Sample records for repeat sequence re1

  1. Cross-Specificities between cII-like Proteins and pRE-like Promoters of Lambdoid Bacteriophages

    PubMed Central

    Wulff, Daniel L.; Mahoney, Michael E.

    1987-01-01

    We have investigated the activation of transcription from the pRE promoters of phages λ, 21 and P22 by the λ and 21 cII proteins and the P22 c1 (cII-like) protein, using an in vivo system in which cII protein from a derepressed prophage activates transcription from a pRE DNA fragment on a multicopy plasmid. We find that each protein is highly specific for its own cognate pRE promoter, although measureable cross-reactions are observed. The primary recognition sequence for cII protein on λ pRE is a pair of TTGC repeat sequences in the sequence 5'-TTGCN 6TTGC-3' at the -35 region of the promoter. This same sequence is found in 21 pRE, while P22 pRE has the sequence 5'-TTGCN6TTGT-3', which is the same as that of λctr1, a pRE+ variant of λ. λctr1 pRE is half as active as λ + pRE when assayed with either the λ cII or the P22 c1 proteins. Therefore, the single base change in the P22 repeat sequence cannot explain why the P22 c1 protein is much more active with P22 pRE than λ p RE. The dya5 mutation, a G→A change at position -43 of pRE, makes pRE a stronger promoter when assayed with either the λ or 21 cII proteins or the P22 c1 protein. We conclude that efficient activation of a cII-dependent promoter by a cII protein requires sequence information in addition to the TTGC repeat sequences. We do not know the characteristics of the proteins which are responsible for the specificity of each protein for its own cognate promoter. However, λdya8, which has a Glu27→Lys alteration in the λ cII protein and a cII+ phenotype, results in a mutant cII protein that is much more highly specific than wild-type cII protein for its own cognate λ p RE promoter. This is especially remarkable because the dya8 amino acid alteration makes the helix-2 region (the region of the protein predicted to make contact with the phosphodiester backbone of the DNA) of λ cII protein conform exactly with the helix-2 region of the P22 c1 protein in both charge and charge distribution. PMID:2953649

  2. The Development of Long-Term Lexical Representations through Hebb Repetition Learning

    ERIC Educational Resources Information Center

    Szmalec, Arnaud; Page, Mike P. A.; Duyck, Wouter

    2012-01-01

    This study clarifies the involvement of short- and long-term memory in novel word-form learning, using the Hebb repetition paradigm. In Experiment 1, participants recalled sequences of visually presented syllables (e.g., "la"-"va"-"bu"-"sa"-"fa"-"ra"-"re"-"si"-"di"), with one particular (Hebb) sequence repeated on every third trial. Crucially,…

  3. Single Molecule Study of the Intrinsically Disordered FG-Repeat Nucleoporin 153

    PubMed Central

    Milles, Sigrid; Lemke, Edward A.

    2011-01-01

    Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (RE) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (RE/RE,RC = 0.99 ± 0.15 with RE,RC corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (RE/RE,RC = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. PMID:21961597

  4. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.

    PubMed

    Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2013-01-01

    The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.

  5. High frequency of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis patients from two founder populations sharing the same risk haplotype.

    PubMed

    Goldstein, Orly; Gana-Weisz, Mali; Nefussy, Beatrice; Vainer, Batel; Nayshool, Omri; Bar-Shira, Anat; Traynor, Bryan J; Drory, Vivian E; Orr-Urtreger, Avi

    2018-04-01

    We characterized the C9orf72 hexanucleotide repeat expansion (RE) mutation in amyotrophic lateral sclerosis (ALS) patients of 2 distinct origins, Ashkenazi and North Africa Jews (AJ, NAJ), its frequency, and genotype-phenotype correlations. In AJ, 80% of familial ALS (fALS) and 11% of sporadic ALS carried the RE, a total of 12.9% of all AJ-ALS compared to 0.3% in AJ controls (odds ratio [OR] = 44.3, p < 0.0001). In NAJ, 10% of fALS and 9% of sporadic ALS carried the RE, a total of 9.1% of all NAJ-ALS compared to 1% in controls (OR = 9.9, p = 0.0006). We identified a risk haplotype shared among all ALS patients, although an association with age at disease onset, fALS, and dementia were observed only in AJ. Variations were identified downstream the repeats. The risk haplotype and these polymorphisms were at high frequencies in alleles with 8 repeats or more, suggesting sequence instability. The different genotype-phenotype correlations and OR, together with the large range in age at onset, suggest that other modifiers and risk factors may affect penetrance and phenotype in ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

    PubMed Central

    Suyama, Yoshihisa; Matsuki, Yu

    2015-01-01

    Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239

  7. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.

    PubMed

    Kim, Jun-Seob; Cho, Da-Hyeong; Park, Myeongseo; Chung, Woo-Jae; Shin, Dongwoo; Ko, Kwan Soo; Kweon, Dae-Hyuk

    2016-02-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

  8. Amino acid sequence analysis of the annexin super-gene family of proteins.

    PubMed

    Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J

    1991-06-15

    The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of the predictions and shows the power of techniques for the determination of tertiary structural information from the amino acid sequences of an aligned protein family.

  9. Taxonomy of the Rhizopogon vinicolor species complex based on analysis of ITS sequences and microsatellite loci.

    Treesearch

    Annette M. Kretzer; Daniel L. Luoma; Randy Molina; Joseph W. Spatafora

    2003-01-01

    We are re-addressing species concepts in the Rhizopogon vinicolor species complex (Boletales, Basidiomycota) using sequence data from the interna transcribed spacer (ITS) region of the nuclear ribosomal repeat, as well as genoLypic data from five microsatellite loci. The R. vinicolor species complex by our definition includes,...

  10. Spectroscopic insights into quadruplexes of five-repeat telomere DNA sequences upon G-block damage.

    PubMed

    Dvořáková, Zuzana; Vorlíčková, Michaela; Renčiuk, Daniel

    2017-11-01

    The DNA lesions, resulting from oxidative damage, were shown to destabilize human telomere four-repeat quadruplex and to alter its structure. Long telomere DNA, as a repetitive sequence, offers, however, other mechanisms of dealing with the lesion: extrusion of the damaged repeat into loop or shifting the quadruplex position by one repeat. Using circular dichroism and UV absorption spectroscopy and polyacrylamide electrophoresis, we studied consequences of lesions at different positions of the model five-repeat human telomere DNA sequences on the structure and stability of their quadruplexes in sodium and in potassium. The repeats affected by lesion are preferentially positioned as terminal overhangs of the core quadruplex structurally similar to the four-repeat one. Forced affecting of the inner repeats leads to presence of variety of more parallel folds in potassium. In sodium the designed models form mixture of two dominant antiparallel quadruplexes whose population varies with the position of the affected repeat. The shapes of quadruplex CD spectra, namely the height of dominant peaks, significantly correlate with melting temperatures. Lesion in one guanine tract of a more than four repeats long human telomere DNA sequence may cause re-positioning of its quadruplex arrangement associated with a shift of the structure to less common quadruplex conformations. The type of the quadruplex depends on the loop position and external conditions. The telomere DNA quadruplexes are quite resistant to the effect of point mutations due to the telomere DNA repetitive nature, although their structure and, consequently, function might be altered. Copyright © 2017. Published by Elsevier B.V.

  11. Distribution of creep in the northern San Francisco Bay Area illuminated by repeating earthquakes and InSAR

    NASA Astrophysics Data System (ADS)

    Funning, G.; Shakibay Senobari, N.; Swiatlowski, J. L.

    2017-12-01

    Surface observations of fault creep in the region north of San Francisco Bay are sporadic. While there are long-standing instances of creep-affected infrastructure on the Maacama and Bartlett Springs faults, the lateral and depth extents of creep on these and other faults in the region remain a question. Here, we supplement this sparse existing observation set with additional information from repeating earthquake sequences (REs) and InSAR, to illuminate, and significantly improve our knowledge of, creep across the region. Repeating earthquakes have long been considered indicators of creep on faults. We present the results of an extensive similarity search through over 600,000 archived waveforms from 43,000 events using a fast algorithm; from this we can identify 39 periodic repeating sequences and over 80 nonperiodic repeated event groups. We compare these with decadal line-of-sight velocity measurements made by applying the StaMPS time series InSAR code to ERS and Envisat data covering the region, that can be used to identify surface creep on faults. On the Rodgers Creek, Maacama and Bartlett Springs faults, both InSAR and REs show corroborating evidence for creep at locations where it was previously inferred. The REs additionally provide information on its depth extent. On the Maacama fault, we find REs extending almost to the southern limit of the mapped fault trace, south of Cloverdale, suggesting that creep may be pervasive on the fault. We can also identify structural complexity both in the stepover region with the Rodgers Creek fault, and in the northern segment of the fault close to Willits, potentially indicating parallel and/or down-dip branching creeping structures in both locations. REs on the Bartlett Springs fault indicate creep that extends across the full down-dip width of the brittle fault; here the proximity of InSAR creep rate estimates and a shallow RE sequence may permit a calibration of the RE `creepmeter', allowing us to estimate creep rates directly from RE source characteristics.

  12. Overexpression of the CYP51A1 Gene and Repeated Elements are Associated with Differential Sensitivity to DMI Fungicides in Venturia inaequalis.

    PubMed

    Villani, Sara M; Hulvey, Jon; Hily, Jean-Michel; Cox, Kerik D

    2016-06-01

    The involvement of overexpression of the CYP51A1 gene in Venturia inaequalis was investigated for isolates exhibiting differential sensitivity to the triazole demethylation inhibitor (DMI) fungicides myclobutanil and difenoconazole. Relative expression (RE) of the CYP51A1 gene was significantly greater (P < 0.0001) for isolates with resistance to both fungicides (MRDR phenotype) or with resistance to difenoconazole only (MSDR phenotype) compared with isolates that were resistant only to myclobutanil (MRDS phenotype) or sensitive to both fungicides (MSDS phenotype). An average of 9- and 13-fold increases in CYP51A1 RE were observed in isolates resistant to difenoconazole compared with isolates with MRDS and MSDS phenotypes, respectively. Linear regression analysis between isolate relative growth on myclobutanil-amended medium and log10 RE revealed that little to no variability in sensitivity to myclobutanil could be explained by CYP51A1 overexpression (R(2) = 0.078). To investigate CYP51A1 upstream anomalies associated with CYP51A1 overexpression or resistance to difenoconazole, Illumina sequencing was conducted for three isolates with resistance to difenoconazole and one baseline isolate. A repeated element, "EL 3,1,2", with the properties of a transcriptional enhancer was identified two to four times upstream of CYP51A1 in difenoconazole-resistant isolates but was not found in isolates with the MRDS phenotype. These results suggest that different mechanisms may govern resistance to different DMI fungicides in the triazole group.

  13. Eukaryotic gene regulation by targeted chromatin re-modeling at dispersed, middle-repetitive sequence elements.

    PubMed

    Hodgetts, Ross

    2004-12-01

    RNA interference might have evolved to minimize the deleterious impact of transposable elements and viruses on eukaryotic genomes, because mutations in genes within the RNAi pathway cause mobilization of transposons in nematodes and flies. Although the first examples of RNAi involved post-transcriptional gene silencing, recently the pathway has been shown to act at the transcriptional level. It does so by establishing a chromatin configuration on the target DNA that has many of the hallmarks of heterochromatin, thus preventing its transcription. Members of dispersed, repeated sequence families appear to have been utilized by the RNAi machinery to regulate nearby genes in yeast. The unusual genomic distribution of three repeated element families in the chicken, fruit-fly and nematode genomes prompts speculation that some of these repeats have been co-opted to control gene expression, either locally or over extended chromosomal domains.

  14. Exploring the repeat protein universe through computational protein design

    DOE PAGES

    Brunette, TJ; Parmeggiani, Fabio; Huang, Po-Ssu; ...

    2015-12-16

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. In this paper, we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix–loop–helix–loop structural motif. Eighty-three designs with sequences unrelatedmore » to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Finally, our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.« less

  15. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

    PubMed

    Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re-sequencing, which proved to be a useful tool to exploit elite NBS-LRR genes in wild rice. The data here provide a foundation for future work aimed at dissecting the genetic basis of disease resistance in rice, and the two wild rice lines will be useful germplasm for the molecular improvement of cultivated rice.

  16. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes

    PubMed Central

    Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93–11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93–11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re-sequencing, which proved to be a useful tool to exploit elite NBS-LRR genes in wild rice. The data here provide a foundation for future work aimed at dissecting the genetic basis of disease resistance in rice, and the two wild rice lines will be useful germplasm for the molecular improvement of cultivated rice. PMID:28700714

  17. Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata

    PubMed Central

    Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® ‘Second Generation DNA Sequencing (2GS)’ and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites. PMID:23272141

  18. Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.

    PubMed

    Kazakoff, Stephen H; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T; Gresshoff, Peter M

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.

  19. Distribution and Characteristics of Repeating Earthquakes in Northern California

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.; Zechar, J. D.; Shaw, B. E.

    2012-12-01

    Repeating earthquakes are playing an increasingly important role in the study of fault processes and behavior, and have the potential to improve hazard assessment, earthquake forecast, and seismic monitoring capabilities. These events rupture the same fault patch repeatedly, generating virtually identical seismograms. In California, repeating earthquakes have been found predominately along the creeping section of the central San Andreas Fault, where they are believed to represent failing asperities on an otherwise creeping fault. Here, we use the northern California double-difference catalog of 450,000 precisely located events (1984-2009) and associated database of 2 billion waveform cross-correlation measurements to systematically search for repeating earthquakes across various tectonic regions. An initial search for pairs of earthquakes with high-correlation coefficients and similar magnitudes resulted in 4,610 clusters including a total of over 26,000 earthquakes. A subsequent double-difference re-analysis of these clusters resulted in 1,879 sequences (8,640 events) where a common rupture area can be resolved to the precision of a few tens of meters or less. These repeating earthquake sequences (RES) include between 3 and 24 events with magnitudes up to ML=4. We compute precise relative magnitudes between events in each sequence from differential amplitude measurements. Differences between these and standard coda-duration magnitudes have a standard deviation of 0.09. The RES occur throughout northern California, but RES with 10 or more events (6%) only occur along the central San Andreas and Calaveras faults. We are establishing baseline characteristics for each sequence, such as recurrence intervals and their coefficient of variation (CV), in order to compare them across tectonic regions. CVs for these clusters range from 0.002 to 2.6, indicating a range of behavior between periodic occurrence (CV~0), random occurrence, and temporal clustering. 10% of the RES show burst-like behavior with mean recurrence times smaller than one month. 5% of the RES have mean recurrence times greater than one year and include more than 10 earthquakes. Earthquakes in the 50 most periodic sequences (CV<0.2) do not appear to be predictable by either time- or slip-predictable models, consistent with previous findings. We demonstrate that changes in recurrence intervals of repeating earthquakes can be routinely monitored. This is especially important for sequences with CV~0, as they may indicate changes in the loading rate. We also present results from retrospective forecast experiments based on near-real time hazard functions.

  20. On the phylogenetic placement of human T cell leukemia virus type 1 sequences associated with an Andean mummy.

    PubMed

    Coulthart, Michael B; Posada, David; Crandall, Keith A; Dekaban, Gregory A

    2006-03-01

    Recently, the putative finding of ancient human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) DNA sequences in association with a 1500-year-old Chilean mummy has stirred vigorous debate. The debate is based partly on the inherent uncertainties associated with phylogenetic reconstruction when only short sequences of closely related genotypes are available. However, a full analysis of what phylogenetic information is present in the mummy data has not previously been published, leaving open the question of what precisely is the range of admissible interpretation. To fulfill this need, we re-analyzed the mummy data in a new way. We first performed phylogenetic analysis of 188 published LTR DNA sequences from extant strains belonging to the HTLV-1 Cosmopolitan clade, using the method of statistical parsimony which is designed both to optimize phylogenetic resolution among sequences with little evolutionary divergence, and to permit precise mapping of individual sequence mutations onto branches of a divergence network. We then deduced possible phylogenetic positions for the two main categories of published Chilean mummy sequences, based on their published 157-nucleotide LTR sequences. The possible phylogenetic placements for one of the mummy sequence categories are consistent with a modern origin. However, one of these placements for the other mummy sequence category falls very close to the root of the Cosmopolitan clade, consistent with an ancient origin for both this mummy sequence and the Cosmopolitan clade.

  1. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  2. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    PubMed

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  3. Re-sequencing regions of the ovine Y chromosome in domestic and wild sheep reveals novel paternal haplotypes.

    PubMed

    Meadows, J R S; Kijas, J W

    2009-02-01

    The male-specific region of the ovine Y chromosome (MSY) remains poorly characterized, yet sequence variants from this region have the potential to reveal the wild progenitor of domestic sheep or examples of domestic and wild paternal introgression. The 5' promoter region of the sex-determining gene SRY was re-sequenced using a subset of wild sheep including bighorn (Ovis canadensis), thinhorn (Ovis dalli spp.), urial (Ovis vignei), argali (Ovis ammon), mouflon (Ovis musimon) and domestic sheep (Ovis aries). Seven novel SNPs (oY2-oY8) were revealed; these were polymorphic between but not within species. Re-sequencing and fragment analysis was applied to the MSY microsatellite SRYM18. It contains a complex compound repeat structure and sequencing of three novel size fragments revealed that a pentanucleotide element remained fixed, whilst a dinucleotide element displayed variability within species. Comparison of the sequence between species revealed that urial and argali sheep grouped more closely to the mouflon and domestic breeds than the pachyceriforms (bighorn and thinhorn). SNP and microsatellite data were combined to define six previously undetected haplotypes. Analysis revealed the mouflon as the only species to share a haplotype with domestic sheep, consistent with its status as a feral domesticate that has undergone male-mediated exchange with domestic animals. A comparison of the remaining wild species and domestic sheep revealed that O. aries is free from signatures of wild sheep introgression.

  4. Variation, Repetition, And Choice

    PubMed Central

    Abreu-Rodrigues, Josele; Lattal, Kennon A; dos Santos, Cristiano V; Matos, Ricardo A

    2005-01-01

    Experiment 1 investigated the controlling properties of variability contingencies on choice between repeated and variable responding. Pigeons were exposed to concurrent-chains schedules with two alternatives. In the REPEAT alternative, reinforcers in the terminal link depended on a single sequence of four responses. In the VARY alternative, a response sequence in the terminal link was reinforced only if it differed from the n previous sequences (lag criterion). The REPEAT contingency generated low, constant levels of sequence variation whereas the VARY contingency produced levels of sequence variation that increased with the lag criterion. Preference for the REPEAT alternative tended to increase directly with the degree of variation required for reinforcement. Experiment 2 examined the potential confounding effects in Experiment 1 of immediacy of reinforcement by yoking the interreinforcer intervals in the REPEAT alternative to those in the VARY alternative. Again, preference for REPEAT was a function of the lag criterion. Choice between varying and repeating behavior is discussed with respect to obtained behavioral variability, probability of reinforcement, delay of reinforcement, and switching within a sequence. PMID:15828592

  5. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    PubMed

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Unrelated sequences at the 5' end of mouse LINE-1 repeated elements define two distinct subfamilies.

    PubMed Central

    Wincker, P; Jubier-Maurin, V; Roizès, G

    1987-01-01

    Some full length members of the mouse long interspersed repeated DNA family L1Md have been shown to be associated at their 5' end with a variable number of tandem repetitions, the A repeats, that have been suggested to be transcription controlling elements. We report that the other type of repeat, named F, found at the 5' end of a few L1 elements is also an integral part of full length L1 copies. Sequencing shows that the F repeats are GC rich, and organized in tandem. The L1 copies associated with either A or F repeats can be correlated with two different subsets of L1 sequences distinguished by a series of variant nucleotides specific to each and by unassociated but frequent restriction sites. These findings suggest that sequence replacement has occurred at least once in 5' of L1Md, and is related to the generation of specific subfamilies. Images PMID:3684566

  7. Molecular interactions involved in the transactivation of the human T-cell leukemia virus type 1 promoter mediated by Tax and CREB-2 (ATF-4).

    PubMed

    Gachon, F; Thebault, S; Peleraux, A; Devaux, C; Mesnard, J M

    2000-05-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.

  8. Molecular Interactions Involved in the Transactivation of the Human T-Cell Leukemia Virus Type 1 Promoter Mediated by Tax and CREB-2 (ATF-4)

    PubMed Central

    Gachon, Frederic; Thebault, Sabine; Peleraux, Annick; Devaux, Christian; Mesnard, Jean-Michel

    2000-01-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation. PMID:10779337

  9. Repeated sequence sets in mitochondrial DNA molecules of root knot nematodes (Meloidogyne): nucleotide sequences, genome location and potential for host-race identification.

    PubMed Central

    Okimoto, R; Chamberlin, H M; Macfarlane, J L; Wolstenholme, D R

    1991-01-01

    Within a 7 kb segment of the mtDNA molecule of the root knot nematode, Meloidogyne javanica, that lacks standard mitochondrial genes, are three sets of strictly tandemly arranged, direct repeat sequences: approximately 36 copies of a 102 ntp sequence that contains a TaqI site; 11 copies of a 63 ntp sequence, and 5 copies of an 8 ntp sequence. The 7 kb repeat-containing segment is bounded by putative tRNAasp and tRNAf-met genes and the arrangement of sequences within this segment is: the tRNAasp gene; a unique 1,528 ntp segment that contains two highly stable hairpin-forming sequences; the 102 ntp repeat set; the 8 ntp repeat set; a unique 1,068 ntp segment; the 63 ntp repeat set; and the tRNAf-met gene. The nucleotide sequences of the 102 ntp copies and the 63 ntp copies have been conserved among the species examined. Data from Southern hybridization experiments indicate that 102 ntp and 63 ntp repeats occur in the mtDNAs of three, two and two races of M.incognita, M.hapla and M.arenaria, respectively. Nucleotide sequences of the M.incognita Race-3 102 ntp repeat were found to be either identical or highly similar to those of the M.javanica 102 ntp repeat. Differences in migration distance and number of 102 ntp repeat-containing bands seen in Southern hybridization autoradiographs of restriction-digested mtDNAs of M.javanica and the different host races of M.incognita, M.hapla and M.arenaria are sufficient to distinguish the different host races of each species. Images PMID:2027769

  10. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-09-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.

  11. An Exposed KID-Like Domain in Human T-Cell Lymphotropic Virus Type 1 Tax Is Responsible for the Recruitment of Coactivators CBP/p300

    PubMed Central

    Harrod, Robert; Tang, Yong; Nicot, Christophe; Lu, Hsieng S.; Vassilev, Alex; Nakatani, Yoshihiro; Giam, Chou-Zen

    1998-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) transcriptional activation is mediated by the viral transactivator, Tax, and three 21-bp repeats (Tax response element [TxRE]) located in the U3 region of the viral long terminal repeat (LTR). Each TxRE contains a core cyclic AMP response element (CRE) flanked by 5′ G-rich and 3′ C-rich sequences. The TxRE binds CREB (CRE-binding protein) and Tax to form a ternary complex and confers Tax-dependent transactivation. Recent data indicate that Tax functions as a specific link to connect CREB-binding protein (CBP)/p300 in a phosphorylation-independent manner to CREB/ATF-1 assembled on the viral 21-bp repeats. Glutathione S-transferase pull-down performed with Tax deletion mutants and peptide competition have localized the site in Tax critical for binding CBP/p300 to a highly protease-sensitive region around amino acid residues 81 to 95 (81QRTSKTLKVLTPPIT95) which lies between the domains previously proposed to be important for CREB binding and Tax subunit dimerization. Amino acid residues around the trypsin- and chymotrypsin-sensitive sites (88KVL90) of Tax bear resemblance to those in the kinase-inducible domain of CREB (129SRRPSYRKILNE140) surrounding Ser-133, which undergoes signal-induced phosphorylation to recruit CBP/p300. Site-directed mutagenesis of residues in this domain (R82A, K85A, K88A, and V89A) resulted in proteins which failed to transactivate from the HTLV-1 LTR in vivo. These mutants (K85A, K88A, and V89A) bind CREB with similar affinities as wild-type Tax, yet interaction with CBP/p300 is abrogated in various biochemical assays, indicating that the recruitment of CBP/p300 is crucial for Tax transactivation. A Tax mutant, M47, defective in the COOH-terminal transactivation domain, continued to interact with CBP/p300, suggesting that interactions with additional cellular factors are required for proper Tax function. PMID:9710589

  12. Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis

    PubMed Central

    Tong, Helin; Chen, You; Wang, Jingyi; Chen, Yeyuan; Sun, Guangming; He, Junhu; Wu, Yaoting

    2013-01-01

    Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region. PMID:24024187

  13. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence

    NASA Astrophysics Data System (ADS)

    Meng, Lingsen; Huang, Hui; Bürgmann, Roland; Ampuero, Jean Paul; Strader, Anne

    2015-02-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency (< 0.1 Hz), while back-projection shows a steady increase of high frequency power (> 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of subducting seamounts that promote high-frequency generation. Our results highlight the complexity of the interactions between large-scale aseismic slow-slip and dynamic ruptures of megathrust earthquakes.

  14. Repeated human leukocyte antigen mismatches in lung re-transplantation.

    PubMed

    Sommer, Wiebke; Hallensleben, Michael; Ius, Fabio; Kühn, Christian; Tudorache, Igor; Avsar, Murat; Salman, Jawad; Siemeni, Thierry; Greer, Mark; Gottlieb, Jens; Boethig, Dietmar; Blasczyk, Rainer; Haverich, Axel; Warnecke, Gregor

    2017-02-01

    The role of HLA-sensitization in the absence of detectable DSA in lung re-transplantation is unclear. Antigens of the second donor matching the HLA typing of the first donor are considered 'unacceptable', by some tissue typing laboratories, especially in kidney re-transplantation. Thus, we performed a retrospective analysis of all lung re-transplantations focussing on the impact of HLA-homologies between the first and the second donor ('unacceptable' antigens; repeated HLA mismatch) on patient and graft survival. A total of 132 lung re-transplantations were performed at our centre between 1985 and 2014, of which 120 with complete HLA data were analysed. 55.8% of the recipients received re-transplants with repeated HLA mismatched antigens whereas 43.2% of the re-transplants were transplanted without repeated HLA mismatched antigens. Postoperative survival showed no difference between re-transplant procedures with or without repeated HLA mismatches (p=0.99). While neither homologies on the HLA-A, -B, -C, or -DR locus, nor the addition of several locus homologies (p=0.72) had an impact on survival, unexpectedly, repeated HLA mismatching on the HLA-DQ locus was correlated with better survival. Re-transplantations with repeated HLA mismatches did not result in more development of CLAD as compared to recipients without repeated HLA mismatches (p=0.99). Neither the number of repeated HLA mismatched antigens (p=0.52) nor the HLA locus (HLA-A(p=0.34), HLA-B(p=0.97), HLA-C (p=0.80), HLA-DR(p=0.49) and HLA-DQ(p=0.07)) had an impact on the development of CLAD after re-transplantation. Transplantation with repeated HLA mismatches due to sensitization by a previous transplantation in the absence of detectable HLA-antibodies does not have a negative impact on patient or graft survival. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sequences characterization of microsatellite DNA sequences in Pacific abalone ( Haliotis discus hannai)

    NASA Astrophysics Data System (ADS)

    Li, Qi; Akihiro, Kijima

    2007-01-01

    The microsatellite-enriched library was constructed using magnetic bead hybridization selection method, and the microsatellite DNA sequences were analyzed in Pacific abalone Haliotis discus hannai. Three hundred and fifty white colonies were screened using PCR-based technique, and 84 clones were identified to potentially contain microsatellite repeat motif. The 84 clones were sequenced, and 42 microsatellites and 4 minisatellites with a minimum of five repeats were found (13.1% of white colonies screened). Besides the motif of CA contained in the oligoprobe, we also found other 16 types of microsatellite repeats including a dinucleotide repeat, two tetranucleotide repeats, twelve pentanucleotide repeats and a hexanucleotide repeat. According to Weber (1990), the microsatellite sequences obtained could be categorized structurally into perfect repeats (73.3%), imperfect repeats (13.3%), and compound repeats (13.4%). Among the microsatellite repeats, relatively short arrays (<20 repeats) were most abundant, accounting for 75.0%. The largest length of microsatellites was 48 repeats, and the average number of repeats was 13.4. The data on the composition and length distribution of microsatellites obtained in the present study can be useful for choosing the repeat motifs for microsatellite isolation in other abalone species.

  16. Heterogeneity of the Epstein-Barr Virus (EBV) Major Internal Repeat Reveals Evolutionary Mechanisms of EBV and a Functional Defect in the Prototype EBV Strain B95-8.

    PubMed

    Ba Abdullah, Mohammed M; Palermo, Richard D; Palser, Anne L; Grayson, Nicholas E; Kellam, Paul; Correia, Samantha; Szymula, Agnieszka; White, Robert E

    2017-12-01

    Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of <1 kb, and allelic gene conversion changes the frequency of small regions within the repeat but not close to the flanks. These observations suggest that IR1-and, by extension, EBV-diversifies through both recombination and breakpoint repair, while concerted evolution of IR1 is driven by gene conversion of small regions. Finally, the prototype EBV strain B95-8 contains four nonconsensus variants within a single IR1 repeat unit, including a stop codon in the EBNA-LP gene. Repairing IR1 improves EBNA-LP levels and the quality of transformation by the B95-8 bacterial artificial chromosome (BAC). IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The patterns of this mixing suggest that sequences can spread between strains (and also within the repeat) by copying sequence from another strain (or repeat unit) to repair DNA damage. Copyright © 2017 Ba abdullah et al.

  17. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology

    PubMed Central

    Lijavetzky, Diego; Cabezas, José Antonio; Ibáñez, Ana; Rodríguez, Virginia; Martínez-Zapater, José M

    2007-01-01

    Background Single-nucleotide polymorphisms (SNPs) are the most abundant type of DNA sequence polymorphisms. Their higher availability and stability when compared to simple sequence repeats (SSRs) provide enhanced possibilities for genetic and breeding applications such as cultivar identification, construction of genetic maps, the assessment of genetic diversity, the detection of genotype/phenotype associations, or marker-assisted breeding. In addition, the efficiency of these activities can be improved thanks to the ease with which SNP genotyping can be automated. Expressed sequence tags (EST) sequencing projects in grapevine are allowing for the in silico detection of multiple putative sequence polymorphisms within and among a reduced number of cultivars. In parallel, the sequence of the grapevine cultivar Pinot Noir is also providing thousands of polymorphisms present in this highly heterozygous genome. Still the general application of those SNPs requires further validation since their use could be restricted to those specific genotypes. Results In order to develop a large SNP set of wide application in grapevine we followed a systematic re-sequencing approach in a group of 11 grape genotypes corresponding to ancient unrelated cultivars as well as wild plants. Using this approach, we have sequenced 230 gene fragments, what represents the analysis of over 1 Mb of grape DNA sequence. This analysis has allowed the discovery of 1573 SNPs with an average of one SNP every 64 bp (one SNP every 47 bp in non-coding regions and every 69 bp in coding regions). Nucleotide diversity in grape (π = 0.0051) was found to be similar to values observed in highly polymorphic plant species such as maize. The average number of haplotypes per gene sequence was estimated as six, with three haplotypes representing over 83% of the analyzed sequences. Short-range linkage disequilibrium (LD) studies within the analyzed sequences indicate the existence of a rapid decay of LD within the selected grapevine genotypes. To validate the use of the detected polymorphisms in genetic mapping, cultivar identification and genetic diversity studies we have used the SNPlex™ genotyping technology in a sample of grapevine genotypes and segregating progenies. Conclusion These results provide accurate values for nucleotide diversity in coding sequences and a first estimate of short-range LD in grapevine. Using SNPlex™ genotyping we have shown the application of a set of discovered SNPs as molecular markers for cultivar identification, linkage mapping and genetic diversity studies. Thus, the combination a highly efficient re-sequencing approach and the SNPlex™ high throughput genotyping technology provide a powerful tool for grapevine genetic analysis. PMID:18021442

  18. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed Central

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-01-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this. Images PMID:3016521

  19. Identification of Simple Sequence Repeats in Chloroplast Genomes of Magnoliids Through Bioinformatics Approach.

    PubMed

    Srivastava, Deepika; Shanker, Asheesh

    2016-12-01

    Basal angiosperms or Magnoliids is an important clade of commercially important plants which mainly include spices and edible fruits. In this study, 17 chloroplast genome sequences belonging to clade Magnoliids were screened for the identification of chloroplast simple sequence repeats (cpSSRs). Simple sequence repeats or microsatellites are short stretches of DNA up to 1-6 base pair in length. These repeats are ubiquitous and play important role in the development of molecular markers and to study the mapping of traits of economic, medical or ecological interest. A total of 479 SSRs were detected, showing average density of 1 SSR/6.91 kb. Depending on the repeat units, the length of SSRs ranged from 12 to 24 bp for mono-, 12 to 18 bp for di-, 12 to 26 bp for tri-, 12 to 24 bp for tetra-, 15 bp for penta- and 18 bp for hexanucleotide repeats. Mononucleotide repeats were the most frequent (207, 43.21 %) followed by tetranucleotide repeats (130, 27.13 %). Penta- and hexanucleotide repeats were least frequent or absent in these chloroplast genomes.

  20. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    PubMed

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  1. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae).

    PubMed

    Mlinarec, Jelena; Chester, Mike; Siljak-Yakovlev, Sonja; Papes, Drazena; Leitch, Andrew R; Besendorfer, Visnja

    2009-01-01

    The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.

  2. Selective recognition of N4-methylcytosine in DNA by engineered transcription-activator-like effectors.

    PubMed

    Rathi, Preeti; Maurer, Sara; Summerer, Daniel

    2018-06-05

    The epigenetic DNA nucleobases 5-methylcytosine (5mC) and N 4-methylcytosine (4mC) coexist in bacterial genomes and have important functions in host defence and transcription regulation. To better understand the individual biological roles of both methylated nucleobases, analytical strategies for distinguishing unmodified cytosine (C) from 4mC and 5mC are required. Transcription-activator-like effectors (TALEs) are programmable DNA-binding repeat proteins, which can be re-engineered for the direct detection of epigenetic nucleobases in user-defined DNA sequences. We here report the natural, cytosine-binding TALE repeat to not strongly differentiate between 5mC and 4mC. To engineer repeats with selectivity in the context of C, 5mC and 4mC, we developed a homogeneous fluorescence assay and screened a library of size-reduced TALE repeats for binding to all three nucleobases. This provided insights into the requirements of size-reduced TALE repeats for 4mC binding and revealed a single mutant repeat as a selective binder of 4mC. Employment of a TALE with this repeat in affinity enrichment enabled the isolation of a user-defined DNA sequence containing a single 4mC but not C or 5mC from the background of a bacterial genome. Comparative enrichments with TALEs bearing this or the natural C-binding repeat provides an approach for the complete, programmable decoding of all cytosine nucleobases found in bacterial genomes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).

  3. [Mutation Analysis of 19 STR Loci in 20 723 Cases of Paternity Testing].

    PubMed

    Bi, J; Chang, J J; Li, M X; Yu, C Y

    2017-06-01

    To observe and analyze the confirmed cases of paternity testing, and to explore the mutation rules of STR loci. The mutant STR loci were screened from 20 723 confirmed cases of paternity testing by Goldeneye 20A system.The mutation rates, and the sources, fragment length, steps and increased or decreased repeat sequences of mutant alleles were counted for the analysis of the characteristics of mutation-related factors. A total of 548 mutations were found on 19 STR loci, and 557 mutation events were observed. The loci mutation rate was 0.07‰-2.23‰. The ratio of paternal to maternal mutant events was 3.06:1. One step mutation was the main mutation, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. The repeat sequences were more likely to decrease in two steps mutation and above. Mutation mainly occurred in the medium allele, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. In long allele mutations, the decreased repeat sequences were significantly more than the increased repeat sequences. The number of the increased repeat sequences was almost the same as the decreased repeat sequences in paternal mutation, while the decreased repeat sequences were more than the increased in maternal mutation. There are significant differences in the mutation rate of each locus. When one or two loci do not conform to the genetic law, other detection system should be added, and PI value should be calculated combined with the information of the mutate STR loci in order to further clarify the identification opinions. Copyright© by the Editorial Department of Journal of Forensic Medicine

  4. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

    PubMed

    Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L

    2013-01-30

    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

  5. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

    PubMed Central

    2013-01-01

    Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705

  6. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.

    PubMed

    Dallery, Jean-Félix; Lapalu, Nicolas; Zampounis, Antonios; Pigné, Sandrine; Luyten, Isabelle; Amselem, Joëlle; Wittenberg, Alexander H J; Zhou, Shiguo; de Queiroz, Marisa V; Robin, Guillaume P; Auger, Annie; Hainaut, Matthieu; Henrissat, Bernard; Kim, Ki-Tae; Lee, Yong-Hwan; Lespinet, Olivier; Schwartz, David C; Thon, Michael R; O'Connell, Richard J

    2017-08-29

    The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.

  7. Origin of the CMS gene locus in rapeseed cybrid mitochondria: active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae.

    PubMed

    Oshima, Masao; Kikuchi, Rie; Imamura, Jun; Handa, Hirokazu

    2010-01-01

    CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.

  8. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus

    PubMed Central

    Lee, Tong Geon; Kumar, Indrajit; Diers, Brian W; Hudson, Matthew E

    2015-01-01

    The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2-kb unit contains four genes. One allele of Rhg1, Rhg1-b, is responsible for protecting most US soybean production from SCN. Whole-genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2-kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high-density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non-neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1. PMID:25735447

  9. The repetitive landscape of the chicken genome.

    PubMed

    Wicker, Thomas; Robertson, Jon S; Schulze, Stefan R; Feltus, F Alex; Magrini, Vincent; Morrison, Jason A; Mardis, Elaine R; Wilson, Richard K; Peterson, Daniel G; Paterson, Andrew H; Ivarie, Robert

    2005-01-01

    Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7 x coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available.

  10. The repetitive landscape of the chicken genome

    PubMed Central

    Wicker, Thomas; Robertson, Jon S.; Schulze, Stefan R.; Feltus, F. Alex; Magrini, Vincent; Morrison, Jason A.; Mardis, Elaine R.; Wilson, Richard K.; Peterson, Daniel G.; Paterson, Andrew H.; Ivarie, Robert

    2005-01-01

    Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7× coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available. PMID:15256510

  11. Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes.

    PubMed

    Haiminen, Niina; Feltus, F Alex; Parida, Laxmi

    2011-04-15

    We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.

  12. Isolation and mapping of telomeric pentanucleotide (TAACC)n repeats of the Pacific whiteleg shrimp, Penaeus vannamei, using fluorescence in situ hybridization.

    PubMed

    Alcivar-Warren, Acacia; Meehan-Meola, Dawn; Wang, Yongping; Guo, Ximing; Zhou, Linghua; Xiang, Jianhai; Moss, Shaun; Arce, Steve; Warren, William; Xu, Zhenkang; Bell, Kireina

    2006-01-01

    To develop genetic and physical maps for shrimp, accurate information on the actual number of chromosomes and a large number of genetic markers is needed. Previous reports have shown two different chromosome numbers for the Pacific whiteleg shrimp, Penaeus vannamei, the most important penaeid shrimp species cultured in the Western hemisphere. Preliminary results obtained by direct sequencing of clones from a Sau3A-digested genomic library of P. vannamei ovary identified a large number of (TAACC/GGTTA)-containing SSRs. The objectives of this study were to (1) examine the frequency of (TAACC)n repeats in 662 P. vannamei genomic clones that were directly sequenced, and perform homology searches of these clones, (2) confirm the number of chromosomes in testis of P. vannamei, and (3) localize the TAACC repeats in P. vannamei chromosome spreads using fluorescence in situ hybridization (FISH). Results for objective 1 showed that 395 out of the 662 clones sequenced contained single or multiple SSRs with three or more repeat motifs, 199 of which contained variable tandem repeats of the pentanucleotide (TAACC/GGTTA)n, with 3 to 14 copies per sequence. The frequency of (TAACC)n repeats in P. vannamei is 4.68 kb for SSRs with five or more repeat motifs. Sequence comparisons using the BLASTN nonredundant and expressed sequence tag (EST) databases indicated that most of the TAACC-containing clones were similar to either the core pentanucleotide repeat in PVPENTREP locus (GenBank accession no. X82619) or portions of 28S rRNA. Transposable elements (transposase for Tn1000 and reverse transcriptase family members), hypothetical or unnamed protein products, and genes of known function such as 18S and 28S rRNAs, heat shock protein 70, and thrombospondin were identified in non-TAACC-containing clones. For objective 2, the meiotic chromosome number of P. vannamei was confirmed as N = 44. For objective 3, four FISH probes (P1 to P4) containing different numbers of TAACC repeats produced positive signals on telomeres of P. vannamei chromosomes. A few chromosomes had positive signals interstitially. Probe signal strength and chromosome coverage differed in the general order of P1>P2>P3>P4, which correlated with the length of TAACC repeats within the probes: 83, 66, 35, and 30 bp, respectively, suggesting that the TAACC repeats, and not the flanking sequences, produced the TAACC signals at chromosome ends and TAACC is likely the telomere sequence for P. vannamei.

  13. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    PubMed Central

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  14. Plasmodium Coatneyi Ring-Infected Erythrocyte Surface Antigens

    DTIC Science & Technology

    1993-01-01

    corresponding to the 3’ repeat sequence of P. during one or multiple infections, pooled sera falciparum RESA (a gift from Dr. Troye -Blom- from humans who had a...310: primte alaia delin hic an ntiodyre-789-792. primte alaia ode inwhic anantbod re 8.Kabilan L. Troye -Blomberg M, Patarroyo ME,sponse to RESA occurs...Diseases. Centers for Disease 9. Kabilan L. Troye -Blomberg M, Perlmann H. An- Control and Prevention, Atlanta. GA). We thank C. dersson G. Hogh B

  15. Dixon quantitative chemical shift MRI for bone marrow evaluation in the lumbar spine: a reproducibility study in healthy volunteers.

    PubMed

    Maas, M; Akkerman, E M; Venema, H W; Stoker, J; Den Heeten, G J

    2001-01-01

    The purpose of this work was to explore the reproducibility of fat-fraction measurements using Dixon quantitative chemical shift imaging (QCSI) in the lumbar spine (L3, L4, and L5) of healthy volunteers. Sixteen healthy volunteers were examined at 1.5 T two times to obtain a repeated measurement in the same slice and a third time in three parallel slices. Single slice, two point Dixon SE (TR/TE 2,500/22.3) sequences were used, from which fat-fraction images were calculated. The fat-fraction results are presented as averages over regions of interest, which were derived from the contours of the vertebrae. Reproducibility measures related to repeated measurements on different days, slice position, and contour drawing were calculated. The mean fat fraction was 0.37 (SD 0.08). The SD due to repeated measurement was small (sigmaR = 0.013-0.032), almost all of which can be explained by slice-(re)-positioning errors. When used to evaluate the same person longitudinally in time, Dixon QCSI fat-fraction measurement has an excellent reproducibility. It is a powerful noninvasive tool in the evaluation of bone marrow composition.

  16. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  17. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  18. Complete genome sequence for the shellfish pathogen Vibrio coralliilyticus RE98 isolated from a shellfish hatchery

    USDA-ARS?s Scientific Manuscript database

    Vibrio coralliilyticus is a pathogen of corals and larval shellfish. Publications on strain RE98 list it as a Vibrio tubiashii; however, whole genome sequencing confirms RE98 as V. coralliilyticus containing a total of 6,037,824 bp consisting of two chromosomes (3,420,228 and 1,917,482 bp), and two...

  19. Analysis of sequence repeats of proteins in the PDB.

    PubMed

    Mary Rajathei, David; Selvaraj, Samuel

    2013-12-01

    Internal repeats in protein sequences play a significant role in the evolution of protein structure and function. Applications of different bioinformatics tools help in the identification and characterization of these repeats. In the present study, we analyzed sequence repeats in a non-redundant set of proteins available in the Protein Data Bank (PDB). We used RADAR for detecting internal repeats in a protein, PDBeFOLD for assessing structural similarity, PDBsum for finding functional involvement and Pfam for domain assignment of the repeats in a protein. Through the analysis of sequence repeats, we found that identity of the sequence repeats falls in the range of 20-40% and, the superimposed structures of the most of the sequence repeats maintain similar overall folding. Analysis sequence repeats at the functional level reveals that most of the sequence repeats are involved in the function of the protein through functionally involved residues in the repeat regions. We also found that sequence repeats in single and two domain proteins often contained conserved sequence motifs for the function of the domain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A fast method for searching for repeating earthquakes, applied to the northern San Francisco Bay area

    NASA Astrophysics Data System (ADS)

    Shakibay Senobari, N.; Funning, G.

    2016-12-01

    Repeating earthquakes (REs) are the regular or semi-regular failures of the same patch on a fault, producing near-identical waveforms at a given station. Sequences of REs are commonly interpreted as slip on small locked patches surrounded by large areas of fault that are creeping (Nadeau and McEvilly, 1999). Detecting them, therefore, places important constraints on the extent of fault creep at depth. In addition, the magnitude and recurrence interval of these RE sequences can be related to the creep rate and used as constraints on slip models. In this study we search for REs in northern California fault systems upon which creep is suspected, but not well constrained, including the Rodgers Creek, Maacama, Bartlett Springs, Concord-Green Valley, West Napa and Greenville faults, targeting events recorded at stations where the instrument was not changed for 10 years or more. A pair of events can be identified as REs based on a high cross-correlation coefficient (CCC) between their waveforms. Thus a fundamental step in RE searches is calculating the CCC for all event waveform pairs recorded at common stations. This becomes computationally expensive for large data sets. To expedite our search, we use a fast and accurate similarity search algorithm developed by the computer science community (Mueen et al., 2015; Zhu et al., 2016). Our initial tests on a data set including 1500 waveforms suggest it is around 40 times faster than the algorithm that we used previously (Shakibay Senobari and Funning, AGU Fall Meeting 2014). We search for event pairs with CCC>0.85 and cluster them based on their similarity. A second, location based filter, based on the differential S-P times for each event pair at 5 or more stations, is used as an independent check. We consider a cluster of events a RE sequence if the source location separation distance for each pair is less than the estimated circular size of the source (e.g. Chen et al., 2008); these are gathered into an RE catalogue. In future, we plan to use this information in combination with geodetic data to produce a robust creep distribution model for all of the faults in this region.

  1. Comparative Chloroplast Genomics of Gossypium Species: Insights Into Repeat Sequence Variations and Phylogeny

    PubMed Central

    Wu, Ying; Liu, Fang; Yang, Dai-Gang; Li, Wei; Zhou, Xiao-Jian; Pei, Xiao-Yu; Liu, Yan-Gai; He, Kun-Lun; Zhang, Wen-Sheng; Ren, Zhong-Ying; Zhou, Ke-Hai; Ma, Xiong-Feng; Li, Zhong-Hu

    2018-01-01

    Cotton is one of the most economically important fiber crop plants worldwide. The genus Gossypium contains a single allotetraploid group (AD) and eight diploid genome groups (A–G and K). However, the evolution of repeat sequences in the chloroplast genomes and the phylogenetic relationships of Gossypium species are unclear. Thus, we determined the variations in the repeat sequences and the evolutionary relationships of 40 cotton chloroplast genomes, which represented the most diverse in the genus, including five newly sequenced diploid species, i.e., G. nandewarense (C1-n), G. armourianum (D2-1), G. lobatum (D7), G. trilobum (D8), and G. schwendimanii (D11), and an important semi-wild race of upland cotton, G. hirsutum race latifolium (AD1). The genome structure, gene order, and GC content of cotton species were similar to those of other higher plant plastid genomes. In total, 2860 long sequence repeats (>10 bp in length) were identified, where the F-genome species had the largest number of repeats (G. longicalyx F1: 108) and E-genome species had the lowest (G. stocksii E1: 53). Large-scale repeat sequences possibly enrich the genetic information and maintain genome stability in cotton species. We also identified 10 divergence hotspot regions, i.e., rpl33-rps18, psbZ-trnG (GCC), rps4-trnT (UGU), trnL (UAG)-rpl32, trnE (UUC)-trnT (GGU), atpE, ndhI, rps2, ycf1, and ndhF, which could be useful molecular genetic markers for future population genetics and phylogenetic studies. Site-specific selection analysis showed that some of the coding sites of 10 chloroplast genes (atpB, atpE, rps2, rps3, petB, petD, ccsA, cemA, ycf1, and rbcL) were under protein sequence evolution. Phylogenetic analysis based on the whole plastomes suggested that the Gossypium species grouped into six previously identified genetic clades. Interestingly, all 13 D-genome species clustered into a strong monophyletic clade. Unexpectedly, the cotton species with C, G, and K-genomes were admixed and nested in a large clade, which could have been due to their recent radiation, incomplete lineage sorting, and introgression hybridization among different cotton lineages. In conclusion, the results of this study provide new insights into the evolution of repeat sequences in chloroplast genomes and interspecific relationships in the genus Gossypium. PMID:29619041

  2. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes

    PubMed Central

    Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M.S.; Reddel, Roger R.; Pickett, Hilda A.

    2014-01-01

    Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres. PMID:24225324

  3. Pulmonary retransplantation in the Nordic countries.

    PubMed

    Lindstedt, Sandra; Dellgren, Göran; Iversen, Martin; Riise, Gerdt C; Bjørtuft, Øystein; Hämmäinen, Pekka; Skog, Ingrid; Fiane, Arnt; Wierup, Per

    2015-05-01

    The increasing demand for pulmonary retransplantation (re-LTx) raises ethical issues on the correct allocation of the scarce donor pool. Thus, we performed a thorough review of the current results for re-LTx in the Nordic countries. Seventy-five patients with a median age of 50 years (range, 22 to 64 years) underwent re-LTx from 1992 until June 2013, of which 53 had single re-LTx, 21 had double re-LTx, and 1 patient underwent a heart-lung retransplantation. Primary graft dysfunction (PGD) was the primary indication in 9 cases, bronchiolitis obliterans syndrome (BOS) in 62 cases, and airway complications in 4 cases. Patients who underwent re-LTx in the period 1992 to 1999 (n = 16) had a 1-year survival of 37.5% (95% confidence interval [CI], 19.9 to 70.6), whereas patients who underwent re-LTx in the period 2000 to 2013 (n = 64) had a 1-year survival of 81.0% (95% CI, 71.5 to 91.8). Corresponding 5-year survival was 25.0% (95% CI, 10.7 to 58.4) in the early era group (1992 to 1999) and 57.2% (95% CI, 44.3 to 73.7) in the more recent era group (2000 to 2013; p = 0.0151). Patients with BOS who underwent re-LTx in the period 1992 to 1999 (n = 13) had a 1-year survival of 38.5% (95% CI, 19.3 to 76.5), whereas patients with BOS who underwent re-LTx in the period 2000 to 2013 (n = 49) had a 1-year survival of 85.4% (95% CI, 75.9 to 96.0). Corresponding 5-year survival was 23.1% (95% CI, 8.6 to 62.3) in the early era group (1992 to 1999) and 56.1% (95% CI, 41.9 to 75.2) in the more recent era group (2000 to 2013; p = 0.0199). The cumulative incidence among patients who underwent re-LTx because of BOS and developed BOS again after re-LTX was analyzed. The cumulative incidence curves for time periods 1992 to 1999 and 2000 to 2013 are not statistically different for repeat BOS (p = 0.5087), but they are highly significant for time periods among patients who died (p = 0.02381). Results for re-LTx have improved over time, especially when BOS is the primary indication. The cumulative incidence among patients who underwent re-LTx because of BOS and developed repeat BOS after re-LTX showed equal risk between 1992 to 1999 and 2000 to 2013 in the aspect of developing repeat BOS, but in the later era the patients had a significantly higher chance of surviving. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes

    PubMed Central

    2011-01-01

    Background We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. Results The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. Conclusions BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies. PMID:21496274

  5. Implementation of an image sharing system significantly reduced repeat computed tomographic imaging in a regional trauma system.

    PubMed

    Banerjee, Aman; Zosa, Brenda M; Allen, Debra; Wilczewski, Patricia A; Ferguson, Robert; Claridge, Jeffrey A

    2016-01-01

    The practice of repeating computed tomography (re-CT) is common among trauma patients transferred between hospitals incurring additional cost and radiation exposure. This study sought to evaluate the effectiveness of implementing modern cloud-based technology (lifeIMAGE) across a regional trauma system to reduce the incidence of re-CT imaging. This is a prospective interventional study to evaluate outcomes after implementation of lifeIMAGE in January 2012. Key outcomes were rates of CT imaging, including the rates and costs of re-CT from January 2009 through December 2012. There were 1,081 trauma patients transferred from participating hospitals during the study period (657 patients before and 425 patients after implementation), with the overall re-CT rate of 20.5%. Rates of any CT imaging at referring hospitals decreased (62% vs. 55%, p < 0.05) and also decreased at the accepting regional Level I center (58% vs. 52%, p < 0.05) following system implementation. There were 639 patients (59%) who had CT imaging performed before transfer (404 patients before and 235 patients after implementation). Of these patients, the overall re-CT rate decreased from 38.4% to 28.1% (p = 0.01). Rates of re-CT of the head (21% vs. 11%, p = 0.002), chest (7% vs. 3%, p = 0.05), as well as abdomen and pelvis (12% vs. 5%, p = 0.007) were significantly reduced following system implementation. The cost of repeat imaging per patient was significantly lower following system implementation (mean charges, $1,046 vs. $589; p < 0.001). These results were more pronounced in a subgroup of patients with an Injury Severity Score (ISS) of greater than 14, with a reduction in overall re-CT rate from 51% to 30% (p = 0.03). The implementation of modern cloud-based technology across the regional trauma system resulted in significant reductions in re-CT imaging and cost. Therapeutic/care management study, level IV; economic analysis, level IV.

  6. Stability of Tandem Repeats in the Drosophila Melanogaster HSR-Omega Nuclear RNA

    PubMed Central

    Hogan, N. C.; Slot, F.; Traverse, K. L.; Garbe, J. C.; Bendena, W. G.; Pardue, M. L.

    1995-01-01

    The Drosophila melanogaster Hsr-omega locus produces a nuclear RNA containing >5 kb of tandem repeat sequences. These repeats are unique to Hsr-omega and show concerted evolution similar to that seen with classical satellite DNAs. In D. melanogaster the monomer is ~280 bp. Sequences of 191/2 monomers differ by 8 +/- 5% (mean +/- SD), when all pairwise comparisons are considered. Differences are single nucleotide substitutions and 1-3 nucleotide deletions/insertions. Changes appear to be randomly distributed over the repeat unit. Outer repeats do not show the decrease in monomer homogeneity that might be expected if homogeneity is maintained by recombination. However, just outside the last complete repeat at each end, there are a few fragments of sequence similar to the monomer. The sequences in these flanking regions are not those predicted for sequences decaying in the absence of recombination. Instead, the fragmentation of the sequence homology suggests that flanking regions have undergone more severe disruptions, possibly during an insertion or amplification event. Hsr-omega alleles differing in the number of repeats are detected and appear to be stable over a few thousand generations; however, both increases and decreases in repeat numbers have been observed. The new alleles appear to be as stable as their predecessors. No alleles of less than ~5 kb nor more than ~16 kb of repeats were seen in any stocks examined. The evidence that there is a limit on the minimum number of repeats is consistent with the suggestion that these repeats are important in the function of the unusual Hsr-omega nuclear RNA. PMID:7540581

  7. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Höllt, Volker; Grecksch, Gisela

    2014-06-01

    A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling. © The Author(s) 2014.

  8. Seismic and Aseismic Behavior of the Altotiberina Low-angle Normal Fault System (Northern Apennines, Italy) through High-resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.

    2017-12-01

    Low-angle normal faults (dip < 30°) are geologically widely documented and considered responsible for accommodating the crustal extension within the brittle crust although their mechanical behavior and seismogenic potential is enigmatic. We study the anatomy and slip-behavior of the actively slipping Altotiberina low-angle (ATF) normal fault system using a high-resolution 5-years-long (2010-2014) earthquake catalogue composed of 37k events (ML<3.9 and completeness magnitude MC=0.5 ML), recorded by a dense permanent seismic network of the Altotiberina Near Fault Observatory (TABOO). The seismic activity defines the fault system dominated at depth by the low-angle ATF surface (15-20°) coinciding to the ATF geometry imaged through seismic reflection data. The ATF extends for 50km along-strike and between 4-5 to 16km of depth. Seismicity also images the geometry of a set of higher angle faults (35-50°) located in the ATF hanging-wall (HW). The ATF-related seismicity accounts for 10% of the whole seismicity (3,700 events with ML<2.4), occurring at a remarkably constant rate of 2.2 events/day. This seismicity describes an about 1.5-km-thick fault zone composed by multiple sub-parallel slipping planes. The remaining events are instead organized in multiple mainshocks (MW>3) seismic sequences lasting from weeks to months, activating a contiguous network of 3-5-km-long syn- and antithetic fault segments within the ATF-HW. The space-time evolution of these minor sequences is consistent with subsequence failures promoted by fluid flow. The ATF-seismicity pattern includes 97 clusters of repeating events (RE) made of 299 events with ML<1.9. RE are located around locked patches identified by geodetic modeling, suggesting a mixed-mode (stick-slip and stable-sliding) slip-behavior along the fault plane in accommodating most of the NE-trending tectonic deformation with creeping dominating below 5 km depth. Consistently, the seismic moment released by the ATF-seismicity accounts for a small portion (30%) of the geodetic one. The rate of occurrence of RE, mostly composed by doublets with short inter-event time (e.g. hours), appears to modulate the seismic release of the ATF-HW, suggesting that creeping may drive the strain partitioning of the system.

  9. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    PubMed

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R.

  10. Repeating aftershocks of the great 2004 Sumatra and 2005 Nias earthquakes

    NASA Astrophysics Data System (ADS)

    Yu, Wen-che; Song, Teh-Ru Alex; Silver, Paul G.

    2013-05-01

    We investigate repeating aftershocks associated with the great 2004 Sumatra-Andaman (Mw 9.2) and 2005 Nias-Simeulue (Mw 8.6) earthquakes by cross-correlating waveforms recorded by the regional seismographic station PSI and teleseismic stations. We identify 10 and 18 correlated aftershock sequences associated with the great 2004 Sumatra and 2005 Nias earthquakes, respectively. The majority of the correlated aftershock sequences are located near the down-dip end of a large afterslip patch. We determine the precise relative locations of event pairs among these sequences and estimate the source rupture areas. The correlated event pairs identified are appropriately referred to as repeating aftershocks, in that the source rupture areas are comparable and significantly overlap within a sequence. We use the repeating aftershocks to estimate afterslip based on the slip-seismic moment scaling relationship and to infer the temporal decay rate of the recurrence interval. The estimated afterslip resembles that measured from the near-field geodetic data to the first order. The decay rate of repeating aftershocks as a function of lapse time t follows a power-law decay 1/tp with the exponent p in the range 0.8-1.1. Both types of observations indicate that repeating aftershocks are governed by post-seismic afterslip.

  11. A novel tandem repeat sequence located on human chromosome 4p: isolation and characterization.

    PubMed

    Kogi, M; Fukushige, S; Lefevre, C; Hadano, S; Ikeda, J E

    1997-06-01

    In an effort to analyze the genomic region of the distal half of human chromosome 4p, to where Huntington disease and other diseases have been mapped, we have isolated the cosmid clone (CRS447) that was likely to contain a region with specific repeat sequences. Clone CRS447 was subjected to detailed analysis, including chromosome mapping, restriction mapping, and DNA sequencing. Chromosome mapping by both a human-CHO hybrid cell panel and FISH revealed that CRS447 was predominantly located in the 4p15.1-15.3 region. CRS447 was shown to consist of tandem repeats of 4.7-kb units present on chromosome 4p. A single EcoRI unit was subcloned (pRS447), and the complete sequence was determined as 4752 nucleotides. When pRS447 was used as a probe, the number of copies of this repeat per haploid genome was estimated to be 50-70. Sequence analysis revealed that it contained two internal CA repeats and one putative ORF. Database search established that this sequence was unreported. However, two homologous STS markers were found in the database. We concluded that CRS447/pRS447 is a novel tandem repeat sequence that is mainly specific to human chromosome 4p.

  12. Spatio-temporal Variations of Characteristic Repeating Earthquake Sequences along the Middle America Trench in Mexico

    NASA Astrophysics Data System (ADS)

    Dominguez, L. A.; Taira, T.; Hjorleifsdottir, V.; Santoyo, M. A.

    2015-12-01

    Repeating earthquake sequences are sets of events that are thought to rupture the same area on the plate interface and thus provide nearly identical waveforms. We systematically analyzed seismic records from 2001 through 2014 to identify repeating earthquakes with highly correlated waveforms occurring along the subduction zone of the Cocos plate. Using the correlation coefficient (cc) and spectral coherency (coh) of the vertical components as selection criteria, we found a set of 214 sequences whose waveforms exceed cc≥95% and coh≥95%. Spatial clustering along the trench shows large variations in repeating earthquakes activity. Particularly, the rupture zone of the M8.1, 1985 earthquake shows an almost absence of characteristic repeating earthquakes, whereas the Guerrero Gap zone and the segment of the trench close to the Guerrero-Oaxaca border shows a significantly larger number of repeating earthquakes sequences. Furthermore, temporal variations associated to stress changes due to major shows episodes of unlocking and healing of the interface. Understanding the different components that control the location and recurrence time of characteristic repeating sequences is a key factor to pinpoint areas where large megathrust earthquakes may nucleate and consequently to improve the seismic hazard assessment.

  13. Assessing the performance of the Oxford Nanopore Technologies MinION

    PubMed Central

    Laver, T.; Harrison, J.; O’Neill, P.A.; Moore, K.; Farbos, A.; Paszkiewicz, K.; Studholme, D.J.

    2015-01-01

    The Oxford Nanopore Technologies (ONT) MinION is a new sequencing technology that potentially offers read lengths of tens of kilobases (kb) limited only by the length of DNA molecules presented to it. The device has a low capital cost, is by far the most portable DNA sequencer available, and can produce data in real-time. It has numerous prospective applications including improving genome sequence assemblies and resolution of repeat-rich regions. Before such a technology is widely adopted, it is important to assess its performance and limitations in respect of throughput and accuracy. In this study we assessed the performance of the MinION by re-sequencing three bacterial genomes, with very different nucleotide compositions ranging from 28.6% to 70.7%; the high G + C strain was underrepresented in the sequencing reads. We estimate the error rate of the MinION (after base calling) to be 38.2%. Mean and median read lengths were 2 kb and 1 kb respectively, while the longest single read was 98 kb. The whole length of a 5 kb rRNA operon was covered by a single read. As the first nanopore-based single molecule sequencer available to researchers, the MinION is an exciting prospect; however, the current error rate limits its ability to compete with existing sequencing technologies, though we do show that MinION sequence reads can enhance contiguity of de novo assembly when used in conjunction with Illumina MiSeq data. PMID:26753127

  14. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    PubMed

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  15. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution.

    PubMed

    Bolzán, Alejandro D

    2017-07-01

    By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting.

    PubMed

    Sutton, Lesley-Ann; Ljungström, Viktor; Mansouri, Larry; Young, Emma; Cortese, Diego; Navrkalova, Veronika; Malcikova, Jitka; Muggen, Alice F; Trbusek, Martin; Panagiotidis, Panagiotis; Davi, Frederic; Belessi, Chrysoula; Langerak, Anton W; Ghia, Paolo; Pospisilova, Sarka; Stamatopoulos, Kostas; Rosenquist, Richard

    2015-03-01

    Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing. Copyright© Ferrata Storti Foundation.

  17. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.

    PubMed

    Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.

  18. A TALE-inspired computational screen for proteins that contain approximate tandem repeats

    PubMed Central

    Krwawicz, Joanna

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832

  19. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.

    PubMed

    Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R

    2004-07-01

    The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.

  20. Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus.

    PubMed

    Rajagopal, J; Das, S; Khurana, D K; Srivastava, P S; Lakshmikumaran, M

    1999-10-01

    This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.

  1. Two new miniature inverted-repeat transposable elements in the genome of the clam Donax trunculus.

    PubMed

    Šatović, Eva; Plohl, Miroslav

    2017-10-01

    Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.

  2. Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in a urease-positive thermophilic Campylobacter sp. (UPTC).

    PubMed

    Tasaki, E; Hirayama, J; Tazumi, A; Hayashi, K; Hara, Y; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-02-01

    Novel clustered regularly-interspaced short palindromic repeats (CRISPRs) locus [7,500 base pairs (bp) in length] occurred in the urease-positive thermophilic Campylobacter (UPTC) Japanese isolate, CF89-12. The 7,500 bp gene loci consisted of the 5'-methylaminomethyl-2-thiouridylate methyltransferase gene, putative (P) CRISPR associated (p-Cas), putative open reading frames, Cas1 and Cas2, leader sequence region (146 bp), 12 CRISPRs consensus sequence repeats (each 36 bp) separated by a non-repetitive unique spacer region of similar length (26-31 bp) and the phosphatidyl glycerophosphatase A gene. When the CRISPRs loci in the UPTC CF89-12 and five C. jejuni isolates were compared with one another, these six isolates contained p-Cas, Cas1 and Cas2 within the loci. Four to 12 CRISPRs consensus sequence repeats separated by a non-repetitive unique spacer region occurred in six isolates and the nucleotide sequences of those repeats gave approximately 92-100% similarity with each other. However, no sequence similarity occurred in the unique spacer regions among these isolates. The putative σ(70) transcriptional promoter and the hypothetical ρ-independent terminator structures for the CRISPRs and Cas were detected. No in vivo transcription of p-Cas, Cas1 and Cas2 was confirmed in the UPTC cells.

  3. Genetic characterization of the UCS and Kex1 loci of Pneumocystis jirovecii.

    PubMed

    Esteves, F; Tavares, A; Costa, M C; Gaspar, J; Antunes, F; Matos, O

    2009-02-01

    Nucleotide variation in the Pneumocystis jirovecii upstream conserved sequence (UCS) and kexin-like serine protease (Kex1) loci was studied in pulmonary specimens from Portuguese HIV-positive patients. DNA was extracted and used for specific molecular sequence analysis. The number of UCS tandem repeats detected in 13 successfully sequenced isolates ranged from three (9 isolates, 69%) to four (4 isolates, 31%). A novel tandem repeat pattern and two novel polymorphisms were detected in the UCS region. For the Kex1 gene, the wild-type (24 isolates, 86%) was the most frequent sequence detected among the 28 sequenced isolates. Nevertheless, a nonsynonymous (1 isolate, 3%) and three synonymous (3 isolates, 11%) polymorphisms were detected and are described here for the first time.

  4. ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences

    PubMed Central

    Danilowicz, Claudia; Hermans, Laura; Coljee, Vincent; Prévost, Chantal

    2017-01-01

    Abstract During DNA recombination and repair, RecA family proteins must promote rapid joining of homologous DNA. Repeated sequences with >100 base pair lengths occupy more than 1% of bacterial genomes; however, commitment to strand exchange was believed to occur after testing ∼20–30 bp. If that were true, pairings between different copies of long repeated sequences would usually become irreversible. Our experiments reveal that in the presence of ATP hydrolysis even 75 bp sequence-matched strand exchange products remain quite reversible. Experiments also indicate that when ATP hydrolysis is present, flanking heterologous dsDNA regions increase the reversibility of sequence matched strand exchange products with lengths up to ∼75 bp. Results of molecular dynamics simulations provide insight into how ATP hydrolysis destabilizes strand exchange products. These results inspired a model that shows how pairings between long repeated sequences could be efficiently rejected even though most homologous pairings form irreversible products. PMID:28854739

  5. Revisiting the TALE repeat.

    PubMed

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  6. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence.

    PubMed

    Lahr, Roni M; Mack, Seshat M; Héroux, Annie; Blagden, Sarah P; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc; Berman, Andrea J

    2015-09-18

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence

    DOE PAGES

    Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...

    2015-07-22

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less

  8. Repeatless and repeat-based centromeres in potato: implications for centromere evolution.

    PubMed

    Gong, Zhiyun; Wu, Yufeng; Koblízková, Andrea; Torres, Giovana A; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C Robin; Macas, Jirí; Jiang, Jiming

    2012-09-01

    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.

  9. Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W

    PubMed Central

    Gong, Zhiyun; Wu, Yufeng; Koblížková, Andrea; Torres, Giovana A.; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C. Robin; Macas, Jiří; Jiang, Jiming

    2012-01-01

    Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains. PMID:22968715

  10. Characterization and assessment of an avian repetitive DNA sequence as an icterid phylogenetic marker.

    PubMed

    Quinn, J S; Guglich, E; Seutin, G; Lau, R; Marsolais, J; Parna, L; Boag, P T; White, B N

    1992-02-01

    The first tandemly repeated sequence examined in a passerine bird, a 431-bp PstI fragment named pMAT1, has been cloned from the genome of the brown-headed cowbird (Molothrus ater). The sequence represents about 5-10% of the genome (about 4 x 10(5) copies) and yields prominent ethidium bromide stained bands when genomic DNA cut with a variety of restriction enzymes is electrophoresed in agarose gels. A particularly striking ladder of fragments is apparent when the DNA is cut with HinfI, indicative of a tandem arrangement of the monomer. The cloned PstI monomer has been sequenced, revealing no internal repeated structure. There are sequences that hybridize with pMAT1 found in related nine-primaried oscines but not in more distantly related oscines, suboscines, or nonpasserine species. Little sequence similarity to tandemly repeated PstI cut sequences from the merlin (Falco columbarius), saurus crane (Grus antigone), or Puerto Rican parrot (Amazona vittata) or to HinfI digested sequence from the Toulouse goose (Anser anser) was detected. The isolated sequence was used as a probe to examine DNA samples of eight members of the tribe Icterini. This examination revealed phylogenetically informative characters. The repeat contains cutting sites from a number of restriction enzymes, which, if sufficiently polymorphic, would provide new phylogenetic characters. Sequences like these, conserved within a species, but variable between closely related species, may be very useful for phylogenetic studies of closely related taxa.

  11. Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1.

    PubMed

    Franco, Bernardo; González-Cerón, Gabriela; Servín-González, Luis

    2003-11-01

    The functionality of direct and inverted repeat sequences inside the cis acting locus of transfer (clt) of the Streptomyces plasmid pJV1 was determined by testing the effect of different deletions on plasmid transfer. The results show that the single most important element for pJV1 clt function is a series of evenly spaced 9 bp long direct repeats which match the consensus CCGCACA(C/G)(C/G), since their deletion caused a dramatic reduction in plasmid transfer. The presence of these repeats in the absence of any other clt sequences allowed plasmid transfer to occur at a frequency that was at least two orders of magnitude higher than that obtained in the complete absence of clt. A database search revealed regions with a similar organization, and in the same position, in Streptomyces plasmids pSN22 and pSLS, which have transfer proteins homologous to those of pJV1.

  12. [Polymorphic loci and polymorphism analysis of short tandem repeats within XNP gene].

    PubMed

    Liu, Qi-Ji; Gong, Yao-Qin; Guo, Chen-Hong; Chen, Bing-Xi; Li, Jiang-Xia; Guo, Yi-Shou

    2002-01-01

    To select polymorphic short tandem repeat markers within X-linked nuclear protein (XNP) gene, genomic clones which contain XNP gene were recognized by homologous analysis with XNP cDNA. By comparing the cDNA with genomic DNA, non-exonic sequences were identified, and short tandem repeats were selected from non-exonic sequences by using BCM search Launcher. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five short tandem repeats were identified from XNP gene, two of which were polymorphic. Four and 11 alleles were observed in Chinese population for XNPSTR1 and XNPSTR4, respectively. Heterozygosities were 47% for XNPSTR1 and 70% for XNPSTR4. XNPSTR1 and XNPSTR4 localized within 3' end and intron 10, respectively. Two polymorphic short tandem repeats have been identified within XNP gene and will be useful for linkage analysis and gene diagnosis of XNP gene.

  13. Sequence repeats and protein structure

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos

    2012-11-01

    Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.

  14. De novo identification of highly diverged protein repeats by probabilistic consistency.

    PubMed

    Biegert, A; Söding, J

    2008-03-15

    An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID

  15. The central domain of bovine submaxillary mucin consists of over 50 tandem repeats of 329 amino acids. Chromosomal localization of the BSM1 gene and relations to ovine and porcine counterparts.

    PubMed

    Jiang, W; Gupta, D; Gallagher, D; Davis, S; Bhavanandan, V P

    2000-04-01

    We previously elucidated five distinct protein domains (I-V) for bovine submaxillary mucin, which is encoded by two genes, BSM1 and BSM2. Using Southern blot analysis, genomic cloning and sequencing of the BSM1 gene, we now show that the central domain (V) consists of approximately 55 tandem repeats of 329 amino acids and that domains III-V are encoded by a 58.4-kb exon, the largest exon known for all genes to date. The BSM1 gene was mapped by fluorescence in situ hybridization to the proximal half of chromosome 5 at bands q2. 2-q2.3. The amino-acid sequence of six tandem repeats (two full and four partial) were found to have only 92-94% identities. We propose that the variability in the amino-acid sequences of the mucin tandem repeat is important for generating the combinatorial library of saccharides that are necessary for the protective function of mucins. The deduced peptide sequences of the central domain match those determined from the purified bovine submaxillary mucin and also show 68-94% identity to published peptide sequences of ovine submaxillary mucin. This indicates that the core protein of ovine submaxillary mucin is closely related to that of bovine submaxillary mucin and contains similar tandem repeats in the central domain. In contrast, the central domain of porcine submaxillary mucin is reported to consist of 81-amino-acid tandem repeats. However, both bovine submaxillary mucin and porcine submaxillary mucin contain similar N-terminal and C-terminal domains and the corresponding genes are in the conserved linkage regions of the respective genomes.

  16. Microbial Composition and Adaptations in Oligotrophic Inland Seas

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Paver, S.; Anderson, M. R.; Vargas, G.

    2016-02-01

    The Laurentian Great Lakes comprise an interconnected freshwater system with certain areas resembling the oligotrophic open ocean in terms of productivity and nutrient availability. This resemblance creates an opportunity for comparing marine and Great Lake microorganisms to identify signatures of adaptation to low nutrient environments and re-evaluate differences between marine and freshwater microorganisms. We present results from the first comprehensive microbial characterization of all five Great Lakes. We compared community structure, genetic functional potential, and genome properties across the Great Lakes and other aquatic systems. Taxonomic and functional comparisons across lakes yielded three consistent groups: trophically distinct Lake Erie, Lakes Michigan and Huron, and Lakes Superior and Ontario. Lake metagenomic signatures were repeatedly differentiated by the presence of phage sequences and phage-related functional genes. We observed sequence similarity and synteny between contigs assembled from Great Lake metagenomes and genomes of marine organisms, including Nitrosopumilus sp. NF5, Synechococcus sp. RCC307 and Synechococcus phage S-SKS1. Assembly of metagenomic sequences additionally yielded large contigs from poorly characterized taxa. These results begin to fill the gap in our understanding of how nutrients, salinity, and other environmental factors shape microbial structure and function.

  17. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh

    PubMed Central

    Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas

    2009-01-01

    Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species. PMID:19635741

  18. APE1 incision activity at abasic sites in tandem repeat sequences.

    PubMed

    Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M

    2014-05-29

    Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.

  19. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    PubMed Central

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining. PMID:18031571

  20. Molecular basis of length polymorphism in the human zeta-globin gene complex.

    PubMed Central

    Goodbourn, S E; Higgs, D R; Clegg, J B; Weatherall, D J

    1983-01-01

    The length polymorphism between the human zeta-globin gene and its pseudogene is caused by an allele-specific variation in the copy number of a tandemly repeating 36-base-pair sequence. This sequence is related to a tandemly repeated 14-base-pair sequence in the 5' flanking region of the human insulin gene, which is known to cause length polymorphism, and to a repetitive sequence in intervening sequence (IVS) 1 of the pseudo-zeta-globin gene. Evidence is presented that the latter is also of variable length, probably because of differences in the copy number of the tandem repeat. The homology between the three length polymorphisms may be an indication of the presence of a more widespread group of related sequences in the human genome, which might be useful for generalized linkage studies. PMID:6308667

  1. Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice.

    PubMed

    Kolb, Ilya; Talei Franzesi, Giovanni; Wang, Michael; Kodandaramaiah, Suhasa B; Forest, Craig R; Boyden, Edward S; Singer, Annabelle C

    2018-02-14

    Repeated sequences of neural activity are a pervasive feature of neural networks in vivo and in vitro In the hippocampus, sequential firing of many neurons over periods of 100-300 ms reoccurs during behavior and during periods of quiescence. However, it is not known whether the hippocampus produces longer sequences of activity or whether such sequences are restricted to specific network states. Furthermore, whether long repeated patterns of activity are transmitted to single cells downstream is unclear. To answer these questions, we recorded intracellularly from hippocampal CA1 of awake, behaving male mice to examine both subthreshold activity and spiking output in single neurons. In eight of nine recordings, we discovered long (900 ms) reoccurring subthreshold fluctuations or "repeats." Repeats generally were high-amplitude, nonoscillatory events reoccurring with 10 ms precision. Using statistical controls, we determined that repeats occurred more often than would be expected from unstructured network activity (e.g., by chance). Most spikes occurred during a repeat, and when a repeat contained a spike, the spike reoccurred with precision on the order of ≤20 ms, showing that long repeated patterns of subthreshold activity are strongly connected to spike output. Unexpectedly, we found that repeats occurred independently of classic hippocampal network states like theta oscillations or sharp-wave ripples. Together, these results reveal surprisingly long patterns of repeated activity in the hippocampal network that occur nonstochastically, are transmitted to single downstream neurons, and strongly shape their output. This suggests that the timescale of information transmission in the hippocampal network is much longer than previously thought. SIGNIFICANCE STATEMENT We found long (≥900 ms), repeated, subthreshold patterns of activity in CA1 of awake, behaving mice. These repeated patterns ("repeats") occurred more often than expected by chance and with 10 ms precision. Most spikes occurred within repeats and reoccurred with a precision on the order of 20 ms. Surprisingly, there was no correlation between repeat occurrence and classical network states such as theta oscillations and sharp-wave ripples. These results provide strong evidence that long patterns of activity are repeated and transmitted to downstream neurons, suggesting that the hippocampus can generate longer sequences of repeated activity than previously thought. Copyright © 2018 the authors 0270-6474/18/381822-14$15.00/0.

  2. ACCA phosphopeptide recognition by the BRCT repeats of BRCA1.

    PubMed

    Ray, Hind; Moreau, Karen; Dizin, Eva; Callebaut, Isabelle; Venezia, Nicole Dalla

    2006-06-16

    The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.

  3. Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae.

    PubMed

    Oggioni, M R; Claverys, J P

    1999-10-01

    A survey of all Streptococcus pneumoniae GenBank/EMBL DNA sequence entries and of the public domain sequence (representing more than 90% of the genome) of an S. pneumoniae type 4 strain allowed identification of 108 copies of a 107-bp-long highly repeated intergenic element called RUP (for repeat unit of pneumococcus). Several features of the element, revealed in this study, led to the proposal that RUP is an insertion sequence (IS)-derivative that could still be mobile. Among these features are: (1) a highly significant homology between the terminal inverted repeats (IRs) of RUPs and of IS630-Spn1, a new putative IS of S. pneumoniae; and (2) insertion at a TA dinucleotide, a characteristic target of several members of the IS630 family. Trans-mobilization of RUP is therefore proposed to be mediated by the transposase of IS630-Spn1. To account for the observation that RUPs are distributed among four subtypes which exhibit different degrees of sequence homogeneity, a scenario is invoked based on successive stages of RUP mobility and non-mobility, depending on whether an active transposase is present or absent. In the latter situation, an active transposase could be reintroduced into the species through natural transformation. Examination of sequences flanking RUP revealed a preferential association with ISs. It also provided evidence that RUPs promote sequence rearrangements, thereby contributing to genome flexibility. The possibility that RUP preferentially targets transforming DNA of foreign origin and subsequently favours disruption/rearrangement of exogenous sequences is discussed.

  4. Stable CoT-1 repeat RNA is abundant and associated with euchromatic interphase chromosomes

    PubMed Central

    Hall, Lisa L.; Carone, Dawn M.; Gomez, Alvin; Kolpa, Heather J.; Byron, Meg; Mehta, Nitish; Fackelmayer, Frank O.; Lawrence, Jeanne B.

    2014-01-01

    SUMMARY Recent studies recognize a vast diversity of non-coding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using CoT-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (“CoT-1 RNA”), including LINE-1. CoT-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis, and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The CoT-1 RNA territory resists mechanical disruption and fractionates with the non-chromatin scaffold, but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. CoT-1 RNA has several properties similar to XIST chromosomal RNA, but is excluded from chromatin condensed by XIST. These findings impact two “black boxes” of genome science: the poorly understood diversity of non-coding RNA and the unexplained abundance of repetitive elements. PMID:24581492

  5. Development of expressed sequence tag-simple sequence repeat markers for genetic characterization and population structure analysis of Praxelis clematidea (Asteraceae).

    PubMed

    Wang, Q Z; Huang, M; Downie, S R; Chen, Z X

    2016-05-23

    Invasive plants tend to spread aggressively in new habitats and an understanding of their genetic diversity and population structure is useful for their management. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed for the invasive plant species Praxelis clematidea (Asteraceae) from 5548 Stevia rebaudiana (Asteraceae) expressed sequence tags (ESTs). A total of 133 microsatellite-containing ESTs (2.4%) were identified, of which 56 (42.1%) were hexanucleotide repeat motifs and 50 (37.6%) were trinucleotide repeat motifs. Of the 24 primer pairs designed from these 133 ESTs, 7 (29.2%) resulted in significant polymorphisms. The number of alleles per locus ranged from 5 to 9. The relatively high genetic diversity (H = 0.2667, I = 0.4212, and P = 100%) of P. clematidea was related to high gene flow (Nm = 1.4996) among populations. The coefficient of population differentiation (GST = 0.2500) indicated that most genetic variation occurred within populations. A Mantel test suggested that there was significant correlation between genetic distance and geographical distribution (r = 0.3192, P = 0.012). These results further support the transferability of EST-SSR markers between closely related genera of the same family.

  6. [Detection of CRISPR and its relationship to drug resistance in Shigella].

    PubMed

    Wang, Linlin; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Guo, Xiangjiao; Wang, Pengfei; Xi, Yuanlin; Yang, Haiyan

    2015-04-04

    To detect clustered regularly interspaced short palindromic repeats (CRISPR) in Shigella, and to analyze its relationship to drug resistance. Four pairs of primers were used for the detection of convincing CRISPR structures CRISPR-S2 and CRISPR-S4, questionable CRISPR structures CRISPR-S1 and CRISPR-S3 in 60 Shigella strains. All primers were designed using sequences in CRISPR database. CRISPR Finder was used to analyze CRISPR and susceptibilities of Shigella strains were tested by agar diffusion method. Furthermore, we analyzed the relationship between drug resistance and CRISPR-S4. The positive rate of convincing CRISPR structures was 95%. The four CRISPR loci formed 12 spectral patterns (A-L), all of which contained convincing CRISPR structures except type K. We found one new repeat and 12 new spacers. The multi-drug resistance rate was 53. 33% . We found no significant difference between CRISPR-S4 and drug resistant. However, the repeat sequence of CRISPR-S4 in multi- or TE-resistance strains was mainly R4.1 with AC deletions in the 3' end, and the spacer sequences of CRISPR-S4 in multi-drug resistance strains were mainly Sp5.1, Sp6.1 and Sp7. CRISPR was common in Shigella. Variations df repeat sequences and diversities of spacer sequences might be related to drug resistance in Shigella.

  7. Survival benefit of repeat liver transplantation in the United States: a serial MELD analysis by hepatitis C status and donor risk index.

    PubMed

    Biggins, S W; Gralla, J; Dodge, J L; Bambha, K M; Tong, S; Barón, A E; Inadomi, J; Terrault, N; Rosen, H R

    2014-11-01

    Survival benefit (SB) for first liver transplantation (LT) is favorable at Model for End-Stage Liver Disease (MELD)≥15. Herein, we identify the MELD threshold for SB from repeat liver transplantation (ReLT) by recipient hepatitis C virus (HCV) status and donor risk index (DRI). We analyzed lab MELD scores in new United Network for Organ Sharing registrants for ReLT from March 2002 to January 2010. Risk of ReLT graft failure≤1 year versus waitlist mortality was calculated using Cox regression, adjusting for recipient characteristics. Of 3057 ReLT candidates, 54% had HCV and 606 died while listed. There were 1985 ReLT recipients, 52% had HCV and 567 ReLT graft failures by 1 year. Unadjusted waitlist mortality and post-ReLT graft failure rates were 416 (95% confidence interval [CI] 384-450) and 375 (95% CI 345-407) per 1000 patient-years, respectively. Waitlist mortality was higher with increasing waitlist MELD (p<0.001). The MELD for SB from ReLT overall was 21 (21 in non-HCV and 24 in HCV patients). MELD for SB varied by DRI in HCV patients (MELD 21, 24 and 27 for low, medium and high DRI, respectively) but did not vary for non-HCV patients. Compared to first LT, ReLT requires a higher MELD threshold to achieve an SB resulting in a narrower therapeutic window to optimize the utility of scarce liver grafts. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. Molecular architecture of classical cytological landmarks: Centromeres and telomeres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyne, J.

    1994-11-01

    Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library ismore » screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.« less

  9. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus

    PubMed Central

    Wei, Yunzhou; Chesne, Megan T.; Terns, Rebecca M.; Terns, Michael P.

    2015-01-01

    CRISPR-Cas systems are RNA-based immune systems that protect prokaryotes from invaders such as phages and plasmids. In adaptation, the initial phase of the immune response, short foreign DNA fragments are captured and integrated into host CRISPR loci to provide heritable defense against encountered foreign nucleic acids. Each CRISPR contains a ∼100–500 bp leader element that typically includes a transcription promoter, followed by an array of captured ∼35 bp sequences (spacers) sandwiched between copies of an identical ∼35 bp direct repeat sequence. New spacers are added immediately downstream of the leader. Here, we have analyzed adaptation to phage infection in Streptococcus thermophilus at the CRISPR1 locus to identify cis-acting elements essential for the process. We show that the leader and a single repeat of the CRISPR locus are sufficient for adaptation in this system. Moreover, we identified a leader sequence element capable of stimulating adaptation at a dormant repeat. We found that sequences within 10 bp of the site of integration, in both the leader and repeat of the CRISPR, are required for the process. Our results indicate that information at the CRISPR leader-repeat junction is critical for adaptation in this Type II-A system and likely other CRISPR-Cas systems. PMID:25589547

  10. Comparative Analysis of Sequential Proximal Optimizing Technique Versus Kissing Balloon Inflation Technique in Provisional Bifurcation Stenting: Fractal Coronary Bifurcation Bench Test.

    PubMed

    Finet, Gérard; Derimay, François; Motreff, Pascal; Guerin, Patrice; Pilet, Paul; Ohayon, Jacques; Darremont, Olivier; Rioufol, Gilles

    2015-08-24

    This study used a fractal bifurcation bench model to compare 6 optimization sequences for coronary bifurcation provisional stenting, including 1 novel sequence without kissing balloon inflation (KBI), comprising initial proximal optimizing technique (POT) + side-branch inflation (SBI) + final POT, called "re-POT." In provisional bifurcation stenting, KBI fails to improve the rate of major adverse cardiac events. Proximal geometric deformation increases the rate of in-stent restenosis and target lesion revascularization. A bifurcation bench model was used to compare KBI alone, KBI after POT, KBI with asymmetric inflation pressure after POT, and 2 sequences without KBI: initial POT plus SBI, and initial POT plus SBI with final POT (called "re-POT"). For each protocol, 5 stents were tested using 2 different drug-eluting stent designs: that is, a total of 60 tests. Compared with the classic KBI-only sequence and those associating POT with modified KBI, the re-POT sequence gave significantly (p < 0.05) better geometric results: it reduced SB ostium stent-strut obstruction from 23.2 ± 6.0% to 5.6 ± 8.3%, provided perfect proximal stent apposition with almost perfect circularity (ellipticity index reduced from 1.23 ± 0.02 to 1.04 ± 0.01), reduced proximal area overstretch from 24.2 ± 7.6% to 8.0 ± 0.4%, and reduced global strut malapposition from 40 ± 6.2% to 2.6 ± 1.4%. In comparison with 5 other techniques, the re-POT sequence significantly optimized the final result of provisional coronary bifurcation stenting, maintaining circular geometry while significantly reducing SB ostium strut obstruction and global strut malapposition. These experimental findings confirm that provisional stenting may be optimized more effectively without KBI using re-POT. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153.

    PubMed

    Milles, Sigrid; Lemke, Edward A

    2011-10-05

    Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (R(E)) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (R(E)/R(E,RC) = 0.99 ± 0.15 with R(E,RC) corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (R(E)/R(E,RC) = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.).

    PubMed

    Mascagni, Flavia; Giordani, Tommaso; Ceccarelli, Marilena; Cavallini, Andrea; Natali, Lucia

    2017-08-18

    Genome divergence by mobile elements activity and recombination is a continuous process that plays a key role in the evolution of species. Nevertheless, knowledge on retrotransposon-related variability among species belonging to the same genus is still limited. Considering the importance of the genus Helianthus, a model system for studying the ecological genetics of speciation and adaptation, we performed a comparative analysis of the repetitive genome fraction across ten species and one subspecies of sunflower, focusing on long terminal repeat retrotransposons at superfamily, lineage and sublineage levels. After determining the relative genome size of each species, genomic DNA was isolated and subjected to Illumina sequencing. Then, different assembling and clustering approaches allowed exploring the repetitive component of all genomes. On average, repetitive DNA in Helianthus species represented more than 75% of the genome, being composed mostly by long terminal repeat retrotransposons. Also, the prevalence of Gypsy over Copia superfamily was observed and, among lineages, Chromovirus was by far the most represented. Although nearly all the same sublineages are present in all species, we found considerable variability in the abundance of diverse retrotransposon lineages and sublineages, especially between annual and perennial species. This large variability should indicate that different events of amplification or loss related to these elements occurred following species separation and should have been involved in species differentiation. Our data allowed us inferring on the extent of interspecific repetitive DNA variation related to LTR-RE abundance, investigating the relationship between changes of LTR-RE abundance and the evolution of the genus, and determining the degree of coevolution of different LTR-RE lineages or sublineages between and within species. Moreover, the data suggested that LTR-RE abundance in a species was affected by the annual or perennial habit of that species.

  13. Comparison of simple sequence repeats in 19 Archaea.

    PubMed

    Trivedi, S

    2006-12-05

    All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome.

  14. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing.

    PubMed

    Hribová, Eva; Neumann, Pavel; Matsumoto, Takashi; Roux, Nicolas; Macas, Jirí; Dolezel, Jaroslav

    2010-09-16

    Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic diversity studies and in marker-assisted selection.

  15. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing

    PubMed Central

    2010-01-01

    Background Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. Results In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. Conclusion A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic diversity studies and in marker-assisted selection. PMID:20846365

  16. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes.

    PubMed

    Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A

    2011-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.

  17. Association of coral algal symbionts with a diverse viral community responsive to heat shock.

    PubMed

    Brüwer, Jan D; Agrawal, Shobhit; Liew, Yi Jin; Aranda, Manuel; Voolstra, Christian R

    2017-08-17

    Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin. Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host's antiviral response. Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.

  18. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex

    PubMed Central

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  19. Identification and Analysis of Novel Amino-Acid Sequence Repeats in Bacillus anthracis str. Ames Proteome Using Computational Tools

    PubMed Central

    Hemalatha, G. R.; Rao, D. Satyanarayana; Guruprasad, L.

    2007-01-01

    We have identified four repeats and ten domains that are novel in proteins encoded by the Bacillus anthracis str. Ames proteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure. PMID:17538688

  20. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum)

    PubMed Central

    Cho, Kwang-Soo; Yun, Bong-Kyoung; Yoon, Young-Ho; Hong, Su-Young; Mekapogu, Manjulatha; Kim, Kyung-Hee; Yang, Tae-Jin

    2015-01-01

    We report the chloroplast (cp) genome sequence of tartary buckwheat (Fagopyrum tataricum) obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale) cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp) were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats) and F. esculentum (one repeat), and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes—rpoC2, ycf3, accD, and clpP—have high synonymous (Ks) value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum. PMID:25966355

  1. A 48 SNP set for grapevine cultivar identification

    PubMed Central

    2011-01-01

    Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP markers are bi-allelic, allele identification and genotype naming are extremely simple and genotypes obtained with different equipments and by different laboratories are always fully comparable. PMID:22060012

  2. The DL1 repeats in the genome of Diphyllobothrium latum.

    PubMed

    Usmanova, Nadezhda M; Kazakov, Vasiliy I

    2010-07-01

    Diphyllobothrium latum is a widespread intestinal parasite, which has a great clinical relevance, but there are no sequences of its nuclear genome. In this paper, a repetitive element in the D. latum genome is firstly described. The adult D. latum was obtained in the result of expulsion from intestinum of a patient suffering from diphyllobothriasis. Genomic DNA was isolated from several proglottids of this individual. PstI restriction products of D. latum genomic DNA were sequenced. Polymerase chain reaction (PCR) amplification of these products using genomic DNA and selected primers was carried out. Thereby a cluster of a repetitive element, called DL1, was discovered. For precise identification of a beginning and an end of the repeat, a product of PCR amplification of D. latum genomic DNA with one specific primer was sequenced. In discussion, several evidences that DL1 repeat is a member of the SINE family of retroposons were adduced.

  3. Perceived empty duration between sounds of different lengths: Possible relation with repetition and rhythmic grouping.

    PubMed

    Kuroda, Tsuyoshi; Tomimatsu, Erika; Grondin, Simon; Miyazaki, Makoto

    2016-11-01

    We investigated how perceived duration of empty time intervals would be modulated by the length of sounds marking those intervals. Three sounds were successively presented in Experiment 1. Each sound was short (S) or long (L), and the temporal position of the middle sound's onset was varied. The lengthening of each sound resulted in delayed perception of the onset; thus, the middle sound's onset had to be presented earlier in the SLS than in the LSL sequence so that participants perceived the three sounds as presented at equal interonset intervals. In Experiment 2, a short sound and a long sound were alternated repeatedly, and the relative duration of the SL interval to the LS interval was varied. This repeated sequence was perceived as consisting of equal interonset intervals when the onsets of all sounds were aligned at physically equal intervals. If the same onset delay as in the preceding experiment had occurred, participants should have perceived equality between the interonset intervals in the repeated sequence when the SL interval was physically shortened relative to the LS interval. The effects of sound length seemed to be canceled out when the presentation of intervals was repeated. Finally, the perceived duration of the interonset intervals in the repeated sequence was not influenced by whether the participant's native language was French or Japanese, or by how the repeated sequence was perceptually segmented into rhythmic groups.

  4. Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.

    PubMed Central

    Grindley, N D; Joyce, C M

    1980-01-01

    The kanamycin resistance transposon Tn903 consists of a unique region of about 1000 base pairs bounded by a pair of 1050-base-pair inverted repeat sequences. Each repeat contains two Pvu II endonuclease cleavage sites separated by 520 base pairs. We have constructed derivatives of Tn903 in which this 520-base-pair fragment is deleted from one or both repeats. Those derivatives that lack both 520-base-pair fragments cannot transpose, whereas those that lack just one remain transposition proficient. One such transposable derivative, Tn903 delta I, has been selected for further study. We have determined the sequence of the intact inverted repeat. The 18 base pairs at each end are identical and inverted relative to one another, a structure characteristic of insertion sequences. Additional experiments indicate that a single inverted repeat from Tn903 can, in fact, transpose; we propose that this element be called IS903. To correlate the DNA sequence with genetic activities, we have created mutations by inserting a 10-base-pair DNA fragment at several sites within the intact repeat of Tn903 delta 1, and we have examined the effect of such insertions on transposability. The results suggest that IS903 encodes a 307-amino-acid polypeptide (a "transposase") that is absolutely required for transposition of IS903 or Tn903. Images PMID:6261245

  5. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.

    PubMed

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-12-01

    Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Mixed-Mode Slip Behavior of the Altotiberina Low-Angle Normal Fault System (Northern Apennines, Italy) through High-Resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo

    2017-12-01

    We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.

  7. Repeat infection with gonorrhoea in Sheffield, UK: predictable and preventable?

    PubMed

    Hughes, Gwenda; Nichols, Tom; Peters, Lindsey; Bell, Gill; Leong, Geraldine; Kinghorn, George

    2013-02-01

    Repeat infection with gonorrhoea may contribute significantly to infection persistence and health service workload. The authors investigated whether repeat infection is associated with particular subgroups who may benefit from tailored interventions. Data on gonorrhoea diagnoses between 2004 and 2008 were obtained from Sheffield sexually transmitted infection clinic. Kaplan-Meier survival curves were used to estimate the percentage of patients with repeat diagnoses within a year, and a Cox proportional hazard model was used to investigate associated risk factors. Of 1650 patients diagnosed with gonorrhoea, 7.7% (95% CI 6.5% to 9.1%) had a repeat diagnosis within 1 year. Men who have sex with men under 30, teenage heterosexuals, black Caribbeans, people living in deprived areas and those diagnosed in 2004 were most likely to re-present. Of those patients (53%) providing additional behavioural data, repeat diagnosis was more common in those reporting prior history of gonorrhoea, any previous sexually transmitted infection diagnoses, two or more partners in the past 3 months and a high-risk partner in the past year. In an adjusted analysis, repeat diagnosis was independently associated with being a young man who has sex with men, living in a deprived area, a history of gonorrhoea and being diagnosed in 2004 but was most strongly associated with non-completion of behavioural data forms. Groups most at risk of repeat infection with gonorrhoea are highly predictable but are disinclined to provide detailed information on their sexual behaviour. Care pathways including targeted and intensive one-to-one risk reduction counselling, effective partner notification and offers of re-testing could deliver considerable public health benefit.

  8. Direct mapping of symbolic DNA sequence into frequency domain in global repeat map algorithm

    PubMed Central

    Glunčić, Matko; Paar, Vladimir

    2013-01-01

    The main feature of global repeat map (GRM) algorithm (www.hazu.hr/grm/software/win/grm2012.exe) is its ability to identify a broad variety of repeats of unbounded length that can be arbitrarily distant in sequences as large as human chromosomes. The efficacy is due to the use of complete set of a K-string ensemble which enables a new method of direct mapping of symbolic DNA sequence into frequency domain, with straightforward identification of repeats as peaks in GRM diagram. In this way, we obtain very fast, efficient and highly automatized repeat finding tool. The method is robust to substitutions and insertions/deletions, as well as to various complexities of the sequence pattern. We present several case studies of GRM use, in order to illustrate its capabilities: identification of α-satellite tandem repeats and higher order repeats (HORs), identification of Alu dispersed repeats and of Alu tandems, identification of Period 3 pattern in exons, implementation of ‘magnifying glass’ effect, identification of complex HOR pattern, identification of inter-tandem transitional dispersed repeat sequences and identification of long segmental duplications. GRM algorithm is convenient for use, in particular, in cases of large repeat units, of highly mutated and/or complex repeats, and of global repeat maps for large genomic sequences (chromosomes and genomes). PMID:22977183

  9. Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases.

    PubMed

    Punetha, Jaya; Kesari, Akanchha; Uapinyoying, Prech; Giri, Mamta; Clarke, Nigel F; Waddell, Leigh B; North, Kathryn N; Ghaoui, Roula; O'Grady, Gina L; Oates, Emily C; Sandaradura, Sarah A; Bönnemann, Carsten G; Donkervoort, Sandra; Plotz, Paul H; Smith, Edward C; Tesi-Rocha, Carolina; Bertorini, Tulio E; Tarnopolsky, Mark A; Reitter, Bernd; Hausmanowa-Petrusewicz, Irena; Hoffman, Eric P

    2016-05-27

    Molecular diagnostics in the genetic myopathies often requires testing of the largest and most complex transcript units in the human genome (DMD, TTN, NEB). Iteratively targeting single genes for sequencing has traditionally entailed high costs and long turnaround times. Exome sequencing has begun to supplant single targeted genes, but there are concerns regarding coverage and needed depth of the very large and complex genes that frequently cause myopathies. To evaluate efficiency of next-generation sequencing technologies to provide molecular diagnostics for patients with previously undiagnosed myopathies. We tested a targeted re-sequencing approach, using a 45 gene emulsion PCR myopathy panel, with subsequent sequencing on the Illumina platform in 94 undiagnosed patients. We compared the targeted re-sequencing approach to exome sequencing for 10 of these patients studied. We detected likely pathogenic mutations in 33 out of 94 patients with a molecular diagnostic rate of approximately 35%. The remaining patients showed variants of unknown significance (35/94 patients) or no mutations detected in the 45 genes tested (26/94 patients). Mutation detection rates for targeted re-sequencing vs. whole exome were similar in both methods; however exome sequencing showed better distribution of reads and fewer exon dropouts. Given that costs of highly parallel re-sequencing and whole exome sequencing are similar, and that exome sequencing now takes considerably less laboratory processing time than targeted re-sequencing, we recommend exome sequencing as the standard approach for molecular diagnostics of myopathies.

  10. Identification and characterization of tandem repeats in exon III of dopamine receptor D4 (DRD4) genes from different mammalian species.

    PubMed

    Larsen, Svend Arild; Mogensen, Line; Dietz, Rune; Baagøe, Hans Jørgen; Andersen, Mogens; Werge, Thomas; Rasmussen, Henrik Berg

    2005-12-01

    In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.

  11. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  12. JGI Plant Genomics Gene Annotation Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward thismore » aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.« less

  13. Length and sequence heterogeneity in 5S rDNA of Populus deltoides.

    PubMed

    Negi, Madan S; Rajagopal, Jyothi; Chauhan, Neeti; Cronn, Richard; Lakshmikumaran, Malathi

    2002-12-01

    The 5S rRNA genes and their associated non-transcribed spacer (NTS) regions are present as repeat units arranged in tandem arrays in plant genomes. Length heterogeneity in 5S rDNA repeats was previously identified in Populus deltoides and was also observed in the present study. Primers were designed to amplify the 5S rDNA NTS variants from the P. deltoides genome. The PCR-amplified products from the two accessions of P. deltoides (G3 and G48) suggested the presence of length heterogeneity of 5S rDNA units within and among accessions, and the size of the spacers ranged from 385 to 434 bp. Sequence analysis of the non-transcribed spacer (NTS) revealed two distinct classes of 5S rDNA within both accessions: class 1, which contained GAA trinucleotide microsatellite repeats, and class 2, which lacked the repeats. The class 1 spacer shows length variation owing to the microsatellite, with two clones exhibiting 10 GAA repeat units and one clone exhibiting 16 such repeat units. However, distance analysis shows that class 1 spacer sequences are highly similar inter se, yielding nucleotide diversity (pi) estimates that are less than 0.15% of those obtained for class 2 spacers (pi = 0.0183 vs. 0.1433, respectively). The presence of microsatellite in the NTS region leading to variation in spacer length is reported and discussed for the first time in P. deltoides.

  14. Characterization of genetic sequence variation of 58 STR loci in four major population groups.

    PubMed

    Novroski, Nicole M M; King, Jonathan L; Churchill, Jennifer D; Seah, Lay Hong; Budowle, Bruce

    2016-11-01

    Massively parallel sequencing (MPS) can identify sequence variation within short tandem repeat (STR) alleles as well as their nominal allele lengths that traditionally have been obtained by capillary electrophoresis. Using the MiSeq FGx Forensic Genomics System (Illumina), STRait Razor, and in-house excel workbooks, genetic variation was characterized within STR repeat and flanking regions of 27 autosomal, 7 X-chromosome and 24 Y-chromosome STR markers in 777 unrelated individuals from four population groups. Seven hundred and forty six autosomal, 227 X-chromosome, and 324 Y-chromosome STR alleles were identified by sequence compared with 357 autosomal, 107 X-chromosome, and 189 Y-chromosome STR alleles that were identified by length. Within the observed sequence variation, 227 autosomal, 156 X-chromosome, and 112 Y-chromosome novel alleles were identified and described. One hundred and seventy six autosomal, 123 X-chromosome, and 93 Y-chromosome sequence variants resided within STR repeat regions, and 86 autosomal, 39 X-chromosome, and 20 Y-chromosome variants were located in STR flanking regions. Three markers, D18S51, DXS10135, and DYS385a-b had 1, 4, and 1 alleles, respectively, which contained both a novel repeat region variant and a flanking sequence variant in the same nucleotide sequence. There were 50 markers that demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. These population data illustrate the genetic variation that exists in the commonly used STR markers in the selected population samples and provide allele frequencies for statistical calculations related to STR profiling with MPS data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Characterization of GM events by insert knowledge adapted re-sequencing approaches

    PubMed Central

    Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing

    2013-01-01

    Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events. PMID:24088728

  16. Characterization of GM events by insert knowledge adapted re-sequencing approaches.

    PubMed

    Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing

    2013-10-03

    Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events.

  17. Revisiting the Plastid Phylogenomics of Pinaceae with Two Complete Plastomes of Pseudolarix and Tsuga

    PubMed Central

    Sudianto, Edi; Wu, Chung-Shien; Lin, Ching-Ping; Chaw, Shu-Miaw

    2016-01-01

    Phylogeny of the ten Pinaceous genera has long been contentious. Plastid genomes (plastomes) provide an opportunity to resolve this problem because they contain rich evolutionary information. To comprehend the plastid phylogenomics of all ten Pinaceous genera, we sequenced the plastomes of two previously unavailable genera, Pseudolarix amabilis (122,234 bp) and Tsuga chinensis (120,859 bp). Both plastomes share similar gene repertoire and order. Here for the first time we report a unique insertion of tandem repeats in accD of T. chinensis. From the 65 plastid protein-coding genes common to all Pinaceous genera, we re-examined the phylogenetic relationship among all Pinaceous genera. Our two phylogenetic trees are congruent in an identical tree topology, with the five genera of the Abietoideae subfamily constituting a monophyletic clade separate from the other three subfamilies: Pinoideae, Piceoideae, and Laricoideae. The five genera of Abietoideae were grouped into two sister clades consisting of (1) Cedrus alone and (2) two sister subclades of Pseudolarix—Tsuga and Abies—Keteleeria, with the former uniquely losing the gene psaM and the latter specifically excluding the 3 psbA from the residual inverted repeat. PMID:27352945

  18. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies.

    PubMed

    Zeng, Lu; Kortschak, R Daniel; Raison, Joy M; Bertozzi, Terry; Adelson, David L

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.

  19. Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies

    PubMed Central

    Zeng, Lu; Kortschak, R. Daniel; Raison, Joy M.

    2018-01-01

    Transposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package. PMID:29538441

  20. Tactile Ranschburg effects: facilitation and inhibitory repetition effects analogous to verbal memory.

    PubMed

    Roe, Daisy; Miles, Christopher; Johnson, Andrew J

    2017-07-01

    The present paper examines the effect of within-sequence item repetitions in tactile order memory. Employing an immediate serial recall procedure, participants reconstructed a six-item sequence tapped upon their fingers by moving those fingers in the order of original stimulation. In Experiment 1a, within-sequence repetition of an item separated by two-intervening items resulted in a significant reduction in recall accuracy for that repeated item (i.e., the Ranschburg effect). In Experiment 1b, within-sequence repetition of an adjacent item resulted in significant recall facilitation for that repeated item. These effects mirror those reported for verbal stimuli (e.g., Henson, 1998a . Item repetition in short-term memory: Ranschburg repeated. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(5), 1162-1181. doi:doi.org/10.1037/0278-7393.24.5.1162). These data are the first to demonstrate the Ranschburg effect with non-verbal stimuli and suggest further cross-modal similarities in order memory.

  1. Repeated-Sprint Sequences During Female Soccer Matches Using Fixed and Individual Speed Thresholds.

    PubMed

    Nakamura, Fábio Y; Pereira, Lucas A; Loturco, Irineu; Rosseti, Marcelo; Moura, Felipe A; Bradley, Paul S

    2017-07-01

    Nakamura, FY, Pereira, LA, Loturco, I, Rosseti, M, Moura, FA, and Bradley, PS. Repeated-sprint sequences during female soccer matches using fixed and individual speed thresholds. J Strength Cond Res 31(7): 1802-1810, 2017-The main objective of this study was to characterize the occurrence of single sprint and repeated-sprint sequences (RSS) during elite female soccer matches, using fixed (20 km·h) and individually based speed thresholds (>90% of the mean speed from a 20-m sprint test). Eleven elite female soccer players from the same team participated in the study. All players performed a 20-m linear sprint test, and were assessed in up to 10 official matches using Global Positioning System technology. Magnitude-based inferences were used to test for meaningful differences. Results revealed that irrespective of adopting fixed or individual speed thresholds, female players produced only a few RSS during matches (2.3 ± 2.4 sequences using the fixed threshold and 3.3 ± 3.0 sequences using the individually based threshold), with most sequences composing of just 2 sprints. Additionally, central defenders performed fewer sprints (10.2 ± 4.1) than other positions (fullbacks: 28.1 ± 5.5; midfielders: 21.9 ± 10.5; forwards: 31.9 ± 11.1; with the differences being likely to almost certainly associated with effect sizes ranging from 1.65 to 2.72), and sprinting ability declined in the second half. The data do not support the notion that RSS occurs frequently during soccer matches in female players, irrespective of using fixed or individual speed thresholds to define sprint occurrence. However, repeated-sprint ability development cannot be ruled out from soccer training programs because of its association with match-related performance.

  2. Evolution Analysis of Simple Sequence Repeats in Plant Genome.

    PubMed

    Qin, Zhen; Wang, Yanping; Wang, Qingmei; Li, Aixian; Hou, Fuyun; Zhang, Liming

    2015-01-01

    Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1-3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.

  3. Phylogeny and strain typing of Escherichia coli, inferred from variation at mononucleotide repeat loci.

    PubMed

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel

    2004-04-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.

  4. Phylogeny and Strain Typing of Escherichia coli, Inferred from Variation at Mononucleotide Repeat Loci

    PubMed Central

    Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel

    2004-01-01

    Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845

  5. Mutations That Improve the pRE Promoter of Coliphage Lambda

    PubMed Central

    Mahoney, Michael E.; Wulff, Daniel L.

    1987-01-01

    The dya5 mutation, a C→T change at position -43 of the λ pRE promoter, results in a twofold increase in pRE activity in vivo. Smaller increases in pRE activity are found for the dya2 mutation, a T→C change at position -1 of pRE, and the dya3 mutation, an A→G change at +5 of pRE. The mutant p RE promoters retain complete dependence on cII protein for activity. These observations argue, at least for pRE-like promoters, that promoter activities are influenced by nucleotide sequences at least eight nucleotides to the 5'-side of the conventional -35 region consensus sequence, and by nucleotide sequences near the start-site of transcription. Although Hawley and McClure (1983) found A·T pairs more frequently than G·TC pairs in the region of -40 to -45 of prokaryotic promoters, other mutations that change a G·TC pair to an A·T pair at positions -41, -44 and -45 of pRE do not result in increased promoter activity. We also found that a T→C change at position -42 results in a mild decrease in promoter activity. These observations argue that Ts at positions -42 and -43 of pRE are required for maximum promoter activity, but do not support the hypothesis that As and Ts in the -40 to -45 region generally lead to higher promoter activities. PMID:2953648

  6. The structure of TON1937 from archaeon Thermococcus onnurineus NA1 reveals a eukaryotic HEAT-like architecture.

    PubMed

    Jeong, Jae-Hee; Kim, Yi-Seul; Rojviriya, Catleya; Cha, Hyung Jin; Ha, Sung-Chul; Kim, Yeon-Gil

    2013-10-01

    The members of the ARM/HEAT repeat-containing protein superfamily in eukaryotes have been known to mediate protein-protein interactions by using their concave surface. However, little is known about the ARM/HEAT repeat proteins in prokaryotes. Here we report the crystal structure of TON1937, a hypothetical protein from the hyperthermophilic archaeon Thermococcus onnurineus NA1. The structure reveals a crescent-shaped molecule composed of a double layer of α-helices with seven anti-parallel α-helical repeats. A structure-based sequence alignment of the α-helical repeats identified a conserved pattern of hydrophobic or aliphatic residues reminiscent of the consensus sequence of eukaryotic HEAT repeats. The individual repeats of TON1937 also share high structural similarity with the canonical eukaryotic HEAT repeats. In addition, the concave surface of TON1937 is proposed to be its potential binding interface based on this structural comparison and its surface properties. These observations lead us to speculate that the archaeal HEAT-like repeats of TON1937 have evolved to engage in protein-protein interactions in the same manner as eukaryotic HEAT repeats. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Human telomeres that contain (CTAGGG)n repeats show replication dependent instability in somatic cells and the male germline

    PubMed Central

    Mendez-Bermudez, Aaron; Hills, Mark; Pickett, Hilda A.; Phan, Anh Tuân; Mergny, Jean-Louis; Riou, Jean-François; Royle, Nicola J.

    2009-01-01

    A number of different processes that impact on telomere length dynamics have been identified but factors that affect the turnover of repeats located proximally within the telomeric DNA are poorly defined. We have identified a particular repeat type (CTAGGG) that is associated with an extraordinarily high mutation rate (20% per gamete) in the male germline. The mutation rate is affected by the length and sequence homogeneity of the (CTAGGG)n array. This level of instability was not seen with other sequence-variant repeats, including the TCAGGG repeat type that has the same composition. Telomeres carrying a (CTAGGG)n array are also highly unstable in somatic cells with the mutation process resulting in small gains or losses of repeats that also occasionally result in the deletion of the whole (CTAGGG)n array. These sequences are prone to quadruplex formation in vitro but adopt a different topology from (TTAGGG)n (see accompanying article). Interestingly, short (CTAGGG)2 oligonucleotides induce a DNA damage response (γH2AX foci) as efficiently as (TTAGGG)2 oligos in normal fibroblast cells, suggesting they recruit POT1 from the telomere. Moreover, in vitro assays show that (CTAGGG)n repeats bind POT1 more efficiently than (TTAGGG)n or (TCAGGG)n. We estimate that 7% of human telomeres contain (CTAGGG)n repeats and when present, they create additional problems that probably arise during telomere replication. PMID:19656953

  8. Population-scale whole genome sequencing identifies 271 highly polymorphic short tandem repeats from Japanese population.

    PubMed

    Hirata, Satoshi; Kojima, Kaname; Misawa, Kazuharu; Gervais, Olivier; Kawai, Yosuke; Nagasaki, Masao

    2018-05-01

    Forensic DNA typing is widely used to identify missing persons and plays a central role in forensic profiling. DNA typing usually uses capillary electrophoresis fragment analysis of PCR amplification products to detect the length of short tandem repeat (STR) markers. Here, we analyzed whole genome data from 1,070 Japanese individuals generated using massively parallel short-read sequencing of 162 paired-end bases. We have analyzed 843,473 STR loci with two to six basepair repeat units and cataloged highly polymorphic STR loci in the Japanese population. To evaluate the performance of the cataloged STR loci, we compared 23 STR loci, widely used in forensic DNA typing, with capillary electrophoresis based STR genotyping results in the Japanese population. Seventeen loci had high correlations and high call rates. The other six loci had low call rates or low correlations due to either the limitations of short-read sequencing technology, the bioinformatics tool used, or the complexity of repeat patterns. With these analyses, we have also purified the suitable 218 STR loci with four basepair repeat units and 53 loci with five basepair repeat units both for short read sequencing and PCR based technologies, which would be candidates to the actual forensic DNA typing in Japanese population.

  9. Re-analysis of human immunodeficiency virus type 1 isolates from Cyprus and Greece, initially designated 'subtype I', reveals a unique complex A/G/H/K/? mosaic pattern.

    PubMed

    Paraskevis, D; Magiorkinis, M; Vandamme, A M; Kostrikis, L G; Hatzakis, A

    2001-03-01

    Human immunodeficiency virus type 1 (HIV-1) has been classified into three main groups and 11 distinct subtypes. Moreover, several circulating recombinant forms (CRFs) of HIV-1 have been recently documented to have spread widely causing extensive HIV-1 epidemics. A subtype, initially designated I (CRF04_cpx), was documented in Cyprus and Greece and was found to comprise regions of sequence derived from subtypes A and G as well as regions of unclassified sequence. Re-analysis of the three full-length CRF04_cpx sequences that were available revealed a mosaic genomic organization of unique complexity comprising regions of sequence from at least five distinct subtypes, A, G, H, K and unclassified regions. These strains account for approximately 2% of the total HIV-1-infected population in Greece, thus providing evidence of the great capability of HIV-1 to recombine and produce highly divergent strains which can be spread successfully through different infection routes.

  10. Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system

    PubMed Central

    1988-01-01

    The primary amino acid sequence of contactin, a neuronal cell surface glycoprotein of 130 kD that is isolated in association with components of the cytoskeleton (Ranscht, B., D. J. Moss, and C. Thomas. 1984. J. Cell Biol. 99:1803-1813), was deduced from the nucleotide sequence of cDNA clones and is reported here. The cDNA sequence contains an open reading frame for a 1,071-amino acid transmembrane protein with 962 extracellular and 89 cytoplasmic amino acids. In its extracellular portion, the polypeptide features six type 1 and two type 2 repeats. The six amino-terminal type 1 repeats (I-VI) each consist of 81-99 amino acids and contain two cysteine residues that are in the right context to form globular domains as described for molecules with immunoglobulin structure. Within the proposed globular region, contactin shares 31% identical amino acids with the neural cell adhesion molecule NCAM. The two type 2 repeats (I-II) are each composed of 100 amino acids and lack cysteine residues. They are 20-31% identical to fibronectin type III repeats. Both the structural similarity of contactin to molecules of the immunoglobulin supergene family, in particular the amino acid sequence resemblance to NCAM, and its relationship to fibronectin indicate that contactin could be involved in some aspect of cellular adhesion. This suggestion is further strengthened by its localization in neuropil containing axon fascicles and synapses. PMID:3049624

  11. Length and repeat-sequence variation in 58 STRs and 94 SNPs in two Spanish populations.

    PubMed

    Casals, Ferran; Anglada, Roger; Bonet, Núria; Rasal, Raquel; van der Gaag, Kristiaan J; Hoogenboom, Jerry; Solé-Morata, Neus; Comas, David; Calafell, Francesc

    2017-09-01

    We have genotyped the 58 STRs (27 autosomal, 24 Y-STRs and 7 X-STRs) and 94 autosomal SNPs in Illumina ForenSeq™ Primer Mix A in 88 Spanish Roma (Gypsy) samples and 143 Catalans. Since this platform is based in massive parallel sequencing, we have used simple R scripts to uncover the sequence variation in the repeat region. Thus, we have found, across 58 STRs, 541 length-based alleles, which, after considering repeat-sequence variation, became 804 different alleles. All loci in both populations were in Hardy-Weinberg equilibrium. F ST between both populations was 0.0178 for autosomal SNPs, 0.0146 for autosomal STRs, 0.0101 for X-STRs and 0.1866 for Y-STRs. Combined a priori statistics showed quite large; for instance, pooling all the autosomal loci, the a priori probabilities of discriminating a suspect become 1-(2.3×10 -70 ) and 1-(5.9×10 -73 ), for Roma and Catalans respectively, and the chances of excluding a false father in a trio are 1-(2.6×10 -20 ) and 1-(2.0×10 -21 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Molecular cloning and characterization of a novel Clonorchis sinensis antigenic protein containing tandem repeat sequences].

    PubMed

    Liu, Qian; Xu, Xue-Nian; Zhou, Yan; Cheng, Na; Dong, Yu-Ting; Zheng, Hua-Jun; Zhu, Yong-Qiang; Zhu, Yong-Qiang

    2013-08-01

    To find and clone new antigen genes from the lambda-ZAP cDNA expression library of adult Clonorchis sinensis, and determine the immunological characteristics of the recombinant proteins. The cDNA expression library of adult C. sinensis was screened by pooled sera of clonorchiasis patients. The sequences of the positive phage clones were compared with the sequences in EST database, and the full-length sequence of the gene (Cs22 gene) was obtained by RT-PCR. cDNA fragments containing 2 and 3 times tandem repeat sequences were generated by jumping PCR. The sequence encoding the mature peptide or the tandem repeat sequence was respectively cloned into the prokaryotic expression vector pET28a (+), and then transformed into E. coli Rosetta DE3 cells for expression. The recombinant proteins (rCs22-2r, rCs22-3r, rCs22M-2r, and rCs22M-3r) were purified by His-bind-resin (Ni-NTA) affinity chromatography. The immunogenicity of rCs22-2r and rCs22-3r was identified by ELISA. To evaluate the immunological diagnostic value of rCs22-2r and rCs22-3r, serum samples from 35 clonorchiasis patients, 31 healthy individuals, 15 schistosomiasis patients, 15 paragonimiasis westermani patients and 13 cysticercosis patients were examined by ELISA. To locate antigenic determinants, the pooled sera of clonorchiasis patients and healthy persons were analyzed for specific antibodies by ELISA with recombinant protein rCs22M-2r and rCs22M-3r containing the tandem repeat sequences. The full-length sequence of Cs22 antigen gene of C. sinensis was obtained. It contained 13 times tandem repeat sequences of EQQDGDEEGMGGDGGRGKEKGKVEGEDGAGEQKEQA. Bioinformatics analysis indicated that the protein (Cs22) belonged to GPI-anchored proteins family. The recombinant proteins rCs22-2r and rCs22-3r showed a certain level of immunogenicity. The positive rate by ELISA coated with the purified PrCs22-2r and PrCs22-3r for sera of clonorchiasis patients both were 45.7% (16/35), and 3.2% (1/31) for those of healthy persons. There was no cross reaction with sera of schistosomiasis and cysticercosis patients. The cross reaction with sera of paragonimiasis westermani patients was 1/15. The recombinant proteins rCs22M-2r and rCs22M-3r which only contained tandem repeats were specifically recognized by pooled sera of clonorchiasis patients. The Cs22 antigen gene of Clonorchis sinensis is obtained, and the recombinant proteins have certain diagnostic value. The antigenic determinant is located in tandem repeat sequences.

  13. The cost of proactive interference is constant across presentation conditions.

    PubMed

    Endress, Ansgar D; Siddique, Aneela

    2016-10-01

    Proactive interference (PI) severely constrains how many items people can remember. For example, Endress and Potter (2014a) presented participants with sequences of everyday objects at 250ms/picture, followed by a yes/no recognition test. They manipulated PI by either using new images on every trial in the unique condition (thus minimizing PI among items), or by re-using images from a limited pool for all trials in the repeated condition (thus maximizing PI among items). In the low-PI unique condition, the probability of remembering an item was essentially independent of the number of memory items, showing no clear memory limitations; more traditional working memory-like memory limitations appeared only in the high-PI repeated condition. Here, we ask whether the effects of PI are modulated by the availability of long-term memory (LTM) and verbal resources. Participants viewed sequences of 21 images, followed by a yes/no recognition test. Items were presented either quickly (250ms/image) or sufficiently slowly (1500ms/image) to produce LTM representations, either with or without verbal suppression. Across conditions, participants performed better in the unique than in the repeated condition, and better for slow than for fast presentations. In contrast, verbal suppression impaired performance only with slow presentations. The relative cost of PI was remarkably constant across conditions: relative to the unique condition, performance in the repeated condition was about 15% lower in all conditions. The cost of PI thus seems to be a function of the relative strength or recency of target items and interfering items, but relatively insensitive to other experimental manipulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity.

    PubMed

    Arrieta-Montiel, Maria P; Shedge, Vikas; Davila, Jaime; Christensen, Alan C; Mackenzie, Sally A

    2009-12-01

    The plant mitochondrial genome is recombinogenic, with DNA exchange activity controlled to a large extent by nuclear gene products. One nuclear gene, MSH1, appears to participate in suppressing recombination in Arabidopsis at every repeated sequence ranging in size from 108 to 556 bp. Present in a wide range of plant species, these mitochondrial repeats display evidence of successful asymmetric DNA exchange in Arabidopsis when MSH1 is disrupted. Recombination frequency appears to be influenced by repeat sequence homology and size, with larger size repeats corresponding to increased DNA exchange activity. The extensive mitochondrial genomic reorganization of the msh1 mutant produced altered mitochondrial transcription patterns. Comparison of mitochondrial genomes from the Arabidopsis ecotypes C24, Col-0, and Ler suggests that MSH1 activity accounts for most or all of the polymorphisms distinguishing these genomes, producing ecotype-specific stoichiometric changes in each line. Our observations suggest that MSH1 participates in mitochondrial genome evolution by influencing the lineage-specific pattern of mitochondrial genetic variation in higher plants.

  15. SMV1 virus-induced CRISPR spacer acquisition from the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2.

    PubMed

    Erdmann, Susanne; Shah, Shiraz A; Garrett, Roger A

    2013-12-01

    Organisms of the crenarchaeal order Sulfolobales carry complex CRISPR (clustered regularly interspaced short palindromic repeats) adaptive immune systems. These systems are modular and show extensive structural and functional diversity, especially in their interference complexes. The primary targets are an exceptional range of diverse viruses, many of which propagate stably within cells and follow lytic life cycles without producing cell lysis. These properties are consistent with the difficulty of activating CRISPR spacer uptake in the laboratory, but appear to conflict with the high complexity and diversity of the CRISPR immune systems that are found among the Sulfolobales. In the present article, we re-examine the first successful induction of archaeal spacer acquisition in our laboratory that occurred exclusively for the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2 that was co-infected with the virus SMV1 (Sulfolobus monocaudavirus 1). Although we reaffirm that protospacer selection is essentially a random process with respect to the pMGB1 genome, we identified single spacer sequences specific for each of CRISPR loci C, D and E that, exceptionally, occurred in many sequenced clones. Moreover, the same sequence was reproducibly acquired for a given locus in independent experiments, consistent with it being the first protospacer to be selected. There was also a small protospacer bias (1.6:1) to the antisense strand of protein genes. In addition, new experiments demonstrated that spacer acquisition in the previously inactive CRISPR locus A could be induced on freeze-thawing of the infected cells, suggesting that environmental stress can facilitate activation. Coincidentally with spacer acquisition, a mobile OrfB element was deleted from pMGB1, suggesting that interplay can occur between spacer acquisition and transposition.

  16. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.).

    PubMed

    He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei

    2015-04-18

    Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions of repetitive elements in radish were estimated and satellite repeats were the most dominating elements. Fine karyotyping analysis was established which allow us to easily identify each individual somatic metaphase chromosome. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of satellite and centromere-specific retrotransposon at centromeres. Our study provides a valuable basis for future genomic studies in radish.

  17. Analysis of simple sequence repeat (SSR) structure and sequence within Epichloë endophyte genomes reveals impacts on gene structure and insights into ancestral hybridization events.

    PubMed

    Clayton, William; Eaton, Carla Jane; Dupont, Pierre-Yves; Gillanders, Tim; Cameron, Nick; Saikia, Sanjay; Scott, Barry

    2017-01-01

    Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.

  18. RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity

    PubMed Central

    2013-01-01

    A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3′-end sequences of various SINEs originated from a corresponding LINE. As the 3′-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require “stringent” recognition of the 3′-end sequence of the RNA template. However, the 3′-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3′-poly(A) repeats. Since the 3′-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution. PMID:23984183

  19. TRAP: automated classification, quantification and annotation of tandemly repeated sequences.

    PubMed

    Sobreira, Tiago José P; Durham, Alan M; Gruber, Arthur

    2006-02-01

    TRAP, the Tandem Repeats Analysis Program, is a Perl program that provides a unified set of analyses for the selection, classification, quantification and automated annotation of tandemly repeated sequences. TRAP uses the results of the Tandem Repeats Finder program to perform a global analysis of the satellite content of DNA sequences, permitting researchers to easily assess the tandem repeat content for both individual sequences and whole genomes. The results can be generated in convenient formats such as HTML and comma-separated values. TRAP can also be used to automatically generate annotation data in the format of feature table and GFF files.

  20. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    PubMed

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Regions of conservation and divergence in the 3' untranslated sequences of genomic RNA from Ross River virus isolates.

    PubMed

    Faragher, S G; Dalgarno, L

    1986-07-20

    The 3' untranslated (UT) sequences of the genomic RNAs of five geographic variants of the alphavirus Ross River virus (RRV) were determined and compared with the 3' UT sequence of RRV T48, the prototype strain. Part of the 3' UT region of Getah virus, a close serological relative of RRV, was also sequenced. The RRV 3' UT region varies markedly in length between variants. Large deletions or insertions, sequence rearrangements and single nucleotide substitutions are observed. A sequence tract of 49 to 58 nucleotides, which is repeated as four blocks in the RRV T48 3' UT region, occurs only once in the 3' UT region of one RRV strain (NB5092), indicating that the existence of repeat sequence blocks is not essential for RRV replication. However, the precise sequence of the 3' proximal copy of the repeat block and its position relative to the poly(A) tail were identical in all RRV isolates examined, suggesting that it has an important role in RRV replication. Nucleotide substitutions between RRV variants are distributed non-randomly along the length of the 3' UT region. The sequence of 120 to 130 nucleotides adjacent to the poly(A) tail is strongly conserved. Getah virus RNA contains three repeat sequence blocks in the 3' UT region. These are similar in sequence to those in RRV RNA but differ in their arrangement. Homology between the RRV and Getah 3' UT sequences is greatest in the 3' proximal repeat sequence block that shows three differences in 49 nucleotides. The 3' proximal repeat in Getah RNA occurs at the same position, relative to the poly(A) tail, as in all RRV variants. The RRV and Getah virus 3' UT sequences show extensive homology in the region between the 3' proximal repeat and the poly(A) tail but, apart from the repeat blocks themselves, they show no significant homology elsewhere.

  2. Isolation and molecular characterization of dTnp1, a mobile and defective transposable element of Nicotiana plumbaginifolia.

    PubMed

    Meyer, C; Pouteau, S; Rouzé, P; Caboche, M

    1994-01-01

    By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after gamma-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 bp insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 bp terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5' and 3' ends of dTnp1 together with a perfect palindrome located after the 5' inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.

  3. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris.

    PubMed Central

    Kami, J; Velásquez, V B; Debouck, D G; Gepts, P

    1995-01-01

    Common bean (Phaseolus vulgaris) consists of two major geographic gene pools, one distributed in Mexico, Central America, and Colombia and the other in the southern Andes (southern Peru, Bolivia, and Argentina). Amplification and sequencing of members of the multigene family coding for phaseolin, the major seed storage protein of the common bean, provide evidence for accumulation of tandem direct repeats in both introns and exons during evolution of the multigene family in this species. The presumed ancestral phaseolin sequences, without tandem repeats, were found in recently discovered but nearly extinct wild common bean populations of Ecuador and northern Peru that are intermediate between the two major gene pools of the species based on geographical and molecular arguments. Our results illustrate the usefulness of tandem direct repeats in establishing the polarity of DNA sequence divergence and therefore in proposing phylogenies. Images Fig. 1 Fig. 3 PMID:7862642

  4. Long-read sequencing and de novo assembly of a Chinese genome

    USDA-ARS?s Scientific Manuscript database

    Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arr...

  5. Displaced/re-worked rhodolith deposits infilling parts of a complex Miocene multistorey submarine channel: A case history from the Sassari area (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Murru, Marco; Bassi, Davide; Simone, Lucia

    2015-08-01

    In the Sassari area (north-western Sardinia, Italy), the Miocene Porto Torres sub-basin sequences represent the complex multistorey mixed carbonate-siliciclastic submarine feature called the Sassari Channel. During the late Burdigalian-early Serravallian, repeated terrigenous supplies from uplifted Paleozoic crystalline substrata fed the Sassari Channel system by means of turbidity and locally hyper-concentrated turbidity flows. Shelfal areas were the source of terrigenous clasts, but open shelf rhodalgal/foramol carbonate areas were very productive and largely also contributed to the channel infilling. Re-worked sands and skeletal debris were discontinuously re-sedimented offshore as pure terrigenous, mixed and/or carbonate deposits. Major sediment supply was introduced between the latest Burdigalian and the start of the middle Langhian, during which a large amount of carbonate, mixed and siliciclastic sediments reached the Porto Torres Basin (Sassari Channel I). Contributions from shallow proximal source areas typify the lower intervals (Unit A) in marginal sectors of the channel. Upward, these evolve into autochthonous rhodolith deposits, winnowed by strong currents in relatively shallow well lit settings within a complex network of narrow tidally-controlled channels (Unit D) locally bearing coral assemblages. Conversely, re-sedimented rhodoliths from the Units B and C accumulated under conditions of higher turbidity. In deeper parts of the channel taxonomically diversified rhodoliths point to the mixing of re-deposited skeletal components from different relatively deep bathmetric settings. In the latest early Langhian, major re-sedimentation episodes, resulting in large prograding bodies (Unit D), triggered by repeated regression pulses in a frame of persistent still stand. During these episodes photophile assemblages dwelled in the elevated margin sectors of the channel. A significant latest early Langhian drop in relative sea-level resulted in impressive mass flows involving early cemented channel-margin and levee blocks and culminated in the formation of major erosional surface (ER-E). Such events seemingly correlate with the long-term global cooling trend of the mid-Miocene climatic transition. Episodes of middle Langhian re-sedimentation concluded with the channel abandon phase after which new erosive episodes followed. Overall, this led to a shift in the Sassari Channel II, with phases presumably started during the earlymost Serravallian, subsequent to the major sea-level drop at the Langhian-Serravallian boundary.

  6. Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1

    PubMed Central

    Wang, Xu; Wang, Qing; Zhang, Weijia; Wang, Yinjia; Li, Li; Wen, Tong; Zhang, Tongwei; Zhang, Yang; Xu, Jun; Hu, Junying; Li, Shuqi; Liu, Lingzi; Liu, Jinxin; Jiang, Wei; Tian, Jiesheng; Wang, Lei; Li, Jilun

    2014-01-01

    We report the complete genomic sequence of Magnetospirillum gryphiswaldense MSR-1 (DSM 6361), a type strain of the genus Magnetospirillum belonging to the Alphaproteobacteria. Compared to the reported draft sequence, extensive rearrangements and differences were found, indicating high genomic flexibility and “domestication” by accelerated evolution of the strain upon repeated passaging. PMID:24625872

  7. Plasmid P1 replication: negative control by repeated DNA sequences.

    PubMed Central

    Chattoraj, D; Cordes, K; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pieces of the incA fragment that each contain only three repeats destabilize P1 plasmids efficiently. This result makes it unlikely that incA specifies a regulatory product. Our in vivo results suggest that the repeating DNA sequence itself negatively controls replication by titrating a P1-determined protein, RepA, that is essential for replication. Consistent with this hypothesis is the observation that the RepA protein binds to the incA fragment in vitro. Images PMID:6387706

  8. Genetic characterization of UCS region of Pneumocystis jirovecii and construction of allelic profiles of Indian isolates based on sequence typing at three regions.

    PubMed

    Gupta, Rashmi; Mirdha, Bijay Ranjan; Guleria, Randeep; Kumar, Lalit; Luthra, Kalpana; Agarwal, Sanjay Kumar; Sreenivas, Vishnubhatla

    2013-01-01

    Pneumocystis jirovecii is an opportunistic pathogen that causes severe pneumonia in immunocompromised patients. To study the genetic diversity of P. jirovecii in India the upstream conserved sequence (UCS) region of Pneumocystis genome was amplified, sequenced and genotyped from a set of respiratory specimens obtained from 50 patients with a positive result for nested mitochondrial large subunit ribosomal RNA (mtLSU rRNA) PCR during the years 2005-2008. Of these 50 cases, 45 showed a positive PCR for UCS region. Variations in the tandem repeats in UCS region were characterized by sequencing all the positive cases. Of the 45 cases, one case showed five repeats, 11 cases showed four repeats, 29 cases showed three repeats and four cases showed two repeats. By running amplified DNA from all these cases on a high-resolution gel, mixed infection was observed in 12 cases (26.7%, 12/45). Forty three of 45 cases included in this study had previously been typed at mtLSU rRNA and internal transcribed spacer (ITS) region by our group. In the present study, the genotypes at those two regions were combined with UCS repeat patterns to construct allelic profiles of 43 cases. A total of 36 allelic profiles were observed in 43 isolates indicating high genetic variability. A statistically significant association was observed between mtLSU rRNA genotype 1, ITS type Ea and UCS repeat pattern 4. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Contingency, convergence and hyper-astronomical numbers in biological evolution.

    PubMed

    Louis, Ard A

    2016-08-01

    Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Two synthetic Sp1-binding sites functionally substitute for the 21-base-pair repeat region to activate simian virus 40 growth in CV-1 cells.

    PubMed Central

    Lednicky, J; Folk, W R

    1992-01-01

    The 21-bp repeat region of simian virus 40 (SV40) activates viral transcription and DNA replication and contains binding sites for many cellular proteins, including Sp1, LSF, ETF, Ap2, Ap4, GT-1B, H16, and p53, and for the SV40 large tumor antigen. We have attempted to reduce the complexity of this region while maintaining its growth-promoting capacity. Deletion of the 21-bp repeat region from the SV40 genome delays the expression of viral early proteins and DNA replication and reduces virus production in CV-1 cells. Replacement of the 21-bp repeat region with two copies of DNA sequence motifs bound with high affinities by Sp1 promotes SV40 growth in CV-1 cells to nearly wild-type levels, but substitution by motifs bound less avidly by Sp1 or bound by other activator proteins does not restore growth. This indicates that Sp1 or a protein with similar sequence specificity is primarily responsible for the function of the 21-bp repeat region. We speculate about how Sp1 activates both SV40 transcription and DNA replication. Images PMID:1328672

  11. Heating Capacity of ReBound Shortwave Diathermy and Moist Hot Packs at Superficial Depths

    PubMed Central

    Hawkes, Amanda R.; Draper, David O.; Johnson, A. Wayne; Diede, Mike T.; Rigby, Justin H.

    2013-01-01

    Context: The effectiveness of a new continuous diathermy unit, ReBound, as a heating modality is unknown. Objective: To compare the effects of ReBound diathermy with silicate-gel moist hot packs on tissue temperature in the human triceps surae muscle. Design:  Crossover study. Setting: University research laboratory. Patients or Other Participants: A total of 12 healthy, college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25 years, calf subcutaneous fat thickness = 7.2 ± 1.9 mm). Intervention(s): On 2 different days, 1 of 2 modalities (ReBound diathermy, silicate-gel moist hot pack) was applied to the triceps surae muscle of each participant for 30 minutes. After 30 minutes, the modality was removed, and temperature decay was recorded for 20 minutes. Main Outcome Measure(s):  Medial triceps surae intramuscular tissue temperature at a depth of 1 cm was measured using an implantable thermocouple inserted horizontally into the muscle. Measurements were taken every 5 minutes during the 30-minute treatment and every minute during the 20-minute temperature decay, for a total of 50 minutes. Treatment was analyzed through a 2 × 7 mixed-model analysis of variance with repeated measures. Temperature decay was analyzed through a 2 × 21 mixed-model analysis of variance with repeated measures. Results: During the 30-minute application, tissue temperatures at a depth of 1 cm increased more with the ReBound diathermy than with the moist hot pack (F6,66 = 7.14, P < .001). ReBound diathermy and moist hot packs increased tissue temperatures 3.69°C ± 1.50°C and 2.82°C ± 0.90°C, respectively, from baseline. Throughout the temperature decay, ReBound diathermy produced a greater rate of heat dissipation than the moist hot pack (F20,222 = 4.42, P < .001). Conclusions: During a 30-minute treatment at a superficial depth, the ReBound diathermy increased tissue temperature to moderate levels, which were greater than the levels reached with moist hot packs. PMID:23855362

  12. Optimizing repeat liver transplant graft utility through strategic matching of donor and recipient characteristics.

    PubMed

    Hung, Kenneth; Gralla, Jane; Dodge, Jennifer L; Bambha, Kiran M; Dirchwolf, Melisa; Rosen, Hugo R; Biggins, Scott W

    2015-11-01

    Repeat liver transplantation (LT) is controversial because of inferior outcomes versus primary LT. A minimum 1-year expected post-re-LT survival of 50% has been proposed. We aimed to identify combinations of Model for End-Stage Liver Disease (MELD), donor risk index (DRI), and recipient characteristics achieving this graft survival threshold. We identified re-LT recipients listed in the United States from March 2002 to January 2010 with > 90 days between primary LT and listing for re-LT. Using Cox regression, we estimated the expected probability of 1-year graft survival and identified combinations of MELD, DRI, and recipient characteristics attaining >50% expected 1-year graft survival. Re-LT recipients (n = 1418) had a median MELD of 26 and median age of 52 years. Expected 1-year graft survival exceeded 50% regardless of MELD or DRI in Caucasian recipients who were not infected with hepatitis C virus (HCV) of all ages and Caucasian HCV-infected recipients <50 years old. As age increased in HCV-infected Caucasian and non-HCV-infected African American recipients, lower MELD scores or lower DRI grafts were needed to attain the graft survival threshold. As MELD scores increased in HCV-infected African American recipients, lower-DRI livers were required to achieve the graft survival threshold. Use of high-DRI livers (>1.44) in HCV-infected recipients with a MELD score > 26 at re-LT failed to achieve the graft survival threshold with recipient age ≥ 60 years (any race), as well as at age ≥ 50 years for Caucasians and at age < 50 years for African Americans. Strategic donor selection can achieve >50% expected 1-year graft survival even in high-risk re-LT recipients (HCV infected, older age, African American race, high MELD scores). Low-risk transplant recipients (age < 50 years, non-HCV-infected) can achieve the survival threshold with varying DRI and MELD scores. © 2015 American Association for the Study of Liver Diseases.

  13. ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data

    PubMed Central

    2012-01-01

    Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration. PMID:22946927

  14. Novel variants of the 5S rRNA genes in Eruca sativa.

    PubMed

    Singh, K; Bhatia, S; Lakshmikumaran, M

    1994-02-01

    The 5S ribosomal RNA (rRNA) genes of Eruca sativa were cloned and characterized. They are organized into clusters of tandemly repeated units. Each repeat unit consists of a 119-bp coding region followed by a noncoding spacer region that separates it from the coding region of the next repeat unit. Our study reports novel gene variants of the 5S rRNA genes in plants. Two families of the 5S rDNA, the 0.5-kb size family and the 1-kb size family, coexist in the E. sativa genome. The 0.5-kb size family consists of the 5S rRNA genes (S4) that have coding regions similar to those of other reported plant 5S rDNA sequences, whereas the 1-kb size family consists of the 5S rRNA gene variants (S1) that exist as 1-kb BamHI tandem repeats. S1 is made up of two variant units (V1 and V2) of 5S rDNA where the BamHI site between the two units is mutated. Sequence heterogeneity among S4, V1, and V2 units exists throughout the sequence and is not limited to the noncoding spacer region only. The coding regions of V1 and V2 show approximately 20% dissimilarity to the coding regions of S4 and other reported plant 5S rDNA sequences. Such a large variation in the coding regions of the 5S rDNA units within the same plant species has been observed for the first time. Restriction site variation is observed between the two size classes of 5S rDNA in E. sativa.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Rate-determining Step of Flap Endonuclease 1 (FEN1) Reflects a Kinetic Bias against Long Flaps and Trinucleotide Repeat Sequences.

    PubMed

    Tarantino, Mary E; Bilotti, Katharina; Huang, Ji; Delaney, Sarah

    2015-08-21

    Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. RetroTector online, a rational tool for analysis of retroviral elements in small and medium size vertebrate genomic sequences

    PubMed Central

    Sperber, Göran; Lövgren, Anders; Eriksson, Nils-Einar; Benachenhou, Farid; Blomberg, Jonas

    2009-01-01

    Background The rapid accumulation of genomic information in databases necessitates rapid and specific algorithms for extracting biologically meaningful information. More or less complete retroviral sequences, also called proviral or endogenous retroviral sequences; ERVs, constitutes at least 5% of vertebrate genomes. After infecting the host, these retroviruses have integrated in germ line cells, and have then been carried in genomes for at least several 100 million years. A better understanding of structure and function of these sequences can have profound biological and medical consequences. Methods RetroTector© (ReTe) is a platform-independent Java program for identification and characterization of proviral sequences in vertebrate genomes. The full ReTe requires a local installation with a MySQL database. Although not overly complicated, the installation may take some time. A "light" version of ReTe, (RetroTector online; ROL) which does not require specific installation procedures is provided, via the World Wide Web. Results ROL was implemented under the Batchelor web interface (A Lövgren et al). It allows both GenBank accession number, file and FASTA cut-and-paste admission of sequences (5 to 10 000 kilobases). Up to ten submissions can be done simultaneously, allowing batch analysis of <= 100 Megabases. Jobs are shown in an IP-number specific list. Results are text files, and can be viewed with the program, RetroTectorViewer.jar (at the same site), which has the full graphical capabilities of the basic ReTe program. A detailed analysis of any retroviral sequences found in the submitted sequence is graphically presented, exportable in standard formats. With the current server, a complete analysis of a 1 Megabase sequence is complete in 10 minutes. It is possible to mask nonretroviral repetitive sequences in the submitted sequence, using host genome specific "brooms", which increase specificity. Discussion Proviral sequences can be hard to recognize, especially if the integration occurred many million years ago. Precise delineation of LTR, gag, pro, pol and env can be difficult, requiring manual work. ROL is a way of simplifying these tasks. Conclusion ROL provides 1. annotation and presentation of known retroviral sequences, 2. detection of proviral chains in unknown genomic sequences, with up to 100 Mbase per submission. PMID:19534753

  17. RetroTector online, a rational tool for analysis of retroviral elements in small and medium size vertebrate genomic sequences.

    PubMed

    Sperber, Göran; Lövgren, Anders; Eriksson, Nils-Einar; Benachenhou, Farid; Blomberg, Jonas

    2009-06-16

    The rapid accumulation of genomic information in databases necessitates rapid and specific algorithms for extracting biologically meaningful information. More or less complete retroviral sequences, also called proviral or endogenous retroviral sequences; ERVs, constitutes at least 5% of vertebrate genomes. After infecting the host, these retroviruses have integrated in germ line cells, and have then been carried in genomes for at least several 100 million years. A better understanding of structure and function of these sequences can have profound biological and medical consequences. RetroTector (ReTe) is a platform-independent Java program for identification and characterization of proviral sequences in vertebrate genomes. The full ReTe requires a local installation with a MySQL database. Although not overly complicated, the installation may take some time. A "light" version of ReTe, (RetroTector online; ROL) which does not require specific installation procedures is provided, via the World Wide Web. ROL http://www.fysiologi.neuro.uu.se/jbgs/ was implemented under the Batchelor web interface (A Lövgren et al). It allows both GenBank accession number, file and FASTA cut-and-paste admission of sequences (5 to 10,000 kilobases). Up to ten submissions can be done simultaneously, allowing batch analysis of

  18. Regulation of HFE expression by Poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter

    PubMed Central

    Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M. Rafiq

    2013-01-01

    Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700 bp (−1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. PMID:24184271

  19. Regulation of HFE expression by poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter.

    PubMed

    Pelham, Christopher; Jimenez, Tamara; Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M Rafiq

    2013-12-01

    Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. © 2013.

  20. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    PubMed

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a long-lasting reverberation between a rapidly changing visual input and evoked neural activity, apparent in cross-correlations between occipital EEG and stimulus sequences, peaking in the alpha (∼10 Hz) range. We indeed found that perceptual echo is enhanced by repeatedly presenting the same visual sequence, indicating that the human visual system can rapidly and automatically learn regularities embedded within fast-changing dynamic sequences. These results point to a previously undiscovered regularity learning mechanism, operating at a rate defined by the alpha frequency. Copyright © 2017 the authors 0270-6474/17/378486-12$15.00/0.

  1. The Peculiar Landscape of Repetitive Sequences in the Olive (Olea europaea L.) Genome

    PubMed Central

    Barghini, Elena; Natali, Lucia; Cossu, Rosa Maria; Giordani, Tommaso; Pindo, Massimo; Cattonaro, Federica; Scalabrin, Simone; Velasco, Riccardo; Morgante, Michele; Cavallini, Andrea

    2014-01-01

    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome. PMID:24671744

  2. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome.

    PubMed

    Barghini, Elena; Natali, Lucia; Cossu, Rosa Maria; Giordani, Tommaso; Pindo, Massimo; Cattonaro, Federica; Scalabrin, Simone; Velasco, Riccardo; Morgante, Michele; Cavallini, Andrea

    2014-04-01

    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.

  3. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L.

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats aremore » generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.« less

  4. Characterization of the patterns of polymorphism in a [open quotes]cryptic repeat[close quotes] reveals a novel type of hypervariable sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, D.P.; Schmeling, P.; Sommer, S.S.

    Alternating purine and pyrimidine repeats (RY(i)) are an abundant source of polymorphism. The subset with long tandem repeats of GT or AC (GT(i)) have been studied extensively, but cryptic RY(i) (i.e., no single tandem repeat predominates) have received little attention. The factor IX gene has a polymorphic cryptic RY(i) of 142-216 bp. Previously, there were four known polymorphic alleles, of the form AB, A[sub 2]B, A[sub 2]B[sub 2], and A[sub 3]B[sub 2], where A = (GT)(AC)[sub 3](AT)[sub 3](GT)(AT)[sub 4] and B = A with an additional 3' AT dinucleotide. To further characterize this locus, the authors examined more than 1,700more » additional human chromosomes and determined the sequences of the homologous sites in orangutans and chimpanzees. The novel alleles found in humans expand the repertoire of A/B alleles to A[sub 0-4]B[sub 1] and A[sub 1-3]B[sub 2]. The A[sub n]B[sub 2] series are abundant in Caucasians but are absent in blacks and Asians. Conversely, the A[sub 0]B[sub 1] allele is common in blacks but is not found in more than 1,700 Caucasian chromosomes. The data are compatible with a model in which recombination is more frequent than polymerase slippage at this locus. In orangutans, the RY(i) is present, but the sequence is markedly different. An A/B-type of pattern was discerned in which B differs from A by an additional six (AT) dinucleotides at the 3' end. In chimpanzees, the size of the RY(i) locus was greatly expanded, and the sequence showed a novel pattern of hypervariability in which there are many tandem repeats of the form (GT)[sub n](AC)[sub 0](AT)[sub p](GT)[sub q](AT)[sub s], where n, o, p, q, and s are different integers. The sequences of the factor IX intron 1 cryptic RY(i) in three primates provide perspective on the range of possible patterns of polymorphism. Analysis of the patterns suggests how the RY(i) can be conserved during evolution, while the precise sequence varies. 25 refs., 5 figs., 3 tabs.« less

  5. Methods for sequencing GC-rich and CCT repeat DNA templates

    DOEpatents

    Robinson, Donna L.

    2007-02-20

    The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.

  6. The Contribution of Short Repeats of Low Sequence Complexity to Large Conifer Genomes

    Treesearch

    A. Schmidt; R.L. Doudrick; J.S. Heslop-Harrison; T. Schmidt

    2000-01-01

    Abstract: The abundance and genomic organization of six simple sequence repeats, consisting of di-, tri-, and tetranucleotide sequence motifs, and a minisatellite repeat have been analyzed in different gymnosperms by Southern hybridization. Within the gymnosperm genomes investigated, the abundance and genomic organization of micro- and...

  7. Always look on both sides: Phylogenetic information conveyed by simple sequence repeat allele sequences

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily,...

  8. Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools.

    PubMed

    Guizard, Sébastien; Piégu, Benoît; Arensburger, Peter; Guillou, Florian; Bigot, Yves

    2016-08-19

    The program RepeatMasker and the database Repbase-ISB are part of the most widely used strategy for annotating repeats in animal genomes. They have been used to show that avian genomes have a lower repeat content (8-12 %) than the sequenced genomes of many vertebrate species (30-55 %). However, the efficiency of such a library-based strategies is dependent on the quality and completeness of the sequences in the database that is used. An alternative to these library based methods are methods that identify repeats de novo. These alternative methods have existed for a least a decade and may be more powerful than the library based methods. We have used an annotation strategy involving several complementary de novo tools to determine the repeat content of the model genome galGal4 (1.04 Gbp), including identifying simple sequence repeats (SSRs), tandem repeats and transposable elements (TEs). We annotated over one Gbp. of the galGal4 genome and showed that it is composed of approximately 19 % SSRs and TEs repeats. Furthermore, we estimate that the actual genome of the red jungle fowl contains about 31-35 % repeats. We find that library-based methods tend to overestimate TE diversity. These results have a major impact on the current understanding of repeats distributions throughout chromosomes in the red jungle fowl. Our results are a proof of concept of the reliability of using de novo tools to annotate repeats in large animal genomes. They have also revealed issues that will need to be resolved in order to develop gold-standard methodologies for annotating repeats in eukaryote genomes.

  9. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  10. [Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats in the Genomes of Shigella].

    PubMed

    Wang, Pengfei; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Wang, Linlin; Guo, Xiangjiao; Yang, Haiyan; Xi, Yuanlin

    2015-04-01

    This study was aimed to explore the features of clustered regularly interspaced short palindromic repeats (CRISPR) structures in Shigella by using bioinformatics. We used bioinformatics methods, including BLAST, alignment and RNA structure prediction, to analyze the CRISPR structures of Shigella genomes. The results showed that the CRISPRs existed in the four groups of Shigella, and the flanking sequences of upstream CRISPRs could be classified into the same group with those of the downstream. We also found some relatively conserved palindromic motifs in the leader sequences. Repeat sequences had the same group with corresponding flanking sequences, and could be classified into two different types by their RNA secondary structures, which contain "stem" and "ring". Some spacers were found to homologize with part sequences of plasmids or phages. The study indicated that there were correlations between repeat sequences and flanking sequences, and the repeats might act as a kind of recognition mechanism to mediate the interaction between foreign genetic elements and Cas proteins.

  11. A novel species-specific tandem repeat DNA family from Sinapis arvensis: detection of telomere-like sequences.

    PubMed

    Kapila, R; Das, S; Srivastava, P S; Lakshmikumaran, M

    1996-08-01

    DNA sequences representing a tandemly repeated DNA family of the Sinapis arvensis genome were cloned and characterized. The 700-bp tandem repeat family is represented by two clones, pSA35 and pSA52, which are 697 and 709 bp in length, respectively. Dot matrix analysis of the sequences indicates the presence of repeated elements within each monomeric unit. Sequence analysis of the repetitive region of clones pSA35 and pSA52 shows that there are several copies of a 7-bp repeat element organized in tandem. The consensus sequence of this repeat element is 5'-TTTAGGG-3'. These elements are highly mutated and the difference in length between the two clones is due to different copy numbers of these elements. The repetitive region of clone pSA35 has 26 copies of the element TTTAGGG, whereas clone pSA52 has 28 copies. The repetitive region in both clones is flanked on either side by inverted repeats that may be footprints of a transposition event. Sequence comparison indicates that the element TTTAGGG is identical to telomeric repeats present in Arabidopsis, maize, tomato, and other plants. However, Bal31 digestion kinetics indicates non-telomeric localization of the 700-bp tandem repeats. The clones represent a novel repeat family as (i) they contain telomere-like motifs as subrepeats within each unit; and (ii) they do not hybridize to related crucifers and are species-specific in nature.

  12. Controversies and priorities in amyotrophic lateral sclerosis

    PubMed Central

    Turner, Martin R; Hardiman, Orla; Benatar, Michael; Brooks, Benjamin R; Chio, Adriano; de Carvalho, Mamede; Ince, Paul G; Lin, Cindy; Miller, Robert G; Mitsumoto, Hiroshi; Nicholson, Garth; Ravits, John; Shaw, Pamela J; Swash, Michael; Talbot, Kevin; Traynor, Bryan J; den Berg, Leonard H Van; Veldink, Jan H; Vucic, Steve; Kiernan, Matthew C

    2015-01-01

    Summary Two decades after the discovery that 20% of familial amyotrophic lateral sclerosis (ALS) cases were linked to mutations in the superoxide dismutase-1 (SOD1) gene, a substantial proportion of the remainder of cases of familial ALS have now been traced to an expansion of the intronic hexanucleotide repeat sequence in C9orf72. This breakthrough provides an opportunity to re-evaluate longstanding concepts regarding the cause and natural history of ALS, coming soon after the pathological unification of ALS with frontotemporal dementia through a shared pathological signature of cytoplasmic inclusions of the ubiquitinated protein TDP-43. However, with profound clinical, prognostic, neuropathological, and now genetic heterogeneity, the concept of ALS as one disease appears increasingly untenable. This background calls for the development of a more sophisticated taxonomy, and an appreciation of ALS as the breakdown of a wider network rather than a discrete vulnerable population of specialised motor neurons. Identification of C9orf72 repeat expansions in patients without a family history of ALS challenges the traditional division between familial and sporadic disease. By contrast, the 90% of apparently sporadic cases and incomplete penetrance of several genes linked to familial cases suggest that at least some forms of ALS arise from the interplay of multiple genes, poorly understood developmental, environmental, and age-related factors, as well as stochastic events. PMID:23415570

  13. Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus.

    PubMed Central

    Pietras, D F; Bennett, K L; Siracusa, L D; Woodworth-Gutai, M; Chapman, V M; Gross, K W; Kane-Haas, C; Hastie, N D

    1983-01-01

    We report the construction of a small library of recombinant plasmids containing Mus musculus repetitive DNA inserts. The repetitive cloned fraction was derived from denatured genomic DNA by reassociation to a Cot value at which repetitive, but not unique, sequences have reannealed followed by exhaustive S1 nuclease treatment to degrade single stranded DNA. Initial characterizations of this library by colony filter hybridizations have led to the identification of a previously undetected M. musculus minor satellite as well as to clones containing M. musculus major satellite sequences. This new satellite is repeated 10-20 times less than the major satellite in the M. musculus genome. It has a repeat length of 130 nucleotides compared with the M. musculus major satellite with a repeat length of 234 nucleotides. Sequence analysis of the minor satellite has shown that it has a 29 base pair region with extensive homology to one of the major satellite repeating subunits. We also show by in situ hybridization that this minor satellite sequence is located at the centromeres and possibly the arms of at least half the M musculus chromosomes. Sequences related to the minor satellite have been found in the DNA of a related Mus species, Mus spretus, and may represent the major satellite of that species. Images PMID:6314268

  14. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae).

    PubMed

    Hwang, Dae-Sik; Ki, Jang-Seu; Jeong, Dong-Hyuk; Kim, Bo-Hyun; Lee, Bae-Keun; Han, Sang-Hoon; Lee, Jae-Seong

    2008-08-01

    In the present paper, we describe the mitochondrial genome sequence of the Asiatic black bear (Ursus thibetanus ussuricus) with particular emphasis on the control region (CR), and compared with mitochondrial genomes on molecular relationships among the bears. The mitochondrial genome sequence of U. thibetanus ussuricus was 16,700 bp in size with mostly conserved structures (e.g. 13 protein-coding, two rRNA genes, 22 tRNA genes). The CR consisted of several typical conserved domains such as F, E, D, and C boxes, and a conserved sequence block. Nucleotide sequences and the repeated motifs in the CR were different among the bear species, and their copy numbers were also variable according to populations, even within F1 generations of U. thibetanus ussuricus. Comparative analyses showed that the CR D1 region was highly informative for the discrimination of the bear family. These findings suggest that nucleotide sequences of both repeated motifs and CR D1 in the bear family are good markers for species discriminations.

  15. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets.

    PubMed

    Droege, Marcus; Hill, Brendon

    2008-08-31

    The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.

  16. Target Site Recognition by a Diversity-Generating Retroelement

    PubMed Central

    Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.

    2011-01-01

    Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. PMID:22194701

  17. Repeated blood transfusions: Identification of a novel culprit of early graft failure in children.

    PubMed

    Therrien, Judith; Guo, Kenneth; Guo, Liming; Liu, Aihua; Marelli, Ariane

    2018-03-01

    The attrition of right ventricle to pulmonary artery (RV-PA) grafts has been attributed in part to the body's immunologic response. We hypothesized that antibodies developed through blood transfusion, directed against the grafts, may result in accelerated degeneration and the need for re-intervention. This is a population-based study of the province of Quebec. We included children born between January 1, 1987 to December 31, 2006 who were diagnosed with a cono-truncal anomaly and had an RV-PA graft. The patients were followed for transfusion exposure and RV-PA graft re-intervention. Time to re-intervention in those exposed versus non-exposed was analyzed using Cox regression. Analysis was done in two time periods, before and after the calendar year 2000, given the change in blood preparation in the province of Quebec. There were 413 patients who met the inclusion criteria of a cono-truncal disorder. Of the whole study population, 69% received a blood transfusion. Cox regression analysis showed that among patients who had the initial graft performed (n=181) before year 2000, having 2 or more blood transfusion was associated with an nearly tripled risk of a re-intervention comparing to no blood transfusion (hazard ratio of 2.88; 95% confidence interval 1.05-7.91). In patients who had the initial graft performed after year 2000 (n=232), the associated risk increase was 7-fold (hazard ratio of 7.01; 95% confidence interval 3.06-16.02). Kaplan-Meier analyses confirmed the significant difference in the re-intervention free survival probabilities between those who received 2 or more blood product transfusion and those who did not as well: prior to year 2000 (67.9% vs. 88.0% at 5years, p=0.0201) as well as after year 2000 (39.7% vs. 82.8% at 5years, p<0.0001). In this population-based analysis, repeated blood product transfusion was associated with a significant increased risk of a need for RV-PA graft re-intervention. This data strongly suggest that repeated blood transfusion may adversely impact graft longevity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Typing Clostridium difficile strains based on tandem repeat sequences

    PubMed Central

    2009-01-01

    Background Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies. Results This report presents results from a systematic screen for variation in repetitive DNA in the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and 'TR10', which display extensive sequence variation that may be useful for sequence-based strain typing. Based on an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely clonal population structure and evolutionary history. Conclusion We conclude that sequence analysis of the two repetitive loci introduced here may be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in databases accessible over the internet, obviating the need for the exchange of reference strains. PMID:19133124

  19. Characterization and Epidemiology of Pigeon Paramyxovirus Type-1 Viruses (PPMV-1) Isolated in Macedonia.

    PubMed

    Dodovski, A; Cvetkovikj, I; Krstevski, K; Naletoski, I; Savić, Vladimir

    2017-06-01

    We have characterized in this study 10 PPMV-1 isolated from domestic pigeons and one PPMV-1 isolated from a feral pigeon in the period 2007-2012, using both classical methods (HI test and ICPI test) and molecular methods (RT-qPCR, RT-PCR, and nucleotide sequencing). Using phylogenetic analysis of partial fusion gene sequences, these viruses clustered with recent European PPMV-1 isolates (EU/re) within the genotype VIb/1. All isolates possessed virulent cleavage site motifs with variable morbidity and mortality in pigeons. The intracerebral pathogenecity indices of the five isolates ranged from 0.59 to 1.53. The repetitive isolation of PPMV-1 viruses for several consecutive years led toward establishing enzootic presence of the disease in pigeons. A high nucleotide sequence homology between the Macedonian isolates and EU/re isolates was shown. Co-circulation of different isolates in the same holdings was detected. This is the first study to extensively describe the molecular epidemiology of PPMV-1 isolated in Macedonia.

  20. Characterization of proviruses cloned from mink cell focus-forming virus-infected cellular DNA.

    PubMed Central

    Khan, A S; Repaske, R; Garon, C F; Chan, H W; Rowe, W P; Martin, M A

    1982-01-01

    Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA. Images PMID:6281459

  1. An additional function of the rough endoplasmic reticulum protein complex prolyl 3-hydroxylase 1·cartilage-associated protein·cyclophilin B: the CXXXC motif reveals disulfide isomerase activity in vitro.

    PubMed

    Ishikawa, Yoshihiro; Bächinger, Hans Peter

    2013-11-01

    Collagen biosynthesis occurs in the rough endoplasmic reticulum, and many molecular chaperones and folding enzymes are involved in this process. The folding mechanism of type I procollagen has been well characterized, and protein disulfide isomerase (PDI) has been suggested as a key player in the formation of the correct disulfide bonds in the noncollagenous carboxyl-terminal and amino-terminal propeptides. Prolyl 3-hydroxylase 1 (P3H1) forms a hetero-trimeric complex with cartilage-associated protein and cyclophilin B (CypB). This complex is a multifunctional complex acting as a prolyl 3-hydroxylase, a peptidyl prolyl cis-trans isomerase, and a molecular chaperone. Two major domains are predicted from the primary sequence of P3H1: an amino-terminal domain and a carboxyl-terminal domain corresponding to the 2-oxoglutarate- and iron-dependent dioxygenase domains similar to the α-subunit of prolyl 4-hydroxylase and lysyl hydroxylases. The amino-terminal domain contains four CXXXC sequence repeats. The primary sequence of cartilage-associated protein is homologous to the amino-terminal domain of P3H1 and also contains four CXXXC sequence repeats. However, the function of the CXXXC sequence repeats is not known. Several publications have reported that short peptides containing a CXC or a CXXC sequence show oxido-reductase activity similar to PDI in vitro. We hypothesize that CXXXC motifs have oxido-reductase activity similar to the CXXC motif in PDI. We have tested the enzyme activities on model substrates in vitro using a GCRALCG peptide and the P3H1 complex. Our results suggest that this complex could function as a disulfide isomerase in the rough endoplasmic reticulum.

  2. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants

    PubMed Central

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1–6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ PMID:25380781

  3. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants.

    PubMed

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1-6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ © The Author(s) 2014. Published by Oxford University Press.

  4. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].

    PubMed

    Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian

    2009-11-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.

  5. Sequence and Analysis of the Tomato JOINTLESS Locus1

    PubMed Central

    Mao, Long; Begum, Dilara; Goff, Stephen A.; Wing, Rod A.

    2001-01-01

    A 119-kb bacterial artificial chromosome from the JOINTLESS locus on the tomato (Lycopersicon esculentum) chromosome 11 contained 15 putative genes. Repetitive sequences in this region include one copia-like LTR retrotransposon, 13 simple sequence repeats, three copies of a novel type III foldback transposon, and four putative short DNA repeats. Database searches showed that the foldback transposon and the short DNA repeats seemed to be associated preferably with genes. The predicted tomato genes were compared with the complete Arabidopsis genome. Eleven out of 15 tomato open reading frames were found to be colinear with segments on five Arabidopsis bacterial artificial chromosome/P1-derived artificial chromosome clones. The synteny patterns, however, did not reveal duplicated segments in Arabidopsis, where over half of the genome is duplicated. Our analysis indicated that the microsynteny between the tomato and Arabidopsis genomes was still conserved at a very small scale but was complicated by the large number of gene families in the Arabidopsis genome. PMID:11457984

  6. The 2.1-kb inverted repeat DNA sequences flank the mat2,3 silent region in two species of Schizosaccharomyces and are involved in epigenetic silencing in Schizosaccharomyces pombe.

    PubMed Central

    Singh, Gurjeet; Klar, Amar J S

    2002-01-01

    The mat2,3 region of the fission yeast Schizosaccharomyces pombe exhibits a phenomenon of transcriptional silencing. This region is flanked by two identical DNA sequence elements, 2.1 kb in length, present in inverted orientation: IRL on the left and IRR on the right of the silent region. The repeats do not encode any ORF. The inverted repeat DNA region is also present in a newly identified related species, which we named S. kambucha. Interestingly, the left and right repeats share perfect identity within a species, but show approximately 2% bases interspecies variation. Deletion of IRL results in variegated expression of markers inserted in the silent region, while deletion of the IRR causes their derepression. When deletions of these repeats were genetically combined with mutations in different trans-acting genes previously shown to cause a partial defect in silencing, only mutations in clr1 and clr3 showed additive defects in silencing with the deletion of IRL. The rate of mat1 switching is also affected by deletion of repeats. The IRL or IRR deletion did not cause significant derepression of the mat2 or mat3 loci. These results implicate repeats for maintaining full repression of the mat2,3 region, for efficient mat1 switching, and further support the notion that multiple pathways cooperate to silence the mat2,3 domain. PMID:12399374

  7. Revisiting the Plastid Phylogenomics of Pinaceae with Two Complete Plastomes of Pseudolarix and Tsuga.

    PubMed

    Sudianto, Edi; Wu, Chung-Shien; Lin, Ching-Ping; Chaw, Shu-Miaw

    2016-06-27

    Phylogeny of the ten Pinaceous genera has long been contentious. Plastid genomes (plastomes) provide an opportunity to resolve this problem because they contain rich evolutionary information. To comprehend the plastid phylogenomics of all ten Pinaceous genera, we sequenced the plastomes of two previously unavailable genera, Pseudolarix amabilis (122,234 bp) and Tsuga chinensis (120,859 bp). Both plastomes share similar gene repertoire and order. Here for the first time we report a unique insertion of tandem repeats in accD of T. chinensis From the 65 plastid protein-coding genes common to all Pinaceous genera, we re-examined the phylogenetic relationship among all Pinaceous genera. Our two phylogenetic trees are congruent in an identical tree topology, with the five genera of the Abietoideae subfamily constituting a monophyletic clade separate from the other three subfamilies: Pinoideae, Piceoideae, and Laricoideae. The five genera of Abietoideae were grouped into two sister clades consisting of (1) Cedrus alone and (2) two sister subclades of Pseudolarix-Tsuga and Abies-Keteleeria, with the former uniquely losing the gene psaM and the latter specifically excluding the 3 psbA from the residual inverted repeat. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Genome Wide Characterization of Simple Sequence Repeats in Cucumber

    USDA-ARS?s Scientific Manuscript database

    The whole genome sequence of the cucumber cultivar Gy14 was recently sequenced at 15× coverage with the Roche 454 Titanium technology. The microsatellite DNA sequences (simple sequence repeats, SSRs) in the assembled scaffolds were computationally explored and characterized. A total of 112,073 SSRs ...

  9. Glucometabolic effects of single and repeated exposure to forced-swimming stressor in Sprague-Dawley rats.

    PubMed

    Morakinyo, Ayodele Olufemi; Iranloye, Bolanle Olubusola; Ogunsola, Oluseyi Abimbola

    2018-04-01

    We aimed to evaluate the effects of a single (acute) and repeated (chronic) exposure to forced-swimming stressor on glucose tolerance, insulin sensitivity, lipid profile and glycogen content in male rats. Thirty adult male Sprague-Dawley rats (12 weeks old) were divided randomly into five groups: control group, single exposure (SE) to forced-swim stressor, repeated exposure to forced-swim stressor for 7 days (RE7), 14 days (RE14) and 28 days (RE28). Glucose tolerance test and Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) were undertaken on fasting rats to obtain glucose and insulin profiles. ELISA was performed to assess plasma insulin and corticosterone levels. Total cholesterol, triglyceride, high- and low-density lipoproteins, hepatic and skeletal glycogen content were also determined. Repeated exposure to stressor induced glucose intolerance and insulin resistance in the experimental rats. Results showed that all RE groups exhibited a significantly higher area under the curve compared with others (p=0.0001); similarly, HOMA-IR increased (p=0.0001) in all RE groups compared with control. Prolonged exposure to stressor significantly increased the plasma insulin and corticosterone levels but decreased the glycogen content in the liver and skeletal muscle when compared with the control group. Additionally, chronic stressor significantly increased the total cholesterol and triglyceride levels, however, acute stressor produced significantly elevated high-density lipoproteins level. In conclusion, repeated exposure to forced-swimming stressor induced glucose intolerance and insulin resistance in rats by disrupting the insulin sensitivity as well as heightening the glycogenolysis in the liver and skeletal muscle. Acute stressor was unable to cause glucose intolerance and insulin resistance but it appears that may have a positive effect on the lipid metabolism.

  10. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    NASA Astrophysics Data System (ADS)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1) sequence content of deletion products confirmed the previously unidentified loss of genetic control of mammalian chromosome biology and hybrid dysgenesis.

  11. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Xia, Kai; Liang, Xin-le; Li, Yu-dong

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria.

  12. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats.

    PubMed

    Yu, Zhenming; Zhu, Yongqing; Chen-Plotkin, Alice S; Clay-Falcone, Dana; McCluskey, Leo; Elman, Lauren; Kalb, Robert G; Trojanowski, John Q; Lee, Virginia M-Y; Van Deerlin, Vivianna M; Gitler, Aaron D; Bonini, Nancy M

    2011-03-29

    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27-33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥ 34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1-3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2.

  13. Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii.

    PubMed

    Hamilton, P T; Reeve, J N

    1985-01-01

    DNA fragments cloned from the methanogenic archaebacterium Methanobrevibacter smithii which complement mutations in the purE and proC genes of E. coli have been sequenced. Sequence analyses, transposon mutagenesis and expression in E. coli minicells indicate that purE and proC complementations result from the synthesis of M. smithii polypeptides with molecular weights of 36,697 and 27,836 respectively. The encoding genes appear to be located in operons. The M. smithii genome contains 69% A/T basepairs (bp) which is reflected in unusual codon usages and intergenic regions containing approximately 85% A/T bp. An insertion element, designated ISM1, was found within the cloned M. smithii DNA located adjacent to the proC complementing region. ISM1 is 1381 bp in length, has 29 bp terminal inverted repeat sequences and contains one major ORF encoded in 87% of the ISM1 sequence. ISM1 is mobile, present in approximately 10 copies per genome and integration duplicates 8 bp at the site of insertion. The duplicated sequences show homology with sequences within the 29 bp terminal repeat sequence of ISM1. Comparison of our data with sequences from halophilic archaebacteria suggests that 5'GAANTTTCA and 5'TTTTAATATAAA may be consensus promoter sequences for archaebacteria. These sequences closely resemble the consensus sequences which precede Drosophila heat-shock genes (Pelham 1982; Davidson et al. 1983). Methanogens appear to employ the eubacterial system of mRNA: 16SrRNA hybridization to ensure initiation of translation; the consensus ribosome binding sequence is 5'AGGTGA.

  14. Management patterns of medicare patients undergoing treatment for upper urinary tract calculi.

    PubMed

    Matlaga, Brian R; Meckley, Lisa M; Kim, Micheline; Byrne, Thomas W

    2014-06-01

    We conducted this study to identify differences in the re-treatment rates and ancillary procedures for the two most commonly utilized stone treatment procedures in the Medicare population: ureteroscopy (URS) and shock wave lithotripsy (SWL). A retrospective claims analysis of the Medicare standard analytical file 5% sample was conducted to identify patients with a new diagnosis of urolithiasis undergoing treatment with URS or SWL from 2009-2010. Outcomes evaluated: (1) repeat stone removal procedures within 120 days post index procedure, (2) stent placement procedures on the index date, 30 days prior to and 120 days post index date, and (3) use of general anesthesia. We identified 3885 eligible patients, of which 2165 (56%) underwent SWL and 1720 (44%) underwent URS. Overall, SWL patients were 1.73 times more likely to undergo at least one repeat procedure than URS patients, and twice as likely to require multiple re-treatments compared to URS. Among those with ureteral stones, SWL patients were 2.27 times more likely to undergo repeat procedures. The difference was not statistically significant in renal stone patients. Overall, SWL patients were 1.41 times more likely than URS patients to have a stent placed prior to index procedure, and 1.33 times more likely to have a stent placed subsequent to the index procedure. The majority of URS patients (77.8%) had a stent placed at the time of index procedure. There was no significant difference in anesthetic approaches between SWL and URS. Patients undergoing SWL are significantly more likely to require re-treatments than URS patients. SWL patients are also significantly more likely to require ureteral stent placement as a separate event. SWL and URS patients have similar rates of general anesthesia.

  15. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh].

    PubMed

    Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram P; Gupta, Deepak K; Singh, Sangeeta; Dogra, Vivek; Gaikwad, Kishor; Sharma, Tilak R; Raje, Ranjeet S; Bandhopadhya, Tapas K; Datta, Subhojit; Singh, Mahendra N; Bashasab, Fakrudin; Kulwal, Pawan; Wanjari, K B; K Varshney, Rajeev; Cook, Douglas R; Singh, Nagendra K

    2011-01-20

    Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥ 18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.

  16. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh

    PubMed Central

    2011-01-01

    Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea. PMID:21251263

  17. Targeting of Repeated Sequences Unique to a Gene Results in Significant Increases in Antisense Oligonucleotide Potency

    PubMed Central

    Vickers, Timothy A.; Freier, Susan M.; Bui, Huynh-Hoa; Watt, Andrew; Crooke, Stanley T.

    2014-01-01

    A new strategy for identifying potent RNase H-dependent antisense oligonucleotides (ASOs) is presented. Our analysis of the human transcriptome revealed that a significant proportion of genes contain unique repeated sequences of 16 or more nucleotides in length. Activities of ASOs targeting these repeated sites in several representative genes were compared to those of ASOs targeting unique single sites in the same transcript. Antisense activity at repeated sites was also evaluated in a highly controlled minigene system. Targeting both native and minigene repeat sites resulted in significant increases in potency as compared to targeting of non-repeated sites. The increased potency at these sites is a result of increased frequency of ASO/RNA interactions which, in turn, increases the probability of a productive interaction between the ASO/RNA heteroduplex and human RNase H1 in the cell. These results suggest a new, highly efficient strategy for rapid identification of highly potent ASOs. PMID:25334092

  18. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family.

    PubMed

    Deryusheva, Evgeniia I; Machulin, Andrey V; Selivanova, Olga M; Galzitskaya, Oxana V

    2017-04-01

    Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.

    PubMed Central

    Benslimane, A A; Dron, M; Hartmann, C; Rode, A

    1986-01-01

    Several monomers (177 bp) of a tandemly arranged repetitive nuclear DNA sequence of Brassica oleracea have been cloned and sequenced. They share up to 95% homology between one another and up to 80% with other satellite DNA sequences of Cruciferae, suggesting a common ancestor. Both strands of these monomers show more than 50% homology with many tRNA genes; the best homologies have been obtained with Lys and His yeast mitochondrial tRNA genes (respectively 64% and 60%). These results suggest that small tandemly repeated DNA sequences of plants may have evolved from a tRNA gene ancestor. These tandem repeats have probably arisen via a process involving reverse transcription of polymerase III RNA intermediates, as is the case for interspersed DNA sequences of mammalians. A model is proposed to explain the formation of such small tandemly repeated DNA sequences. Images PMID:3774553

  20. Molecular characterization of a polymorphic 3-Mb deletion at chromosome Yp11.2 containing the AMELY locus in Singapore and Malaysia populations.

    PubMed

    Yong, Rita Y Y; Gan, Linda S H; Chang, Yuet Meng; Yap, Eric P H

    2007-11-01

    Amelogenin paralogs on Chromosome X (AMELX) and Y (AMELY) are commonly used sexing markers. Interstitial deletion of Yp involving the AMELY locus has previously been reported. The combined frequency of the AMELY null allele in Singapore and Malaysia populations is 2.7%, 0.6% in Indian and Malay ethnic groups respectively. It is absent among 541 Chinese screened. The null allele in this study belongs to 3 Y haplogroups; J2e1 (85.7%), F* (9.5%) and D* (4.8%). Low and high-resolution STS mapping, followed by sequence analysis of breakpoint junction confirmed a large deletion of 3 to 3.7-Mb located at the Yp11.2 region. Both breakpoints were located in TSPY repeat arrays, suggesting a non-allelic homologous recombination (NAHR) mechanism of deletion. All regional null samples shared identical breakpoint sequences according to their haplogroup affiliation, providing molecular evidence of a common ancestry origin for each haplogroup, and at least 3 independent deletion events recurred in history. The estimated ages based on Y-SNP and STR analysis were approximately 13.5 +/- 3.1 kyears and approximately 0.9 +/- 0.9 kyears for the J2e1 and F* mutations, respectively. A novel polymorphism G > A at Y-GATA-H4 locus in complete linkage disequilibrium with J2e1 null mutations is a more recent event. This work re-emphasizes the need to include other sexing markers for gender determination in certain regional populations. The frequency difference among global populations suggests it constitutes another structural variation locus of human chromosome Y. The breakpoint sequences provide further information to a better understanding of the NAHR mechanism and DNA rearrangements due to higher order genomic architecture.

  1. BAC-end sequence-based SNP mining in Allotetraploid Cotton (Gossypium) utilizing re-sequencing data, phylogenetic inferences and perspectives for genetic mapping

    USDA-ARS?s Scientific Manuscript database

    A bacterial artificial chromosome (BAC) library and BAC-end sequences for Gossypium hirsutum L. have recently been developed. Here we report on genomic-based genome-wide SNP mining utilizing re-sequencing data with a BAC-end sequence reference for twelve G. hirsutum L. lines, one G. barbadense L. li...

  2. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  3. Sequencing, annotation and comparative analysis of nine BACs of giant panda (Ailuropoda melanoleuca).

    PubMed

    Zheng, Yang; Cai, Jing; Li, JianWen; Li, Bo; Lin, Runmao; Tian, Feng; Wang, XiaoLing; Wang, Jun

    2010-01-01

    A 10-fold BAC library for giant panda was constructed and nine BACs were selected to generate finish sequences. These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of giant panda newly generated by the Illumina GA sequencing technology. Complete sanger sequencing, assembly, annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb. Homologue search and de novo prediction methods were used to annotate genes and repeats. Twelve protein coding genes were predicted, seven of which could be functionally annotated. The seven genes have an average gene size of about 41 kb, an average coding size of about 1.2 kb and an average exon number of 6 per gene. Besides, seven tRNA genes were found. About 27 percent of the BAC sequence is composed of repeats. A phylogenetic tree was constructed using neighbor-join algorithm across five species, including giant panda, human, dog, cat and mouse, which reconfirms dog as the most related species to giant panda. Our results provide detailed sequence and structure information for new genes and repeats of giant panda, which will be helpful for further studies on the giant panda.

  4. Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives.

    PubMed

    Li, Wan; Bian, Xin; Evivie, Smith Etareri; Huo, Gui-Cheng

    2016-09-01

    The CRISPR-Cas (CRISPR together with CRISPR-associated proteins) modules are the adaptive immune system, acting as an adaptive and heritable immune system in bacteria and archaea. CRISPR-based immunity acts by integrating short virus sequences in the cell's CRISPR locus, allowing the cell to remember, recognize, and clear infections. In this study, the homology of CRISPRs sequence in BIMs (bacteriophage-insensitive mutants) of Streptococcus thermophilus St-I were analyzed. Secondary structures of the repeats and the PAMs (protospacer-associated motif) of each CRISPR locus were also predicted. Results showed that CRISPR1 has 27 repeat-spacer units, 5 of them had duplicates; CRISPR2 has one repeat-spacer unit; CRISPR3 has 28 repeat-spacer units. Only BIM1 had a new spacer acquisition in CRISPR3, while BIM2 and BIM3 had no new spacers' insertion, thus indicating that while most CRISPR1 were more active than CRISPR3, new spacer acquisition occurred just in CRSPR3 in some situations. These findings will help establish the foundation for the study of CRSPR-Cas systems in lactic acid bacteria.

  5. [Transcription map of the 13q14 region, frequently deleted in B-cell chronic lymphocytic leukemia patients].

    PubMed

    Tiazhelova, T V; Ivanov, D V; Makeeva, N V; Kapanadze, B I; Nikitin, E A; Semov, A B; Sangfeldt, O; Grander, D; Vorob'ev, A I; Einhorn, S; Iankovskiĭ, N K; Baranova, A V

    2001-11-01

    Deletions in the region located between the STS markers D13S1168 and D13S25 on chromosome 13 are the most frequent genomic changes in patients with B-cell chronic lymphocytic leukemia (B-CLL). After sequencing of this region, two novel candidate genes were identified: C13orf1 (chromosome 13 open reading frame 1) and PLCC (putative large CLL candidate). Analysis of the repeat distribution revealed two subregions differing in composition of repetitious DNA and gene organization. The interval D13S1168-D13S319 contains 131 Alu repeats accounting for 24.8% of its length, whereas the interval GCT16C05-D13S25, which is no more than 180 kb away from the former one is extremely poor in Alu repeats (4.1% of the total length). Both intervals contain almost the same amount of the LINE-type repeats L1 and L2 (20.3 and 21.24%, respectively). In the chromosomal region studied, 29 Alu repeats were found to belong to the evolutionary young subfamily Y, which is still capable of amplifying. A considerable proportion of repeats of this type with similar nucleotide sequences may contribute to the recombinational activity of the chromosomal region 13q14.3, which is responsible for its rearrangements in some tumors in humans.

  6. Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome

    PubMed Central

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.

    2014-01-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269

  7. Evaluating information content of SNPs for sample-tagging in re-sequencing projects.

    PubMed

    Hu, Hao; Liu, Xiang; Jin, Wenfei; Hilger Ropers, H; Wienker, Thomas F

    2015-05-15

    Sample-tagging is designed for identification of accidental sample mix-up, which is a major issue in re-sequencing studies. In this work, we develop a model to measure the information content of SNPs, so that we can optimize a panel of SNPs that approach the maximal information for discrimination. The analysis shows that as low as 60 optimized SNPs can differentiate the individuals in a population as large as the present world, and only 30 optimized SNPs are in practice sufficient in labeling up to 100 thousand individuals. In the simulated populations of 100 thousand individuals, the average Hamming distances, generated by the optimized set of 30 SNPs are larger than 18, and the duality frequency, is lower than 1 in 10 thousand. This strategy of sample discrimination is proved robust in large sample size and different datasets. The optimized sets of SNPs are designed for Whole Exome Sequencing, and a program is provided for SNP selection, allowing for customized SNP numbers and interested genes. The sample-tagging plan based on this framework will improve re-sequencing projects in terms of reliability and cost-effectiveness.

  8. Repeat-aware modeling and correction of short read errors.

    PubMed

    Yang, Xiao; Aluru, Srinivas; Dorman, Karin S

    2011-02-15

    High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors for genomes with high repeat content.

  9. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons.

    PubMed Central

    Xiong, Y; Eickbush, T H

    1988-01-01

    Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons. Images PMID:2447482

  10. Development of highly polymorphic EST-SSR markers and segregation in F₁ hybrid population of Vitis vinifera L.

    PubMed

    Kayesh, E; Zhang, Y Y; Liu, G S; Bilkish, N; Sun, X; Leng, X P; Fang, J G

    2013-09-23

    The objectives of this investigation were to develop and validate the expressed sequence tag (EST)-simple sequence repeat (SSR) markers from large EST sequences, and to study the segregation and distribution of SSRs within two grapevine parental lines. In total, 94 F₁ lines crossed between "Early Rose" and "Red Globe" were studied. Approximately 2100 EST-SSR sequences of Vitis vinifera L. were searched for SSRs and analyzed for the design of polymerase chain reaction (PCR) primers amplifying the SSR-rich regions. Trinucleotide repeats were found to be the most abundant, followed by other nucleotide repeats. A total of 182 SSR primer pairs were first developed for the study on the parental polymorphism. Among the 182 SSR primers, 142 primer pairs (78%) could amplify the anticipated PCR products, among which only 52 primer pairs (36.62%) showed polymorphism between the two parents. These polymorphic bands were further surveyed among the 94 F₁ lines, and the results showed that a total of 162 bands were amplified, and 98 of them were polymorphic in both parents (60.86% polymorphism), with an average of 1.88 polymorphic DNA bands for each primer pair. After testing with the chi-square test, 33 of the clearly amplified polymorphic bands followed a 3:1 ratio, and 37 followed a 1:1 ratio. The rest showed distorted segregation ratios.

  11. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    PubMed

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  12. Survey and Analysis of Microsatellites in the Silkworm, Bombyx mori

    PubMed Central

    Prasad, M. Dharma; Muthulakshmi, M.; Madhu, M.; Archak, Sunil; Mita, K.; Nagaraju, J.

    2005-01-01

    We studied microsatellite frequency and distribution in 21.76-Mb random genomic sequences, 0.67-Mb BAC sequences from the Z chromosome, and 6.3-Mb EST sequences of Bombyx mori. We mined microsatellites of ≥15 bases of mononucleotide repeats and ≥5 repeat units of other classes of repeats. We estimated that microsatellites account for 0.31% of the genome of B. mori. Microsatellite tracts of A, AT, and ATT were the most abundant whereas their number drastically decreased as the length of the repeat motif increased. In general, tri- and hexanucleotide repeats were overrepresented in the transcribed sequences except TAA, GTA, and TGA, which were in excess in genomic sequences. The Z chromosome sequences contained shorter repeat types than the rest of the chromosomes in addition to a higher abundance of AT-rich repeats. Our results showed that base composition of the flanking sequence has an influence on the origin and evolution of microsatellites. Transitions/transversions were high in microsatellites of ESTs, whereas the genomic sequence had an equal number of substitutions and indels. The average heterozygosity value for 23 polymorphic microsatellite loci surveyed in 13 diverse silkmoth strains having 2–14 alleles was 0.54. Only 36 (18.2%) of 198 microsatellite loci were polymorphic between the two divergent silkworm populations and 10 (5%) loci revealed null alleles. The microsatellite map generated using these polymorphic markers resulted in 8 linkage groups. B. mori microsatellite loci were the most conserved in its immediate ancestor, B. mandarina, followed by the wild saturniid silkmoth, Antheraea assama. PMID:15371363

  13. Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis

    PubMed Central

    Ludwig, Kerstin U.; Sullivan, Robert; van Rooij, Iris A.L.M.; Thonissen, Michelle; Swinnen, Steven; Phan, Milien; Conte, Federica; Ishorst, Nina; Gilissen, Christian; RoaFuentes, Laury; van de Vorst, Maartje; Henkes, Arjen; Steehouwer, Marloes; van Beusekom, Ellen; Bloemen, Marjon; Vankeirsbilck, Bruno; Bergé, Stefaan; Hens, Greet; Schoenaers, Joseph; Poorten, Vincent Vander; Roosenboom, Jasmien; Verdonck, An; Devriendt, Koen; Roeleveldt, Nel; Jhangiani, Shalini N.; Vissers, Lisenka E.L.M.; Lupski, James R.; de Ligt, Joep; Von den Hoff, Johannes W.; Pfundt, Rolph; Brunner, Han G.; Zhou, Huiqing; Dixon, Jill; Mangold, Elisabeth; van Bokhoven, Hans; Dixon, Michael J.; Kleefstra, Tjitske

    2016-01-01

    Purpose Here we aimed to identify a novel genetic cause of tooth agenesis (TA) and/or orofacial clefting (OFC) by combining whole exome sequencing (WES) and targeted re-sequencing in a large cohort of TA and OFC patients. Methods WES was performed in two unrelated patients, one with severe TA and OFC and another with severe TA only. After identifying deleterious mutations in a gene encoding the low density lipoprotein receptor-related protein 6 (LRP6), all its exons were re-sequenced with molecular inversion probes, in 67 patients with TA, 1,072 patients with OFC and in 706 controls. Results We identified a frameshift (c.4594delG, p.Cys1532fs) and a canonical splice site mutation (c.3398-2A>C, p.?) in LRP6 respectively in the patient with TA and OFC, and in the patient with severe TA only. The targeted re-sequencing showed significant enrichment of unique LRP6 variants in TA patients, but not in nonsyndromic OFC. From the 5 variants in patients with TA, 2 affect the canonical splice site and 3 were missense variants; all variants segregated with the dominant phenotype and in 1 case the missense mutation occurred de novo. Conclusion Mutations in LRP6 cause tooth agenesis in man. PMID:26963285

  14. Repeat sleeve gastrectomy: optimization of outcomes by modifying the indications and technique.

    PubMed

    Rebibo, Lionel; Dhahri, Abdennaceur; Robert, Brice; Regimbeau, Jean-Marc

    2018-04-01

    Few series are available concerning repeat sleeve gastrectomy (re-SG), and series have reported contradictory results concerning morbidity rates, with limited data concerning weight loss. Evaluate the short- and medium-term outcomes of re-SG. University hospital, France, public practice. Between June 2007 and March 2016, all patients undergoing re-SG (n = 46 patients) were included. Re-SG was proposed for patients with insufficient excess weight loss (EWL) (≤50%) or renewed weight gain with excessively high residual gastric volume (>250 mL and/or large gastric pouch). The primary efficacy endpoint was the overall complication rate of re-SG. The secondary efficacy endpoints were operative data, evaluation of weight loss, and correction of co-morbidities, risk factors for gastric leak (GL), by comparing 2 periods (period 1, January 2004-December 2013: blue/green or purple staplers without reinforcement; period 2, after December 2013: black staplers with reinforcement) and comparison of weight loss according to the indication for re-SG. The re-SG group consisted of 46 patients (35 women, mean age: 47.5 yr). The mean body mass index (BMI) before SG was 47.2 kg/m² (35-63.6). The mean time interval between SG and re-SG was 73 months (11-106). The BMI before re-SG was 41.2 kg/m² (29-54.7). Indications for surgery were insufficient weight loss in 25 patients (54.3%) and weight regain in 21 patients (45.7%). A large gastric pouch was visible in 4 patients (8.6%). The mean operating time was 97.6 minutes (45-220). One death (2.1%) and 7 complications (15.2%) were observed. The mean length of hospital stay was 3.6 days (1-30). At last follow-up, mean BMI was 32.1 kg/m 2 (20.3-41.3) and mean EWL was 62.3% (18-127.2). When analyzing risk factors for GL, residual gastric volume between 250 and 350 mL was associated with a higher GL rate compared with a volume ≥350 mL, and re-SG performed during period 1 was associated with a higher GL rate than re-SG performed during period 2 (17.4% versus 0%; P = .13). Re-SG performed for weight regain was associated with a significantly higher additional weight loss compared with re-SG performed for insufficient weight loss (mean additional EWL of 45.9%; P = .06). Re-SG is feasible, but it requires adaptation of the surgical procedure to decrease complications. Results on weight loss are acceptable, but the best indications for re-SG were a gastric volume>350 mL and in the case of weight regain with the exception of technical failure of the primary SG. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  15. Epitope mapping of the variable repetitive region with the MB antigen of Ureaplasma urealyticum.

    PubMed Central

    Zheng, X; Lau, K; Frazier, M; Cassell, G H; Watson, H L

    1996-01-01

    One of the major surface structures of Ureaplasma urealyticum recognized by antibodies of patients during infection is the MB antigen. Previously, we showed by Western blot (immunoblot) analysis that any one of the anti-MB monoclonal antibodies (MAbs) 3B1.5, 5B1.1, and 10C6.6 could block the binding of patient antibodies to MB. Subsequent DNA sequencing revealed that a unique six-amino-acid direct tandem repeat region composed the carboxy two-thirds of this antigen. In the present study, using antibody-reactive peptide scanning of this repeat region, we demonstrated that the amino acids defining the epitopes for MAbs 3B1.5 5B1.1 and 10C6.6 are EQP, GK, and KEQPA, respectively. Peptide scanning analysis of an infected patient's serum antibody response showed that the dominant epitope was defined by the sequence PAGK. Mapping of these continuous epitopes revealed overlap between all MAb and patient polyclonal antibody binding sites, thus explaining the ability of a single MAb to apparently block all polyclonal antibody binding sites. We also show that a single amino acid difference in the sequence of the repeats of serovars 3 and 14 accounts for the lack of reactivity with serovar 14 of two of the serovar 3-specific MAbs. Finally, the data demonstrate the need to obtain the sequences of the mba genes of all serovars before an effective serovar-specific antibody detection method can be developed. PMID:8914774

  16. Algorithm to find distant repeats in a single protein sequence

    PubMed Central

    Banerjee, Nirjhar; Sarani, Rangarajan; Ranjani, Chellamuthu Vasuki; Sowmiya, Govindaraj; Michael, Daliah; Balakrishnan, Narayanasamy; Sekar, Kanagaraj

    2008-01-01

    Distant repeats in protein sequence play an important role in various aspects of protein analysis. A keen analysis of the distant repeats would enable to establish a firm relation of the repeats with respect to their function and three-dimensional structure during the evolutionary process. Further, it enlightens the diversity of duplication during the evolution. To this end, an algorithm has been developed to find all distant repeats in a protein sequence. The scores from Point Accepted Mutation (PAM) matrix has been deployed for the identification of amino acid substitutions while detecting the distant repeats. Due to the biological importance of distant repeats, the proposed algorithm will be of importance to structural biologists, molecular biologists, biochemists and researchers involved in phylogenetic and evolutionary studies. PMID:19052663

  17. Variation, Repetition, and Choice

    ERIC Educational Resources Information Center

    Abreu-Rodrigues, Josele; Lattal, Kennon A.; dos Santos, Cristiano V.; Matos, Ricardo A.

    2005-01-01

    Experiment 1 investigated the controlling properties of variability contingencies on choice between repeated and variable responding. Pigeons were exposed to concurrent-chains schedules with two alternatives. In the REPEAT alternative, reinforcers in the terminal link depended on a single sequence of four responses. In the VARY alternative, a…

  18. IFRD1 Is a Candidate Gene for SMNA on Chromosome 7q22-q23

    PubMed Central

    Brkanac, Zoran; Spencer, David; Shendure, Jay; Robertson, Peggy D.; Matsushita, Mark; Vu, Tiffany; Bird, Thomas D.; Olson, Maynard V.; Raskind, Wendy H.

    2009-01-01

    We have established strong linkage evidence that supports mapping autosomal-dominant sensory/motor neuropathy with ataxia (SMNA) to chromosome 7q22-q32. SMNA is a rare neurological disorder whose phenotype encompasses both the central and the peripheral nervous system. In order to identify a gene responsible for SMNA, we have undertaken a comprehensive genomic evaluation of the region of linkage, including evaluation for repeat expansion and small deletions or duplications, capillary sequencing of candidate genes, and massively parallel sequencing of all coding exons. We excluded repeat expansion and small deletions or duplications as causative, and through microarray-based hybrid capture and massively parallel short-read sequencing, we identified a nonsynonymous variant in the human interferon-related developmental regulator gene 1 (IFRD1) as a disease-causing candidate. Sequence conservation, animal models, and protein structure evaluation support the involvement of IFRD1 in SMNA. Mutation analysis of IFRD1 in additional patients with similar phenotypes is needed for demonstration of causality and further evaluation of its importance in neurological diseases. PMID:19409521

  19. Analyses of Expressed Sequence Tags from Apple1

    PubMed Central

    Newcomb, Richard D.; Crowhurst, Ross N.; Gleave, Andrew P.; Rikkerink, Erik H.A.; Allan, Andrew C.; Beuning, Lesley L.; Bowen, Judith H.; Gera, Emma; Jamieson, Kim R.; Janssen, Bart J.; Laing, William A.; McArtney, Steve; Nain, Bhawana; Ross, Gavin S.; Snowden, Kimberley C.; Souleyre, Edwige J.F.; Walton, Eric F.; Yauk, Yar-Khing

    2006-01-01

    The domestic apple (Malus domestica; also known as Malus pumila Mill.) has become a model fruit crop in which to study commercial traits such as disease and pest resistance, grafting, and flavor and health compound biosynthesis. To speed the discovery of genes involved in these traits, develop markers to map genes, and breed new cultivars, we have produced a substantial expressed sequence tag collection from various tissues of apple, focusing on fruit tissues of the cultivar Royal Gala. Over 150,000 expressed sequence tags have been collected from 43 different cDNA libraries representing 34 different tissues and treatments. Clustering of these sequences results in a set of 42,938 nonredundant sequences comprising 17,460 tentative contigs and 25,478 singletons, together representing what we predict are approximately one-half the expressed genes from apple. Many potential molecular markers are abundant in the apple transcripts. Dinucleotide repeats are found in 4,018 nonredundant sequences, mainly in the 5′-untranslated region of the gene, with a bias toward one repeat type (containing AG, 88%) and against another (repeats containing CG, 0.1%). Trinucleotide repeats are most common in the predicted coding regions and do not show a similar degree of sequence bias in their representation. Bi-allelic single-nucleotide polymorphisms are highly abundant with one found, on average, every 706 bp of transcribed DNA. Predictions of the numbers of representatives from protein families indicate the presence of many genes involved in disease resistance and the biosynthesis of flavor and health-associated compounds. Comparisons of some of these gene families with Arabidopsis (Arabidopsis thaliana) suggest instances where there have been duplications in the lineages leading to apple of biosynthetic and regulatory genes that are expressed in fruit. This resource paves the way for a concerted functional genomics effort in this important temperate fruit crop. PMID:16531485

  20. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis.

    PubMed

    Ferreira de Carvalho, J; Chelaifa, H; Boutte, J; Poulain, J; Couloux, A; Wincker, P; Bellec, A; Fourment, J; Bergès, H; Salmon, A; Ainouche, M

    2013-12-01

    Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.

  1. Characterization of (CA)n microsatellite repeats from large-insert clones.

    PubMed

    Litt, M; Browne, D

    2001-05-01

    The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit determination of sequences flanking the microsatellites. When cosmids or large-insert phage clones are used as primary sources of (CA)n repeat markers, they have traditionally been subcloned into plasmid vectors such as pUC18 or M13 mp 18/19 cloning vectors to obtain fragments of suitable size for DNA sequencing. This unit presents an alternative approach whereby a set of degenerate sequencing primers that anneal directly to (CA)n microsatellites can be used to determine sequences that are inaccessible with vector-derived primers. Because the primers anneal to the repeat and not to the vector, they can be used with subclones containing inserts of several kilobases and should, in theory, always give sequence in the regions directly flanking the repeat. Degeneracy at the 3 end of each of these primers prevents elongation of primers that have annealed out-of-register. The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit.

  2. High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events

    PubMed Central

    Wolfgruber, Thomas K.; Nakashima, Megan M.; Schneider, Kevin L.; Sharma, Anupma; Xie, Zidian; Albert, Patrice S.; Xu, Ronghui; Bilinski, Paul; Dawe, R. Kelly; Ross-Ibarra, Jeffrey; Birchler, James A.; Presting, Gernot G.

    2016-01-01

    The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10−6 and 5 × 10−5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres. PMID:27047500

  3. Re-operative thyroid surgery: a 20-year prospective cohort study at a tertiary referral centre.

    PubMed

    Hardman, John C; Smith, J A; Nankivell, P; Sharma, N; Watkinson, J C

    2015-06-01

    Re-operative thyroid surgery is a relatively uncommon procedure complicated by distorted anatomy and post-operative tissue changes. Surgery may follow initial benign or malignant pathology. Published outcomes vary widely in the literature. This study aims to report our outcomes from re-operative thyroid surgery. Patient demographics and complication rates for consecutive thyroidectomies performed by a single surgeon at a tertiary centre were collected between 1993 and 2013. Outcomes in re-operative surgery are analysed and compared with local and national data. Cases of re-operative surgery following benign disease are further analysed for histology, re-presenting symptoms and time between procedures. Our cohort comprised 1,657 cases including 164 re-operative procedures (101 malignant, 63 benign). Within our cohort re-operative cases were on average 4 years older (mean 49.9 vs 45.9 years, p = 0.001) and had a higher incidence of haematoma formation (4.3 vs 1.7 %, p = 0.033) and transient recurrent laryngeal nerve palsy (5.5 vs 2.5 %, p = 0.044) compared to primary surgery. Rates of permanent hypocalcaemia (2.4 vs 1.8 %, p = 0.540) and permanent RLN palsy (1.8 vs 0.4 %, p = 0.051) were higher in the re-operative group but did not reach significance. Comparison of complications following re-operation for benign and malignant disease revealed no significant differences. Mean interval to re-operation for benign cases was 17.4 years with 74.6 % found to have multinodular goitre at repeat procedure. Re-operative procedures comprised around 10 % of thyroid surgery at our centre. Re-operative cases experienced more complications than primary surgery but permanent rates were low. Re-operative surgery may therefore be safely considered in experienced hands.

  4. Structural analysis of the rDNA intergenic spacer of Brassica nigra: evolutionary divergence of the spacers of the three diploid Brassica species.

    PubMed

    Bhatia, S; Singh Negi, M; Lakshmikumaran, M

    1996-11-01

    EcoRI restriction of the B. nigra rDNA recombinants, isolated from a lambda genomic library, showed that the 3.9-kb fragment corresponded to the Intergenic Spacer (IGS), which was sequenced and found to be 3,928 bp in size. Sequence and dot-matrix analyses showed that the organization of the B. nigra rDNA IGS was typical of most rDNA spacers, consisting of a central repetitive region and flanking unique sequences on either side. The repetitive region was composed of two repeat families-RF 'A' and RF 'B.' The B. nigra RF 'A' consisted of a tandem array of three full-length copies of a 106-bp sequence element. RF 'B' was composed of 66 tandemly repeated elements. Each 'B' element was only 21-bp in size and this is the smallest repeat unit identified in plant rDNA to date. The putative transcription initiation site (TIS) was identified as nucleotide position 3,110. Based on the sequence analysis it was suggested that the present organization of the repeat families was generated by successive cycles of deletions and amplifications and was being maintained by homogenization processes such as gene conversion and crossing-over.A detailed comparison of the rDNA IGS sequences of the three diploid Brassica species-namely, B. nigra, B. campestris, and B. oleracea-was carried out. First, comparisons revealed that B. campestris and B. oleracea were close to each other as the repeat families in both showed high sequence homology between each other. Second, the repeat elements in both the species were organized in an interspersed manner. Third, a 52-bp sequence, present just downstream of the repeats in B. campestris, was found to be identical to the B. oleracea repeats, thereby suggesting a common progenitor. On the other hand, in B. nigra no interspersion pattern of organization of repeats was observed. Further, the B. nigra RF 'A' was identified as distinct from the repeat families of B. campestris and B. oleracea. Based on this analysis, it was suggested that during speciation B. campestris and B. oleracea evolved in one lineage whereas B. nigra diverged into a separate lineage. The comparative analysis of the IGS helped in identifying not only conserved ancestral sequence motifs of possible functional significance such as promoters and enhancers, but also sequences which showed variation between the three diploid species and were therefore identified as species-specific sequences.

  5. Influence of platform design of six different drug-eluting stents in provisional coronary bifurcation stenting by rePOT sequence: a comparative bench analysis.

    PubMed

    Derimay, François; Souteyrand, Geraud; Motreff, Pascal; Rioufol, Gilles; Finet, Gerard

    2017-10-13

    The rePOT (proximal optimisation technique) sequence proved significantly more effective than final kissing balloon (FKB) with two drug-eluting stents (DES) in a bench test. We sought to validate efficacy experimentally in a large range of latest-generation DES. On left main fractal coronary bifurcation bench models, five samples of each of the six main latest-generation DES (Coroflex ISAR, Orsiro, Promus PREMIER, Resolute Integrity, Ultimaster, XIENCE Xpedition) were implanted on rePOT (initial POT, side branch inflation, final POT). Proximal elliptical ratio, side branch obstruction (SBO), stent overstretch and strut malapposition were quantified on 2D and 3D OCT. Results were compared to FKB with Promus PREMIER. Whatever the design, rePOT maintained vessel circularity compared to FKB: elliptical ratio, 1.02±0.01 to 1.04±0.01 vs. 1.26±0.02 (p<0.05). Global strut malapposition was much lower: 2.6±1.4% to 0.1±0.2% vs. 40.4±8.4% for FKB (p<0.05). However, only Promus PREMIER and XIENCE Xpedition achieved significantly less SBO: respectively, 5.6±3.5% and 10.0±5.3% vs. 23.5±5.7% for FKB (p<0.05). Platform design differences had little influence on the excellent results of rePOT versus FKB. RePOT optimised strut apposition without proximal elliptical deformation in the six main latest-generation DES. Thickness and design characteristics seemed relevant for optimising SBO.

  6. A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers

    PubMed Central

    Lewers, Kim S; Saski, Chris A; Cuthbertson, Brandon J; Henry, David C; Staton, Meg E; Main, Dorrie S; Dhanaraj, Anik L; Rowland, Lisa J; Tomkins, Jeff P

    2008-01-01

    Background The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars. Results A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products. Conclusion This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry. PMID:18570660

  7. Insights on genome size evolution from a miniature inverted repeat transposon driving a satellite DNA.

    PubMed

    Scalvenzi, Thibault; Pollet, Nicolas

    2014-12-01

    The genome size in eukaryotes does not correlate well with the number of genes they contain. We can observe this so-called C-value paradox in amphibian species. By analyzing an amphibian genome we asked how repetitive DNA can impact genome size and architecture. We describe here our discovery of a Tc1/mariner miniature inverted-repeat transposon family present in Xenopus frogs. These transposons named miDNA4 are unique since they contain a satellite DNA motif. We found that miDNA4 measured 331 bp, contained 25 bp long inverted terminal repeat sequences and a sequence motif of 119 bp present as a unique copy or as an array of 2-47 copies. We characterized the structure, dynamics, impact and evolution of the miDNA4 family and its satellite DNA in Xenopus frog genomes. This led us to propose a model for the evolution of these two repeated sequences and how they can synergize to increase genome size. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Omori's Law Applied to Mining-Induced Seismicity and Re-entry Protocol Development

    NASA Astrophysics Data System (ADS)

    Vallejos, J. A.; McKinnon, S. D.

    2010-02-01

    This paper describes a detailed study of the Modified Omori's law n( t) = K/( c + t) p applied to 163 mining-induced aftershock sequences from four different mine environments in Ontario, Canada. We demonstrate, using a rigorous statistical analysis, that this equation can be adequately used to describe the decay rate of mining-induced aftershock sequences. The parameters K, p and c are estimated using a uniform method that employs the maximum likelihood procedure and the Anderson-Darling statistic. To estimate consistent decay parameters, the method considers only the time interval that satisfies power-law behavior. The p value differs from sequence to sequence, with most (98%) ranging from 0.4 to 1.6. The parameter K can be satisfactorily expressed by: K = κN 1, where κ is an activity ratio and N 1 is the measured number of events occurring during the first hour after the principal event. The average κ values are in a well-defined range. Theoretically κ ≤ 0.8, and empirically κ ∈ [0.3-0.5]. These two findings enable us to develop a real-time event rate re-entry protocol 1 h after the principal event. Despite the fact that the Omori formula is temporally self-similar, we found a characteristic time T MC at the maximum curvature point, which is a function of Omori's law parameters. For a time sequence obeying an Omori process, T MC marks the transition from highest to lowest event rate change. Using solely the aftershock decay rate, therefore, we recommend T MC as a preliminary estimate of the time at which it may be considered appropriate to re-enter an area affected by a blast or large event. We found that T MC can be estimated without specifying a p value by the expression: T MC = a N {1/ b }, where a and b are two parameters dependent on local conditions. Both parameters presented well-constrained empirical ranges for the sites analyzed: a ∈ [0.3-0.5] and b ∈ [0.5-0.7]. These findings provide concise and well-justified guidelines for event rate re-entry protocol development.

  9. Clustered regularly interspaced short palindromic repeats (CRISPRs) for the genotyping of bacterial pathogens.

    PubMed

    Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine

    2009-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences composed of a succession of repeats (23- to 47-bp long) separated by unique sequences called spacers. Polymorphism can be observed in different strains of a species and may be used for genotyping. We describe protocols and bioinformatics tools that allow the identification of CRISPRs from sequenced genomes, their comparison, and their component determination (the direct repeats and the spacers). A schematic representation of the spacer organization can be produced, allowing an easy comparison between strains.

  10. Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat.

    PubMed Central

    D'Ambrosio, E; Waitzkin, S D; Witney, F R; Salemme, A; Furano, A V

    1986-01-01

    We present the DNA sequence of a 6.7-kilobase member of the rat long interspersed repeated DNA family (LINE or L1Rn). This member (LINE 3) is flanked by a perfect 14-base-pair (bp) direct repeat and is a full-length, or close-to-full-length, member of this family. LINE 3 contains an approximately 100-bp A-rich right end, a number of long (greater than 400-bp) open reading frames, and a ca. 200-bp G + C-rich (ca. 60%) cluster near each terminus. Comparison of the LINE 3 sequence with the sequence of about one-half of another member, which we also present, as well as restriction enzyme analysis of the genomic copies of this family, indicates that in length and overall structure LINE 3 is quite typical of the 40,000 or so other genomic members of this family which would account for as much as 10% of the rat genome. Therefore, the rat LINE family is relatively homogeneous, which contrasts with the heterogeneous LINE families in primates and mice. Transcripts corresponding to the entire LINE sequence are abundant in the nuclear RNA of rat liver. The characteristics of the rat LINE family are discussed with respect to the possible function and evolution of this family of DNA sequences. Images PMID:3023845

  11. Identification and characterization of cryptic SHOX intragenic deletions in three Japanese patients with Léri-Weill dyschondrosteosis.

    PubMed

    Fukami, Maki; Dateki, Sumito; Kato, Fumiko; Hasegawa, Yukihiro; Mochizuki, Hiroshi; Horikawa, Reiko; Ogata, Tsutomu

    2008-01-01

    Although short-stature homeobox-containing gene (SHOX ) haploinsufficiency is responsible for Léri-Weill dyschondrosteosis (LWD), the molecular defect has not been identified in approximately 20% of Japanese LWD patients. Furthermore, although high prevalence of microdeletions affecting SHOX is primarily ascribed to the presence of repeat sequences such as Alu elements around SHOX, it remains to be determined whether microdeletions are actually mediated by repeat sequences. We performed multiple ligation probe amplification (MLPA) assay in six Japanese LWD patients with apparently normal SHOX, followed by fluorescent in situ hybridization (FISH) analysis and sequencing for polymerase chain reaction (PCR) products encompassing the deletion junctions in patients with abnormal MLPA patterns. Consequently, heterozygous intragenic deletions were identified in three cases, i.e., a 5,906-bp deletion involving exons 4-5 in case 1, a 5,594-bp deletion involving exons 4-6a in case 2, and a 50,199-bp deletion involving exons 4-6b in case 3. The deletion breakpoints of cases 1 and 2 were present in nonrepeat sequences, whereas those of case 3 resided within Alu elements. The results suggest that cryptic SHOX intragenic deletions account for a small fraction of LWD and that microdeletions affecting SHOX can be generated by repeat-sequence-mediated aberrant recombinations and by nonhomologous end joining.

  12. Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster

    PubMed Central

    Lohe, A. R.; Hilliker, A. J.; Roberts, P. A.

    1993-01-01

    Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin. PMID:8375654

  13. Identification of the centromeric repeat in the threespine stickleback fish (Gasterosteus aculeatus).

    PubMed

    Cech, Jennifer N; Peichel, Catherine L

    2015-12-01

    Centromere sequences exist as gaps in many genome assemblies due to their repetitive nature. Here we take an unbiased approach utilizing centromere protein A (CENP-A) chomatin immunoprecipitation followed by high-throughput sequencing to identify the centromeric repeat sequence in the threespine stickleback fish (Gasterosteus aculeatus). A 186-bp, AT-rich repeat was validated as centromeric using both fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on interphase nuclei and metaphase spreads. This repeat hybridizes strongly to the centromere on all chromosomes, with the exception of weak hybridization to the Y chromosome. Together, our work provides the first validated sequence information for the threespine stickleback centromere.

  14. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution

    PubMed Central

    2012-01-01

    Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678

  15. Simultaneous Differentiation and Typing of Entamoeba histolytica and Entamoeba dispar

    PubMed Central

    Zaki, Mehreen; Meelu, Parool; Sun, Wei; Clark, C. Graham

    2002-01-01

    Sequences corresponding to some of the polymorphic loci previously reported from Entamoeba histolytica have been detected in Entamoeba dispar. Comparison of nucleotide sequences of two loci between E. dispar strain SAW760 and E. histolytica strain HM-1:IMSS revealed significant differences in both repeat and flanking regions. The tandem repeat units varied not only in sequence but also in number and arrangement between the two species at both the loci. Using the sequences obtained, primer pairs aimed at amplifying species-specific products were designed and tested on a variety of E. histolytica and E. dispar samples. Amplification results were in complete agreement with the original species classification in all cases, and the PCR products displayed discernible size and pattern variations among the isolates. PMID:11923344

  16. Validation of Pooled Whole-Genome Re-Sequencing in Arabidopsis lyrata.

    PubMed

    Fracassetti, Marco; Griffin, Philippa C; Willi, Yvonne

    2015-01-01

    Sequencing pooled DNA of multiple individuals from a population instead of sequencing individuals separately has become popular due to its cost-effectiveness and simple wet-lab protocol, although some criticism of this approach remains. Here we validated a protocol for pooled whole-genome re-sequencing (Pool-seq) of Arabidopsis lyrata libraries prepared with low amounts of DNA (1.6 ng per individual). The validation was based on comparing single nucleotide polymorphism (SNP) frequencies obtained by pooling with those obtained by individual-based Genotyping By Sequencing (GBS). Furthermore, we investigated the effect of sample number, sequencing depth per individual and variant caller on population SNP frequency estimates. For Pool-seq data, we compared frequency estimates from two SNP callers, VarScan and Snape; the former employs a frequentist SNP calling approach while the latter uses a Bayesian approach. Results revealed concordance correlation coefficients well above 0.8, confirming that Pool-seq is a valid method for acquiring population-level SNP frequency data. Higher accuracy was achieved by pooling more samples (25 compared to 14) and working with higher sequencing depth (4.1× per individual compared to 1.4× per individual), which increased the concordance correlation coefficient to 0.955. The Bayesian-based SNP caller produced somewhat higher concordance correlation coefficients, particularly at low sequencing depth. We recommend pooling at least 25 individuals combined with sequencing at a depth of 100× to produce satisfactory frequency estimates for common SNPs (minor allele frequency above 0.05).

  17. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8)

    PubMed Central

    Russo, James J.; Bohenzky, Roy A.; Chien, Ming-Cheng; Chen, Jing; Yan, Ming; Maddalena, Dawn; Parry, J. Preston; Peruzzi, Daniela; Edelman, Isidore S.; Chang, Yuan; Moore, Patrick S.

    1996-01-01

    The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by multiple G+C-rich 801-bp terminal repeat sequences. A genomic duplication that apparently arose in the parental tumor is present in this cell culture-derived strain. At least 81 ORFs, including 66 with homology to herpesvirus saimiri ORFs, and 5 internal repeat regions are present in the long unique region. The virus encodes homologs to complement-binding proteins, three cytokines (two macrophage inflammatory proteins and interleukin 6), dihydrofolate reductase, bcl-2, interferon regulatory factors, interleukin 8 receptor, neural cell adhesion molecule-like adhesin, and a D-type cyclin, as well as viral structural and metabolic proteins. Terminal repeat analysis of virus DNA from a KS lesion suggests a monoclonal expansion of KSHV in the KS tumor. PMID:8962146

  18. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    PubMed

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between RipTAL repeats allows for a reconstruction of repeat array biogenesis, for example through slipped strand mispairing or gene conversion. Using these studies we show how RipTALs of broad host range strains evolved convergently toward a shared target sequence. Finally, we discuss the differences between TALE-likes of plant pathogens in the context of disease ecology.

  19. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, H.U.G.; Gray, J.W.

    1995-06-27

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.

  20. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, Heinz-Ulrich G.; Gray, Joe W.

    1995-01-01

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.

  1. Concerted evolution of the tandem array encoding primate U2 snRNA occurs in situ, without changing the cytological context of the RNU2 locus.

    PubMed Central

    Pavelitz, T; Rusché, L; Matera, A G; Scharf, J M; Weiner, A M

    1995-01-01

    In primates, the tandemly repeated genes encoding U2 small nuclear RNA evolve concertedly, i.e. the sequence of the U2 repeat unit is essentially homogeneous within each species but differs somewhat between species. Using chromosome painting and the NGFR gene as an outside marker, we show that the U2 tandem array (RNU2) has remained at the same chromosomal locus (equivalent to human 17q21) through multiple speciation events over > 35 million years leading to the Old World monkey and hominoid lineages. The data suggest that the U2 tandem repeat, once established in the primate lineage, contained sequence elements favoring perpetuation and concerted evolution of the array in situ, despite a pericentric inversion in chimpanzee, a reciprocal translocation in gorilla and a paracentric inversion in orang utan. Comparison of the 11 kb U2 repeat unit found in baboon and other Old World monkeys with the 6 kb U2 repeat unit in humans and other hominids revealed that an ancestral U2 repeat unit was expanded by insertion of a 5 kb retrovirus bearing 1 kb long terminal repeats (LTRs). Subsequent excision of the provirus by homologous recombination between the LTRs generated a 6 kb U2 repeat unit containing a solo LTR. Remarkably, both junctions between the human U2 tandem array and flanking chromosomal DNA at 17q21 fall within the solo LTR sequence, suggesting a role for the LTR in the origin or maintenance of the primate U2 array. Images PMID:7828589

  2. The NnCenH3 protein and centromeric DNA sequence profiles of Nelumbo nucifera Gaertn. (sacred lotus) reveal the DNA structures and dynamics of centromeres in basal eudicots.

    PubMed

    Zhu, Zhixuan; Gui, Songtao; Jin, Jing; Yi, Rong; Wu, Zhihua; Qian, Qian; Ding, Yi

    2016-09-01

    Centromeres on eukaryotic chromosomes consist of large arrays of DNA repeats that undergo very rapid evolution. Nelumbo nucifera Gaertn. (sacred lotus) is a phylogenetic relict and an aquatic perennial basal eudicot. Studies concerning the centromeres of this basal eudicot species could provide ancient evolutionary perspectives. In this study, we characterized the centromeric marker protein NnCenH3 (sacred lotus centromere-specific histone H3 variant), and used a chromatin immunoprecipitation (ChIP)-based technique to recover the NnCenH3 nucleosome-associated sequences of sacred lotus. The properties of the centromere-binding protein and DNA sequences revealed notable divergence between sacred lotus and other flowering plants, including the following factors: (i) an NnCenH3 alternative splicing variant comprising only a partial centromere-targeting domain, (ii) active genes with low transcription levels in the NnCenH3 nucleosomal regions, and (iii) the prevalence of the Ty1/copia class of long terminal repeat (LTR) retrotransposons in the centromeres of sacred lotus chromosomes. In addition, the dynamic natures of the centromeric region showed that some of the centromeric repeat DNA sequences originated from telomeric repeats, and a pair of centromeres on the dicentric chromosome 1 was inactive in the metaphase cells of sacred lotus. Our characterization of the properties of centromeric DNA structure within the sacred lotus genome describes a centromeric profile in ancient basal eudicots and might provide evidence of the origins and evolution of centromeres. Furthermore, the identification of centromeric DNA sequences is of great significance for the assembly of the sacred lotus genome. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Improvement of hand sensibility after selective temporary anaesthesia in combination with sensory re-education.

    PubMed

    Hassan-Zadeh, Roghiyeh; Lajevardi, Laleh; Esfahani, Ahmadreza Roofigari; Kamali, Mohammad

    2009-01-01

    The results of nerve repair in adults are often poor. The study aim was to investigate the effect of repeated sessions of cutaneous forearm anaesthesia of the injured limb, in combination with sensory re-education on the recovery of the tactile discrimination and perception of touch/pressure in the injured hand after median or ulnar nerve repair. A prospective, randomized, double-blind clinical trial was designed. During a 2-week period, a topical anaesthetic cream (Lidocaine-PTC, n = 6) or placebo (n = 7) was applied repeatedly (twice a week) with occlusive bandage for 1 hour on the flexor aspect of the forearm of the same side of the nerve injury and combined with sensory re-education. Assessments of sensory function were performed prior to the experiment and after the fourth application of Lidocaine-PTC/placebo. The patients were evaluated again 4 weeks after the last Lidocaine-PTC/placebo session. Touch perception measured with Semmes-Weinstein Monofilaments (SWM), improved significantly in the Lidocaine-PTC group (p = 0.005). In placebo group, no significant changes were seen. Two{-}point discrimination improved significantly only in the Lidocaine-PTC group (p = 0.005). This finding suggests that forearm deafferentation of injured limb in combination with sensory re-education can enhance sensory recovery after nerve repair.

  4. Microsatellite diversity of isolates of the parasitic nematode Haemonchus contortus.

    PubMed

    Otsen, M; Plas, M E; Lenstra, J A; Roos, M H; Hoekstra, R

    2000-09-01

    The alarming development of anthelmintic resistance in important gastrointestinal nematode parasites of man and live-stock is caused by selection for specific genotypes. In order to provide genetic tools to study the nematode populations and the consequences of anthelmintic treatment, we isolated and sequenced 59 microsatellites of the sheep and goat parasite Haemonchus contortus. These microsatellites consist typically of 2-10 tandems CA/GT repeats that are interrupted by sequences of 1-10 bp. A predominant cause of the imperfect structure of the microsatellites appeared mutations of G/C bp in the tandem repeat. About 44% of the microsatellites were associated with the HcREP1 direct repeat, and it was demonstrated that a generic HcREP1 primer could be used to amplify HcREP1-associated microsatellites. Thirty microsatellites could be typed by polymerase chain reaction (PCR) of which 27 were polymorphic. A number of these markers were used to detect genetic contamination of an experimental inbred population. The microsatellites may also contribute to the genetic mapping of drug resistance genes.

  5. Single Amino Acid Substitutions at Specific Positions of the Heptad Repeat Sequence of Piscidin-1 Yielded Novel Analogs That Show Low Cytotoxicity and In Vitro and In Vivo Antiendotoxin Activity

    PubMed Central

    Kumar, Amit; Tripathi, Amit Kumar; Kathuria, Manoj; Shree, Sonal; Tripathi, Jitendra Kumar; Purshottam, R. K.; Ramachandran, Ravishankar; Mitra, Kalyan

    2016-01-01

    Piscidin-1 possesses significant antimicrobial and cytotoxic activities. To recognize the primary amino acid sequence(s) in piscidin-1 that could be important for its biological activity, a long heptad repeat sequence located in the region from amino acids 2 to 19 was identified. To comprehend the possible role of this motif, six analogs of piscidin-1 were designed by selectively replacing a single isoleucine residue at a d (5th) position or at an a (9th or 16th) position with either an alanine or a valine residue. Two more analogs, namely, I5F,F6A-piscidin-1 and V12I-piscidin-1, were designed for investigating the effect of interchanging an alanine residue at a d position with an adjacent phenylalanine residue and replacing a valine residue with an isoleucine residue at another d position of the heptad repeat of piscidin-1, respectively. Single alanine-substituted analogs exhibited significantly reduced cytotoxicity against mammalian cells compared with that of piscidin-1 but appreciably retained the antibacterial and antiendotoxin activities of piscidin-1. All the single valine-substituted piscidin-1 analogs and I5F,F6A-piscidin-1 showed cytotoxicity greater than that of the corresponding alanine-substituted analogs, antibacterial activity marginally greater than or similar to that of the corresponding alanine-substituted analogs, and also antiendotoxin activity superior to that of the corresponding alanine-substituted analogs. Interestingly, among these peptides, V12I-piscidin-1 showed the highest cytotoxicity and antibacterial and antiendotoxin activities. Lipopolysaccharide (12 mg/kg of body weight)-treated mice, further treated with I16A-piscidin-1, the piscidin-1 analog with the highest therapeutic index, at a single dose of 1 or 2 mg/kg of body weight, showed 80 and 100% survival, respectively. Structural and functional characterization of these peptides revealed the basis of their biological activity and demonstrated that nontoxic piscidin-1 analogs with significant antimicrobial and antiendotoxin activities can be designed by incorporating single alanine substitutions in the piscidin-1 heptad repeat. PMID:27067326

  6. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.

    PubMed

    Ribeyre, Cyril; Lopes, Judith; Boulé, Jean-Baptiste; Piazza, Aurèle; Guédin, Aurore; Zakian, Virginia A; Mergny, Jean-Louis; Nicolas, Alain

    2009-05-01

    In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Delta cells. Hence, we conclude that CEB1 instability in pif1Delta cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.

  7. Detecting and Characterizing Repeating Earthquake Sequences During Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Tepp, G.; Haney, M. M.; Wech, A.

    2017-12-01

    A major challenge in volcano seismology is forecasting eruptions. Repeating earthquake sequences often precede volcanic eruptions or lava dome activity, providing an opportunity for short-term eruption forecasting. Automatic detection of these sequences can lead to timely eruption notification and aid in continuous monitoring of volcanic systems. However, repeating earthquake sequences may also occur after eruptions or along with magma intrusions that do not immediately lead to an eruption. This additional challenge requires a better understanding of the processes involved in producing these sequences to distinguish those that are precursory. Calculation of the inverse moment rate and concepts from the material failure forecast method can lead to such insights. The temporal evolution of the inverse moment rate is observed to differ for precursory and non-precursory sequences, and multiple earthquake sequences may occur concurrently. These observations suggest that sequences may occur in different locations or through different processes. We developed an automated repeating earthquake sequence detector and near real-time alarm to send alerts when an in-progress sequence is identified. Near real-time inverse moment rate measurements can further improve our ability to forecast eruptions by allowing for characterization of sequences. We apply the detector to eruptions of two Alaskan volcanoes: Bogoslof in 2016-2017 and Redoubt Volcano in 2009. The Bogoslof eruption produced almost 40 repeating earthquake sequences between its start in mid-December 2016 and early June 2017, 21 of which preceded an explosive eruption, and 2 sequences in the months before eruptive activity. Three of the sequences occurred after the implementation of the alarm in late March 2017 and successfully triggered alerts. The nearest seismometers to Bogoslof are over 45 km away, requiring a detector that can work with few stations and a relatively low signal-to-noise ratio. During the Redoubt eruption, earthquake sequences were observed in the months leading up to the eruptive activity beginning in March 2009 as well as immediately preceding 7 of the 19 explosive events. In contrast to Bogoslof, Redoubt has a local monitoring network which allows for better detection and more detailed analysis of the repeating earthquake sequences.

  8. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats

    PubMed Central

    Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine

    2007-01-01

    Background In Archeae and Bacteria, the repeated elements called CRISPRs for "clustered regularly interspaced short palindromic repeats" are believed to participate in the defence against viruses. Short sequences called spacers are stored in-between repeated elements. In the current model, motifs comprising spacers and repeats may target an invading DNA and lead to its degradation through a proposed mechanism similar to RNA interference. Analysis of intra-species polymorphism shows that new motifs (one spacer and one repeated element) are added in a polarised fashion. Although their principal characteristics have been described, a lot remains to be discovered on the way CRISPRs are created and evolve. As new genome sequences become available it appears necessary to develop automated scanning tools to make available CRISPRs related information and to facilitate additional investigations. Description We have produced a program, CRISPRFinder, which identifies CRISPRs and extracts the repeated and unique sequences. Using this software, a database is constructed which is automatically updated monthly from newly released genome sequences. Additional tools were created to allow the alignment of flanking sequences in search for similarities between different loci and to build dictionaries of unique sequences. To date, almost six hundred CRISPRs have been identified in 475 published genomes. Two Archeae out of thirty-seven and about half of Bacteria do not possess a CRISPR. Fine analysis of repeated sequences strongly supports the current view that new motifs are added at one end of the CRISPR adjacent to the putative promoter. Conclusion It is hoped that availability of a public database, regularly updated and which can be queried on the web will help in further dissecting and understanding CRISPR structure and flanking sequences evolution. Subsequent analyses of the intra-species CRISPR polymorphism will be facilitated by CRISPRFinder and the dictionary creator. CRISPRdb is accessible at PMID:17521438

  9. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure

    PubMed Central

    2013-01-01

    Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution. PMID:24025428

  10. Plant chromosomes from end to end: telomeres, heterochromatin and centromeres.

    PubMed

    Lamb, Jonathan C; Yu, Weichang; Han, Fangpu; Birchler, James A

    2007-04-01

    Recent evidence indicates that heterochromatin in plants is composed of heterogeneous sequences, which are usually composed of transposable elements or tandem repeat arrays. These arrays are associated with chromatin modifications that produce a closed configuration that limits transcription. Centromere sequences in plants are usually composed of tandem repeat arrays that are homogenized across the genome. Analysis of such arrays in closely related taxa suggests a rapid turnover of the repeat unit that is typical of a particular species. In addition, two lines of evidence for an epigenetic component of centromere specification have been reported, namely an example of a neocentromere formed over sequences without the typical repeat array and examples of centromere inactivation. Although the telomere repeat unit is quite prevalent in the plant kingdom, unusual repeats have been found in some families. Recently, it was demonstrated that the introduction of telomere sequences into plants cells causes truncation of the chromosomes, and that this technique can be used to produce artificial chromosome platforms.

  11. SSRscanner: a program for reporting distribution and exact location of simple sequence repeats.

    PubMed

    Anwar, Tamanna; Khan, Asad U

    2006-02-20

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com.

  12. Orthologs in Arabidopsis thaliana of the Hsp70 interacting protein Hip

    PubMed Central

    Webb, Mary Alice; Cavaletto, John M.; Klanrit, Preekamol; Thompson, Gary A.

    2001-01-01

    The Hsp70-interacting protein Hip binds to the adenosine triphosphatase domain of Hsp70, stabilizing it in the adenosine 5′-diphosphate–ligated conformation and promoting binding of target polypeptides. In mammalian cells, Hip is a component of the cytoplasmic chaperone heterocomplex that regulates signal transduction via interaction with hormone receptors and protein kinases. Analysis of the complete genome sequence of the model flowering plant Arabidopsis thaliana revealed 2 genes encoding Hip orthologs. The deduced sequence of AtHip-1 consists of 441 amino acid residues and is 42% identical to human Hip. AtHip-1 contains the same functional domains characterized in mammalian Hip, including an N-terminal dimerization domain, an acidic domain, 3 tetratricopeptide repeats flanked by a highly charged region, a series of degenerate GGMP repeats, and a C-terminal region similar to the Sti1/Hop/p60 protein. The deduced amino acid sequence of AtHip-2 consists of 380 amino acid residues. AtHip-2 consists of a truncated Hip-like domain that is 46% identical to human Hip, followed by a C-terminal domain related to thioredoxin. AtHip-2 is 63% identical to another Hip-thioredoxin protein recently identified in Vitis labrusca (grape). The truncated Hip domain in AtHip-2 includes the amino terminus, the acidic domain, and tetratricopeptide repeats with flanking charged region. Analyses of expressed sequence tag databases indicate that both AtHip-1 and AtHip-2 are expressed in A thaliana and that orthologs of Hip are also expressed widely in other plants. The similarity between AtHip-1 and its mammalian orthologs is consistent with a similar role in plant cells. The sequence of AtHip-2 suggests the possibility of additional unique chaperone functions. PMID:11599566

  13. Search for repeating events at the plate interface in the seismic sequence of the 2014 Mw8.1 Iquique earthquake, Chile

    NASA Astrophysics Data System (ADS)

    Kummerow, Joern; Asch, Guenter; Sens-Schönfelder, Christoph; Schurr, Bernd; Tilmann, Frederik; Shapiro, Serge A.

    2017-04-01

    The 2014 Mw8.1 Iquique earthquake occurred along a segment of the northern Chile- southern Peru seismic gap which had not ruptured for more than 100 years. A specific feature of this event is the observation of prominent foreshock clusters with successively increasing seismic moment releases starting several months before the main shock (e.g., Schurr et al., 2014). The entire seismic sequence, including also the aftershock seismicity, was monitored exceptionally well by the Integrated Plate Boundary Observatory Chile (IPOC). Here, we present results from a systematic, long-term search for repeating seismic events along the plate interface in the source region of the 1 April 2014 (Mw8.1) Iquique main shock. Repeating earthquakes are widely assumed to indicate recurrent ruptures on the same fault patch and to accommodate aseismic slip in the creeping portions around the seismic patch. According to this concept, the analysis of repeating events and of their temporal behaviour provides a tool to estimate the amount of creep. We use the IPOC and two additional local seismic networks and select recorded waveforms of several hundreds of located earthquakes within the foreshock and aftershock series as template events. Waveforms are windowed around the P and S phases and bandpass-filtered for different frequency bands. Window starts are defined by manually revised P onset times. We then run a newly implemented correlation detector on the resampled, continuous seismic data to find highly similar waveforms for each template event. Repeating earthquakes are finally identified by a combination of estimated source dimensions, high waveform similarity and precise relative relocations of the events within each multiplet group. The analysis of the spatial and temporal patterns of the detected repeating earthquake sequences allows to test the proposed idea of progressive unlocking of the plate boundary before the Iquique main shock.

  14. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    PubMed

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Are mutagenic non D-loop direct repeat motifs in mitochondrial DNA under a negative selection pressure?

    PubMed Central

    Lakshmanan, Lakshmi Narayanan; Gruber, Jan; Halliwell, Barry; Gunawan, Rudiyanto

    2015-01-01

    Non D-loop direct repeats (DRs) in mitochondrial DNA (mtDNA) have been commonly implicated in the mutagenesis of mtDNA deletions associated with neuromuscular disease and ageing. Further, these DRs have been hypothesized to put a constraint on the lifespan of mammals and are under a negative selection pressure. Using a compendium of 294 mammalian mtDNA, we re-examined the relationship between species lifespan and the mutagenicity of such DRs. Contradicting the prevailing hypotheses, we found no significant evidence that long-lived mammals possess fewer mutagenic DRs than short-lived mammals. By comparing DR counts in human mtDNA with those in selectively randomized sequences, we also showed that the number of DRs in human mtDNA is primarily determined by global mtDNA properties, such as the bias in synonymous codon usage (SCU) and nucleotide composition. We found that SCU bias in mtDNA positively correlates with DR counts, where repeated usage of a subset of codons leads to more frequent DR occurrences. While bias in SCU and nucleotide composition has been attributed to nucleotide mutational bias, mammalian mtDNA still exhibit higher SCU bias and DR counts than expected from such mutational bias, suggesting a lack of negative selection against non D-loop DRs. PMID:25855815

  16. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Jie, J.; Fox, G. E.; Gao, X.

    1995-01-01

    DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.

  17. Acute effects of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion.

    PubMed

    Kobayashi, Ryota; Hashimoto, Yuto; Hatakeyama, Hiroyuki; Okamoto, Takanobu

    2018-03-22

    The aim of this study was to investigate the acute repeated bouts of aerobic exercise decrease leg arterial stiffness. However, the influence of repeated bouts of aerobic exercise on arterial stiffness after glucose ingestion is unknown. The present study investigates the acute effects of repeated bouts of aerobic exercise on arterial stiffness after the 75-g oral glucose tolerance test (OGTT). Ten healthy young men (age, 23.2 ± 0.9 years) performed repeated bouts of aerobic exercise trial (RE, 65% peak oxygen uptake; two 15 min bouts of cycling performed 20 min apart) and control trial (CON, seated and resting in a quiet room) at 80 min before the 75-g OGTT on separate days in a randomized, controlled crossover fashion. Carotid-femoral (aortic) and femoral-ankle (leg) pulse wave velocity, carotid augmentation index, brachial and ankle blood pressure, heart rate and blood glucose and insulin levels were measured before (baseline) and 30, 60 and 120 min after the 75-g OGTT. Leg pulse wave velocity, ankle systolic blood pressure and blood glucose levels increased from baseline after the 75-g OGTT in the CON trial, but not in the RE trial. The present findings indicate that acute repeated bouts of aerobic exercise before glucose ingestion suppress increases in leg arterial stiffness following glucose ingestion. RE trial repeated bouts of aerobic exercise trial; CON trial control trial; BG blood glucose; VO 2peak peak oxygen uptake; PWV Pulse wave velocity; AIx carotid augmentation index; BP blood pressure; HR heart rate; CVs coefficients of variation; RPE Ratings of perceived exertion; SE standard error.

  18. Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.

    PubMed

    Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J

    2016-03-21

    We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.

  19. Effectiveness of repeat hepatic resection for patients with recurrent intrahepatic cholangiocarcinoma: Factors associated with long-term outcomes.

    PubMed

    Si, Anfeng; Li, Jun; Xing, Xianglei; Lei, Zhengqing; Xia, Yong; Yan, Zhenlin; Wang, Kui; Shi, Lehua; Shen, Feng

    2017-04-01

    Tumor recurrence after liver resection for intrahepatic cholangiocarcinoma is common. The effective treatment for recurrent intrahepatic cholangiocarcinoma remains to be established. This study evaluated the short- and long-term prognoses of patients after repeat hepatic resection for recurrent intrahepatic cholangiocarcinoma. Data for 72 patients who underwent R0 repeat hepatic resection for recurrent intrahepatic cholangiocarcinoma at the Eastern Hepatobiliary Surgery Hospital between 2005 and 2013 were analyzed. Tumor re-recurrence, recurrence-to-death survival, and overall survival were calculated and compared using the Kaplan-Meier method and the log-rank test. Independent risk factors were identified by Cox regression analysis. Operative morbidity and mortality rates were 18.1% and 1.4%, respectively. The 1-, 2-, and 3-year re-recurrence rates were 53.2%, 80.2%, and 92.6%, respectively, and the corresponding recurrence-to-death survival was 82.9%, 53.0%, and 35.3%, respectively. The 1-, 3-, and 5-year overall survival was 97.2%, 67.0%, and 41.9%, respectively. Patients with a time to recurrence of >1 year from the initial hepatectomy achieved higher 1-, 2-, and 3-year recurrence-to-death survival than patients with a time to recurrence of ≤1 year (92.5%, 61.7%. and 46.6% vs 70.4%, 42.2%, and 23.0%, P = .022). Multivariate analysis identified that recurrent tumor >3 cm (hazard ratio: 2.346; 95% confidence interval: 1.288-4.274), multiple recurrent nodules (2.304; 1.049-5.059), cirrhosis (3.165; 1.543-6.491), and a time to recurrence of ≤1 year (1.872; 1.055-3.324) were independent risk factors of recurrence-to-death survival. Repeat hepatic resection for recurrent intrahepatic cholangiocarcinoma was safe and produced long-term survival outcomes in selected patients based on prognostic stratification with the presence of the independent risk factors of recurrence-to-death survival. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Simple Repeat-Primed PCR Analysis of the Myotonic Dystrophy Type 1 Gene in a Clinical Diagnostics Environment

    PubMed Central

    Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000

  1. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death.

    PubMed

    Guida, Natascia; Laudati, Giusy; Serani, Angelo; Mascolo, Luigi; Molinaro, Pasquale; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2017-10-15

    Our previous study showed that the environmental neurotoxicant non-dioxin-like polychlorinated biphenyl (PCB)-95 increases RE1-silencing transcription factor (REST) expression, which is related to necrosis, but not apoptosis, of neurons. Meanwhile, necroptosis is a type of a programmed necrosis that is positively regulated by receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like (MLKL) and negatively regulated by caspase-8. Here we evaluated whether necroptosis contributes to PCB-95-induced neuronal death through REST up-regulation. Our results demonstrated that in cortical neurons PCB-95 increased RIPK1, RIPK3, and MLKL expression and decreased caspase-8 at the gene and protein level. Furthermore, the RIPK1 inhibitor necrostatin-1 or siRNA-mediated RIPK1, RIPK3 and MLKL expression knockdown significantly reduced PCB-95-induced neuronal death. Intriguingly, PCB-95-induced increases in RIPK1, RIPK3, MLKL expression and decreases in caspase-8 expression were reversed by knockdown of REST expression with a REST-specific siRNA (siREST). Notably, in silico analysis of the rat genome identified a REST consensus sequence in the caspase-8 gene promoter (Casp8-RE1), but not the RIPK1, RIPK3 and MLKL promoters. Interestingly, in PCB-95-treated neurons, REST binding to the Casp8-RE1 sequence increased in parallel with a reduction in its promoter activity, whereas under the same experimental conditions, transfection of siREST or mutation of the Casp8-RE1 sequence blocked PCB-95-induced caspase-8 reduction. Since RIPK1, RIPK3 and MLKL rat genes showed no putative REST binding site, we assessed whether the transcription factor cAMP Responsive Element Binding Protein (CREB), which has a consensus sequence in all three genes, affected neuronal death. In neurons treated with PCB-95, CREB protein expression decreased in parallel with a reduction in binding to the RIPK1, RIPK3 and MLKL gene promoter sequence. Furthermore, CREB overexpression was associated with reduced promoter activity of the RIPK1, RIPK3 and MLKL genes. Collectively, these results indicate that PCB-95 was associated with REST-induced necroptotic cell death by increasing RIPK1, RIPK3 and MLKL expression and reducing caspase-8 levels. In addition, since REST is involved in several neurological disorders, therapies that block REST-induced necroptosis could be a new strategy to revert the neurodetrimental effects associated to its overexpression. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    PubMed Central

    2010-01-01

    Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling. Conclusions We describe novel features of PARCELs (Palindromic Amphipathic Repeat Coding ELements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches. PMID:20626840

  3. Alu repeated DNAs are differentially methylated in primate germ cells.

    PubMed Central

    Rubin, C M; VandeVoort, C A; Teplitz, R L; Schmid, C W

    1994-01-01

    A significant fraction of Alu repeats in human sperm DNA, previously found to be unmethylated, is nearly completely methylated in DNA from many somatic tissues. A similar fraction of unmethylated Alus is observed here in sperm DNA from rhesus monkey. However, Alus are almost completely methylated at the restriction sites tested in monkey follicular oocyte DNA. The Alu methylation patterns in mature male and female monkey germ cells are consistent with Alu methylation in human germ cell tumors. Alu sequences are hypomethylated in seminoma DNAs and more methylated in a human ovarian dysgerminoma. These results contrast with methylation patterns reported for germ cell single-copy, CpG island, satellite, and L1 sequences. The function of Alu repeats is not known, but differential methylation of Alu repeats in the male and female germ lines suggests that they may serve as markers for genomic imprinting or in maintaining differences in male and female meiosis. Images PMID:7800508

  4. [Features of Bordetella pertussis, Bordetella spp. infection and whopping cough in Córdoba province, Argentina].

    PubMed

    Giayetto, Víctor O; Blanco, Sebastián; Mangeaud, Arnaldo; Barbás, María G; Cudolá, Analía; Gallego, Sandra V

    2017-04-01

    Whooping cough is a re-emerging infection in the world and Latin America. It was considered relevant to investigate the clinical and epidemiological profile of Bordetella spp. and Bordetella pertussis infection in Córdoba province, Argentina; evaluating, at the same time, the co-infection with virus producing respiratory infections that may be confused with whooping cough. All whooping cough suspected cases were studied by Polimerase Chain Reaction, amplifying the repeated insertion sequence (IS) 481 and the promoter gene encoding pertussis toxin, between 2011 and 2013. The data were obtained from the clinical and epidemiological records. From 2,588 whooping cough suspected cases, 11.59% was infected by Bordetella spp. and 9.16% was confirmed as Bordetella pertussis infection. The rate of infection was 7.22 and 1.84 per 100,000 for 2011 and 2012, respectively. The infection presented a seasonal tendency and it was mainly found on the group of children between 13 and 24 months old. The co-infection with virus producing respiratory infections, were uncommon. Paroxysmal cough, cyanosis and/or vomiting were predictors of the infection for Bordetella pertussis. To deal with the re-emergence of whooping cough is important the knowledge of the regional epidemiological situation. This paper shows the situation of these infections in the regional clinical and epidemiological context, and makes the information available for health decision-making.

  5. Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development

    NASA Astrophysics Data System (ADS)

    Vallejos, Javier A.; Estay, Rodrigo A.

    2018-03-01

    A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.

  6. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  7. Fast and Cost-Effective Mining of Microsatellite Markers Using NGS Technology: An Example of a Korean Water Deer Hydropotes inermis argyropus

    PubMed Central

    Yu, Jeong-Nam; Won, Changman; Jun, Jumin; Lim, YoungWoon; Kwak, Myounghai

    2011-01-01

    Background Microsatellites, a special class of repetitive DNA sequence, have become one of the most popular genetic markers for population/conservation genetic studies. However, its application to endangered species has been impeded by high development costs, a lack of available sequences, and technical difficulties. The water deer Hydropotes inermis is the sole existing endangered species of the subfamily Capreolinae. Although population genetics studies are urgently required for conservation management, no species-specific microsatellite marker has been reported. Methods We adopted next-generation sequencing (NGS) to elucidate the microsatellite markers of Korean water deer and overcome these impediments on marker developments. We performed genotyping to determine the efficiency of this method as applied to population genetics. Results We obtained 98 Mbp of nucleotide information from 260,467 sequence reads. A total of 20,101 di-/tri-nucleotide repeat motifs were identified; di-repeats were 5.9-fold more common than tri-repeats. [CA]n and [AAC]n/[AAT]n repeats were the most frequent di- and tri-repeats, respectively. Of the 17,206 di-repeats, 12,471 microsatellite primer pairs were derived. PCR amplification of 400 primer pairs yielded 106 amplicons and 79 polymorphic markers from 20 individual Korean water deer. Polymorphic rates of the 79 new microsatellites varied from 2 to 11 alleles per locus (He: 0.050–0.880; Ho: 0.000–1.000), while those of known microsatellite markers transferred from cattle to Chinese water deer ranged from 4 to 6 alleles per locus (He: 0.279–0.714; Ho: 0.300–0.400). Conclusions Polymorphic microsatellite markers from Korean water deer were successfully identified using NGS without any prior sequence information and deposited into the public database. Thus, the methods described herein represent a rapid and low-cost way to investigate the population genetics of endangered/non-model species. PMID:22069476

  8. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    PubMed

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  9. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development

    PubMed Central

    2014-01-01

    Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms. PMID:24618421

  10. Optimization of sequence alignment for simple sequence repeat regions.

    PubMed

    Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C

    2011-07-20

    Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.

  11. Biochemical and structural characterization of a novel cooperative binding mode by Pit-1 with CATT repeats in the macrophage migration inhibitory factor promoter

    PubMed Central

    Agarwal, Sorabh

    2018-01-01

    Abstract Overexpression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) is linked to a number of autoimmune diseases and cancer. MIF production has been correlated to the number of CATT repeats in a microsatellite region upstream of the MIF gene. We have characterized the interaction of pituitary-specific positive transcription factor 1 (Pit-1) with a portion of the MIF promoter region flanking a microsatellite polymorphism (−794 CATT5–8). Using fluorescence anisotropy, we quantified tight complex formation between Pit-1 and an oligonucleotide consisting of eight consecutive CATT repeats (8xCATT) with an apparent Kd of 35 nM. Using competition experiments we found a 23 base pair oligonucleotide with 4xCATT repeats to be the minimum DNA sequence necessary for high affinity interaction with Pit-1. The stoichiometry of the Pit-1 DNA interaction was determined to be 2:1 and binding is cooperative in nature. We subsequently structurally characterized the complex and discovered a completely novel binding mode for Pit-1 in contrast to previously described Pit-1 complex structures. The affinity of Pit-1 for the CATT target sequence was found to be highly dependent on cooperativity. This work lays the groundwork for understanding transcriptional regulation of MIF and pursuing Pit-1 as a therapeutic target to treat MIF-mediated inflammatory disorders. PMID:29186613

  12. A Dynamic Tandem Repeat in Monocotyledons Inferred from a Comparative Analysis of Chloroplast Genomes in Melanthiaceae.

    PubMed

    Do, Hoang Dang Khoa; Kim, Joo-Hwan

    2017-01-01

    Chloroplast genomes (cpDNA) are highly valuable resources for evolutionary studies of angiosperms, since they are highly conserved, are small in size, and play critical roles in plants. Slipped-strand mispairing (SSM) was assumed to be a mechanism for generating repeat units in cpDNA. However, research on the employment of different small repeated sequences through SSM events, which may induce the accumulation of distinct types of repeats within the same region in cpDNA, has not been documented. Here, we sequenced two chloroplast genomes from the endemic species Heloniopsis tubiflora (Korea) and Xerophyllum tenax (USA) to cover the gap between molecular data and explore "hot spots" for genomic events in Melanthiaceae. Comparative analysis of 23 complete cpDNA sequences revealed that there were different stages of deletion in the rps16 region across the Melanthiaceae. Based on the partial or complete loss of rps16 gene in cpDNA, we have firstly reported potential molecular markers for recognizing two sections ( Veratrum and Fuscoveratrum ) of Veratrum . Melathiaceae exhibits a significant change in the junction between large single copy and inverted repeat regions, ranging from trnH_GUG to a part of rps3 . Our results show an accumulation of tandem repeats in the rpl23-ycf2 regions of cpDNAs. Small conserved sequences exist and flank tandem repeats in further observation of this region across most of the examined taxa of Liliales. Therefore, we propose three scenarios in which different small repeated sequences were used during SSM events to generate newly distinct types of repeats. Occasionally, prior to the SSM process, point mutation event and double strand break repair occurred and induced the formation of initial repeat units which are indispensable in the SSM process. SSM may have likely occurred more frequently for short repeats than for long repeat sequences in tribe Parideae (Melanthiaceae, Liliales). Collectively, these findings add new evidence of dynamic results from SSM in chloroplast genomes which can be useful for further evolutionary studies in angiosperms. Additionally, genomics events in cpDNA are potential resources for mining molecular markers in Liliales.

  13. Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome

    PubMed Central

    2011-01-01

    Background One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences. Results The EcoRI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera. Conclusions This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak. PMID:21645357

  14. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  15. Molecular and bioinformatic analysis of the FB-NOF transposable element.

    PubMed

    Badal, Martí; Portela, Anna; Xamena, Noel; Cabré, Oriol

    2006-04-12

    The Drosophila melanogaster transposable element FB-NOF is known to play a role in genome plasticity through the generation of all sort of genomic rearrangements. Moreover, several insertional mutants due to FB mobilizations have been reported. Its structure and sequence, however, have been poorly studied mainly as a consequence of the long, complex and repetitive sequence of FB inverted repeats. This repetitive region is composed of several 154 bp blocks, each with five almost identical repeats. In this paper, we report the sequencing process of 2 kb long FB inverted repeats of a complete FB-NOF element, with high precision and reliability. This achievement has been possible using a new map of the FB repetitive region, which identifies unambiguously each repeat with new features that can be used as landmarks. With this new vision of the element, a list of FB-NOF in the D. melanogaster genomic clones has been done, improving previous works that used only bioinformatic algorithms. The availability of many FB and FB-NOF sequences allowed an analysis of the FB insertion sequences that showed no sequence specificity, but a preference for A/T rich sequences. The position of NOF into FB is also studied, revealing that it is always located after a second repeat in a random block. With the results of this analysis, we propose a model of transposition in which NOF jumps from FB to FB, using an unidentified transposase enzyme that should specifically recognize the second repeat end of the FB blocks.

  16. Abr1, a Transposon-Like Element in the Genome of the Cultivated Mushroom Agaricus bisporus (Lange) Imbach

    PubMed Central

    Sonnenberg, Anton S. M.; Baars, Johan J. P.; Mikosch, Thomas S. P.; Schaap, Peter J.; Van Griensven, Leo J. L. D.

    1999-01-01

    A 300-bp repetitive element was found in the genome of the white button mushroom, Agaricus bisporus, and designated Abr1. It is present in ∼15 copies per haploid genome in the commercial strain Horst U1. Analysis of seven copies showed 89 to 97% sequence identity. The repeat has features typical of class II transposons (i.e., terminal inverted repeats, subterminal repeats, and a target site duplication of 7 bp). The latter shows a consensus sequence. When used as probe on Southern blots, Abr1 identifies relatively little variation within traditional and present-day commercial strains, indicating that most strains are identical or have a common origin. In contrast to these cultivars, high variation is found among field-collected strains. Furthermore, a remarkable difference in copy numbers of Abr1 was found between A. bisporus isolates with a secondarily homothallic life cycle and those with a heterothallic life cycle. Abr1 is a type II transposon not previously reported in basidiomycetes and appears to be useful for the identification of strains within the species A. bisporus. PMID:10427018

  17. R-loops: targets for nuclease cleavage and repeat instability.

    PubMed

    Freudenreich, Catherine H

    2018-01-11

    R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

  18. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing.

    PubMed

    Malmberg, M Michelle; Shi, Fan; Spangenberg, German C; Daetwyler, Hans D; Cogan, Noel O I

    2018-01-01

    Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD). Complexity reduction genotyping-by-sequencing (GBS) methods, including GBS-transcriptomics (GBS-t), enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR) delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs), and identify structural variants (SVs). Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  19. Simian immunodeficiency viruses from African green monkeys display unusual genetic diversity.

    PubMed Central

    Johnson, P R; Fomsgaard, A; Allan, J; Gravell, M; London, W T; Olmsted, R A; Hirsch, V M

    1990-01-01

    African green monkeys are asymptomatic carriers of simian immunodeficiency viruses (SIV), commonly called SIVagm. As many as 50% of African green monkeys in the wild may be SIV seropositive. This high seroprevalence rate and the potential for genetic variation of lentiviruses suggested to us that African green monkeys may harbor widely differing genotypes of SIVagm. To investigate this hypothesis, we determined the entire nucleotide sequence of an infectious proviral molecular clone of SIVagm (155-4) and partial sequences (long terminal repeat and Gag) of three other distinct SIVagm isolates (90, gri-1, and ver-1). Comparisons among the SIVagm isolates revealed extreme diversity at the nucleotide and amino acid levels. Long terminal repeat nucleotide sequences varied up to 35% and Gag protein sequences varied up to 30%. The variability among SIVagm isolates exceeded the variability among any other group of primate lentiviruses. Our data suggest that SIVagm has been in the African green monkey population for a long time and may be the oldest primate lentivirus group in existence. PMID:2304139

  20. Exploring single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes in the jellyfish (Rhopilema esculentum) by transcriptome sequencing.

    PubMed

    Li, Yunfeng; Zhou, Zunchun; Tian, Meilin; Tian, Yi; Dong, Ying; Li, Shilei; Liu, Weidong; He, Chongbo

    2017-08-01

    In this study, single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes (DEGs) in the oral parts, gonads, and umbrella parts of the jellyfish Rhopilema esculentum were analyzed by RNA-Seq technology. A total of 76.4 million raw reads and 72.1 million clean reads were generated from deep sequencing. Approximately 119,874 tentative unigenes and 149,239 transcripts were obtained. A total of 1,034,708 SNP markers were detected in the three tissues. For microsatellite mining, 5088 SSRs were identified from the unigene sequences. The most frequent repeat motifs were mononucleotide repeats, which accounted for 61.93%. Transcriptome comparison of the three tissues yielded a total of 8841 DEGs, of which 3560 were up-regulated and 5281 were down-regulated. This study represents the greatest sequencing effort carried out for a jellyfish and provides the first high-throughput transcriptomic resource for jellyfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Self-calibration of a W/Re thermocouple using a miniature Ru-C (1954 °C) eutectic cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongrai, O.; University of Surrey, Guildford, Surrey; National Institute of Metrology, Klong 5, Klong Luang, Pathumthani

    2013-09-11

    Previous successful investigations of miniature cobalt-carbon (Co-C, 1324 °C) and palladium-carbon (Pd-C, 1492 °C) high temperature fixed-point cells for thermocouple self-calibration have been reported [1-2]. In the present work, we describe a series of measurements of a miniature ruthenium-carbon (Ru-C) eutectic cell (melting point 1954 °C) to evaluate the repeatability and stability of a W/Re thermocouple (type C) by means of in-situ calibration. A miniature Ru-C eutectic fixed-point cell with outside diameter 14 mm and length 30 mm was fabricated to be used as a self-calibrating device. The performance of the miniature Ru-C cell and the type C thermocouple ismore » presented, including characterization of the stability, repeatability, thermal environment influence, ITS-90 temperature realization and measurement uncertainty.« less

  2. Repeat Brachytherapy for Patients With Residual or Recurrent Tumors of Oral Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, Ryo-ichi, E-mail: ysmrmrad@tmd.ac.jp; Shibuya, Hitoshi; Hayashi, Keiji

    Purpose: To analyze data from patients receiving repeat brachytherapy (re-BT) for the treatment of residual or recurrent tumor in the oral cavity. Methods and Materials: Between January 2003 and December 2007, 62 patients who had undergone definitive BT as an initial treatment of oral cancer subsequently underwent re-BT for the treatment of residual or recurrent tumors at the diagnostic radiology and oncology department (Tokyo Medical and Dental University Hospital). Re-BT was performed 0.9-73 months (median, 5.7) after the initial BT. Au-198 grains were used as the re-BT source in all 62 patients, and an area of 0.8-6.3 cm{sup 2} (median,more » 3.1) was permanently irradiated with 60-110 Gy (median, 83) according to the system of Paterson-Parker. Results: The 2-year local control and overall survival rate was 53% and 66%, respectively, and local control significantly affected overall survival. Both local control and overall survival were affected by the initial tumor characteristics and the macroscopic appearance of the residual or recurrent tumor. Grade 3 or 4 complications were seen in 5 patients. The incidence of mandibular and mucosal complications was significantly related to a biologic effective dose of {alpha}/{beta} of 3 Gy to the surface of the gingiva and mucosa, respectively. Conclusion: Re-BT using Au-198 grains for the treatment of residual or recurrent tumor after definitive BT in the oral cavity is effective and well tolerated.« less

  3. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia.

    PubMed

    Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad; Pournia, Yadollah; Zebardast, Nozhat; Kazemi, Bahram

    2014-07-01

    Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this paper, a newly described DNA amplification technique, loop-mediated isothermal amplification (LAMP), and nested-PCR targeting the repeated element (RE) and B1 gene, were compared to each other for the detection of Toxoplasma gondii DNA in blood samples of children with leukaemia. One hundred ten blood samples from these patients were analyzed by LAMP and nested-PCR. Out of 50 seropositive samples (IgM+, IgG+), positive results were obtained with 92% and 86% on RE, B1-LAMP and 82% and 68% on RE, B1-nested PCR analyses, respectively. Of the 50 seronegative samples, three, two and one samples were detected positive by RE-LAMP, B1-LAMP and RE-nested PCR assays, respectively, while none were detected positive by B1-nested PCR. None of the 10 IgM-, IgG+ samples was detected positive after testing LAMP and nested-PCR assays in duplicate. This is the first report of a study in which the LAMP method was applied with high sensitivity and efficacy for the diagnosis of T. gonii in blood samples of children with leukaemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The Influence of Primary and Secondary DNA Structure in Deletion and Duplication between Direct Repeats in Escherichia Coli

    PubMed Central

    Trinh, T. Q.; Sinden, R. R.

    1993-01-01

    We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events. PMID:8325478

  5. Visual ModuleOrganizer: a graphical interface for the detection and comparative analysis of repeat DNA modules

    PubMed Central

    2014-01-01

    Background DNA repeats, such as transposable elements, minisatellites and palindromic sequences, are abundant in sequences and have been shown to have significant and functional roles in the evolution of the host genomes. In a previous study, we introduced the concept of a repeat DNA module, a flexible motif present in at least two occurences in the sequences. This concept was embedded into ModuleOrganizer, a tool allowing the detection of repeat modules in a set of sequences. However, its implementation remains difficult for larger sequences. Results Here we present Visual ModuleOrganizer, a Java graphical interface that enables a new and optimized version of the ModuleOrganizer tool. To implement this version, it was recoded in C++ with compressed suffix tree data structures. This leads to less memory usage (at least 120-fold decrease in average) and decreases by at least four the computation time during the module detection process in large sequences. Visual ModuleOrganizer interface allows users to easily choose ModuleOrganizer parameters and to graphically display the results. Moreover, Visual ModuleOrganizer dynamically handles graphical results through four main parameters: gene annotations, overlapping modules with known annotations, location of the module in a minimal number of sequences, and the minimal length of the modules. As a case study, the analysis of FoldBack4 sequences clearly demonstrated that our tools can be extended to comparative and evolutionary analyses of any repeat sequence elements in a set of genomic sequences. With the increasing number of sequences available in public databases, it is now possible to perform comparative analyses of repeated DNA modules in a graphic and friendly manner within a reasonable time period. Availability Visual ModuleOrganizer interface and the new version of the ModuleOrganizer tool are freely available at: http://lcb.cnrs-mrs.fr/spip.php?rubrique313. PMID:24678954

  6. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progressmore » report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.« less

  7. Nucleotide sequence of soybean chloroplast DNA regions which contain the psb A and trn H genes and cover the ends of the large single copy region and one end of the inverted repeats.

    PubMed

    Spielmann, A; Stutz, E

    1983-10-25

    The soybean chloroplast psb A gene (photosystem II thylakoid membrane protein of Mr 32 000, lysine-free) and the trn H gene (tRNAHisGUG), which both map in the large single copy region adjacent to one of the inverted repeat structures (IR1), have been sequenced including flanking regions. The psb A gene shows in its structural part 92% sequence homology with the corresponding genes of spinach and N. debneyi and contains also an open reading frame for 353 aminoacids. The aminoacid sequence of a potential primary translation product (calculated Mr, 38 904, no lysine) diverges from that of spinach and N. debneyi in only two positions in the C-terminal part. The trn H gene has the same polarity as the psb A gene and the coding region is located at the very end of the large single copy region. The deduced sequence of the soybean chloroplast tRNAHisGUG is identical with that of Zea mays chloroplasts. Both ends of the large single copy region were sequenced including a small segment of the adjacent IR1 and IR2.

  8. Accuracy of risk scales for predicting repeat self-harm and suicide: a multicentre, population-level cohort study using routine clinical data.

    PubMed

    Steeg, Sarah; Quinlivan, Leah; Nowland, Rebecca; Carroll, Robert; Casey, Deborah; Clements, Caroline; Cooper, Jayne; Davies, Linda; Knipe, Duleeka; Ness, Jennifer; O'Connor, Rory C; Hawton, Keith; Gunnell, David; Kapur, Nav

    2018-04-25

    Risk scales are used widely in the management of patients presenting to hospital following self-harm. However, there is evidence that their diagnostic accuracy in predicting repeat self-harm is limited. Their predictive accuracy in population settings, and in identifying those at highest risk of suicide is not known. We compared the predictive accuracy of the Manchester Self-Harm Rule (MSHR), ReACT Self-Harm Rule (ReACT), SAD PERSONS Scale (SPS) and Modified SAD PERSONS Scale (MSPS) in an unselected sample of patients attending hospital following self-harm. Data on 4000 episodes of self-harm presenting to Emergency Departments (ED) between 2010 and 2012 were obtained from four established monitoring systems in England. Episodes were assigned a risk category for each scale and followed up for 6 months. The episode-based repeat rate was 28% (1133/4000) and the incidence of suicide was 0.5% (18/3962). The MSHR and ReACT performed with high sensitivity (98% and 94% respectively) and low specificity (15% and 23%). The SPS and the MSPS performed with relatively low sensitivity (24-29% and 9-12% respectively) and high specificity (76-77% and 90%). The area under the curve was 71% for both MSHR and ReACT, 51% for SPS and 49% for MSPS. Differences in predictive accuracy by subgroup were small. The scales were less accurate at predicting suicide than repeat self-harm. The scales failed to accurately predict repeat self-harm and suicide. The findings support existing clinical guidance not to use risk classification scales alone to determine treatment or predict future risk.

  9. Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius).

    PubMed

    Yang, Huaan; Jian, Jianbo; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark W; Tan, Cong; Li, Chengdao

    2015-09-02

    Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding. Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding. We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

  10. Molecular identification and characterization of clustered regularly interspaced short palindromic repeat (CRISPR) gene cluster in Taylorella equigenitalis.

    PubMed

    Hara, Yasushi; Hayashi, Kyohei; Nakajima, Takuya; Kagawa, Shizuko; Tazumi, Akihiro; Moore, John E; Matsuda, Motoo

    2013-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs), of approximately 10,000 base pairs (bp) in length, were shown to occur in the Japanese Taylorella equigenitalis strain, EQ59. The locus was composed of the putative CRISPRs-associated with 5 (cas5), RAMP csd1, csd2, recB, cas1, a leader region, 13 CRISPR consensus sequence repeats (each 32 bp; 5'-TCAGCCACGTTCGCGTGGCTGTGTGTTTAAAG-3'). These were in turn separated by 12 non repetitive unique spacer regions of similar length. In addition, a leader region, a transposase/IS protein, a leader region, and cas3 were also seen. All seven putative open reading frames carry their ribosome binding sites. Promoter consensus sequences at the -35 and -10 regions and putative intrinsic ρ-independent transcription terminator regions also occurred. A possible long overlap of 170 bp in length occurred between the recB and cas1 loci. Positive reverse transcription PCR signals of cas5, RAMP csd1, csd2-recB/cas1, and cas3 were generated. A putative secondary structure of the CRISPR consensus repeats was constructed. Following this, CRISPR results of the T. equigenitalis EQ59 isolate were subsequently compared with those from the Taylorella asinigenitalis MCE3 isolate.

  11. Understanding the recognition mechanisms of Zα domain of human editing enzyme ADAR1 (hZα(ADAR1)) and various Z-DNAs from molecular dynamics simulation.

    PubMed

    Wang, Qianqian; Li, Lanlan; Wang, Xiaoting; Liu, Huanxiang; Yao, Xiaojun

    2014-11-01

    The Z-DNA-binding domain of human double-stranded RNA adenosine deaminase I (hZαADAR1) can specifically recognize the left-handed Z-DNA which preferentially occurs at alternating purine-pyrimidine repeats, especially the CG-repeats. The interactions of hZαADAR1 and Z-DNAs in different sequence contexts can affect many important biological functions including gene regulation and chromatin remodeling. Therefore it is of great necessity to fully understand their recognition mechanisms. However, most existing studies are aimed at the standard CG-repeat Z-DNA rather than the non-CG-repeats, and whether the molecular basis of hZαADAR1 binding to various Z-DNAs are identical or not is still unclear on the atomic level. Here, based on the recently determined crystal structures of three representative non-CG-repeat Z-DNAs (d(CACGTG)2, d(CGTACG)2 and d(CGGCCG)2) in complex with hZαADAR1, 40 ns molecular dynamics simulation together with binding free energy calculation were performed for each system. For comparison, the standard CG-repeat Z-DNA (d(CGCGCG)2) complexed with hZαADAR1 was also simulated. The consistent results demonstrate that nonpolar interaction is the driving force during the protein-DNA binding process, and that polar interaction mainly from helix α3 also provides important contributions. Five common hot-spot residues were identified, namely Lys169, Lys170, Asn173, Arg174 and Tyr177. Hydrogen bond analysis coupled with surface charge distribution further reveal the interfacial information between hZαADAR1 and Z-DNA in detail. All of the analysis illustrate that four complexes share the common key features and the similar binding modes irrespective of Z-DNA sequences, suggesting that Z-DNA recognition by hZαADAR1 is conformation-specific rather than sequence-specific. Additionally, by analyzing the conformational changes of hZαADAR1, we found that the binding of Z-DNA could effectively stabilize hZαADAR1 protein. Our study can provide some valuable information for better understanding the binding mechanism between hZαADAR1 or even other Z-DNA-binding protein and Z-DNA.

  12. Recombination Analysis of Herpes Simplex Virus 1 Reveals a Bias toward GC Content and the Inverted Repeat Regions

    PubMed Central

    Lee, Kyubin; Kolb, Aaron W.; Sverchkov, Yuriy; Cuellar, Jacqueline A.; Craven, Mark

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) causes recurrent mucocutaneous ulcers and is the leading cause of infectious blindness and sporadic encephalitis in the United States. HSV-1 has been shown to be highly recombinogenic; however, to date, there has been no genome-wide analysis of recombination. To address this, we generated 40 HSV-1 recombinants derived from two parental strains, OD4 and CJ994. The 40 OD4-CJ994 HSV-1 recombinants were sequenced using the Illumina sequencing system, and recombination breakpoints were determined for each of the recombinants using the Bootscan program. Breakpoints occurring in the terminal inverted repeats were excluded from analysis to prevent double counting, resulting in a total of 272 breakpoints in the data set. By placing windows around the 272 breakpoints followed by Monte Carlo analysis comparing actual data to simulated data, we identified a recombination bias toward both high GC content and intergenic regions. A Monte Carlo analysis also suggested that recombination did not appear to be responsible for the generation of the spontaneous nucleotide mutations detected following sequencing. Additionally, kernel density estimation analysis across the genome found that the large, inverted repeats comprise a recombination hot spot. IMPORTANCE Herpes simplex virus 1 (HSV-1) virus is the leading cause of sporadic encephalitis and blinding keratitis in developed countries. HSV-1 has been shown to be highly recombinogenic, and recombination itself appears to be a significant component of genome replication. To date, there has been no genome-wide analysis of recombination. Here we present the findings of the first genome-wide study of recombination performed by generating and sequencing 40 HSV-1 recombinants derived from the OD4 and CJ994 parental strains, followed by bioinformatics analysis. Recombination breakpoints were determined, yielding 272 breakpoints in the full data set. Kernel density analysis determined that the large inverted repeats constitute a recombination hot spot. Additionally, Monte Carlo analyses found biases toward high GC content and intergenic and repetitive regions. PMID:25926637

  13. Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach

    USDA-ARS?s Scientific Manuscript database

    Expressed sequence tag (EST) simple sequence repeats (SSRs) in Prunus were mined, and flanking primers designed and used for genome-wide characterization and selection of primers to optimize marker distribution and reliability. A total of 12,618 contigs were assembled from 84,727 ESTs, along with 34...

  14. Microsatellite analysis in the genome of Acanthaceae: An in silico approach.

    PubMed

    Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar

    2015-01-01

    Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future.

  15. Complete mitochondrial genome of the whiter-spotted flower chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae).

    PubMed

    Kim, Min Jee; Im, Hyun Hwak; Lee, Kwang Youll; Han, Yeon Soo; Kim, Iksoo

    2014-06-01

    Abstract The complete nucleotide sequences of the mitochondrial genome from the whiter-spotted flower chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae), was determined. The 20,319-bp long circular genome is the longest among completely sequenced Coleoptera. As is typical in animals, the P. brevitarsis genome consisted of two ribosomal RNAs, 22 transfer RNAs, 13 protein-coding genes and one A + T-rich region. Although the size of the coding genes was typical, the non-coding A + T-rich region was 5654 bp, which is the longest in insects. The extraordinary length of this region was composed of 28,117-bp tandem repeats and 782-bp tandem repeats. These repeat sequences were encompassed by three non-repeat sequences constituting 1804 bp.

  16. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans.

    PubMed

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F

    2015-05-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level.

  17. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans

    PubMed Central

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J.; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F.

    2015-01-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level. PMID:25973765

  18. The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1).

    PubMed

    Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2009-02-01

    The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.

  19. Multiple bidirectional initiations and terminations of transcription in the Marek's disease virus long repeat regions.

    PubMed Central

    Chen, X B; Velicer, L F

    1991-01-01

    Marek's disease is an oncogenic disease of chickens caused by a herpesvirus, Marek's disease virus (MDV). Serial in vitro passage of pathogenic MDV results in amplification of a 132-bp direct repeat in the MDV genome's TRL and IRL repeat regions and loss of tumorigenicity. This led to the hypothesis that upon such expansion, one or more tumor-inducing genes fail to be expressed. In this report a group of cDNAs mapping in the expanded regions were isolated from a pathogenic MDV strain in which the 132-bp direct repeat number was found to range between one and seven. Partial cDNA sequencing and S1 nuclease protection analysis revealed that the corresponding transcripts are either initiated or terminated within or near the expanded regions at multiple sites in both rightward and leftward directions. Furthermore, each 132-bp repeat contains one TATA box and two polyadenylation consensus sequences in each direction. These RNAs contain a partial copy or one or more full copies of the 132-bp direct repeat at either their 5' or 3' end. Northern (RNA) blot analysis showed that the majority of transcripts are 1.8 kb in size, while the minor species range in size from 0.67 to 3.1 kb. Together, these data raise the possibility that the 132-bp direct repeat, and indirectly its copy number, may be involved in the regulation of transcriptional initiation and termination and therefore in the generation of four groups of transcripts from the TRL and IRL, although this remains to be demonstrated. Images PMID:1850022

  20. poRe: an R package for the visualization and analysis of nanopore sequencing data.

    PubMed

    Watson, Mick; Thomson, Marian; Risse, Judith; Talbot, Richard; Santoyo-Lopez, Javier; Gharbi, Karim; Blaxter, Mark

    2015-01-01

    The Oxford Nanopore MinION device represents a unique sequencing technology. As a mobile sequencing device powered by the USB port of a laptop, the MinION has huge potential applications. To enable these applications, the bioinformatics community will need to design and build a suite of tools specifically for MinION data. Here we present poRe, a package for R that enables users to manipulate, organize, summarize and visualize MinION nanopore sequencing data. As a package for R, poRe has been tested on Windows, Linux and MacOSX. Crucially, the Windows version allows users to analyse MinION data on the Windows laptop attached to the device. poRe is released as a package for R at http://sourceforge.net/projects/rpore/. A tutorial and further information are available at https://sourceforge.net/p/rpore/wiki/Home/. © The Author 2014. Published by Oxford University Press.

  1. Single nucleotide variants and indels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Whole-genome re-sequencing, alignment and annotation analyses were undertaken for 12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose), Gyr, Girolando and Holstein (dairy production). A total of approximately 4.3 billion reads from an Illumina HiSeq 2000 sequencer ge...

  2. Simple Sequence Repeats Provide a Substrate for Phenotypic Variation in the Neurospora crassa Circadian Clock

    PubMed Central

    Michael, Todd P.; Park, Sohyun; Kim, Tae-Sung; Booth, Jim; Byer, Amanda; Sun, Qi; Chory, Joanne; Lee, Kwangwon

    2007-01-01

    Background WHITE COLLAR-1 (WC-1) mediates interactions between the circadian clock and the environment by acting as both a core clock component and as a blue light photoreceptor in Neurospora crassa. Loss of the amino-terminal polyglutamine (NpolyQ) domain in WC-1 results in an arrhythmic circadian clock; this data is consistent with this simple sequence repeat (SSR) being essential for clock function. Methodology/Principal Findings Since SSRs are often polymorphic in length across natural populations, we reasoned that investigating natural variation of the WC-1 NpolyQ may provide insight into its role in the circadian clock. We observed significant phenotypic variation in the period, phase and temperature compensation of circadian regulated asexual conidiation across 143 N. crassa accessions. In addition to the NpolyQ, we identified two other simple sequence repeats in WC-1. The sizes of all three WC-1 SSRs correlated with polymorphisms in other clock genes, latitude and circadian period length. Furthermore, in a cross between two N. crassa accessions, the WC-1 NpolyQ co-segregated with period length. Conclusions/Significance Natural variation of the WC-1 NpolyQ suggests a mechanism by which period length can be varied and selected for by the local environment that does not deleteriously affect WC-1 activity. Understanding natural variation in the N. crassa circadian clock will facilitate an understanding of how fungi exploit their environments. PMID:17726525

  3. Isolation of an insertion sequence (IS1051) from Xanthomonas campestris pv. dieffenbachiae with potential use for strain identification and characterization.

    PubMed Central

    Berthier, Y; Thierry, D; Lemattre, M; Guesdon, J L

    1994-01-01

    A new insertion sequence was isolated from Xanthomonas campestris pv. dieffenbachiae. Sequence analysis showed that this element is 1,158 bp long and has 15-bp inverted repeat ends containing two mismatches. Comparison of this sequence with sequences in data bases revealed significant homology with Escherichia coli IS5. IS1051, which detected multiple restriction fragment length polymorphisms, was used as a probe to characterize strains from the pathovar dieffenbachiae. Images PMID:7906933

  4. Screening for microsatellite instability target genes in colorectal cancers

    PubMed Central

    Vilkki, S; Launonen, V; Karhu, A; Sistonen, P; Vastrik, I; Aaltonen, L

    2002-01-01

    Background: Defects in the DNA repair system lead to genetic instability because replication errors are not corrected. This type of genetic instability is a key event in the malignant progression of HNPCC and a subset of sporadic colon cancers and mutation rates are particularly high at short repetitive sequences. Somatic deletions of coding mononucleotide repeats have been detected, for example, in the TGFßRII and BAX genes, and recently many novel target genes for microsatellite instability (MSI) have been proposed. Novel target genes are likely to be discovered in the future. More data should be created on background mutation rates in MSI tumours to evaluate mutation rates observed in the candidate target genes. Methods: Mutation rates in 14 neutral intronic repeats were evaluated in MSI tumours. Bioinformatic searches combined with keywords related to cancer and tumour suppressor or CRC related gene homology were used to find new candidate MSI target genes. By comparison of mutation frequencies observed in intronic mononucleotide repeats versus exonic coding repeats of potential MSI target genes, the significance of the exonic mutations was estimated. Results: As expected, the length of an intronic mononucleotide repeat correlated positively with the number of slippages for both G/C and A/T repeats (p=0.0020 and p=0.0012, respectively). BRCA1, CtBP1, and Rb1 associated CtIP and other candidates were found in a bioinformatic search combined with keywords related to cancer. Sequencing showed a significantly increased mutation rate in the exonic A9 repeat of CtIP (25/109=22.9%) as compared with similar intronic repeats (p≤0.001). Conclusions: We propose a new candidate MSI target gene CtIP to be evaluated in further studies. PMID:12414815

  5. Neural Mechanisms Underlying Visual Short-Term Memory Gain for Temporally Distinct Objects.

    PubMed

    Ihssen, Niklas; Linden, David E J; Miller, Claire E; Shapiro, Kimron L

    2015-08-01

    Recent research has shown that visual short-term memory (VSTM) can substantially be improved when the to-be-remembered objects are split in 2 half-arrays (i.e., sequenced) or the entire array is shown twice (i.e., repeated), rather than presented simultaneously. Here we investigate the hypothesis that sequencing and repeating displays overcomes attentional "bottlenecks" during simultaneous encoding. Using functional magnetic resonance imaging, we show that sequencing and repeating displays increased brain activation in extrastriate and primary visual areas, relative to simultaneous displays (Study 1). Passively viewing identical stimuli did not increase visual activation (Study 2), ruling out a physical confound. Importantly, areas of the frontoparietal attention network showed increased activation in repetition but not in sequential trials. This dissociation suggests that repeating a display increases attentional control by allowing attention to be reallocated in a second encoding episode. In contrast, sequencing the array poses fewer demands on control, with competition from nonattended objects being reduced by the half-arrays. This idea was corroborated by a third study in which we found optimal VSTM for sequential displays minimizing attentional demands. Importantly these results provide support within the same experimental paradigm for the role of stimulus-driven and top-down attentional control aspects of biased competition theory in setting constraints on VSTM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carte, Jason; Wang, Ruiying; Li, Hong

    An RNA-based gene silencing pathway that protects bacteria and archaea from viruses and other genome invaders is hypothesized to arise from guide RNAs encoded by CRISPR loci and proteins encoded by the cas genes. CRISPR loci contain multiple short invader-derived sequences separated by short repeats. The presence of virus-specific sequences within CRISPR loci of prokaryotic genomes confers resistance against corresponding viruses. The CRISPR loci are transcribed as long RNAs that must be processed to smaller guide RNAs. Here we identified Pyrococcus furiosus Cas6 as a novel endoribonuclease that cleaves CRISPR RNAs within the repeat sequences to release individual invader targetingmore » RNAs. Cas6 interacts with a specific sequence motif in the 5{prime} region of the CRISPR repeat element and cleaves at a defined site within the 3{prime} region of the repeat. The 1.8 angstrom crystal structure of the enzyme reveals two ferredoxin-like folds that are also found in other RNA-binding proteins. The predicted active site of the enzyme is similar to that of tRNA splicing endonucleases, and concordantly, Cas6 activity is metal-independent. cas6 is one of the most widely distributed CRISPR-associated genes. Our findings indicate that Cas6 functions in the generation of CRISPR-derived guide RNAs in numerous bacteria and archaea.« less

  7. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements.

    PubMed

    Parson, Walther; Ballard, David; Budowle, Bruce; Butler, John M; Gettings, Katherine B; Gill, Peter; Gusmão, Leonor; Hares, Douglas R; Irwin, Jodi A; King, Jonathan L; Knijff, Peter de; Morling, Niels; Prinz, Mechthild; Schneider, Peter M; Neste, Christophe Van; Willuweit, Sascha; Phillips, Christopher

    2016-05-01

    The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that provide a precise description of the repeat allele structure of a STR marker and variants that may reside in the flanking areas of the repeat region. When a STR contains a complex arrangement of repeat motifs, the level of genetic polymorphism revealed by the sequence data can increase substantially. As repeat structures can be complex and include substitutions, insertions, deletions, variable tandem repeat arrangements of multiple nucleotide motifs, and flanking region SNPs, established capillary electrophoresis (CE) allele descriptions must be supplemented by a new system of STR allele nomenclature, which retains backward compatibility with the CE data that currently populate national DNA databases and that will continue to be produced for the coming years. Thus, there is a pressing need to produce a standardized framework for describing complex sequences that enable comparison with currently used repeat allele nomenclature derived from conventional CE systems. It is important to discern three levels of information in hierarchical order (i) the sequence, (ii) the alignment, and (iii) the nomenclature of STR sequence data. We propose a sequence (text) string format the minimal requirement of data storage that laboratories should follow when adopting MPS of STRs. We further discuss the variant annotation and sequence comparison framework necessary to maintain compatibility among established and future data. This system must be easy to use and interpret by the DNA specialist, based on a universally accessible genome assembly, and in place before the uptake of MPS by the general forensic community starts to generate sequence data on a large scale. While the established nomenclature for CE-based STR analysis will remain unchanged in the future, the nomenclature of sequence-based STR genotypes will need to follow updated rules and be generated by expert systems that translate MPS sequences to match CE conventions in order to guarantee compatibility between the different generations of STR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. SSRscanner: a program for reporting distribution and exact location of simple sequence repeats

    PubMed Central

    Anwar, Tamanna; Khan, Asad U

    2006-01-01

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. Availability This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com PMID:17597863

  9. Evaluation of Factors Affecting Repeatability and Accuracy of Turbine Rig Test Results.

    DTIC Science & Technology

    1980-06-01

    Ratio of Ptip/Pto (87 87 SYMBOL DEFINITION Pl/PTO Pressure Ratio of P1/Pto P-HUB/PTO Pressure Ratio of Phub /Pto KIS Isentropic Head Coefficient TURB...60.717 634.4 16.697 22.734 16.806 16.903 PT. PTIP/PTO P1/PTO PHUB /PTO KIS TURB RE DEL T ETA 1 0.289 0.243 0.203 13.614 2280990 119.57 0.655 2 0.298 0.245...PT. PTIP/PTO P1/PTO PHUB /PTO KIS TURS RE DEL T ETA 1 0.289 0.241 0.202 13.625 2861040 121.63 8.653 2 0.298 8.238 8.218 11.511 2988368 129.66 0.685 3

  10. Structure and stability of the ankyrin domain of the Drosophila Notch receptor.

    PubMed

    Zweifel, Mark E; Leahy, Daniel J; Hughson, Frederick M; Barrick, Doug

    2003-11-01

    The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.

  11. Comparison of Dixon Sequences for Estimation of Percent Breast Fibroglandular Tissue

    PubMed Central

    Ledger, Araminta E. W.; Scurr, Erica D.; Hughes, Julie; Macdonald, Alison; Wallace, Toni; Thomas, Karen; Wilson, Robin; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    Objectives To evaluate sources of error in the Magnetic Resonance Imaging (MRI) measurement of percent fibroglandular tissue (%FGT) using two-point Dixon sequences for fat-water separation. Methods Ten female volunteers (median age: 31 yrs, range: 23–50 yrs) gave informed consent following Research Ethics Committee approval. Each volunteer was scanned twice following repositioning to enable an estimation of measurement repeatability from high-resolution gradient-echo (GRE) proton-density (PD)-weighted Dixon sequences. Differences in measures of %FGT attributable to resolution, T1 weighting and sequence type were assessed by comparison of this Dixon sequence with low-resolution GRE PD-weighted Dixon data, and against gradient-echo (GRE) or spin-echo (SE) based T1-weighted Dixon datasets, respectively. Results %FGT measurement from high-resolution PD-weighted Dixon sequences had a coefficient of repeatability of ±4.3%. There was no significant difference in %FGT between high-resolution and low-resolution PD-weighted data. Values of %FGT from GRE and SE T1-weighted data were strongly correlated with that derived from PD-weighted data (r = 0.995 and 0.96, respectively). However, both sequences exhibited higher mean %FGT by 2.9% (p < 0.0001) and 12.6% (p < 0.0001), respectively, in comparison with PD-weighted data; the increase in %FGT from the SE T1-weighted sequence was significantly larger at lower breast densities. Conclusion Although measurement of %FGT at low resolution is feasible, T1 weighting and sequence type impact on the accuracy of Dixon-based %FGT measurements; Dixon MRI protocols for %FGT measurement should be carefully considered, particularly for longitudinal or multi-centre studies. PMID:27011312

  12. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts

    PubMed Central

    Guo, Xianwu; Castillo-Ramírez, Santiago; González, Víctor; Bustos, Patricia; Luís Fernández-Vázquez, José; Santamaría, Rosa Isela; Arellano, Jesús; Cevallos, Miguel A; Dávila, Guillermo

    2007-01-01

    Background Fabaceae (legumes) is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes) for these crops is limited. Results We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa) chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean [1]. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels) also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Conclusion Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome. PMID:17623083

  13. DDM1 represses noncoding RNA expression and RNA-directed DNA methylation in heterochromatin.

    PubMed

    Tan, Feng; Lu, Yue; Jiang, Wei; Zhao, Yu; Wu, Tian; Zhang, Ruoyu; Zhou, Dao-Xiu

    2018-05-24

    Cytosine methylation of DNA, which occurs at CG, CHG, and CHH (H=A, C, or T) sequences in plants, is a hallmark for epigenetic repression of repetitive sequences. The chromatin remodeling factor DECREASE IN DNA METHYLATION1 (DDM1) is essential for DNA methylation, especially at CG and CHG sequences. However, its potential role in RNA-directed DNA methylation (RdDM) and in chromatin function is not completely understood in rice (Oryza sativa). In this work, we used high-throughput approaches to study the function of rice DDM1 (OsDDM1) in RdDM and the expression of non-coding RNA (ncRNA). We show that loss of function of OsDDM1 results in ectopic CHH methylation of transposable elements and repeats. The ectopic CHH methylation was dependent on rice DOMAINS REARRANGED METHYLTRANSFERASE2 (OsDRM2), a DNA methyltransferase involved in RdDM. Mutations in OsDDM1 lead to decreases of histone H3K9me2 and increases in the levels of heterochromatic small RNA (sRNA) and long noncoding RNA (lncRNA). In particular, OsDDM1 was found to be essential to repress transcription of the two repetitive sequences, Centromeric Retrotransposons of Rice1 (CRR1) and the dominant centromeric CentO repeats. These results suggest that OsDDM1 antagonizes RdDM at heterochromatin and represses tissue-specific expression of ncRNA from repetitive sequences in the rice genome. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  14. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington’s disease

    PubMed Central

    Chen, Mingchen; Wolynes, Peter G.

    2017-01-01

    Huntington’s disease (HD) is a neurodegenerative disease caused by an abnormal expansion in the polyglutamine (polyQ) track of the Huntingtin (HTT) protein. The severity of the disease depends on the polyQ repeat length, arising only in patients with proteins having 36 repeats or more. Previous studies have shown that the aggregation of N-terminal fragments (encoded by HTT exon 1) underlies the disease pathology in mouse models and that the HTT exon 1 gene product can self-assemble into amyloid structures. Here, we provide detailed structural mechanisms for aggregation of several protein fragments encoded by HTT exon 1 by using the associative memory, water-mediated, structure and energy model (AWSEM) to construct their free energy landscapes. We find that the addition of the N-terminal 17-residue sequence (NT17) facilitates polyQ aggregation by encouraging the formation of prefibrillar oligomers, whereas adding the C-terminal polyproline sequence (P10) inhibits aggregation. The combination of both terminal additions in HTT exon 1 fragment leads to a complex aggregation mechanism with a basic core that resembles that found for the aggregation of pure polyQ repeats using AWSEM. At the extrapolated physiological concentration, although the grand canonical free energy profiles are uphill for HTT exon 1 fragments having 20 or 30 glutamines, the aggregation landscape for fragments with 40 repeats has become downhill. This computational prediction agrees with the critical length found for the onset of HD and suggests potential therapies based on blocking early binding events involving the terminal additions to the polyQ repeats. PMID:28400517

  15. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    PubMed

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  16. Giardia telomeric sequence d(TAGGG)4 forms two intramolecular G-quadruplexes in K+ solution: effect of loop length and sequence on the folding topology.

    PubMed

    Hu, Lanying; Lim, Kah Wai; Bouaziz, Serge; Phan, Anh Tuân

    2009-11-25

    Recently, it has been shown that in K(+) solution the human telomeric sequence d[TAGGG(TTAGGG)(3)] forms a (3 + 1) intramolecular G-quadruplex, while the Bombyx mori telomeric sequence d[TAGG(TTAGG)(3)], which differs from the human counterpart only by one G deletion in each repeat, forms a chair-type intramolecular G-quadruplex, indicating an effect of G-tract length on the folding topology of G-quadruplexes. To explore the effect of loop length and sequence on the folding topology of G-quadruplexes, here we examine the structure of the four-repeat Giardia telomeric sequence d[TAGGG(TAGGG)(3)], which differs from the human counterpart only by one T deletion within the non-G linker in each repeat. We show by NMR that this sequence forms two different intramolecular G-quadruplexes in K(+) solution. The first one is a novel basket-type antiparallel-stranded G-quadruplex containing two G-tetrads, a G x (A-G) triad, and two A x T base pairs; the three loops are consecutively edgewise-diagonal-edgewise. The second one is a propeller-type parallel-stranded G-quadruplex involving three G-tetrads; the three loops are all double-chain-reversal. Recurrence of several structural elements in the observed structures suggests a "cut and paste" principle for the design and prediction of G-quadruplex topologies, for which different elements could be extracted from one G-quadruplex and inserted into another.

  17. Operating characteristics of the implicit learning system supporting serial interception sequence learning.

    PubMed

    Sanchez, Daniel J; Reber, Paul J

    2012-04-01

    The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the implicit sequence learning mechanism, participants performed the serial interception sequence learning (SISL) task with covertly embedded repeating sequences that were much longer than most previous studies: ranging from 30 to 60 (Experiment 1) and 60 to 90 (Experiment 2) items in length. Robust sequence-specific learning was observed for sequences up to 80 items in length, extending the known capacity of implicit sequence learning. In Experiment 3, 12-item repeating sequences were embedded among increasing amounts of irrelevant nonrepeating sequences (from 20 to 80% of training trials). Despite high levels of irrelevant trials, learning occurred across conditions. A comparison of learning rates across all three experiments found a surprising degree of constancy in the rate of learning regardless of sequence length or embedded noise. Sequence learning appears to be constant with the logarithm of the number of sequence repetitions practiced during training. The consistency in learning rate across experiments and conditions implies that the mechanisms supporting implicit sequence learning are not capacity-constrained by very long sequences nor adversely affected by high rates of irrelevant sequences during training.

  18. Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala).

    PubMed

    Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H

    2013-04-02

    Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.

  19. Assessment of prokaryotic collagen-like sequences derived from streptococcal Scl1 and Scl2 proteins as a source of recombinant GXY polymers.

    PubMed

    Han, Runlin; Zwiefka, Antoni; Caswell, Clayton C; Xu, Yi; Keene, Douglas R; Lukomska, Ewa; Zhao, Zhihong; Höök, Magnus; Lukomski, Slawomir

    2006-08-01

    Collagen triple helix, composed of the repeating Gly-Xaa-Yaa (GXY) sequence, is a structural element found in all multicellular animals and also in some prokaryotes. Long GXY polymers are highly regarded components used in food, cosmetic, biomedical, and pharmaceutical industries. In this study, we explore a new concept for the production of recombinant GXY polymers which are based on the sequence of "prokaryotic collagens", the streptococcal collagen-like proteins Scl1 and Scl2. Analysis of 50 Scl variants identified the amino acid distribution and GXY-repeat usage that are involved in the stabilization of the triple helix in Scls. Using circular dichroism spectroscopy and electron microscopy, we show that significantly different recombinant rScl polypeptides form stable, unhydroxylated homotrimeric triple helices that can be produced both intra- and extracellularly in the Escherichia coli. These rScl constructs containing 20 to 129 GXY repeats had mid-point melting temperatures between 32 and 39 degrees C. Altogether, Scl-derived collagens, which are different from the mammalian collagens, can form stable triple helices under physiological conditions and can be used for the production of recombinant GXY polymers with a wide variety of potential applications.

  20. Recombination Creates Novel L1 (Line-1) Elements in Rattus Norvegicus

    PubMed Central

    Hayward, B. E.; Zavanelli, M.; Furano, A. V.

    1997-01-01

    Mammalian L1 (long interspersed repeated DNA, LINE-1) retrotransposons consist of a 5' untranslated region (UTR) with regulatory properties, two protein encoding regions (ORF I, ORF II, which encodes a reverse transcriptase) and a 3' UTR. L1 elements have been evolving in mammals for >100 million years and this process continues to generate novel L1 subfamilies in modern species. Here we characterized the youngest known subfamily in Rattus norvegicus, L1(mlvi2), and unexpectedly found that this element has a dual ancestry. While its 3' UTR shares the same lineage as its nearest chronologically antecedent subfamilies, L1(3) and L1(4), its ORF I sequence does not. The L1(mlvi2) ORF I was derived from an ancestral ORF I sequence that was the evolutionary precursor of the L1(3) and L1(4) ORF I. We suggest that an ancestral ORF I sequence was recruited into the modern L1(mlvi2) subfamily by recombination that possibly could have resulted from template strand switching by the reverse transcriptase during L1 replication. This mechanism could also account for some of the structural features of rodent L1 5' UTR and ORF I sequences including one of the more dramatic features of L1 evolution in mammals, namely the repeated acquisition of novel 5' UTRs. PMID:9178013

  1. Nucleotide sequences of Dictyostelium discoideum developmentally regulated cDNAs rich in (AAC) imply proteins that contain clusters of asparagine, glutamine, or threonine.

    PubMed

    Shaw, D R; Richter, H; Giorda, R; Ohmachi, T; Ennis, H L

    1989-09-01

    A Dictyostelium discoideum repetitive element composed of long repeats of the codon (AAC) is found in developmentally regulated transcripts. The concentration of (AAC) sequences is low in mRNA from dormant spores and growing cells and increases markedly during spore germination and multicellular development. The sequence hybridizes to many different sized Dictyostelium DNA restriction fragments indicating that it is scattered throughout the genome. Four cDNA clones isolated contain (AAC) sequences in the deduced coding region. Interestingly, the (AAC)-rich sequences are present in all three reading frames in the deduced proteins, i.e., AAC (asparagine), ACA (threonine) and CAA (glutamine). Three of the clones contain only one of these in-frame so that the individual proteins carry either asparagine, threonine, or glutamine clusters, not mixtures. However, one clone is both glutamine- and asparagine-rich. The (AAC) portion of the transcripts are reiterated 300 times in the haploid genome while the other portions of the cDNAs represent single copy genes, whose sequences show no similarity other than the (AAC) repeats. The repeated sequence is similar to the opa or M sequence found in Drosophila melanogaster notch and homeo box genes and in fly developmentally regulated transcripts. The transcripts are present on polysomes suggesting that they are translated. Although the function of these repeats is unknown, long amino acid repeats are a characteristic feature of extracellular proteins of lower eukaryotes.

  2. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats.

    PubMed

    Urvoas, Agathe; Guellouz, Asma; Valerio-Lepiniec, Marie; Graille, Marc; Durand, Dominique; Desravines, Danielle C; van Tilbeurgh, Herman; Desmadril, Michel; Minard, Philippe

    2010-11-26

    Repeat proteins have a modular organization and a regular architecture that make them attractive models for design and directed evolution experiments. HEAT repeat proteins, although very common, have not been used as a scaffold for artificial proteins, probably because they are made of long and irregular repeats. Here, we present and validate a consensus sequence for artificial HEAT repeat proteins. The sequence was defined from the structure-based sequence analysis of a thermostable HEAT-like repeat protein. Appropriate sequences were identified for the N- and C-caps. A library of genes coding for artificial proteins based on this sequence design, named αRep, was assembled using new and versatile methodology based on circular amplification. Proteins picked randomly from this library are expressed as soluble proteins. The biophysical properties of proteins with different numbers of repeats and different combinations of side chains in hypervariable positions were characterized. Circular dichroism and differential scanning calorimetry experiments showed that all these proteins are folded cooperatively and are very stable (T(m) >70 °C). Stability of these proteins increases with the number of repeats. Detailed gel filtration and small-angle X-ray scattering studies showed that the purified proteins form either monomers or dimers. The X-ray structure of a stable dimeric variant structure was solved. The protein is folded with a highly regular topology and the repeat structure is organized, as expected, as pairs of alpha helices. In this protein variant, the dimerization interface results directly from the variable surface enriched in aromatic residues located in the randomized positions of the repeats. The dimer was crystallized both in an apo and in a PEG-bound form, revealing a very well defined binding crevice and some structure flexibility at the interface. This fortuitous binding site could later prove to be a useful binding site for other low molecular mass partners. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. TRedD—A database for tandem repeats over the edit distance

    PubMed Central

    Sokol, Dina; Atagun, Firat

    2010-01-01

    A ‘tandem repeat’ in DNA is a sequence of two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats are common in the genomes of both eukaryotic and prokaryotic organisms. They are significant markers for human identity testing, disease diagnosis, sequence homology and population studies. In this article, we describe a new database, TRedD, which contains the tandem repeats found in the human genome. The database is publicly available online, and the software for locating the repeats is also freely available. The definition of tandem repeats used by TRedD is a new and innovative definition based upon the concept of ‘evolutive tandem repeats’. In addition, we have developed a tool, called TandemGraph, to graphically depict the repeats occurring in a sequence. This tool can be coupled with any repeat finding software, and it should greatly facilitate analysis of results. Database URL: http://tandem.sci.brooklyn.cuny.edu/ PMID:20624712

  4. Complete sequence of Tvv1, a family of Ty 1 copia-like retrotransposons of Vitis vinifera L., reconstituted by chromosome walking.

    PubMed

    Pelsy, F.; Merdinoglu, D.

    2002-09-01

    A chromosome-walking strategy was used to sequence and characterize retrotransposons in the grapevine genome. The reconstitution of a family of retroelements, named Tvv1, was achieved by six successive steps. These elements share a single, highly conserved open reading frame 4,153 nucleotides-long, putatively encoding the gag, pro, int, rt and rh proteins. Comparison of the Tvv1 open reading frame coding potential with those of drosophila copia and tobacco Tnt1, revealed that Tvv1 is closely related to Ty 1 copia-like retrotransposons. A highly variable untranslated leader region, upstream of the open reading frame, allowed us to differentiate Tvv1 variants, which represent a family of at least 28 copies, in varying sizes. This internal region is flanked by two long terminal repeats in direct orientation, sized between 149 and 157 bp. Among elements theoretically sized from 4,970 to 5,550 bp, we describe the full-length sequence of a reference element Tvv1-1, 5,343 nucleotides-long. The full-length sequence of Tvv1-1 compared to pea PDR1 shows a 53.3% identity. In addition, both elements contain long terminal repeats of nearly the same size in which the U5 region could be entirely absent. Therefore, we assume that Tvv1 and PDR1 could constitute a particular class of short LTRs retroelements.

  5. Re-refinement of the spliceosomal U4 snRNP core-domain structure

    PubMed Central

    Li, Jade; Leung, Adelaine K.; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi

    2016-01-01

    The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF–SmE–SmG–SmD3–SmB–SmD1–SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model. PMID:26894541

  6. Evaluation of Two Highly-Multiplexed Custom Panels for Massively Parallel Semiconductor Sequencing on Paraffin DNA

    PubMed Central

    Kotoula, Vassiliki; Lyberopoulou, Aggeliki; Papadopoulou, Kyriaki; Charalambous, Elpida; Alexopoulou, Zoi; Gakou, Chryssa; Lakis, Sotiris; Tsolaki, Eleftheria; Lilakos, Konstantinos; Fountzilas, George

    2015-01-01

    Background—Aim Massively parallel sequencing (MPS) holds promise for expanding cancer translational research and diagnostics. As yet, it has been applied on paraffin DNA (FFPE) with commercially available highly multiplexed gene panels (100s of DNA targets), while custom panels of low multiplexing are used for re-sequencing. Here, we evaluated the performance of two highly multiplexed custom panels on FFPE DNA. Methods Two custom multiplex amplification panels (B, 373 amplicons; T, 286 amplicons) were coupled with semiconductor sequencing on DNA samples from FFPE breast tumors and matched peripheral blood samples (n samples: 316; n libraries: 332). The two panels shared 37% DNA targets (common or shifted amplicons). Panel performance was evaluated in paired sample groups and quartets of libraries, where possible. Results Amplicon read ratios yielded similar patterns per gene with the same panel in FFPE and blood samples; however, performance of common amplicons differed between panels (p<0.001). FFPE genotypes were compared for 1267 coding and non-coding variant replicates, 999 out of which (78.8%) were concordant in different paired sample combinations. Variant frequency was highly reproducible (Spearman’s rho 0.959). Repeatedly discordant variants were of high coverage / low frequency (p<0.001). Genotype concordance was (a) high, for intra-run duplicates with the same panel (mean±SD: 97.2±4.7, 95%CI: 94.8–99.7, p<0.001); (b) modest, when the same DNA was analyzed with different panels (mean±SD: 81.1±20.3, 95%CI: 66.1–95.1, p = 0.004); and (c) low, when different DNA samples from the same tumor were compared with the same panel (mean±SD: 59.9±24.0; 95%CI: 43.3–76.5; p = 0.282). Low coverage / low frequency variants were validated with Sanger sequencing even in samples with unfavourable DNA quality. Conclusions Custom MPS may yield novel information on genomic alterations, provided that data evaluation is adjusted to tumor tissue FFPE DNA. To this scope, eligibility of all amplicons along with variant coverage and frequency need to be assessed. PMID:26039550

  7. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    PubMed

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  8. hnRNP L regulates differences in expression of mouse integrin α2β1

    PubMed Central

    Cheli, Yann; Kunicki, Thomas J.

    2006-01-01

    There is a 2-fold variation in platelet integrin α2β1 levels among inbred mouse strains. Decreased α2β1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet α2β1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L–specific siRNA. Thus, decreased surface α2β1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1. PMID:16455949

  9. Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in North-eastern China revealed by simple sequence repeat (SSR) markers.

    PubMed

    Cao, Qianjin; Lu, Bao-Rong; Xia, Hui; Rong, Jun; Sala, Francesco; Spada, Alberto; Grassi, Fabrizio

    2006-12-01

    Weedy rice (Oryza sativa f. spontanea) is one of the most notorious weeds occurring in rice-planting areas worldwide. The objectives of this study are to determine the genetic diversity and differentiation of weedy rice populations from Liaoning Province in North-eastern China and to explore the possible origin of these weedy populations by comparing their genetic relationships with rice varieties (O. sativa) and wild rice (O. rufipogon) from different sources. Simple sequence repeat (SSR) markers were used to estimate the genetic diversity of 30 weedy rice populations from Liaoning, each containing about 30 individuals, selected rice varieties and wild O. rufipogon. Genetic differentiation and the relationships of weedy rice populations were analysed using cluster analysis (UPGMA) and principle component analysis (PCA). The overall genetic diversity of weedy rice populations from Liaoning was relatively high (H(e) = 0.313, I = 0.572), with about 35 % of the genetic variation found among regions. The Liaoning weedy rice populations were closely related to rice varieties from Liaoning and japonica varieties from other regions but distantly related to indica rice varieties and wild O. rufipogon. Weedy rice populations from Liaoning are considerably variable genetically and most probably originated from Liaoning rice varieties by mutation and intervarietal hybrids. Recent changes in farming practices and cultivation methods along with less weed management may have promoted the re-emergence and divergence of weedy rice in North-eastern China.

  10. Serological profiling of the EBV immune response in Chronic Fatigue Syndrome using a peptide microarray.

    PubMed

    Loebel, Madlen; Eckey, Maren; Sotzny, Franziska; Hahn, Elisabeth; Bauer, Sandra; Grabowski, Patricia; Zerweck, Johannes; Holenya, Pavlo; Hanitsch, Leif G; Wittke, Kirsten; Borchmann, Peter; Rüffer, Jens-Ulrich; Hiepe, Falk; Ruprecht, Klemens; Behrends, Uta; Meindl, Carola; Volk, Hans-Dieter; Reimer, Ulf; Scheibenbogen, Carmen

    2017-01-01

    Epstein-Barr-Virus (EBV) plays an important role as trigger or cofactor for various autoimmune diseases. In a subset of patients with Chronic Fatigue Syndrome (CFS) disease starts with infectious mononucleosis as late primary EBV-infection, whereby altered levels of EBV-specific antibodies can be observed in another subset of patients. We performed a comprehensive mapping of the IgG response against EBV comparing 50 healthy controls with 92 CFS patients using a microarray platform. Patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and cancer-related fatigue served as controls. 3054 overlapping peptides were synthesised as 15-mers from 14 different EBV proteins. Array data was validated by ELISA for selected peptides. Prevalence of EBV serotypes was determined by qPCR from throat washing samples. EBV type 1 infections were found in patients and controls. EBV seroarray profiles between healthy controls and CFS were less divergent than that observed for MS or SLE. We found significantly enhanced IgG responses to several EBNA-6 peptides containing a repeat sequence in CFS patients compared to controls. EBNA-6 peptide IgG responses correlated well with EBNA-6 protein responses. The EBNA-6 repeat region showed sequence homologies to various human proteins. Patients with CFS had a quite similar EBV IgG antibody response pattern as healthy controls. Enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients. Homologous sequences of various human proteins with this EBNA-6 repeat sequence might be potential targets for antigenic mimicry.

  11. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.

    PubMed

    Albornos, Lucía; Martín, Ignacio; Iglesias, Rebeca; Jiménez, Teresa; Labrador, Emilia; Dopico, Berta

    2012-11-07

    Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found.

  12. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae

    PubMed Central

    2012-01-01

    Background Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. Conclusions We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found. PMID:23134664

  13. The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion.

    PubMed Central

    Ringwald, M; Schuh, R; Vestweber, D; Eistetter, H; Lottspeich, F; Engel, J; Dölz, R; Jähnig, F; Epplen, J; Mayer, S

    1987-01-01

    We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs. Images Fig. 1. Fig. 4. Fig. 7. PMID:3501370

  14. A candidate gene for choanal atresia in alpaca.

    PubMed

    Reed, Kent M; Bauer, Miranda M; Mendoza, Kristelle M; Armién, Aníbal G

    2010-03-01

    Choanal atresia (CA) is a common nasal craniofacial malformation in New World domestic camelids (alpaca and llama). CA results from abnormal development of the nasal passages and is especially debilitating to newborn crias. CA in camelids shares many of the clinical manifestations of a similar condition in humans (CHARGE syndrome). Herein we report on the regulatory gene CHD7 of alpaca, whose homologue in humans is most frequently associated with CHARGE. Sequence of the CHD7 coding region was obtained from a non-affected cria. The complete coding region was 9003 bp, corresponding to a translated amino acid sequence of 3000 aa. Additional genomic sequences corresponding to a significant portion of the CHD7 gene were identified and assembled from the 2x alpaca whole genome sequence, providing confirmatory sequence for much of the CHD7 coding region. The alpaca CHD7 mRNA sequence was 97.9% similar to the human sequence, with the greatest sequence difference being an insertion in exon 38 that results in a polyalanine repeat (A12). Polymorphism in this repeat was tested for association with CA in alpaca by cloning and sequencing the repeat from both affected and non-affected individuals. Variation in length of the poly-A repeat was not associated with CA. Complete sequencing of the CHD7 gene will be necessary to determine whether other mutations in CHD7 are the cause of CA in camelids.

  15. A theory that may explain the Hayflick limit--a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts.

    PubMed

    Naveilhan, P; Baudet, C; Jabbour, W; Wion, D

    1994-09-01

    A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.

  16. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species.

    PubMed

    Kuipers, A G J; Kamstra, S A; de Jeu, M J; Visser, R G F

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragments with sizes varying from 68-127 bp, and constituted a larger HinfI repeat of approximately 400 bp. Southern hybridization showed a similar molecular organization of the tandem repeats in each of the Brazilian Alstroemeria species tested. None of the repeats hybridized with DNA from Chilean Alstroemeria species, which indicates that they are specific for the Brazilian species. In-situ localization studies revealed the tandem repeats to be localized in clusters on the chromosomes of A. inodora and A. psittacina: distal hybridization sites were found on chromosome arms 2PS, 6PL, 7PS, 7PL and 8PL, interstitial sites on chromosome arms 2PL, 3PL, 4PL and 5PL. The applicability of the tandem repeats for cytogenetic analysis of interspecific hybrids and their role in heterochromatin organization are discussed.

  17. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.

    PubMed

    Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D

    2015-05-01

    Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.)

    USDA-ARS?s Scientific Manuscript database

    Background: Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed S...

  19. Development and characterization of simple sequence repeats for Bipolaris sokiniana and cross transferability to related species

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeats (SSR) markers were developed from a small insert genomic library for Bipolaris sorokiniana, a mitosporic fungal pathogen that causes spot blotch and root rot in switchgrass. About 59% of sequenced clones (n=384) harbored various SSR motifs. After eliminating the redundant seq...

  20. Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera?

    NASA Astrophysics Data System (ADS)

    Menezes, Rodolpho S. T.; Bardella, Vanessa B.; Cabral-de-Mello, Diogo C.; Lucena, Daercio A. A.; Almeida, Eduardo A. B.

    2017-10-01

    Despite the (TTAGG)n telomeric repeat supposed being the ancestral DNA motif of telomeres in insects, it was repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other representatives of Hymenoptera, this motif was noticed, such as different ant species and the honeybee. These findings raise the question of whether the insect telomeric repeat is or not phylogenetically predominant in Hymenoptera. Thus, we evaluated the occurrence of both the (TTAGG)n sequence and the vertebrate telomere sequence (TTAGGG)n using dot-blotting hybridization in 25 aculeate species of Hymenoptera. Our results revealed the absence of (TTAGG)n sequence in all tested species, elevating the number of hymenopteran families lacking this telomeric sequence to 13 out of the 15 tested families so far. The (TTAGGG)n was not observed in any tested species. Based on our data and compiled information, we suggest that the (TTAGG)n sequence was putatively lost in the ancestor of Apocrita with at least two subsequent independent regains (in Formicidae and Apidae).

  1. Cassini Imaging Science: First Results at Saturn

    NASA Astrophysics Data System (ADS)

    Porco, C. C.

    The Cassini Imaging Science experiment at Saturn will commence in early February, 2004 -- five months before Cassini's arrival at Saturn. Approach observations consist of repeated multi-spectral `movie' sequences of Saturn and its rings, image sequences designed to search for previously unseen satellites between the outer edge of the ring system and the orbit of Hyperion, images of known satellites for orbit refinement, observations of Phoebe during Cassini's closest approach to the satellite, and repeated multi-spectral `movie' sequences of Titan to detect and track clouds (for wind determination) and to sense the surface. During Saturn Orbit Insertion, the highest resolution images (~ 100 m) obtained during the whole orbital tour will be collected of the dark side of the rings. Finally, imaging sequences are planned for Cassini's first Titan flyby, on July 2, from a distance of ~ 350,000 km, yielding an image scale of ~ 2.1 km on the South polar region. The highlights of these observation sequences will be presented.

  2. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa. © 2013.

  3. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.

    PubMed

    Ye, Congting; Ji, Guoli; Li, Lei; Liang, Chun

    2014-01-01

    Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.

  4. Effect of routine repeat transurethral resection for superficial bladder cancer: a long-term observational study.

    PubMed

    Grimm, Marc-Oliver; Steinhoff, Christine; Simon, Xenia; Spiegelhalder, Philipp; Ackermann, Rolf; Vogeli, Thomas Alexander

    2003-08-01

    We determined the long-term outcome in patients with superficial bladder cancer (Ta and T1) undergoing routine second transurethral bladder tumor resection (ReTURB) in regard to recurrence and progression. We performed an inception cohort study of 124 consecutive patients with superficial bladder cancer undergoing transurethral resection and routine ReTURB (83) between November 1993 and October 1995 at a German university hospital. Immediately after transurethral resection all lesions were documented on a designed bladder map. ReTURB of the scar from initial resection and other suspicious lesions was performed at a mean of 7 weeks. Patients were followed until recurrence or death, or a minimum of 5 years. Residual tumor was found in 33% of all ReTURB cases, including 27% of Ta and 53% of T1 disease, and in 81% at the initial resection site. Five of the 83 patients underwent radical cystectomy due to ReTURB findings. The estimated risk of recurrence after years 1 to 3 was 18%, 29% and 32%, respectively. After 5 years 63% of the patients undergoing ReTURB were still disease-free (mean recurrence-free survival 62 months, median 87). Progression to muscle invasive disease was observed in only 2 patients (3%) after a mean observation of 61 months. These data suggest a favorable outcome regarding recurrence and progression in patients with superficial bladder cancer who undergo ReTURB. ReTURB is suggested at least in those at high risk when bladder preservation is intended.

  5. Complete mitochondrial genome of the larch hawk moth, Sphinx morio (Lepidoptera: Sphingidae).

    PubMed

    Kim, Min Jee; Choi, Sei-Woong; Kim, Iksoo

    2013-12-01

    The larch hawk moth, Sphinx morio, belongs to the lepidopteran family Sphingidae that has long been studied as a family of model insects in a diverse field. In this study, we describe the complete mitochondrial genome (mitogenome) sequences of the species in terms of general genomic features and characteristic short repetitive sequences found in the A + T-rich region. The 15,299-bp-long genome consisted of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region, with the typical arrangement found in Lepidoptera. The 316-bp-long A + T-rich region located between srRNA and tRNA(Met) harbored the conserved sequence blocks that are typically found in lepidopteran insects. Additionally, the A + T-rich region of S. morio contained three characteristic repeat sequences that are rarely found in Lepidoptera: two identical 12-bp repeat, three identical 5-bp-long tandem repeat, and six nearly identical 5-6 bp long repeat sequences.

  6. Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon.

    PubMed

    Natarajan, Sathishkumar; Kim, Hoy-Taek; Thamilarasan, Senthil Kumar; Veerappan, Karpagam; Park, Jong-In; Nou, Ill-Sup

    2016-01-01

    Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L.) and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs), 1.9 million InDels, and 182,398 putative structural variations (SVs). Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.

  7. Molecular characterization and in situ mRNA localization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin

    PubMed Central

    1993-01-01

    The oligodendrocyte-derived extracellular matrix glycoprotein J1- 160/180 is a recognition molecule expressed exclusively in the central nervous system. J1-160/180 has been shown to be adhesive for astrocytes and repellent towards neurons and growth cones. We report here the complete nucleotide sequence of J1-160/180 in the rat. The predicted amino acid sequence showed a structural architecture very similar to tenascin: a cysteine-rich amino terminal region is followed by 4.5 epidermal growth factor-like repeats, 9 fibronectin type III homologous repeats and a domain homologous to fibrinogen. Sequence comparison analysis revealed highest homology of rat J1-160/180 to mouse tenascin and chicken restrictin with a similarity of 66% and 85%, respectively. The J1-160/180-coding mRNA is derived from a single copy gene. Using the polymerase chain reaction we could show that two J1-160/180 isoforms are generated by alternative splicing of the sixth fibronectin type III homologous repeat. Localization of J1-160/180 mRNA by in situ hybridization in the cerebellum, hippocampus and olfactory bulb confirmed the expression of J1-160/180 by oligodendrocytes with a peak of transcription at 7-14 d after birth, indicating a functional role during myelination. In addition, J1-160/180-specific RNA was found in a small subset of neurons in all three structures of the CNS analyzed. These neurons continue to express J1-160/180 in the adult. PMID:7679676

  8. Impact of donor mismatches at individual HLA-A, -B, -C, -DR, and -DQ loci on the development of HLA-specific antibodies in patients listed for repeat renal transplantation.

    PubMed

    Kosmoliaptsis, Vasilios; Gjorgjimajkoska, Olivera; Sharples, Linda D; Chaudhry, Afzal N; Chatzizacharias, Nikolaos; Peacock, Sarah; Torpey, Nicholas; Bolton, Eleanor M; Taylor, Craig J; Bradley, J Andrew

    2014-11-01

    We have analyzed the relationship between donor mismatches at each HLA locus and development of HLA locus-specific antibodies in patients listed for repeat transplantation. HLA antibody screening was undertaken using single-antigen beads in 131 kidney transplant recipients returning to the transplant waiting list following first graft failure. The number of HLA mismatches and the calculated reaction frequency of antibody reactivity against 10,000 consecutive deceased organ donors were determined for each HLA locus. Two-thirds of patients awaiting repeat transplantation were sensitized (calculated reaction frequency over 15%) and half were highly sensitized (calculated reaction frequency of 85% and greater). Antibody levels peaked after re-listing for repeat transplantation, were independent of graft nephrectomy and were associated with length of time on the waiting list (odds ratio 8.4) and with maintenance on dual immunosuppression (odds ratio 0.2). Sensitization was independently associated with increasing number of donor HLA mismatches (odds ratio 1.4). All mismatched HLA loci contributed to the development of HLA locus-specific antibodies (HLA-A: odds ratio 3.2, HLA-B: odds ratio 3.4, HLA-C: odds ratio 2.5, HLA-DRB1: odds ratio 3.5, HLA-DRB3/4/5: odds ratio 3.9, and HLA-DQ: odds ratio 3.0 (all significant)). Thus, the risk of allosensitization following failure of a first renal transplant increases incrementally with the number of mismatches at all HLA loci assessed. Maintenance of re-listed patients on dual immunosuppression was associated with a reduced risk of sensitization.

  9. Microsatellite analysis in the genome of Acanthaceae: An in silico approach

    PubMed Central

    Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar

    2015-01-01

    Background: Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. Objective: The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. Materials and Methods: The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Results: Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. Conclusion: The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future. PMID:25709226

  10. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.

    PubMed

    Choi, Hong-Il; Waminal, Nomar E; Park, Hye Mi; Kim, Nam-Hoon; Choi, Beom Soon; Park, Minkyu; Choi, Doil; Lim, Yong Pyo; Kwon, Soo-Jin; Park, Beom-Seok; Kim, Hyun Hee; Yang, Tae-Jin

    2014-03-01

    Ginseng (Panax ginseng) is a famous medicinal herb, but the composition and structure of its genome are largely unknown. Here we characterized the major repeat components and inspected their distribution in the ginseng genome. By analyzing three repeat-rich bacterial artificial chromosome (BAC) sequences from ginseng, we identified complex insertion patterns of 34 long terminal repeat retrotransposons (LTR-RTs) and 11 LTR-RT derivatives accounting for more than 80% of the BAC sequences. The LTR-RTs were classified into three Ty3/gypsy (PgDel, PgTat and PgAthila) and two Ty1/Copia (PgTork and PgOryco) families. Mapping of 30-Gbp Illumina whole-genome shotgun reads to the BAC sequences revealed that these five LTR-RT families occupy at least 34% of the ginseng genome. The Ty3/Gypsy families were predominant, comprising 74 and 33% of the BAC sequences and the genome, respectively. In particular, the PgDel family accounted for 29% of the genome and presumably played major roles in enlargement of the size of the ginseng genome. Fluorescence in situ hybridization (FISH) revealed that the PgDel1 elements are distributed throughout the chromosomes along dispersed heterochromatic regions except for ribosomal DNA blocks. The intensity of the PgDel2 FISH signals was biased toward 24 out of 48 chromosomes. Unique gene probes showed two pairs of signals with different locations, one pair in subtelomeric regions on PgDel2-rich chromosomes and the other in interstitial regions on PgDel2-poor chromosomes, demonstrating allotetraploidy in ginseng. Our findings promote understanding of the evolution of the ginseng genome and of that of related species in the Araliaceae. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Effects of repeated collaborative retrieval on individual memory vary as a function of recall versus recognition tasks.

    PubMed

    Blumen, Helena M; Rajaram, Suparna

    2009-11-01

    Our research examines how prior group collaboration modulates later individual memory. We recently showed that repeated collaborative recall sessions benefit later individual recall more than a single collaborative recall session (Blumen & Rajaram, 2008). Current research compared the effects of repeated collaborative recall and repeated collaborative recognition on later individual recall and later individual recognition. A total of 192 participants studied a list of nouns and then completed three successive retrieval sessions in one of four conditions. While two collaborative recall sessions and two collaborative recognition sessions generated comparable levels of individual recall (CRecall-CRecall-I Recall approximately CRecognition-CRecognition-I Recall , Experiment 1a), two collaborative recognition sessions generated greater levels of individual recognition than two collaborative recall sessions (CRecognition-CRecognition- IRecognition > CRecall-CRecall- I Recognition , Experiment 1b). These findings are discussed in terms of two opposing mechanisms that operate during collaborative retrieval-re-exposure and retrieval disruption-and in terms of transfer-appropriate processing across collaborative and individual retrieval sessions.

  12. Incidence and outcome of re-entry injury in redo cardiac surgery: benefits of preoperative planning.

    PubMed

    Imran Hamid, Umar; Digney, Ruairi; Soo, Lorraine; Leung, Samantha; Graham, Alastair N J

    2015-05-01

    Repeat sternotomy for redo cardiac surgery may be associated with catastrophic injuries to mediastinal structures. The purpose of this study was to determine the frequency of these injuries, associated outcome and if a preoperative computerized tomography (CT) scan reduces the risk of re-entry injury. Five hundred and forty-four patients who underwent redo cardiac surgery between 2001 and 2011 were identified by review of our unit's prospectively maintained cardiac surgery database. Demographic details, surgical strategy, re-entry injuries, hospital stay, in-hospital mortality and long-term survival were analysed. The mean age was 61 years; 326 were male, 218 were female. Four hundred and eighty six patients underwent first time redo surgery, while 58 patients had multiple previous operations. The median logistic EuroSCORE was 11, in-hospital mortality rate was 9.5% and observed to expected mortality rate was 0.8. Re-entry complications occurred in 15 cases (2.7%). These included injuries to the aorta (n = 2), right atrium (n = 1), innominate vein (n = 2), internal mammary artery (n = 2), pulmonary artery (n = 2), lung parenchyma (n = 1), saphenous vein graft (n = 2), right ventricle (n = 2) and ventricular fibrillation (n = 1). The mortality rate in patients with re-entry injury was 26% (n = 4) compared with 9% (n = 48) in those without re-entry complications. Preoperative planning by CT scan was performed in 162 cases and adherence of vital structures to the sternum was found in 60 cases; the right ventricle, innominate vein and bypass grafts in 41, 11 and 8, respectively. The incidence rate of re-entry injury was 0.6% in these patients vs 3.6% in those who did not have a preoperative CT scan (P = 0.046). Peripheral arterial cannulation was carried out in 35 patients (6.4%) to establish cardiopulmonary bypass (CPB) prior to sternotomy, and there were no mediastinal injuries observed in these cases. Multivariate logistic regression analysis revealed re-entry injury as one of the independent predictors of in-hospital mortality (P = 0.039). The incidence of re-entry injury during repeat sternotomy is low; however, it is associated with a significant increase in the risk of in-hospital mortality. Preoperative planning using CT scan reduces the risk by identifying adherent structures, and, in selected patients, establishing CPB prior to sternotomy is a safe strategy in redo cardiac surgery. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. The repeating nucleotide sequence in the repetitive mitochondrial DNA from a "low-density" petite mutant of yeast.

    PubMed Central

    Van Kreijl, C F; Bos, J L

    1977-01-01

    The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740

  14. A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment

    PubMed Central

    Freschi, Valerio; Bogliolo, Alessandro

    2012-01-01

    In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086

  15. Tandemly repeated sequences in mtDNA control region of whitefish, Coregonus lavaretus.

    PubMed

    Brzuzan, P

    2000-06-01

    Length variation of the mitochondrial DNA control region was observed with PCR amplification of a sample of 138 whitefish (Coregonus lavaretus). Nucleotide sequences of representative PCR products showed that the variation was due to the presence of an approximately 100-bp motif tandemly repeated two, three, or five times in the region between the conserved sequence block-3 (CSB-3) and the gene for phenylalanine tRNA. This is the first report on the tandem array composed of long repeat units in mitochondrial DNA of salmonids.

  16. A cohort study of Chlamydia trachomatis treatment failure in women: a study protocol

    PubMed Central

    2013-01-01

    Background Chlamydia trachomatis is the most commonly diagnosed bacterial sexually transmitted infection in the developed world and diagnosis rates have increased dramatically over the last decade. Repeat infections of chlamydia are very common and may represent re-infection from an untreated partner or treatment failure. The aim of this cohort study is to estimate the proportion of women infected with chlamydia who experience treatment failure after treatment with 1 gram azithromycin. Methods/design This cohort study will follow women diagnosed with chlamydia for up to 56 days post treatment. Women will provide weekly genital specimens for further assay. The primary outcome is the proportion of women who are classified as having treatment failure 28, 42 or 56 days after recruitment. Comprehensive sexual behavior data collection and the detection of Y chromosome DNA and high discriminatory chlamydial genotyping will be used to differentiate between chlamydia re-infection and treatment failure. Azithromycin levels in high-vaginal specimens will be measured using a validated liquid chromatography – tandem mass spectrometry method to assess whether poor azithromycin absorption could be a cause of treatment failure. Chlamydia culture and minimal inhibitory concentrations will be performed to further characterize the chlamydia infections. Discussion Distinguishing between treatment failure and re-infection is important in order to refine treatment recommendations and focus infection control mechanisms. If a large proportion of repeat chlamydia infections are due to antibiotic treatment failure, then international recommendations on chlamydia treatment may need to be re-evaluated. If most are re-infections, then strategies to expedite partner treatment are necessary. PMID:23957327

  17. Draft Genome Sequence of a Dictyoglomus sp. from an Enrichment Culture of a New Zealand Geothermal Spring

    DOE PAGES

    Reysenbach, Anna-Louise; Donaho, John; Kelley, John; ...

    2018-03-15

    A draft genome of a novelDictyoglomussp., NZ13-RE01, was obtained from a New Zealand hot spring enrichment culture. The 1,927,012-bp genome is similar in both size and G+C content to otherDictyoglomusspp. Like its relatives,Dictyoglomussp. NZ13-RE01 encodes many genes involved in complex carbohydrate metabolism.

  18. Draft Genome Sequence of a Dictyoglomus sp. from an Enrichment Culture of a New Zealand Geothermal Spring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reysenbach, Anna-Louise; Donaho, John; Kelley, John

    A draft genome of a novelDictyoglomussp., NZ13-RE01, was obtained from a New Zealand hot spring enrichment culture. The 1,927,012-bp genome is similar in both size and G+C content to otherDictyoglomusspp. Like its relatives,Dictyoglomussp. NZ13-RE01 encodes many genes involved in complex carbohydrate metabolism.

  19. DNABIT Compress – Genome compression algorithm

    PubMed Central

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  20. Fine-tuning gene networks using simple sequence repeats

    PubMed Central

    Egbert, Robert G.; Klavins, Eric

    2012-01-01

    The parameters in a complex synthetic gene network must be extensively tuned before the network functions as designed. Here, we introduce a simple and general approach to rapidly tune gene networks in Escherichia coli using hypermutable simple sequence repeats embedded in the spacer region of the ribosome binding site. By varying repeat length, we generated expression libraries that incrementally and predictably sample gene expression levels over a 1,000-fold range. We demonstrate the utility of the approach by creating a bistable switch library that programmatically samples the expression space to balance the two states of the switch, and we illustrate the need for tuning by showing that the switch’s behavior is sensitive to host context. Further, we show that mutation rates of the repeats are controllable in vivo for stability or for targeted mutagenesis—suggesting a new approach to optimizing gene networks via directed evolution. This tuning methodology should accelerate the process of engineering functionally complex gene networks. PMID:22927382

  1. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    PubMed Central

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  2. Physics First: An Informational Guide for Teachers, School Administrators, Parents, Scientists, and the Public

    ERIC Educational Resources Information Center

    American Association of Physics Teachers (NJ1), 2009

    2009-01-01

    Physics First represents an organizational alternative to the traditional high school science sequence. It calls for a re-sequencing of high school courses so that students study physics before chemistry and biology. The purpose of this pamphlet is to provide: (1) Basic information and rationale for the Physics First curriculum; (2) Strategies for…

  3. Reprint of: Early Behavioural Facilitation by Temporal Expectations in Complex Visual-motor Sequences.

    PubMed

    Heideman, Simone G; van Ede, Freek; Nobre, Anna C

    2018-05-24

    In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of 'Pre-miRNAs' of black pepper.

    PubMed

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of '43 pre-miRNA candidates bearing different types of SSR motifs'. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted 'pre-miRNA candidates bearing SSRs'. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted 'pre-miRNA candidates'. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of 'tandem repeats' in miRNAs.

  5. Evolutionary conservation of sequence and secondary structures inCRISPR repeats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel class of direct repeats, separated by unique spacer sequences of similar length, that are present in {approx}40% of bacterial and all archaeal genomes analyzed to date. More than 40 gene families, called CRISPR-associated sequences (CAS), appear in conjunction with these repeats and are thought to be involved in the propagation and functioning of CRISPRs. It has been proposed that the CRISPR/CAS system samples, maintains a record of, and inactivates invasive DNA that the cell has encountered, and therefore constitutes a prokaryotic analog of an immune system. Here we analyze CRISPR repeatsmore » identified in 195 microbial genomes and show that they can be organized into multiple clusters based on sequence similarity. All individual repeats in any given cluster were inferred to form characteristic RNA secondary structure, ranging from non-existent to pronounced. Stable secondary structures included G:U base pairs and exhibited multiple compensatory base changes in the stem region, indicating evolutionary conservation and functional importance. We also show that the repeat-based classification corresponds to, and expands upon, a previously reported CAS gene-based classification including specific relationships between CRISPR and CAS subtypes.« less

  6. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design.

    PubMed

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A

    2016-03-01

    The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.

  7. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    PubMed

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  8. Nucleotide sequence of soybean chloroplast DNA regions which contain the psb A and trn H genes and cover the ends of the large single copy region and one end of the inverted repeats.

    PubMed Central

    Spielmann, A; Stutz, E

    1983-01-01

    The soybean chloroplast psb A gene (photosystem II thylakoid membrane protein of Mr 32 000, lysine-free) and the trn H gene (tRNAHisGUG), which both map in the large single copy region adjacent to one of the inverted repeat structures (IR1), have been sequenced including flanking regions. The psb A gene shows in its structural part 92% sequence homology with the corresponding genes of spinach and N. debneyi and contains also an open reading frame for 353 aminoacids. The aminoacid sequence of a potential primary translation product (calculated Mr, 38 904, no lysine) diverges from that of spinach and N. debneyi in only two positions in the C-terminal part. The trn H gene has the same polarity as the psb A gene and the coding region is located at the very end of the large single copy region. The deduced sequence of the soybean chloroplast tRNAHisGUG is identical with that of Zea mays chloroplasts. Both ends of the large single copy region were sequenced including a small segment of the adjacent IR1 and IR2. PMID:6314279

  9. Addressing Beacon re-identification attacks: quantification and mitigation of privacy risks

    PubMed Central

    Zhao, Yongan; Carey, Knox; Lloyd, David; Sofia, Heidi; Baker, Dixie; Flicek, Paul; Shringarpure, Suyash; Bustamante, Carlos; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila; Tang, Haixu; Wang, XiaoFeng; Hubaux, Jean-Pierre

    2018-01-01

    The Global Alliance for Genomics and Health (GA4GH) created the Beacon Project as a means of testing the willingness of data holders to share genetic data in the simplest technical context—a query for the presence of a specified nucleotide at a given position within a chromosome. Each participating site (or “beacon”) is responsible for assuring that genomic data are exposed through the Beacon service only with the permission of the individual to whom the data pertains and in accordance with the GA4GH policy and standards. While recognizing the inference risks associated with large-scale data aggregation, and the fact that some beacons contain sensitive phenotypic associations that increase privacy risk, the GA4GH adjudged the risk of re-identification based on the binary yes/no allele-presence query responses as acceptable. However, recent work demonstrated that, given a beacon with specific characteristics (including relatively small sample size and an adversary who possesses an individual’s whole genome sequence), the individual’s membership in a beacon can be inferred through repeated queries for variants present in the individual’s genome. In this paper, we propose three practical strategies for reducing re-identification risks in beacons. The first two strategies manipulate the beacon such that the presence of rare alleles is obscured; the third strategy budgets the number of accesses per user for each individual genome. Using a beacon containing data from the 1000 Genomes Project, we demonstrate that the proposed strategies can effectively reduce re-identification risk in beacon-like datasets. PMID:28339683

  10. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation.

    PubMed

    Willett-Brozick, J E; Savul, S A; Richey, L E; Baysal, B E

    2001-08-01

    Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.

  11. Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat.

    PubMed

    Nagaki, Kiyotaka; Tanaka, Keisuke; Yamaji, Naoki; Kobayashi, Hisato; Murata, Minoru

    2015-01-01

    The kinetochore is a protein complex including kinetochore-specific proteins that plays a role in chromatid segregation during mitosis and meiosis. The complex associates with centromeric DNA sequences that are usually species-specific. In plant species, tandem repeats including satellite DNA sequences and retrotransposons have been reported as centromeric DNA sequences. In this study on sunflowers, a cDNA-encoding centromere-specific histone H3 (CENH3) was isolated from a cDNA pool from a seedling, and an antibody was raised against a peptide synthesized from the deduced cDNA. The antibody specifically recognized the sunflower CENH3 (HaCENH3) and showed centromeric signals by immunostaining and immunohistochemical staining analysis. The antibody was also applied in chromatin immunoprecipitation (ChIP)-Seq to isolate centromeric DNA sequences and two different types of repetitive DNA sequences were identified. One was a long interspersed nuclear element (LINE)-like sequence, which showed centromere-specific signals on almost all chromosomes in sunflowers. This is the first report of a centromeric LINE sequence, suggesting possible centromere targeting ability. Another type of identified repetitive DNA was a tandem repeat sequence with a 187-bp unit that was found only on a pair of chromosomes. The HaCENH3 content of the tandem repeats was estimated to be much higher than that of the LINE, which implies centromere evolution from LINE-based centromeres to more stable tandem-repeat-based centromeres. In addition, the epigenetic status of the sunflower centromeres was investigated by immunohistochemical staining and ChIP, and it was found that centromeres were heterochromatic.

  12. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction

    PubMed Central

    Ni, Xiangyang; Westpheling, Janet

    1997-01-01

    The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression. PMID:9371809

  13. Genome re-sequencing and simple sequence repeat markers reveal the existence of divergent lineages in the Canadian Puccinia striiformis f. sp. tritici population with extensive DNA methylation.

    PubMed

    Brar, Gurcharn S; Ali, Sajid; Qutob, Dinah; Ambrose, Stephen; Lou, Kun; Maclachlan, Ron; Pozniak, Curtis J; Fu, Yong-Bi; Sharpe, Andrew G; Kutcher, Hadley R

    2018-04-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease in Canada. The worldwide genetic structure of Pst populations have been characterized, excluding Canada. Here, we elucidated the genetic structure of the western Canadian Pst population using molecular markers, revealing the presence of four divergent lineages with predominantly clonal structure. In the worldwide context, two previously reported lineages were identified: PstS0 (22%), representing an old Northwestern-European and PstS1 (35%), an invasive warm-temperature adapted. Additionally, two new, unreported lineages, PstPr (9%) and PstS1-related (35%), were detected, which produced more telia than other lineages and had double the number of unique recombination events. The PstPr was a recent invasion, and likely evolved in a diverse, recombinant population as it was closely related to the PstS5, PstS7/Warrior, PstS8/Kranich, and PstS9 lineages originating from sexually recombining populations in the centre of diversity. The DNA methylation analysis revealed DNA-methyltransferase1-homologs, providing compelling evidence for epigenetic regulation and as a first report, an average of ∼5%, 5hmC in the Puccinia epigenome merits further investigation. The divergent lineages in the Canadian Pst population with the potential for genetic recombination, as well as epigenetic regulation needs consideration in the context of pathogen adaptation and management. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Analysis of Two Cosmid Clones from Chromosome 4 of Drosophila melanogaster Reveals Two New Genes Amid an Unusual Arrangement of Repeated Sequences

    PubMed Central

    Locke, John; Podemski, Lynn; Roy, Ken; Pilgrim, David; Hodgetts, Ross

    1999-01-01

    Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing ∼5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met–hepatocyte growth factor receptor. The other cosmid contains only the two short 5′-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the β-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome. PMID:10022978

  15. Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions.

    PubMed

    Landrian, Ivette; McFarland, Karen N; Liu, Jilin; Mulligan, Connie J; Rasmussen, Astrid; Ashizawa, Tetsuo

    2017-01-01

    Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5'-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3'-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5'-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5'-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.

  16. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  17. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    USGS Publications Warehouse

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  18. Experimental definition of a clustered regularly interspaced short palindromic duplicon in Escherichia coli.

    PubMed

    Goren, Moran G; Yosef, Ido; Auster, Oren; Qimron, Udi

    2012-10-12

    We analyzed sequences of newly inserted repeats in an Escherichia coli CRISPR (clustered regularly interspaced short palindromic repeats) array in vivo and showed that a base previously thought to belong to the repeat is actually derived from a protospacer. Based on further experimental results, we propose to use the term "duplicon" for a repeated sequence in a CRISPR array that serves as a template for a new duplicon. Our findings suggest the possibility of redrawing the borders between repeats, spacers, and protospacer adjacent motifs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. In silico search, characterization and validation of new EST-SSR markers in the genus Prunus.

    PubMed

    Sorkheh, Karim; Prudencio, Angela S; Ghebinejad, Azim; Dehkordi, Mehrana Kohei; Erogul, Deniz; Rubio, Manuel; Martínez-Gómez, Pedro

    2016-07-07

    Simple sequence repeats (SSRs) are defined as sequence repeat units between 1 and 6 bp that occur in both coding and non-coding regions abundant in eukaryotic genomes, which may affect the expression of genes. In this study, expressed sequence tags (ESTs) of eight Prunus species were analyzed for in silico mining of EST-SSRs, protein annotation, and open reading frames (ORFs), and the identification of codon repetitions. A total of 316 SSRs were identified using MISA software. Dinucleotide SSR motifs (26.31 %) were found to be the most abundant type of repeats, followed by tri- (14.58 %), tetra- (0.53 %), and penta- (0.27 %) nucleotide motifs. An attempt was made to design primer pairs for 316 identified SSRs but these were successful for only 175 SSR sequences. The positions of SSRs with respect to ORFs were detected, and annotation of sequences containing SSRs was performed to assign function to each sequence. SSRs were also characterized (in terms of position in the reference genome and associated gene) using the two available Prunus reference genomes (mei and peach). Finally, 38 SSR markers were validated across peach, almond, plum, and apricot genotypes. This validation showed a higher transferability level of EST-SSR developed in P. mume (mei) in comparison with the rest of species analyzed. Findings will aid analysis of functionally important molecular markers and facilitate the analysis of genetic diversity.

  20. Carriage rates and serogroups of Neisseria meningitidis among freshmen in a University dormitory in Korea.

    PubMed

    Durey, Areum; Bae, Song-Mee; Lee, Hye-Jin; Nah, So-Yun; Kim, Mijeong; Baek, Ji Hyeon; Kang, Yeon-Ho; Chung, Moon-Hyun; Lee, Jin-Soo

    2012-07-01

    Neisseria meningitidis is a leading cause of bacterial meningitis in young adults. University students, especially those living in dormitories, have been known to be at increased risk of meningococcal disease. We performed a longitudinal study to determine the carriage rates of N. meningitidis and the changes thereof. We recruited Inha University freshmen who were, at that time, admitted to a student dormitory. A pharyngeal swab was taken from all participant who were also asked to complete a questionnaire. This was repeated four weeks later. A total of 136 students were enrolled at the first culture. After four weeks, 128 students were enrolled, including 106 re-participants. The overall carriage rates changed from 11.8% to 14.1%. In analysis of the 106 re-participants, "visiting to pubs" was associated with carriage of N. meningitis for both the first (p=0.047) and second cultures (p=0.026). Serogroup C was found to be the most frequent serogroup (5 isolates), while 3 isolates were found from serogroup B. The most prevalent PorA types were P1.22,14-6 (4 isolates) and P1.19,15 (3 isolates). The DNA sequences of PorA VR2 were changed in 2 students during prolonged carriage. The meningococcal carriage rate among first year university students who resided in a dormitory did not significantly increase over 4-week interval between cultures, which is markedly different from those reported in Western studies. Close social contact appeared to be related with carriage. Our data also revealed diversity in PorA types, suggesting the possibility of rapid mutation of the PorA gene during the 4-week interval.

  1. Carriage Rates and Serogroups of Neisseria meningitidis among Freshmen in a University Dormitory in Korea

    PubMed Central

    Durey, Areum; Bae, Song-Mee; Lee, Hye-Jin; Nah, So-Yun; Kim, Mijeong; Baek, Ji Hyeon; Kang, Yeon-Ho; Chung, Moon-Hyun

    2012-01-01

    Purpose Neisseria meningitidis is a leading cause of bacterial meningitis in young adults. University students, especially those living in dormitories, have been known to be at increased risk of meningococcal disease. We performed a longitudinal study to determine the carriage rates of N. meningitidis and the changes thereof. Materials and Methods We recruited Inha University freshmen who were, at that time, admitted to a student dormitory. A pharyngeal swab was taken from all participant who were also asked to complete a questionnaire. This was repeated four weeks later. Results A total of 136 students were enrolled at the first culture. After four weeks, 128 students were enrolled, including 106 re-participants. The overall carriage rates changed from 11.8% to 14.1%. In analysis of the 106 re-participants, "visiting to pubs" was associated with carriage of N. meningitis for both the first (p=0.047) and second cultures (p=0.026). Serogroup C was found to be the most frequent serogroup (5 isolates), while 3 isolates were found from serogroup B. The most prevalent PorA types were P1.22,14-6 (4 isolates) and P1.19,15 (3 isolates). The DNA sequences of PorA VR2 were changed in 2 students during prolonged carriage. Conclusion The meningococcal carriage rate among first year university students who resided in a dormitory did not significantly increase over 4-week interval between cultures, which is markedly different from those reported in Western studies. Close social contact appeared to be related with carriage. Our data also revealed diversity in PorA types, suggesting the possibility of rapid mutation of the PorA gene during the 4-week interval. PMID:22665340

  2. Effects of different re-warm up activities in football players' performance.

    PubMed

    Abade, Eduardo; Sampaio, Jaime; Gonçalves, Bruno; Baptista, Jorge; Alves, Alberto; Viana, João

    2017-01-01

    Warm up routines are commonly used to optimize football performance and prevent injuries. Yet, official pre-match protocols may require players to passively rest for approximately 10 to 15 minutes between the warm up and the beginning of the match. Therefore, the aim of this study was to explore the effect of different re-warm up activities on the physical performance of football players. Twenty-Two Portuguese elite under-19 football players participated in the study conducted during the competitive season. Different re-warm up protocols were performed 6 minutes after the same standardized warm up in 4 consecutive days in a crossover controlled approach: without, eccentric, plyometric and repeated changes of direction. Vertical jump and Sprint performances were tested immediately after warm up and 12 minutes after warm up. Results showed that repeated changes of direction and plyometrics presented beneficial effects to jump and sprint. Different practical implications may be taken from the eccentric protocol since a vertical jump impairment was observed, suggesting a possibly harmful effect. The absence of re-warm up activities may be detrimental to players' physical performance. However, the inclusion of re-warm up prior to match is a complex issue, since the manipulation of volume, intensity and recovery may positively or negatively affect the subsequent performance. In fact, this exploratory study shows that eccentric exercise may be harmful for physical performance when performed prior a football match. However, plyometric and repeated changes of direction exercises seem to be simple, quick and efficient activities to attenuate losses in vertical jump and sprint capacity after warm up. Coaches should aim to develop individual optimal exercise modes in order to optimize physical performance after re warm activities.

  3. Whole genome evaluation of tandem repeat polymorphisms between two pathogenically similar strains of Xylella fastidiosa isolated from almond and grape in California

    USDA-ARS?s Scientific Manuscript database

    Whole genome tandem repeat polymorphisms were evaluated between two closely related Xylella fastidiosa strains, M23 and Temecula1, both cause almond leaf scorch disease (ALSD) and grape Pierce’s disease (PD) in California. Strain M23 was isolated from almond and the genome was sequenced in this stu...

  4. MitoSatPlant: mitochondrial microsatellites database of viridiplantae.

    PubMed

    Kumar, Manjeet; Kapil, Aditi; Shanker, Asheesh

    2014-11-01

    Microsatellites also known as simple sequence repeats (SSRs) consist of 1-6 nucleotide long repeating units. The importance of mitochondrial SSRs (mtSSRs) in fields like population genetics, plant phylogenetics and genome mapping motivated us to develop MitoSatPlant, a repository of plant mtSSRs. It contains information for perfect, imperfect and compound SSRs mined from 92 mitochondrial genomes of green plants, available at NCBI (as of 1 Feb 2014). A total of 72,798 SSRs were found, of which PCR primers were designed for 72,495 SSRs. Among all sequences, tetranucleotide repeats (26,802) were found to be most abundant whereas hexanucleotide repeats (2751) were detected with least frequency. MitoSatPlant was developed using SQL server 2008 and can be accessed through a front end designed in ASP.Net. It is an easy to use, user-friendly database and will prove to be a useful resource for plant scientists. To the best of our knowledge MitoSatPlant is the only database available for plant mtSSRs and can be freely accessed at http://compubio.in/mitosatplant/. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  5. Turnover of R1 (Type I) and R2 (Type Ii) Retrotransposable Elements in the Ribosomal DNA of Drosophila Melanogaster

    PubMed Central

    Jakubczak, J. L.; Zenni, M. K.; Woodruff, R. C.; Eickbush, T. H.

    1992-01-01

    R1 and R2 are distantly related non-long terminal repeat retrotransposable elements each of which inserts into a specific site in the 28S rRNA genes of most insects. We have analyzed aspects of R1 and R2 abundance and sequence variation in 27 geographical isolates of Drosophila melanogaster. The fraction of 28S rRNA genes containing these elements varied greatly between strains, 17-67% for R1 elements and 2-28% for R2 elements. The total percentage of the rDNA repeats inserted ranged from 32 to 77%. The fraction of the rDNA repeats that contained both of these elements suggested that R1 and R2 exhibit neither an inhibition of nor preference for insertion into a 28S gene already containing the other type of element. Based on the conservation of restriction sites in the elements of all strains, and sequence analysis of individual elements from three strains, nucleotide divergence is very low for R1 and R2 elements within or between strains (<0.6%). This sequence uniformity is the expected result of the forces of concerted evolution (unequal crossovers and gene conversion) which act on the rRNA genes themselves. Evidence for the role of retrotransposition in the turnover of R1 and R2 was obtained by using naturally occurring 5' length polymorphisms of the elements as markers for independent transposition events. The pattern of these different length 5' truncations of R1 and R2 was found to be diverse and unique to most strains analyzed. Because recombination can only, with time, amplify or eliminate those length variants already present, the diversity found in each strain suggests that retrotransposition has played a critical role in maintaining these elements in the rDNA repeats of D. melanogaster. PMID:1317313

  6. Development of Genomic Simple Sequence Repeats (SSR) by Enrichment Libraries in Date Palm.

    PubMed

    Al-Faifi, Sulieman A; Migdadi, Hussein M; Algamdi, Salem S; Khan, Mohammad Altaf; Al-Obeed, Rashid S; Ammar, Megahed H; Jakse, Jerenj

    2017-01-01

    Development of highly informative markers such as simple sequence repeats (SSR) for cultivar identification and germplasm characterization and management is essential for date palms genetic studies. The present study documents the development of SSR markers and assesses genetic relationships of commonly grown date palm (Phoenix dactylifera L.) cultivars in different geographical regions of Saudi Arabia. A total of 93 novel simple sequence repeat (SSR) markers were screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs are dinucleotide, 25% trinucleotide, 3% tetranucleotide, and 1% pentanucleotide motives and show 100% polymorphism. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis illustrates that cultivars trend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) reveals genetic variation among and within cultivars of 27% and 73%, respectively, according to the geographical distribution of the cultivars. Developed microsatellite markers are of additional value to date palm characterization, tools which can be used by researchers in population genetics, cultivar identification, as well as genetic resource exploration and management. The cultivars tested exhibited a significant amount of genetic diversity and could be suitable for successful breeding programs. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).

  7. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra)

    PubMed Central

    2012-01-01

    Background Chinese bayberry (Myrica rubra Sieb. and Zucc.) is a subtropical evergreen tree originating in China. It has been cultivated in southern China for several thousand years, and annual production has reached 1.1 million tons. The taste and high level of health promoting characters identified in the fruit in recent years has stimulated its extension in China and introduction to Australia. A limited number of co-dominant markers have been developed and applied in genetic diversity and identity studies. Here we report, for the first time, a survey of whole genome shotgun data to develop a large number of simple sequence repeat (SSR) markers to analyse the genetic diversity of the common cultivated Chinese bayberry and the relationship with three other Myrica species. Results The whole genome shotgun survey of Chinese bayberry produced 9.01Gb of sequence data, about 26x coverage of the estimated genome size of 323 Mb. The genome sequences were highly heterozygous, but with little duplication. From the initial assembled scaffold covering 255 Mb sequence data, 28,602 SSRs (≥5 repeats) were identified. Dinucleotide was the most common repeat motif with a frequency of 84.73%, followed by 13.78% trinucleotide, 1.34% tetranucleotide, 0.12% pentanucleotide and 0.04% hexanucleotide. From 600 primer pairs, 186 polymorphic SSRs were developed. Of these, 158 were used to screen 29 Chinese bayberry accessions and three other Myrica species: 91.14%, 89.87% and 46.84% SSRs could be used in Myrica adenophora, Myrica nana and Myrica cerifera, respectively. The UPGMA dendrogram tree showed that cultivated Myrica rubra is closely related to Myrica adenophora and Myrica nana, originating in southwest China, and very distantly related to Myrica cerifera, originating in America. These markers can be used in the construction of a linkage map and for genetic diversity studies in Myrica species. Conclusion Myrica rubra has a small genome of about 323 Mb with a high level of heterozygosity. A large number of SSRs were identified, and 158 polymorphic SSR markers developed, 91% of which can be transferred to other Myrica species. PMID:22621340

  8. Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions.

    PubMed

    Yamaguchi, Kosuke; Hada, Masashi; Fukuda, Yuko; Inoue, Erina; Makino, Yoshinori; Katou, Yuki; Shirahige, Katsuhiko; Okada, Yuki

    2018-06-26

    The question of whether retained histones in the sperm genome localize to gene-coding regions or gene deserts has been debated for years. Previous contradictory observations are likely caused by the non-uniform sensitivity of sperm chromatin to micrococcal nuclease (MNase) digestion. Sperm chromatin has a highly condensed but heterogeneous structure and is composed of 90%∼99% protamines and 1%∼10% histones. In this study, we utilized nucleoplasmin (NPM) to improve the solubility of sperm chromatin by removing protamines in vitro. NPM treatment efficiently solubilized histones while maintaining quality and quantity. Chromatin immunoprecipitation sequencing (ChIP-seq) analyses using NPM-treated sperm demonstrated the predominant localization of H4 to distal intergenic regions, whereas modified histones exhibited a modification-dependent preferential enrichment in specific genomic elements, such as H3K4me3 at CpG-rich promoters and H3K9me3 in satellite repeats, respectively, implying the existence of machinery protecting modified histones from eviction. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Production of monoclonal antibody, PR81, recognizing the tandem repeat region of MUC1 mucin.

    PubMed

    Paknejad, M; Rasaee, M J; Tehrani, F Karami; Kashanian, S; Mohagheghi, M A; Omidfar, K; Bazl, M Rajabi

    2003-06-01

    A monoclonal antibody (MAb) was generated by immunizing BALB/c mice with homogenized breast cancerous tissues. This antibody (PR81) was found to be of IgG(1) class and subclass, containing kappa light chain. PR81 reacted with either the membrane extracts of several breast cancerous tissues or the cell surface of some MUC1 positive cell lines (MCF-7, BT-20 and T-47D) tested by enzyme immunoassay and for MCF-7 by immunofluorescence method. PR81 also reacted with two synthetic 27 and 16-amino acid peptides, TSA-P1-24 and A-P1-15, respectively, which included the core tandem repeat sequence of MUC1. However, this antibody did not react with a synthetic 14 amino acid peptide that has no similarity with tandem repeat found in MUC1. The generated antibody had good and similar affinities (2.19 x 10(8) M(-1)) toward TSA-P1-24 and A-P1-15, which are mainly shared in the hydrophilic sequence of PDTRPAP. Through Western blot analysis of homogenized breast tissues, PR81 recognized only a major band of 250 kDa. This band is stronger in malignant tissue than benign and normal tissues.

  10. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes).

    PubMed

    Delport, Wayne; Ferguson, J Willem H; Bloomer, Paulette

    2002-06-01

    We determined the mitochondrial DNA control region sequences of six Bucerotiformes. Hornbills have the typical avian gene order and their control region is similar to other avian control regions in that it is partitioned into three domains: two variable domains that flank a central conserved domain. Two characteristics of the hornbill control region sequence differ from that of other birds. First, domain I is AT rich as opposed to AC rich, and second, the control region is approximately 500 bp longer than that of other birds. Both these deviations from typical avian control region sequence are explainable on the basis of repeat motifs in domain I of the hornbill control region. The repeat motifs probably originated from a duplication of CSB-1 as has been determined in chicken, quail, and snowgoose. Furthermore, the hornbill repeat motifs probably arose before the divergence of hornbills from each other but after the divergence of hornbills from other avian taxa. The mitochondrial control region of hornbills is suitable for both phylogenetic and population studies, with domains I and II probably more suited to population and phylogenetic analyses, respectively.

  11. “One code to find them all”: a perl tool to conveniently parse RepeatMasker output files

    PubMed Central

    2014-01-01

    Background Of the different bioinformatic methods used to recover transposable elements (TEs) in genome sequences, one of the most commonly used procedures is the homology-based method proposed by the RepeatMasker program. RepeatMasker generates several output files, including the .out file, which provides annotations for all detected repeats in a query sequence. However, a remaining challenge consists of identifying the different copies of TEs that correspond to the identified hits. This step is essential for any evolutionary/comparative analysis of the different copies within a family. Different possibilities can lead to multiple hits corresponding to a unique copy of an element, such as the presence of large deletions/insertions or undetermined bases, and distinct consensus corresponding to a single full-length sequence (like for long terminal repeat (LTR)-retrotransposons). These possibilities must be taken into account to determine the exact number of TE copies. Results We have developed a perl tool that parses the RepeatMasker .out file to better determine the number and positions of TE copies in the query sequence, in addition to computing quantitative information for the different families. To determine the accuracy of the program, we tested it on several RepeatMasker .out files corresponding to two organisms (Drosophila melanogaster and Homo sapiens) for which the TE content has already been largely described and which present great differences in genome size, TE content, and TE families. Conclusions Our tool provides access to detailed information concerning the TE content in a genome at the family level from the .out file of RepeatMasker. This information includes the exact position and orientation of each copy, its proportion in the query sequence, and its quality compared to the reference element. In addition, our tool allows a user to directly retrieve the sequence of each copy and obtain the same detailed information at the family level when a local library with incomplete TE class/subclass information was used with RepeatMasker. We hope that this tool will be helpful for people working on the distribution and evolution of TEs within genomes.

  12. High-resolution typing of Chlamydia trachomatis: epidemiological and clinical uses.

    PubMed

    de Vries, Henry J C; Schim van der Loeff, Maarten F; Bruisten, Sylvia M

    2015-02-01

    A state-of-the-art overview of molecular Chlamydia trachomatis typing methods that are used for routine diagnostics and scientific studies. Molecular epidemiology uses high-resolution typing techniques such as multilocus sequence typing, multilocus variable number of tandem repeats analysis, and whole-genome sequencing to identify strains based on their DNA sequence. These data can be used for cluster, network and phylogenetic analyses, and are used to unveil transmission networks, risk groups, and evolutionary pathways. High-resolution typing of C. trachomatis strains is applied to monitor treatment efficacy and re-infections, and to study the recent emergence of lymphogranuloma venereum (LGV) amongst men who have sex with men in high-income countries. Chlamydia strain typing has clinical relevance in disease management, as LGV needs longer treatment than non-LGV C. trachomatis. It has also led to the discovery of a new variant Chlamydia strain in Sweden, which was not detected by some commercial C. trachomatis diagnostic platforms. After a brief history and comparison of the various Chlamydia typing methods, the applications of the current techniques are described and future endeavors to extend scientific understanding are formulated. High-resolution typing will likely help to further unravel the pathophysiological mechanisms behind the wide clinical spectrum of chlamydial disease.

  13. Regulatory Mechanisms That Prevent Re-initiation of DNA Replication Can Be Locally Modulated at Origins by Nearby Sequence Elements

    PubMed Central

    Richardson, Christopher D.; Li, Joachim J.

    2014-01-01

    Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs). We have mapped the two RIPs to ∼60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some regions of the genome may be more susceptible to these alterations than others. PMID:24945837

  14. A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6

    PubMed Central

    2011-01-01

    Background The fermented dried seeds of Theobroma cacao (cacao tree) are the main ingredient in chocolate. World cocoa production was estimated to be 3 million tons in 2010 with an annual estimated average growth rate of 2.2%. The cacao bean production industry is currently under threat from a rise in fungal diseases including black pod, frosty pod, and witches' broom. In order to address these issues, genome-sequencing efforts have been initiated recently to facilitate identification of genetic markers and genes that could be utilized to accelerate the release of robust T. cacao cultivars. However, problems inherent with assembly and resolution of distal regions of complex eukaryotic genomes, such as gaps, chimeric joins, and unresolvable repeat-induced compressions, have been unavoidably encountered with the sequencing strategies selected. Results Here, we describe the construction of a BAC-based integrated genetic-physical map of the T. cacao cultivar Matina 1-6 which is designed to augment and enhance these sequencing efforts. Three BAC libraries, each comprised of 10× coverage, were constructed and fingerprinted. 230 genetic markers from a high-resolution genetic recombination map and 96 Arabidopsis-derived conserved ortholog set (COS) II markers were anchored using pooled overgo hybridization. A dense tile path consisting of 29,383 BACs was selected and end-sequenced. The physical map consists of 154 contigs and 4,268 singletons. Forty-nine contigs are genetically anchored and ordered to chromosomes for a total span of 307.2 Mbp. The unanchored contigs (105) span 67.4 Mbp and therefore the estimated genome size of T. cacao is 374.6 Mbp. A comparative analysis with A. thaliana, V. vinifera, and P. trichocarpa suggests that comparisons of the genome assemblies of these distantly related species could provide insights into genome structure, evolutionary history, conservation of functional sites, and improvements in physical map assembly. A comparison between the two T. cacao cultivars Matina 1-6 and Criollo indicates a high degree of collinearity in their genomes, yet rearrangements were also observed. Conclusions The results presented in this study are a stand-alone resource for functional exploitation and enhancement of Theobroma cacao but are also expected to complement and augment ongoing genome-sequencing efforts. This resource will serve as a template for refinement of the T. cacao genome through gap-filling, targeted re-sequencing, and resolution of repetitive DNA arrays. PMID:21846342

  15. A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6.

    PubMed

    Saski, Christopher A; Feltus, Frank A; Staton, Margaret E; Blackmon, Barbara P; Ficklin, Stephen P; Kuhn, David N; Schnell, Raymond J; Shapiro, Howard; Motamayor, Juan Carlos

    2011-08-16

    The fermented dried seeds of Theobroma cacao (cacao tree) are the main ingredient in chocolate. World cocoa production was estimated to be 3 million tons in 2010 with an annual estimated average growth rate of 2.2%. The cacao bean production industry is currently under threat from a rise in fungal diseases including black pod, frosty pod, and witches' broom. In order to address these issues, genome-sequencing efforts have been initiated recently to facilitate identification of genetic markers and genes that could be utilized to accelerate the release of robust T. cacao cultivars. However, problems inherent with assembly and resolution of distal regions of complex eukaryotic genomes, such as gaps, chimeric joins, and unresolvable repeat-induced compressions, have been unavoidably encountered with the sequencing strategies selected. Here, we describe the construction of a BAC-based integrated genetic-physical map of the T. cacao cultivar Matina 1-6 which is designed to augment and enhance these sequencing efforts. Three BAC libraries, each comprised of 10× coverage, were constructed and fingerprinted. 230 genetic markers from a high-resolution genetic recombination map and 96 Arabidopsis-derived conserved ortholog set (COS) II markers were anchored using pooled overgo hybridization. A dense tile path consisting of 29,383 BACs was selected and end-sequenced. The physical map consists of 154 contigs and 4,268 singletons. Forty-nine contigs are genetically anchored and ordered to chromosomes for a total span of 307.2 Mbp. The unanchored contigs (105) span 67.4 Mbp and therefore the estimated genome size of T. cacao is 374.6 Mbp. A comparative analysis with A. thaliana, V. vinifera, and P. trichocarpa suggests that comparisons of the genome assemblies of these distantly related species could provide insights into genome structure, evolutionary history, conservation of functional sites, and improvements in physical map assembly. A comparison between the two T. cacao cultivars Matina 1-6 and Criollo indicates a high degree of collinearity in their genomes, yet rearrangements were also observed. The results presented in this study are a stand-alone resource for functional exploitation and enhancement of Theobroma cacao but are also expected to complement and augment ongoing genome-sequencing efforts. This resource will serve as a template for refinement of the T. cacao genome through gap-filling, targeted re-sequencing, and resolution of repetitive DNA arrays.

  16. Effects of "D"-Amphetamine and Ethanol on Variable and Repetitive Key-Peck Sequences in Pigeons

    ERIC Educational Resources Information Center

    Ward, Ryan D.; Bailey, Ericka M.; Odum, Amy L.

    2006-01-01

    This experiment assessed the effects of "d"-Amphetamine and ethanol on reinforced variable and repetitive key-peck sequences in pigeons. Pigeons responded on two keys under a multiple schedule of Repeat and Vary components. In the Repeat component, completion of a target sequence of right, right, left, left resulted in food. In the Vary component,…

  17. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    PubMed Central

    2012-01-01

    Background Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. Results The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. Conclusion This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping. PMID:22559868

  18. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    PubMed

    Alverson, Andrew J; Zhuo, Shi; Rice, Danny W; Sloan, Daniel B; Palmer, Jeffrey D

    2011-01-20

    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  19. TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.

    PubMed

    Menges, Fabian; Narzisi, Giuseppe; Mishra, Bud

    2011-09-01

    Currently, re-sequencing approaches use multiple modules serially to interpret raw sequencing data from next-generation sequencing platforms, while remaining oblivious to the genomic information until the final alignment step. Such approaches fail to exploit the full information from both raw sequencing data and the reference genome that can yield better quality sequence reads, SNP-calls, variant detection, as well as an alignment at the best possible location in the reference genome. Thus, there is a need for novel reference-guided bioinformatics algorithms for interpreting analog signals representing sequences of the bases ({A, C, G, T}), while simultaneously aligning possible sequence reads to a source reference genome whenever available. Here, we propose a new base-calling algorithm, TotalReCaller, to achieve improved performance. A linear error model for the raw intensity data and Burrows-Wheeler transform (BWT) based alignment are combined utilizing a Bayesian score function, which is then globally optimized over all possible genomic locations using an efficient branch-and-bound approach. The algorithm has been implemented in soft- and hardware [field-programmable gate array (FPGA)] to achieve real-time performance. Empirical results on real high-throughput Illumina data were used to evaluate TotalReCaller's performance relative to its peers-Bustard, BayesCall, Ibis and Rolexa-based on several criteria, particularly those important in clinical and scientific applications. Namely, it was evaluated for (i) its base-calling speed and throughput, (ii) its read accuracy and (iii) its specificity and sensitivity in variant calling. A software implementation of TotalReCaller as well as additional information, is available at: http://bioinformatics.nyu.edu/wordpress/projects/totalrecaller/ fabian.menges@nyu.edu.

  20. Draft Genome Sequence of a Dictyoglomus sp. from an Enrichment Culture of a New Zealand Geothermal Spring

    PubMed Central

    Donaho, John A.; Kelley, John F.; St. John, Emily; Turner, Christina; Podar, Mircea; Stott, Matthew B.

    2018-01-01

    ABSTRACT A draft genome of a novel Dictyoglomus sp., NZ13-RE01, was obtained from a New Zealand hot spring enrichment culture. The 1,927,012-bp genome is similar in both size and G+C content to other Dictyoglomus spp. Like its relatives, Dictyoglomus sp. NZ13-RE01 encodes many genes involved in complex carbohydrate metabolism. PMID:29545298

  1. Abundance and Characterization of Perfect Microsatellites on the Cattle Y Chromosome.

    PubMed

    Ma, Zhi-Jie

    2017-07-03

    Microsatellites or simple sequence repeats (SSRs) are found in most organisms and play an important role in genomic organization and function. To characterize the abundance of SSRs (1-6 base-pairs [bp]) on the cattle Y chromsome, the relative frequency and density of perfect or uninterrupted SSRs based on the published Y chromosome sequence were examined. A total of 17,273 perfect SSRs were found, with total length of 324.78 kb, indicating that approximately 0.75% of the cattle Y chromosome sequence (43.30 Mb) comprises perfect SSRs, with an average length of 18.80 bp. The relative frequency and density were 398.92 loci/Mb and 7500.62 bp/Mb, respectively. The proportions of the six classes of perfect SSRs were highly variable on the cattle Y chromosome. Mononucleotide repeats had a total number of 8073 (46.74%) and an average length of 15.45 bp, and were the most abundant SSRs class, while the percentages of di-, tetra-, tri-, penta-, and hexa-nucleotide repeats were 22.86%, 11.98%, 11.58%, 6.65%, and 0.19%, respectively. Different classes of SSRs varied in their repeat number, with the highest being 42 for dinucleotides. Results reveal that repeat categories A, AC, AT, AAC, AGC, GTTT, CTTT, ATTT, and AACTG predominate on the Y chromosome. This study provides insight into the organization of cattle Y chromosome repetitive DNA, as well as information useful for developing more polymorphic cattle Y-chromosome-specific SSRs.

  2. Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima

    PubMed Central

    Boutte, Julien; Aliaga, Benoît; Lima, Oscar; Ferreira de Carvalho, Julie; Ainouche, Abdelkader; Macas, Jiri; Rousseau-Gueutin, Mathieu; Coriton, Olivier; Ainouche, Malika; Salmon, Armel

    2015-01-01

    Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies. PMID:26530424

  3. Highly Informative Simple Sequence Repeat (SSR) Markers for Fingerprinting Hazelnut

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeat (SSR) or microsatellite markers have many applications in breeding and genetic studies of plants, including fingerprinting of cultivars and investigations of genetic diversity, and therefore provide information for better management of germplasm collections. They are repeatab...

  4. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis.

    PubMed

    He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z

    2013-12-04

    Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.

  5. Chromosomal localization and sequence analysis of a human episomal sequence with in vitro differentiating activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccaccio, C.; Deshatrette, J.; Meunier-Rotival, M.

    1994-05-01

    The genomic fragment carrying the human activator of liver function, previously described as an episome capable of inducing differentiation upon transfection into a dedifferentiated rat hepatoma cell line, was mapped on human chromosome 12q24.2-12q24.3. This chromosomal location was indistinguishable by in situ hybridization from that of the gene coding for the hepatic transcription factor HNF1. The sequence of the integrated form of the episome as well as its flanking sequences show that it is rich in retroposons. It contains a human ribosomal protein L21 processed pseudogene, one truncated L1Hs sequence, and 10 Alu repeats, which belong to different subfamilies.

  6. Reassociation and hybridization properties of DNAs from several species of fish

    USGS Publications Warehouse

    Gharrett, A.J.; Simon, R.C.; McIntyre, J.D.

    1977-01-01

    Reassociation and hybridization properties from spectrophotometric studies of DNAs from 10 species of fish indicate:1. Great diversity in the amounts of repeated sequences in the genomes of different species - more specialized fish had less redundancy.2. Large differences in the complexities of the DNAs - more specialized fish had less information.3. Little homology between sequences of remotely related species but substantial homology between sequences of closely related species.

  7. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.

    PubMed Central

    Davis, C A; Wyatt, G R

    1989-01-01

    The mealworm beetle, Tenebrio molitor, contains an unusually abundant and homogeneous satellite DNA which constitutes up to 60% of its genome. The satellite DNA is shown to be present in all of the chromosomes by in situ hybridization. 18 dimers of the repeat unit were cloned and sequenced. The consensus sequence is 142 nt long and lacks any internal repeat structure. Monomers of the sequence are very similar, showing on average a 2% divergence from the calculated consensus. Variant nucleotides are scattered randomly throughout the sequence although some variants are more common than others. Neighboring repeat units are no more alike than randomly chosen ones. The results suggest that some mechanism, perhaps gene conversion, is acting to maintain the homogeneity of the satellite DNA despite its abundance and distribution on all of the chromosomes. Images PMID:2762148

  8. Interaction between C/EBPbeta and Tax down-regulates human T-cell leukemia virus type I transcription.

    PubMed

    Hivin, P; Gaudray, G; Devaux, C; Mesnard, J-M

    2004-01-20

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.

  9. Strategies for Achieving High Sequencing Accuracy for Low Diversity Samples and Avoiding Sample Bleeding Using Illumina Platform

    PubMed Central

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer’s, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how analysis can be repeated from saved sequencing images using the Long Template Protocol to increase accuracy. PMID:25860802

  10. Genetic variation and evolutionary stability of the FMR1 CGG repeat in six closed human populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichler, E.E.; Nelson, D.L.

    1996-07-12

    In an attempt to understand the allelic diversity and mutability of the human FMR1 CGG repeat, we have analyzed the AGG substructure of this locus within six genetically-closed populations (Mbuti pygmy, Baka pygmy, R. surui, Karitiana, Mayan, and Hutterite). Most alleles (61/92 or 66%) possessed two AGG interspersions occurring with a periodicity of one AGG every nine or ten CGG repeats, indicating that this pattern is highly conserved in all human populations. Significant differences in allele distribution were observed among the populations for rare variants possessing fewer or more AGG interruptions than the canonical FMR1 CGG repeat sequence. Comparisons ofmore » expected heterozygosity of the FMR1 CGG repeat locus with 30 other microsatellite loci, demonstrated remarkably similar levels of polymorphism within each population, suggesting that most FMR1 CGG repeat alleles mutate at rates indistinguishable from other microsatellite loci. A single allele (1 out of 92) was identified with a large uninterrupted tract of pure repeats (42 pure CGG triplets). Retrospective pedigree analysis indicated that this allele had been transmitted unstably. Although such alleles mutate rapidly and likely represent evolving premutations, our analysis suggests that in spite of the estimated frequency of their occurrence, these unstable alleles do not significantly alter the expected heterozygosity of the FMR1 CGG repeat in the human population. 45 refs., 1 fig., 2 tabs.« less

  11. Ground-based photo monitoring

    Treesearch

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  12. Repetitive Regeneration of Media #1 in a Dynamic Column Extraction using Brine #1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Garland

    This data is from a regeneration study from a dynamic column extraction experiment where we ran a solution of REE's through a column of media #1 then stripped the REE's off the media using 2M HNO3 solution. We then re-equilibrated the media and repeated the process of running a REE solution through the column and stripping the REE's off the media and comparing the two runs.

  13. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    PubMed

    Militello, Kevin T; Lazatin, Justine C

    2017-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Sequence investigation of 34 forensic autosomal STRs with massively parallel sequencing.

    PubMed

    Zhang, Suhua; Niu, Yong; Bian, Yingnan; Dong, Rixia; Liu, Xiling; Bao, Yun; Jin, Chao; Zheng, Hancheng; Li, Chengtao

    2018-05-01

    STRs vary not only in the length of the repeat units and the number of repeats but also in the region with which they conform to an incremental repeat pattern. Massively parallel sequencing (MPS) offers new possibilities in the analysis of STRs since they can simultaneously sequence multiple targets in a single reaction and capture potential internal sequence variations. Here, we sequenced 34 STRs applied in the forensic community of China with a custom-designed panel. MPS performance were evaluated from sequencing reads analysis, concordance study and sensitivity testing. High coverage sequencing data were obtained to determine the constitute ratios and heterozygous balance. No actual inconsistent genotypes were observed between capillary electrophoresis (CE) and MPS, demonstrating the reliability of the panel and the MPS technology. With the sequencing data from the 200 investigated individuals, 346 and 418 alleles were obtained via CE and MPS technologies at the 34 STRs, indicating MPS technology provides higher discrimination than CE detection. The whole study demonstrated that STR genotyping with the custom panel and MPS technology has the potential not only to reveal length and sequence variations but also to satisfy the demands of high throughput and high multiplexing with acceptable sensitivity.

  15. Auto-tracking system for human lumbar motion analysis.

    PubMed

    Sui, Fuge; Zhang, Da; Lam, Shing Chun Benny; Zhao, Lifeng; Wang, Dongjun; Bi, Zhenggang; Hu, Yong

    2011-01-01

    Previous lumbar motion analyses suggest the usefulness of quantitatively characterizing spine motion. However, the application of such measurements is still limited by the lack of user-friendly automatic spine motion analysis systems. This paper describes an automatic analysis system to measure lumbar spine disorders that consists of a spine motion guidance device, an X-ray imaging modality to acquire digitized video fluoroscopy (DVF) sequences and an automated tracking module with a graphical user interface (GUI). DVF sequences of the lumbar spine are recorded during flexion-extension under a guidance device. The automatic tracking software utilizing a particle filter locates the vertebra-of-interest in every frame of the sequence, and the tracking result is displayed on the GUI. Kinematic parameters are also extracted from the tracking results for motion analysis. We observed that, in a bone model test, the maximum fiducial error was 3.7%, and the maximum repeatability error in translation and rotation was 1.2% and 2.6%, respectively. In our simulated DVF sequence study, the automatic tracking was not successful when the noise intensity was greater than 0.50. In a noisy situation, the maximal difference was 1.3 mm in translation and 1° in the rotation angle. The errors were calculated in translation (fiducial error: 2.4%, repeatability error: 0.5%) and in the rotation angle (fiducial error: 1.0%, repeatability error: 0.7%). However, the automatic tracking software could successfully track simulated sequences contaminated by noise at a density ≤ 0.5 with very high accuracy, providing good reliability and robustness. A clinical trial with 10 healthy subjects and 2 lumbar spondylolisthesis patients were enrolled in this study. The measurement with auto-tacking of DVF provided some information not seen in the conventional X-ray. The results proposed the potential use of the proposed system for clinical applications.

  16. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor.

    PubMed

    Kohany, Oleksiy; Gentles, Andrew J; Hankus, Lukasz; Jurka, Jerzy

    2006-10-25

    Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s), repeat sequences found in the query, and alignments. Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter) and http://www.girinst.org/censor/index.php (Censor).

  17. Identification and characterization of 43 microsatellite markers derived from expressed sequence tags of the sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng

    2011-06-01

    The sea cucumber Apostichopus japonicus is a commercially and ecologically important species in China. A total of 3056 potential unigenes were generated after assembling 7597 A. japonicus expressed sequence tags (ESTs) downloaded from Gen-Bank. Two hundred and fifty microsatellite-containing ESTs (8.18%) and 299 simple sequence repeats (SSRs) were detected. The average density of SSRs was 1 per 7.403 kb of EST after redundancy elimination. Di-nucleotide repeat motifs appeared to be the most abundant type with a percentage of 69.90%. Of the 126 primer pairs designed, 90 amplified the expected products and 43 showed polymorphism in 30 individuals tested. The number of alleles per locus ranged from 2 to 26 with an average of 7.0 alleles, and the observed and expected heterozygosities varied from 0.067 to 1.000 and from 0.066 to 0.959, respectively. These new EST-derived microsatellite markers would provide sufficient polymorphism for population genetic studies and genome mapping of this sea cucumber species.

  18. Evolutionary Conservation of a Coding Function for D4Z4, the Tandem DNA Repeat Mutated in Facioscapulohumeral Muscular Dystrophy

    PubMed Central

    Clapp, Jannine ; Mitchell, Laura M. ; Bolland, Daniel J. ; Fantes, Judy ; Corcoran, Anne E. ; Scotting, Paul J. ; Armour, John A. L. ; Hewitt, Jane E. 

    2007-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within the polymorphic DNA tandem array D4Z4. Each D4Z4 repeat unit has an open reading frame (ORF), termed “DUX4,” containing two homeobox sequences. Because there has been no evidence of a transcript from the array, these deletions are thought to cause FSHD by a position effect on other genes. Here, we identify D4Z4 homologues in the genomes of rodents, Afrotheria (superorder of elephants and related species), and other species and show that the DUX4 ORF is conserved. Phylogenetic analysis suggests that primate and Afrotherian D4Z4 arrays are orthologous and originated from a retrotransposed copy of an intron-containing DUX gene, DUXC. Reverse-transcriptase polymerase chain reaction and RNA fluorescence and tissue in situ hybridization data indicate transcription of the mouse array. Together with the conservation of the DUX4 ORF for >100 million years, this strongly supports a coding function for D4Z4 and necessitates re-examination of current models of the FSHD disease mechanism. PMID:17668377

  19. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.

    PubMed

    Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E

    2014-02-21

    Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.

  20. Calcium-dependent molecular fMRI using a magnetic nanosensor.

    PubMed

    Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  1. Calcium-dependent molecular fMRI using a magnetic nanosensor

    NASA Astrophysics Data System (ADS)

    Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  2. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence

    PubMed Central

    2017-01-01

    During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana. We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays, although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3. PMID:28223399

  3. Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania

    PubMed Central

    Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc

    2014-01-01

    Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment. PMID:24844805

  4. Inherited Creutzfeldt-Jakob disease in a British family associated with a novel 144 base pair insertion of the prion protein gene.

    PubMed Central

    Nicholl, D; Windl, O; de Silva, R; Sawcer, S; Dempster, M; Ironside, J W; Estibeiro, J P; Yuill, G M; Lathe, R; Will, R G

    1995-01-01

    A case of familial Creutzfeldt-Jakob disease associated with a 144 base pair insertion in the open reading frame of the prion protein gene is described. Sequencing of the mutated allele showed an arrangement of six octapeptide repeats, distinct from that of a recently described British family with an insertion of similar size. Thirteen years previously the brother of the proband had died from "Huntington's disease", but re-examination of his neuropathology revealed spongiform encephalopathy and anti-prion protein immunocytochemistry gave a positive result. The independent evolution of at least two distinct pathological 144 base pair insertions in Britain is proposed. The importance of maintaining a high index of suspicion of inherited Creutzfeldt-Jakob disease in cases of familial neurodegenerative disease is stressed. Images PMID:7823070

  5. PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics

    PubMed Central

    2012-01-01

    Background The peanut (Arachis hypogaea) is an important crop cultivated worldwide for oil production and food sources. Its complex genetic architecture (e.g., the large and tetraploid genome possibly due to unique cross of wild diploid relatives and subsequent chromosome duplication: 2n = 4x = 40, AABB, 2800 Mb) presents a major challenge for its genome sequencing and makes it a less-studied crop. Without a doubt, transcriptome sequencing is the most effective way to harness the genome structure and gene expression dynamics of this non-model species that has a limited genomic resource. Description With the development of next generation sequencing technologies such as 454 pyro-sequencing and Illumina sequencing by synthesis, the transcriptomics data of peanut is rapidly accumulated in both the public databases and private sectors. Integrating 187,636 Sanger reads (103,685,419 bases), 1,165,168 Roche 454 reads (333,862,593 bases) and 57,135,995 Illumina reads (4,073,740,115 bases), we generated the first release of our peanut transcriptome assembly that contains 32,619 contigs. We provided EC, KEGG and GO functional annotations to these contigs and detected SSRs, SNPs and other genetic polymorphisms for each contig. Based on both open-source and our in-house tools, PeanutDB presents many seamlessly integrated web interfaces that allow users to search, filter, navigate and visualize easily the whole transcript assembly, its annotations and detected polymorphisms and simple sequence repeats. For each contig, sequence alignment is presented in both bird’s-eye view and nucleotide level resolution, with colorfully highlighted regions of mismatches, indels and repeats that facilitate close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors. Conclusion As a public genomic database that integrates peanut transcriptome data from different sources, PeanutDB (http://bioinfolab.muohio.edu/txid3818v1) provides the Peanut research community with an easy-to-use web portal that will definitely facilitate genomics research and molecular breeding in this less-studied crop. PMID:22712730

  6. Characterization of a species-specific repetitive DNA from a highly endangered wild animal, Rhinoceros unicornis, and assessment of genetic polymorphism by microsatellite associated sequence amplification (MASA).

    PubMed

    Ali, S; Azfer, M A; Bashamboo, A; Mathur, P K; Malik, P K; Mathur, V B; Raha, A K; Ansari, S

    1999-03-04

    We have cloned and sequenced a 906bp EcoRI repeat DNA fraction from Rhinoceros unicornis genome. The contig pSS(R)2 is AT rich with 340 A (37.53%), 187 C (20.64%), 173 G (19.09%) and 206 T (22.74%). The sequence contains MALT box, NF-E1, Poly-A signal, lariat consensus sequences, TATA box, translational initiation sequences and several stop codons. Translation of the contig showed seven different types of protein motifs, among which, EGF-like domain cysteine pattern signatures and Bowman-Birk serine protease inhibitor family signatures were prominent. The presence of eukaryotic transcriptional elements, protein signatures and analysis of subset sequences in the 5' region from 1 to 165nt indicating coding potential (test code value=0.97) suggest possible regulatory and/or functional role(s) of these sequences in the rhino genome. Translation of the complementary strand from 906 to 706nt and 190 to 2nt showed proteins of more than 7kDa rich in non-polar residues. This suggests that pSS(R)2 is either a part of, or adjacent to, a functional gene. The contig contains mostly non-consecutive simple repeat units from 2 to 17nt with varying frequencies, of which four base motifs were found to be predominant. Zoo-blot hybridization revealed that pSS(R)2 sequences are unique to R. unicornis genome because they do not cross-hybridize, even with the genomic DNA of South African black rhino Diceros bicornis. Southern blot analysis of R. unicornis genomic DNA with pSS(R)2 and other synthetic oligo probes revealed a high level of genetic homogeneity, which was also substantiated by microsatellite associated sequence amplification (MASA). Owing to its uniqueness, the pSS(R)2 probe has a potential application in the area of conservation biology for unequivocal identification of horn or other body tissues of R. unicornis. The evolutionary aspect of this repeat fraction in the context of comparative genome analysis is discussed.

  7. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    PubMed

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  8. Marked Phenotypic Heterogeneity Associated with Expansion of a CAG Repeat Sequence at the Spinocerebellar Ataxia 3/Machado-Joseph Disease Locus

    PubMed Central

    Cancel, Géraldine; Abbas, Nacer; Stevanin, Giovanni; Dürr, Alexandra; Chneiweiss, Hervé; Néri, Christian; Duyckaerts, Charles; Penet, Christiane; Cann, Howard M.; Agid, Yves; Brice, Alexis

    1995-01-01

    The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats. ImagesFigure 3Figure 5 PMID:7573040

  9. Draft Genome Sequence of Ezakiella peruensis Strain M6.X2, a Human Gut Gram-Positive Anaerobic Coccus.

    PubMed

    Diop, Awa; Diop, Khoudia; Tomei, Enora; Raoult, Didier; Fenollar, Florence; Fournier, Pierre-Edouard

    2018-03-01

    We report here the draft genome sequence of Ezakiella peruensis strain M6.X2 T The draft genome is 1,672,788 bp long and harbors 1,589 predicted protein-encoding genes, including 26 antibiotic resistance genes with 1 gene encoding vancomycin resistance. The genome also exhibits 1 clustered regularly interspaced short palindromic repeat region and 333 genes acquired by horizontal gene transfer. Copyright © 2018 Diop et al.

  10. Efficient activation of transcription in yeast by the BPV1 E2 protein.

    PubMed Central

    Stanway, C A; Sowden, M P; Wilson, L E; Kingsman, A J; Kingsman, S M

    1989-01-01

    The full-length gene product encoded by the E2 open reading frame (ORF) of bovine papillomavirus type 1 (BPV1) is a transcriptional transactivator. It is believed to mediate its effect on the BPV1 long control region (LCR) by binding to motifs with the consensus sequence ACCN6GGT. The minimal functional cis active site, called the E2 response element (E2RE), in mammalian cells comprises two copies of this motif. Here we have shown that E2 can function in Saccharomyces cerevisiae by placing an E2RE upstream of a synthetic yeast assay promoter which consists of a TATA motif and an mRNA initiation site, spaced correctly. This E2RE-minimal promoter is only transcriptionally active in the presence of E2 protein and the resulting mRNA is initiated at the authentic start site. This is the first report of a mammalian viral transactivator functioning in yeast. The level of activation by E2 via the E2RE was the same as observed with the highly efficient authentic PGK promoter where the upstream activation sequence is composed of three distinct elements. Furthermore a single E2 motif which is insufficient in mammalian cells as an activation site was as efficiently utilized in yeast as the E2RE (2 motifs). Previous studies have shown that mammalian cellular activators can function in yeast and our data now extend this to viral-specific activators. Our data indicate however that while the mechanism of transactivation is broadly conserved there may be significant differences at the detailed level. Images PMID:2539584

  11. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis.

    PubMed

    Mikalsen, Theresa; Pedersen, Torunn; Willems, Rob; Coque, Teresa M; Werner, Guido; Sadowy, Ewa; van Schaik, Willem; Jensen, Lars Bogø; Sundsfjord, Arnfinn; Hegstad, Kristin

    2015-04-10

    The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.

  12. MSDB: A Comprehensive Database of Simple Sequence Repeats

    PubMed Central

    Avvaru, Akshay Kumar; Saxena, Saketh; Mishra, Rakesh Kumar

    2017-01-01

    Abstract Microsatellites, also known as Simple Sequence Repeats (SSRs), are short tandem repeats of 1–6 nt motifs present in all genomes, particularly eukaryotes. Besides their usefulness as genome markers, SSRs have been shown to perform important regulatory functions, and variations in their length at coding regions are linked to several disorders in humans. Microsatellites show a taxon-specific enrichment in eukaryotic genomes, and some may be functional. MSDB (Microsatellite Database) is a collection of >650 million SSRs from 6,893 species including Bacteria, Archaea, Fungi, Plants, and Animals. This database is by far the most exhaustive resource to access and analyze SSR data of multiple species. In addition to exploring data in a customizable tabular format, users can view and compare the data of multiple species simultaneously using our interactive plotting system. MSDB is developed using the Django framework and MySQL. It is freely available at http://tdb.ccmb.res.in/msdb. PMID:28854643

  13. Androgen receptor CAG repeat polymorphisms in canine prostate cancer.

    PubMed

    Lai, C-L; L'Eplattenier, H; van den Ham, R; Verseijden, F; Jagtenberg, A; Mol, J A; Teske, E

    2008-01-01

    Relatively shorter lengths of the polymorphic polyglutamine repeat-1 of the androgen receptor (AR) have been associated with an increased risk of prostate cancer (PC) in humans. In the dog, there are 2 polymorphic CAG repeat (CAGr) regions. To investigate the relationship of CAGr length of the canine AR-gene and the development of PC. Thirty-two dogs with PC and 172 control dogs were used. DNA was extracted from blood. Both CAG repeats were amplified by polymerase chain reaction (PCR) and PCR products were sequenced. In dogs with PC, CAG-1 repeat length was shorter (P = .001) by an increased proportion of 10 repeats (P = .011) and no 12 repeats (P = .0017) than in the control dogs. No significant changes were found in CAG-3 length distribution. CAG-1 and CAG-3 polymorphisms proved not to be in linkage disequilibrium. Breed difference in allelic distribution was found in the control group. Of the prostate-disease sensitive breeds, a high percentage (64.5%) of the shortest haplotype 10/11 was found in the Doberman, whereas Beagles and German Pointers had higher haplotype 12/11 (47.1 and 50%). Bernese Mountain dogs and Bouvier dogs both shared a high percentage of 11 CAG-1 repeats and 13 CAG-3 repeats. Differences in (combined) allelic distributions among breeds were not significant. In this preliminary study, short CAG-1 repeats in the AR-gene were associated with an increased risk of developing canine PC. Although breed-specific differences in allelic distribution of CAG-1 and CAG-3 repeats were found, these could not be related to PC risk.

  14. Wound induced Beta vulgaris polygalacturonase-inhibiting protein genes encode a longer leucine-rich repeat domain and inhibit fungal polygalacturonases

    USDA-ARS?s Scientific Manuscript database

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defense. Sugar beet (Beta vulgaris L.) PGIP genes, BvPGIP1, BvPGIP2 and BvPGIP3, were isolated from two breeding lines, F1016 and F1010. Full-length cDNA sequences of the three BvPGIP genes encod...

  15. De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies

    PubMed Central

    Karamitros, Timokratis; Piorkowska, Renata; Katzourakis, Aris; Magiorkinis, Gkikas; Mbisa, Jean Lutamyo

    2016-01-01

    Human herpesvirus type 1 (HHV-1) has a large double-stranded DNA genome of approximately 152 kbp that is structurally complex and GC-rich. This makes the assembly of HHV-1 whole genomes from short-read sequencing data technically challenging. To improve the assembly of HHV-1 genomes we have employed a hybrid genome assembly protocol using data from two sequencing technologies: the short-read Roche 454 and the long-read Oxford Nanopore MinION sequencers. We sequenced 18 HHV-1 cell culture-isolated clinical specimens collected from immunocompromised patients undergoing antiviral therapy. The susceptibility of the samples to several antivirals was determined by plaque reduction assay. Hybrid genome assembly resulted in a decrease in the number of contigs in 6 out of 7 samples and an increase in N(G)50 and N(G)75 of all 7 samples sequenced by both technologies. The approach also enhanced the detection of non-canonical contigs including a rearrangement between the unique (UL) and repeat (T/IRL) sequence regions of one sample that was not detectable by assembly of 454 reads alone. We detected several known and novel resistance-associated mutations in UL23 and UL30 genes. Genome-wide genetic variability ranged from <1% to 53% of amino acids in each gene exhibiting at least one substitution within the pool of samples. The UL23 gene had one of the highest genetic variabilities at 35.2% in keeping with its role in development of drug resistance. The assembly of accurate, full-length HHV-1 genomes will be useful in determining genetic determinants of drug resistance, virulence, pathogenesis and viral evolution. The numerous, complex repeat regions of the HHV-1 genome currently remain a barrier towards this goal. PMID:27309375

  16. De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies.

    PubMed

    Karamitros, Timokratis; Harrison, Ian; Piorkowska, Renata; Katzourakis, Aris; Magiorkinis, Gkikas; Mbisa, Jean Lutamyo

    2016-01-01

    Human herpesvirus type 1 (HHV-1) has a large double-stranded DNA genome of approximately 152 kbp that is structurally complex and GC-rich. This makes the assembly of HHV-1 whole genomes from short-read sequencing data technically challenging. To improve the assembly of HHV-1 genomes we have employed a hybrid genome assembly protocol using data from two sequencing technologies: the short-read Roche 454 and the long-read Oxford Nanopore MinION sequencers. We sequenced 18 HHV-1 cell culture-isolated clinical specimens collected from immunocompromised patients undergoing antiviral therapy. The susceptibility of the samples to several antivirals was determined by plaque reduction assay. Hybrid genome assembly resulted in a decrease in the number of contigs in 6 out of 7 samples and an increase in N(G)50 and N(G)75 of all 7 samples sequenced by both technologies. The approach also enhanced the detection of non-canonical contigs including a rearrangement between the unique (UL) and repeat (T/IRL) sequence regions of one sample that was not detectable by assembly of 454 reads alone. We detected several known and novel resistance-associated mutations in UL23 and UL30 genes. Genome-wide genetic variability ranged from <1% to 53% of amino acids in each gene exhibiting at least one substitution within the pool of samples. The UL23 gene had one of the highest genetic variabilities at 35.2% in keeping with its role in development of drug resistance. The assembly of accurate, full-length HHV-1 genomes will be useful in determining genetic determinants of drug resistance, virulence, pathogenesis and viral evolution. The numerous, complex repeat regions of the HHV-1 genome currently remain a barrier towards this goal.

  17. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.

    PubMed

    Le, Binh Huy; Seo, Young Jun

    2018-01-25

    We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dT F fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dT F residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size.

    PubMed

    Gu, Yongzhe; Li, Wei; Jiang, Hongwei; Wang, Yan; Gao, Huihui; Liu, Miao; Chen, Qingshan; Lai, Yongcai; He, Chaoying

    2017-05-17

    Soybean (Glycine max) probably originated from the wild soybean (Glycine soja). Glycine max has a significantly larger seed size, but the underlying genomic changes are largely unknown. Candidate regulatory genes were preliminarily proposed by data co-localizing RNA sequencing with the quantitative loci (QTLs) for seed size. The soybean gene locus SoyWRKY15a and its orthologous genes from G. max (GmWRKY15a) and G. soja (GsWRKY15a) were analyzed in detail. The coding sequences were nearly identical between the two orthologs, but GmWRKY15a was significantly more highly expressed than GsWRKY15a. Four haplotypes (H1-H4) were found and they varied in the size of a CT-core microsatellite locus in the 5'-untranslated region of this gene. H1 (with six CT-repeats) was the only allelic version found in G. max, while H3 (with five CT-repeats) was the dominant G. soja allele. Differential expression of this gene in soybean pods was correlated with CT-repeat variation, and manipulation of the CT copy number altered the reporter gene expression, suggesting a regulatory role for the simple sequence repeats. Seed weight of wild soybeans harboring H1 was significantly greater than that of soybeans having haplotypes H2, H3, or H4, and seed weight was correlated with gene expression, suggesting the influence of GsWRKY15a in controlling seed size. However, the seed size might be refractory to increased SoyWRKY15a expression in cultivated soybeans. The evolutionary significance of SoyWRKY15a variation in soybean seed domestication is discussed. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Mutations that alter a repeated ACCA element located at the 5' end of the Potato virus X genome affect RNA accumulation.

    PubMed

    Park, Mi-Ri; Kwon, Sun-Jung; Choi, Hong-Soo; Hemenway, Cynthia L; Kim, Kook-Hyung

    2008-08-15

    The repeated ACCA or AC-rich sequence and structural (SL1) elements in the 5' non-translated region (NTR) of the Potato virus X (PVX) RNA play vital roles in the PVX life cycle by controlling translation, RNA replication, movement, and assembly. It has already been shown that the repeated ACCA or AC-rich sequence affect both gRNA and sgRNA accumulation, while not affecting minus-strand RNA accumulation, and are also required for host protein binding. The functional significance of the repeated ACCA sequence elements in the 5' NTR region was investigated by analyzing the effects of deletion and site-directed mutations on PVX replication in Nicotiana benthamiana plants and NT1 protoplasts. Substitution (ACCA into AAAA or UUUU) mutations introduced in the first (nt 10-13) element in the 5' NTR of the PVX RNA significantly affected viral replication, while mutations introduced in the second (nt 17-20) and third (nt 20-23) elements did not. The fourth (nt 29-32) ACCA element weakly affected virus replication, whereas mutations in the fifth (nt 38-41) significantly reduced virus replication due to the structure disruption of SL1 by AAAA and/or UUUU substitutions. Further characterization of the first ACCA element indicated that duplication of ACCA at nt 10-13 (nt 10-17, ACCAACCA) caused severe symptom development as compared to that of wild type, while deletion of the single element (nt 10-13), DeltaACCA) or tripling of this element caused reduced symptom development. Single- and double-nucleotide substitutions introduced into the first ACCA element revealed the importance of CC located at nt positions 11 and 12. Altogether, these results indicate that the first ACCA element is important for PVX replication.

  20. Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement.

    PubMed

    Xie, Xian-Ju; Xing, Dan; Wang, Lin; Zhou, Han; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin Hk

    2017-03-01

    White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP-rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P>0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P>0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times>3 min 2 times>1 min 2 times>6 min 1 time>3 min 1 time>1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.

  1. 2-dimensional models of rapidly rotating stars I. Uniformly rotating zero age main sequence stars

    NASA Astrophysics Data System (ADS)

    Roxburgh, I. W.

    2004-12-01

    We present results for 2-dimensional models of rapidly rotating main sequence stars for the case where the angular velocity Ω is constant throughout the star. The algorithm used solves for the structure on equipotential surfaces and iteratively updates the total potential, solving Poisson's equation by Legendre polynomial decomposition; the algorithm can readily be extended to include rotation constant on cylinders. We show that this only requires a small number of Legendre polynomials to accurately represent the solution. We present results for models of homogeneous zero age main sequence stars of mass 1, 2, 5, 10 M⊙ with a range of angular velocities up to break up. The models have a composition X=0.70, Z=0.02 and were computed using the OPAL equation of state and OPAL/Alexander opacities, and a mixing length model of convection modified to include the effect of rotation. The models all show a decrease in luminosity L and polar radius Rp with increasing angular velocity, the magnitude of the decrease varying with mass but of the order of a few percent for rapid rotation, and an increase in equatorial radius Re. Due to the contribution of the gravitational multipole moments the parameter Ω2 Re3/GM can exceed unity in very rapidly rotating stars and Re/Rp can exceed 1.5.

  2. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    PubMed

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P < 0.05 uncorrected). This study found that, at 1 month after LT, spontaneous brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  3. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae

    PubMed Central

    Koch, Melissa R.; House, Nealia C. M.; Cosetta, Casey M.; Jong, Robyn M.; Salomon, Christelle G.; Joyce, Cailin E.; Philips, Elliot A.; Su, Xiaofeng A.; Freudenreich, Catherine H.

    2018-01-01

    CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair. PMID:29305386

  4. ΔN-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites

    PubMed Central

    Foggetti, Giorgia; Raimondi, Ivan; Campomenosi, Paola; Menichini, Paola

    2014-01-01

    TP63 is a member of the TP53 gene family that encodes for up to ten different TA and ΔN isoforms through alternative promoter usage and alternative splicing. Besides being a master regulator of gene expression for squamous epithelial proliferation, differentiation and maintenance, P63, through differential expression of its isoforms, plays important roles in tumorigenesis. All P63 isoforms share an immunoglobulin-like folded DNA binding domain responsible for binding to sequence-specific response elements (REs), whose overall consensus sequence is similar to that of the canonical p53 RE. Using a defined assay in yeast, where P63 isoforms and RE sequences are the only variables, and gene expression assays in human cell lines, we demonstrated that human TA- and ΔN-P63α proteins exhibited differences in transactivation specificity not observed with the corresponding P73 or P53 protein isoforms. These differences 1) were dependent on specific features of the RE sequence, 2) could be related to intrinsic differences in their oligomeric state and cooperative DNA binding, and 3) appeared to be conserved in evolution. Since genotoxic stress can change relative ratio of TA- and ΔN-P63α protein levels, the different transactivation specificity of each P63 isoform could potentially influence cellular responses to specific stresses. PMID:24926492

  5. Inhibitory effects of purified antibody against α-1 repeat (117-137) on Na(+)-Ca(2+) exchange and L-type Ca(2+) currents in rat cardiomyocytes.

    PubMed

    Feng, Qi-Long; Wu, Dong-Mei; Cui, Xiang-Li; Zhao, Hua-Chen; Lin, Yuan-Yuan; Zhao, Lu-Ying; Wu, Bo-Wei

    2010-10-25

    Considering that α-1 repeat region may be involved in the ion binding and translocation of Na(+)-Ca(2+) exchanger (NCX), it is possible that the antibodies against NCX α-1 repeat may have a crucial action on NCX activity. The aim of the present study is to investigate the effect of antibody against α-1 repeat (117-137), designated as α-1(117-137), on NCX activity. The antibody against the synthesized α-1(117-137) was prepared and affinity-purified. Whole-cell patch clamp technique was used to study the change of Na(+)-Ca(2+) exchange current (I(Na/Ca)) in adult rat cardiomyocytes. To evaluate the functional specificity of this antibody, its effects on L-type Ca(2+) current (I(Ca,L)), voltage-gated Na(+) current (I(Na)) and delayed rectifier K(+) current (I(K)) were also observed. The amino acid sequences of α-1(117-137) in NCX and residues 1 076-1 096 within L-type Ca(2+) channel were compared using EMBOSS Pairwise Alignment Algorithms. The results showed that outward and inward I(Na/Ca) were decreased by the antibody against α-1(117-137) dose-dependently in the concentration range from 10 to 160 nmol/L, with IC(50) values of 18.9 nmol/L and 22.4 nmol/L, respectively. Meanwhile, the antibody also decreased I(Ca,L) in a concentration-dependent manner with IC(50) of 22.7 nmol/L. No obvious effects of the antibody on I(Na) and I(K) were observed. Moreover, comparison of the amino acid sequences showed there was 23.8% sequence similarity between NCX α-1(117-137) and residues 1 076-1 096 within L-type Ca(2+) channel. These results suggest that antibody against α-1(117-137) is a blocking antibody to NCX and can also decrease I(Ca,L) in a concentration-dependent manner, while it does not have obvious effects on I(Na) and I(K).

  6. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    PubMed

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  7. Combined Inter- and Intrafractional Plan Adaptation Using Fraction Partitioning in Magnetic Resonance-guided Radiotherapy Delivery.

    PubMed

    Lagerwaard, Frank; Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna

    2018-04-05

    Magnetic resonance-guided radiation therapy (MRgRT) not only allows for superior soft-tissue setup and online MR-guidance during delivery but also for inter-fractional plan re-optimization or adaptation. This plan adaptation involves repeat MR imaging, organs at risk (OARs) re-contouring, plan prediction (i.e., recalculating the baseline plan on the anatomy of that moment), plan re-optimization, and plan quality assurance. In contrast, intrafractional plan adaptation cannot be simply performed by pausing delivery at any given moment, adjusting contours, and re-optimization because of the complex and composite nature of deformable dose accumulation. To overcome this limitation, we applied a practical workaround by partitioning treatment fractions, each with half the original fraction dose. In between successive deliveries, the patient remained in the treatment position and all steps of the initial plan adaptation were repeated. Thus, this second re-optimization served as an intrafractional plan adaptation at 50% of the total delivery. The practical feasibility of this partitioning approach was evaluated in a patient treated with MRgRT for locally advanced pancreatic cancer (LAPC). MRgRT was delivered in 40Gy in 10 fractions, with two fractions scheduled successively on each treatment day. The contoured gross tumor volume (GTV) was expanded by 3 mm, excluding parts of the OARs within this expansion to derive the planning target volume for daily re-optimization (PTV OPT ). The baseline GTVV 95%  achieved in this patient was 80.0% to adhere to the high-dose constraints for the duodenum, stomach, and bowel (V 33 Gy <1 cc and V 36 Gy <0.1 cc). Treatment was performed on the MRIdian (ViewRay Inc, Mountain View, USA) using video-assisted breath-hold in shallow inspiration. The dual plan adaptation resulted, for each partitioned fraction, in the generation of Plan PREDICTED1 , Plan RE-OPTIMIZED1  (inter-fractional adaptation), Plan PREDICTED2 , and Plan RE-OPTIMIZED2  (intrafractional adaptation). An offline analysis was performed to evaluate the benefit of inter-fractional versus intrafractional plan adaptation with respect to GTV coverage and high-dose OARs sparing for all five partitioned fractions. Interfractional changes in adjacent OARs were substantially larger than intrafractional changes. Mean GTV V 95% was 76.8 ± 1.8% (Plan PREDICTED1 ), 83.4 ± 5.7% (Plan RE-OPTIMIZED1 ), 82.5 ± 4.3% (Plan PREDICTED2 ),and 84.4 ± 4.4% (Plan RE-OPTIMIZED2 ). Both plan re-optimizations appeared important for correcting the inappropriately high duodenal V 33 Gy values of 3.6 cc (Plan PREDICTED1 ) and 3.9 cc (Plan PREDICTED2 ) to 0.2 cc for both re-optimizations. To a smaller extent, this improvement was also observed for V 25 Gy values. For the stomach, bowel, and all other OARs, high and intermediate doses were well below preset constraints, even without re-optimization. The mean delivery time of each daily treatment was 90 minutes. This study presents the clinical application of combined inter-fractional and intrafractional plan adaptation during MRgRT for LAPC using fraction partitioning with successive re-optimization. Whereas, in this study, interfractional plan adaptation appeared to benefit both GTV coverage and OARs sparing, intrafractional adaptation was particularly useful for high-dose OARs sparing. Although all necessary steps lead to a prolonged treatment duration, this may be applied in selected cases where high doses to adjacent OARs are regarded as critical.

  8. Combined Inter- and Intrafractional Plan Adaptation Using Fraction Partitioning in Magnetic Resonance-guided Radiotherapy Delivery

    PubMed Central

    Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna

    2018-01-01

    Magnetic resonance-guided radiation therapy (MRgRT) not only allows for superior soft-tissue setup and online MR-guidance during delivery but also for inter-fractional plan re-optimization or adaptation. This plan adaptation involves repeat MR imaging, organs at risk (OARs) re-contouring, plan prediction (i.e., recalculating the baseline plan on the anatomy of that moment), plan re-optimization, and plan quality assurance. In contrast, intrafractional plan adaptation cannot be simply performed by pausing delivery at any given moment, adjusting contours, and re-optimization because of the complex and composite nature of deformable dose accumulation. To overcome this limitation, we applied a practical workaround by partitioning treatment fractions, each with half the original fraction dose. In between successive deliveries, the patient remained in the treatment position and all steps of the initial plan adaptation were repeated. Thus, this second re-optimization served as an intrafractional plan adaptation at 50% of the total delivery. The practical feasibility of this partitioning approach was evaluated in a patient treated with MRgRT for locally advanced pancreatic cancer (LAPC). MRgRT was delivered in 40Gy in 10 fractions, with two fractions scheduled successively on each treatment day. The contoured gross tumor volume (GTV) was expanded by 3 mm, excluding parts of the OARs within this expansion to derive the planning target volume for daily re-optimization (PTVOPT). The baseline GTVV95% achieved in this patient was 80.0% to adhere to the high-dose constraints for the duodenum, stomach, and bowel (V33 Gy <1 cc and V36 Gy <0.1 cc). Treatment was performed on the MRIdian (ViewRay Inc, Mountain View, USA) using video-assisted breath-hold in shallow inspiration. The dual plan adaptation resulted, for each partitioned fraction, in the generation of PlanPREDICTED1, PlanRE-OPTIMIZED1 (inter-fractional adaptation), PlanPREDICTED2, and PlanRE-OPTIMIZED2 (intrafractional adaptation). An offline analysis was performed to evaluate the benefit of inter-fractional versus intrafractional plan adaptation with respect to GTV coverage and high-dose OARs sparing for all five partitioned fractions. Interfractional changes in adjacent OARs were substantially larger than intrafractional changes. Mean GTV V95% was 76.8 ± 1.8% (PlanPREDICTED1), 83.4 ± 5.7% (PlanRE-OPTIMIZED1), 82.5 ± 4.3% (PlanPREDICTED2),and 84.4 ± 4.4% (PlanRE-OPTIMIZED2). Both plan re-optimizations appeared important for correcting the inappropriately high duodenal V33 Gy values of 3.6 cc (PlanPREDICTED1) and 3.9 cc (PlanPREDICTED2) to 0.2 cc for both re-optimizations. To a smaller extent, this improvement was also observed for V25 Gy values. For the stomach, bowel, and all other OARs, high and intermediate doses were well below preset constraints, even without re-optimization. The mean delivery time of each daily treatment was 90 minutes. This study presents the clinical application of combined inter-fractional and intrafractional plan adaptation during MRgRT for LAPC using fraction partitioning with successive re-optimization. Whereas, in this study, interfractional plan adaptation appeared to benefit both GTV coverage and OARs sparing, intrafractional adaptation was particularly useful for high-dose OARs sparing. Although all necessary steps lead to a prolonged treatment duration, this may be applied in selected cases where high doses to adjacent OARs are regarded as critical. PMID:29876156

  9. Short Interspersed Nuclear Element (SINE) Sequences in the Genome of the Human Pathogenic Fungus Aspergillus fumigatus Af293

    PubMed Central

    Kanhayuwa, Lakkhana; Coutts, Robert H. A.

    2016-01-01

    Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4–14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140–493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3’-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50–65% and 60–75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259–343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity. PMID:27736869

  10. Short Interspersed Nuclear Element (SINE) Sequences in the Genome of the Human Pathogenic Fungus Aspergillus fumigatus Af293.

    PubMed

    Kanhayuwa, Lakkhana; Coutts, Robert H A

    2016-01-01

    Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4-14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140-493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3'-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50-65% and 60-75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259-343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity.

  11. Correlation between fibroin amino acid sequence and physical silk properties.

    PubMed

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet.

  12. Three-Year High School Science Core Curriculum: A Framework.

    ERIC Educational Resources Information Center

    Bardeen, Marjorie; Freeman, Wade; Lederman, Leon; Marshall, Stephanie; Thompson, Bruce; Young, M. Jean

    It is time to start a complete re-structuring of the high school science sequence: new content, new instructional materials, new laboratories, new assessment tools, and new teacher preparation. This white paper initiates re-structuring by proposing organization, pedagogy, and content for a new sequence of science courses. The proposal respects the…

  13. CRF: detection of CRISPR arrays using random forest.

    PubMed

    Wang, Kai; Liang, Chun

    2017-01-01

    CRISPRs (clustered regularly interspaced short palindromic repeats) are particular repeat sequences found in wide range of bacteria and archaea genomes. Several tools are available for detecting CRISPR arrays in the genomes of both domains. Here we developed a new web-based CRISPR detection tool named CRF (CRISPR Finder by Random Forest). Different from other CRISPR detection tools, a random forest classifier was used in CRF to filter out invalid CRISPR arrays from all putative candidates and accordingly enhanced detection accuracy. In CRF, particularly, triplet elements that combine both sequence content and structure information were extracted from CRISPR repeats for classifier training. The classifier achieved high accuracy and sensitivity. Moreover, CRF offers a highly interactive web interface for robust data visualization that is not available among other CRISPR detection tools. After detection, the query sequence, CRISPR array architecture, and the sequences and secondary structures of CRISPR repeats and spacers can be visualized for visual examination and validation. CRF is freely available at http://bioinfolab.miamioh.edu/crf/home.php.

  14. Expanded complexity of unstable repeat diseases

    PubMed Central

    Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek

    2015-01-01

    Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field. PMID:23233240

  15. Timing of repetition suppression of event-related potentials to unattended objects.

    PubMed

    Stefanics, Gabor; Heinzle, Jakob; Czigler, István; Valentini, Elia; Stephan, Klaas Enno

    2018-05-26

    Current theories of object perception emphasize the automatic nature of perceptual inference. Repetition suppression (RS), the successive decrease of brain responses to repeated stimuli, is thought to reflect the optimization of perceptual inference through neural plasticity. While functional imaging studies revealed brain regions that show suppressed responses to the repeated presentation of an object, little is known about the intra-trial time course of repetition effects to everyday objects. Here we used event-related potentials (ERP) to task-irrelevant line-drawn objects, while participants engaged in a distractor task. We quantified changes in ERPs over repetitions using three general linear models (GLM) that modelled RS by an exponential, linear, or categorical "change detection" function in each subject. Our aim was to select the model with highest evidence and determine the within-trial time-course and scalp distribution of repetition effects using that model. Model comparison revealed the superiority of the exponential model indicating that repetition effects are observable for trials beyond the first repetition. Model parameter estimates revealed a sequence of RS effects in three time windows (86-140ms, 322-360ms, and 400-446ms) and with occipital, temporo-parietal, and fronto-temporal distribution, respectively. An interval of repetition enhancement (RE) was also observed (320-340ms) over occipito-temporal sensors. Our results show that automatic processing of task-irrelevant objects involves multiple intervals of RS with distinct scalp topographies. These sequential intervals of RS and RE might reflect the short-term plasticity required for optimization of perceptual inference and the associated changes in prediction errors (PE) and predictions, respectively, over stimulus repetitions during automatic object processing. This article is protected by copyright. All rights reserved. © 2018 The Authors European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  17. Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    He, Xiaozhou; van Gils, Dennis P. M.; Bodenschatz, Eberhard; Ahlers, Guenter

    2015-06-01

    We report results of Reynolds-number measurements, based on multi-point temperature measurements and the elliptic approximation (EA) of He and Zhang (2006 Phys. Rev. E 73 055303), Zhao and He (2009 Phys. Rev. E 79 046316) for turbulent Rayleigh-Bénard convection (RBC) over the Rayleigh-number range {10}11≲ {\\text{}}{Ra}≲ 2× {10}14 and for a Prandtl number Pr ≃ 0.8. The sample was a right-circular cylinder with the diameter D and the height L both equal to 112 cm. The Reynolds numbers ReU and ReV were obtained from the mean-flow velocity U and the root-mean-square fluctuation velocity V, respectively. Both were measured approximately at the mid-height of the sample and near (but not too near) the side wall close to a maximum of ReU. A detailed examination, based on several experimental tests, of the applicability of the EA to turbulent RBC in our parameter range is provided. The main contribution to ReU came from a large-scale circulation in the form of a single convection roll with the preferred azimuthal orientation of its down flow nearly coinciding with the location of the measurement probes. First we measured time sequences of ReU(t) and ReV(t) from short (10 s) segments which moved along much longer sequences of many hours. The corresponding probability distributions of ReU(t) and ReV(t) had single peaks and thus did not reveal significant flow reversals. The two averaged Reynolds numbers determined from the entire data sequences were of comparable size. For {\\text{}}{Ra}\\lt {\\text{}}{{Ra}}1*≃ 2× {10}13 both ReU and ReV could be described by a power-law dependence on Ra with an exponent ζ close to 0.44. This exponent is consistent with several other measurements for the classical RBC state at smaller Ra and larger Pr and with the Grossmann-Lohse (GL) prediction for ReU (Grossmann and Lohse 2000 J. Fluid. Mech. 407 27; Grossmann and Lohse 2001 86 3316; Grossmann and Lohse 2002 66 016305) but disagrees with the prediction \\zeta ≃ 0.33 by GL (Grossmann and Lohse 2004 Phys. Fluids 16 4462) for ReV. At {\\text{}}{Ra}={\\text{}}{{Ra}}2*≃ 7× {10}13 the dependence of ReV on Ra changed, and for larger Ra {\\text{}}{{Re}}V˜ {\\text{}}{{Ra}}0.50+/- 0.02, consistent with the prediction for ReU (Grossmann and Lohse 2000 J. Fluid. Mech. 407 27; Grossmann and Lohse Phys. Rev. Lett. 2001 86 3316; Grossmann and Lohse Phys. Rev. E 2002 66 016305; Grossmann and Lohse 2012 Phys. Fluids 24 125103) in the ultimate state of RBC.

  18. Draft Genome Sequence of a Dictyoglomus sp. from an Enrichment Culture of a New Zealand Geothermal Spring.

    PubMed

    Reysenbach, Anna-Louise; Donaho, John A; Kelley, John F; St John, Emily; Turner, Christina; Podar, Mircea; Stott, Matthew B

    2018-03-15

    A draft genome of a novel Dictyoglomus sp., NZ13-RE01, was obtained from a New Zealand hot spring enrichment culture. The 1,927,012-bp genome is similar in both size and G+C content to other Dictyoglomus spp. Like its relatives, Dictyoglomus sp. NZ13-RE01 encodes many genes involved in complex carbohydrate metabolism. Copyright © 2018 Reysenbach et al.

  19. Genome Survey Sequencing for the Characterization of the Genetic Background of Rosa roxburghii Tratt and Leaf Ascorbate Metabolism Genes.

    PubMed

    Lu, Min; An, Huaming; Li, Liangliang

    2016-01-01

    Rosa roxburghii Tratt is an important commercial horticultural crop in China that is recognized for its nutritional and medicinal values. In spite of the economic significance, genomic information on this rose species is currently unavailable. In the present research, a genome survey of R. roxburghii was carried out using next-generation sequencing (NGS) technologies. Total 30.29 Gb sequence data was obtained by HiSeq 2500 sequencing and an estimated genome size of R. roxburghii was 480.97 Mb, in which the guanine plus cytosine (GC) content was calculated to be 38.63%. All of these reads were technically assembled and a total of 627,554 contigs with a N50 length of 1.484 kb and furthermore 335,902 scaffolds with a total length of 409.36 Mb were obtained. Transposable elements (TE) sequence of 90.84 Mb which comprised 29.20% of the genome, and 167,859 simple sequence repeats (SSRs) were identified from the scaffolds. Among these, the mono-(66.30%), di-(25.67%), and tri-(6.64%) nucleotide repeats contributed to nearly 99% of the SSRs, and sequence motifs AG/CT (28.81%) and GAA/TTC (14.76%) were the most abundant among the dinucleotide and trinucleotide repeat motifs, respectively. Genome analysis predicted a total of 22,721 genes which have an average length of 2311.52 bp, an average exon length of 228.15 bp, and average intron length of 401.18 bp. Eleven genes putatively involved in ascorbate metabolism were identified and its expression in R. roxburghii leaves was validated by quantitative real-time PCR (qRT-PCR). This is the first report of genome-wide characterization of this rose species.

  20. Characterization of species-specific repeated DNA sequences from B. nigra.

    PubMed

    Gupta, V; Lakshmisita, G; Shaila, M S; Jagannathan, V; Lakshmikumaran, M S

    1992-07-01

    The construction and characterization of two genome-specific recombinant DNA clones from B. nigra are described. Southern analysis showed that the two clones belong to a dispersed repeat family. They differ from each other in their length, distribution and sequence, though the average GC content is nearly the same (45%). These B genome-specific repeats have been used to analyse the phylogenetic relationships between cultivated and wild species of the family Brassicaceae.

  1. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana

    PubMed Central

    Knoll, Alexander; Puchta, Holger

    2016-01-01

    The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR), we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold). Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline. PMID:27760121

  2. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana.

    PubMed

    Röhrig, Sarah; Schröpfer, Susan; Knoll, Alexander; Puchta, Holger

    2016-10-01

    The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR), we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold). Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline.

  3. Evidence that a sequence similar to TAR is important for induction of the JC virus late promoter by human immunodeficiency virus type 1 Tat.

    PubMed Central

    Chowdhury, M; Taylor, J P; Chang, C F; Rappaport, J; Khalili, K

    1992-01-01

    A specific RNA sequence located in the leader of all human immunodeficiency virus type 1 (HIV-1) mRNAs termed the transactivation response element, or TAR, is a primary target for induction of HIV-1 long terminal repeat activity by the HIV-1-derived trans-regulatory protein, Tat. Human neurotropic virus, JC virus (JCV), a causative agent of the degenerative demyelinating disease progressive multifocal leukoencephalopathy, contains sequences in the 5' end of the late RNA species with an extensive homology to HIV-1 TAR. In this study, we examined the possible role of the JCV-derived TAR-homologous sequence in Tat-mediated activation of the JCV late promoter (Tada et al., Proc. Natl. Acad. Sci. USA 87:3479-3483, 1990). Results from site-directed mutagenesis revealed that critical G residues required for the function of HIV-1 TAR that are conserved in the JCV TAR homolog play an important role in Tat activation of the JCV promoter. In addition, in vivo competition studies suggest that shared regulatory components mediate Tat activation of the JCV late and HIV-1 long terminal repeat promoters. Furthermore, we showed that the JCV-derived TAR sequence behaves in the same way as HIV-1 TAR in response to two distinct Tat mutants, one of which that has no ability to bind to HIV-1 TAR and another that lacks transcriptional activity on a responsive promoter. These results suggest that the TAR homolog of the JCV late promoter is responsive to HIV-1 Tat induction and thus may participate in the overall activation of the JCV late promoter mediated by this transactivation. Images PMID:1331525

  4. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  5. The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum).

    PubMed

    Zeng, Fan-chun; Gao, Cheng-wen; Gao, Li-zhi

    2016-01-01

    The complete chloroplast genome sequence of American bird pepper (Capsicum annuum var. glabriusculum) is reported and characterized in this study. The genome size is 156,612 bp, containing a pair of inverted repeats (IRs) of 25,776 bp separated by a large single-copy region of 87,213 bp and a small single-copy region of 17,851 bp. The chloroplast genome harbors 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of 18 of these genes are duplicated in the inverted repeat regions, 16 genes contain 1 intron, and 2 genes and one ycf have 2 introns.

  6. Genome Sequence of a Bombyx mori Nucleopolyhedrovirus Strain with Cubic Occlusion Bodies

    PubMed Central

    Cheng, Ruo-Lin; Xu, Yi-Peng

    2012-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical species of Baculoviridae. The complete genome sequence of a BmNPV strain with cubic occlusion bodies is reported here. The genome of this strain consists of 127,465 nucleotides with a G+C content of 40.36% and is 97.3% and 97.5% identical to those of BmNPV strain T3 and Bombyx mandarina NPV S1, respectively. Despite the abnormal polyhedra it forms, the polyhedrin gene of the BmNPV cubic strain is 100% identical to those of the other two strains. Baculovirus repeated ORFs and homologous repeat regions cause the major differences in genome size of these BmNPV isolates. PMID:22923803

  7. [Convergent origin of repeats in genes coding for globular proteins. An analysis of the factors determining the presence of inverted and symmetrical repeats].

    PubMed

    Solov'ev, V V; Kel', A E; Kolchanov, N A

    1989-01-01

    The factors, determining the presence of inverted and symmetrical repeats in genes coding for globular proteins, have been analysed. An interesting property of genetical code has been revealed in the analysis of symmetrical repeats: the pairs of symmetrical codons corresponded to pairs of amino acids with mostly similar physical-chemical parameters. This property may explain the presence of symmetrical repeats and palindromes only in genes coding for beta-structural proteins-polypeptides, where amino acids with similar physical-chemical properties occupy symmetrical positions. A stochastic model of evolution of polynucleotide sequences has been used for analysis of inverted repeats. The modelling demonstrated that only limiting of sequences (uneven frequencies of used codons) is enough for arising of nonrandom inverted repeats in genes.

  8. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-01-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. PMID:24792163

  9. Isolation and characterization of two overlapping cosmid clones from the 4q35 region, near the facioscapulohumeral muscular dystrophy locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deidda, G.; Grisanti, P.; Vigneti, E.

    1994-09-01

    The gene for facioscapulohumeral muscular dystrophy (FSHD) has been localized by linkage analysis to the 4q35 region. The most telomeric p13E-11 prove has been shown to detect 4q35 DNA rearrangements in both sporadic and familial cases of the disease. With the aim of constructing a detailed physical map of the 4q35 region and searching for the mutant gene, we used p13E-11 probe to isolate cosmid clones from a human genomic library in a pCos-EMBL 2 vector. Two positive clones were isolated, clones 3 and 5, which partially overlap and carry human genomic inserts of 42 and 45 kb, respectively. Themore » cosmids share a common region containing the p13E-11 region and a stretch of KpnI units consisting of 3.2 kb tandemly repeated sequences (about 10). The restriction maps were constructed using the following enzymes: Bam HI, BgIII, Eco RI, EcoRV, KpnI and Sfi I. Clone 3 extends 4 kb upstream of C5 and stops within the Kpn repeats. Clone 5 extends 4 kb downstream from the Kpn repeats and it presents an additional EcoRI site. Clone 5 contains a stretch of Kpn sequences of nearly 32 kb, corresponding to 10 Kpn repeats; clone 3 contains a stretch of 29 kb corresponding to 9 Kpn repeats, as determined by PFGE analysis of partial digestion of the clones. Clone 5 seems to contain the entire Eco RI region prone to rearrangements in FSHD patients. From clone 5 several subclones were obtained, from the Kpn region and from the region spanning from the last Kpn repeat to the cloning site. No single copy sequences were detected. Subclones from the 3{prime} end region contain beta-satellite or Sau3A-like sequences. In situ hybridization with the whole C5 cosmid shows hybridization signals at the tip of chromosome 4 (4q35) and chromosome 10 (10q26), in the pericentromeric region of chromosome 1 (1q12) and in the p12 region of the acrocentric chromosomes (chr. 21, 22, 13, 14, 15).« less

  10. ACMES: fast multiple-genome searches for short repeat sequences with concurrent cross-species information retrieval

    PubMed Central

    Reneker, Jeff; Shyu, Chi-Ren; Zeng, Peiyu; Polacco, Joseph C.; Gassmann, Walter

    2004-01-01

    We have developed a web server for the life sciences community to use to search for short repeats of DNA sequence of length between 3 and 10 000 bases within multiple species. This search employs a unique and fast hash function approach. Our system also applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. Furthermore, we have incorporated a part of the Gene Ontology database into our information retrieval algorithms to broaden the coverage of the search. Our web server and tutorial can be found at http://acmes.rnet.missouri.edu. PMID:15215469

  11. Motormouth: mere exposure depends on stimulus-specific motor simulations.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2009-03-01

    The authors apply an embodied account to mere exposure, arguing that through the repeated exposure of a particular stimulus, motor responses specifically associated to that stimulus are repeatedly simulated, thus trained, and become increasingly fluent. This increased fluency drives preferences for repeated stimuli. This hypothesis was tested by blocking stimulus-specific motor simulations during repeated exposure. In Experiment 1, chewing gum while evaluating stimuli destroyed mere exposure effects (MEEs) for words but not for visual characters. However, concurrently kneading a ball left both MEEs unaffected. In Experiment 2, concurrently whispering an unrelated word destroyed MEEs for words but not for characters, even when implemented either exclusively during the initial presentation or during the test phase and when the first presentation involved an evaluation or a mere study of the stimuli. In Experiment 3, a double dissociation between 2 classes of stimuli was demonstrated, namely, words (oral) and tunes (vocal). A concurrent oral task (tongue movements) destroyed MEEs for words but not for tone sequences. A concurrent vocal task (humming "mm-hm") destroyed MEEs for tone sequences but not for words. (c) 2009 APA, all rights reserved

  12. SSR allelic variation in almond (Prunus dulcis Mill.).

    PubMed

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  13. Structural Basis of Egg Coat-Sperm Recognition at Fertilization.

    PubMed

    Raj, Isha; Sadat Al Hosseini, Hamed; Dioguardi, Elisa; Nishimura, Kaoru; Han, Ling; Villa, Alessandra; de Sanctis, Daniele; Jovine, Luca

    2017-06-15

    Recognition between sperm and the egg surface marks the beginning of life in all sexually reproducing organisms. This fundamental biological event depends on the species-specific interaction between rapidly evolving counterpart molecules on the gametes. We report biochemical, crystallographic, and mutational studies of domain repeats 1-3 of invertebrate egg coat protein VERL and their interaction with cognate sperm protein lysin. VERL repeats fold like the functionally essential N-terminal repeat of mammalian sperm receptor ZP2, whose structure is also described here. Whereas sequence-divergent repeat 1 does not bind lysin, repeat 3 binds it non-species specifically via a high-affinity, largely hydrophobic interface. Due to its intermediate binding affinity, repeat 2 selectively interacts with lysin from the same species. Exposure of a highly positively charged surface of VERL-bound lysin suggests that complex formation both disrupts the organization of egg coat filaments and triggers their electrostatic repulsion, thereby opening a hole for sperm penetration and fusion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Human T-lymphotropic virus type 1 (HTLV-1) genetic typing in Kakeroma Island, an island at the crossroads of the ryukyuans and Wajin in Japan, providing further insights into the origin of the virus in Japan.

    PubMed

    Eguchi, Katsuyuki; Fujii, Hidefumi; Oshima, Kengo; Otani, Masashi; Matsuo, Toshiaki; Yamamoto, Taro

    2009-08-01

    Peripheral blood samples were collected from 23 human T-lymphotropic virus type-1 (HTLV-1) carriers residing in Kakeroma Island, Japan (Kagoshima Prefecture, Oshima County, Setouchi Town), one of the most highly endemic areas in Japan. The samples were subjected to amplification by PCR and sequencing of the Long Terminal Repeat in order to reconstruct a phylogenetic tree of HTLV-1 isolates. Restriction Fragment Length Polymorphism (RFLP) analysis of env region was also conducted for subgrouping of HTLV-1. Although one sample could not be amplified by PCR, and three more could not be sequenced due to the existence of conspicuous nonspecific bands or repeated sequences, the phylogenetic analysis revealed that the remaining 19 isolates obtained from Kakeroma Island belonged to either the Transcontinental or the Japanese subgroups of the Cosmopolitan subtype, one of the three major subtypes. The RFLP data corresponded closely with the typing data throughout the sequencing. The proportion of the Transcontinental subgroup among the isolates was 26.3% (5 of 19) by sequence analysis and 27.3% (6 of 22) by RFLP. Unlike in Taiwan, China and Okinawa, the Japanese subgroup was dominant in Kakeroma Island. The analysis would also suggest that the Japanese subgroup seems not to have derived from the Transcontinental subgroup, but rather that the Transcontinental subgroup came to Japan first and was followed later by the Japanese one. 2009 Wiley-Liss, Inc.

  15. The 28S–18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor

    PubMed Central

    Schnare, Murray N.; Collings, James C.; Spencer, David F.; Gray, Michael W.

    2000-01-01

    In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from ∼11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an ∼55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A′ pre-rRNA processing sites within the 5′ external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5′ ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C.fasciculata and Trypanosoma brucei involves 3′-terminal addition of three A residues that are not present in the corresponding DNA sequences. PMID:10982863

  16. Human Coronavirus NL63 Molecular Epidemiology and Evolutionary Patterns in Rural Coastal Kenya.

    PubMed

    Kiyuka, Patience K; Agoti, Charles N; Munywoki, Patrick K; Njeru, Regina; Bett, Anne; Otieno, James R; Otieno, Grieven P; Kamau, Everlyn; Clark, Taane G; van der Hoek, Lia; Kellam, Paul; Nokes, D James; Cotten, Matthew

    2018-05-05

    Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response.

  17. Cis-acting regulatory sequences promote high-frequency gene conversion between repeated sequences in mammalian cells.

    PubMed

    Raynard, Steven J; Baker, Mark D

    2004-01-01

    In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.

  18. Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei

    PubMed Central

    2012-01-01

    Background At the core of the RNA interference (RNAi) pathway in Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in controlling retroposon and repeat transcripts. Recent evidence from higher eukaryotes suggests that a variety of genomic sequences with the potential to produce double-stranded RNA are sources for small interfering RNAs (siRNAs). Results To test whether such endogenous siRNAs are present in T. brucei and to probe the individual role of the two Dicer-like enzymes, we affinity purified TbAGO1 from wild-type procyclic trypanosomes, as well as from cells deficient in the cytoplasmic (TbDCL1) or nuclear (TbDCL2) Dicer, and subjected the bound RNAs to Illumina high-throughput sequencing. In wild-type cells the majority of reads originated from two classes of retroposons. We also considerably expanded the repertoire of trypanosome siRNAs to encompass a family of 147-bp satellite-like repeats, many of the regions where RNA polymerase II transcription converges, large inverted repeats and two pseudogenes. Production of these newly described siRNAs is strictly dependent on the nuclear DCL2. Notably, our data indicate that putative centromeric regions, excluding the CIR147 repeats, are not a significant source for endogenous siRNAs. Conclusions Our data suggest that endogenous RNAi targets may be as evolutionarily old as the mechanism itself. PMID:22925482

  19. First observation of rotational structures in Re 168

    DOE PAGES

    Hartley, D. J.; Janssens, R. V. F.; Riedinger, L. L.; ...

    2016-11-30

    We assigned first rotational sequences to the odd-odd nucleus 168Re. Coincidence relationships of these structures with rhenium x rays confirm the isotopic assignment, while arguments based on the γ-ray multiplicity (K-fold) distributions observed with the new bands lead to the mass assignment. Configurations for the two bands were determined through analysis of the rotational alignments of the structures and a comparison of the experimental B(M1)/B(E2) ratios with theory. Tentative spin assignments are proposed for the πh 11/2νi 13/2 band, based on energy level systematics for other known sequences in neighboring odd-odd rhenium nuclei, as well as on systematics seen formore » the signature inversion feature that is well known in this region. Furthermore, the spin assignment for the πh 11/2ν(h 9/2/f 7/2) structure provides additional validation of the proposed spins and configurations for isomers in the 176Au → 172Ir → 168Re α-decay chain.« less

  20. Addressing Beacon re-identification attacks: quantification and mitigation of privacy risks.

    PubMed

    Raisaro, Jean Louis; Tramèr, Florian; Ji, Zhanglong; Bu, Diyue; Zhao, Yongan; Carey, Knox; Lloyd, David; Sofia, Heidi; Baker, Dixie; Flicek, Paul; Shringarpure, Suyash; Bustamante, Carlos; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila; Tang, Haixu; Wang, XiaoFeng; Hubaux, Jean-Pierre

    2017-07-01

    The Global Alliance for Genomics and Health (GA4GH) created the Beacon Project as a means of testing the willingness of data holders to share genetic data in the simplest technical context-a query for the presence of a specified nucleotide at a given position within a chromosome. Each participating site (or "beacon") is responsible for assuring that genomic data are exposed through the Beacon service only with the permission of the individual to whom the data pertains and in accordance with the GA4GH policy and standards.While recognizing the inference risks associated with large-scale data aggregation, and the fact that some beacons contain sensitive phenotypic associations that increase privacy risk, the GA4GH adjudged the risk of re-identification based on the binary yes/no allele-presence query responses as acceptable. However, recent work demonstrated that, given a beacon with specific characteristics (including relatively small sample size and an adversary who possesses an individual's whole genome sequence), the individual's membership in a beacon can be inferred through repeated queries for variants present in the individual's genome.In this paper, we propose three practical strategies for reducing re-identification risks in beacons. The first two strategies manipulate the beacon such that the presence of rare alleles is obscured; the third strategy budgets the number of accesses per user for each individual genome. Using a beacon containing data from the 1000 Genomes Project, we demonstrate that the proposed strategies can effectively reduce re-identification risk in beacon-like datasets. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

Top