC){sub n}, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5more » species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC){sub 2} alleles were observed; however, in western gorilla, (GGGGC){sub n} alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC){sub n} was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC){sub n} alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC){sub 2} was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC){sub n} short tandem repeats are inherited, and that the (GGGGC){sub 2} allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC){sub n}, where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC){sub n} microsatellite instability • AHR promoter activity of a construct with (GGGGC){sub 2} was lower than that of (GGGGC){sub 4} • The frequency of (GGGGC){sub 2} in lung cancer patients was 8-fold higher than in neonates • The (GGGGC){sub 2} allele may be associated with lung cancer susceptibility.« less
Lee, Hee-Sheung; Lee, Nicholas C O; Grimes, Brenda R; Samoshkin, Alexander; Kononenko, Artem V; Bansal, Ruchi; Masumoto, Hiroshi; Earnshaw, William C; Kouprina, Natalay; Larionov, Vladimir
2013-05-22
Aneuploidy is a feature of most cancer cells that is often accompanied by an elevated rate of chromosome mis-segregation termed chromosome instability (CIN). While CIN can act as a driver of cancer genome evolution and tumor progression, recent findings point to the existence of a threshold level beyond which CIN becomes a barrier to tumor growth and therefore can be exploited therapeutically. Drugs known to increase CIN beyond the therapeutic threshold are currently few in number, and the clinical promise of targeting the CIN phenotype warrants new screening efforts. However, none of the existing methods, including the in vitro micronuclei (MNi) assay, developed to quantify CIN, is entirely satisfactory. We have developed a new assay for measuring CIN. This quantitative assay for chromosome mis-segregation is based on the use of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Thus, cells that inherit the HAC display green fluorescence, while cells lacking the HAC do not. This allows the measurement of HAC loss rate by routine flow cytometry. Using the HAC-based chromosome loss assay, we have analyzed several well-known anti-mitotic, spindle-targeting compounds, all of which have been reported to induce micronuclei formation and chromosome loss. For each drug, the rate of HAC loss was accurately measured by flow cytometry as a proportion of non-fluorescent cells in the cell population which was verified by FISH analysis. Based on our estimates, despite their similar cytotoxicity, the analyzed drugs affect the rates of HAC mis-segregation during mitotic divisions differently. The highest rate of HAC mis-segregation was observed for the microtubule-stabilizing drugs, taxol and peloruside A. Thus, this new and simple assay allows for a quick and efficient screen of hundreds of drugs to identify those affecting chromosome mis-segregation. It also allows ranking of compounds with the same or similar mechanism of action based on their effect on the rate of chromosome loss. The identification of new compounds that increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target the CIN phenotype in cancer cells.
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tarantino, Mary E; Bilotti, Katharina; Huang, Ji; Delaney, Sarah
2015-08-21
Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Silvaieh, Hossein; Schmid, Martin G; Hofstetter, Oliver; Schurig, Volker; Gübitz, Gerald
2002-01-01
The development of an enantioselective flow-through chemiluminescence immunosensor for amino acids is described. The approach is based on a competitive assay using enantioselective antibodies. Two different instrumental approaches, a flow-injection (FIA) and a sequential-injection system (SIA), are used. Compared to the flow-injection technique, the sequential injection-mode showed better repeatability. Both systems use an immunoreactor consisting of a flow cell packed with immobilized haptens. The haptens (4-amino-L- or D-phenylalanine) are immobilized onto a hydroxysuccinimide-activated polymer (Affi-prep 10) via a tyramine spacer. Stereoselective antibodies, raised against 4-amino-L- or D-phenylalanine, are labeled with an acridinium ester. Stereoselective inhibition of binding of the acridinum-labeled antibodies to the immobilized hapten by amino acids takes place. Chiral recognition was observed not only for the hapten molecule but also for a series of different amino acids. One assay cycle including regeneration takes 6:30 min in the FIA mode and 4:40 min in the SIA mode. Using D-phenylalanine as a sample, the detection limit was found to be 6.13 pmol/ml (1.01 ng/ml) for the flow-injection immunoassay (FIIA) and 1.76 pmol/ml (0.29 ng/ml ) for the sequential-injection immunoassay (SIIA) which can be lowered to 0.22 pmol/ml (0.036 ng/ml) or 0.064 pmol/ml (0.01 ng/ml) by using a stopped flow system. The intra-assay repeatability was found to be about 5% RSD and the inter-assay repeatability below 6% (within 3 days).
van den Broek, Walther J A A; Nelen, Marcel R; Wansink, Derick G; Coerwinkel, Marga M; te Riele, Hein; Groenen, Patricia J T A; Wieringa, Bé
2002-01-15
The mechanism of expansion of the (CTG)n repeat in myotonic dystrophy (DM1) patients and the cause of its pathobiological effects are still largely unknown. Most likely, long repeats exert toxicity at the level of nuclear RNA transport or splicing. Here, we analyse cis- and trans-acting parameters that determine repeat behaviour in novel mouse models for DM1. Our mice carry 'humanized' myotonic dystrophy protein kinase (Dmpk) allele(s) with either a (CTG)84 or a (CTG)11 repeat, inserted at the correct position into the endogenous DM locus. Unlike in the human situation, the (CTG)84 repeat in the syntenic mouse environment was relatively stable during intergenerational segregation. However, somatic tissues showed substantial repeat expansions which were progressive upon aging and prominent in kidney, and in stomach and small intestine, where it was cell-type restricted. Other tissues examined showed only marginal size changes. The (CTG)11 allele was completely stable, as anticipated. Introducing the (CTG)84 allele into an Msh3-deficient background completely blocked the somatic repeat instability. In contrast, Msh6 deficiency resulted in a significant increase in the frequency of somatic expansions. Competition of Msh3 and Msh6 for binding to Msh2 in functional complexes with different DNA mismatch-recognition specificity may explain why the somatic (CTG)n expansion rate is differentially affected by ablation of Msh3 and Msh6.
Evaluation of Genomic Instability as an Early Event in the Progression of Breast Cancer
2007-04-01
theory of marginotomy. J. Theor. Biol. 41:181-90. 8. Watson, J. D. 1972. The origin of concatemeric T7 DNA. Nat. New Biol. 239:197-201. 9. Karlseder...concentrations were measured 6 using the Picogreen® dsDNA quantitation assay (Molecular Probes, Eugene, OR) using a λ phage DNA as the standard as
The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review.
Mazeh, Haggi; Mizrahi, Ido; Ilyayev, Nadia; Halle, David; Brücher, Bjoern; Bilchik, Anton; Protic, Mladjan; Daumer, Martin; Stojadinovic, Alexander; Itzhak, Avital; Nissan, Aviram
2013-01-01
The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research.Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC.The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC.
Penketh, P. G.; Shyam, K.; Baumann, R. P; Zhu, Rui; Ishiguro, K.; Sartorelli, A. C.; Ratner, E. S.
2016-01-01
Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. PMID:27188264
Arbyn, Marc; Buntinx, Frank; Van Ranst, Marc; Paraskevaidis, Evangelos; Martin-Hirsch, Pierre; Dillner, Joakim
2004-02-18
The appropriate management of women with minor cytologic lesions in their cervix is unclear. We performed a meta-analysis to assess the accuracy of human papillomavirus (HPV) DNA testing as an alternative to repeat cytology in women who had equivocal results on a previous Pap smear. Data were extracted from articles published between 1992 and 2002 that contained results of virologic and cytologic testing followed by colposcopically directed biopsy in women with an index smear showing atypical cells of undetermined significance (ASCUS). Fifteen studies were identified in which HPV triage and the histologic outcome (presence or absence of a cervical intraepithelial neoplasia of grade II or worse [CIN2+]) was documented. Nine, seven, and two studies also documented the accuracy of repeat cytology when the cutoff for abnormal cytology was set at a threshold of ASCUS or worse, low-grade squamous intraepithelial lesion (LSIL) or worse, or high-grade squamous intraepithelial lesion (HSIL) or worse, respectively. Random-effects models were used for pooling of accuracy parameters in case of interstudy heterogeneity. Differences in accuracy were assessed by pooling the ratio of the sensitivity (or specificity) of HPV testing to that of repeat cytology. The sensitivity and specificity were 84.4% (95% confidence interval [CI] = 77.6% to 91.1%) and 72.9% (95% CI = 62.5% to 83.3%), respectively, for HPV testing overall and 94.8% (95% CI = 92.7% to 96.9%) and 67.3% (95% CI = 58.2% to 76.4%), respectively, for HPV testing in the eight studies that used the Hybrid Capture II assay. Sensitivity and specificity of repeat cytology at a threshold for abnormal cytology of ASCUS or worse was 81.8% (95% CI = 73.5% to 84.3%) and 57.6% (95% CI = 49.5% to 65.7%), respectively. Repeat cytology that used higher cytologic thresholds yielded substantially lower sensitivity but higher specificity than triage with the Hybrid Capture II assay. The ratio of the sensitivity of the Hybrid Capture II assay to that of repeat cytology at a threshold of ASCUS or worse pooled from the four studies that used both triage tests was 1.16 (95% CI = 1.04 to 1.29). The specificity ratio was not statistically different from unity. The published literature indicates that the Hybrid Capture II assay has improved accuracy (higher sensitivity, similar specificity) than the repeat Pap smear using the threshold of ASCUS for an outcome of CIN2+ among women with equivocal cytologic results. The sensitivity of triage at higher cytologic cutoffs is poor.
Koch, Melissa R.; House, Nealia C. M.; Cosetta, Casey M.; Jong, Robyn M.; Salomon, Christelle G.; Joyce, Cailin E.; Philips, Elliot A.; Su, Xiaofeng A.; Freudenreich, Catherine H.
2018-01-01
CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair. PMID:29305386
Comparison of toxicity test methods using embryos of the grass shrimp, Palaemonetes pugio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rayburn, J.R.; Fisher, W.S.; Foss, S.S.
The embryos of the grass shrimp (Palaemonetes pugio) have shown sensitivity to the water soluble fraction of number 2 fuel oil (WSF{sub oil}). To determine the repeatability and versatility of the grass shrimp in bioassays, detailed concentration-response curves were performed using altered test methods. These alterations were to make the test system easier to use, require less volume of toxic material and to shorten the time of the assay. LC50 values for each method were obtained. The methods evaluated the differences between altering time of exposure from 12 to 4 days. The 4-day assay in 24-well plastic plates included themore » time of hatch, a critical life stage of these embryos. The average 12-day LC50 in the glass Leighton tubes was 11.8% VN WSF{sub oil}. The coefficient of variation of the individual test methods were approximately 25%, showing that the repeatability was reasonable for bioassays. These results show that a 4-day assay is practical for screening for the detection of number 2 fuel oil contamination. However, the 12-day assay may be necessary for detection of developmental abnormalities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Ehwang; Gao, Yuqian; Wu, Chaochao
Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less
Webb, D Harry; Marrero, Cynthia; Ellis, Helen; Merriwether, Lea; Dove, Alistair D M
2013-09-01
A reagent-free spectrophotometric assay was developed to measure the concentration of metronidazole (a 5-nitroimidazole) in both freshwater and seawater matrices. This assay is simple, repeatable, sensitive, and precise and is ideal for use when a rapid, selective test to determine metronidazole concentration in aqueous matrices is necessary. The assay was practically tested on a South American fishes display during treatment with metronidazole for an outbreak of the flagellated parasite Spironucleus in a mixed cichlid (family Cichlidae) and tetra (family Characidae) community. The assay clearly illustrated the course of treatment for the system during a real clinical application. The assay is not without limitations, as interferences can occur from other drugs in the matrix with similar absorbance spectra. Nonetheless, this type of assay illustrates the potential for use of native absorbance assays in aqueous matrices for this and other therapeutic compounds.
Diverticular disease of the colon does not increase risk of repeat C. difficile infection.
Feuerstadt, Paul; Das, Rohit; Brandt, Lawrence J
2013-01-01
Studies have suggested that colonic diverticulosis might increase the likelihood of repeat Clostridium difficile infection (CDI). Our study was designed to compare rates of repeat infection in patients with and without colon diverticula. Patients who had a positive C. difficile toxin assay and colonoscopic evidence of diverticulosis were classified as CDI and diverticulosis (CDI-D), whereas those with a positive toxin assay but no such colonoscopic evidence were classified as CDI and no diverticulosis (CDI-ND). Various clinical and epidemiologic factors were recorded for each patient. Primary outcomes were "relapse" (repeat CDI within 3 mo of initial infection) and "recurrent" infection (repeat CDI≥3 mo after initial infection). Secondary outcomes 30 days after diagnosis were mortality, intensive care unit transfer, and continuous hospitalization. A total of 128 patients were classified as CDI-D, whereas 137 had CDI-ND. There were no significant differences between CDI-D and CDI-ND when comparing frequencies of repeat infection and its subclassifications, relapse or recurrence. There were, however, statistical associations seen between diverticulosis of the ascending colon and increased recurrence rates [hazard ratio (HR): 1.4±0.38, P<0.05] and decreased rates of relapse in diverticular disease of the descending (HR: 0.40±0.46, P<0.05), and sigmoid colon (HR: 0.39±0.49, P<0.05). The ascending colon association is limited by a small patient population. There were no significant differences in any of the 30-day outcomes including intensive care unit requirement, hospitalization stay, or mortality. Patients with diverticular disease of the colon are not at increased risk of repeat CDI.
Statistical validation of normal tissue complication probability models.
Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis
2012-09-01
To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.
Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies.
Kumru, Ozan S; Joshi, Sangeeta B; Smith, Dawn E; Middaugh, C Russell; Prusik, Ted; Volkin, David B
2014-09-01
Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon
2017-11-01
Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.
Moore, Stephen R; Ritter, Linda E; Gibbons, Catherine F; Grosovsky, Andrew J
2005-10-01
Structural chromosomal rearrangements are commonly observed in tumor karyotypes and in radiation-induced genomic instability. Here we report the effects of TP53 deficiency on karyotypic stability before and after irradiation using related cells and clones differing in cellular TP53 status. The parental cell line, TK6, is a TP53 wild-type human B-lymphoblastoid line with a highly stable karyotype. In the two TK6 derivatives used here, TP53 has been inactivated by biochemical means (expression of HPV16 E6; TK6-5E) or genetic means (allelic inactivation; NH32). Biochemical inactivation of TP53 (TK6-5E) had little effect on the spontaneous karyotype, whereas allelic inactivation of TP53 (NH32) resulted in a modest increase in spontaneous karyotypic instability. After 2 Gy gamma irradiation, the number of unstable clones derived from TP53-deficient cells was significantly elevated compared to the TP53 wild-type counterpart. Extensively destabilized clones were common after irradiation in the set of clones derived from NH32 cells, and one was observed in the set of TK6-5E clones; however, they were never observed in TK6-derived clones. In two of the irradiated NH32 clones, whole chromosomes or chromosome bands were preferentially involved in alterations. These results suggest that genomic instability may differ both quantitatively and qualitatively as a consequence of altered TP53 expression. Some of the results showing repeated and preferential chromosome involvement in aberrations support a model in which instability may be driven by cis mechanisms.
Borrebaeck, C; Börjeson, J; Mattiasson, B
1978-06-15
Thermometric enzyme-linked immunosorbent assay (TELISA) is described. After the procedure of optimization, human serum albumin was assayed using anti-human serum albumin bound to Sepharose CL 4-B in the enzyme thermistor unit and catalase as label on the free antigen. The model system was used for assays down to 10(-13)M and the preparation of immobilized antibodies was used repeatedly up to 100 times. Comparative studies of the TELISA technique with bromocresol green, immunoturbidimetric and rocket immunoelectrophoretic methods were carried out and showed that TELISA could be used as an alternative method.
Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV)
Purcell, Maureen K.; Thompson, Rachel L.; Garver, Kyle A.; Hawley, Laura M.; Batts, William N.; Sprague, Laura; Sampson, Corie; Winton, James R.
2013-01-01
Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.
Siotto, Mariacristina; Pasqualetti, Patrizio; Marano, Massimo; Squitti, Rosanna
2014-10-01
Ceruloplasmin (Cp) is a serum ferroxidase that plays an essential role in iron metabolism. It is routinely tested by immunoturbidimetric assays that quantify the concentration of the protein both in its active and inactive forms. Cp activity is generally analyzed manually; the process is time-consuming, has a limited repeatability, and is not suitable for a clinical setting. To overcome these inconveniences, we have set the automation of the o-dianisidine Cp activity assay on a Cobas Mira Plus apparatus. The automation was rapid and repeatable, and the data were provided in terms of IU/L. The assay was adapted for human sera and showed a good precision [coefficient of variation (CV) 3.7 %] and low limit of detection (LoD 11.58 IU/L). The simultaneous analysis of Cp concentration and activity in the same run allowed us to calculate the Cp-specific activity that provides a better index of the overall Cp status. To test the usefulness of this automation, we tested this assay on 104 healthy volunteers and 36 patients with Wilson's disease, hepatic encephalopathy, and chronic liver disease. Cp activity and specific activity distinguished better patients between groups with respect to Cp concentration alone, and providing support for the clinical investigation of neurological diseases in which liver failure is one of the clinical hallmarks.
Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs.
López-Giráldez, Francesc; Andrés, Olga; Domingo-Roura, Xavier; Bosch, Montserrat
2006-10-23
The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNALys-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNALys-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the interspersed repeat. Moreover, microsatellites associated with tRNALys-derived SINEs showed the highest complexity and less potential instability. Our results suggest that tRNALys-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNALys-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes.Finally, due to their higher complexity and lower potential informative content of microsatellites associated with tRNALys-derived SINEs, we recommend avoiding their use as genetic markers.
Robinett, C C; O'Connor, A; Dunaway, M
1997-01-01
We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359
Cagnoli, Claudia; Michielotto, Chiara; Matsuura, Tohru; Ashizawa, Tetsuo; Margolis, Russell L.; Holmes, Susan E.; Gellera, Cinzia; Migone, Nicola; Brusco, Alfredo
2004-01-01
At least 18 human genetic diseases are caused by expansion of short tandem repeats. Here we describe a successful application of a fluorescent PCR method for the detection of expanded repeats in FRDA1, SCA10, and SCA12 genes. Although this test cannot give a precise estimate of the size of the expansion, it is robust, reliable, and inexpensive, and can be used to screen large series of patients. It proved useful for confirming the presence of large expansions in the Friedreich ataxia gene following an ambiguous result of long-range PCR, as well as rapid pre-screening for large repeat expansions associated with Friedreich ataxia and SCA10 and the shorter repeat expansions associated with SCA12. PMID:15096564
Intrastrand triplex DNA repeats in bacteria: a source of genomic instability
Holder, Isabelle T.; Wagner, Stefanie; Xiong, Peiwen; Sinn, Malte; Frickey, Tancred; Meyer, Axel; Hartig, Jörg S.
2015-01-01
Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon. PMID:26450966
Ida, Masato; Taniguchi, Nobuyuki
2003-09-01
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
Yan, Weiwei; Saleem, Muhammad Hassan; McDonough, Patrick; McDonough, Sean P.; Divers, Thomas J.
2013-01-01
Leptospira immunoglobulin (Ig)-like (Lig) proteins are a novel family of surface-associated proteins in which the N-terminal 630 amino acids are conserved. In this study, we truncated the LigA conserved region into 7 fragments comprising the 1st to 3rd (LigACon1-3), 4th to 7.5th (LigACon4-7.5), 4th (LigACon4), 4.5th to 5.5th (LigACon4.5–5.5), 5.5th to 6.5th (LigACon5.5–6.5), 4th to 5th (LigACon4-5), and 6th to 7.5th (LigACon6-7.5) repeat domains. All 7 recombinant Lig proteins were screened using a slot-shaped dot blot assay for the diagnosis of equine leptospirosis. Our results showed that LigACon4-7.5 is the best candidate diagnostic antigen in a slot-shaped dot blot assay. LigACon4-7.5 was further evaluated as an indirect enzyme-linked immunosorbent assay (ELISA) antigen for the detection of Leptospira antibodies in equine sera. This assay was evaluated with equine sera (n = 60) that were microscopic agglutination test (MAT) negative and sera (n = 220) that were MAT positive to the 5 serovars that most commonly cause equine leptospirosis. The indirect ELISA results showed that at a single serum dilution of 1:250, the sensitivity and specificity of ELISA were 80.0% and 87.2%, respectively, compared to those of MAT. In conclusion, an indirect ELISA was developed utilizing a recombinant LigA fragment comprising the 4th to 7.5th repeat domain (LigACon4-7.5) as a diagnostic antigen for equine leptospirosis. This ELISA was found to be sensitive and specific, and it yielded results that concurred with those of the standard MAT. PMID:23720368
Avogaro, Laura; Querido, Emmanuelle; Dalachi, Myriam; Jantsch, Michael F; Chartrand, Pascal; Cusanelli, Emilio
2018-04-16
Telomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. While TERRA RNAs are predominantly nuclear and localize at telomeres, little is known about the dynamics and function of TERRA molecules expressed from individual telomeres. Herein, we developed an assay to image endogenous TERRA molecules expressed from a single telomere in living human cancer cells. We show that single-telomere TERRA can be detected as TERRA RNA single particles which freely diffuse within the nucleus. Furthermore, TERRA molecules aggregate forming TERRA clusters. Three-dimensional size distribution and single particle tracking analyses revealed distinct sizes and dynamics for TERRA RNA single particles and clusters. Simultaneous time lapse confocal imaging of TERRA particles and telomeres showed that TERRA clusters transiently co-localize with telomeres. Finally, we used chemically modified antisense oligonucleotides to deplete TERRA molecules expressed from a single telomere. Single-telomere TERRA depletion resulted in increased DNA damage at telomeres and elsewhere in the genome. These results suggest that single-telomere TERRA transcripts participate in the maintenance of genomic integrity in human cancer cells.
Flemming, C; Göbel, H; Wand, H; Gabert, A; Bock, W
1978-01-01
The pectinolytic enzymes are of practical interest for the clarification of fruit juice. In the present paper the covalent coupling of polygalacturonase (PG; E. C. 3.2.1.15) is reported. A commercially available enzyme (Rohament P; 5 U/mg) and purified Endo-PG (200 U/mg) are immobilized to the following carriers: BrCN-activated Sepharose, carbodiimide-activated CH-Sepharose, dialdehyde Sepharose, dialdehyde Sephadex, dialdehyde cellulose, CMC-azide, carbodiimide-activated CMC, macroporous glass (isothiocyanate and carbodiimide coupling) and glass beads. The implications of pore diameter (Sephadex- and Sepharose derivatives), of purity of the PG, of protein content of the PG-carrier-complexes as well as the presence of substrate during the coupling reaction, are discused in relation to the relative and specific activity of the bound protein and to the efficiency of the coupling reaction. From the carriers under study derivatives of Sepharose yield the best result (relative activity max. 88%, specific activity max. 5400 U/mg). The immobilization to isothiocyanate glass yields good results, too (relative activity 20%, specific activity 500 U/g). The mechanical instability of the PG-dialdehye Sephadex-complexes and the low relative activity of the bound enzyme are unsatisfactory. Due to their low affinity to PG, the derivatives of cellulose are also inappropriate for covalent coupling of this enzyme. All PG-carrier-complexes are largely stable both during storage at 4 degrees C and repeated activity assays.
Pourcel, Christine; Minandri, Fabrizia; Hauck, Yolande; D'Arezzo, Silvia; Imperi, Francesco; Vergnaud, Gilles; Visca, Paolo
2011-01-01
Acinetobacter baumannii is an important opportunistic pathogen responsible for nosocomial outbreaks, mostly occurring in intensive care units. Due to the multiplicity of infection sources, reliable molecular fingerprinting techniques are needed to establish epidemiological correlations among A. baumannii isolates. Multiple-locus variable-number tandem-repeat analysis (MLVA) has proven to be a fast, reliable, and cost-effective typing method for several bacterial species. In this study, an MLVA assay compatible with simple PCR- and agarose gel-based electrophoresis steps as well as with high-throughput automated methods was developed for A. baumannii typing. Preliminarily, 10 potential polymorphic variable-number tandem repeats (VNTRs) were identified upon bioinformatic screening of six annotated genome sequences of A. baumannii. A collection of 7 reference strains plus 18 well-characterized isolates, including unique types and representatives of the three international A. baumannii lineages, was then evaluated in a two-center study aimed at validating the MLVA assay and comparing it with other genotyping assays, namely, macrorestriction analysis with pulsed-field gel electrophoresis (PFGE) and PCR-based sequence group (SG) profiling. The results showed that MLVA can discriminate between isolates with identical PFGE types and SG profiles. A panel of eight VNTR markers was selected, all showing the ability to be amplified and good amounts of polymorphism in the majority of strains. Independently generated MLVA profiles, composed of an ordered string of allele numbers corresponding to the number of repeats at each VNTR locus, were concordant between centers. Typeability, reproducibility, stability, discriminatory power, and epidemiological concordance were excellent. A database containing information and MLVA profiles for several A. baumannii strains is available from http://mlva.u-psud.fr/. PMID:21147956
Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase
Schawalder, James; Paric, Enesa; Neff, Norma F
2003-01-01
Background Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci. Results Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal. Conclusion These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres. PMID:14577841
Zhao, Xiao-Nan; Kumari, Daman; Gupta, Shikha; Wu, Di; Evanitsky, Maya; Yang, Wei; Usdin, Karen
2015-01-01
Fragile X-associated disorders are Repeat Expansion Diseases that result from expansion of a CGG/CCG-repeat in the FMR1 gene. Contractions of the repeat tract also occur, albeit at lower frequency. However, these contractions can potentially modulate disease symptoms or generate an allele with repeat numbers in the normal range. Little is known about the expansion mechanism and even less about contractions. We have previously demonstrated that the mismatch repair (MMR) protein MSH2 is required for expansions in a mouse model of these disorders. Here, we show that MSH3, the MSH2-binding partner in the MutSβ complex, is required for 98% of germ line expansions and all somatic expansions in this model. In addition, we provide evidence for two different contraction mechanisms that operate in the mouse model, a MutSβ-independent one that generates small contractions and a MutSβ-dependent one that generates larger ones. We also show that MutSβ complexes formed with the repeats have altered kinetics of ATP hydrolysis relative to complexes with bona fide MMR substrates and that MutSβ increases the stability of the CCG-hairpins at physiological temperatures. These data may have important implications for our understanding of the mechanism(s) of repeat instability and for the role of MMR proteins in this process. PMID:26420841
An improved assay for the determination of Huntington`s disease allele size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, C.; Klinger, K.; Miller, G.
1994-09-01
The hallmark of Huntington`s disease (HD) is the expansion of a polymorphic (CAG)n repeat. Several methods have been published describing PCR amplification of this region. Most of these assays require a complex PCR reaction mixture to amplify this GC-rich region. A consistent problem with trinucleotide repeat PCR amplification is the presence of a number of {open_quotes}stutter bands{close_quotes} which may be caused by primer or amplicon slippage during amplification or insufficient polymerase processivity. Most assays for HD arbitrarily select a particular band for diagnostic purposes. Without a clear choice for band selection such an arbitrary selection may result in inconsistent intra-more » or inter-laboratory findings. We present an improved protocol for the amplification of the HD trinucleotide repeat region. This method simplifies the PCR reaction buffer and results in a set of easily identifiable bands from which to determine allele size. HD alleles were identified by selecting bands of clearly greater signal intensity. Stutter banding was much reduced thus permitting easy identification of the most relevant PCR product. A second set of primers internal to the CCG polymorphism was used in selected samples to confirm allele size. The mechanism of action of N,N,N trimethylglycine in the PCR reaction is not clear. It may be possible that the minimal isostabilizing effect of N,N,N trimethylglycine at 2.5 M is significant enough to affect primer specificity. The use of N,N,N trimethylglycine in the PCR reaction facilitated identification of HD alleles and may be appropriate for use in other assays of this type.« less
The armadillo repeat region targets ARVCF to cadherin-based cellular junctions.
Kaufmann, U; Zuppinger, C; Waibler, Z; Rudiger, M; Urbich, C; Martin, B; Jockusch, B M; Eppenberger, H; Starzinski-Powitz, A
2000-11-01
The cytoplasmic domain of the transmembrane protein M-cadherin is involved in anchoring cytoskeletal elements to the plasma membrane at cell-cell contact sites. Several members of the armadillo repeat protein family mediate this linkage. We show here that ARVCF, a member of the p120 (ctn) subfamily, is a ligand for the cytoplasmic domain of M-cadherin, and characterize the regions involved in this interaction in detail. Complex formation in an in vivo environment was demonstrated in (1) yeast two-hybrid screens, using a cDNA library from differentiating skeletal muscle and part of the cytoplasmic M-cadherin tail as a bait, and (2) mammalian cells, using a novel experimental system, the MOM recruitment assay. Immunoprecipitation and in vitro binding assays confirmed this interaction. Ectopically expressed EGFP-ARVCF-C11, an N-terminal truncated fragment, targets to junctional structures in epithelial MCF7 cells and cardiomyocytes, where it colocalizes with the respective cadherins, beta-catenin and p120 (ctn). Hence, the N terminus of ARVCF is not required for junctional localization. In contrast, deletion of the four N-terminal armadillo repeats abolishes this ability in cardiomyocytes. Detailed mutational analysis revealed the armadillo repeat region of ARVCF as sufficient and necessary for interaction with the 55 membrane-proximal amino acids of the M-cadherin tail.
Rahman, Md Mahfujur; Ali, Md Eaqub; Hamid, Sharifah Bee Abd; Mustafa, Shuhaimi; Hashim, Uda; Hanapi, Ummi Kalthum
2014-08-01
A polymerase chain reaction (PCR) assay for the assessment of dog meat adulteration in meatballs was developed. The assay selectively amplified a 100-bp region of canine mitochondrial cytochrome b gene from pure, raw, processed and mixed backgrounds. The specificity of the assay was tested against 11 animals and 3 plants species, commonly available for meatball formulation. The stability of the assay was proven under extensively autoclaving conditions that breakdown target DNA. A blind test from ready to eat chicken and beef meatballs showed that the assay can repeatedly detect 0.2% canine meat tissues under complex matrices using 0.04 ng of dog DNA extracted from differentially treated meatballs. The simplicity, stability and sensitivity of the assay suggested that it could be used in halal food industry for the authentication of canine derivatives in processed foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Song, Ehwang; Gao, Yuqian; Wu, Chaochao; ...
2017-07-19
Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less
Foiry, Laurent; Dong, Li; Savouret, Cédric; Hubert, Laurence; te Riele, Hein; Junien, Claudine; Gourdon, Geneviève
2006-06-01
The CTG repeat involved in myotonic dystrophy is one of the most unstable trinucleotide repeats. However, the molecular mechanisms underlying this particular form of genetic instability-biased towards expansions-have not yet been completely elucidated. We previously showed, with highly unstable CTG repeat arrays in DM1 transgenic mice, that Msh2 is required for the formation of intergenerational and somatic expansions. To identify the partners of Msh2 in the formation of intergenerational CTG repeat expansions, we investigated the involvement of Msh3 and Msh6, partners of Msh2 in mismatch repair. Transgenic mice with CTG expansions were crossed with Msh3- or Msh6-deficient mice and CTG repeats were analysed after maternal and paternal transmissions. We demonstrated that Msh3 but not Msh6 plays also a key role in the formation of expansions over successive generation. Furthermore, the absence of one Msh3 allele was sufficient to decrease the formation of expansions, indicating that Msh3 is rate-limiting in this process. In the absence of Msh6, the frequency of expansions decreased only in maternal transmissions. However, the significantly lower levels of Msh2 and Msh3 proteins in Msh6 -/- ovaries suggest that the absence of Msh6 may have an indirect effect.
FANCA safeguards interphase and mitosis during hematopoiesis in vivo
Abdul-Sater, Zahi; Cerabona, Donna; Sierra Potchanant, Elizabeth; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz
2015-01-01
Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in non-hematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material (PCM) to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA cross-linking and antimitotic chemotherapeutics in primary FANCA−/− cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that the FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers. PMID:26366677
Repeated-Slip Training: An Emerging Paradigm for Prevention of Slip-Related Falls Among Older Adults
Pai, YC; Bhatt, TS
2009-01-01
Falls frequently cause injury-related hospitalization or death among older adults. This article reviews a new conceptual framework on dynamic stability and weight support in reducing the risk for falls resulting from a forward slip, based on the principles of motor control and learning, in the context of adaptation and longer-term retention induced by repeated-slip training. Although an unexpected slip is severely destabilizing, a recovery step often is adequate for regaining stability, regardless of age. Consequently, poor weight support (quantified by reduction in hip height), rather than instability, is the major determinant of slip-related fall risk. Promisingly, a single session of repeated-slip training can enhance neuromechanical control of dynamic stability and weight support to prevent falls, which can be retained for several months or longer. These principles provide the theoretical basis for establishing task-specific adaptive training that facilitates the development of protective strategies to reduce falls among older adults. PMID:17712033
Zeng, Ying; Shen, Yunyun; Hong, Ling; Chen, Yanfeng; Shi, Xiaofang; Zeng, Qunli; Yu, Peilin
2017-06-01
The prevalence of domestic and industrial electrical appliances has raised concerns about the health risk of extremely low-frequency magnetic fields (ELF-MFs). At present, the effects of ELF-MFs on the central nervous system are still highly controversial, and few studies have investigated its effects on cultured neurons. Here, we evaluated the biological effects of different patterns of ELF-MF exposure on primary cultured hippocampal neurons in terms of viability, apoptosis, genomic instability, and oxidative stress. The results showed that repeated exposure to 50-Hz 2-mT ELF-MF for 8 h per day after different times in culture decreased the viability and increased the production of intracellular reactive oxidative species in hippocampal neurons. The mechanism was potentially related to the up-regulation of Nox2 expression. Moreover, none of the repeated exposure patterns had significant effects on DNA damage, apoptosis, or autophagy, which suggested that ELF-MF exposure has no severe biological consequences in cultured hippocampal neurons.
Lai, Yanhao; Budworth, Helen; Beaver, Jill M; Chan, Nelson L S; Zhang, Zunzhen; McMurray, Cynthia T; Liu, Yuan
2016-08-22
Studies in knockout mice provide evidence that MSH2-MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2-MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2-MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion.
Lai, Yanhao; Budworth, Helen; Beaver, Jill M.; Chan, Nelson L. S.; Zhang, Zunzhen; McMurray, Cynthia T.; Liu, Yuan
2016-01-01
Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion. PMID:27546332
Chromosome rearrangements via template switching between diverged repeated sequences
Anand, Ranjith P.; Tsaponina, Olga; Greenwell, Patricia W.; Lee, Cheng-Sheng; Du, Wei; Petes, Thomas D.
2014-01-01
Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. PMID:25367035
Penketh, Philip G; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C; Ratner, Elena S
2016-09-01
Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. Copyright © 2016 Elsevier Inc. All rights reserved.
Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C
2013-10-01
The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions.
Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St. Claire, Jason; Panigrahi, Gagan B.; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R.; Cohen, Paula E.; Li, Guo-Min; Pearson, Christopher E.; Daly, Mark J.; Wheeler, Vanessa C.
2013-01-01
The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease HdhQ111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.HdhQ111) than on a 129 background (129.HdhQ111). Linkage mapping in (B6x129).HdhQ111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.HdhQ111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. HdhQ111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1–MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2–MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein levels play an important role in driving of the efficiency of somatic expansions. PMID:24204323
Misas, Elizabeth; Muñoz, José Fernando; Gallo, Juan Esteban; McEwen, Juan Guillermo; Clay, Oliver Keatinge
2016-04-01
The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Insights from analysis for harmful and potentially harmful constituents (HPHCs) in tobacco products.
Oldham, Michael J; DeSoi, Darren J; Rimmer, Lonnie T; Wagner, Karl A; Morton, Michael J
2014-10-01
A total of 20 commercial cigarette and 16 commercial smokeless tobacco products were assayed for 96 compounds listed as harmful and potentially harmful constituents (HPHCs) by the US Food and Drug Administration. For each product, a single lot was used for all testing. Both International Organization for Standardization and Health Canada smoking regimens were used for cigarette testing. For those HPHCs detected, measured levels were consistent with levels reported in the literature, however substantial assay variability (measured as average relative standard deviation) was found for most results. Using an abbreviated list of HPHCs, statistically significant differences for most of these HPHCs occurred when results were obtained 4-6months apart (i.e., temporal variability). The assay variability and temporal variability demonstrate the need for standardized analytical methods with defined repeatability and reproducibility for each HPHC using certified reference standards. Temporal variability also means that simple conventional comparisons, such as two-sample t-tests, are inappropriate for comparing products tested at different points in time from the same laboratory or from different laboratories. Until capable laboratories use standardized assays with established repeatability, reproducibility, and certified reference standards, the resulting HPHC data will be unreliable for product comparisons or other decision making in regulatory science. Copyright © 2014 Elsevier Inc. All rights reserved.
Byrne, Thomas; Fargo, Jamison D; Montgomery, Ann Elizabeth; Roberts, Christopher B; Culhane, Dennis P; Kane, Vincent
2015-01-01
This study examined veterans' responses to the Veterans Health Administration's (VHA's) universal screen for homelessness and risk of homelessness during the first 12 months of implementation. We calculated the baseline annual frequency of homelessness and risk of homelessness among all veterans who completed an initial screen during the study period. We measured changes in housing status among veterans who initially screened positive and then completed a follow-up screen, assessed factors associated with such changes, and identified distinct risk profiles of veterans who completed a follow-up screen. More than 4 million veterans completed an initial screen; 1.8% (n=77,621) screened positive for homelessness or risk of homelessness. Of those who initially screened positive for either homelessness or risk of homelessness and who completed a second screen during the study period, 85.0% (n=15,060) resolved their housing instability prior to their second screen. Age, sex, race, VHA eligibility, and screening location were all associated with changes in housing stability. We identified four distinct risk profiles for veterans with ongoing housing instability. To address homelessness among veterans, efforts should include increased and targeted engagement of veterans experiencing persistent housing instability.
Kidd, J A; Ross, P; Buntzman, A S; Hess, P R
2015-06-01
Resistance to Escherichia coli l-asparaginase in canine lymphoma occurs frequently with repeated administration, a phenomenon often attributed, without substantiation, to the induction of neutralizing antibodies. To test the hypothesis that treated dogs develop antibodies against the drug, we created an enzyme-linked immunosorbent assay (ELISA) to measure plasma anti-asparaginase immunoglobulin G responses. Using samples from dogs that had received multiple doses, specific reactivity against l-asparaginase was demonstrated, while naïve patients' samples were negative. The optimized ELISA appeared sensitive, with endpoint titers >1 600 000 in positive control dogs. Intra- and inter-assay coefficients of variation were 3.6 and 14.5%. The assay was supported by the observation that ELISA-positive plasma could immunoprecipitate asparaginase activity. When clinical patients were evaluated, 3/10 dogs developed titers after a single injection; with repeated administration, 4/7 dogs were positive. l-asparaginase antibodies showed reduced binding to the PEGylated drug formulation. The ELISA should prove useful in investigating the potential correlation of antibody responses with resistance. © 2012 Blackwell Publishing Ltd.
Genomic Instability and Breast Cancer
2011-01-01
interaction between CCDC98 and BRCA1 (Kim et al., 2007; Liu et al., 2007; Wang et al., 2007). BRCC36 expressed and purified from insect cells was...Figure 7. (A) An in vitro DUB assay was conducted using K63 ubiquitin chains as substrate and insect cell-expressed BRCC36, the BRCC36/KIAA0157...Tandom Affinity Purification (TAP), Irradiation , Immuno- staining, and Immunoprecipitation—All of these procedures were performed as described
The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review
Mazeh, Haggi; Mizrahi, Ido; Ilyayev, Nadia; Halle, David; Brücher, Björn LDM; Bilchik, Anton; Protic, Mladjan; Daumer, Martin; Stojadinovic, Alexander; Avital, Itzhak; Nissan, Aviram
2013-01-01
The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research. Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC. The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC. PMID:23459799
Williams, R R; Hassan-Walker, A F; Lavender, F L; Morgan, M; Faik, P; Ragoussis, J
2001-05-16
Minisatellites are tandemly repeated DNA sequences found throughout the genomes of all eukaryotes. They are regions often prone to instability and hence hypervariability; thus repeat unit sequence is generally not conserved beyond closely related species. We have studied the minisatellite located in intron 9 of the human glucose phosphate isomerase (GPI) gene (also known as neuroleukin, autocrine motility factor, maturation and differentiation factor) and have found, by Zoo blotting coupled with PCR amplification and DNA sequencing, that similar repeat units are present in seven other species of mammal. There is also evidence for the presence of the minisatellite in chicken. The repeat unit does not appear to be present at any other locus in these genomes. Minisatellite DNA has been reported to be involved in recombination activity, control of gene expression of nearby gene(s) (both transcriptional and translational), whilst others form protein coding regions. The high level of conservation exhibited by the GPI minisatellite, coupled with the unique location, strongly suggests a functional role. Our results from transient and stable transfections using luciferase reporter constructs have shown that the GPI minisatellite region can act to increase transcription from the SV40 promoter, CMV promoter and the human GPI promoter.
Solanki, Archana; Singh, Abhay; Chaudhary, Rajendra
2016-01-01
Enzyme-linked immunosorbent assay (ELISA) used for screening blood donors for transfusion transmitted infections (TTIs) can sometimes fail to detect blood donors who are recently infected or possessing the low strength of pathogen. Estimation of a grey zone in ELISA testing and repeat testing of grey zone samples can further help in reducing the risks of TTI in countries where nucleic acid amplification testing for TTIs is not feasible. Grey zone samples with optical density (OD) lying between cut-off OD and 10% below the cut-off OD (cut-off OD × 0.9) were identified during routine ELISA testing. On performing repeat ELISA testing on grey zone samples in duplicate, the samples showing both OD value below grey zone were marked nonreactive, and samples showing one or both OD value in the grey zone were marked indeterminate. The samples on repeat testing showing one or both OD above cut-off value were marked positive. About 119 samples (77 for hepatitis B virus [HBV], 23 for human immunodeficiency virus [HIV], and 19 for hepatitis C virus [HCV]) were found to be in grey zone. On repeat testing of these samples in duplicate, 70 (58.8%) samples (45 for HBV, 12 for HIV, and 13 for HCV) were found to be reactive. Six (5%) samples (four for HBV, one for HIV, and one for HCV) were found to be indeterminate. Seventy donors initially screened negative, were found out to be potentially infectious on repeat grey zone testing. Thus, estimation of grey zone samples with repeat testing can further enhance the safety of blood transfusion.
Quantifying ataxia: ideal trajectory analysis--a technical note
NASA Technical Reports Server (NTRS)
McPartland, M. D.; Krebs, D. E.; Wall, C. 3rd
2000-01-01
We describe a quantitative method to assess repeated stair stepping stability. In both the mediolateral (ML) and anterioposterior (AP) directions, the trajectory of the subject's center of mass (COM) was compared to an ideal sinusoid. The two identified sinusoids were unique in each direction but coupled. Two dimensionless numbers-the mediolateral instability index (IML) and AP instability index (IAP)-were calculated using the COM trajectory and ideal sinusoids for each subject with larger index values resulting from less stable performance. The COM trajectories of nine nonimpaired controls and six patients diagnosed with unilateral or bilateral vestibular labyrinth hypofunction were analyzed. The average IML and IAP values of labyrinth disorder patients were respectively 127% and 119% greater than those of controls (p<0.014 and 0.006, respectively), indicating that the ideal trajectory analysis distinguishes persons with labyrinth disorder from those without. The COM trajectories also identify movement inefficiencies attributable to vestibulopathy.
Ensuring long-term stability of infrared camera absolute calibration.
Kattnig, Alain; Thetas, Sophie; Primot, Jérôme
2015-07-13
Absolute calibration of cryogenic 3-5 µm and 8-10 µm infrared cameras is notoriously instable and thus has to be repeated before actual measurements. Moreover, the signal to noise ratio of the imagery is lowered, decreasing its quality. These performances degradations strongly lessen the suitability of Infrared Imaging. These defaults are often blamed on detectors reaching a different "response state" after each return to cryogenic conditions, while accounting for the detrimental effects of imperfect stray light management. We show here that detectors are not to be blamed and that the culprit can also dwell in proximity electronics. We identify an unexpected source of instability in the initial voltage of the integrating capacity of detectors. Then we show that this parameter can be easily measured and taken into account. This way we demonstrate that a one month old calibration of a 3-5 µm camera has retained its validity.
Lopez, Christopher R; Singh, Shivani; Hambarde, Shashank; Griffin, Wezley C; Gao, Jun; Chib, Shubeena; Yu, Yang; Ira, Grzegorz; Raney, Kevin D; Kim, Nayun
2017-06-02
G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Holmes, E A; Bonsall, M B; Hales, S A; Mitchell, H; Renner, F; Blackwell, S E; Watson, P; Goodwin, G M; Di Simplicio, M
2016-01-26
Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP).
Hirai, K; Kumakiri, M; Ueda, K; Imamura, Y; Noriki, S; Nishi, Y; Kato, H; Fukuda, M
2001-01-01
We examined the clonal evolution of skin malignant lesions by repeated topical applications of 20-methylcholanthrene (20-MC) to the skin, which induces hyperplastic epidermis, papillomatous lesion and invasive carcinoma in mice. The lesions were examined histologically and immunohistochemically with anti-single-stranded DNA after acid hydrolysis (DNA-instability test), p53, VEGF, DFF45, PCNA and AgNORs parameters analyses. Multiple clones with increased DNA instability comparable to that of invasive carcinoma were noted in early-stage (2-6 weeks) hyperplastic epidermis, and their number increased in middle (7-11 weeks), and late-stages (12-25 weeks) of hyperplastic epidermis, indicating that they belong to the malignancy category. All papillomatous lesions and invasive carcinomas showed a positive DNA-instability test. Positive immunostaining for various biomarkers and AgNORs parameters appeared in clones with a positive DNA-instability test in early-or middle-stage hyperplastic epidermis, and markedly increased in late-stage hyperplastic epidermis, papillomatous lesions and invasive carcinomas. The percentage of PCNA-positive vascular endothelial cells was significantly higher in VEGF-positive lesions with a positive DNA-instability test and became higher toward the late-stage of progression. Cut-woundings were made to papillomatous and invasive carcinoma lesions, and the regeneration activity of vascular endothelial cells was determined by using flash labeling with tritiated thymidine (3H-TdR). In small papillomatous lesions, vascular endothelial cells showed regenerative response, but the response was weak in large lesions. No such response was noted in invasive carcinomas; rather, cut-wounding induced collapse of blood vessels, which in turn induced massive coagulative necrosis of cancer cells. These responses can be interpreted to reflect exhausted vascular growth activity due to excessive stimulation by VEGF-overexpression, which was persistently seen from hyperplastic epidermis to invasive carcinoma.
Delahunt, Eamonn; Monaghan, Kenneth; Caulfield, Brian
2006-12-01
The ankle joint requires very precise neuromuscular control during the transition from terminal swing to the early stance phase of the gait cycle. Altered ankle joint arthrokinematics and muscular activity have been cited as potential factors that may lead to an inversion sprain during the aforementioned time periods. However, to date, no study has investigated patterns of muscle activity and 3D joint kinematics simultaneously in a group of subjects with functional instability compared with a noninjured control group during these phases of the gait cycle. To compare the patterns of lower limb 3D joint kinematics and electromyographic activity during treadmill walking in a group of subjects with functional instability with those observed in a control group. Controlled laboratory study. Three-dimensional angular velocities and displacements of the hip, knee, and ankle joints, as well as surface electromyography of the rectus femoris, peroneus longus, tibialis anterior, and soleus muscles, were recorded simultaneously while subjects walked on a treadmill at a velocity of 4 km/h. Before heel strike, subjects with functional instability exhibited a decrease in vertical foot-floor clearance (12.62 vs 22.84 mm; P < .05), as well as exhibiting a more inverted position of the ankle joint before, at, and immediately after heel strike (1.69 degrees , 2.10 degrees , and -0.09 degrees vs -1.43 degrees , -1.43 degrees , and -2.78 degrees , respectively [minus value = eversion]; P < .05) compared with controls. Subjects with functional instability were also observed to have an increase in peroneus longus integral electromyography during the post-heel strike time period (107.91%.millisecond vs 64.53%.millisecond; P < .01). The altered kinematics observed in this study could explain the reason subjects with functional instability experience repeated episodes of ankle inversion injury in situations with only slight or no external provocation. It is hypothesized that the observed increase in peroneus longus activity may be the result of a change in preprogrammed feed-forward motor control.
NASA Astrophysics Data System (ADS)
Apostol, Barbara L.; Kazantsev, Alexsey; Raffioni, Simona; Illes, Katalin; Pallos, Judit; Bodai, Laszlo; Slepko, Natalia; Bear, James E.; Gertler, Frank B.; Hersch, Steven; Housman, David E.; Marsh, J. Lawrence; Michels Thompson, Leslie
2003-05-01
The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.
Ayres, N.; Holt, D. J.; Jones, C.F.; Corum, L. E.; Grainger, D. W.
2009-01-01
A new polymer brush chemistry containing sulfonated carbohydrate repeat units has been synthesized from silicon substrates using ATRP methods and characterized both in bulk and using surface analysis. The polymer brush was designed to act as a mimic for the naturally occurring sulfonated glycosaminoglycan, heparin, commonly used for modifying blood-contacting surfaces both in vitro and in vivo. Surface analysis showed conversion of brush saccharide precursor chemistry to the desired sulfonated polymer product. The sulfonated polymer brush surface was further analyzed using three conventional in vitro tests for blood compatibility -- plasma recalcification times, complement activation, and thrombin generation. The sulfonated polymer brush films on silicon oxide wafers exhibited better assay performance in these blood component assays than the unsulfonated sugar functionalized polymer brush in all tests performed. PMID:19859552
Performance of the SNPforID 52 SNP-plex assay in paternity testing.
Børsting, Claus; Sanchez, Juan J; Hansen, Hanna E; Hansen, Anders J; Bruun, Hanne Q; Morling, Niels
2008-09-01
The performance of a multiplex assay with 52 autosomal single nucleotide polymorphisms (SNPs) developed for human identification was tested on 124 mother-child-father trios. The typical paternity indices (PIs) were 10(5)-10(6) for the trios and 10(3)-10(4) for the child-father duos. Using the SNP profiles from the randomly selected trios and 700 previously typed individuals, a total of 83,096 comparisons between mother, child and an unrelated man were performed. On average, 9-10 mismatches per comparison were detected. Four mismatches were genetic inconsistencies and 5-6 mismatches were opposite homozygosities. In only two of the 83,096 comparisons did an unrelated man match perfectly to a mother-child duo, and in both cases the PI of the true father was much higher than the PI of the unrelated man. The trios were also typed for 15 short tandem repeats (STRs) and seven variable number of tandem repeats (VNTRs). The typical PIs based on 15 STRs or seven VNTRs were 5-50 times higher than the typical PIs based on 52 SNPs. Six mutations in tandem repeats were detected among the randomly selected trios. In contrast, there was not found any mutations in the SNP loci. The results showed that the 52 SNP-plex assay is a very useful alternative to currently used methods in relationship testing. The usefulness of SNP markers with low mutation rates in paternity and immigration casework is discussed.
Gonzalez-Vasconcellos, Iria; Alonso-Rodríguez, Silvia; López-Baltar, Isidoro; Fernández, José Luis
2015-01-01
Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA. Copyright © 2014 Elsevier B.V. All rights reserved.
Shih, Yi-Fen; Yu, Hsiang-Ting; Chen, Wen-Yin; Liao, Kwong-Kum; Lin, Hsiu-Chen; Yang, Yea-Ru
2018-03-01
To examine the effects of joint mobilization and exercise training on neuromuscular performance in individuals with functional ankle instability (FAI). A cross-sectional study. Forty five subjects with FAI were randomized into three groups: control (CG, n = 15, 27.9 ± 6.6yr), training (TG, n = 15, 26.9 ± 5.8yr) and mobilization with training group (MTG, n = 15, 26.5 ± 4.8yr). Four weeks of neuromuscular training for TG; neuromuscular training and joint mobilization for MTG. Electromyography of the peroneus longus (PL), tibialis anterior (TA), and soleus (SOL) and the reaching distance of the Y balance test (YBT), dorsiflexion range of motion (DFROM), Cumberland ankle instability tool (CAIT), and global rating scale (GRS). Two-way repeated measures MANOVA were used with the significance level p < .05. MANOVA found significant group by time interactions on posterolateral reaching distance (p = .032), PL activation (p = .006-.03), DFROM (p < .001), CAIT (p < .001) and GRS (p < .001). The post hoc tests indicated significantly improved PL muscle activity and posterolateral reaching distance for MTG compared to TG (p = .004) and CG (p = .006). Joint mobilization resulted in additional benefits on self-reported ankle instability severity, dorsiflexion mobility, and posterolateral balance performance in individuals with FAI, but its effects on general improvement, muscle activation, and other balance tasks remained uncertain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systematic diagnosis and therapy of lateral elbow pain with emphasis on elbow instability.
Kniesel, Bettina; Huth, Jochen; Bauer, Gerhard; Mauch, Frieder
2014-12-01
In recalcitrant epicondylitis innumerable operative techniques have been published, nevertheless a certain percentage of patients remains symptomatic after operative treatment. We developed an individual, systematic diagnostic pathway including arthroscopic assessment of elbow stability to identify the optimal and respectively less invasive therapy. We so far included 40 patients with recalcitrant lateral epicondylitis (mean age 46 ± 11). 5 patients had previous surgery. In all patients, we did an elbow arthroscopy and a systematic arthroscopic stability testing. 25 patients were treated exclusively arthroscopically once instability was excluded. In 13 patients with slight instability, we did an open debridement of the lateral tendon complex and local refixation. Two patients with severe instability were treated with open debridement and additional stabilization of the LUCL with a trizeps graft. With a minimum follow-up of 1 year, we assessed the DASH score and subjective patient satisfaction. Mean follow-up was 24 ± 12 months, mean duration of symptoms before surgery was 19 ± 18 months. The mean DASH score at follow-up was 22 ± 19.36 patients reported symptoms improvement, 34 patients would repeat surgery given the same situation; in 30 cases, patients expectations had been fulfilled. We did not observe any intraoperative complications or infections. One patient developed joint stiffness requiring reoperation. Using a systematic diagnostic pathway including assessment of elbow stability and consecutive individualized, respectively, less invasive surgical procedure we acquired high patients satisfaction and good clinical outcome with a low complication rate. Level III.
Biomechanical Comparison of an Open vs Arthroscopic Approach for Lateral Ankle Instability.
Drakos, Mark C; Behrens, Steve B; Paller, Dave; Murphy, Conor; DiGiovanni, Christopher W
2014-08-01
The current clinical standard for the surgical treatment of ankle instability remains the open modified Broström procedure. Modern advents in arthroscopic technology have allowed physicians to perform certain foot and ankle procedures arthroscopically as opposed to traditional open approaches. Twenty matched lower extremity cadaver specimens were obtained. Steinman pins were inserted into the tibia and talus with 6 sensors affixed to each pin. Specimens were placed in a Telos ankle stress apparatus in an anteroposterior and then lateral position, while a 1.7 N-m load was applied. For each of these tests, movement of the sensors was measured in 3 planes using the Optotrak Computer Navigation System. Changes in position were calculated and compared with the unloaded state. The anteriortalofibular ligament and the calcaneofibular ligament were thereafter sectioned from the fibula. The aforementioned measurements in the loaded and unloaded states were repeated on the specimens. The sectioned ligaments were then repaired using 2 corkscrew anchors. Ten specimens were repaired using a standard open Broström-type repair, while the matched pairs were repaired using an arthroscopic technique. Measurements were repeated and compared using a paired t test. There was a statistically significant difference between the sectioned state and the other 3 states (P < .05). There were no statistically significant differences between the intact state and either the open or arthroscopic state (P > .05). There were no significant differences between the open and arthroscopic repairs with respect to translation and total combined motion during the talar tilt test (P > .05). Statistically significant differences were demonstrated between the 2 methods in 3 specific axes of movement during talar tilt (P = .04). Biomechanically effective ankle stabilization may be amenable to a minimally invasive approach. A minimally invasive, arthroscopic approach can be considered for treating patients with lateral ankle instability who have failed conservative treatment. © The Author(s) 2014.
C9orf72 hexanucleotide repeat expansions in Chinese sporadic amyotrophic lateral sclerosis.
He, Ji; Tang, Lu; Benyamin, Beben; Shah, Sonia; Hemani, Gib; Liu, Rong; Ye, Shan; Liu, Xiaolu; Ma, Yan; Zhang, Huagang; Cremin, Katie; Leo, Paul; Wray, Naomi R; Visscher, Peter M; Xu, Huji; Brown, Matthew A; Bartlett, Perry F; Mangelsdorf, Marie; Fan, Dongsheng
2015-09-01
A hexanucleotide repeat expansion (HRE) in the C9orf72 gene has been identified as the most common mutation in amyotrophic lateral sclerosis (ALS) among Caucasian populations. We sought to comprehensively evaluate genetic and epigenetic variants of C9orf72 and the contribution of the HRE in Chinese ALS cases. We performed fragment-length and repeat-primed polymerase chain reaction to determine GGGGCC copy number and expansion within the C9orf72 gene in 1092 sporadic ALS (sALS) and 1062 controls from China. We performed haplotype analysis of 23 single-nucleotide polymorphisms within and surrounding C9orf72. The C9orf72 HRE was found in 3 sALS patients (0.3%) but not in control subjects (p = 0.25). For 2 of the cases with the HRE, genotypes of 8 single-nucleotide polymorphisms flanking the HRE were inconsistent with the haplotype reported to be strongly associated with ALS in Caucasian populations. For these 2 individuals, we found hypermethylation of the CpG island upstream of the repeat, an observation not detected in other sALS patients (p < 10(-8)) or controls. The detailed analysis of the C9orf72 locus in a large cohort of Chinese samples provides robust evidence that may not be consistent with a single Caucasian founder event. Both the Caucasian and Chinese haplotypes associated with HRE were highly associated with repeat lengths >8 repeats implying that both haplotypes may confer instability of repeat length. Copyright © 2015 Elsevier Inc. All rights reserved.
Anjomani Virmouni, Sara; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.
2014-01-01
Background Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats). Methodology/Principal Findings We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R. Conclusions/Significance Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy. PMID:25198290
Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders
Usdin, Karen; Hayward, Bruce E.; Kumari, Daman; Lokanga, Rachel A.; Sciascia, Nicholas; Zhao, Xiao-Nan
2014-01-01
The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5′ UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects. PMID:25101111
Rood, Johannes J M; van Hoppe, Stephanie; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H; Sparidans, Rolf W
2016-01-25
A validated simple, fast and sensitive bio-analytical assay for ibrutinib and its dihydrodiol metabolite in human and mouse plasma was set up. Sample preparation was performed by protein precipitation, and addition of the respective deuterated internal standards, followed by LC-MS/MS analysis. Separation was performed on a 3.5 μm particle-size, bridged ethylene hybrid column with gradient elution by 0.1% v/v formic acid and acetonitrile. The full eluate was transferred to an electrospray interface in positive ionization mode, and subsequently analyzed by a triple quadrupole mass spectrometer by selected reaction monitoring. The assay was validated in a 5-5000 ng/ml calibration range. Both ibrutinib and dihydrodiol-ibrutinib were deemed stable under refrigerated or frozen storage conditions. At room temperature, ibrutinib showed a not earlier described instability, and revealed rapid degradation at 37 °C. Finally, the assay was used for a pharmacokinetic study of plasma levels in treated FVB mice. Copyright © 2015 Elsevier B.V. All rights reserved.
In vitro non-homologous DNA end joining assays—The 20th anniversary
Pastwa, Elzbieta; Somiari, Richard I.; Malinowski, Mariusz; Somiari, Stella B.; Winters, Thomas A.
2010-01-01
DNA double-strand breaks (DSBs) are the most serious forms of DNA damage in cells. Unrepaired or misrepaired DSBs account for some of the genetic instabilities that lead to mutations or cell death, and consequently, to cancer predisposition. In human cells non-homologous DNA end joining (NHEJ) is the main repair mechanism of these breaks. Systems for DNA end joining study have been developing during the last 20 years. New assays have some advantages over earlier in vitro DSBs repair assays because they are less time-consuming, allow the use of clinical material and examination of the joining DNA ends produced physiologically in mammalian cells. Proteins involved in NHEJ repair pathway can serve as biomarkers or molecular targets for anticancer drugs. Results of studies on NHEJ in cancer could help to select potent repair inhibitors that may selectively sensitize tumor cells to ionizing radiation (IR) and chemotherapy. Here, we review the principles and practice of in vitro NHEJ assays and provide some insights into the future prospects of this assay in cancer diagnosis and treatment. PMID:19110069
C9orf72 repeat expansions in rapid eye movement sleep behaviour disorder.
Daoud, Hussein; Postuma, Ronald B; Bourassa, Cynthia V; Rochefort, Daniel; Gauthier, Maude Turcotte; Montplaisir, Jacques; Gagnon, Jean-Francois; Arnulf, Isabelle; Dauvilliers, Yves; Charley, Christelle Monaca; Inoue, Yuichi; Sasai, Taeko; Högl, Birgit; Desautels, Alex; Frauscher, Birgit; Cochen De Cock, Valérie; Rouleau, Guy A; Dion, Patrick A
2014-11-01
A large hexanucleotide repeat expansion in C9orf72 has been identified as the most common genetic cause in familial amyotrophic lateral sclerosis and frontotemporal dementia. Rapid Eye Movement Sleep Behavior Disorder (RBD) is a sleep disorder that has been strongly linked to synuclein-mediated neurodegeneration. The aim of this study was to evaluate the role of the C9orf72 expansions in the pathogenesis of RBD. We amplified the C9orf72 repeat expansion in 344 patients with RBD by a repeat-primed polymerase chain reaction assay. We identified two RBD patients carrying the C9orf72 repeat expansion. Most interestingly, these patients have the same C9orf72 associated-risk haplotype identified in 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia families. Our study enlarges the phenotypic spectrum associated with the C9orf72 hexanucleotide repeat expansions and suggests that, although rare, this expansion may play a role in the pathogenesis of RBD.
The SNPforID Assay as a Supplementary Method in Kinship and Trace Analysis
Schwark, Thorsten; Meyer, Patrick; Harder, Melanie; Modrow, Jan-Hendrick; von Wurmb-Schwark, Nicole
2012-01-01
Objective Short tandem repeat (STR) analysis using commercial multiplex PCR kits is the method of choice for kinship testing and trace analysis. However, under certain circumstances (deficiency testing, mutations, minute DNA amounts), STRs alone may not suffice. Methods We present a 50-plex single nucleotide polymorphism (SNP) assay based on the SNPs chosen by the SNPforID consortium as an additional method for paternity and for trace analysis. The new assay was applied to selected routine paternity and trace cases from our laboratory. Results and Conclusions Our investigation shows that the new SNP multiplex assay is a valuable method to supplement STR analysis, and is a powerful means to solve complicated genetic analyses. PMID:22851934
Long-Term Resolution of Viral Breakthrough after Changing HIV Viral Load Assay.
Obeid, Karam M; Sural, Preethi; Szpunar, Susan; Johnson, Leonard B
2011-01-01
Viral load (VL) measurement assays differ in their sensitivity with polymerase chain reaction assays (PCR) being more sensitive than branched DNA (bDNA) assays. We evaluated virologic outcomes of patients and physicians' response to increased VL after a switch from bDNA to PCR assay. Retrospective, case-control study on 65 HIV+ patients receiving highly active antiretroviral therapy (HAART). Cases included patients with undetectable VL by bDNA that became detectable after the switch; controls were patients that remained undetectable. Records were reviewed up to 1 year after the switch. A total of 58.5% patients had detectable VL after the switch. Repeat VL testing and resistance testing were ordered in 15.4% and 23.1% of these patients, respectively. By 1 year, VL was undetectable in 82.8% of cases and 92% of controls (P = .30), without change in HAART. Transient viremia after changing VL assay reflects the different sensitivity of these assays with no impact on patients' outcomes compared to controls.
Genomic Instability and Breast Cancer
2011-06-01
Survival Assay—Atotal of 1 103 cells were seeded onto a 60-mm dish in triplicate. Twenty-four hours after seeding, cells were irradiated by using a JL...ShepherdMark I-68A 137Cs- irradiator at indicated doses and incubated for 14 days. Result- ing colonies were fixed and stainedwithCoomassie Blue. Num...antibodies, cell culture, transfection and siRNAs, DNA substrates protein purification in insect cells, electrophoretic mobility shift assay and the ATPase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, J.J.A.; Julien-Inalsingh, C.; Wing, M.
Sib, twin, and family studies have shown that a genetic cause exists in many cases of autism, with a portion of cases associated with a fragile X chromosome. Three folate-sensitive fragile sites in the Xq27{r_arrow}Xq28 region have been cloned and found to have polymorphic trinucleotide repeats at the respective sites; these repeats are amplified and methylated in individuals who are positive for the different fragile sites. We have tested affected boys and their mothers from 19 families with two autistic/PDD boys for amplification and/or instability of the triplet repeats at these loci and concordance of inheritance of alleles by affectedmore » brothers. In all cases, the triplet repeat numbers were within the normal range, with no individuals having expanded or premutation-size alleles. For each locus, there was no evidence for an increased frequency of concordance, indicating that mutations within these genes are unlikely to be responsible for the autistic/PDD phenotypes in the affected boys. Thus, we think it is important to retest those autistic individuals who were cytogenetically positive for a fragile X chromosome, particularly cases where there is no family history of the fragile X syndrome, using the more accurate DNA-based testing procedures. 29 refs., 1 fig., 1 tab.« less
Bruegl, Amanda S.; Djordjevic, Bojana; Urbauer, Diana L.; Westin, Shannon N.; Soliman, Pamela T.; Lu, Karen H.; Luthra, Rajyalakshmi; Broaddus, Russell R.
2013-01-01
Clinical screening criteria, such as young age of endometrial cancer diagnosis and family history of signature cancers, have traditionally been used to identify women with Lynch Syndrome, which is caused by mutation of a DNA mismatch repair gene. Immunohistochemistry and microsatellite instability analysis have evolved as important screening tools to evaluate endometrial cancer patients for Lynch Syndrome. A complicating factor is that 15-20% of sporadic endometrial cancers have immunohistochemical loss of the DNA mismatch repair protein MLH1 and high levels of microsatellite instability due to methylation of MLH1. The PCR-based MLH1 methylation assay potentially resolves this issue, yet many clinical laboratories do not perform this assay. The objective of this study was to determine if clinical and pathologic features help to distinguish sporadic endometrial carcinomas with MLH1 loss secondary to MLH1 methylation from Lynch Syndrome-associated endometrial carcinomas with MLH1 loss and absence of MLH1 methylation. Of 337 endometrial carcinomas examined, 54 had immunohistochemical loss of MLH1. 40/54 had MLH1 methylation and were designated as sporadic, while 14/54 lacked MLH1 methylation and were designated as Lynch Syndrome. Diabetes and deep myometrial invasion were associated with Lynch Syndrome; no other clinical or pathological variable distinguished the 2 groups. Combining Society of Gynecologic Oncology screening criteria with these 2 features accurately captured all Lynch Syndrome cases, but with low specificity. In summary, no single clinical/pathologic feature or screening criteria tool accurately identified all Lynch Syndrome-associated endometrial carcinomas, highlighting the importance of the MLH1 methylation assay in the clinical evaluation of these patients. PMID:23888949
Bruegl, Amanda S; Djordjevic, Bojana; Urbauer, Diana L; Westin, Shannon N; Soliman, Pamela T; Lu, Karen H; Luthra, Rajyalakshmi; Broaddus, Russell R
2014-01-01
Clinical screening criteria, such as young age of endometrial cancer diagnosis and family history of signature cancers, have traditionally been used to identify women with Lynch Syndrome, which is caused by mutation of a DNA mismatch repair gene. Immunohistochemistry and microsatellite instability analysis have evolved as important screening tools to evaluate endometrial cancer patients for Lynch Syndrome. A complicating factor is that 15-20% of sporadic endometrial cancers have immunohistochemical loss of the DNA mismatch repair protein MLH1 and high levels of microsatellite instability due to methylation of MLH1. The PCR-based MLH1 methylation assay potentially resolves this issue, yet many clinical laboratories do not perform this assay. The objective of this study was to determine if clinical and pathologic features help to distinguish sporadic endometrial carcinomas with MLH1 loss secondary to MLH1 methylation from Lynch Syndrome-associated endometrial carcinomas with MLH1 loss and absence of MLH1 methylation. Of 337 endometrial carcinomas examined, 54 had immunohistochemical loss of MLH1. 40/54 had MLH1 methylation and were designated as sporadic, while 14/54 lacked MLH1 methylation and were designated as Lynch Syndrome. Diabetes and deep myometrial invasion were associated with Lynch Syndrome; no other clinical or pathological variable distinguished the 2 groups. Combining Society of Gynecologic Oncology screening criteria with these 2 features accurately captured all Lynch Syndrome cases, but with low specificity. In summary, no single clinical/pathologic feature or screening criteria tool accurately identified all Lynch Syndrome-associated endometrial carcinomas, highlighting the importance of the MLH1 methylation assay in the clinical evaluation of these patients.
Cardiotrophin-1 Induces Matrix Metalloproteinase-1 in Human Aortic Endothelial Cells
Tokito, Akinori; Jougasaki, Michihisa; Ichiki, Tomoko; Hamasaki, Shuichi
2013-01-01
Rupture of an atherosclerotic plaque is a key event in the development of cardiovascular disorders, in which matrix metalloproteinase-1 (MMP-1) plays a crucial role by degradation of extracellular matrix resulting in plaque instability. Cardiotrophin-1 (CT-1), a member of interleukin-6-type proinflammatory cytokines, has potent cardiovascular actions and is highly expressed in vascular endothelium, however its role in atherosclerosis has not been fully elucidated to date. The present study was designed to investigate whether CT-1 induces MMP-1 in human aortic endothelial cells (HAECs). Ribonuclease protection assay demonstrated that MMP-1 gene level in HAECs was enhanced by the treatment of CT-1 in a dose- and time-dependent manner. Immunocytochemical staining, Western immunoblot analysis and enzyme-linked immunosorbent assay revealed that CT-1 augmented MMP-1 protein synthesis and secretion. MMP-1 activity assay revealed that MMP-1 present in the supernatant of HAECs was exclusively precursor form. Casein zymography disclosed proteolytic activity in the supernatant of HAECs, which was enhanced by CT-1 treatment. Furthermore, pharmacological inhibitor study indicated the important roles of extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein (MAP) kinase, c-Jun N-terminal kinase (JNK) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways in mediating CT-1-induced MMP-1 gene and protein expression. These data reveal for the first time that CT-1 induces the proteolytic potential in HAECs by upregulating MMP-1 expression through ERK1/2, p38 MAP kinase, JNK and JAK/STAT pathways, and suggest that CT-1 may play an important role in the pathophysiology of atherosclerosis and plaque instability. PMID:23935888
Hepatitis C Virus RNA Real-Time Quantitative RT-PCR Method Based on a New Primer Design Strategy.
Chen, Lida; Li, Wenli; Zhang, Kuo; Zhang, Rui; Lu, Tian; Hao, Mingju; Jia, Tingting; Sun, Yu; Lin, Guigao; Wang, Lunan; Li, Jinming
2016-01-01
Viral nucleic acids are unstable when improperly collected, handled, and stored, resulting in decreased sensitivity of currently available commercial quantitative nucleic acid testing kits. Using known unstable hepatitis C virus RNA, we developed a quantitative RT-PCR method based on a new primer design strategy to reduce the impact of nucleic acid instability on nucleic acid testing. The performance of the method was evaluated for linearity, limit of detection, precision, specificity, and agreement with commercial hepatitis C virus assays. Its clinical application was compared to that of two commercial kits--Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) and Kehua. The quantitative RT-PCR method delivered a good performance, with a linearity of R(2) = 0.99, a total limit of detection (genotypes 1 to 6) of 42.6 IU/mL (95% CI, 32.84 to 67.76 IU/mL), a CV of 1.06% to 3.34%, a specificity of 100%, and a high concordance with the CAP/CTM assay (R(2) = 0.97), with a means ± SD value of -0.06 ± 1.96 log IU/mL (range, -0.38 to 0.25 log IU/mL). The method was superior to commercial assays in detecting unstable hepatitis C virus RNA (P < 0.05). This quantitative RT-PCR method can effectively eliminate the influence of RNA instability on nucleic acid testing. The principle of primer design strategy may be applied to the detection of other RNA or DNA viruses. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Nakagawa, Hitoshi; Nagasaka, Takeshi; Cullings, Harry M; Notohara, Kenji; Hoshijima, Naoko; Young, Joanne; Lynch, Henry T; Tanaka, Noriaki; Matsubara, Nagahide
2009-06-01
It is sometimes difficult to diagnose Lynch syndrome by the simple but strict clinical criteria, or even by the definitive genetic testing for causative germline mutation of mismatch repair genes. Thus, some practical and efficient screening strategy to select highly possible Lynch syndrome patients is exceedingly desirable. We performed a comprehensive study to evaluate the methylation status of whole MLH1 promoter region by direct bisulfite sequencing of the entire MLH1 promoter regions on Lynch and non-Lynch colorectal cancers (CRCs). Then, we established a convenient assay to detect methylation in key CpG islands responsible for the silencing of MLH1 expression. We studied the methylation status of MLH1 as well as the CpG island methylator phenotype (CIMP) and immunohistochemical analysis of mismatch repair proteins on 16 cases of Lynch CRC and 19 cases of sporadic CRCs with high-frequency microsatellite instability (MSI-H). Sensitivity to detect Lynch syndrome by MLH1 (CCAAT) methylation was 88% and the specificity was 84%. Positive likelihood ratio (PLR) was 5.5 and negative likelihood ratio (NLR) was 0.15. Sensitivity by mutational analysis of BRAF was 100%, specificity was 84%, PLR was 6.3 and NLR was zero. By CIMP analysis; sensitivity was 88%, specificity was 79%, PLR was 4.2, and NLR was 0.16. BRAF mutation or MLH1 methylation analysis combined with MSI testing could be a good alternative to screen Lynch syndrome patients in a cost effective manner. Although the assay for CIMP status also showed acceptable sensitivity and specificity, it may not be practical because of its rather complicated assay.
Karpman, Michelle D; Eldridge, Ronald; Follis, Jack L; Etzel, Carol J; Shete, Sanjay; El-Zein, Randa A
2018-01-01
The prevalence of chronic obstructive pulmonary disease (COPD) in smokers enrolled as "healthy" controls in studies is 10-50%. The COPD status of ideal smoker populations for lung cancer case-control studies should be checked via spirometry; however, this is often not feasible, because no medical indications exist for asymptomatic smokers to undergo spirometry prior to study enrollment. Therefore, there is an unmet need for robust, cost effective assays for identifying undiagnosed lung disease among asymptomatic smokers. Such assays would help excluding unhealthy smokers from lung cancer case-control studies. We used the cytokinesis-blocked micronucleus (CBMN) assay (a measure of genetic instability) to identify undiagnosed lung disease among asymptomatic smokers. We used a convenience population from an on-going lung cancer case-control study including smokers with lung cancer (n = 454), smoker controls (n = 797), and a self-reported COPD (n = 200) contingent within the smoker controls. Significant differences for all CBMN endpoints were observed when comparing lung cancer to All controls (which included COPD) and Healthy controls (with no COPD). The risk ratio (RR) was increased in the COPD group vs. Healthy controls for nuclear buds (RR 1.28, 95% confidence interval 1.01-1.62), and marginally increased for micronuclei (RR 1.06, 0.98-1.89) and nucleoplasmic bridges (RR 1.07, 0.97-1.15). These findings highlight the importance of using truly healthy controls in studies geared toward assessment of lung cancer risk. Using genetic instability biomarkers would facilitate the identification of smokers susceptible to tobacco smoke carcinogens and therefore predisposed to either disease. Copyright © 2017 The Japanese Respiratory Society. All rights reserved.
Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs
López-Giráldez, Francesc; Andrés, Olga; Domingo-Roura, Xavier; Bosch, Montserrat
2006-01-01
Background The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. Results We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNALys-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNALys-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the insterspersed repeat. Moreover, microsatellites associated with tRNALys-derived SINEs showed the highest complexity and less potential instability. Conclusion Our results suggest that tRNALys-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNALys-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes. Finally, due to their higher complexity and lower potential informative content of microsatellites associated with tRNALys-derived SINEs, we recommend avoiding their use as genetic markers. PMID:17059596
Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E
2014-02-21
Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.
Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.
Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio
2010-08-02
We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.
Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples
Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel
2017-01-01
Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837
A model of high-affinity antibody binding to type III group B Streptococcus capsular polysaccharide.
Wessels, M R; Muñoz, A; Kasper, D L
1987-12-01
We recently reported that the single repeating-unit pentasaccharide of type III group B Streptococcus (GBS) capsular polysaccharide is only weakly reactive with type III GBS antiserum. To further elucidate the relationship between antigen-chain length and antigenicity, tritiated oligosaccharides derived from type III capsular polysaccharide were used to generate detailed saturation binding curves with a fixed concentration of rabbit antiserum in a radioactive antigen-binding assay. A graded increase in affinity of antigen-antibody binding was seen as oligosaccharide size increased from 2.6 repeating units to 92 repeating units. These differences in affinity of antibody binding to oligosaccharides of different molecular size were confirmed by immunoprecipitation and competitive ELISA, two independent assays of antigen-antibody binding. Analysis of the saturation binding experiment indicated a difference of 300-fold in antibody-binding affinity for the largest versus the smallest tested oligosaccharides. Unexpectedly, the saturation binding values approached by the individual curves were inversely related to oligosaccharide chain length on a molar basis but equivalent on a weight basis. This observation is compatible with a model in which binding of an immunoglobulin molecule to an antigenic site on the polysaccharide facilitates subsequent binding of antibody to that antigen.
Platelet factor 4/heparin antibodies in blood bank donors.
Hursting, Marcie J; Pai, Poulomi J; McCracken, Julianna E; Hwang, Fred; Suvarna, Shayela; Lokhnygina, Yuliya; Bandarenko, Nicholas; Arepally, Gowthami M
2010-11-01
Platelet factor 4 (PF4)/heparin antibody, typically associated with heparin therapy, is reported in some heparin-naive people. Seroprevalence in the general population, however, remains unclear. We prospectively evaluated PF4/heparin antibody in approximately 4,000 blood bank donors using a commercial enzyme-linked immunosorbent assay for initial and then repeated (confirmatory) testing. Antibody was detected initially in 249 (6.6%; 95% confidence interval [CI], 5.8%-7.4%) of 3,795 donors and repeatedly in 163 (4.3%; 95% CI, 3.7%-5.0%) of 3,789 evaluable donors. "Unconfirmed" positives were mostly (93%) low positives (optical density [OD] = 0.40-0.59). Of 163 repeatedly positive samples, 116 (71.2%) were low positives, and 124 (76.1%) exhibited heparin-dependent binding. Predominant isotypes of intermediate to high seropositive samples (OD >0.6) were IgG (20/39 [51%]), IgM (9/39 [23%]), and indeterminate (10/39 [26%]). The marked background seroprevalence of PF4/heparin antibody (4.3%-6.6%) with the preponderance of low (and frequently nonreproducible) positives in blood donors suggests the need for further assay calibration, categorization of antibody level, and studies evaluating clinical relevance of "naturally occurring" PF4/heparin antibodies.
Deucher, Anne; Chiang, Tsoyu; Schrijver, Iris
2010-01-01
Typing of STR (short tandem repeat) alleles is used in a variety of applications in clinical molecular pathology, including evaluations for maternal cell contamination. Using a commercially available STR typing assay for maternal cell contamination performed in conjunction with prenatal diagnostic testing, we were posed with apparent nonmaternity when the two fetal samples did not demonstrate the expected maternal allele at one locus. By designing primers external to the region amplified by the primers from the commercial assay and by performing direct sequencing of the resulting amplicon, we were able to determine that a guanine to adenine sequence variation led to primer mismatch and allele dropout. This explained the apparent null allele shared between the maternal and fetal samples. Therefore, although rare, allele dropout must be considered whenever unexplained homozygosity at an STR locus is observed. PMID:20203001
Advances in the detection of telomerase activity using isothermal amplification
Zhang, Xiaojin; Lou, Xiaoding; Xia, Fan
2017-01-01
Telomerase plays a significantly important role in keeping the telomere length of a chromosome. Telomerase overexpresses in nearly all tumor cells, suggesting that telomerase could be not only a promising biomarker but also a potential therapeutic target for cancers. Therefore, numerous efforts focusing on the detection of telomerase activity have been reported from polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assays to PCR-free assays such as isothermal amplification in recent decade. In this review, we highlight the strategies for the detection of telomerase activity using isothermal amplification and discuss some of the challenges in designing future telomerase assays as well. PMID:28638472
Delagoutte, Emmanuelle; Baldacci, Giuseppe
2011-01-01
Instability of repetitive sequences originates from strand misalignment during repair or replicative DNA synthesis. To investigate the activity of reconstituted T4 replisomes across trinucleotide repeats (TNRs) during leading strand DNA synthesis, we developed a method to build replication miniforks containing a TNR unit of defined sequence and length. Each minifork consists of three strands, primer, leading strand template, and lagging strand template with a 5′ single-stranded (ss) tail. Each strand is prepared independently, and the minifork is assembled by hybridization of the three strands. Using these miniforks and a minimal reconstituted T4 replisome, we show that during leading strand DNA synthesis, the dNTP concentration dictates which strand of the structure-forming 5′CAG/5′CTG repeat creates the strongest impediment to the minimal replication complex. We discuss this result in the light of the known fluctuation of dNTP concentration during the cell cycle and cell growth and the known concentration balance among individual dNTPs. PMID:22096622
Influence of the sex of the transmitting grandparent in congenital myotonic dystrophy.
López de Munain, A; Cobo, A M; Poza, J J; Navarrete, D; Martorell, L; Palau, F; Emparanza, J I; Baiget, M
1995-09-01
To analyse the influence of the sex of the transmitting grandparents on the occurrence of the congenital form of myotonic dystrophy (CDM), we have studied complete three generation pedigrees of 49 CDM cases, analysing: (1) the sex distribution in the grandparents' generation, and (2) the intergenerational amplification of the CTG repeat, measured in its absolute and relative values, between grandparents and the mothers of CDM patients and between the latter and their CDM children. The mean relative intergenerational increase in the 32 grandparent-mother pairs was significantly greater than in the 56 mother-CDM pairs (Mann-Whitney U test, p < 0.001). The mean expansion of the grandfathers (103 CTG repeats) was also significantly different from that seen in the grandmothers' group (154 CTG repeats) (Mann-Whitney U test, p < 0.01). This excess of non-manifesting males between the CDM grandparents' generation with a smaller CTG length than the grandmothers could suggest that the premutation has to be transmitted by a male to reach the degree of instability responsible for subsequent intergenerational CTG expansions without size constraints characteristic of the CDM range.
Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification.
Deng, Sarah K; Yin, Yi; Petes, Thomas D; Symington, Lorraine S
2015-11-05
Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.
HZE Radiation Leukemogenesis in Mice
NASA Astrophysics Data System (ADS)
Peng, Yuanlin
Radiation exposure is a risk factor for acute myeloid leukemia (AML). The Leukemogenesis NSCOR was developed to compare this risk for low LET vs HZE radiations as a means to better assess the leukemia risk to astronauts posed by space radiation. Individual projects within the NSCOR explore HZE radiation leukemogenesis in murine model systems and extend the findings to AML in humans. AML sensitive CBA/CaJ mice have been irradiated with 1 GeV 56 Fe particles at NSRL and with 137 Cs gamma-rays at Colorado State University and followed to 800 days of age for the development of AML. Molecular and cytogenetic analyses of HZE- and gamma-induced AML, including assays for chromosomal aberrations, PU.1 deletion, gene expression, array CGH and microsatellite instability are ongoing. Preliminary data indicate that 56 Fe particles are no more effective in inducing AML or shortening lifespan than gamma-rays. Studies designed to address the individual molecular steps in leukemogenesis and determine the effects of radiation and genetic background on each step have been initiated using knockout mice. Deletion of the PU.1 gene on mouse chromosome 2 is a critical step in this murine model of radiation leukemogenesis. Two of the three HZE-induced AMLs that could be assayed and thirteen of fourteen γ-induced AMLs had PU.1 loss as determined by Fluorescence in Situ Hybridization (FISH). We have found that AML sensitive CBA/CaJ mice have a higher incidence of Chr. 2 deletion in bone marrow cells following 56 Fe irradiation than AML resistant C57BL/6 mice. This study is being extended to proton irradiated mice. Our preliminary results indicate that microsatellite instability may be common in HZE irradiated progenitor cells. To determine if these cytogenetic changes can be induced in human myeloid progenitor cells by gamma, proton or HZE irradiation we are generating NOD/SCID mice that have been "humanized" by being transplanted with human hematopoietic stem cells. We are currently irradiating the humanized NOD/SCID mice with gamma-rays and then harvesting human cells from their bone marrow. These cells will be assayed for specific cytogenetic and molecular changes consistent with AML. In addition to screening the cells for chromosomal aberrations and specific deletions and translocations, we will also screen them for microsatellite instability by small pool PCR.(Funded by NASA Grant NAG9 1569)
Marino, Anna Maria Fausta; Percipalle, Maurizio; Giunta, Renato Paolo; Salvaggio, Antonio; Caracappa, Giulia; Alfonzetti, Tiziana; Aparo, Alessandra; Reale, Stefano
2017-03-01
We report a rapid and reliable method for the detection of Toxoplasma gondii in meat and animal tissues based on real-time polymerase chain reaction (PCR). Samples were collected from cattle, small ruminants, horses, and pigs raised or imported into Sicily, Italy. All DNA preparations were assayed by real-time PCR tests targeted to a 98-bp long fragment in the AF 529-bp repeat element and to the B1 gene using specific primers. Diagnostic sensitivity (100%), diagnostic specificity (100%), limit of detection (0.01 pg), efficiency (92-109%), and precision (mean coefficient of variation = 0.60%), repeatability (100%), reproducibility (100%), and robustness were evaluated using 240 DNA extracted samples (120 positives and 120 negative as per the OIE nested PCR method) from different matrices. Positive results were confirmed by the repetition of both real-time and nested PCR assays. Our study demonstrates the viability of a reliable, rapid, and specific real-time PCR on a large scale to monitor contamination with Toxoplasma cysts in meat and animal specimens. This validated method can be used for postmortem detection in domestic and wild animals and for food safety purposes.
Lindstedt, Bjørn-Arne; Vardund, Traute; Kapperud, Georg
2004-08-01
The Multiple-Locus Variable-Number Tandem-Repeats Analysis (MLVA) method is currently being used as the primary typing tool for Shiga-toxin-producing Escherichia coli (STEC) O157 isolates in our laboratory. The initial assay was performed using a single fluorescent dye and the different patterns were assigned using a gel image. Here, we present a significantly improved assay using multiple dye colors and enhanced PCR multiplexing to increase speed, and ease the interpretation of the results. The different MLVA patterns are now based on allele sizes entered as character values, thus removing the uncertainties introduced when analyzing band patterns from the gel image. We additionally propose an easy numbering scheme for the identification of separate isolates that will facilitate exchange of typing data. Seventy-two human and animal strains of Shiga-toxin-producing E. coli O157 were used for the development of the improved MLVA assay. The method is based on capillary separation of multiplexed PCR products of VNTR loci in the E. coli O157 genome labeled with multiple fluorescent dyes. The different alleles at each locus were then assigned to allele numbers, which were used for strain comparison.
Rebolj, Matejka; Bonde, Jesper; Preisler, Sarah; Ejegod, Ditte; Rygaard, Carsten; Lynge, Elsebeth
2016-01-01
In women aged ≥30 years, Human Papillomavirus testing will replace cytology for primary cervical screening. We compared Hybrid Capture 2 (HC2), cobas, CLART, and APTIMA HPV assays with cytology on 2869 SurePath samples from women undergoing routine screening at 30–65 years in Copenhagen, Denmark. Women with cytological abnormalities were managed according to routine recommendations, with 92% completeness. Those with cytology-normal/HPV-positive samples (on any of the four assays) were invited for repeated cytology and HPV testing in 1.5 year, and 58% had additional testing. HPV testing detected more ≥CIN3 than cytology (HC2: 35, cobas, CLART: 37, APTIMA: 34, cytology: 31), although statistically the differences were not significant. Cobas and CLART detected significantly more ≥CIN2 than cytology (cobas, CLART: 49, cytology: 39). The proportion of women with false-positive test results (positive test results without ≥CIN3) varied between 3.3% with cytology and 14.9% with cobas. All HPV assays led to significantly more false-positive tests, whereas compared to HC2 cobas and CLART were associated with a significantly higher and APTIMA with a significantly lower proportion. Detection of CIN1 was particularly increased for the three DNA assays. With APTIMA combined with cytological triage, about 20% more women were referred for colposcopy than with cytology screening. With the three DNA assays, the increase was ≥50%. The number of women with repeated testing was twice as high with APTIMA and almost five times as high with cobas compared to cytology. To our knowledge, Horizon was the only study set in routine practice that compared more than two HPV assays in the same women while also ascertaining the histological status of women with normal cytology/HPV-positive test results. HPV-based screening of Danish women aged 30–65 detected more high-grade CIN but decreased the screening specificity, and increased the demand for additional testing. PMID:26789267
Goemans, Anne F; Spence, Susanna J; Ramsey, Ian K
2017-06-01
Hemoglobin A1c (HbA1c) provides a reliable measure of glycemic control over 2-3 months in human diabetes mellitus. In dogs, presence of HbA1c has been demonstrated, but there are no validated commercial assays. The purpose of the study was to validate a commercially available automated immunoturbidimetric assay for canine HbA1c and determine an RI in a hospital population. The specificity of the assay was assessed by inducing glycosylation in vitro using isolated canine hemoglobin, repeatability by measuring canine samples 5 times in succession, long term inter-assay imprecision by measuring supplied control materials, stability using samples stored at 4°C over 5 days and -20°C over 8 weeks, linearity by mixing samples of known HbA1c in differing proportions, and the effect of anticoagulants with paired samples. An RI was determined using EDTA-anticoagulated blood samples from 60 nondiabetic hospitalized animals of various ages and breeds. Hemoglobin A1c was also measured in 10 diabetic dogs. The concentration of HbA1c increased proportionally with glucose concentration in vitro. For repeat measurements, the CV was 4.08% (range 1.16-6.10%). Samples were stable for 5 days at 4°C. The assay was linear within the assessed range. Heparin- and EDTA-anticoagulated blood provided comparable results. The RI for HbA1c was 9-18.5 mmol/mol. There was no apparent effect of age or breed on HbA1c. In diabetic dogs, HbA1c ranged from 14 to 48 mmol/mol. The assay provides a reliable method for canine HbA1c measurement with good analytic performance. © 2017 American Society for Veterinary Clinical Pathology.
Measurement of plasma cell-free DNA concentrations in dogs with sepsis, trauma, and neoplasia.
Letendre, Jo-Annie; Goggs, Robert
2017-05-01
To determine if cell-free DNA (cfDNA) was identifiable in canine plasma, to evaluate 3 techniques for the measurement of plasma cfDNA concentrations in dogs presented to an emergency service, and to compare the plasma cfDNA concentrations of healthy dogs to those with sepsis, trauma, and neoplasia. Retrospective study of banked canine plasma samples collected between May 2014 and December 2014. Dogs presented to the emergency service of a university veterinary teaching hospital. Plasma cfDNA was measured on residual plasma samples obtained from 15 dogs with sepsis, 15 dogs with moderate-severe trauma, 15 dogs diagnosed with a sarcoma. Plasma cfDNA was also measured in 15 healthy dogs. None. Assay linearity, repeatability, and reproducibility were evaluated. Quantification of cfDNA was performed in duplicate on diluted citrated plasma and following DNA purification using 2 fluorescence assays (SYBR-Gold; Quant-iT) and by ultraviolet absorbance spectroscopy. Fluorescence intensities (FIs) were converted to cfDNA concentrations using standard curves. Median FI values and cfDNA concentrations were compared to healthy controls using the Kruskal-Wallis test, with adjustment for multiple comparisons. Alpha was set at 0.05. Both assays had excellent linearity, and acceptable repeatability and reproducibility. Compared to controls, plasma cfDNA concentrations were significantly increased in dogs with sepsis or moderate-severe trauma with both assays (P ≤ 0.003). Dogs with neoplasia had significantly increased cfDNA concentrations with the Quant-iT assay only (P = 0.003). When measurements were performed on purified DNA, only dogs with moderate-severe trauma had significantly increased cfDNA concentrations (P < 0.001; SYBR-Gold assay). cfDNA can be readily identified in canine plasma using 2 fluorescence assays. DNA extraction offers no advantage over direct measurement. Compared to healthy controls, dogs with sepsis or moderate-severe trauma have significantly increased plasma cfDNA concentrations. © Veterinary Emergency and Critical Care Society 2017.
NASA Astrophysics Data System (ADS)
Sabale, Pramod M.; George, Jerrin Thomas; Srivatsan, Seergazhi G.
2014-08-01
Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures.Given the biological and therapeutic significance of telomeres and other G-quadruplex forming sequences in human genome, it is highly desirable to develop simple methods to study these structures, which can also be implemented in screening formats for the discovery of G-quadruplex binders. The majority of telomere detection methods developed so far are laborious and use elaborate assay and instrumental setups, and hence, are not amenable to discovery platforms. Here, we describe the development of a simple homogeneous fluorescence turn-on method, which uses a unique combination of an environment-sensitive fluorescent nucleobase analogue, the superior base pairing property of PNA, and DNA-binding and fluorescence quenching properties of graphene oxide, to detect human telomeric DNA repeats of varying lengths. Our results demonstrate that this method, which does not involve a rigorous assay setup, would provide new opportunities to study G-quadruplex structures. Electronic supplementary information (ESI) available. Figures, tables, experimental procedures and NMR spectra. See DOI: 10.1039/c4nr00878b
Ferrás, Cristina; Oude Vrielink, Joachim AF; Verspuy, Johan WA; te Riele, Hein; Tsaalbi-Shtylik, Anastasia; de Wind, Niels
2009-01-01
A substantial fraction of sporadic and inherited colorectal and endometrial cancers in humans is deficient in DNA mismatch repair (MMR). These cancers are characterized by length alterations in ubiquitous simple sequence repeats, a phenotype called microsatellite instability. Here we have exploited this phenotype by developing a novel approach for the highly selective gene therapy of MMR-deficient tumors. To achieve this selectivity, we mutated the VP22FCU1 suicide gene by inserting an out-of-frame microsatellite within its coding region. We show that in a significant fraction of microsatellite-instable (MSI) cells carrying the mutated suicide gene, full-length protein becomes expressed within a few cell doublings, presumably resulting from a reverting frameshift within the inserted microsatellite. Treatment of these cells with the innocuous prodrug 5-fluorocytosine (5-FC) induces strong cytotoxicity and we demonstrate that this owes to multiple bystander effects conferred by the suicide gene/prodrug combination. In a mouse model, MMR-deficient tumors that contained the out-of-frame VP22FCU1 gene displayed strong remission after treatment with 5-FC, without any obvious adverse systemic effects to the mouse. By virtue of its high selectivity and potency, this conditional enzyme/prodrug combination may hold promise for the treatment or prevention of MMR-deficient cancer in humans. PMID:19471249
Lesions of the Symphysis in Athletes*
Harris, N. H.; Murray, R. O.
1974-01-01
In a radiological study of the pubic symphysis in 37 athletes (26 footballers and 11 others) and 156 young men as controls changes similar to those of osteitis pubis were found in 19 (76%) of the footballers and nine of the other athletes (81%) and 70 of the controls (45%). In the controls there was a significant correlation between their athletic ability and these changes. The clinical features consist of pain in the region of the pubis which may radiate to the groin or lower abdomen. Clicking may be present and indicates instability. Local tenderness is the only significant sign. Radiographs may show a combination of marginal irregularity, reactive sclerosis, and instability. A chronic stress lesion in the iliac component of a sacro-iliac joint was found in 20 out of 37 athletes, and 13 of them had instability at the pubic symphysis. It is concluded that repeated minor trauma is the primary aetiological factor. Though the radiological appearance may resemble that of osteitis pubis, there was no evidence that infection caused the lesion in this series. Spontaneous remission of symptoms is the most likely outcome. Rest from physical exertion is the most effective treatment, and stabilization of the pubic symphysis is indicated only rarely. ImagesFIG. 1FIG. 2FIG. 3FIG. 4 PMID:4422968
Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
Huo, Xueyun; Du, Yating; Lu, Jing; Guo, Meng; Li, Zhenkun; Zhang, Shuangyue; Li, Xiaohong; Chen, Zhenwen; Du, Xiaoyan
2017-03-01
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR- associated (Cas) protein 9 system is a novel and powerful tool which is widely used for genome editing. CRISPR/Cas9 is RNA-guided and can lead to desired genomic modifications. However, whether the CRISPR/Cas9-mediated genome editing causes genomic alterations and genomic instability, such as microsatellite instability (MSI), is still unknown. Here we detected MSI in 21 CRISPR/Cas9 mouse strains using a panel of 42 microsatellite loci which were selected from our previous studies. Surprisingly, MSI occurrence was common in CRISPR/Cas9 modified genome, and most of the strains (19/21, 90.5%) examined showed MSI. Of 42 loci examined, 8 loci (8/42, 19.05%) exhibited MSI in the Cas9 editing mice. The Ttll9 (4/42, 9.5%) were the most unstable strains, and D10Mit3 and D10Mit198 (9/21, 42.9%) were considered to be the most "hot" loci in the Cas9 strains we tested. Through analyzing the mutation of microsatellite loci, we provide new insights into the genomic alterations of CRISPR/Cas9 models and it will help us for a better understanding of this powerful technology. Copyright © 2017 Elsevier B.V. All rights reserved.
Simulations of AGN jets: magnetic kink instability versus conical shocks
NASA Astrophysics Data System (ADS)
Barniol Duran, Rodolfo; Tchekhovskoy, Alexander; Giannios, Dimitrios
2017-08-01
Relativistic jets in active galactic nuclei (AGN) convert as much as half of their energy into radiation. To explore the poorly understood processes that are responsible for this conversion, we carry out fully 3D magnetohydrodynamic (MHD) simulations of relativistic magnetized jets. Unlike the standard approach of injecting the jets at large radii, our simulated jets self-consistently form at the source and propagate and accelerate outwards for several orders of magnitude in distance before they interact with the ambient medium. We find that this interaction can trigger strong energy dissipation of two kinds inside the jets, depending on the properties of the ambient medium. Those jets that form in a new outburst and drill a fresh hole through the ambient medium fall victim to a 3D magnetic kink instability and dissipate their energy primarily through magnetic reconnection in the current sheets formed by the instability. On the other hand, those jets that form during repeated cycles of AGN activity and escape through a pre-existing hole in the ambient medium maintain their stability and dissipate their energy primarily at MHD recollimation shocks. In both cases, the dissipation region can be associated with a change in the density profile of the ambient gas. The Bondi radius in AGN jets serves as such a location.
Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes
NASA Astrophysics Data System (ADS)
Rosa, João G.; Kephart, Thomas W.
2018-06-01
The superradiant instability can lead to the generation of extremely dense axion clouds around rotating black holes. We show that, despite the long lifetime of the QCD axion with respect to spontaneous decay into photon pairs, stimulated decay becomes significant above a minimum axion density and leads to extremely bright lasers. The lasing threshold can be attained for axion masses μ ≳10-8 eV , which implies superradiant instabilities around spinning primordial black holes with mass ≲0.01 M⊙. Although the latter are expected to be nonrotating at formation, a population of spinning black holes may result from subsequent mergers. We further show that lasing can be quenched by Schwinger pair production, which produces a critical electron-positron plasma within the axion cloud. Lasing can nevertheless restart once annihilation lowers the plasma density sufficiently, resulting in multiple laser bursts that repeat until the black hole spins down sufficiently to quench the superradiant instability. In particular, axions with a mass ˜10-5 eV and primordial black holes with mass ˜1024 kg , which may account for all the dark matter in the Universe, lead to millisecond bursts in the GHz radio-frequency range, with peak luminosities ˜1042 erg /s , suggesting a possible link to the observed fast radio bursts.
The impact of repeat-testing of common chemistry analytes at critical concentrations.
Onyenekwu, Chinelo P; Hudson, Careen L; Zemlin, Annalise E; Erasmus, Rajiv T
2014-12-01
Early notification of critical values by the clinical laboratory to the treating physician is a requirement for accreditation and is essential for effective patient management. Many laboratories automatically repeat a critical value before reporting it to prevent possible misdiagnosis. Given today's advanced instrumentation and quality assurance practices, we questioned the validity of this approach. We performed an audit of repeat-testing in our laboratory to assess for significant differences between initial and repeated test results, estimate the delay caused by repeat-testing and to quantify the cost of repeating these assays. A retrospective audit of repeat-tests for sodium, potassium, calcium and magnesium in the first quarter of 2013 at Tygerberg Academic Laboratory was conducted. Data on the initial and repeat-test values and the time that they were performed was extracted from our laboratory information system. The Clinical Laboratory Improvement Amendment criteria for allowable error were employed to assess for significant difference between results. A total of 2308 repeated tests were studied. There was no significant difference in 2291 (99.3%) of the samples. The average delay ranged from 35 min for magnesium to 42 min for sodium and calcium. At least 2.9% of laboratory running costs for the analytes was spent on repeating them. The practice of repeating a critical test result appears unnecessary as it yields similar results, delays notification to the treating clinician and increases laboratory running costs.
Goldstein, Orly; Gana-Weisz, Mali; Nefussy, Beatrice; Vainer, Batel; Nayshool, Omri; Bar-Shira, Anat; Traynor, Bryan J; Drory, Vivian E; Orr-Urtreger, Avi
2018-04-01
We characterized the C9orf72 hexanucleotide repeat expansion (RE) mutation in amyotrophic lateral sclerosis (ALS) patients of 2 distinct origins, Ashkenazi and North Africa Jews (AJ, NAJ), its frequency, and genotype-phenotype correlations. In AJ, 80% of familial ALS (fALS) and 11% of sporadic ALS carried the RE, a total of 12.9% of all AJ-ALS compared to 0.3% in AJ controls (odds ratio [OR] = 44.3, p < 0.0001). In NAJ, 10% of fALS and 9% of sporadic ALS carried the RE, a total of 9.1% of all NAJ-ALS compared to 1% in controls (OR = 9.9, p = 0.0006). We identified a risk haplotype shared among all ALS patients, although an association with age at disease onset, fALS, and dementia were observed only in AJ. Variations were identified downstream the repeats. The risk haplotype and these polymorphisms were at high frequencies in alleles with 8 repeats or more, suggesting sequence instability. The different genotype-phenotype correlations and OR, together with the large range in age at onset, suggest that other modifiers and risk factors may affect penetrance and phenotype in ALS. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Hee-Sheung; Lee, Nicholas C O; Kouprina, Natalay; Kim, Jung-Hyun; Kagansky, Alex; Bates, Susan; Trepel, Jane B; Pommier, Yves; Sackett, Dan; Larionov, Vladimir
2016-02-15
Whole chromosomal instability (CIN), manifested as unequal chromosome distribution during cell division, is a distinguishing feature of most cancer types. CIN is generally considered to drive tumorigenesis, but a threshold level exists whereby further increases in CIN frequency in fact hinder tumor growth. While this attribute is appealing for therapeutic exploitation, drugs that increase CIN beyond this therapeutic threshold are currently limited. In our previous work, we developed a quantitative assay for measuring CIN based on the use of a nonessential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Here, we used this assay to rank 62 different anticancer drugs with respect to their effects on chromosome transmission fidelity. Drugs with various mechanisms of action, such as antimicrotubule activity, histone deacetylase inhibition, mitotic checkpoint inhibition, and targeting of DNA replication and damage responses, were included in the analysis. Ranking of the drugs based on their ability to induce HAC loss revealed that paclitaxel, gemcitabine, dactylolide, LMP400, talazoparib, olaparib, peloruside A, GW843682, VX-680, and cisplatin were the top 10 drugs demonstrating HAC loss at a high frequency. Therefore, identification of currently used compounds that greatly increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target and leverage the CIN phenotype in cancer cells. ©2016 American Association for Cancer Research.
Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo
2006-02-01
Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR.
Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo
2006-01-01
Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR. PMID:16436644
Killing of intrafamilial leukocytes by earthworm effector cells.
Suzuki, M M; Cooper, E L
1995-01-01
When Lumbricus and Eisenia coelomocytes are cultured together in intrafamilial xenogeneic combinations, significant cytotoxicity occurs at 24 h but not at 5 nor 72 h, as shown by trypan blue assay. In a 4.5-h assay, measuring 51Cr release, using an effector/target ratio of 25:1, unpooled cells from a single Lumbricus killed Eisenia cells at levels of 6% and 14%. However, Eisenia coelomocyte survival was high and identical in either cell-free xenogeneic (Lumbricus) coelomic fluid or in artificial medium. In this 1-way assay, earthworm (Lumbricus) coelomocytes act as effector cells that kill non-self target cells, even those of other earthworms. Comparisons with previous results reveal greater reliability and consistently repeatable results when the 51Cr release assay is used to measure cytotoxicity regardless of the targets.
Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity
Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong
2015-01-01
Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586
Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.
Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong
2015-03-30
Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.
The Fibrin slide assay for detecting urokinase activity in human fetal kidney cells
NASA Technical Reports Server (NTRS)
Sedor, K.
1985-01-01
The Fibrin Slide Technique of Hau C. Kwaan and Tage Astrup is discussed. This relatively simple assay involves two steps: the formation of an artificial clot and then the addition of an enzyme (UKOKINASE) to dissolve the clot. The actual dissolving away of the clot is detected by the appearance of holes (lysis zones) in the stained clot. The procedure of Kwaan and Astrup is repeated, along with modifications and suggestions for improvements based on experience with the technique.
2012-07-01
prostate lobes were dissected free of fat and connective tissue and weighed separately. 2.3. Hormone assays All assays were performed in a single batch...Ferrell, R.E., Roth, S.M., 2005. Androgen receptor CAG repeat polymorphism is associated with fat -free mass in men. J. Appl. Physiol. 98, 132–137. Wu, C.T...S., Kennemer, M.I., Mohan, S., Nazarenko, I., Watanabe, C., Sparks, A.B., Shames , D.S., Gentleman, R., de Sauvage, F.J., Stern, H., Pandita, A
Long-term results of bone-retinaculum-bone autograft for scapholunate instability.
Soong, Maximillian; Merrell, Gregory A; Ortmann, Fred; Weiss, Arnold-Peter C
2013-03-01
To report long-term follow-up of scapholunate interosseous ligament reconstruction with bone-retinaculum-bone autograft in patients with dynamic scapholunate instability. Of the 14 patients from the previously reported cohort who had bone-retinaculum-bone autograft for dynamic instability, 6 returned for clinical examination and radiographs, 3 were reached by telephone, and 2 were lost to follow-up. The remaining 3 had salvage procedures (2 total wrist arthrodeses and 1 proximal row carpectomy) between the prior report and the current study and thus reached an endpoint, at 2 to 4 years. For the 6 who returned, outcome measurements included scapholunate angle and gap, radiographic evidence of secondary arthritis, wrist extension and flexion, grip strength, and Mayo wrist score. Follow-up averaged 11.9 years (range, 10.7-14.1 y). Clinical and radiographic outcomes deteriorated moderately from the prior report. Mayo wrist score averaged 83. There were 3 failures, resulting in 1 proximal row carpectomy and 2 total wrist arthrodeses. Findings at repeat surgery in the failed group included an intact graft without any apparent abnormalities, a partially ruptured graft (after a subsequent re-injury), and a completely resorbed graft. Bone-retinaculum-bone autograft reconstruction is a viable treatment option for dynamic scapholunate instability in which the scaphoid and lunate can be reduced. Results may deteriorate but are similar to those reported previously from other techniques. Problems with graft strength or stiffness may necessitate further surgery. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
The effect of dual tasking on foot kinematics in people with functional ankle instability.
Tavakoli, Sanam; Forghany, Saeed; Nester, Christopher
2016-09-01
Some cases of repeated inversion ankle sprains are thought to have a neurological basis and are termed functional ankle instability (FAI). In addition to factors local to the ankle, such as loss of proprioception, cognitive demands have the ability to influence motor control and may increase the risk of repetitive lateral sprains. The purpose of this study was to investigate the effect of cognitive demand on foot kinematics in physically active people with functional ankle instability. 21 physically active participants with FAI and 19 matched healthy controls completed trials of normal walking (single task) and normal walking while performing a cognitive task (dual task). Foot motion relative to the shank was recorded. Cognitive performance, ankle kinematics and movement variability in single and dual task conditions was characterized. During normal walking, the ankle joint was significantly more inverted in FAI compared to the control group pre and post initial contact. Under dual task conditions, there was a statistically significant increase in frontal plane foot movement variability during the period 200ms pre and post initial contact in people with FAI compared to the control group (p<0.05). Dual task also significantly increased plantar flexion and inversion during the period 200ms pre and post initial contact in the FAI group (p<0.05). participants with FAI demonstrated different ankle movement patterns and increased movement variability during a dual task condition. Cognitive load may increase risk of ankle instability in these people. Copyright © 2016 Elsevier B.V. All rights reserved.
Tissot, C; Merlini, L; Mercier, M; Bonin, N
2017-09-01
The rate of iterative arthroscopy has been increasing over the last decade as the technique has grown. The results of and reasons for these revision procedures, however, are not exactly known. We therefore conducted a prospective study to shed light on: 1) functional results and patient satisfaction following repeated arthroscopy, and 2) the relevant indications. Functional scores and patient satisfaction increase following repeated arthroscopy. MATERIALS AND METHOD: A single-center continuous prospective study without control group included patients undergoing repeated hip arthroscopy between September 2010 and September 2014, with a mean 28months' follow-up (median, 23.3months; range, 12-62months). Preoperative and follow-up functional assessment used the modified Harris hip, WOMAC and Christensen (NHAS) questionnaires, and a satisfaction scale. On etiological analysis, repeated arthroscopy was indicated if a cause of recurrent or persistent pain accessible to arthroscopic treatment was identified. Seventeen patients were included out of 295 primary arthroscopies (5.7%): 9 male, 8 female; median age, 29.6years (range, 16-48years). Indications for primary arthroscopy comprised 13 cases of femoroacetabular impingement, 3 labrum lesions with instability, 1 chondromatosis and 1 case of osteoarthritis. Eleven of the 17 primary lesions showed persistence, including 9 of the 13 cases of femoroacetabular impingement. There were 3 failures in 17 repeated arthroscopies. All functional scores improved, with a gain of 7 points (P<0.06) on modified Harris hip score, 25 points (P<0.0006) on WOMAC score, and 27 points (P<0.001) on NHAS score. Ten of the 17 patients were satisfied or very satisfied with the repeated arthroscopy (59%). Although less good than on primary arthroscopy, functional results on repeated hip arthroscopy were satisfactory in the short term. The main reason for repeated arthroscopy was persistence of initial abnormality due to insufficient treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
van Agtmaal, Ellen L; André, Laurène M; Willemse, Marieke; Cumming, Sarah A; van Kessel, Ingeborg D G; van den Broek, Walther J A A; Gourdon, Geneviève; Furling, Denis; Mouly, Vincent; Monckton, Darren G; Wansink, Derick G; Wieringa, Bé
2017-01-04
Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG) n -repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5' or 3' unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Souza, Kátina M; Braz, Leandro G; Nogueira, Flávia R; Souza, Marajane B; Bincoleto, Lahis F; Aun, Aline G; Corrente, José E; Carvalho, Lídia R; Braz, José Reinaldo C; Braz, Mariana G
Data on the genotoxic and mutagenic effects of occupational exposure to the most frequently used volatile anesthetics are limited and controversial. The current study is the first to evaluate genomic instability, cell death and proliferative index in exfoliated buccal cells (EBC) from anesthesiologists. We also evaluated DNA damage and determined the concentrations of the anesthetic gases most commonly used in operating rooms. This study was conducted on physicians who were allocated into two groups: the exposed group, which consisted of anesthesiologists who had been exposed to waste anesthetic gases (isoflurane, sevoflurane, desflurane and nitrous oxide - N 2 O) for at least two years; and the control group, which consisted of non-exposed physicians matched for age, sex and lifestyle with the exposed group. Venous blood and EBC samples were collected from all participants. Basal DNA damage was evaluated in lymphocytes by the comet assay, whereas the buccal micronucleus (MN) cytome (BMCyt) assay was applied to evaluate genotoxic and cytotoxic effects. The concentrations of N 2 O and anesthetics were measured via a portable infrared spectrophotometer. The average concentration of waste gases was greater than 5 parts per million (ppm) for all of the halogenated anesthetics and was more than 170ppm for N 2 O, expressed as a time-weighted average. There was no significant difference between the groups in relation to lymphocyte DNA damage. The exposed group had higher frequencies of MN, karyorrhexis and pyknosis, and a lower frequency of basal cells compared with the control group. In conclusion, exposure to modern waste anesthetic gases did not induce systemic DNA damage, but it did result in genomic instability, cytotoxicity and proliferative changes, which were detected in the EBC of anesthesiologists. Thus, these professionals can be considered at risk for developing genetic alterations resulting from occupational exposure to these gases, suggesting the need to minimize this exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
New primer for specific amplification of the CAG repeat in Huntington disease alleles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, C.E.; Hodes, M.E.
1994-09-01
Huntington disease is an autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat near the 5{prime} end of the gene for Huntington disease (IT15). The CAG repeat is flanked by a variable-length CCG repeat that is included in the amplification product obtained with most currently used primer sets and PCR protocols. Inclusion of this adjacent CCG repeat complicates the accurate assessment of CAG repeat length and interferes with the genotype determination of those individuals carrying alleles in the intermediate range between normal and expanded sized. Due to the GC-rich nature of this region, attempts at designingmore » a protocol for amplification of only the CAG repeat have proved unreliable and difficult to execute. We report here the development of a compatible primer set and PCR protocol that yields consistent amplification of the CAG-repeat region. PCR products can be visualized in ethidium bromide-stained agarose gels for rapid screening or in 6% polyacrylamide gels for determination of exact repeat length. This assay produces bands that can be sized accurately, while eliminating most nonspecific products. Fifty-five specimens examined showed consistency with another well-known method, but one that amplifies the CCG repeats as well. The results we obtained also matched the known carrier status of the donors.« less
Improving Short Term Instability for Quantitative Analyses with Portable Electronic Noses
Macías, Miguel Macías; Agudo, J. Enrique; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo
2014-01-01
One of the main problems when working with electronic noses is the lack of reproducibility or repeatability of the sensor response, so that, if this problem is not properly considered, electronic noses can be useless, especially for quantitative analyses. On the other hand, irreproducibility is increased with portable and low cost electronic noses where laboratory equipment like gas zero generators cannot be used. In this work, we study the reproducibility of two portable electronic noses, the PEN3 (commercial) and CAPINose (a proprietary design) by using synthetic wine samples. We show that in both cases short term instability associated to the sensors' response to the same sample and under the same conditions represents a major problem and we propose an internal normalization technique that, in both cases, reduces the variability of the sensors' response. Finally, we show that the normalization proposed seems to be more effective in the CAPINose case, reducing, for example, the variability associated to the TGS2602 sensor from 12.19% to 2.2%. PMID:24932869
Fabrication of Multscale Fractal-Like Structures by Controlling Fluid Interface Instability
Islam, Tanveer ul; Gandhi, Prasanna S.
2016-01-01
Nature, in quest for the best designs has shaped its vital systems into fractal geometries. Effectual way of spontaneous fabrication of scalable, ordered fractal-like structures by controlling Saffman-Taylor instability in a lifted Hele-Shaw cell is deployed here. In lifted Hele-Shaw cell uncontrolled penetration of low-viscosity fluid into its high-viscosity counterpart is known to develop irregular, non-repeatable, normally short-lived, branched patterns. We propose and characterize experimentally anisotropies in a form of spatially distributed pits on the cell plates to control initiation and further penetration of non-splitting fingers. The proposed control over shielding mechanism yields recipes for fabrication of families of ordered fractal-like patterns of multiple generations. As an example, we demonstrate and characterize fabrication of a Cayley tree fractal-like pattern. The patterns, in addition, are retained permanently by employing UV/thermally curable fluids. The proposed technique thus establishes solid foundation for bio-mimicking natural structures spanning multiple-scales for scientific and engineering use. PMID:27849003
Matsuzaki, Kenichiro; Borel, Valerie; Adelman, Carrie A; Schindler, Detlev; Boulton, Simon J
2015-12-15
Microsatellites are short tandem repeat sequences that are highly prone to expansion/contraction due to their propensity to form non-B-form DNA structures, which hinder DNA polymerases and provoke template slippage. Although error correction by mismatch repair plays a key role in preventing microsatellite instability (MSI), which is a hallmark of Lynch syndrome, activities must also exist that unwind secondary structures to facilitate replication fidelity. Here, we report that Fancj helicase-deficient mice, while phenotypically resembling Fanconi anemia (FA), are also hypersensitive to replication inhibitors and predisposed to lymphoma. Whereas metabolism of G4-DNA structures is largely unaffected in Fancj(-/-) mice, high levels of spontaneous MSI occur, which is exacerbated by replication inhibition. In contrast, MSI is not observed in Fancd2(-/-) mice but is prevalent in human FA-J patients. Together, these data implicate FANCJ as a key factor required to counteract MSI, which is functionally distinct from its role in the FA pathway. © 2015 Matsuzaki et al.; Published by Cold Spring Harbor Laboratory Press.
Fabrication of Multscale Fractal-Like Structures by Controlling Fluid Interface Instability
NASA Astrophysics Data System (ADS)
Islam, Tanveer Ul; Gandhi, Prasanna S.
2016-11-01
Nature, in quest for the best designs has shaped its vital systems into fractal geometries. Effectual way of spontaneous fabrication of scalable, ordered fractal-like structures by controlling Saffman-Taylor instability in a lifted Hele-Shaw cell is deployed here. In lifted Hele-Shaw cell uncontrolled penetration of low-viscosity fluid into its high-viscosity counterpart is known to develop irregular, non-repeatable, normally short-lived, branched patterns. We propose and characterize experimentally anisotropies in a form of spatially distributed pits on the cell plates to control initiation and further penetration of non-splitting fingers. The proposed control over shielding mechanism yields recipes for fabrication of families of ordered fractal-like patterns of multiple generations. As an example, we demonstrate and characterize fabrication of a Cayley tree fractal-like pattern. The patterns, in addition, are retained permanently by employing UV/thermally curable fluids. The proposed technique thus establishes solid foundation for bio-mimicking natural structures spanning multiple-scales for scientific and engineering use.
A model for soft X-ray transients
NASA Astrophysics Data System (ADS)
Hameury, J. M.; King, A. R.; Lasota, J. P.
1986-07-01
The existing database on the physical characteristics of stellar soft and ultrasoft transient X-ray bursts is summarized in order to form a generic model for the sources. The bursts have come from binary systems which repeat the bursts with a frequency of about a year. Bursts possess energies of about 10 to the 44th ergs emitted for months and reaching maximum luminosities of 10 to the 37th to 10 to the 38th ergs, levels associated with an accretion rate of 10 billion grams/sec. The transients are shown to arise because of a mass loss instability in the secondary star, believed to be red dwarf. Analysis of the structure of the envelope of a dwarf heated by X-rays shows that subphotospheric layers can expand during the quiescent phase and enter into a mass transfer instability condition near the Roche lobe. The accretion disk eventually blocks the X-ray input and the transfer to the primary, a neutron star, abates.
Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra
2015-12-01
Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.
Reis, Gerald F; Ritter, Jana M; Bellini, William J; Rota, Paul A; Bollen, Andrew W
2015-01-01
A 29-year-old pregnant woman developed progressively worsening encephalopathy, left hemiparesis, and hemodynamic instability over a 6-week period. Initial brain MRI and work-up for infectious and autoimmune causes were normal, although elevated IgG and oligoclonal bands were seen on analysis of the cerebrospinal fluid (CSF). After uncomplicated spontaneous delivery of a preterm healthy infant, her condition worsened. Repeat brain MRI demonstrated generalized volume loss and evidence of corticospinal tract degeneration. She underwent a brain biopsy, which showed characteristic viral inclusions of the type seen in subacute sclerosing panencephalitis (SSPE). The diagnosis was confirmed by immunohistochemistry and electron microscopy, and additional CSF analysis also showed markedly elevated IgG titer for measles. Sequence analysis of the nucleoprotein gene N-450 demonstrated a close relationship to the sequences of viruses in genotype D7. This case documents an ~ 6-month progression to death of SSPE in a pregnant woman.
A novel reporter system for neutralizing and enhancing antibody assay against dengue virus.
Song, Ke-Yu; Zhao, Hui; Jiang, Zhen-You; Li, Xiao-Feng; Deng, Yong-Qiang; Jiang, Tao; Zhu, Shun-Ya; Shi, Pei-Yong; Zhang, Bo; Zhang, Fu-Chun; Qin, E-De; Qin, Cheng-Feng
2014-02-18
Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu; Ohminato, Takao; Ida, Yoshiaki; Fujita, Eisuke
2012-12-01
Very-long-period (VLP) pulses with widths of 20 s on velocity seismograms were observed during volcanic activity at Miyake-jima Volcano, Japan in 2000. The VLP events occurred repeatedly during a few days prior to caldera formation and essentially vanished following the onset of caldera collapse. Waveform inversions of the pulse-like signals point to a source offset 3.5 km beneath and 1 km south of the summit. A candidate for the source mechanism is the inflation of an elliptical cylinder with axis tilted 20-30° from vertical and major axis of the elliptical cross section oriented northeast-southwest. The inferred mechanism appears consistent with a step-like pressurization of a magma reservoir impacted by a falling rock mass in response to gravitational instability. The repeated occurrences of the rock collapses lead to the caldera formation at Miyake-jima.
Aruna, Meka; Dasgupta, Shilpi; Sirisha, Pisapati V. S.; Andal Bhaskar, Sadaranga; Tarakeswari, Surapaneni; Singh, Lalji; Reddy, B. Mohan
2011-01-01
The aim of the present study was to investigate the role of CAG repeat polymorphism and X-chromosome Inactivation (XCI) pattern in Recurrent Spontaneous Abortions among Indian women which has not been hitherto explored. 117 RSA cases and 224 Controls were included in the study. Cases were recruited from two different hospitals - Lakshmi Fertility Clinic, Nellore and Fernandez Maternity Hospital, Hyderabad. Controls were roughly matched for age, ethnicity and socioeconomic status. The CAG repeats of the Androgen Receptor gene were genotyped using a PCR-based assay and were analysed using the GeneMapper software to determine the CAG repeat length. XCI analysis was also carried out to assess the inactivation percentages. RSA cases had a significantly greater frequency of allele sizes in the polymorphic range above 19 repeats (p = 0.006), which is the median value of the controls, and in the biallelic mean range above 21 repeats (p = 0.002). We found no evidence of abnormal incidence of skewed X-inactivation. We conclude that longer CAG repeat lengths are associated with increased odds for RSA with statistical power estimated to be ∼90%. PMID:21423805
Constructing STR multiplex assays.
Butler, John M
2005-01-01
Multiplex polymerase chain reaction (PCR) refers to the simultaneous amplification of multiple regions of deoxyribonucleic acid (DNA) using PCR. Commercial short tandem repeat (STR) assays that can coamplify as many as 16 different loci have become widely used in forensic DNA typing. This chapter will focus on some of the aspects of constructing robust STR multiplex assays, including careful design and quality control of PCR primers. Examples from the development of a cat STR 12plex and a human Y chromosome STR 20plex are used to illustrate the importance of various parts of the protocol. Primer design parameters and Internet-accessible resources are discussed, as are solutions to problems with residual dye artifacts that result from impure primers.
Validation of a rapid bacteria endospore enumeration system for use with spacecraft assembly
NASA Astrophysics Data System (ADS)
Chen, F.; Kuhlman, G.; Kirschner, L.; Kazarians, G.; Matsuyama, A.; Pickett, M.; Venkateswaran, K.; Kastner, J.; Kern, R.
NASA planetary protection policy sets forth strict limits on the number of bacterial endospores that can be present on a spacecraft at launch Currently the only approved method for counting the spores is a culture based assay that requires three days to produce results a timeframe that can be at odds with the rapid pace and rigorous deadlines of spacecraft assembly A possible alternative to the traditional culture based approach is the Millipore Rapid Microbiology Detection System RMDS which has previously been used for process and contamination control in the pharmaceutical and food industries The RMDS is rapid and simple shows high sensitivity 1 colony forming unit CFU sample and correlates well with traditional culture-based methods It combines membrane filtration adenosine triphosphate ATP bioluminescence chemistry and image analysis based on photon detection with a Charge Coupled Device CCD camera In this study we have optimized the assay condition and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications Seven species of Bacillus nine strains that have been repeatedly isolated from clean room environments were assayed In order to select for spores the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol All strains were detected by the RMDS in sim 5 hours and these assay times were repeatedly demonstrated along with low image background noise The RMDS-based spore detection method is undergoing the final stages of validation and is
Designed Ankyrin Repeat Proteins: A New Approach to Mimic Complex Antigens for Diagnostic Purposes?
Hausammann, Stefanie; Vogel, Monique; Kremer Hovinga, Johanna A.; Lacroix-Desmazes, Sebastien; Stadler, Beda M.; Horn, Michael P.
2013-01-01
Inhibitory antibodies directed against coagulation factor VIII (FVIII) can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins) mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures. PMID:23626669
Jackson, Timothy J; Peterson, Alexander B; Akeda, Masaki; Estess, Allyson; McGarry, Michelle H; Adamson, Gregory J; Lee, Thay Q
2016-03-01
A capsular shift procedure has been described for the treatment of hip instability; however, the biomechanical effects of such a shift are unknown. To create a cadaveric model of hip capsule laxity and evaluate the biomechanical effects of a capsular shift used to treat hip instability on this model. Controlled laboratory study. Eight cadaveric hips with an average age of 58.5 years were tested with a custom hip testing system in 6 conditions: intact, vented, instability, capsulotomy, side-to-side repair, and capsular shift. To create the hip model, the capsule was stretched in extension under 35 N·m of torque for 1 hour in neutral rotation. Measurements included internal and external rotation with 1.5 N·m of torque at 5 positions: 5° of extension and 0°, 15°, 30°, and 45° of flexion for each of the above conditions. The degree of maximum extension with 5 N·m of torque and the amount of femoral distraction with 40 N and 80 N of force were measured. Statistical analysis was performed by use of repeated-measures analysis of variance with Tukey post hoc analysis. The instability state significantly increased internal rotation at all flexion angles and increased distraction compared with the intact state. The capsulotomy condition resulted in significantly increased external rotation and internal rotation at all positions, increased distraction, and maximum extension compared with the intact state. The side-to-side repair condition restored internal rotation back to the instability state but not to the intact state at 5° of extension and 0° of flexion. The capsular shift state significantly decreased internal rotation compared with the instability state at 5° of extension and 0° and 15° of flexion. The capsular shift and side-to-side repair conditions had similar effects on external rotation at all flexion-extension positions. The capsular shift state decreased distraction and maximum extension compared with the instability state, but the side-to-side repair state did not. The hip capsular instability model was shown to have significantly greater total range of motion, external rotation, and extension compared with the intact condition. The greatest effects of capsular shift are seen with internal rotation, maximum extension, and distraction, with minimal effect on external rotation compared with the side-to side repair state. The biomechanical effects of the capsular shift procedure indicate that it can be used to treat hip capsular laxity by decreasing extension and distraction with minimal effect on external rotation. © 2015 The Author(s).
Holmes, E A; Bonsall, M B; Hales, S A; Mitchell, H; Renner, F; Blackwell, S E; Watson, P; Goodwin, G M; Di Simplicio, M
2016-01-01
Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP). PMID:26812041
Predicting Breast Cancer Risk by Assaying Peripheral Blood Methylation. Addendum
2007-10-01
tumor suppressor genes such as the cell cycle inhibitor p16INK4a , the DNA repair genes BRCA1, MLH1 , and MGMT , and the p53 regulator p14ARF , has been... MLH1 . Int J Cancer 2007;120:1684–8. Chong S, Youngson NA,Whitelaw E. Heritable germline epimutation is not the same as transgenerational epigenetic...hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor
2017-10-01
of the project as stated in the approved SOW. If the application listed milestones/target dates for important activities or phases of the project...These fluorescent AND, 5α-dione and DIOL derivatives retained the needed level of biological activity in biological assays (vida infra). In...stably expressed AR fused with green fluorescent protein (GFP) was used to determine cellular uptake of fluorescent- androgens, AR activation and
Development of genome-wide SNP assays for rice
USDA-ARS?s Scientific Manuscript database
With the introduction of new sequencing technologies, single nucleotide polymorphisms (SNPs) are rapidly replacing simple sequence repeats (SSRs) as the DNA marker of choice for applications in plant breeding and genetics because they are more abundant, stable, amenable to automation, efficient, and...
Structural and biophysical properties of h-FANCI ARM repeat protein.
Siddiqui, Mohd Quadir; Choudhary, Rajan Kumar; Thapa, Pankaj; Kulkarni, Neha; Rajpurohit, Yogendra S; Misra, Hari S; Gadewal, Nikhil; Kumar, Satish; Hasan, Syed K; Varma, Ashok K
2017-11-01
Fanconi anemia complementation groups - I (FANCI) protein facilitates DNA ICL (Inter-Cross-link) repair and plays a crucial role in genomic integrity. FANCI is a 1328 amino acids protein which contains armadillo (ARM) repeats and EDGE motif at the C-terminus. ARM repeats are functionally diverse and evolutionarily conserved domain that plays a pivotal role in protein-protein and protein-DNA interactions. Considering the importance of ARM repeats, we have explored comprehensive in silico and in vitro approach to examine folding pattern. Size exclusion chromatography, dynamic light scattering (DLS) and glutaraldehyde crosslinking studies suggest that FANCI ARM repeat exist as monomer as well as in oligomeric forms. Circular dichroism (CD) and fluorescence spectroscopy results demonstrate that protein has predominantly α- helices and well-folded tertiary structure. DNA binding was analysed using electrophoretic mobility shift assay by autoradiography. Temperature-dependent CD, Fluorescence spectroscopy and DLS studies concluded that protein unfolds and start forming oligomer from 30°C. The existence of stable portion within FANCI ARM repeat was examined using limited proteolysis and mass spectrometry. The normal mode analysis, molecular dynamics and principal component analysis demonstrated that helix-turn-helix (HTH) motif present in ARM repeat is highly dynamic and has anti-correlated motion. Furthermore, FANCI ARM repeat has HTH structural motif which binds to double-stranded DNA.
BK/TD models for analyzing in vitro impedance data on cytotoxicity.
Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R
2015-06-01
The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Mehta, Sanjay R; MacGruder, Cathy; Looney, David; Johns, Scott; Smith, Davey M
2009-04-01
In response to a difference in pricing, the San Diego Veterans Administration Medical Center changed its tuberculin preparation from Tubersol to Aplisol in the fall of 2006. Following the change, an increased number of employee skin test conversions was noted. Employee tuberculin skin test converters from 2006 were screened with the QuantiFERON Gold (QFT-G) gamma interferon release assay. Those employees who tested negative by QFT-G were asked to repeat their skin test with both Tubersol and Aplisol tuberculin preparations. Of the new purified protein derivative converters, 12 of 14 returned for repeat testing with QFT-G, and the assay was negative for 83% (10/12), positive for 8% (1/12), and indeterminate for 8% (1/12) of the individuals. Nine of the individuals who were QFT-G negative agreed to repeat skin testing with both tuberculin preparations, and 7/8 (87.5%) demonstrated reactivity with the Aplisol preparation, while 0/8 (0%) reacted to the Tubersol preparation. A change from Tubersol to Aplisol resulted in elevated tuberculin skin test conversion rates that may be due to false-positive reactions. The differences in skin test reactivity between preparations support CDC guidelines that recommend that institutions should not change tuberculin preparations, as doing so may falsely increase the number of positive reactions.
Sangesland, Maya; Atwood-Moore, Angela; Rai, Sudhir K; Levin, Henry L
2016-01-01
Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.
Simpson, Aaron J; Potter, Julia M; Koerbin, Gus; Oakman, Carmen; Cullen, Louise; Wilkes, Garry J; Scanlan, Samuel L; Parsonage, William; Hickman, Peter E
2014-06-01
Many patients presenting to the emergency department (ED) for assessment of possible acute coronary syndrome (ACS) have low cardiac troponin concentrations that change very little on repeat blood draw. It is unclear if a lack of change in cardiac troponin concentration can be used to identify acutely presenting patients at low risk of ACS. We used the hs-cTnI assay from Abbott Diagnostics, which can detect cTnI in the blood of nearly all people. We identified a population of ED patients being assessed for ACS with repeat cTnI measurement who ultimately were proven to have no acute cardiac disease at the time of presentation. We used data from the repeat sampling to calculate total within-person CV (CV(T)) and, knowing the assay analytical CV (CV(A)), we could calculate within-person biological variation (CV(i)), reference change values (RCVs), and absolute RCV delta cTnI concentrations. We had data sets on 283 patients. Men and women had similar CV(i) values of approximately 14%, which was similar at all concentrations <40 ng/L. The biological variation was not dependent on the time interval between sample collections (t = 1.5-17 h). The absolute delta critical reference change value was similar no matter what the initial cTnI concentration was. More than 90% of subjects had a critical reference change value <5 ng/L, and 97% had values of <10 ng/L. With this hs-cTnI assay, delta cTnI seems to be a useful tool for rapidly identifying ED patients at low risk for possible ACS. © 2014 The American Association for Clinical Chemistry.
Dai, Xin; Zhang, Nan; Cheng, Ying; Yang, Ti; Chen, Yingnan; Liu, Zhenzhong; Wang, Zhishan; Yang, Chengfeng; Jiang, Yiguo
2018-05-03
Circular RNAs (circRNAs) are widespread and diverse endogenous RNAs distinct from traditional linear RNAs, which may regulate gene expression in eukaryotes. However, the function of human circRNAs, including their potential role in lung cancer, remains largely unknown. We screened the circRNA circ0006916, which was evidently down-regulated in 16HBE-T cells (anti-benzopyrene-trans-7, 8-dihydrodiol-9, 10-epoxide-transformed human bronchial epithelial cells), and in A549 and H460 cell lines. Silencing of circ0006916, but not its parental gene homer scaffolding protein 1 (HOMER1), promoted cell proliferation via speeding up the cell cycle process rather than by inhibiting apoptosis; conversely, overexpression of circ0006916 had the opposite effect. Luciferase screening assay indicated that circ0006916 bound to miR-522-3p and inhibited pleckstrin homology domain and leucine rich repeat protein phosphatase 1 (PHLPP1) activity. We also explored the effect of the RNA-binding protein trinucleotide repeat-containing 6A (TNRC6A) on circ0006916 production. Circ0006916 expression was decreased after silencing TNRC6A. TNRC6A bound to the intron regions around the circRNA-forming exons of circ0006916, as shown by RNA immunoprecipitation assay combined with sequencing analysis. The association of circ0006916 with TNRC6A was further verified by RNA pull-down assays. We then constructed a carrier and confirmed that TNRC6A binding to the flanked intron region of circ0006916 was necessary for generation of circ0006916. These results demonstrate that TNRC6A regulates the biogenesis of the circRNA circ0006916, which has a regulatory role in cell growth.
Tahara, Haruna; Matsuda, Shun; Yamamoto, Yusuke; Yoshizawa, Hiroe; Fujita, Masaharu; Katsuoka, Yasuhiro; Kasahara, Toshihiko
2017-11-01
Various cytotoxicity assays measuring indicators such as enzyme activity, dye uptake, or cellular ATP content are often performed using 96-well microplates. However, recent reports show that cytotoxicity assays such as the ATP assay and MTS assay underestimate cytotoxicity when compounds such as anti-cancer drugs or mutagens induce cell hypertrophy whilst increasing intracellular ATP content. Therefore, we attempted to evaluate the reliability of a high-content image analysis (HCIA) assay to count cell number in a 96-well microplate automatically without using a cell-number indicator. We compared cytotoxicity results of 25 compounds obtained from ATP, WST-8, Alamar blue, and HCIA assays with those directly measured using an automatic cell counter, and repeating individual experiments thrice. The number of compounds showing low correlation in cell viability measured using cytotoxicity assays compared to automatic cell counting (r 2 <0.8, at least 2 of 3 experiments) were follows: ATP assay; 7; WST-8 assay, 2; Alamar blue assay, 3; HCIA cytotoxicity assay, 0. Compounds for which correlation was poor in 3 assays, except the HCIA assay, induced an increase in nuclear and cell size. However, correlation between cell viability measured by automatic cell counter and the HCIA assay was strong regardless of nuclear and cell size. Additionally, correlation coefficients between IC 50 values obtained from automatic cell counter and from cytotoxicity assays were as follows: ATP assay, 0.80; WST-8 assay, 0.84; Alamar blue assay, 0.84; and HCIA assay, 0.98. From the above, we showed that the HCIA cytotoxicity assay produces similar data to the automatic cell counter and is highly accurate in measuring cytotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumbroso, R.; Vasiliou, M.; Beitel, L.K.
1994-09-01
Exon 1 at the X-linked androgen receptor (AR) locus encodes an N-terminal modulatory domain that contains two large homopolyamino acid tracts: (CAG;glutamine;Gln){sub 11-33} and (GGN;Glycine;Cly){sub 15-27}. Certain AR mutations cause partial androgen insensitivity (PAI) with frank genital ambiguity that may engender appreciable parental anxiety and patient morbidity. If the AR mutation in a PAI family is unknown, the AR`s intragenic trinucleotide repeat polymorphisms may be used for prenatal diagnosis. However, intergenerational instability of repeat-size may be worrisome, particularly when the information alleles differ by only a few repeats. Here, we report the discovery of a codon-usage (silent substitution) variant inmore » the GGN repeat, and describe its use as a source of complementary information for prenatal diagnosis. The standard sense sequence of the (GGN){sub n} tract is (GGT){sub 3} GGG(GGT){sub 2} (GGC){sub 9-21}. On 4 of 27 X chromosomes we noted that the internal GGT sequence was expanded to 3 or 4 repeats. We used an internal (GGT){sub 4} repeat in a total (GGN){sub 24} tract together with a (CAG){sub 20} tract to distinguish an X chromosome with a mutant AR allele from another X chromosome, bearing a normal allele, that had an internal (GGT){sub 2} repeat in a total (GGN){sub 23} tract together with a (CAG){sub 21} tract. Subsequently, we found the base change leading to a pathogenic amino acid substitution (M779I) in codon 6 of the mutant AR gene in an affected maternal aunt and the fetus at risk. This confirmed the prenatal diagnosis based on the intragenic trinucleotide repeat polymorphisms, and it strengthened the prediction of external genital ambiguity using our previous experience with M779I in another family.« less
ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells.
Chatterjee, Jit; Nairy, Rajesha K; Langhnoja, Jaldeep; Tripathi, Ashutosh; Patil, Rajashekhar K; Pillai, Prakash P; Mustak, Mohammed S
2018-06-01
Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.
NASA Technical Reports Server (NTRS)
Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.
2002-01-01
Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.
Muleme, Michael; Stenos, John; Vincent, Gemma; Campbell, Angus; Graves, Stephen; Warner, Simone; Devlin, Joanne M; Nguyen, Chelsea; Stevenson, Mark A; Wilks, Colin R; Firestone, Simon M
2016-06-01
Although many studies have reported the indirect immunofluorescence assay (IFA) to be more sensitive in detection of antibodies to Coxiella burnetii than the complement fixation test (CFT), the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of the assay have not been previously established for use in ruminants. This study aimed to validate the IFA by describing the optimization, selection of cutoff titers, repeatability, and reliability as well as the DSe and DSp of the assay. Bayesian latent class analysis was used to estimate diagnostic specifications in comparison with the CFT and the enzyme-linked immunosorbent assay (ELISA). The optimal cutoff dilution for screening for IgG and IgM antibodies in goat serum using the IFA was estimated to be 1:160. The IFA had good repeatability (>96.9% for IgG, >78.0% for IgM), and there was almost perfect agreement (Cohen's kappa > 0.80 for IgG) between the readings reported by two technicians for samples tested for IgG antibodies. The IFA had a higher DSe (94.8%; 95% confidence interval [CI], 80.3, 99.6) for the detection of IgG antibodies against C. burnetii than the ELISA (70.1%; 95% CI, 52.7, 91.0) and the CFT (29.8%; 95% CI, 17.0, 44.8). All three tests were highly specific for goat IgG antibodies. The IFA also had a higher DSe (88.8%; 95% CI, 58.2, 99.5) for detection of IgM antibodies than the ELISA (71.7%; 95% CI, 46.3, 92.8). These results underscore the better suitability of the IFA than of the CFT and ELISA for detection of IgG and IgM antibodies in goat serum and possibly in serum from other ruminants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Stenos, John; Vincent, Gemma; Campbell, Angus; Graves, Stephen; Warner, Simone; Devlin, Joanne M.; Nguyen, Chelsea; Stevenson, Mark A.; Wilks, Colin R.; Firestone, Simon M.
2016-01-01
Although many studies have reported the indirect immunofluorescence assay (IFA) to be more sensitive in detection of antibodies to Coxiella burnetii than the complement fixation test (CFT), the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of the assay have not been previously established for use in ruminants. This study aimed to validate the IFA by describing the optimization, selection of cutoff titers, repeatability, and reliability as well as the DSe and DSp of the assay. Bayesian latent class analysis was used to estimate diagnostic specifications in comparison with the CFT and the enzyme-linked immunosorbent assay (ELISA). The optimal cutoff dilution for screening for IgG and IgM antibodies in goat serum using the IFA was estimated to be 1:160. The IFA had good repeatability (>96.9% for IgG, >78.0% for IgM), and there was almost perfect agreement (Cohen's kappa > 0.80 for IgG) between the readings reported by two technicians for samples tested for IgG antibodies. The IFA had a higher DSe (94.8%; 95% confidence interval [CI], 80.3, 99.6) for the detection of IgG antibodies against C. burnetii than the ELISA (70.1%; 95% CI, 52.7, 91.0) and the CFT (29.8%; 95% CI, 17.0, 44.8). All three tests were highly specific for goat IgG antibodies. The IFA also had a higher DSe (88.8%; 95% CI, 58.2, 99.5) for detection of IgM antibodies than the ELISA (71.7%; 95% CI, 46.3, 92.8). These results underscore the better suitability of the IFA than of the CFT and ELISA for detection of IgG and IgM antibodies in goat serum and possibly in serum from other ruminants. PMID:27122484
BANNAI, Hiroshi; NEMOTO, Manabu; TSUJIMURA, Koji; YAMANAKA, Takashi; MAEDA, Ken; KONDO, Takashi
2015-01-01
To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA. PMID:26424485
Bannai, Hiroshi; Nemoto, Manabu; Tsujimura, Koji; Yamanaka, Takashi; Maeda, Ken; Kondo, Takashi
2016-02-01
To increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA) for equine herpesvirus type 4 (EHV-4) that uses a 12-mer peptide of glycoprotein G (gG4-12-mer: MKNNPIYSEGSL) [4], we used a longer peptide consisting of a 24-mer repeat sequence (gG4-24-mer: MKNNPIYSEGSLMLNVQHDDSIHT) as an antigen. Sera of horses experimentally infected with EHV-4 reacted much more strongly to the gG4-24-mer peptide than to the gG4-12-mer peptide. We used peptide ELISAs to test paired sera from horses naturally infected with EHV-4 (n=40). gG4-24-mer ELISA detected 37 positive samples (92.5%), whereas gG4-12-mer ELISA detected only 28 (70.0%). gG4-24-mer ELISA was much more sensitive than gG4-12-mer ELISA.
Armadillo Repeat Containing 8α Binds to HRS and Promotes HRS Interaction with Ubiquitinated Proteins
Tomaru, Koji; Ueda, Atsuhisa; Suzuki, Takeyuki; Kobayashi, Nobuaki; Yang, Jun; Yamamoto, Masaki; Takeno, Mitsuhiro; Kaneko, Takeshi; Ishigatsubo, Yoshiaki
2010-01-01
Recently, we reported that a complex with an essential role in the degradation of Fructose-1,6-bisphosphatase in yeast is well conserved in mammalian cells; we named this mammalian complex C-terminal to the Lissencephaly type-1-like homology (CTLH) complex. Although the function of the CTLH complex remains unclear, here we used yeast two-hybrid screening to isolate Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) as a protein binding to a key component of CTLH complex, Armadillo repeat containing 8 (ARMc8) α. The association was confirmed by a yeast two-hybrid assay and a co-immunoprecipitation assay. The proline-rich domain of HRS was essential for the association. As demonstrated through immunofluorescence microscopy, ARMc8α co-localized with HRS. ARMc8α promoted the interaction of HRS with various ubiquitinated proteins through the ubiquitin-interacting motif. These findings suggest that HRS mediates protein endosomal trafficking partly through its interaction with ARMc8α. PMID:20224683
Carethers, John M; Koi, Minoru; Tseng-Rogenski, Stephanie S
2015-03-31
DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among colorectal cancers include relationships between EMAST and chemotherapy response, patient outcome with aneuploid changes in colorectal cancers, target gene mutation analysis, and mechanisms related to inflammation-induced compartmentalization and inactivation for MSH3.
Carethers, John M.; Koi, Minoru; Tseng-Rogenski, Stephanie S.
2015-01-01
DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among colorectal cancers include relationships between EMAST and chemotherapy response, patient outcome with aneuploid changes in colorectal cancers, target gene mutation analysis, and mechanisms related to inflammation-induced compartmentalization and inactivation for MSH3. PMID:25836926
Potts, Richard; Faith, J Tyler
2015-10-01
Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history. Published by Elsevier Ltd.
A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli.
Li, Mingji; Wang, Junshu; Geng, Yanping; Li, Yikui; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng
2012-02-06
For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs) in tandem. Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB) production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.
Calin, George; Ranzani, Guglielmina N; Amadori, Dino; Herlea, Vlad; Matei, Irina; Barbanti-Brodano, Giuseppe; Negrini, Massimo
2001-01-01
Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). Methods We analyzed 50 gastric carcinomas (GCs) for mutations in the BLM poly(A) tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases) but not in any of the MMP negative GCs (0/35 cases). The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %), BAX (27%), hMSH6 (20%),hMSH3 (13%), CBL (13%), IGFIIR (7%), RECQL (0%) and WRN (0%). Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors. PMID:11532193
Haruma, Tomoko; Nagasaka, Takeshi; Nakamura, Keiichiro; Haraga, Junko; Nyuya, Akihiro; Nishida, Takeshi; Goel, Ajay; Masuyama, Hisashi; Hiramatsu, Yuji
2018-01-01
The molecular characterization of endometrial cancer (EC) can facilitate identification of various tumor subtypes. Although EC patients with POLE mutations reproducibly demonstrate better prognosis, the outcome of patients with microsatellite instability (MSI) remains controversial. This study attempted to interrogate whether genetic stratification of EC can identify distinct subsets with prognostic significance. A cohort of 138 EC patients who underwent surgical resection with curative intent was enrolled. Sanger sequencing was used to evaluate mutations in the POLE and KRAS genes. MSI analysis was performed using four mononucleotide repeat markers and methylation status of the MLH1 promoter was measured by a fluorescent bisulfite polymerase chain reaction (PCR). Protein expression for mismatch repair (MMR) proteins was evaluated by immunohistochemistry (IHC). Extensive hypermethylation of the MLH1 promoter was observed in 69.6% ECs with MLH1 deficiency and 3.5% with MMR proficiency, but in none of the ECs with loss of other MMR genes (P < .0001). MSI-positive and POLE mutations were found in 29.0% and 8.7% EC patients, respectively. Our MSI analysis showed a sensitivity of 92.7% for EC patients with MMR deficiency, and a specificity of 97.9% for EC patients with MMR proficiency. In univariate and multivariate analyses, POLE mutations and MSI status was significantly associated with progression-free survival (P = 0.0129 and 0.0064, respectively) but not with endometrial cancer-specific survival. This study provides significant evidence that analyses of proofreading POLE mutations and MSI status based on mononucleotide repeat markers are potentially useful biomarkers to identify EC patients with better prognosis.
Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.
2013-01-01
No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.
Villahermosa, Desirée; Christensen, Olaf; Knapp, Karen; Fleck, Oliver
2017-01-01
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes. PMID:28341698
Villahermosa, Desirée; Christensen, Olaf; Knapp, Karen; Fleck, Oliver
2017-05-05
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade + reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2 FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe , but contributes to DNA repeat stability in MMR-independent processes. Copyright © 2017 Villahermosa et al.
Schmid, J; Daneck, K; Koss, F W; Eisenbrand, G; Schlemmer, K H
1988-09-01
Bromhexine (N-methyl-N-cyclohexyl-(2-amino-3,5-dibromobenzyl)-ammoniumhydr ochloride) forms N-nitroso-N-methyl-N-cyclohexylamine (NMCA) under the conditions of the WHO Nitrosation Assay Procedure (NAP-test). The formation kinetics of this compound was investigated. The formation of NMCA depends on the square of the nitrite concentration. The reaction has a narrow pH-optimum at pH 3. The reaction is quick: After 1 h about 70% of the maximum amount of NMCA is formed. To study this reaction kinetics sensitive assays with a detection limit up to 0.5 ng/ml NMCA were developed. The stability of the components of the system, especially that of NMCA and nitrite, were further studied. The latter is rather instable under conditions found in an acidic stomach.
Stevens, Peter M; Gililland, Jeremy M; Anderson, Lucas A; Mickelson, Jennifer B; Nielson, Jenifer; Klatt, Joshua W
2014-04-01
Torsional deformities of the femur and/or tibia often go unrecognized in adolescents and adults who present with anterior knee pain, and patellar maltracking or instability. While open and arthroscopic surgical techniques have evolved to address these problems, unrecognized torsion may compromise the outcomes of these procedures. We collected a group of 16 consecutive patients (23 knees), with mean age of 17, who had undergone knee surgery before torsion was recognized and subsequently treated by means of rotational osteotomy of the tibia and/or femur. By follow-up questionnaire, we sought to determine the role of rotational correction at mean 59-month follow-up. We reasoned that, by correcting torsional alignment, we might be able to optimize long-term outcomes and avert repeated knee surgery. Knee pain was significantly improved after torsional treatment (mean 8.6 pre-op vs. 3.3 post-op, p < 0.001), while 70 % of patients did have some continued knee pain postoperatively. Only 43 % of patients had continued patellar instability, and 57 % could trust their knee after surgery. Activity level remained the same or increased in 78 % of patients after torsional treatment. Excluding planned rod removal, subsequent knee surgery for continued anterior knee pain was undertaken on only 3 knees in 2 patients. We believe that malrotation of the lower limb not only raises the propensity for anterior knee symptoms, but is also a under-recognized etiology in the failure of surgeries for anterior knee pain and patellar instability. Addressing rotational abnormalities in the index surgery yields better clinical outcomes than osteotomies performed after other prior knee surgeries.
Merolla, Giovanni; Wagner, Eric; Sperling, John W; Paladini, Paolo; Fabbri, Elisabetta; Porcellini, Giuseppe
2018-01-01
There remains a paucity of studies examining the conversion of failed hemiarthroplasty (HA) to reverse total shoulder arthroplasty (RTSA). Therefore, the purpose of this study was to examine a large series of revision HA to RTSA. A population of 157 patients who underwent conversion of a failed HA to a revision RTSA from 2006 through 2014 were included. The mean follow-up was 49 months (range, 24-121 months). The indications for revision surgery included instability with rotator cuff insufficiency (n = 127) and glenoid wear (n = 30); instability and glenoid wear were associated in 38 cases. Eight patients with infection underwent 2-stage reimplantation. Patients experienced significant improvements in their preoperative to postoperative pain and shoulder range of motion (P < .0001), with median American Shoulder and Elbow Surgeons and Simple Shoulder Test scores of 60 and 6 points, respectively. There were 11 (7%) repeated revision surgeries, secondary to glenoid component loosening (n = 3), instability (n = 3), humeral component disassembly (n = 2), humeral stem loosening (n = 1), and infection (n = 2). Implant survivorship was 95.5% at 2 years and 93.3% at 5 years. There were 4 reoperations including axillary nerve neurolysis (n = 2), heterotopic ossification removal (n = 1), and hardware removal for rupture of the metal cerclage for an acromial fracture (n = 1). At final follow-up, there were 5 "at-risk" glenoid components. Patients experience satisfactory pain relief and recovery of reasonable shoulder function after revision RTSA from a failed HA. There was a relatively low revision rate, with glenoid loosening and instability being the most common causes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Zauber, Peter; Marotta, Stephen; Sabbath-Solitare, Marlene
2016-03-12
Changes in the number of alleles of a chromosome may have an impact upon gene expression. Loss of heterozygosity (LOH) indicates that one allele of a gene has been lost, and knowing the exact copy number of the gene would indicate whether duplication of the remaining allele has occurred. We were interested to determine the copy number of the Adenomatous Polyposis Coli (APC) gene in sporadic colorectal cancers with LOH. We selected 38 carcinomas with LOH for the APC gene region of chromosome 5, as determined by amplification of the CA repeat region within the D5S346 loci. The copy number status of APC was ascertained using the SALSA® MLPA® P043-B1 APC Kit. LOH for the DCC gene, KRAS gene mutation, and microsatellite instability were also evaluated for each tumor, utilizing standard polymerase chain reaction methods. No tumor demonstrated microsatellite instability. LOH of the DCC gene was also present in 33 of 36 (91.7%) informative tumors. A KRAS gene mutation was present in 16 of the 38 (42.1%) tumors. Twenty-four (63.2%) of the tumors were copy number neutral, 10 (26.3%) tumors demonstrated major loss, while two (5.3%) showed partial loss. Two tumors (5.3%) had copy number gain. Results of APC and DCC LOH, KRAS and microsatellite instability indicate our colorectal cancer cases were typical of sporadic cancers following the 'chromosomal instability' pathway. The majority of our colorectal carcinomas with LOH for APC gene are copy number neutral. However, one-third of our cases showed copy number loss, suggesting that duplication of the remaining allele is not required for the development of a colorectal carcinoma.
Raghu, G; Tevosian, S; Anant, S; Subramanian, K N; George, D L; Mirkin, S M
1994-01-01
The mouse c-Ki-ras protooncogene promoter contains an unusual DNA element consisting of a 27 bp-long homopurine-homopyrimidine mirror repeat (H-motif) adjacent to a d(C-G)5 repeat. We have previously shown that in vitro these repeats may adopt H and Z conformations, respectively, causing nuclease and chemical hypersensitivity. Here we have studied the functional role of these DNA stretches using fine deletion analysis of the promoter and a transient transcription assay in vivo. We found that while the H-motif is responsible for approximately half of the promoter activity in both mouse and human cell lines, the Z-forming sequence exhibits little, if any, such activity. Mutational changes introduced within the homopurine-homopyrimidine stretch showed that its sequence integrity, rather than its H-forming potential, is responsible for its effect on transcription. Electrophoretic mobility shift assays revealed that the putative H-motif tightly binds several nuclear proteins, one of which is likely to be transcription factor Sp1, as determined by competition experiments. Southwestern hybridization studies detected two major proteins specifically binding to the H-motif: a 97 kD protein which presumably corresponds to Sp1 and another protein of 60 kD in human and 64 kD in mouse cells. We conclude that the homopurine-homopyrimidine stretch is required for full transcriptional activity of the c-Ki-ras promoter and at least two distinct factors, Sp1 and an unidentified protein, potentially contribute to the positive effect on transcription. Images PMID:8078760
Wyant, Tim; Estevam, Jose; Yang, Lili; Rosario, Maria
2016-03-01
Vedolizumab is a monoclonal antibody approved for use in ulcerative colitis and Crohn's disease. By specifically binding to α4 β7 integrin, vedolizumab prevents trafficking of lymphocytes to the gut, thereby interfering with disease pathology. During the clinical development program, the pharmacodynamic effect of vedolizumab was evaluated by 2 flow cytometry receptor occupancy assays: act-1 (ACT-1) and mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Here we describe the development and validation of these assays. The ACT-1 assay is a receptor occupancy free-site assay that uses a monoclonal antibody with the same binding epitope as vedolizumab to detect free (unbound) sites on α4 β7 integrin. The MAdCAM-1 assay used a soluble version of the natural ligand for α4 β7 integrin to detect free sites. The assays were validated using a fit-for-purpose approach throughout the clinical development of vedolizumab. Both the ACT-1 assay and the MAdCAM-1 assay demonstrated acceptable reproducibility and repeatability. The assays were sufficiently stable to allow for clinical use. During clinical testing the assays demonstrated that vedolizumab was able to saturate peripheral cells at all doses tested. Two pharmacodynamic receptor occupancy assays were developed and validated to assess the effect of vedolizumab on peripheral blood cells. The results of these assays demonstrated the practical use of flow cytometry to examine pharmacodynamic response in clinical trials. © 2015 International Clinical Cytometry Society.
ACCA phosphopeptide recognition by the BRCT repeats of BRCA1.
Ray, Hind; Moreau, Karen; Dizin, Eva; Callebaut, Isabelle; Venezia, Nicole Dalla
2006-06-16
The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.
APE1 incision activity at abasic sites in tandem repeat sequences.
Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M
2014-05-29
Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.
Bilibana, Mawethu Pascoe; Yeoh, Tzi Shien; Tang, Thean-Hock
2017-01-01
The binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements. The reversible denaturation property inherent in aptamers enables the repeated usage of aptamers, which can immensely save the cost of decontamination. Analogous to the point-of-care diagnostics, there is no doubt that aptamers can also be deployed in the point-of-care aptamer-based decontamination assay, whereby decontamination can be performed anywhere and anytime for instantaneous decision-making. It is also prophesied that aptamers can also serve more than as a decontaminant, probably as a tool to capture and kill hazardous elements, particularly pathogenic agents. PMID:29225967
Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen
2014-07-01
Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.
A Survey of Validation Strategies for CRISPR-Cas9 Editing.
Sentmanat, Monica F; Peters, Samuel T; Florian, Colin P; Connelly, Jon P; Pruett-Miller, Shondra M
2018-01-17
The T7 endonuclease 1 (T7E1) mismatch detection assay is a widely used method for evaluating the activity of site-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. To determine the accuracy and sensitivity of this assay, we compared the editing estimates derived by the T7E1 assay with that of targeted next-generation sequencing (NGS) in pools of edited mammalian cells. Here, we report that estimates of nuclease activity determined by T7E1 most often do not accurately reflect the activity observed in edited cells. Editing efficiencies of CRISPR-Cas9 complexes with similar activity by T7E1 can prove dramatically different by NGS. Additionally, we compared editing efficiencies predicted by the Tracking of Indels by Decomposition (TIDE) assay and the Indel Detection by Amplicon Analysis (IDAA) assay to that observed by targeted NGS for both cellular pools and single-cell derived clones. We show that targeted NGS, TIDE, and IDAA assays predict similar editing efficiencies for pools of cells but that TIDE and IDAA can miscall alleles in edited clones.
Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali
2012-03-01
Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.
Szatmari, I; Tókés, S; Dunn, C B; Bardos, T J; Aradi, J
2000-06-15
A polymerase chain reaction (PCR)-based radioactive telomerase assay was developed in our laboratory which is quantitative and does not require electrophoretic evaluation (designated as TP-TRAP; it utilizes two reverse primers). The main steps of the assay include (1) extension of a 20-mer oligonucleotide substrate (MTS) by telomerase, (2) amplification of the telomerase products in the presence of [(3)H]dTTP using the substrate oligonucleotide and two reverse primers (RPC3, 38 mer; RP, 20 mer), (3) isolation of the amplified radioactive dsDNA by precipitation and filtration, (4) determination of the radioactivity of the acid-insoluble DNA. The length of the telomerase products does not increase on amplification. This valuable feature of the assay is achieved by utilization of the two reverse primers and a highly specific PCR protocol. The assay is linear, accurate, and suitable for cell-biological studies where slight quantitative differences in telomerase activity must be detected. The assay is also suitable for screening and characterization of telomerase inhibitors, as shown with a chemically modified oligonucleotide reverse transcriptase inhibitor [(s(4)dU)(35)]. Copyright 2000 Academic Press.
Halling, V W; Jones, M F; Bestrom, J E; Wold, A D; Rosenblatt, J E; Smith, T F; Cockerill, F R
1999-10-01
Recently, a treponema-specific immunoglobulin G (IgG) enzyme immunoassay (EIA), the CAPTIA Syphilis-G (Trinity Biotech, Jamestown, N.Y.), has become available as a diagnostic test for syphilis. A total of 89 stored sera previously tested by the fluorescent treponemal antibody absorption (FTA-ABS) IgG assay were evaluated by the CAPTIA EIA. The FTA-ABS IgG procedure was performed by technologists unblinded to results of rapid plasmid reagin (RPR) testing of the same specimens. Borderline CAPTIA-positive samples (antibody indices of >/=0.650 and =0.900) were retested; if the second analysis produced an index of >0.900, the sample was considered positive. Thirteen of 89 (15%) samples had discrepant results. Compared to the FTA-ABS assay, the CAPTIA EIA had a sensitivity and specificity and positive and negative predictive values of 70.7, 97.9, 96.7, and 79.7%, respectively. In another analysis, discrepancies between results were resolved by repeated FTA-ABS testing (technologists were blinded to previous RPR results) and patient chart reviews. Seven CAPTIA-negative samples which were previously interpreted (unblinded) as minimally reactive by the FTA method were subsequently interpreted (blinded) as nonreactive. One other discrepant sample (CAPTIA negative and FTA-ABS positive [at an intensity of 3+], unblinded) was FTA negative with repeated testing (blinded). For the five remaining discrepant samples, chart reviews indicated that one patient (CAPTIA negative and FTA-ABS positive [minimally reactive], blinded) had possible syphilis. These five samples were also evaluated and found to be negative by another treponema-specific test, the Treponema pallidum microhemagglutination assay. Therefore, after repeated testing and chart reviews, 2 of the 89 (2%) samples had discrepant results; the adjusted sensitivity, specificity, and positive and negative predictive values were 96.7, 98.3, 96.7, and 98.3%, respectively. This study demonstrates that the CAPTIA IgG EIA is a reliable method for syphilis testing and that personnel performing tests which require subjective interpretation, like the FTA-ABS test, may be biased by RPR test results.
Halling, V. W.; Jones, M. F.; Bestrom, J. E.; Wold, A. D.; Rosenblatt, J. E.; Smith, T. F.; Cockerill, F. R.
1999-01-01
Recently, a treponema-specific immunoglobulin G (IgG) enzyme immunoassay (EIA), the CAPTIA Syphilis-G (Trinity Biotech, Jamestown, N.Y.), has become available as a diagnostic test for syphilis. A total of 89 stored sera previously tested by the fluorescent treponemal antibody absorption (FTA-ABS) IgG assay were evaluated by the CAPTIA EIA. The FTA-ABS IgG procedure was performed by technologists unblinded to results of rapid plasmid reagin (RPR) testing of the same specimens. Borderline CAPTIA-positive samples (antibody indices of ≥0.650 and ≤0.900) were retested; if the second analysis produced an index of >0.900, the sample was considered positive. Thirteen of 89 (15%) samples had discrepant results. Compared to the FTA-ABS assay, the CAPTIA EIA had a sensitivity and specificity and positive and negative predictive values of 70.7, 97.9, 96.7, and 79.7%, respectively. In another analysis, discrepancies between results were resolved by repeated FTA-ABS testing (technologists were blinded to previous RPR results) and patient chart reviews. Seven CAPTIA-negative samples which were previously interpreted (unblinded) as minimally reactive by the FTA method were subsequently interpreted (blinded) as nonreactive. One other discrepant sample (CAPTIA negative and FTA-ABS positive [at an intensity of 3+], unblinded) was FTA negative with repeated testing (blinded). For the five remaining discrepant samples, chart reviews indicated that one patient (CAPTIA negative and FTA-ABS positive [minimally reactive], blinded) had possible syphilis. These five samples were also evaluated and found to be negative by another treponema-specific test, the Treponema pallidum microhemagglutination assay. Therefore, after repeated testing and chart reviews, 2 of the 89 (2%) samples had discrepant results; the adjusted sensitivity, specificity, and positive and negative predictive values were 96.7, 98.3, 96.7, and 98.3%, respectively. This study demonstrates that the CAPTIA IgG EIA is a reliable method for syphilis testing and that personnel performing tests which require subjective interpretation, like the FTA-ABS test, may be biased by RPR test results. PMID:10488183
Dittwald, Piotr; Gambin, Tomasz; Szafranski, Przemyslaw; Li, Jian; Amato, Stephen; Divon, Michael Y; Rodríguez Rojas, Lisa Ximena; Elton, Lindsay E; Scott, Daryl A; Schaaf, Christian P; Torres-Martinez, Wilfredo; Stevens, Abby K; Rosenfeld, Jill A; Agadi, Satish; Francis, David; Kang, Sung-Hae L; Breman, Amy; Lalani, Seema R; Bacino, Carlos A; Bi, Weimin; Milosavljevic, Aleksandar; Beaudet, Arthur L; Patel, Ankita; Shaw, Chad A; Lupski, James R; Gambin, Anna; Cheung, Sau Wai; Stankiewicz, Pawel
2013-09-01
We delineated and analyzed directly oriented paralogous low-copy repeats (DP-LCRs) in the most recent version of the human haploid reference genome. The computationally defined DP-LCRs were cross-referenced with our chromosomal microarray analysis (CMA) database of 25,144 patients subjected to genome-wide assays. This computationally guided approach to the empirically derived large data set allowed us to investigate genomic rearrangement relative frequencies and identify new loci for recurrent nonallelic homologous recombination (NAHR)-mediated copy-number variants (CNVs). The most commonly observed recurrent CNVs were NPHP1 duplications (233), CHRNA7 duplications (175), and 22q11.21 deletions (DiGeorge/velocardiofacial syndrome, 166). In the ∼25% of CMA cases for which parental studies were available, we identified 190 de novo recurrent CNVs. In this group, the most frequently observed events were deletions of 22q11.21 (48), 16p11.2 (autism, 34), and 7q11.23 (Williams-Beuren syndrome, 11). Several features of DP-LCRs, including length, distance between NAHR substrate elements, DNA sequence identity (fraction matching), GC content, and concentration of the homologous recombination (HR) hot spot motif 5'-CCNCCNTNNCCNC-3', correlate with the frequencies of the recurrent CNVs events. Four novel adjacent DP-LCR-flanked and NAHR-prone regions, involving 2q12.2q13, were elucidated in association with novel genomic disorders. Our study quantitates genome architectural features responsible for NAHR-mediated genomic instability and further elucidates the role of NAHR in human disease.
A luminescence assay for natural product inhibitors of the Mycobacterium tuberculosis proteasome.
Gunderwala, Amber; Porter, John
2016-01-01
Mycobacterium tuberculosis (Mtb) causes a large global burden of disease, with a high mortality rate in healthy and immuno-compromised patients. A number of molecular targets have been identified for treatment of this disease, including the Mtb proteasome. The Mtb proteasome enhances Mtb survival during nitrosative and oxidative stress in the latent, non-replicative phase. Therefore, Mtb proteasome inhibition could help to combat Mtb infections that do not respond to current therapies. To develop and validate a novel biochemical assay to assess Mtb proteasome activity in the presence of organic and aqueous plant test extracts. Fluorescence (photoluminescence) and luminescence (chemiluminescence) assays were investigated as potential methods to determine the robustness and repeatability for use in screening natural product extracts for Mtb proteasome inhibitors. The fluorescence assay, used widely for Mtb proteasome activity assays, was subject to interference due to the natural fluorescence of compounds in many of the extracts; there is little interference with the luminescence approach. As proof of principle, we used the luminescence assay to screen a small set of plant test extracts. Luminescence is the more suitable assay for assay of plant natural product extracts. The sensitivities of the luminescence and fluorescence assays are comparable. A Z'-factor of 0.58 for the luminescence assay makes it suitable for medium-to-high throughput screening efforts. Copyright © 2016 John Wiley & Sons, Ltd.
Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang
2011-08-01
Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.
Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka
2011-11-01
The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.
Cumulative False-Positive QuantiFERON-TB Interferon-γ Release Assay Results.
Gamsky, Thomas E; Lum, Thomas; Hung-Fan, Melody; Green, Jon A
2016-05-01
Despite reports of unreliability, the QuantiFERON-TB interferon-γ release assay is increasingly used for the annual screening of individuals at risk for latent tuberculosis. Continued use of the QuantiFERON-TB assay suggests the need for more definitive evidence of its reproducibility and accuracy. To examine reproducibility and the accumulation of false-positive test results when the QuantiFERON-TB is repeated annually and to examine the validity of confirming positive test results with the performance of a second QuantiFERON-TB. We performed a retrospective, longitudinal evaluation of results from serial screening of a cohort of emergency responders from 2001 to 2013. Results of tuberculin tests and QuantiFERON-TB tests performed annually as part of a mandated first responder examination were retroactively reviewed. In this population, positive results occurred in new individuals each year. QuantiFERON-TB results were positive in 80 of 557 tuberculin test-negative individuals examined annually for a maximum of 7 years. Only 10 individuals with initially positive results remained positive when the test was repeated the next year, and 9 of these 10 were QuantiFERON-TB-negative within 3 years. The number of individuals with a positive result increased annually, and, after 7 years, 32 (27.4%) of 117 people had a positive result. When viewed in the context of the extensive literature documenting unreliable QuantiFERON-TB test performance, our findings of frequent, cumulative, sporadic, and irreproducible positive results support discontinuing the use of the QuantiFERON-TB assay for the diagnosis of latent tuberculosis in low-risk populations.
Fossa, Anthony A; Wisialowski, Todd; Duncan, J Neil; Deng, Shibing; Dunne, Michael
2007-11-01
Prolongation of the electrocardiogram QT interval by some, but not all drugs, has been associated with increased incidence of sudden cardiac death. Current preclinical regulatory assays cannot discriminate the arrhythmia liability of these drugs. Consequently, many new medications that prolong the QT interval are not developed despite their potential therapeutic benefit. Alternans (action potential duration alternations) is a measure of cardiac instability in humans and animals associated with the onset of ventricular fibrillation. Due to potential arrhythmia risk from observed QT prolongation, alternans was assessed in the anesthetized guinea pig after azithromycin or chloroquine alone and after combination treatment at clinically relevant concentrations proposed for the management of malaria. Chloroquine alone, but not azithromycin, caused a profound increase in action potential duration but with only minimal effects on alternans (approximately 10 ms). Azithromycin alone and in combination with chloroquine showed no increase in alternans beyond vehicle baseline responses indicating no additional arrhythmia liability.
Putnam, Christopher D.; Srivatsan, Anjana; Nene, Rahul V.; Martinez, Sandra L.; Clotfelter, Sarah P.; Bell, Sara N.; Somach, Steven B.; E.S. de Souza, Jorge; Fonseca, André F.; de Souza, Sandro J.; Kolodner, Richard D.
2016-01-01
Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. PMID:27071721
Assessment of the beryllium lymphocyte proliferation test using statistical process control.
Cher, Daniel J; Deubner, David C; Kelsh, Michael A; Chapman, Pamela S; Ray, Rose M
2006-10-01
Despite more than 20 years of surveillance and epidemiologic studies using the beryllium blood lymphocyte proliferation test (BeBLPT) as a measure of beryllium sensitization (BeS) and as an aid for diagnosing subclinical chronic beryllium disease (CBD), improvements in specific understanding of the inhalation toxicology of CBD have been limited. Although epidemiologic data suggest that BeS and CBD risks vary by process/work activity, it has proven difficult to reach specific conclusions regarding the dose-response relationship between workplace beryllium exposure and BeS or subclinical CBD. One possible reason for this uncertainty could be misclassification of BeS resulting from variation in BeBLPT testing performance. The reliability of the BeBLPT, a biological assay that measures beryllium sensitization, is unknown. To assess the performance of four laboratories that conducted this test, we used data from a medical surveillance program that offered testing for beryllium sensitization with the BeBLPT. The study population was workers exposed to beryllium at various facilities over a 10-year period (1992-2001). Workers with abnormal results were offered diagnostic workups for CBD. Our analyses used a standard statistical technique, statistical process control (SPC), to evaluate test reliability. The study design involved a repeated measures analysis of BeBLPT results generated from the company-wide, longitudinal testing. Analytical methods included use of (1) statistical process control charts that examined temporal patterns of variation for the stimulation index, a measure of cell reactivity to beryllium; (2) correlation analysis that compared prior perceptions of BeBLPT instability to the statistical measures of test variation; and (3) assessment of the variation in the proportion of missing test results and how time periods with more missing data influenced SPC findings. During the period of this study, all laboratories displayed variation in test results that were beyond what would be expected due to chance alone. Patterns of test results suggested that variations were systematic. We conclude that laboratories performing the BeBLPT or other similar biological assays of immunological response could benefit from a statistical approach such as SPC to improve quality management.
Interannual Atmospheric Variability Simulated by a Mars GCM: Impacts on the Polar Regions
NASA Technical Reports Server (NTRS)
Bridger, Alison F. C.; Haberle, R. M.; Hollingsworth, J. L.
2003-01-01
It is often assumed that in the absence of year-to-year dust variations, Mars weather and climate are very repeatable, at least on decadal scales. Recent multi-annual simulations of a Mars GCM reveal however that significant interannual variations may occur with constant dust conditions. In particular, interannual variability (IAV) appears to be associated with the spectrum of atmospheric disturbances that arise due to baroclinic instability. One quantity that shows significant IAV is the poleward heat flux associated with these waves. These variations and their impacts on the polar heat balance will be examined here.
A Trio of Human Molecular Genetics PCR Assays
ERIC Educational Resources Information Center
Reinking, Jeffrey L.; Waldo, Jennifer T.; Dinsmore, Jannett
2013-01-01
This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional…
Semiautomated Motility Assay For Determining Toxicity
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond
1996-01-01
Improved method of assessing toxicities of various substances based on observation of effects of those substances on motilities of manageably small number of cells of protozoan species Tetrahema pyriformis. Provides repeatable, standardized tests with minimal handling by technicians and with minimal exposure of technicians to chemicals. Rapid and economical alternative to Draize test.
A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi.
Troskie, Anscha Mari; Vlok, Nicolas Maré; Rautenbach, Marina
2012-12-01
In recent years the global rise in antibiotic resistance and environmental consciousness lead to a renewed fervour to find and develop novel antibiotics, including antifungals. However, the influence of the environment on antifungal activity is often disregarded and many in vitro assays may cause the activity of certain antifungals to be overestimated or underestimated. The general antifungal test assays that are economically accessible to the majority of scientists primarily rely on visual examination or on spectrophotometric analysis. The effect of certain morphogenic antifungals, which may lead to hyperbranching of filamentous fungi, unfortunately renders these methods unreliable. To minimise the difficulties experienced as a result of hyperbranching, we developed a straightforward, economical 96-well gel-based method, independent of spectrophotometric analysis, for highly repeatable determination of antifungal activity. For the calculation of inhibition parameters, this method relies on the visualisation of assay results by digitisation. The antifungal activity results from our novel micro-gel dilution assay are comparable to that of the micro-broth dilution assay used as standard reference test of The Clinical and Laboratory Standard Institute. Furthermore, our economical assay is multifunctional as it permits microscopic analysis of the preserved assay results, as well as rendering highly reliable data. Copyright © 2012 Elsevier B.V. All rights reserved.
van Blerk, G N; Leibach, L; Mabunda, A; Chapman, A; Louw, D
2011-01-01
A real-time PCR assay combined with a pre-enrichment step for the specific and rapid detection of Salmonella in water samples is described. Following amplification of the invA gene target, High Resolution Melt (HRM) curve analysis was used to discriminate between products formed and to positively identify invA amplification. The real-time PCR assay was evaluated for specificity and sensitivity. The assay displayed 100% specificity for Salmonella and combined with a 16-18 h non-selective pre-enrichment step, the assay proved to be highly sensitive with a detection limit of 1.0 CFU/ml for surface water samples. The detection assay also demonstrated a high intra-run and inter-run repeatability with very little variation in invA amplicon melting temperature. When applied to water samples received routinely by the laboratory, the assay showed the presence of Salmonella in particularly surface water and treated effluent samples. Using the HRM based assay, the time required for Salmonella detection was drastically shortened to less than 24 h compared to several days when using standard culturing methods. This assay provides a useful tool for routine water quality monitoring as well as for quick screening during disease outbreaks.
Effects of joint mobilization on chronic ankle instability: a randomized controlled trial.
Cruz-Díaz, David; Lomas Vega, Rafael; Osuna-Pérez, Maria Catalina; Hita-Contreras, Fidel; Martínez-Amat, Antonio
2015-01-01
To evaluate the effects of joint mobilization, in which movement is applied to the ankle's dorsiflexion range of motion, on dynamic postural control and on the self-reported instability of patients with chronic ankle instability (CAI). A double-blind, placebo-controlled, randomized trial with repeated measures and a follow-up period. Ninety patients with a history of recurrent ankle sprain, self-reported instability, and a limited dorsiflexion range of motion, were randomly assigned to either the intervention group (Joint Mobilizations, 3 weeks, two sessions per week) the placebo group (Sham Mobilizations, same duration as joint mobilization) or the control group, with a 6 months follow-up. Dorsiflexion Range of Motion (DFROM), Star Excursion Balance Test (SEBT) and CAI Tool (CAIT) were outcome measures. A separate 3 × 4 mixed model analysis of variance was performed to examine the effect of treatment conditions and time, and intention-to-treat (ITT) analysis was applied to evaluate the effect of the independent variable. The application of joint mobilization resulted in better scores of DFROM, CAIT, and SEBTs in the intervention group when compared with the placebo or the control groups (p < 0.001). The effect sizes of group-by-time interaction, measured with eta-squared, oscillated between 0.954 for DFROM and 0.288 for SEBT posteromedial distance. In within-group analysis, the manipulation group showed an improvement at 6 months follow-up in CAIT [mean = 5.23, CI 95% (4.63-5.84)], DFROM [mean = 6.77, CI 95% (6.45-7.08)], anterior SEBT [mean = 7.35, CI 95% (6.59-8.12)], posteromedial SEBT [mean = 3.32, CI 95% (0.95-5.69)], and posterolateral SEBT [mean = 2.55, CI 95% (2.20-2.89)]. Joint mobilization techniques applied to subjects suffering from CAI were able to improve ankle DFROM, postural control, and self-reported instability. These results suggest that joint mobilization could be applied to patients with recurrent ankle sprain to help restore their functional stability. Implications for Rehabilitation Functional instability is a very common sequela in patients with CAI, resulting in reduced quality of living due to the limitations it imposes on daily life activities. The mobilization with movement technique presented by Mulligan, and based on the joint mobilization accompanied by active movement, appears as a valuable tool to be employed by physical therapists to restore ankle function after a recurrent ankle sprain history. ROM restriction, subjective feeling of instability and dynamic postural control are benefiting from the joint mobilization application.
Evaluation of reliability on STR typing at leukemic patients used for forensic purposes.
Filoglu, G; Bulbul, O; Rayimoglu, G; Yediay, F E; Zorlu, T; Ongoren, S; Altuncul, H
2014-06-01
Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010-2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references.
Larracuente, Amanda M
2014-11-25
Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)- an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. The genomic organization of the Rsp repeat in the D. melanogaster genome is complex-it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years).
Radstake, Timothy R D J; Fransen, Jaap; Toonen, Erik J M; Coenen, Marieke J H; Eijsbouts, Agnes E; Donn, Rachelle; van den Hoogen, Frank H J; van Riel, Piet L C M
2007-11-01
Macrophage migration inhibitory factor (MIF) is an inflammatory mediator associated with RA severity. In various diseases, MIF polymorphisms are associated with clinical response glucocorticoid (GC) treatment. It is unclear whether MIF polymorphisms determine GC response in rheumatoid arthritis (RA) and to other RA treatments. Therefore, the question of whether two functional variants in MIF are associated with the response to tumour necrosis factor (TNF)alpha-neutralising and GC treatments in RA was investigated. Data from two cohorts of an RA registry were used. For patients who started with TNFalpha-neutralising (infliximab) or GC treatment, courses with a duration of at least 3 months were included and response to TNFalpha blockers or GC was calculated according to the European League Against Rheumatism response criteria. MIF -173G-->C genotyping was achieved using an assay-on-demand allelic discrimination assay, and alleles of the CATT repeat element were identified using a fluorescently labelled PCR primer and capillary electrophoresis. Logistic-regression modelling was used for the statistical analysis. In total, 192 courses of oral prednisone or methylprednisolone injections in 98 patients with RA and 90 patients with RA who were on TNFalpha-neutralising treatments were documented. In all, 27% of the patients with RA were found to be heterozygous for seven CATT repeats (CATT(7)) and 31% were heterozygous for -173C. Respectively, 4% and 6% of the patients with RA were homozygous for the MIF CATT(7) repeat or the MIF -173C allele. Carrier status and homozygosity for CATT(7 )repeat and the MIF -173C allele were not associated with response to GC (odds ratios (ORs) close to 1) or to TNFalpha-neutralising treatment (ORs close to 2). The MIF-CATT(7) repeat and the MIF-173G-->C functional variant are not strongly associated with a decreased clinical response to TNFalpha-neutralising or GC treatment in RA.
Gibbons-Burgener, S N; Kaneene, J B; Lloyd, J W; Leykam, J F; Erskine, R J
2001-11-01
To determine the likelihood of false-positive results when testing milk samples from individual cows by use of 3 commercially available assays (Penzyme MilkTest and the SNAP beta-lactam and Delvo-SP assays) labeled for use with commingled milk. Milk samples from 111 cows with mild clinical mastitis. Cows were randomly assigned to the control (no antimicrobials) or intramammary treatment group. Posttreatment milk samples were collected at the first milking after the labeled withholding period or an equivalent time for controls, randomly ordered, and tested twice by use of each assay and once by use of high-performance liquid chromatography. Sensitivity, specificity, and positive and negative predictive values were determined for each assay. Concordance of results for the same sample was assessed for each assay by calculating kappa. Sensitivities of the Delvo-SP and SNAP lactam assays were > 90%, whereas the sensitivity of the Penzyme Milk Test was 60%. Positive predictive values (range, 39.29 to 73.68%) were poor for all 3 assays. Concordance of test results was excellent for the SNAP beta-lactam and Delvo-SP assays (kappa = 0.846 and 0.813, respectively) but was less for the Penzyme MilkTest (kappa = 0.545). Because of the low positive predictive values, these 3 assays may not be useful for detecting violative antimicrobial residues in individual milk samples from cows treated for mild clinical mastitis. However, repeatability of each assay was considered good to excellent.
NASA Astrophysics Data System (ADS)
Rossi, M.; Torri, D.; Bacaro, G.; Mondini, A.; Reichenbach, P.; Fiorucci, F.; Marchesini, I.
2013-12-01
Fires can change significantly the characteristics of slopes. Their effect on vegetation, soil properties, and fauna can influence slope instability processes, including channeled erosion and mass movements. Even if in the literature attempts to estimate these effects were made using mostly empirical approaches, evaluating quantitatively the impact of fires on slope instability processes remain challenging. In a small basin in Central Italy, where an intense arson occurred in July 2012, we estimated the effects of fire on the hazard posed by different type of instability processes. For the purpose we modelled separately channeled erosion phenomena and rock falls, for which a significant impact of fires was expected. For the former we exploited the LANDPLANER (LANDscape, Plants, LANdslides and ERosion) model, which is able to simulate the hydrological response of a slope, and their effect on instability processes, under human-induced or natural changing scenarios, including climatic, land use, and slope morphology changes. For the latter we exploited two different modeling approaches considering directly (Rockyfor3D model) or indirectly (STONE model) the effect of the vegetation on the movement of rock masses along the slope. All the model simulations were repeated considering land use scenarios before and after the fire. Those were derived through field surveys and though the supervised classification of high resolution satellite images acquired inthe study area before and after the fire. The analysis of the effect of the fire on channeled phenomena included the estimation of (i) the overland flow on the basin, (ii) the location of the gully head, (iii) the channel eroded volume, and (iii) the change of the connectivity inside the basin. The analysis of the effect of the fire on rock fall phenomena included the estimation of (i) the increase of rock fall source areas, (ii) the increase of distances travelled by rock masses along the slopes, and (iii) the spatial distribution of the fallen rock blocks. In all models and scenarios we considered the effect of roads. Results showed a significant increase of the susceptibility to slope instability processes after the fire, mainly due to (i) the formation of hydro repellent soil horizons, (ii) the removal of the litter, (iii) the burning of vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dyke, D.L.; Worsham, M.J.; Zarbo, R.J.
1994-09-01
To evaluate genetic loss in an unselected series of squamous cell carcinoma (SCC) of the head and neck region (SCCHN), including early stage tumors that do not proliferate aggressively in vitro, we have compared microsatellite repeat polymorphisms (MSRP) in normal blood DNA and tumor DNA from 44 patients with SCCHN, using nine MSRPs from 5q15-q21, proximal 8p, 9p21-p23, 18q21-qter, and 21q21. In previous cytogenetic studies, these chromosome segments were deleted in 40-60% of SCCHN and SCC of the female genital tract. Loss of heterozygosity (LOH) was observed from the ANK1 locus (8p21.1-p11.2) in 2/29 informative tumors. LOH was observed atmore » D5S98 (5q15-5q21) in 5/19, and at D21S11 (21q21) in 5/33 informative tumors. These LOH frequencies were lower than expected, which suggests that the critical region of deletion from these chromosome regions exludes the MSRPs studied here, especially for the 8p MSRP, which may reside in proximal 8p. Alternatively, the observed LOH rates may be appropriate for earlier pathologic stage tumors: total genetic loss increases with tumor stage, and the present study included more stage I and II tumors than did the cytogenetic studies. LOH was observed at D9S126, 1FN, and/or D9S199 (at 9p21, 9p22, & 9p23) in 16/38 informative tumors, and at D18S34 and/or MBP (at 18q21 & 18q22-qter) in 17/39 informative tumors. In addition, three tumors demonstrated microsatellite instability at the MBP locus, and one of these had an expansion at D9S199 as well. This tumor, HFH-SCC-20, also demonstrated microsatellite instability at many other MSRP loci. These results confirm that genetic loss from 9p and 18q is frequent in SCCHN, and demonstrate that microsatellite instability also occurs. Of 66 MSRP changes, 62 were LOH and 4 were microsatellite instabilities. These results also show the usefulness of analyses of MSRP LOH and microsatellite instability in squamous cell carcinoma.« less
Mattis, Virginia B; Svendsen, Soshana P; Ebert, Allison; Svendsen, Clive N; King, Alvin R; Casale, Malcolm; Winokur, Sara T; Batugedara, Gayani; Vawter, Marquis; Donovan, Peter J; Lock, Leslie F; Thompson, Leslie M; Zhu, Yu; Fossale, Elisa; Singh Atwal, Ranjit; Gillis, Tammy; Mysore, Jayalakshmi; Li, Jian-hong; Seong, IhnSik; Shen, Yiping; Chen, Xiaoli; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F; Akimov, Sergey; Arbez, Nicolas; Juopperi, Tarja; Ratovitski, Tamara; Chiang, Jason H; Kim, Woon Roung; Chighladze, Eka; Watkin, Erin; Zhong, Chun; Makri, Georgia; Cole, Robert N; Margolis, Russell L; Song, Hongjun; Ming, Guoli; Ross, Christopher A; Kaye, Julia A; Daub, Aaron; Sharma, Punita; Mason, Amanda R; Finkbeiner, Steven; Yu, Junying; Thomson, James A; Rushton, David; Brazier, Stephen P; Battersby, Alysia A; Redfern, Amanda; Tseng, Hsui-Er; Harrison, Alexander W; Kemp, Paul J; Allen, Nicholas D; Onorati, Marco; Castiglioni, Valentina; Cattaneo, Elena; Arjomand, Jamshid
2013-01-01
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, the HD consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics. PMID:22748968
BRAF mutation testing in solid tumors: a methodological comparison.
Weyant, Grace W; Wisotzkey, Jeffrey D; Benko, Floyd A; Donaldson, Keri J
2014-09-01
Solid tumor genotyping has become standard of care for the characterization of proto-oncogene mutational status, which has traditionally been accomplished with Sanger sequencing. However, companion diagnostic assays and comparable laboratory-developed tests are becoming increasingly popular, such as the cobas 4800 BRAF V600 Mutation Test and the INFINITI KRAS-BRAF assay, respectively. This study evaluates and validates the analytical performance of the INFINITI KRAS-BRAF assay and compares concordance of BRAF status with two reference assays, the cobas test and Sanger sequencing. DNA extraction from FFPE tissue specimens was performed followed by multiplex PCR amplification and fluorescent label incorporation using allele-specific primer extension. Hybridization to a microarray, signal detection, and analysis were then performed. The limits of detection were determined by testing dilutions of mutant BRAF alleles within wild-type background DNA, and accuracy was calculated based on these results. The INFINITI KRAS-BRAF assay produced 100% concordance with the cobas test and Sanger sequencing and had sensitivity equivalent to the cobas assay. The INFINITI assay is repeatable with at least 95% accuracy in the detection of mutant and wild-type BRAF alleles. These results confirm that the INFINITI KRAS-BRAF assay is comparable to traditional sequencing and the Food and Drug Administration-approved companion diagnostic assay for the detection of BRAF mutations. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Tsutakawa, Susan E.; Thompson, Mark J.; Arvai, Andrew S.; ...
2017-06-27
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA formore » catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.« less
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2014-10-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.
DNA Excision Repair at Telomeres
Jia, Pingping; Her, Chengtao; Chai, Weihang
2015-01-01
DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132
Kneer, Julia; Glock, Sabine; Beskes, Sara; Bente, Gary
2012-11-01
Violent digital game play has repeatedly been discussed to be strongly related to aggression and emotional instability. Thus, digital game players have to defend against these prejudices through emphasizing positive game-related concepts such as achievement, social interaction, and immersion. We experimentally investigated which positive- and negative-concept players and nonplayers activate when being primed with digital games. Participants were either exposed to violent or nonviolent game content and were required to work on a lexical decision task. Results showed that response latencies for the concept aggression and emotional instability were faster than for neutral concepts (not associated with digital games), but slower than for the positive concepts sociality and competition. Both players and nonplayers felt the need to defend against prejudices and emphasized positive concepts. Neither their own gaming experience nor the game content influenced the results. Being a part of the net generation is sufficient to suppress negative game-related concepts and to support positive game-related concepts to protect digital games as common leisure activity among peers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsutakawa, Susan E.; Thompson, Mark J.; Arvai, Andrew S.
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA formore » catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.« less
Ragnini, A; Fukuhara, H
1989-01-01
In the yeast Kluyveromyces lactis, mutations affecting mitochondrial functions are often highly unstable. In order to understand the basis of this genetic instability, we examined the case of an oligomycin resistant mutant. When the mutant was grown in the absence of the drug, the resistance was rapidly lost. This character showed a typical cytoplasmic inheritance. The unstable resistance was found to be associated with the presence of a repetitive DNA in which the repeating unit was a specific segment of the mitochondrial DNA. The amplified molecules were co-replicating with the wild type genome in the mutant cells. The spontaneous loss of the drug resistance was accompanied by the disappearance of the amplified DNA. The repetitive sequence came from a 405 base-pair segment immediately downstream of a cluster of two transfer RNA genes (threonyl 2 and glutamyl). Modified processing of these tRNAs was detected in the mutant. A possible mechanism by which these events could lead to drug resistance is discussed. Images PMID:2780315
DNA Replication Origins and Fork Progression at Mammalian Telomeres
Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa
2017-01-01
Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured?
Chuangchaiya, Sriwipa; Persson, Kristina E M
2013-01-01
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Hexahistidine (6xHis) fusion-based assays for protein-protein interactions.
Puckett, Mary C
2015-01-01
Fusion-protein tags provide a useful method to study protein-protein interactions. One widely used fusion tag is hexahistidine (6xHis). This tag has unique advantages over others due to its small size and the relatively low abundance of naturally occurring consecutive histidine repeats. 6xHis tags can interact with immobilized metal cations to provide for the capture of proteins and protein complexes of interest. In this chapter, a description of the benefits and uses of 6xHis-fusion proteins as well as a detailed method for performing a 6xHis-pulldown assay are described.
Immune defence against HIV-1 infection in HIV-1-exposed seronegative persons.
Schmechel, S C; Russell, N; Hladik, F; Lang, J; Wilson, A; Ha, R; Desbien, A; McElrath, M J
2001-11-01
Rare individuals who are repeatedly exposed to HIV-1 through unprotected sexual contact fail to acquire HIV-1 infection. These persons represent a unique study population to evaluate mechanisms by which HIV-1 replication is either prevented or controlled. We followed longitudinally a group of healthy HIV-1 seronegative persons each reporting repeated high-risk sexual activities with their HIV-1-infected partner at enrollment. The volunteers were primarily (90%) male homosexuals, maintaining high risk activities with their known infected partner (45%) or multiple other partners (61%). We evaluated the quantity and specificity of HIV-1-specific T cells in 31 exposed seronegatives (ES) using a IFN-gamma ELISPOT assay to enumerate T cells recognizing epitopes within HIV-1 Env, Gag, Pol and Nef. PBMC from only three of the 31 volunteers demonstrated ex vivo HIV-1-specific IFN-gamma secretion, in contrast to nearly 30% exhibiting cytolytic responses in previous studies. These findings suggest that if T cell responses in ES are induced by HIV-1 exposure, the frequency is at low levels in most of them, and below the level of detection using the ELISPOT assay. Alternative approaches to improve the sensitivity of detection may include use of dendritic cells as antigen-presenting cells in the ex vivo assay and more careful definition of the risk behavior and extent of HIV-1 exposure in conjunction with the evaluation of T cell responses.
Pampalona, J; Soler, D; Genescà, A; Tusell, L
2010-01-05
The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear buds for measuring chromosome instability in telomere-dysfunction cell environments.
Karakoc, Ayse Esra; Berkem, Rukiye; Irmak, Hasan; Demiroz, Ali Pekcan; Yenicesu, Idil; Ertugrul, Nigar; Arslan, Önder; Kemahli, Sabri; Yilmaz, Sevinc; Ozcebe, Osman; Kara, Abdurrahman; Ozet, Gulsum; Acikgoz, Ziya Cibali; Acikgoz, Tulin
2017-10-01
In this study we aimed to propose an algorithm for initial anti HCV EIA reactive blood donations in Turkey where nucleic acid amplification tests are not yet obligatory for donor screening. A total of 416 anti HCV screening test reactive donor samples collected from 13 blood centers from three cities in Turkey were tested in duplicate by Ortho HCV Ab Version 3.0 and Radim HCV Ab. All the repeat reactive samples were tested by INNO-LIA HCV Ab 3.0 or Chiron RIBA HCV 3.0 and Abbott Real Time HCV. Intra-assay correlations were calculated with Pearson r test. ROC analysis was used to study the relationship between EIA tests and the confirmatory tests. The number of repeat reactive results with Ortho EIA were 221 (53.1%) whereas that of microEIA, 62 (14.9%). Confirmed positivity rate was 14.6% (33/226) by RIBA and 10.6% (24/226) by NAT. Reactive PCR results were predicted with 100% sensitivity and 95% specificity with S/CO levels of 8.1 with Ortho EIA and 3.4 with microEIA. Repeat reactivity rates declined with a second HCV antibody assay. Samples repeat reactive with one HCV antibody test and negative with the other were all NAT negative. All the NAT reactive samples were RIBA positive. None of the RIBA indeterminate or negative samples were NAT reactive. Considering the threshold values for EIA kits determined by ROC analysis NAT was decided to be performed for the samples above the threshold value and a validated supplemental HCV antibody test for the samples below. Copyright © 2017 Elsevier Ltd. All rights reserved.
Samuel, Marcus A; Mudgil, Yashwanti; Salt, Jennifer N; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R
2008-08-01
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.
Laaniste, Asko; Kruve, Anneli; Leito, Ivo
2013-08-01
Two different methods to reinforce the poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I
2016-08-01
Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.
Uesugi, Noriyuki; Sugai, Tamotsu; Sugimoto, Ryo; Eizuka, Makoto; Fujita, Yasuko; Sato, Ayaka; Osakabe, Mitsumasa; Ishida, Kazuyuki; Koeda, Keisuke; Sasaki, Akira; Matsumoto, Takayuki
2017-10-01
The molecular alterations and pathological features of gastric papillary adenocarcinoma (GPA) remain unknown. We examined GPA samples and compared their molecular and pathological characteristics with those of gastric tubular adenocarcinoma (GTA). Additionally, we identified pathological and molecular features of GPA that vary with microsatellite stability. In the present study, samples from 63 GPA patients and 47 GTA patients were examined using a combination of polymerase chain reaction (PCR)-microsatellite assays and PCR-pyrosequencing in order to detect microsatellite instability (microsatellite instability, MSI; microsatellite stable, MSS), methylation status (low methylation, intermediate methylation and high methylation level), and chromosomal AI in multiple cancer-related loci. Additionally, the expression levels of TP53 and Her2 were evaluated using immunohistochemistry. GTA and GPA are statistically different in their frequency of pathological features, including mucinous, poorly differentiated and invasive micropapillary components. Clear genetic patterns differentiating GPA and GTA could not be identified with a hierarchical cluster analysis, but microsatellite stability was linked with TP53 and Her2 overexpression. Methylation status in GPA was also associated with the development of high microsatellite instability. However, no pathological differences were associated with microsatellite stability. We suggest that although molecular alterations in a subset of GPAs are closely associated with microsatellite stability, they play a minor role in GPA carcinogenesis. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grämiger, Lorenz; Moore, Jeffrey R.; Gischig, Valentin; Loew, Simon
2015-04-01
Glaciation and deglaciation contribute to stress redistribution in alpine valley rock slopes, generating rock mass damage. However, the physical processes contributing to slope instability during glacial cycles are not well understood, and the mechanical reasoning remains vague. In addition to glacier loading and unloading, thermal strains affect newly exposed bedrock while changes in hillslope hydrology modify effective stresses. Together these can generate damage and reduce rock slope stability over time. Here we explore the role of coupled thermo-hydro-mechanical (THM) stress changes in driving long-term progressive damage and conditioning paraglacial rock slope failure in the Aletsch glacier region of Switzerland. We develop a 2D numerical model using the distinct element code UDEC, creating a fractured rock slope containing rock mass elements of intact rock, discontinuities, and fault zones. Topography, rock properties and glacier history are all loosely based on real conditions in the Aletsch valley. In-situ stresses representing pre-LGM conditions with inherent rock mass damage are initialized. We model stress changes through multiple glacier cycles during the Lateglacial and Holocene; stress redistribution is not only induced by glacier loading, but also by changes in bedrock temperatures and transient hillslope hydrology. Each THM response mechanism is tied to the changing ice extents, therefore stress changes and resulting rock mass damage can be explored in both space and time. We analyze cyclic THM stresses and resulting damage during repeat glacial cycles, and compare spatiotemporal outputs with the mapped landslide distribution in the Aletsch region. Our results extend the concept of glacial debuttressing, lead to improved understanding of the rock mass response to glacial cycles, and clarify coupled interactions driving paraglacial rock mass damage.
Much, Melissa; Buza, Natalia; Hui, Pei
2014-03-01
Tissue identity testing by short tandem repeat (STR) polymorphism offers discriminating power in resolving tissue mix-up or contamination. However, one caveat is the presence of microsatellite unstable tumors, in which genetic alterations may drastically change the STR wild-type polymorphism leading to unexpected allelic discordance. We examined how tissue identity testing results can be altered by the presence of microsatellite instability (MSI). Eleven cases of MSI-unstable (9 intestinal and 2 endometrial adenocarcinomas) and 10 cases of MSI-stable tumors (all colorectal adenocarcinomas) were included. All had been previously tested by polymerase chain reaction testing at 5 National Cancer Institute (NCI) recommended MSI loci and/or immunohistochemistry for DNA mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2). Tissue identity testing targeting 15 STR loci was performed using AmpF/STR Identifiler Amplification. Ten of 11 MSI-unstable tumors demonstrated novel alleles at 5 to 12 STR loci per case and frequently with 3 or more allelic peaks. However, all affected loci showed identifiable germline allele(s) in MSI-high tumors. A wild-type allelic profile was seen in 7 of 10 MSI-stable tumors. In the remaining 3 cases, isolated novel alleles were present at a unique single locus in addition to germline alleles. Loss of heterozygosity was observed frequently in both MSI-stable (6/11 cases) and MSI-unstable tumors (8/10 cases). In conclusion, MSI may significantly alter the wild-type allelic polymorphism, leading to potential interpretation errors of STR genotyping. Careful examination of the STR allelic pattern, high index of suspicion, and follow-up MSI testing are crucial to avoid erroneous conclusions and subsequent clinical and legal consequences. Copyright © 2014 Elsevier Inc. All rights reserved.
Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aypar, Umut; Morgan, William F.; Baulch, Janet E.
Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappamore » B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.« less
Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.
Abuin, A; Zhang, H; Bradley, A
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.
Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations
Abuin, Alejandro; Zhang, HeJu; Bradley, Allan
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017
Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions
Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria
2008-01-01
We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 (∼75 Mb position) and 3q21.3-q22.1 (∼130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large (∼250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and “instability elements,” including satellite repeats and retroviral sequences. PMID:18230801
Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions.
Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria
2008-03-01
We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 ( approximately 75 Mb position) and 3q21.3-q22.1 ( approximately 130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large ( approximately 250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and "instability elements," including satellite repeats and retroviral sequences.
Song, Xuhao; Shen, Fujun; Huang, Jie; Huang, Yan; Du, Lianming; Wang, Chengdong; Fan, Zhenxin; Hou, Rong; Yue, Bisong; Zhang, Xiuyue
2016-09-01
Recently, an increasing number of microsatellites or simple sequence repeats (SSRs) have been found and characterized from transcriptomes. Such SSRs can be employed as putative functional markers to easily tag corresponding genes, which play an important role in biomedical studies and genetic analysis. However, the transcriptome-derived SSRs for giant panda (Ailuropoda melanoleuca) are not yet available. In this work, we identified and characterized 20 tetranucleotide microsatellite loci from a transcript database generated from the blood of giant panda. Furthermore, we assigned their predicted transcriptome locations: 16 loci were assigned to untranslated regions (UTRs) and 4 loci were assigned to coding regions (CDSs). Gene identities of 14 transcripts contained corresponding microsatellites were determined, which provide useful information to study the potential contribution of SSRs to gene regulation in giant panda. The polymorphic information content (PIC) values ranged from 0.293 to 0.789 with an average of 0.603 for the 16 UTRs-derived SSRs. Interestingly, 4 CDS-derived microsatellites developed in our study were also polymorphic, and the instability of these 4 CDS-derived SSRs was further validated by re-genotyping and sequencing. The genes containing these 4 CDS-derived SSRs were embedded with various types of repeat motifs. The interaction of all the length-changing SSRs might provide a way against coding region frameshift caused by microsatellite instability. We hope these newly gene-associated biomarkers will pave the way for genetic and biomedical studies for giant panda in the future. In sum, this set of transcriptome-derived markers complements the genetic resources available for giant panda. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stramer, Susan L; Townsend, Rebecca L; Foster, Gregory A; Johnson, Ramona; Weixlmann, Barbara; Dodd, Roger Y
2018-03-01
Human T-lymphotropic virus (HTLV) blood donation screening has used a dual-testing algorithm beginning with either a chemiluminescent immunoassay or enzyme-linked immunosorbent screening assay (ELISA). Before the availability of a licensed HTLV supplemental assay, repeat-reactive (RR) samples on a first assay (Assay 1) were retested with a second screening assay (Assay 2). Donors with RR results by Assay 2 were deferred from blood donation and further tested using an unlicensed supplemental test to confirm reactivity while nonreactive (NR) donors remained eligible for donation until RR on a subsequent donation. This "dual-test" algorithm was replaced in May 2016 with the requirement that all RRs by Assay 1 be further tested by a licensed HTLV supplemental test (Western blot [WB]). In this study, we have requalified the dual-test algorithm using the available licensed HTLV WB. We tested 100 randomly selected HTLV RRs on screening Assay 1 (Abbott PRISM chemiluminescent immunoassay) but NR on screening Assay 2 (Avioq ELISA) by a Food and Drug Administration-licensed WB (MP Biomedicals) to ensure that no confirmed positives were among those that were RR by Assay 1 but NR by Assay 2. Of the 100 samples evaluated, 79 of 100 were WB seronegative, 21 of 100 indeterminate, and 0 of 100 seropositive. Of the 79 of 100 seronegative specimens, 73 of 79 did not express any bands on WB. We demonstrated that none of the 100 samples RR on Assay 1 but NR on Assay 2 were confirmed positive. This algorithm prevents such donors from requiring further testing and from being deferred. © 2018 AABB.
Greenhouse effect in quiescent prominences
NASA Astrophysics Data System (ADS)
Ryutova, M.; Berger, T. E.; Title, A. M.
2010-12-01
Quiescent prominences, by definition, are huge ``clouds'' of cool, dense plasma overlying rarefied hot corona and supported by a complex magnetic field anchored in the photosphere along the magnetic polarity inversion line. One of the most prominent features in their dynamics is formation, growth and collapse of bubble/cavities filled by coronal plasma and emerging, often repeatedly, under a prominence body. As such, prominence/corona interface itself is subject of fundamental plasma instabilities, which include development of a regular series of plumes and spikes typical to the Rayleigh-Taylor instability, the Kelvin-Helmholtz instability, often followed by a sudden collimated mass upflow, which, in nonlinear stage having an explosive character may be responsible for CMEs. These were only recently studied in detail with high cadence, high resolution data obtained from the Hinode satellite. Even more surprises are brought by the SDO/AIA instrument showing the Sun's atmosphere in 12 visible and EUV wavelengths. AIA multi-wavelength images in a temperature range from 105 ~K to 2 × 106 ~K combined with the Hinode/SOT data show that plasma inside the prominence cavity, being as expected, at coronal temperatures, in fact exceeds the temperature of the ambient corona. We suggest that an energetically open highly dynamic processes releasing energy at the prominence/cavity interface accompanied by the ``radiative exchange'', may cause additional increase of temperature and/or density inside cavity. Given pervasive character of prominences, future studies will allow us to perform quantitative and statistical analysis, and reveal relations between the size of cavity, its temperature, and magnetic properties.
A procedure for landslide susceptibility zonation by the conditional analysis method1
NASA Astrophysics Data System (ADS)
Clerici, Aldo; Perego, Susanna; Tellini, Claudio; Vescovi, Paolo
2002-12-01
Numerous methods have been proposed for landslide probability zonation of the landscape by means of a Geographic Information System (GIS). Among the multivariate methods, i.e. those methods which simultaneously take into account all the factors contributing to instability, the Conditional Analysis method applied to a subdivision of the territory into Unique Condition Units is particularly straightforward from a conceptual point of view and particularly suited to the use of a GIS. In fact, working on the principle that future landslides are more likely to occur under those conditions which led to past instability, landslide susceptibility is defined by computing the landslide density in correspondence with different combinations of instability factors. The conceptual simplicity of this method, however, does not necessarily imply that it is simple to implement, especially as it requires rather complex operations and a high number of GIS commands. Moreover, there is the possibility that, in order to achieve satisfactory results, the procedure has to be repeated a few times changing the factors or modifying the class subdivision. To solve this problem, we created a shell program which, by combining the shell commands, the GIS Geographical Research Analysis Support System (GRASS) commands and the gawk language commands, carries out the whole procedure automatically. This makes the construction of a Landslide Susceptibility Map easy and fast for large areas too, and even when a high spatial resolution is adopted, as shown by application of the procedure to the Parma River basin, in the Italian Northern Apennines.
Hip Kinematics During a Stop-Jump Task in Patients With Chronic Ankle Instability
Brown, Cathleen N.; Padua, Darin A.; Marshall, Stephen W.; Guskiewicz, Kevin M.
2011-01-01
Context: Chronic ankle instability (CAI) commonly develops after lateral ankle sprain. Movement pattern differences at proximal joints may play a role in instability. Objective: To determine whether people with mechanical ankle instability (MAI) or functional ankle instability (FAI) exhibited different hip kinematics and kinetics during a stop-jump task compared with “copers.” Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Sixty-three recreational athletes, 21 (11 men, 10 women) per group, matched for sex, age, height, mass, and limb dominance. All participants reported a history of a moderate to severe ankle sprain. The participants with MAI and FAI reported 2 or more episodes of giving way at the ankle in the last year and decreased functional ability; copers did not. The MAI group demonstrated clinically positive anterior drawer and talar tilt tests, whereas the FAI group and copers did not. Intervention(s): Participants performed a maximum-speed approach run and a 2-legged stop jump followed by a maximum vertical jump. Main Outcome Measure(s): An electromagnetic tracking device synchronized with a force plate collected data during the stance phase of a 2-legged stop jump. Hip motion was measured from initial contact to takeoff into the vertical jump. Group differences in hip kinematics and kinetics were assessed. Results: The MAI group demonstrated greater hip flexion at initial contact and at maximum (P = .029 and P = .017, respectively) and greater hip external rotation at maximum (P = .035) than the coper group. The MAI group also demonstrated greater hip flexion displacement than both the FAI (P = .050) and coper groups (P = .006). No differences were noted between the FAI and coper groups in hip kinematic variables or among any of the groups in ground reaction force variables. Conclusions: The MAI group demonstrated different hip kinematics than the FAI and coper groups. Proximal joint motion may be affected by ankle joint function and laxity, and clinicians may need to assess proximal joints after repeated ankle sprains. PMID:22488131
Scott, David W.; Mottok, Anja; Ennishi, Daisuke; Wright, George W.; Farinha, Pedro; Ben-Neriah, Susana; Kridel, Robert; Barry, Garrett S.; Hother, Christoffer; Abrisqueta, Pau; Boyle, Merrill; Meissner, Barbara; Telenius, Adele; Savage, Kerry J.; Sehn, Laurie H.; Slack, Graham W.; Steidl, Christian; Staudt, Louis M.; Connors, Joseph M.; Rimsza, Lisa M.; Gascoyne, Randy D.
2015-01-01
Purpose To evaluate the prognostic impact of cell-of-origin (COO) subgroups, assigned using the recently described gene expression–based Lymph2Cx assay in comparison with International Prognostic Index (IPI) score and MYC/BCL2 coexpression status (dual expressers). Patients and Methods Reproducibility of COO assignment using the Lymph2Cx assay was tested employing repeated sampling within tumor biopsies and changes in reagent lots. The assay was then applied to pretreatment formalin-fixed paraffin-embedded tissue (FFPET) biopsies from 344 patients with de novo diffuse large B-cell lymphoma (DLBCL) uniformly treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) at the British Columbia Cancer Agency. MYC and BCL2 protein expression was assessed using immunohistochemistry on tissue microarrays. Results The Lymph2Cx assay provided concordant COO calls in 96% of 49 repeatedly sampled tumor biopsies and in 100% of 83 FFPET biopsies tested across reagent lots. Critically, no frank misclassification (activated B-cell–like DLBCL to germinal center B-cell–like DLBCL or vice versa) was observed. Patients with activated B-cell–like DLBCL had significantly inferior outcomes compared with patients with germinal center B-cell–like DLBCL (log-rank P < .001 for time to progression, progression-free survival, disease-specific survival, and overall survival). In pairwise multivariable analyses, COO was associated with outcomes independent of IPI score and MYC/BCL2 immunohistochemistry. The prognostic significance of COO was particularly evident in patients with intermediate IPI scores and the non–MYC-positive/BCL2-positive subgroup (log-rank P < .001 for time to progression). Conclusion Assignment of DLBCL COO by the Lymph2Cx assay using FFPET biopsies identifies patient groups with significantly different outcomes after R-CHOP, independent of IPI score and MYC/BCL2 dual expression. PMID:26240231
Tuberculosis in Alpacas (Lama pacos) Caused by Mycobacterium bovis▿
García-Bocanegra, I.; Barranco, I.; Rodríguez-Gómez, I. M.; Pérez, B.; Gómez-Laguna, J.; Rodríguez, S.; Ruiz-Villamayor, E.; Perea, A.
2010-01-01
We report three cases of tuberculosis in alpacas from Spain caused by Mycobacterium bovis. The animals revealed two different lesional patterns. Mycobacterial culture and PCR assay yielded positive results for M. bovis. Molecular typing of the isolates identified spoligotype SB0295 and identical variable-number tandem repeat (VNTR) allele sizes. PMID:20237097
Development of an assay for rapid detection of the lettuce downy mildew pathogen, Bremia lactucae
USDA-ARS?s Scientific Manuscript database
Downy mildew of lettuce, caused by Bremia lactucae, causes chlorosis on leaves and adversely affects marketability. Though downy mildew on lettuce can be controlled by fungicide applications, it is costly to routinely apply fungicides to prevent the establishment of downy mildew. Repeated use of the...
Vutyavanich, Teraporn; Lattiwongsakorn, Worashorn; Piromlertamorn, Waraporn; Samchimchom, Sudarat
2012-01-01
In this study, we compared the effects of repeated freezing/thawing of human sperm by our in-house method of rapid freezing with slow programmable freezing. Sperm samples from 11 normozoospermic subjects were processed through density gradients and divided into three aliquots: non-frozen, rapid freezing and slow programmable freezing. Sperm in the rapid freezing group had better motility and viability than those in the slow freezing group (P<0.01) after the first, second and third cycles of freezing/thawing, but there was no difference in morphology. In the second experiment, rapid freezing was repeated three times in 20 subjects. The samples from each thawing cycle were evaluated for DNA fragmentation using the alkaline comet assay. DNA fragmentation began to increase considerably after the second cycle of freezing/thawing, but to a level that was not clinically important. In the third experiment, rapid freezing was done repeatedly in 10 subjects, until no motile sperm were observed after thawing. The median number of repeated freezing/thawing that yielded no motile sperm was seven (range: 5–8, mean: 6.8). In conclusion, we demonstrated that repeated freezing/thawing of processed semen using our rapid freezing method gave better results than standard slow programmable freezing. This method can help maximize the usage of precious cryopreserved sperm samples in assisted reproduction technology. PMID:23064685
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.
1990-01-01
The secretory capacity of growth hormone (GH) and prolactin (PRL) cells prepared from rats flown in space on the 12.5 day mission of Cosmos 1887 and the 14 day mission of Cosmos 2044 was evaluated in several post-flight tests on Earth. The results showed statistically significant and repeatable decrements in hormone release, especially when biological assays (rather than immunological assays) were used in the tests. Significant and repeatable intracellular changes in GH cells from the flight animals were also found; most important were increases in the GH-specific cytoplasmic staining intensities and cytoplasmic areas occupied by hormore. Tail suspension of rats for 14 days, an established model for mimicking musculo-skeletal changes seen in spaceflown rats, results in some changes in GH and PRL cell function that were similar to those from spaceflown animals. Our results add to a growing body of data that described deconditioning of physiological systems in spaceflight and provide insights into the time frame that might be required for readaptation of the GH/PRL cell system upon return to Earth.
Olsen, Jaran S; Aarskaug, Tone; Skogan, Gunnar; Fykse, Else Marie; Ellingsen, Anette Bauer; Blatny, Janet M
2009-09-01
Vibrio cholerae is the etiological agent of cholera and may be used in bioterror actions due to the easiness of its dissemination, and the public fear for acquiring the cholera disease. A simple and highly discriminating method for connecting clinical and environmental isolates of V. cholerae is needed in microbial forensics. Twelve different loci containing variable numbers of tandem-repeats (VNTRs) were evaluated in which six loci were polymorphic. Two multiplex reactions containing PCR primers targeting these six VNTRs resulted in successful DNA amplification of 142 various environmental and clinical V. cholerae isolates. The genetic distribution inside the V. cholerae strain collection was used to evaluate the discriminating power (Simpsons Diversity Index=0.99) of this new MLVA analysis, showing that the assay have a potential to differentiate between various strains, but also to identify those isolates which are collected from a common V. cholerae outbreak. This work has established a rapid and highly discriminating MLVA assay useful for track back analyses and/or forensic studies of V. cholerae infections.
Chien, Wenwen; O'Kelly, James; Lu, Daning; Leiter, Amanda; Sohn, Julia; Yin, Dong; Karlan, Beth; Vadgama, Jay; Lyons, Karen M; Koeffler, H Phillip
2011-06-01
Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis.
Sakthidevi, Moorthy; Murugan, Vadivel; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal
2010-05-01
Polymerase chain reaction based methods are promising tools for the monitoring and evaluation of the Global Program for the Elimination of Lymphatic Filariasis. The currently available PCR methods do not differentiate the DNA of Wuchereria bancrofti or Brugia malayi by a single PCR and hence are cumbersome. Therefore, we designed a single step PCR strategy for differentiating Bancroftian infection from Brugian infection based on a newly identified gene from the W. bancrofti genome, abundant larval transcript-2 (alt-2), which is abundantly expressed. The difference in PCR product sizes generated from the presence or absence of evolutionarily altered tandem repeats in alt-2 intron-3 differentiated W. bancrofti from B. malayi. The analysis was performed on the genomic DNA of microfilariae from a number of patient blood samples or microfilariae positive slides from different Indian geographical regions. The assay gave consistent results, differentiating the two filarial parasite species accurately. This alt-2 intron-3 based PCR assay can be a potential tool for the diagnosis and differentiation of co-infections by lymphatic filarial parasites. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Kidd, Jason A.; Ross, Peter; Buntzman, Adam S.; Hess, Paul R.
2012-01-01
Resistance to E. coli L-asparaginase in canine lymphoma occurs frequently with repeated administration, a phenomenon often attributed, without substantiation, to the induction of neutralizing antibodies. To test the hypothesis that treated dogs develop antibodies against the drug, we created an ELISA to measure plasma anti-asparaginase IgG responses. Using samples from dogs that had received multiple doses, specific reactivity against L-asparaginase was demonstrated, while naïve patients’ samples were negative. The optimized ELISA appeared sensitive, with endpoint titers >1,600,000 in positive control dogs. Intra- and inter-assay coefficients of variation were 3.6 and 14.5%. The assay was supported by the observation that ELISA-positive plasma could immunoprecipitate asparaginase activity. When clinical patients were evaluated, 3/10 dogs developed titers after a single injection; with repeated administration, 4/7 dogs were positive. L-asparaginase antibodies showed reduced binding to the PEGylated drug formulation. The ELISA should prove useful in investigating the potential correlation of antibody responses with resistance. PMID:23253146
Kolanko, C J; Pyle, M D; Nath, J; Prasanna, P G; Loats, H; Blakely, W F
2000-03-01
We report a low cost and efficient method for synthesizing a human pancentromeric DNA probe by the polymerase chain reaction (PRC) and an optimized protocol for in situ detection using color pigment immunostaining. The DNA template used in the PCR was a 2.4 kb insert containing human alphoid repeated sequences of pancentromeric DNA subcloned into pUC9 (Miller et al. 1988) and the primers hybridized to internal sequences of the 172 bp consensus tandem repeat associated with human centromeres. PCR was performed in the presence of biotin-11-dUTP, and the product was used for in situ hybridization to detect the pancentromeric region of human chromosomes in metaphase spreads. Detection of pancentromeric probe was achieved by immunoenzymatic color pigment painting to yield a permanent image detected at high resolution by bright field microscopy. The ability to synthesize the centromeric probe rapidly and to detect it with color pigment immunostaining will lead to enhanced identification and eventually to automation of various chromosome aberration assays.
Zhang, Xiaomei; Zhou, Tingting; Yu, Wenjing; Ai, Jinxia; Wang, Xuesong; Gao, Lijun; Yuan, Guangxin; Li, Mingcheng
2018-01-01
We developed a kind of Zaocys dhumnades DNA test kit and it's indexes including specificity, sensitivity and stability were evaluated and compared with the method recorded in Chinese Pharmacopoeia (2010 edition). The bioinformatics technology was used to design primers, sequencing and blast, in conjunction with PCR technology based on the characteristics of Z. dhumnades cytochrome b (Cyt b) gene. The efficiency of nucleic acid extraction by the kit was done in accordance with Pharmacopoeia method. The kit stability results proved effective after repeated freezing and thawing 20 times. The sensitivity results indicated that the lowest amount detected by the kit was 0. 025 g of each specimen. The specificity test of the kit was 100% specific. All repeatability tests indicated the same results when conducted three times. Compared with the method recorded in Chinese Pharmacopoeia, the PCR-based assay kit by our team developed is accurate, effective in identification of Z. dhumnades, it is simple and fast, demonstrating a broad prospect in quality inspection of Z. dhumnades in the future.
Lindstedt, Bjørn-Arne; Heir, Even; Gjernes, Elisabet; Vardund, Traute; Kapperud, Georg
2003-01-01
Background The ability to react early to possible outbreaks of Escherichia coli O157:H7 and to trace possible sources relies on the availability of highly discriminatory and reliable techniques. The development of methods that are fast and has the potential for complete automation is needed for this important pathogen. Methods In all 73 isolates of shiga-toxin producing E. coli O157 (STEC) were used in this study. The two available fully sequenced STEC genomes were scanned for tandem repeated stretches of DNA, which were evaluated as polymorphic markers for isolate identification. Results The 73 E. coli isolates displayed 47 distinct patterns and the MLVA assay was capable of high discrimination between the E. coli O157 strains. The assay was fast and all the steps can be automated. Conclusion The findings demonstrate a novel high discriminatory molecular typing method for the important pathogen E. coli O157 that is fast, robust and offers many advantages compared to current methods. PMID:14664722
Kirsch-Volders, Micheline; Plas, Gina; Elhajouji, Azeddine; Lukamowicz, Magdalena; Gonzalez, Laetitia; Vande Loock, Kim; Decordier, Ilse
2011-08-01
Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.
Wang, Dennis Y; Chang, Chien-Wei; Lagacé, Robert E; Oldroyd, Nicola J; Hennessy, Lori K
2011-07-01
The AmpFℓSTR(®) Identifiler(®) Direct PCR Amplification Kit is a new short tandem repeat multiplex assay optimized to allow the direct amplification of single-source blood and buccal samples on FTA(®) card without the need for sample purification and quantification. This multiplex assay has been validated according to the FBI/National Standards and SWGDAM guidelines. Validation results revealed that slight variations in primer concentration, master mix component concentration, and thermal cycling parameters did not affect the performance of the chemistry. The assay's sensitivity was demonstrated by amplifying known amounts of white blood cells spotted onto FTA(®) cards, and the assay's specificity was verified by establishing minimal cross-reactivity with nonhuman DNA. No effect on the age of the sample stored on the FTA(®) substrate was observed and full concordance was established in the population study. These findings of the validation study support the use of the Identifiler(®) Direct Kit for forensic standards and database samples genotyping. © 2011 American Academy of Forensic Sciences.
Cheng, Fang; Wu, Jiajie; Zhang, Jin; Pan, Aihu; Quan, Sheng; Zhang, Dabing; Kim, HaeYeong; Li, Xiang; Zhou, Shan; Yang, Litao
2016-05-15
Food allergies cause health risks to susceptible consumers and regulations on labeling of food allergen contents have been implemented in many countries and regions. To achieve timely and accurate food allergen labeling, the development of fast and effective allergen detection methods is very important. Herein, a decaplex polymerase chain reaction (PCR) assay combined with capillary electrophoresis was developed to detect simultaneously 10 common food allergens from hazelnut, pistachio, oat, sesame, peanut, cashew, barley, wheat, soybean and pecan. The absolute limit of detection (LODa) of this system is between 2 and 20 copies of haploid genome, and the relative LOD (LODr) is as low as 0.005% (w/w) in simulated food mixtures. The developed assay was subsequently applied to 20 commercial food products and verified the allergen ingredients stated on the labels. Furthermore, results using this decaplex PCR assay was successfully replicated in three other laboratories, demonstrating the repeatability and applicability of this assay in routine analysis of the 10 food allergens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recent social conditions affect boldness repeatability in individual sticklebacks.
Jolles, Jolle Wolter; Aaron Taylor, Benjamin; Manica, Andrea
2016-02-01
Animal personalities are ubiquitous across the animal kingdom and have been shown both to influence individual behaviour in the social context and to be affected by it. However, little attention has been paid to possible carryover effects of social conditions on personality expression, especially when individuals are alone. Here we investigated how the recent social context affected the boldness and repeatability of three-spined sticklebacks, Gasterosteus aculeatus , during individual assays. We housed fish either solitarily, solitarily part of the time or socially in groups of four, and subjected them twice to a risk-taking task. The social conditions had a large effect on boldness repeatability, with fish housed solitarily before the trials showing much higher behavioural repeatability than fish housed socially, for which repeatability was not significant. Social conditions also had a temporal effect on the boldness of the fish, with only fish housed solitarily taking more risks during the first than the second trial. These results show that recent social conditions can thus affect the short-term repeatability of behaviour and obfuscate the expression of personality even in later contexts when individuals are alone. This finding highlights the need to consider social housing conditions when designing personality studies and emphasizes the important link between animal personality and the social context by showing the potential role of social carryover effects.
Recent social conditions affect boldness repeatability in individual sticklebacks
Jolles, Jolle Wolter; Aaron Taylor, Benjamin; Manica, Andrea
2016-01-01
Animal personalities are ubiquitous across the animal kingdom and have been shown both to influence individual behaviour in the social context and to be affected by it. However, little attention has been paid to possible carryover effects of social conditions on personality expression, especially when individuals are alone. Here we investigated how the recent social context affected the boldness and repeatability of three-spined sticklebacks, Gasterosteus aculeatus, during individual assays. We housed fish either solitarily, solitarily part of the time or socially in groups of four, and subjected them twice to a risk-taking task. The social conditions had a large effect on boldness repeatability, with fish housed solitarily before the trials showing much higher behavioural repeatability than fish housed socially, for which repeatability was not significant. Social conditions also had a temporal effect on the boldness of the fish, with only fish housed solitarily taking more risks during the first than the second trial. These results show that recent social conditions can thus affect the short-term repeatability of behaviour and obfuscate the expression of personality even in later contexts when individuals are alone. This finding highlights the need to consider social housing conditions when designing personality studies and emphasizes the important link between animal personality and the social context by showing the potential role of social carryover effects. PMID:26949265
Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc
2014-01-01
Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment. PMID:24844805
On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing.
Grissa, Ibtissem; Bouchon, Patrick; Pourcel, Christine; Vergnaud, Gilles
2008-04-01
The control of bacterial pathogens requires the development of tools allowing the precise identification of strains at the subspecies level. It is now widely accepted that these tools will need to be DNA-based assays (in contrast to identification at the species level, where biochemical based assays are still widely used, even though very powerful 16S DNA sequence databases exist). Typing assays need to be cheap and amenable to the designing of international databases. The success of such subspecies typing tools will eventually be measured by the size of the associated reference databases accessible over the internet. Three methods have shown some potential in this direction, the so-called spoligotyping assay (Mycobacterium tuberculosis, 40,000 entries database), Multiple Loci Sequence Typing (MLST; up to a few thousands entries for the more than 20 bacterial species), and more recently Multiple Loci VNTR Analysis (MLVA; up to a few hundred entries, assays available for more than 20 pathogens). In the present report we will review the current status of the tools and resources we have developed along the past seven years to help in the setting-up or the use of MLVA assays or lately for analysing Clustered Regularly Interspaced Short Palindromic Repeats called CRISPRs which are the basis for spoligotyping assays.
Protein immobilization techniques for microfluidic assays
Kim, Dohyun; Herr, Amy E.
2013-01-01
Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches—here with a specific emphasis on immunoassays and enzymatic reactors. Recent “smart immobilization” methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization. PMID:24003344
Laboratory Evaluation of the Alere q Point-of-Care System for Early Infant HIV Diagnosis.
Hsiao, Nei-yuan; Dunning, Lorna; Kroon, Max; Myer, Landon
2016-01-01
Early infant diagnosis (EID) and prompt linkage to care are critical to minimise the high morbidity and mortality associated with infant HIV infection. Attrition in the "EID cascade" is common; however, point-of-care (POC) EID assays with same-day result could facilitate prompt linkage of HIV-infected infant to treatment. Despite a number of POC EID assays in development, few have been independently evaluated and data on new technologies are urgently needed to inform policy. We compared Alere q 1/2 Detect POC system laboratory test characteristics with the local standard of care (SOC), Roche CAP/CTM HIV-1 qualitative PCR in an independent laboratory-based evaluation in Cape Town, South Africa. Routinely EID samples collected between November 2013 and September 2014 were each tested by both SOC and POC systems. Repeat testing was done to troubleshoot any discrepancy between POC and SOC results. Overall, 1098 children with a median age of 47 days (IQR, 42-117) were included. Birth PCR (age <7 days) comprised of 8% (n = 92) tests while 56% (n = 620) of children tested as part of routine EID (ages 6-14 weeks). In the overall direct comparison, Alere q Detect achieved sensitivity of 95.5% (95% CI, 91.7-97.9%) and a specificity of 99.8% (95% CI, 99.1-100%). Following repeat testing of discordant samples and exclusion of any inconclusive results, the POC assay sensitivity and specificity were 96.9% (95% CI 93.4-98.9%) and 100% (lower 95% CI 98%) respectively. Among birth PCR tests the POC assay had slightly lower sensitivity (93.3% vs 96.5% in routine EID) and higher assay error rate (10% vs 5% in samples of older children, p = 0.04). Our results indicate this POC assay performs well for EID in the laboratory. The high specificity and thus high positive predictive value would suggest a positive POC result may be adequate for immediate infant ART initiation. While POC testing for EID may have particular utility for birth testing at delivery facilities, the lower sensitivity and error rate requires further attention, as does field implementation of POC EID technologies in other clinical care settings.
Basu, Surupa; Chaudhuri, Subimal
2011-10-01
Vitamin B(12) being water soluble is excreted in the urine when administered in excess. The probability of finding an abnormally excess serum concentration would be almost surreal. We report a peculiar clinical situation that may impact the vitamin B(12) immunoassay on the Roche Elecsys 2010 due to excess analyte concentration. In separate episodes (Feb and June 2010), the Biochemistry laboratory of a tertiary-care hospital, Kolkata, India, encountered two critically ill patients with background chronic kidney disease (CKD), low urine output, and on cyanocoabalamin supplementation, who had serum vitamin B(12) concentrations far exceeding expected values; even post dialysis. The B(12) assays (pmol/l) were performed using electrochemiluminiscence immunoassay on Roche Elecsys 2010, the assay validity confirmed by concomitant quality control runs. The immunoassays failed to deliver results, flagged with "signal level below limit". Biotin therapy was ruled out as a possible interferent. In the first episode, re-assay of a repeat draw yielded same outcome; outsourcing on Immulite provided concentration of >738 pmol/l. Serial dilution gave result of >29520 pmol/l on Elecsys 2010. In the second, we gained from past experience. Vitamin B(12) concentration >59040 pmol/l was conveyed to the treating nephrologist the very day. The B(12) immunoassay on the Elecsys 2010 employs sequential incubation steps for competitive binding that is compromised in the event of abnormally excess B(12) concentration in patient sera akin to the prozone effect. This knowledge may be beneficial while assaying sera of CKD patients to avoid financial loss due unnecessary repeats and delay in turnaround time.
Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Hancock, Kathy; Kazacos, Kevin R.
2010-01-01
Larva migrans caused by Baylisascaris procyonis is an important zoonotic disease. Current serological diagnostic assays for this disease depend on the use of the parasite's larval excretory-secretory (ES) antigens. In order to identify genes encoding ES antigens and to generate recombinant antigens for use in diagnostic assays, construction and immunoscreening of a B. procyonis third-stage larva cDNA expression library was performed and resulted in identification of a partial-length cDNA clone encoding an ES antigen, designated repeat antigen 1 (RAG1). The full-length rag1 cDNA contained a 753-bp open reading frame that encoded a protein of 250 amino acids with 12 tandem repeats of a 12-amino-acid long sequence. The rag1 genomic DNA revealed a single intron of 837 bp that separated the 753-bp coding sequence into two exons delimited by canonical splice sites. No nucleotide or amino acid sequences present in the GenBank databases had significant similarity with those of RAG1. We have cloned, expressed, and purified the recombinant RAG1 (rRAG1) and analyzed its diagnostic potential by enzyme-linked immunosorbent assay. Anti-Baylisascaris species-specific rabbit serum showed strong reactivity to rRAG1, while only minimal to no reactivity was observed with sera against the related ascarids Toxocara canis and Ascaris suum, strongly suggesting the specificity of rRAG1. On the basis of these results, the identified RAG1 appears to be a promising diagnostic antigen for the development of serological assays for specific detection of B. procyonis larva migrans. PMID:20926699
Palmieri, Ferdinando; Agrimi, Gennaro; Blanco, Emanuela; Castegna, Alessandra; Di Noia, Maria A; Iacobazzi, Vito; Lasorsa, Francesco M; Marobbio, Carlo M T; Palmieri, Luigi; Scarcia, Pasquale; Todisco, Simona; Vozza, Angelo; Walker, John
2006-01-01
The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.
Delagoutte, Emmanuelle; Goellner, Geoffrey M.; Guo, Jie; Baldacci, Giuseppe; McMurray, Cynthia T.
2008-01-01
Small insertions and deletions of trinucleotide repeats (TNRs) can occur by polymerase slippage and hairpin formation on either template or newly synthesized strands during replication. Although not predicted by a slippage model, deletions occur preferentially when 5′-CTG is in the lagging strand template and are highly favored over insertion events in rapidly replicating cells. The mechanism for the deletion bias and the orientation dependence of TNR instability is poorly understood. We report here that there is an orientation-dependent impediment to polymerase progression on 5′-CAG and 5′-CTG repeats that can be relieved by the binding of single-stranded DNA-binding protein. The block depends on the primary sequence of the TNR but does not correlate with the thermodynamic stability of hairpins. The orientation-dependent block of polymerase passage is the strongest when 5′-CAG is the template. We propose a “template-push” model in which the slow speed of DNA polymerase across the 5′-CAG leading strand template creates a threat to helicase-polymerase coupling. To prevent uncoupling, the TNR template is pushed out and by-passed. Hairpins do not cause the block, but appear to occur as a consequence of polymerase pass-over. PMID:18263578
Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.
Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D
2015-05-01
Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.
Gray, Michelle; Shirasaki, Dyna I.; Cepeda, Carlos; Andre, Veronique M.; Wilburn, Brian; Lu, Xiao-Hong; Tao, Jifang; Yamazaki, Irene; Li, Shi-Hua; Sun, Yi E.; Li, Xiao-Jiang; Levine, Michael S.; William Yang, X
2008-01-01
To elucidate the pathogenic mechanisms in Huntington’s disease (HD) elicited by expression of full-length human mutant huntingtin (fl-mhtt), a Bacterial Artificial Chromosome (BAC)-mediated transgenic mouse model (BACHD) was developed expressing fl-mhtt with 97 glutamine repeats under the control of endogenous htt regulatory machinery on the BAC. BACHD mice exhibit progressive motor deficits, neuronal synaptic dysfunction, and late-onset selective neuropathology, which includes significant cortical and striatal atrophy and striatal dark neuron degeneration. Power analyses reveal the robustness of the behavioral and neuropathological phenotypes, suggesting BACHD as a suitable fl-mhtt mouse model for preclinical studies. Further analyses of BACHD mice provide additional insights into how mhtt may elicit neuropathogenesis. First, unlike prior fl-mhtt mouse models, BACHD mice reveal that the slowly progressive and selective pathogenic process in HD mouse brains can occur without early and diffuse nuclear accumulation of aggregated mhtt (i.e. as detected by immunostaining with the EM48 antibody). Instead, a relatively steady-state level of predominantly full-length mhtt and a small amount of mhtt N-terminal fragments are sufficient to elicit the disease process. Second, the polyglutamine repeat within fl-mhtt in BACHD mice is encoded by a mixed CAA-CAG repeat, which is stable in both the germline and somatic tissues including the cortex and striatum at the onset of neuropathology. Therefore, our results suggest that somatic repeat instability does not play a necessary role in selective neuropathogenesis in BACHD mice. In summary, the BACHD model constitutes a novel and robust in vivo paradigm for the investigation of HD pathogenesis and treatment. PMID:18550760
Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.
Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou
2017-05-01
Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P < 0.01). All four of these tests showed good specificities: 88.9% for the adenosine deaminase assay and 100% for the remaining three assays. The T-SPOT.TB assay with pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.
Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion
Yang, Xinting; Liu, Zichen; Li, Kun
2017-01-01
ABSTRACT Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively (P < 0.01). All four of these tests showed good specificities: 88.9% for the adenosine deaminase assay and 100% for the remaining three assays. The T-SPOT.TB assay with pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS6110 per ml of pleural effusion and showed good accordance of the results between repeated tests (r = 0.978, P = 2.84 × 10−10). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. PMID:28275073
The multiple roles of epidermal growth factor repeat O-glycans in animal development
Haltom, Amanda R; Jafar-Nejad, Hamed
2015-01-01
The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457
Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V
2014-11-01
Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat.
Bruno, John G; Sivils, Jeffrey C
2017-11-01
Previously reported DNA aptamers developed against surface proteins extracted from Campylobacter jejuni were further characterized by aptamer-based Western blotting and shown to bind epitopes on proteins weighing ~16 and 60 kD from reduced C. jejuni and Campylobacter coli lysates. Proteins of these approximate weights have also been identified in traditional antibody-based Western blots of Campylobacter spp. Specificity of the capture and reporter aptamers from the previous report was further validated by aptamer-based ELISA-like (ELASA) colorimetric microplate assay. Finally, the limit of detection of the previously reported plastic-adherent aptamer-magnetic bead and aptamer-quantum dot sandwich assay (PASA) was validated by an independent food safety testing laboratory to lie between 5 and 10 C. jejuni cells per milliliter in phosphate buffered saline and repeatedly frozen and thawed chicken rinsate. Such ultrasensitive and rapid (30 min) aptamer-based assays could provide alternative or additional screening tools to enhance food safety testing for Campylobacter and other foodborne pathogens.
Reyes, John Carlo B; Solon, Juan Antonio A; Rivera, Windell L
2014-07-01
A loop-mediated isothermal amplification (LAMP) assay targeting the 2-kbp repeated DNA species-specific sequence was developed for detection of Trichomonas vaginalis, the causative agent of trichomoniasis. The analytical sensitivity and specificity of the LAMP assay were evaluated using pooled genital swab and urine specimens, respectively, spiked with T. vaginalis trophozoites. Genital secretion and urine did not inhibit the detection of the parasite. The sensitivity of the LAMP was 10-1000 times higher than the PCR performed. The detection limit of LAMP was 1 trichomonad for both spiked genital swab and urine specimens. Also, LAMP did not exhibit cross-reactivity with closely-related trichomonads, Trichomonas tenax and Pentatrichomonas hominis, and other enteric and urogenital microorganisms, Entamoeba histolytica, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This is the first report of a LAMP assay for the detection of T. vaginalis and has prospective application for rapid diagnosis and control of trichomoniasis. Copyright © 2014 Elsevier Inc. All rights reserved.
Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct
NASA Astrophysics Data System (ADS)
Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza
2014-06-01
Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.
Lavoie, S; Caswell, D; Gill, M J; Kadkhoda, K; Charlton, C L; Levett, P N; Hatchette, T; Garceau, R; Maregmen, J; Mazzulli, T; Needle, R; Kadivar, K; Kim, J
2018-07-01
False-reactivity in HIV-negative specimens has been detected in HIV fourth-generation antigen/antibody or 'combo' assays which are able to detect both anti-HIV-1/HIV-2 antibodies and HIV-1 antigen. We sought to characterize these specimens and determine the effect of heterophilic interference. Specimens previously testing as false-reactive on the Abbott ARCHITECT HIV Ag/Ab combo assay and re-tested on a different (Siemens ADVIA Centaur HIV Ag/Ab) assay. A subset of these specimens were also pre-treated with heterophilic blocking agents and re-tested on the Abbott assay. Here we report that 95% (252/264) of clinical specimens that were repeatedly reactive on the Abbott ARCHITECT HIV Ag/Ab combo assay (S/Co range, 0.94-678) were negative when re-tested on a different fourth generation HIV combo assay (Siemens ADVIA Centaur HIV Ag/Ab). All 264 samples were subsequently confirmed to be HIV negative. On a small subset (57) of specimens with available volume, pre-treatment with two different reagents (HBT; Heterophilic Blocking Tube, NABT; Non-Specific Blocking Tube) designed to block heterophilic antibody interference either eliminated (HBT) or reduced (NABT) the false reactivity when re-tested on the ARCHITECT HIV Ag/Ab combo assay. Our results suggest that the Abbott ARCHITECT HIV Ag/Ab combo assay can be prone to heterophilic antibody interference. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Liaw, Wen-Jinn; Tsao, Cheng-Ming; Huang, Go-Shine; Wu, Chin-Chen; Ho, Shung-Tai; Wang, Jhi-Joung; Tao, Yuan-Xiang; Shui, Hao-Ai
2014-01-01
Introduction Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. Methods To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. Results Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. Conclusions Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance. PMID:24392096
Smith, Eric L; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J; Purdon, Terence J; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C; Almo, Steven C; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J
2018-06-06
B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Lai, Andrea Z; Schrock, Alexa B; Erlich, Rachel L; Ross, Jeffrey S; Miller, Vincent A; Yakirevich, Evgeny; Ali, Siraj M; Braiteh, Fadi
2017-07-01
ALK rearrangements have been observed in 0.05%-2.5% of patients with colorectal cancers (CRCs) and are predicted to be oncogenic drivers largely mutually exclusive of KRAS, NRAS, or BRAF alterations. Here we present the case of a patient with metastatic CRC who was treatment naïve at the time of molecular testing. Initial ALK immunohistochemistry (IHC) staining was negative, but parallel genomic profiling of both circulating tumor DNA (ctDNA) and tissue using similar hybrid capture-based assays each identified an identical STRN-ALK fusion. Subsequent ALK IHC staining of the same specimens was positive, suggesting that the initial result was a false negative. This report is the first instance of an ALK fusion in CRC detected using a ctDNA assay. Current guidelines for colorectal cancer (CRC) only recommend genomic assessment of KRAS, NRAS, BRAF, and microsatellite instability (MSI) status. ALK rearrangements are rare in CRC, but patients with activating ALK fusions have responded to targeted therapies ALK rearrangements can be detected by genomic profiling of ctDNA from blood or tissue, and this methodology may be informative in cases where immunohistochemistry (IHC) or other standard testing is negative. © AlphaMed Press 2017.
Warren, David J; Nordlund, Marianne S; Paus, Elisabeth
2010-02-28
Calibrator matrix can have significant effects on the commutability of assay standards and on the maintenance of their integrity. We have observed marked instability in progastrin-releasing peptide (proGRP) assay standards traceable to the bovine serum albumin (BSA) used in matrix formulation. Attempts were made to improve calibrator stability using different albumin pretreatments. Observed analyte recoveries in calibrators prepared with untreated BSA were consistently less than 45% after 1 week of storage at 4 degrees C. Pre-treating the BSA by chromatography on immobilized heparin or benzamidine failed to improve calibrator durability with day 7 recoveries of less than 55%. In marked contrast, calibrators formulated with albumin pasteurized at pH 3.0 displayed remarkable stability. Recoveries of >97% were observed after 4 weeks of storage at either 4 degrees C or room temperature. Even calibrators incubated for 4 weeks at 37 degrees C gave recoveries between 91-106%. This improvement was not seen with BSA pasteurized at neutral pH. Albumin pretreatment is straightforward, easily scalable and dramatically improves calibrator stability. Matrix formulated with acid-pasteurized BSA may prove more generally useful when assays are plagued by poor calibrator durability. 2009 Elsevier B.V. All rights reserved.
Jiang, Pingzhe; Ni, Zaizhong; Wang, Bin; Ma, Baicheng; Duan, Huikun; Li, Xiaodan; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Liu, Qiqi; Xing, Shuguang; Li, Minggang
2017-04-01
A new trend has been developed using vanadium and organic ligands to form novel compounds in order to improve the beneficial actions and reduce the toxicity of vanadium compounds. In present study, vanadyl trehalose was explored the oral acute toxicity, 28 days repeated dose toxicity and genotoxicity in Kunming mice. The Median Lethal Dose (LD 50 ) of vanadyl trehalose was revealed to be 1000 mg/kg body weight in fasted Kunming mice. Stomach and intestine were demonstrated to be the main target organs of vanadyl trehalose through 28 days repeated dose toxicity study. And vanadyl trehalose also showed particular genotoxicity through mouse bone marrow micronucleus and mouse sperm malformation assay. In brief, vanadyl trehalose presented certain, but finite toxicity, which may provide experimental basis for the clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew, S.E.; Goldberg, Y.P.; Squitieri, F.
Huntington disease (HD) is one of 7 disorders now known to be caused by expansion of a trinucleotide repeat. The HD mutation is a polymorphic trinucleotide (CAG) repeat in the 5{prime} region of a novel gene that expands beyond the normal range of 10-35 repeats in persons destined to develop the disease. Haplotype analysis of other dynamic mutation disorders such as myotonic dystrophy and Fragil X have suggested that a rare ancestral expansion event on a normal chromosome is followed by subsequent expansion events, resulting in a pool of chromosomes in the premutation range, which is inherently unstable and pronemore » to further multiple expansion events leading to disease range chromosomes. Haplotype analysis of 67 HD and 84 control chromosomes using 5 polymorphic markers, both intragenic and 5{prime} to the disease mutation, demonstrate that multiple haplotypes underlie HD. However, 94% of the chromosomes can be grouped under two major haplotypes. These two haplotypes are also present in the normal population. A third major haplotype is seen on 38% of normal chromosomes but rarely on HD chromosomes (6%). CAG lengths on the normal chromosomes with the two haplotypes seen in the HD population are higher than those seen on the normal chromosomes with the haplotype rarely seen on HD chromosomes. Furthermore, in populations with a diminished frequency of HD, CAG length on normal chromosomes is significantly less than other populations with higher prevalence rates for HD. These data suggest that CAG length on normal chromosomes may be a significant factor contributing to repeat instability that eventually leads to chromosomes with CAG repeat lengths in the HD range. Haplotypes on the HD chromosomes are identical to those normal chromosomes which have CAG lengths in the high range of normal, suggesting that further expansions of this pool of chromosomes leads to chromosomes with CAG repeat sizes within the disease range, consistent with a multistep model.« less
Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic.
Amosova, Alexandra V; Bolsheva, Nadezhda L; Samatadze, Tatiana E; Twardovska, Maryana O; Zoshchuk, Svyatoslav A; Andreev, Igor O; Badaeva, Ekaterina D; Kunakh, Viktor A; Muravenko, Olga V
2015-01-01
Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species.
Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic
Amosova, Alexandra V.; Bolsheva, Nadezhda L.; Samatadze, Tatiana E.; Twardovska, Maryana O.; Zoshchuk, Svyatoslav A.; Andreev, Igor O.; Badaeva, Ekaterina D.; Kunakh, Viktor A.; Muravenko, Olga V.
2015-01-01
Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving coding and noncoding repeated DNA sequences had occurred during the divergence of these species. PMID:26394331
Stability of the Medial Olivocochlear Reflex as Measured by Distortion Product Otoacoustic Emissions
ERIC Educational Resources Information Center
Mishra, Srikanta K.; Abdala, Carolina
2015-01-01
Purpose: The purpose of this study was to assess the repeatability of a fine-resolution, distortion product otoacoustic emission (DPOAE)-based assay of the medial olivocochlear (MOC) reflex in normal-hearing adults. Method: Data were collected during 36 test sessions from 4 normal-hearing adults to assess short-term stability and 5 normal-hearing…
Gravitational Effects on Flow Instability and Transition in Low Density Jets
NASA Technical Reports Server (NTRS)
Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.
2000-01-01
Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the potential core. However, experiments have not succeeded in identifying the direct physical cause of the instability. For example, the theory predicts an oscillating mode for S<0.62 in the limit of zero momentum thickness, which contradicts with the experimental findings of Kyle and Sreenivasan. The analyses of momentum-dominated jets neglect buoyancy effects because of the small Richardson number. Although this assumption is appropriate in the potential core, the gravitational effects are important in the annular region surrounding the jet, where the density and velocity gradients are large. This reasoning provides basis for the hypothesis that the instability in low Richardosn number jets studied by Kyle and Sreenivasan and Monkewitz et al. is caused by buoyancy. The striking similarity in characteristics of the instability and virtually the identical conclusions reached by Subbarao and Cantwell in buoyant (Ri>0.5) helium jets on one hand and by Kyle and Sreenivasan in momentum-dominated (Ri<1x10(exp -3)) helium jets on the other support this hypothesis. However, quantitative experiments in normal and microgravity are necessary to obtain direct physical evidence of buoyancy effects on the flow instability and structure of momentum-dominated low-density jets. The primary objective of this new research project is to quantify how buoyancy affects the flow instability and structure in the near field of low-density jets. The flow will be described by the spatial and temporal evolutions of the instability, length and time scales of the oscillating mode, and the mean and fluctuating concentration fields. To meet this objective, concentration measurements will be obtained across the whole field using quantitative Rainbow Schlieren Deflectometry, providing spatial resolution of 0.1mm and temporal resolution of 0.017s to 1ms. The experimental effort will be supplemented with linear stability analysis of low-density jets by considering buoyancy. The first objective of this research is to investigate the effects of gravity on the flow instability and structure of low-density jets. The flow instability in these jets has been attributed to buoyancy. By removing buoyancy in our experiments, we seek to obtain the direct physical evidence of the instability mechanism. In the absence of the instability, the flow structure will undergo a significant change. We seek to quantify these changes by mapping the flow field (in terms of the concentration profiles) of these jets at non-buoyant conditions. Such information is presently lacking in the existing literature. The second objective of this research is to determine if the instability in momentum-driven, low-density jets is caused by buoyancy. At these conditions, the buoyancy effects are commonly ignored because of the small Richardson based on global parameters. By eliminating buoyancy in our experiments, globally as well as locally, we seek to examine the possibility that the instability mechanism in self-excited, buoyant or momentum-driven jets is the same. To meet this objective, we would quantify the jet flow in normal and microgravity, while systematically decreasing the Richardson number from buoyancy-driven to momentum driven flow regime. The third objective of this research is to perform a linear stability analysis of low-density gas jets by including the gravitational effects. The flow oscillations in these jets are attributed to an absolute instability, whereby the disturbance grows exponentially at the site to ultimately contaminate the entire flow field. We seek to study the characteristics of both convective and absolute instabilities and demarcate the boundary between them.
Optimization of non-denaturing protein extraction conditions for plant PPR proteins.
Andrés-Colás, Nuria; Van Der Straeten, Dominique
2017-01-01
Pentatricopeptide repeat proteins are one of the major protein families in flowering plants, containing around 450 members. They participate in RNA editing and are related to plant growth, development and reproduction, as well as to responses to ABA and abiotic stresses. Their characteristics have been described in silico; however, relatively little is known about their biochemical properties. Different types of PPR proteins, with different tasks in RNA editing, have been suggested to interact in an editosome to complete RNA editing. Other non-PPR editing factors, such as the multiple organellar RNA editing factors and the organelle RNA recognition motif-containing protein family, for example, have also been described in plants. However, while evidence on protein interactions between non-PPR RNA editing proteins is accumulating, very few PPR protein interactions have been reported; possibly due to their high instability. In this manuscript, we aimed to optimize the conditions for non-denaturing protein extraction of PPR proteins allowing in vivo protein analyses, such as interaction assays by co-immunoprecipitation. The unusually high protein degradation rate, the aggregation properties and the high pI, as well as the ATP-dependence of some PPR proteins, are key aspects to be considered when extracting PPR proteins in a non-denatured state. During extraction of PPR proteins, the use of proteasome and phosphatase inhibitors is critical. The use of the ATP-cofactor reduces considerably the degradation of PPR proteins. A short centrifugation step to discard cell debris is essential to avoid PPR precipitation; while in some cases, addition of a reductant is needed, probably caused by the pI/pH context. This work provides an easy and rapid optimized non-denaturing total protein extraction protocol from plant tissue, suitable for polypeptides of the PPR family.
An HPLC/UV method for the determination of RGH-1756 in dog and rat plasma.
Terjéki, E; Kapás, M
2001-03-01
RGH-1756 (1-(2-methoxy-phenyl)-4-(4-[4-(6-imidazo[2,1-b]-thiazolyl)-phenoxy]-butyl)-piperazine dimethansulphonate) is a novel atypical antipsychotic candidate of Gedeon Richter Ltd. A new HPLC method has been developed and validated for the quantitative determination of RGH-1756 in dog and rat plasma. The compound and the internal standard are extracted from the biological samples by a simple and fast liquid--liquid extraction method, using 1-chlorobutane. The recovery for RGH-1756 is about 90%. The extracts are analyzed by reversed phase HPLC (column: Supelcosil-LC-18-DB 250*4.6 mm, 5 microm, eluent:acetonitrile:methanol:0.2 molar ammonium-acetate 40:25:35, lambda=254 nm). The assay is specific for RGH-1756. The standard curves are linear in the range between 10 and 2000 ng ml(-1). The overall precision (expressed as CV%) and accuracy (expressed as bias%) of quality controls and calibration standards are within 15%. The validated lower limit of quantification is 10 ng/ml. No indications have been found for possible instabilities of RGH-1756 in plasma, in the extraction solvent, or after repeated thawing-freezing cycles. The method has been succesfully applied for the bioavailability studies of RGH-1756 in the two animal species. In these studies results of the inprocess method validation have shown the reliability of the method, too. CV% of quality controls in the rat study has been found between 7.4 and 10.0%, in the dog study between 4.1 and 12.5%. The bias has ranged from 0.4 to 3.8% and from -4.5 to 1.2% in the rat and dog study, respectively.
Rathore, Mangal Singh; Chikara, J; Mastan, Shaik G; Rahman, H; Anand, K G V; Shekhawat, N S
2011-11-01
Efficient plantlet regeneration with and without intermediate callus phase was achieved for a selected genotype of Aloe vera L. which is sweet in test and used as a vegetable and source of food. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) marker assays were employed to evaluate genetic stability of plantlets and validate the most reliable method for true-to-type propagation of sweet aloe, among two regeneration systems developed so far. Despite phenotypic similarities in plantlets produced through both regeneration systems, the differences in genomic constituents of plantlets produced through intermediate callus phase using soft base of inflorescence have been effectively distinguished by RAPD and ISSR markers. No polymorphism was observed in regenerants produced following direct regeneration of axillary buds, whereas 80% and 73.3% of polymorphism were observed in RAPD and ISSR, respectively, in the regenerants produced indirectly from base of the inflorescence axis via an intermediate callus phase. Overall, 86.6% of variations were observed in the plantlets produced via an intermediate callus phase. The occurrence of genetic polymorphism is associated with choice of explants and method used for plantlet regeneration. This confirms that clonal propagation of sweet aloe using axillary shoot buds can be used for commercial exploitation of the selected genotype where a high degree of fidelity is an essential prerequisite. On the other hand, a high degree of variations were observed in plantlets obtained through indirect regeneration and thus cannot be used for the mass multiplication of the genotype; however, it can be used for crop improvement through induction of somaclonal variations and genetic manipulations.
Sun, Yanli; Sun, Yanhua
2016-10-01
Objective To obtain the PP7 bacteriophage-like particles carrying the peptide of prostatic acid phosphatase PAP 114-128 , and prove that they retain the original biological activity. Methods First, the plasmid pETDuet-2PP7 was constructed as follows: the gene of PP7 coat protein dimer was amplified by gene mutation combined with overlapping PCR technology, and inserted into the vector pETDuet-1. Following that, the plasmid pETDuet-2PP7-PAP 114-128 was constructed as follows: the PP7 coat protein gene carrying the coding gene of PAP 114-128 peptide was amplified using PCR, and then inserted into the vector pETDuet-2PP7. Both pETDuet-2PP7 and pETDuet-2PP7-PAP 114-128 were transformed into E.coli and expressed. The expression product was verified by SDS-PAGE, double immunodiffusion assay and ELISA. Results The gene fragment of PP7 coat protein dimer was obtained by overlapping PCR using Ex Taq DNA polymerase, and the antigenicity of its expression product was the same as that of the coat protein of wild-type PP7 bacteriophage. Moreover, the PAP 114-128 peptide epitope that was displayed on the surface of PP7 bacteriophage was identical with the corresponding epitope of natural human PAP, and it was able to induce high levels of antibodies. Conclusion The gene of PP7 coat protein dimer with repeated sequences can be prepared by gene mutation combined with overlapping PCR. Based on this, PP7 bacteriophage-like particles carrying PAP peptide can be prepared, which not only solves the problem of the instability of the peptides, but also lays a foundation for the study on their delivery and function.
Integrated standardization concept for Angelica botanicals using quantitative NMR
Gödecke, Tanja; Yao, Ping; Napolitano, José G.; Nikolić, Dejan; Dietz, Birgit M.; Bolton, Judy L.; van Breemen, Richard B.; Farnsworth, Norman R.; Chen, Shao-Nong; Lankin, David C.; Pauli, Guido F.
2011-01-01
Despite numerous in vitro/vivo and phytochemical studies, the active constituents of Angelica sinensis (AS) have not been conclusively identified for the standardization to bioactive markers. Phytochemical analyses of AS extracts and fractions that demonstrate activity in a panel of in vitro bioassays, have repeatedly pointed to ligustilide as being (associated with) the active principle(s). Due to the chemical instability of ligustilide and related issues in GC/LC analyses, new methods capable of quantifying ligustilide in mixtures that do not rely on an identical reference standard are in high demand. This study demonstrates how NMR can satisfy the requirement for simultaneous, multi-target quantification and qualitative identification. First, the AS activity was concentrated into a single fraction by RP-solid-phase extraction, as confirmed by an (anti-)estrogenicity and cytotoxicity assay. Next, a quantitative 1H NMR (qHNMR) method was established and validated using standard compounds and comparing processing methods. Subsequent 1D/2D NMR and qHNMR analysis led to the identification and quantification of ligustilide and other minor components in the active fraction, and to the development of quality criteria for authentic AS preparations. The absolute and relative quantities of ligustilide, six minor alkyl phthalides, and groups of phenylpropanoids, polyynes, and poly-unsaturated fatty acids were measured by a combination of qHNMR and 2D COSY. The qNMR approach enables multi-target quality control of the bioactive fraction, and enables the integrated biological and chemical standardization of AS botanicals. This methodology can potentially be transferred to other botanicals with active principles that act synergistically, or that contain closely related and/or constituents, which have not been conclusively identified as the active principles. PMID:21907766
Aspirin inhibits human telomerase activation in unstable carotid plaques
LI, FANGMING; GUO, YI; JIANG, XIN; ZHONG, JIANXIN; LI, GUANDONG; SUN, SHENGGANG
2013-01-01
The activation of telomerase in unstable plaques is an important factor in atherosclerosis, and may be predictive of the risk of cerebrovascular diseases. Human telomerase reverse transcriptase (hTERT) is a subunit of telomerase that is essential for telomerase activation. The aim of the present study was to investigate whether aspirin inhibits the activation of telomerase and hTERT in unstable carotid plaques. Polymorphonuclear neutrophils (PMNs) derived from carotid plaques were isolated from the washing medium of angioplasty balloons, while circulating PMNs, isolated from arterial blood, served as the controls. A polymerase chain reaction-based telomeric repeat amplification protocol (TRAP) enzyme-linked immunosorbent assay (ELISA) was used to measure the telomerase activity in the cells following treatment with aspirin. The mRNA and protein expression of hTERT were detected by a reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis, respectively. The results revealed that the atherosclerotic plaques were positive for telomerase activity, and that aspirin inhibited the telomerase activity of the PMNs derived from the plaques. In addition, aspirin was demonstrated to inhibit the mRNA and protein expression of hTERT through the suppression of hTERT transcriptional activity; however, it had no inhibitory effect on the telomerase activity of the circulating PMNs. Thus, the activation of telomerase in resident PMNs is critical in the instability of carotid plaques. The upregulation of telomerase and hTERT during the progression of atherosclerosis may indicate a role for telomerase in the vascular remodeling that occurs during atherogenesis. Aspirin was demonstrated to inhibit the activation of telomerase via an hTERT-dependent manner in the PMN cells of unstable carotid plaques, and thus hTERT may be considered as a target in the treatment of cerebrovascular diseases. PMID:23935747
Croy, Theodore; Cosby, Nicole L; Hertel, Jay
2013-08-01
Alterations in talocrural joint arthrokinematics related to repositioning of the talus or fibula following ankle sprain have been reported in radiological and clinical studies. It is unclear if these changes can result from normal active ankle motion. The study objective was to determine if active movement created changes in the sagittal plane talofibular interval in ankles with a history of lateral ankle sprain and instability. Three subject groups [control (n = 17), ankle sprain copers (n = 20), and chronic ankle instability (n = 20)] underwent ultrasound imaging of the anterolateral ankle gutter to identify the lateral malleolus and talus over three trials. Between trials, subjects actively plantar and dorsiflexed the ankle three times. The sagittal plane talofibular interval was assessed by measuring the anteroposterior distance (mm) between the lateral malleolus and talus from an ultrasound image. Between group and trial differences were analyzed with repeated measures analysis of variance and post-hoc t-tests. Fifty-seven subjects participated. A significant group-by-trial interaction was observed (F4,108 = 3.5; P = 0.009). The talofibular interval was increased in both copers [2.4±3.6 mm; 95% confidence interval (CI): 0.73-4.1; P = 0.007] and chronic ankle instability (4.1±4.6 mm; 95% CI: 1.9-6.2; P = 0.001) at trial 3 while no changes were observed in control ankle talar position (0.06±2.8mm; 95% CI: -1.5-1.4; P = 0.93). The talofibular interval increased only in subjects with a history of lateral ankle sprain with large clinical effect sizes observed. These findings suggest that an alteration in the position of the talus or fibula occurred with non-weight bearing sagittal plane motion. These findings may have diagnostic and therapeutic implications for manual therapists.
Kaniak-Golik, Aneta; Kuberska, Renata; Dzierzbicki, Piotr; Sledziewska-Gojska, Ewa
2017-01-01
Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria.
Dzierzbicki, Piotr
2017-01-01
Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria. PMID:28678842
Croy, Theodore; Cosby, Nicole L; Hertel, Jay
2013-01-01
Introduction: Alterations in talocrural joint arthrokinematics related to repositioning of the talus or fibula following ankle sprain have been reported in radiological and clinical studies. It is unclear if these changes can result from normal active ankle motion. The study objective was to determine if active movement created changes in the sagittal plane talofibular interval in ankles with a history of lateral ankle sprain and instability. Methods: Three subject groups [control (n = 17), ankle sprain copers (n = 20), and chronic ankle instability (n = 20)] underwent ultrasound imaging of the anterolateral ankle gutter to identify the lateral malleolus and talus over three trials. Between trials, subjects actively plantar and dorsiflexed the ankle three times. The sagittal plane talofibular interval was assessed by measuring the anteroposterior distance (mm) between the lateral malleolus and talus from an ultrasound image. Between group and trial differences were analyzed with repeated measures analysis of variance and post-hoc t-tests. Results: Fifty-seven subjects participated. A significant group-by-trial interaction was observed (F4,108 = 3.5; P = 0.009). The talofibular interval was increased in both copers [2.4±3.6 mm; 95% confidence interval (CI): 0.73–4.1; P = 0.007] and chronic ankle instability (4.1±4.6 mm; 95% CI: 1.9–6.2; P = 0.001) at trial 3 while no changes were observed in control ankle talar position (0.06±2.8mm; 95% CI: −1.5–1.4; P = 0.93). Discussion: The talofibular interval increased only in subjects with a history of lateral ankle sprain with large clinical effect sizes observed. These findings suggest that an alteration in the position of the talus or fibula occurred with non-weight bearing sagittal plane motion. These findings may have diagnostic and therapeutic implications for manual therapists. PMID:24421623
NASA Astrophysics Data System (ADS)
Falsaperla, S.; Maiolino, V.; Spampinato, S.; Jaquet, O.; Neri, M.
2008-04-01
Repeated phenomena of flank instability accompanied the 28 December 2002 to 21 July 2003 eruption of Stromboli volcano. The major episodes were two tsunamigenic landslides on 30 December 2002, 2 d after the volcano unrest. After 30 December, sliding processes remodeled the area affected by slope instability. We propose analyses of 565 sliding episodes taking place from December 2002 to February 2003. We try to shed light on their main seismic features and links with the ongoing seismic and volcanic activity using variogram analysis as well. A characterization of the seismic signals in the time and frequency domains is presented for 185 sliding episodes. Their frequency content is between 1 Hz and 7 Hz. On the basis of the dominant peaks and shape of the spectrum, we identify three subclasses of signals, one of which has significant energy below 2 Hz. Low-frequency signatures were also found in the seismic records of the landslides of 30 December, which affected the aerial and submarine northwestern flank of the volcano. Accordingly, we surmise that spectral analysis might provide evidence of sliding phenomena with submarine runouts. We find no evidence of sliding processes induced by earthquakes. Additionally, a negative statistical correlation between sliding episodes and explosion quakes is highlighted by variogram analysis. Variograms indicate a persistent behavior, memory, of the flank instability from 5 to 10 d. We interpret the climax in the occurrence rate of the sliding processes between 24 and 29 January 2003 as the result of favorable conditions to slope instability due to the emplacement of NW-SE aligned, dike-fed vents located near the scarp of the landslide area. Afterward, the stabilizing effect of the lava flows over the northwestern flank of the volcano limited erosive phenomena to the unstable, loose slope not covered by lava.
Aarabi, Mohammad Hossein; Mirhashemi, Seyyed Mehdi
2017-09-01
Aggregating of amylin as pancreatic deposition is connected with pancreas degeneration in type 2 diabetes mellitus. Suppression of the amylin accumulation and so instability of the pre-formed pancreatic β-amyloid, may be attractive curative goal for mediation of diabetes mellitus. Fluorimetric assay by Thioflavin-T was utilized for investigating the properties of melatonin and fisetin on the generation and instability of β-amyloid near to physiological conditions. The results showed that after 168 hours incubation by shaker incubator in 37oC, melatonin at 10μM and 40 µM repressed amylin amyloid formation by 20.1% and 27.5% respectively (p<0.05) and the similar values of fisetin inhibited the formation of β-sheet structure by 16.5% and 23.2% respectively (p<0.05).The obtained data also confirmed that amyloidal sheet opening was induced by melatonin and fisetin significantly (p<0.05). It may be concluded that islet amyloid cytotoxicity to β-cells may be reduced by melatonin and fisetin, and they should be important constituents of new drugs for diabetes mellitus treatment.
Knockdown of RMI1 impairs DNA repair under DNA replication stress.
Xu, Chang; Fang, Lianying; Kong, Yangyang; Xiao, Changyan; Yang, Mengmeng; Du, Li-Qing; Liu, Qiang
2017-12-09
RMI1 (RecQ-mediated genome instability protein 1) forms a conserved BTR complex with BLM, Topo IIIα, and RMI2, and its absence causes genome instability. It has been revealed that RMI1 localizes to nuclear foci with BLM and Topo IIIα in response to replication stress, and that RMI1 functions downstream of BLM in promoting replication elongation. However, the precise functions of RMI1 during replication stress are not completely understood. Here we report that RMI1 knockdown cells are hypersensitive to hydroxyurea (HU). Using comet assay, we show that RMI1 knockdown cells exhibit accumulation of broken DNAs after being released from HU treatment. Moreover, we demonstrate that RMI1 facilitates the recovery from activated checkpoint and resuming the cell cycle after replicative stress. Surprisingly, loss of RMI1 results in a failure of RAD51 loading onto DNA damage sites. These findings reveal the importance of RMI1 in response to replication stress, which could explain the molecular basis for its function in maintaining genome integrity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Stability of an Alcohol-free, Dye-free Hydrocortisone (2 mg/mL) Compounded Oral Suspension.
Manchanda, Arushi; Laracy, Melissa; Savji, Taslim; Bogner, Robin H
2018-01-01
The stability of hydrocortisone in a commercially available dye-free oral vehicle was monitored to establish a beyond-use date for hydrocortisone oral suspension 2 mg/mL. Hydrocortisone oral suspension (2 mg/mL) was prepared from 10-mg tablets in a dye-free oral vehicle (Oral Mix, Medisca) and stored at 4°C and 25°C for 90 days in amber, plastic prescription bottles and oral syringes. The suspendability and dose repeatability of the oral suspension were evaluated. The solubility of hydrocortisone in the dye-free vehicle was determined. Over 90 days, pH and concentration of hydrocortisone in the oral suspension were measured. The stability-indicating nature of a high-pressure liquid chromatographic assay was evaluated in detail. The solubility of hydrocortisone in the dye-free vehicle was 230 mcg/mL at 25°C. This means that about 90% of the drug remains in the solid state where it is less susceptible to degradation. The preparation suspended well to support dose repeatability. The chromatographic assay resolved hydrocortisone from cortisone, excipients in the vehicle, and all degradation products. The assay passed United States Pharmacopeia system suitability tests. Hydrocortisone oral suspension (2 mg/mL) compounded using a dye-free, alcohol-free oral vehicle, Oral Mix, was stable in amber plastic bottles and syringes stored at 4°C and 25°C for 90 days within a 95% confidence interval. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability
NASA Astrophysics Data System (ADS)
Oddy, Michael Huson
Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple-species electrokinetic instability model, we consider a high aspect ratio microchannel geometry, a conductivity gradient orthogonal to the applied electric field, and a four-species chemistry model. A linear stability analysis of the depth-averaged governing equations shows unstable eigenmodes for conductivity ratios as close to unity as 1.01. Experiments and full nonlinear simulations of the governing equations were conducted for a conductivity ratio of 1.05. Images of the disturbance dye field from the nonlinear simulations show good qualitative and quantitative agreement with experiment. Species electromigration is shown to a have significant influence on the development of the conductivity field and instability dynamics in multi-ion configurations.
E622, a miniature, virulence-associated mobile element.
Stavrinides, John; Kirzinger, Morgan W B; Beasley, Federico C; Guttman, David S
2012-01-01
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
El-Hewaity, Mohamed; Abd El Latif, Amera
2014-01-01
The comparative pharmacokinetic profile of cefquinome was studied in sheep and goats following repeated intramuscular (IM) administrations of 2 mg/kg body weight. Cefquinome concentrations in serum were determined by microbiological assay technique using Micrococcus luteus (ATCC 9341) as test organism. Following intramuscular injection of cefquinome in sheep and goats, the disposition curves were best described by two-compartment open model in both sheep and goats. The pharmacokinetics of cefquinome did not differ significantly between sheep and goats; similar intramuscular dose rate of cefquinome should therefore be applicable to both species. On comparing the data of serum levels of repeated intramuscular injections with first intramuscular injection, it was revealed that repeated intramuscular injections of cefquinome have cumulative effect in both species sheep and goats. The in vitro serum protein-binding tendency was 15.65% in sheep and 14.42% in goats. The serum concentrations of cefquinome along 24 h after injection in this study were exceeding the MICs of different susceptible microorganisms responsible for serious disease problems. These findings indicate successful use of cefquinome in sheep and goats. PMID:26464946
Expanding RNA binding specificity and affinity of engineered PUF domains.
Zhao, Yang-Yang; Mao, Miao-Wei; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei
2018-05-18
Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way.
Expanding RNA binding specificity and affinity of engineered PUF domains
Zhao, Yang-Yang; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei
2018-01-01
Abstract Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way. PMID:29490074
Rathi, Preeti; Maurer, Sara; Summerer, Daniel
2018-06-05
The epigenetic DNA nucleobases 5-methylcytosine (5mC) and N 4-methylcytosine (4mC) coexist in bacterial genomes and have important functions in host defence and transcription regulation. To better understand the individual biological roles of both methylated nucleobases, analytical strategies for distinguishing unmodified cytosine (C) from 4mC and 5mC are required. Transcription-activator-like effectors (TALEs) are programmable DNA-binding repeat proteins, which can be re-engineered for the direct detection of epigenetic nucleobases in user-defined DNA sequences. We here report the natural, cytosine-binding TALE repeat to not strongly differentiate between 5mC and 4mC. To engineer repeats with selectivity in the context of C, 5mC and 4mC, we developed a homogeneous fluorescence assay and screened a library of size-reduced TALE repeats for binding to all three nucleobases. This provided insights into the requirements of size-reduced TALE repeats for 4mC binding and revealed a single mutant repeat as a selective binder of 4mC. Employment of a TALE with this repeat in affinity enrichment enabled the isolation of a user-defined DNA sequence containing a single 4mC but not C or 5mC from the background of a bacterial genome. Comparative enrichments with TALEs bearing this or the natural C-binding repeat provides an approach for the complete, programmable decoding of all cytosine nucleobases found in bacterial genomes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).
Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation.
Mathew, Sherin T; Bergström, Petra; Hammarsten, Ola
2014-05-01
Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2'-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus
Lee, Tong Geon; Kumar, Indrajit; Diers, Brian W; Hudson, Matthew E
2015-01-01
The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2-kb unit contains four genes. One allele of Rhg1, Rhg1-b, is responsible for protecting most US soybean production from SCN. Whole-genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2-kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high-density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non-neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1. PMID:25735447
Zheng, Chong-Ke; Wang, Chun-Lian; Zhang, Xiao-Ping; Wang, Fu-Jun; Qin, Teng-Fei; Zhao, Kai-Jun
2014-09-01
To activate the expression of host genes that contribute to pathogen growth, pathogenic Xanthomonas bacteria inject their transcription activator-like effectors (TALEs) into plant cells and the TALEs bind to target gene promoters by the central repeat region consisting of near-perfect 34-amino-acid repeats (34-aa repeats). Based on the recognition codes between the 34-aa repeats and the targeted nucleotides, TALE-based technologies, such as designer TALEs (dTALEs) and TALE nucleases (TALENs), have been developed. Amazingly, every natural TALE invariantly has a truncated last half-repeat (LHR) at the end of the 34-aa repeats. Consequently, all the reported dTALEs and TALENs also harbour their LHRs. Here, we show that the LHRs in dTALEs are dispensable for the function of gene activation by both transient expression assays in Nicotiana benthamiana and gene-specific targeting in the rice genome, indicating that TALEs might originate from a single progenitor. In the light of this finding, we demonstrate that dTALEs can be constructed through two simple steps. Moreover, the activation strengths of dTALEs lacking the LHR are comparable with those of dTALEs harbouring the LHR. Our results provide new insights into the origin of natural TALEs, and will facilitate the simplification of the design and assembly of TALE-based tools, such as dTALEs and TALENs, in the near future. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Schuster-Gossler, Karin; Cordes, Ralf; Müller, Julia; Geffers, Insa; Delany-Heiken, Patricia; Taft, Manuel; Preller, Matthias; Gossler, Achim
2016-01-01
The highly conserved Notch-signaling pathway mediates cell-to-cell communication and is pivotal for multiple developmental processes and tissue homeostasis in adult organisms. Notch receptors and their ligands are transmembrane proteins with multiple epidermal-growth-factor-like (EGF) repeats in their extracellular domains. In vitro the EGF repeats of mammalian ligands that are essential for Notch activation have been defined. However, in vivo the significance of the structural integrity of each EGF repeat in the ligand ectodomain for ligand function is still unclear. Here, we analyzed the mouse Notch ligand DLL1. We expressed DLL1 proteins with mutations disrupting disulfide bridges in each individual EGF repeat from single-copy transgenes in the HPRT locus of embryonic stem cells. In Notch transactivation assays all mutations impinged on DLL1 function and affected both NOTCH1 and NOTCH2 receptors similarly. An allelic series in mice that carried the same point mutations in endogenous Dll1, generated using a mini-gene strategy, showed that early developmental processes depending on DLL1-mediated NOTCH activation were differently sensitive to mutation of individual EGF repeats in DLL1. Notably, some mutations affected only somite patterning and resulted in vertebral column defects resembling spondylocostal dysostosis. In conclusion, the structural integrity of each individual EGF repeat in the extracellular domain of DLL1 is necessary for full DLL1 activity, and certain mutations in Dll1 might contribute to spondylocostal dysostosis in humans. PMID:26801181
Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola, E-mail: ola.hammarsten@clinchem.gu.se
2014-05-01
Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA andmore » reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.« less
Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis
Tong, Helin; Chen, You; Wang, Jingyi; Chen, Yeyuan; Sun, Guangming; He, Junhu; Wu, Yaoting
2013-01-01
Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region. PMID:24024187
Sanchez, J; Dohoo, I R; Markham, F; Leslie, K; Conboy, G
2002-10-16
An indirect enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against Ostertagia ostertagi using a crude adult worm antigen was evaluated using serum and milk samples from adult cows, as well as from bulk tank milk. Within and between plate repeatabilities were determined. In addition, the effects of factors such as antigen batch, freezing, preserving of the samples and somatic cell counts (SCCs) of the samples were evaluated. Raw optical densities (ODs) and normalized values were compared using the concordance correlation coefficient (CCC), the coefficient of variation (CV), Bland-Altman plots (BA). Based on raw OD values, there was a high repeatability within a plate (CCC approximately 0.96 and CV<10%). Repeatability between plates was evaluated following normalization of OD values by four methods. Computing normalized values as (OD-Nt)/(Pst-Nt), gave the most repeatable results, with the CCC being approximately 0.95 and the CV approximately 11%. When the OD values were higher than 1.2 and 0.3 for the positive and the negative controls, respectively, none of the normalization methods evaluated provided highly repeatable results and it was necessary to repeat the test. Two batches of the crude antigen preparation were evaluated for repeatability, and no difference was found (CCC=0.96). The use of preservative (bronopol) did not affect test results, nor did freezing the samples for up to 8 months. A significant positive relationship between ELISA OD for milk samples and SCC score was found. Therefore, the use of composite milk samples, which have less variable SCC than samples taken from each quarter, would be more suitable when the udder health status is unknown. The analytical methods used to evaluate repeatability provided a practical way to select among normalization procedures.
Validation of a CD1b tetramer assay for studies of human mycobacterial infection or vaccination.
Layton, Erik D; Yu, Krystle K Q; Smith, Malisa T; Scriba, Thomas J; De Rosa, Stephen C; Seshadri, Chetan
2018-07-01
CD1 tetramers loaded with lipid antigens facilitate the identification of rare lipid-antigen specific T cells present in human blood and tissue. Because CD1 proteins are structurally non-polymorphic, these tetramers can be applied to genetically diverse human populations, unlike MHC-I and MHC-II tetramers. However, there are no standardized assays to quantify and characterize lipid antigen-specific T cells present within clinical samples. We incorporated CD1b tetramers loaded with the mycobacterial lipid glucose monomycolate (GMM) into a multi-parameter flow cytometry assay. Using a GMM-specific T-cell line, we demonstrate that the assay is linear, reproducible, repeatable, precise, accurate, and has a limit of detection of approximately 0.007%. Having formally validated this assay, we performed a cross-sectional study of healthy U.S. controls and South African adolescents with and without latent tuberculosis infection (LTBI). We show that GMM-specific T cells are specifically detected in South African subjects with LTBI and not in U.S. healthy controls. This assay can be expanded to include additional tetramers or phenotypic markers to characterize GMM-specific T cells in studies of mycobacterial infection, disease, or vaccination. Copyright © 2018 Elsevier B.V. All rights reserved.