Sample records for repeatable magnetization reversal

  1. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  2. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE PAGES

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon; ...

    2017-11-03

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  3. METHOD FOR EXCHANGING ENERGY WITH A PLASMA BY MAGNETIC PUMPING

    DOEpatents

    Hall, L.S.

    1963-12-31

    A method of heating a plasma confined by a static magnetic field is presented. A time-varying magnetic field having a rise time to a predetermined value substantially less than its fall time is applied to a portion of the plasma. Because of the much shorter rise time, the plasma is reversibly heated. This cycle is repeated until the desired plasma temperature is reached. (AEC)

  4. Magnetoresistance measurement of permalloy thin film rings with triangular fins

    NASA Astrophysics Data System (ADS)

    Lai, Mei-Feng; Hsu, Chia-Jung; Liao, Chun-Neng; Chen, Ying-Jiun; Wei, Zung-Hang

    2010-01-01

    Magnetization reversals in permalloy rings controlled by nucleation sites using triangular fins at the same side and diagonal with respect to the field direction are demonstrated by magnetoresistance measurement and micromagnetic simulation. In the ring with triangular fins at the same side, there exists two-step reversal from onion to flux-closure state (or vortex state) and then from flux-closure (or vortex state) to reverse onion state; in the ring with diagonal triangular fins, one-step reversal occurs directly from onion to reverse onion state. The reversal processes are repeatable and controllable in contrast to an ideal ring without triangular fins where one-step and two-step reversals occur randomly in sweep-up and sweep-down processes.

  5. Repeated action of a constant magnetic field on the blood coagulation system in artificially produced anemia

    NASA Technical Reports Server (NTRS)

    Zabrodina, L. V.

    1974-01-01

    Changes are discussed in the coagulatory system of the blood in rabbits under the influence of a constant magnetic field of an intensity of 2500 oersteds against the background of artificially induced anemia. Reversibility of the changes produced and the presence of the adaptational effect are noted. Taking all this into consideration, the changes involving the coagulatory system of the blood which arise under the influence of a constant magnetic field may be considered to have a nerve-reflex nature.

  6. The effect of underlayers on the reversal of perpendicularly magnetized multilayer thin films for magnetic micro- and nanoparticles

    NASA Astrophysics Data System (ADS)

    Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.

    2017-01-01

    Perpendicularly magnetized microparticles offer the ability to locally apply high torques on soft matter under an applied magnetic field. These particles are engineered to have a zero remanence magnetic configuration via synthetic antiferromagnetic coupling using a Ru coupling interlayer. The flexibility offered by the top down thin film fabrication process in a CoFeB/Pt perpendicular thin film is demonstrated by using the Pt interlayer thicknesses in a Pt/Ru/Pt antiferromagnetic coupling multilayer to tune the applied magnetic field value of the easy axis spin-flip transition to saturation and hence the field value at which the magnetic particles are magnetically activated via a distinct transition to saturation. The importance of a Ta buffer layer on the magnetic behavior of the stack is shown. While Au capping layers are desirable for biotechnology applications, we demonstrate that they can drastically change the nucleation and propagation of domains in the film, thereby altering the reversal behavior of the thin film. The effect of Au underlayers on a multilayer thin film composed of repeated motifs of a synthetic antiferromagnetic building block is also investigated.

  7. Magnetically adjustable intraocular lens.

    PubMed

    Matthews, Michael Wayne; Eggleston, Harry Conrad; Pekarek, Steven D; Hilmas, Greg Eugene

    2003-11-01

    To provide a noninvasive, magnetic adjustment mechanism to the repeatedly and reversibly adjustable, variable-focus intraocular lens (IOL). University of Missouri-Rolla, Rolla, and Eggleston Adjustable Lens, St. Louis, Missouri, USA. Mechanically adjustable IOLs have been fabricated and tested. Samarium and cobalt rare-earth magnets have been incorporated into the poly(methyl methacrylate) (PMMA) optic of these adjustable lenses. The stability of samarium and cobalt in the PMMA matrix was examined with leaching studies. Operational force testing of the magnetic optics with emphasis on the rotational forces of adjustment was done. Prototype optics incorporating rare-earth magnetic inserts were consistently produced. After 32 days in solution, samarium and cobalt concentration reached a maximum of 5 ppm. Operational force measurements indicate that successful adjustments of this lens can be made using external magnetic fields with rotational torques in excess of 0.6 ounce inch produced. Actual lenses were remotely adjusted using magnetic fields. The magnetically adjustable version of this IOL is a viable and promising means of handling the common issues of postoperative refractive errors without the requirement of additional surgery. The repeatedly adjustable mechanism of this lens also holds promise for the developing eyes of pediatric patients and the changing needs of all patients.

  8. Systematic Design of a Magnetically Levitated Brushless DC Motor for a Reversible Rotary Intra-Aortic Blood Pump.

    PubMed

    Wang, Yaxin; Logan, Thomas G; Smith, P Alex; Hsu, Po-Lin; Cohn, William E; Xu, Liping; McMahon, Richard A

    2017-10-01

    The IntraVAD is a miniature intra-aortic ventricular assist device (VAD) designed to work in series with the compromised left ventricle. A reverse-rotation control (RRc) mode has been developed to increase myocardial perfusion and reduce ventricular volume. The RRc mode includes forward rotation in systole and reverse rotation in diastole, which requires the IntraVAD to periodically reverse its rotational direction in synchrony with the cardiac cycle. This periodic reversal leads to changes in pressure force over the impeller, which makes the entire system less stable. To eliminate the mechanical wear of a contact bearing and provide active control over the axial position of the rotor, a miniature magnetically levitated bearing (i.e., the PM-Coil module) composed of two concentric permanent magnetic (PM) rings and a pair of coils-one on each side-was proposed to provide passive radial and active axial rotor stabilization. In the early design stage, the numerical finite element method (FEM) was used to optimize the geometry of the brushless DC (BLDC) motor and the maglev module, but constructing a new model each time certain design parameters were adjusted required substantial computation time. Because the design criteria for the module had to be modified to account for the magnetic force produced by the motor and for the hemodynamic changes associated with pump operation, a simplified analytic expression was derived for the expected magnetic forces. Suitable bearings could then be designed capable of overcoming these forces without repeating the complicated FEM simulation for the motor. Using this method at the initial design stage can inform the design of the miniature maglev BLDC motor for the proposed pulsatile axial-flow VAD. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Sustained diffusion reversal with in-bore reperfusion in monkey stroke models: Confirmed by prospective magnetic resonance imaging

    PubMed Central

    Yi, Kyung Sik; Choi, Chi-Hoon; Lee, Sang-Rae; Lee, Hong Jun; Lee, Youngjeon; Jeong, Kang-Jin; Hwang, Jinwoo; Chang, Kyu-Tae

    2016-01-01

    Although early diffusion lesion reversal after recanalization treatment of acute ischaemic stroke has been observed in clinical settings, the reversibility of lesions observed by diffusion-weighted imaging remains controversial. Here, we present consistent observations of sustained diffusion lesion reversal after transient middle cerebral artery occlusion in a monkey stroke model. Seven rhesus macaques were subjected to endovascular transient middle cerebral artery occlusion with in-bore reperfusion confirmed by repeated prospective diffusion-weighted imaging. Early diffusion lesion reversal was defined as lesion reversal at 3 h after reperfusion. Sustained diffusion lesion reversal was defined as the difference between the ADC-derived pre-reperfusion maximal ischemic lesion volume (ADCD-P Match) and the lesion on 4-week follow-up FLAIR magnetic resonance imaging. Diffusion lesions were spatiotemporally assessed using a 3-D voxel-based quantitative technique. The ADCD-P Match was 9.7 ± 6.0% (mean ± SD) and the final infarct was 1.2–6.0% of the volume of the ipsilateral hemisphere. Early diffusion lesion reversal and sustained diffusion lesion reversal were observed in all seven animals, and the calculated percentages compared with their ADCD-P Match ranged from 8.3 to 51.9% (mean ± SD, 26.9 ± 15.3%) and 41.7–77.8% (mean ± SD, 65.4 ± 12.2%), respectively. Substantial sustained diffusion lesion reversal and early reversal were observed in all animals in this monkey model of transient focal cerebral ischaemia. PMID:27401804

  10. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velas, K. M.; Milroy, R. D.

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter usedmore » in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.« less

  11. Reversible MRI lesions after seizures.

    PubMed

    Aykut-Bingol, C; Tekin, S; Ince, D; Aktan, S

    1997-06-01

    After generalized or partial seizures, transient lesions may appear on magnetic resonance (MR) images. The mechanisms of MR changes might be a defect in cerebral autoregulation and blood-brain permeability. We report a patient with partial and secondary generalized tonic-clonic seizures. After her first seizure which was generalized tonic-clonic in nature, we detected multiple high signal intensities over the frontal cortical area on proton density images which were enhanced with gadolinium on T1-weighted images. The first and repeated EEGs showed no abnormalities or epileptic discharges. We started carbamezapine (600 mg/d) and excluded systemic diseases like vasculitis, infections, aetiological factors causing cerebrovascular diseases. In the follow-up, she was seizure free under antiepileptic therapy and no other neurological deficit. Repeated MR scans after 24 months from her first seizure revealed no pathologic signal intensities. Although the pathophysiology is unknown, recognition of reversible lesions helps diagnostic and therapeutic approaches to abnormal MR findings after seizures.

  12. [A case of migraine presenting with thunderclap headache associated with posterior reversible encephalopathy syndrome].

    PubMed

    Katoh, Hirotaka; Saito, Yu; Ohwan, Yoshiyuki; Kasai, Hideyo; Fujita, Kazuhisa; Kawamura, Mitsuru

    2014-10-01

    We report a 47-year-old woman who developed a thunderclap headache. Head axial, fluid-attenuated inversion recovery magnetic resonance imaging (FLAIR MRI) revealed high signal lesions in the left occipital and right parietal lobes. Apparent diffusion coefficient mapping showed a vasogenic edema pattern. Upon admission, the patient's blood pressure was normal and the neurological examination was unremarkable. As thunderclap headaches are associated with a repeated rise in blood pressure, we considered cerebral vasoconstriction and administered a calcium channel blocker. Thereafter, her headache with high blood pressure eased significantly and the high signal lesions on FLAIR MRI disappeared. We diagnosed the condition as posterior reversible encephalopathy syndrome (PRES). In addition, head magnetic resonance angiogram showed vasoconstriction of the right anterior cerebral artery, left middle cerebral artery, and bilateral posterior cerebral artery. Calcium channel blocker use was continued and vasoconstriction improved by day 70. In this case, the presenting symptom was thunderclap headache, which is a characteristic feature of reversible cerebral vasoconstriction syndrome (RCVS). Therefore, PRES may be caused by RCVS.

  13. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization.

    PubMed

    Tuttolomondo, Maria Victoria; Villanueva, Maria Emilia; Alvarez, Gisela Solange; Desimone, Martín Federico; Díaz, Luis Eduardo

    2013-10-01

    The synthesis of monodispersed magnetic silica nanoparticles (MSN) is described using a water-in-oil reverse microemulsion system that does not require the use of co-surfactants. Sodium silicate, Tween 20 as a neutral surfactant and 1-butanol as the organic phase were used. There are several advantages of the proposed method including a saturation magnetization value of 10 emu/g for the particles obtained, uniformity of size and that they are easily functionalized to bind urease covalently. Moreover, the intra-day, inter-day and long-term stability results confirm that the procedure was successful and the enzyme-linked MSNs were stable over repeated uses and storage retaining more than 75% activity after 4 months.

  14. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  15. Magnetoactive Acoustic Metamaterials.

    PubMed

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Neurogenesis enhancer RO 25-6981 facilitates repeated spatial learning in adult rats.

    PubMed

    Soloviova, O A; Proshin, A T; Storozheva, Z I; Sherstnev, V V

    2012-09-01

    The effects of Ro 25-6981 (selective NMDA receptor blocker) in a dose stimulating neurogenesis on repeated learning, reversal learning, and memory reconsolidation were studied in adult rats in Morris water maze. Ro 25-6981 facilitated repeated learning 13 days after injection, but did not influence reversal learning. The blocker injected directly before reminder did not disturb repeated learning and reversal learning in Morris water maze. These effects of Ro 25-6981 on the dynamics of repeated learning seemed to be due to its effects on neurogenesis processes in adult brain.

  17. Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section

    NASA Astrophysics Data System (ADS)

    Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther

    2015-06-01

    Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.

  18. Intrinsic subpicosecond magnetization reversal driven by femtosecond laser pulses in GdFeCo amorphous films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shufa; Gao, Ruixin; Cheng, Chuyuan

    2013-12-09

    Ultrafast magnetization dynamics in GdFeCo films triggered by femtosecond laser pulses with and without an external field applied is studied experimentally for different excitation fluence. It is found that subpicosecond magnetization reversal occurs simultaneously in the ultrafast dynamics of both saturation and remnant magnetization states and almost identical within 13 ps, whereas relatively slow magnetization reversal across compensation point appears only in the dynamics of saturation magnetization state. It shows the subpicosecond magnetization reversal is external field independent, and originates from intrinsic magnetic evolution in ferrimagnetic system. The intrinsic subpicosecond reversal is qualitatively explained by linear reversal.

  19. Abrupt global events in the Earth's history: a physics perspective

    NASA Astrophysics Data System (ADS)

    Ryskin, Gregory

    2010-12-01

    The timeline of the Earth's history reveals quasi-periodicity of the geological record over the last 542 Myr, on timescales close, in the order of magnitude, to 1 Myr. What is the origin of this quasi-periodicity? What is the nature of the global events that define the boundaries of the geological time scale? I propose that a single mechanism is responsible for all three types of such events: mass extinctions, geomagnetic polarity reversals, and sea-level fluctuations. The mechanism is fast, and involves a significant energy release. The mechanism is unlikely to have astronomical causes, both because of the energies involved and because it acts quasi-periodically. It must then be sought within the Earth itself. And it must be capable of reversing the Earth's magnetic field. The last requirement makes it incompatible with the consensus model of the origin of the geomagnetic field—the hydromagnetic dynamo operating in the Earth's fluid core. In the second part of the paper, I show that a vast amount of seemingly unconnected geophysical and geological data can be understood in a unified way if the source of the Earth's main magnetic field is a ~200 km thick lithosphere, repeatedly magnetized as a result of methane-driven oceanic eruptions, which produce ocean flow capable of dynamo action. The eruptions are driven by the interplay of buoyancy forces and exsolution of dissolved gas, which accumulates in the oceanic water masses prone to stagnation and anoxia. Polarity reversals, mass extinctions and sequence boundaries are consequences of these eruptions. Unlike the consensus model of geomagnetism, this scenario is consistent with the paleomagnetic data showing that 'directional changes during a reversal can be astonishingly fast, possibly occurring as a nearly instantaneous jump from one inclined dipolar state to another in the opposite hemisphere'.

  20. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Cong, D. Y.; Ma, L.

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (-8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore,more » a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.« less

  1. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  2. Magnetic stray-field studies of a single Cobalt nanoelement as a component of the building blocks of artificial square spin ice

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2016-02-01

    We use Focused Electron Beam Deposition (FEBID) to directly write Cobalt magnetic nanoelements onto a micro-Hall magnetometer, which allows for high-sensitivity measurements of the magnetic stray field emanating from the samples. In a previous study [M. Pohlit et al., J. Appl. Phys. 117 (2015) 17C746] [21] we investigated thermal dynamics of an individual building block (nanocluster) of artificial square spin ice. In this work, we compare the results of this structure with interacting elements to the switching of a single nanoisland. By analyzing the survival function of the repeatedly prepared state in a given temperature range, we find thermally activated switching dynamics. A detailed analysis of the hysteresis loop reveals a metastable microstate preceding the overall magnetization reversal of the single nanoelement, also found in micromagnetic simulations. Such internal degrees of freedom may need to be considered, when analyzing the thermal dynamics of larger spin ice configurations on different lattice types.

  3. Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms.

    PubMed

    Zhang, Xin; Fu, Lingdi; Geng, Yuehua; Zhai, Xiang; Liu, Yanhua

    2014-03-01

    Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo-gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran-scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula-tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula-tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag-netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus, and temporal regions.

  4. Understanding temperature and magnetic-field actuated magnetization polarity reversal in the Prussian blue analogue Cu 0.73 Mn 0.77 [Fe(CN) 6 ]. z H 2 O, using XMCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiri, Debdutta; Choi, Yongseong; Yusuf, S. M.

    2016-02-23

    We have investigated the microscopic origin of temperature and magnetic-field actuated magnetization reversal in Cu0.73Mn0.77[Fe(CN)(6)]center dot zH(2)O, using XMCD. Our results show a fair deviation from the mean-field-theory in the form of different ordering temperatures of Fe and Mn sublattices. A preferential sign reversal of Mn spin under magnetic field and different spin cant angles for the two sublattices have also been observed. An antiferromagnetic coupling between the Fe and Mn sublattices along with different ordering temperatures (sublattice decoupling) for these sublattices explain the temperature-dependent magnetization reversal. Whereas, Mn spin reversal alone (under external magnetic field) is responsible for themore » observed field-dependent magnetization reversal. The dissimilar magnetic behavior of Fe and Mn sublattices in this cubic 3d-orbital system has been understood by invoking disparity and competition among inter-sublattice magnetic control parameters, viz. magnetic Zeeman energy, exchange coupling constant and magnetic anisotropy constant. Our results have significant design implications for future magnetic switches, by optimizing the competition among these magnetic control parameters.« less

  5. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  6. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  7. Magnetic field reversals in the Milky Way- "cherchez le champ magnetique".

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1996-04-01

    Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our attempts at interpreting the observational data. This makes the proposition of "cherchez le champ magnetique" a difficult one to follow. Some recent papers have attempted to fit magnetic field models to spiral galaxies, and in particular to the Milky Way galaxy. Magnetic field reversals in the Milky Way are crucial to all interpretations, be they axisymmetric spiral (ASS) or bisymmetric spiral (BSS) global magnetic field models. Magnetic field reversals can be found in both ASS and BSS magnetic field models, not just BSS ones. The axisymmetric spiral (ASS) magnetic field models produced by the dynamo theory already predict magnetic field reversals, and they are of the type observed in the Milky Way. The small number of magnetic field reversals observed in the Milky Way is compatible with the ASS magnetic field models. The bisymmetric spiral (BSS) magnetic field models as applied to the pulsar RM data and to the QSO and galaxies data have many problems, due to the many pitfalls in model fitting the magnetic field reversals observed in the Milky Way. Many pitfalls are discussed here, including the incomplete comparisons of BSS versus ASS models, the number of spiral arms to be used in modelling, and the proper distance to pulsars via the more accurate distribution of thermal electrons within spiral arms. The two magnetic field reversals in our Milky Way are clearly located in the interarm regions. Predicted magnetic field reversals are periodic, while observed ones are not periodic. Magnetic field reversals cannot be masked effectively by local interstellar magnetised shells. The strength and direction of the magnetic field with galactic radius show that the BSS magnetic field models are less suitable to explain the RM data in the Milky Way. The prediction by the BSS magnetic field models of a large number of magnetic field reversals differs from the available observations.

  8. Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhao, G.; Niu, C.; Liu, Z. W.; Ouyang, J. T.; Chen, Q.

    2017-02-01

    In this work, the reversal of radial glow distribution induced by reversed magnetic field is reported. Based on the Boswell antenna which is symmetric and insensitive to the magnetic field direction, it seems such a phenomenon in theory appears impossible. However, according to the diagnostic of the helicon waves by magnetic probe, it is found that the direction of magnetic field significantly affects the propagation characteristic of helicon waves, i.e., the interchange of the helicon waves at the upper and the lower half of tube was caused by reversing the direction of magnetic field. It is suggested that the variation of helicon wave against the direction of magnetic field causes the reversed radial glow distribution. The appearance of the traveling wave does not only improve the discharge strength, but also determines the transition of the discharge mode.

  9. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  10. Energy barrier analysis of Nd-Fe-B thin films

    NASA Astrophysics Data System (ADS)

    Goto, R.; Okamoto, S.; Kikuchi, N.; Kitakami, O.

    2015-05-01

    The magnetization reversal mechanism of a permanent magnet has long been a controversial issue, which is closely related to the so-called coercivity problem. It is well known that the energy barrier for magnetization reversal contains essential information on reversal process. In this study, we propose a method to analyze the energy barrier function for the magnetization reversal. Preferentially (001) oriented Nd-Fe-B films with and without a Nd overlayer are used as model magnets. By combining the magnetic viscosity and time dependent coercivity measurements, the barrier function has been successfully evaluated. As a result, although the Nd-Fe-B films with and without Nd overlayer exhibit different magnetic behaviors, the power indices for their energy barrier are almost the same, suggesting that the magnetization reversal proceeds in a similar mode.

  11. Programmable, reversible and repeatable wrinkling of shape memory polymer thin films on elastomeric substrates for smart adhesion.

    PubMed

    Wang, Yu; Xiao, Jianliang

    2017-08-09

    Programmable, reversible and repeatable wrinkling of shape memory polymer (SMP) thin films on elastomeric polydimethylsiloxane (PDMS) substrates is realized, by utilizing the heat responsive shape memory effect of SMPs. The dependencies of wrinkle wavelength and amplitude on program strain and SMP film thickness are shown to agree with the established nonlinear buckling theory. The wrinkling is reversible, as the wrinkled SMP thin film can be recovered to the flat state by heating up the bilayer system. The programming cycle between wrinkle and flat is repeatable, and different program strains can be used in different programming cycles to induce different surface morphologies. Enabled by the programmable, reversible and repeatable SMP film wrinkling on PDMS, smart, programmable surface adhesion with large tuning range is demonstrated.

  12. Active magnetic force microscopy of Sr-ferrite magnet by stimulating magnetization under an AC magnetic field: Direct observation of reversible and irreversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-01

    Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.

  13. Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure

    NASA Astrophysics Data System (ADS)

    Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y.-H.; Salahuddin, S.; Ramesh, R.

    2011-11-01

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  14. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure.

    PubMed

    Heron, J T; Trassin, M; Ashraf, K; Gajek, M; He, Q; Yang, S Y; Nikonov, D E; Chu, Y-H; Salahuddin, S; Ramesh, R

    2011-11-18

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  15. Sensitivity of geomagnetic reversal rate on core evolution from numerical dynamos

    NASA Astrophysics Data System (ADS)

    Driscoll, P. E.; Davies, C. J.

    2017-12-01

    The paleomagnetic record indicates the geodynamo has evolved from frequently reversing to non-reversing (superchron) magnetic states several times over the Phanerozoic. Previous theoretical studies demonstrated a positive correlation between magnetic reversal rate and core-mantle boundary heat flux. However, attempts to identify such a correlation between reversal rates and proxies for internal cooling rate, such as plume events, superchron cycles, and subduction rates, have been inconclusive. Here we revisit the magnetic reversal occurrence rate in numerical dynamos at low Ekman numbers (faster rotation) and high magnetic Prandtl numbers (ratio of viscous and magnetic diffusivities). We focus on how the correlation between reversal rate and convective power depends on the core evolution rate and on other factors, such as Ek, Pm, and thermal boundary conditions. We apply our results to the seafloor reversal record in an attempt to infer the energetic evolution of the lower mantle and core over that period.

  16. Study of the magnetic interaction in nanocrystalline Pr-Fe-Co-Nb-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Dospial, M.; Plusa, D.; Ślusarek, B.

    2012-03-01

    The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity. The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.

  17. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  18. Magnetization reversal mechanisms in hybrid resin-bonded Nd Fe B magnets

    NASA Astrophysics Data System (ADS)

    Plusa, D.; Dospial, M.; Slusarek, B.; Kotlarczyk, U.

    2006-11-01

    The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd-Fe-Co-B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries.

  19. Control of magnetization reversal in oriented strontium ferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  20. Racetrack-shape fixed field induction accelerator for giant cluster ions

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Adachi, Toshikazu; Wake, Masayoshi; Okamura, Katsuya

    2015-05-01

    A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA.

  1. Dipole-quadrupole dynamics during magnetic field reversals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gissinger, Christophe

    The shape and the dynamics of reversals of the magnetic field in a turbulent dynamo experiment are investigated. We report the evolution of the dipolar and the quadrupolar parts of the magnetic field in the VKS experiment, and show that the experimental results are in good agreement with the predictions of a recent model of reversals: when the dipole reverses, part of the magnetic energy is transferred to the quadrupole, reversals begin with a slow decay of the dipole and are followed by a fast recovery, together with an overshoot of the dipole. Random reversals are observed at the borderlinemore » between stationary and oscillatory dynamos.« less

  2. Control of reversible magnetization switching by pulsed circular magnetic field in glass-coated amorphous microwires

    NASA Astrophysics Data System (ADS)

    Chizhik, Alexander; Zhukov, Arkady; Gonzalez, Julian; Stupakiewicz, Andrzej

    2018-02-01

    Magnetization reversal in magnetic microwires was studied in the presence of external mechanical stress and helical magnetic fields using the magneto-optical Kerr effect. It was found that a combination of tuned magnetic anisotropy and a direct current or pulsed circular magnetic field activated different types of magnetization reversal scenarios. The application of the pulsed magnetic field of 10 ns time duration induced a transient controlling action to switch the magnetic states without activating a domain wall motion. This created a promising method for tuning the giant magneto-impedance effect.

  3. Earth's magnetic moment during geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Sokoloff, D. D.

    2017-11-01

    The behavior of the dipole magnetic moment of the geomagnetic field during the reversals is considered. By analogy with the reversals of the magnetic field of the Sun, the scenario is suggested in which during the reversal the mean dipole moment becomes zero, whereas the instantaneous value of the dipole magnetic moment remains nonzero and the corresponding vector rotates from the vicinity of one geographical pole to the other. A thorough discussion concerning the definition of the mean magnetic moment, which is used in this concept, is presented. Since the behavior of the geomagnetic field during the reversal is far from stationary, the ensemble average instead of the time average has to be considered.

  4. Electric-field-driven magnetization reversal in square-shaped nanomagnet-based multiferroic heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ren-Ci; Nan, Ce-Wen, E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn; Wang, J. J., E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn

    Based on phase field modeling and thermodynamic analysis, purely electric-field-driven magnetization reversal was shown to be possible in a multiferroic heterostructure of a square-shaped amorphous Co{sub 40}Fe{sub 40}B{sub 20} nanomagnet on top of a ferroelectric layer through electrostrain. The reversal is made possible by engineering the mutual interactions among the built-in uniaxial magnetic anisotropy, the geometry-dependent magnetic configuration anisotropy, and the magnetoelastic anisotropy. Particularly, the incorporation of the built-in uniaxial anisotropy made it possible to reverse magnetization with one single unipolar electrostrain pulse, which is simpler than previous designs involving the use of bipolar electrostrains and may alleviate ferroelectric fatigue.more » Critical conditions for triggering the magnetization reversal are identified.« less

  5. Is perpendicular magnetic anisotropy essential to all-optical ultrafast spin reversal in ferromagnets?

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; Bai, Y. H.; George, Thomas F.

    2017-10-01

    All-optical spin reversal presents a new opportunity for spin manipulations, free of a magnetic field. Most of all-optical-spin-reversal ferromagnets are found to have a perpendicular magnetic anisotropy (PMA), but it has been unknown whether PMA is necessary for spin reversal. Here we theoretically investigate magnetic thin films with either PMA or in-plane magnetic anisotropy (IMA). Our results show that spin reversal in IMA systems is possible, but only with a longer laser pulse and within a narrow laser parameter region. Spin reversal does not show a strong helicity dependence where the left- and right-circularly polarized light lead to the identical results. By contrast, the spin reversal in PMA systems is robust, provided both the spin angular momentum and laser field are strong enough while the magnetic anisotropy itself is not too strong. This explains why experimentally the majority of all-optical spin-reversal samples are found to have strong PMA and why spins in Fe nanoparticles only cant out of plane. It is the laser-induced spin-orbit torque that plays a key role in the spin reversal. Surprisingly, the same spin-orbit torque results in laser-induced spin rectification in spin-mixed configuration, a prediction that can be tested experimentally. Our results clearly point out that PMA is essential to spin reversal, though there is an opportunity for in-plane spin reversal.

  6. Monte Carlo study of magnetization reversal in the model of a hard/soft magnetic bilayer

    NASA Astrophysics Data System (ADS)

    Taaev, T. A.; Khizriev, K. Sh.; Murtazaev, A. K.

    2017-06-01

    Magnetization reversal in the model of a hard/soft magnetic bilayer under the action of an external magnetic field has been investigated by the Monte Carlo method. Calculations have been performed for three systems: (i) the model without a soft-magnetic layer (hard-magnetic layer), (ii) the model with a soft-magnetic layer of thickness 25 atomic layers (predominantly exchange-coupled system), and (iii) with 50 (weak exchange coupling) atomic layers. The effect of a soft-magnetic phase on the magnetization reversal of the magnetic bilayer and on the formation of a 1D spin spring in the magnetic bilayer has been demonstrated. An inf lection that has been detected on the arch of the hysteresis loop only for the system with weak exchange coupling is completely determined by the behavior of the soft layer in the external magnetic field. The critical fields of magnetization reversal decrease with increasing thickness of the soft phase.

  7. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo

    2016-05-28

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal setsmore » in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.« less

  8. Magnetic drops in a soft-magnetic cylinder

    NASA Astrophysics Data System (ADS)

    Hertel, Riccardo; Kirschner, Jürgen

    2004-07-01

    Magnetization reversal in a cylindrical ferromagnetic particle seems to be a simple textbook problem in magnetism. But at a closer look, the magnetization reversal dynamics in a cylinder is far from being trivial. The difficulty arises from the central axis, where the magnetization switches in a discontinuous fashion. Micromagnetic computer simulations allow for a detailed description of the evolution of the magnetic structure on the sub-nanosecond time scale. The switching process involves the injection of a magnetic point singularity (Bloch point) into the cylinder. Further point singularities may be generated and annihilated periodically during the reversal process. This results in the temporary formation of micromagnetic drops, i.e., isolated, non-reversed regions. This surprising feature in dynamic micromagnetism is due to different mobilities of domain wall and Bloch point.

  9. A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.

    2014-10-20

    We report an experimental study on the dynamic thermomagnetic (TM) reversal mechanisms at around Curie temperature (Tc) for isolated 60 nm pitch single-domain [Co/Pd] islands heated by a 1.5 μm spot size laser pulse under an applied magnetic reversal field (Hr). Magnetic force microscopy (MFM) observations with high resolution MFM tips clearly showed randomly trapped non-switched islands within the laser irradiated spot after dynamic TM reversal process with insufficient Hr strength. This observation provides direct experimental evidence by MFM of a large magnetization switching variation due to increased thermal fluctuation/agitation over magnetization energy at the elevated temperature of around Tc. The averagemore » percentage of non-switched islands/magnetization was further found to be inversely proportional to the applied reversal field Hr for incomplete magnetization reversal when Hr is less than 13% of the island coercivity (Hc), showing an increased switching field distribution (SFD) at elevated temperature of around Tc (where main contributions to SFD broadening are from Tc distribution and stronger thermal fluctuations). Our experimental study and results provide better understanding and insight on practical heat assisted magnetic recording (HAMR) process and recording performance, including HAMR writing magnetization dynamics induced SFD as well as associated DC saturation noise that limits areal density, as were previously observed and investigated by theoretical simulations.« less

  10. Magnetic anisotropy and magnetization reversal in Co/Cu multilayers nanowires

    NASA Astrophysics Data System (ADS)

    Ahmad, Naeem; Chen, J. Y.; Shi, D. W.; Iqbal, Javed; Han, Xiufeng

    2012-04-01

    The Co/Cu multilayer nanowires fabricated in an array using anodized aluminum oxide (AAO) template by electrodeposition method, have been investigated. It has been observed that the magnetization reversal mode and magnetic anisotropy depend upon the Co and Cu layer thicknesses. Magnetization reversal occurs by curling mode at around Co = 400 nm and Cu = 10 nm, while for Co = 30 nm and Cu = 60 nm, magnetization reversal occurs by nucleation mode. A change of magnetic anisotropy from out of plane to in plane is observed when thickness of Cu layer tCu = 60 nm and that of Co tCo = 30 nm. Magnetic anisotropy is lost when thickness of the Co layer tCo = 400 nm and that of Cu tCu= 10 nm. Magnetic properties have been explained by the competition among shape anisotropy, magnetostatic interactions and magnetocrystalline anisotropy. Magnetic properties can be tuned accordingly depending upon the thickness of the Co and Cu nanodisks.

  11. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    NASA Astrophysics Data System (ADS)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic supplementary information (ESI) available: Supplementary figure S1. The hysteresis loop of Fe3O4 (a), Fe3O4@SiO2 (b), and Fe3O4@SiO2-Dye-SiO2 (c). See DOI: 10.1039/c0nr00614a

  12. Aspect-ratio dependence of magnetization reversal in cylindrical ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Sultan, Musaab S.; Atkinson, Del

    2016-05-01

    The magnetization reversal behavior in isolated cylindrical and square cross-section Ni81Fe19 nanowires was systematically studied as a function of nanowire cross-section dimensions from 10 up to 200 nm using micromagnetic simulations. This approach provides access to the switching field, remanence ratio and most significantly the magnetization structures during reversal, which allows the evolution of magnetization processes to be studied with scaling of the cross-sectional dimensions. The dimensional trends in reversal behavior for both square and circular cross-section were comparable throughout the range of dimensions studied. The thinnest nanowires showed simple square switching and 100% remanence. With increasing diameter the switching field reduces and above 40 nm the reversal behavior shows an increasing rotational component prior to sharp switching of the magnetization. The magnitude of the reversible component increases with increasing dimensions up to 150 nm, above which the magnetization reversal process is more complicated and the hysteresis loops are no longer bistable. The micromagnetic structures evolve from simple uniform parallel single domain states in the thinnest wires through the formation of vortex-like end states in thicker wires to complex multidomain structures during the reversal of the thickest wires. In the later cases the reversal is not simple curling-like behavior, although the angular switching field dependence was comparable with curling.

  13. Direct observation of dynamical magnetization reversal process governed by shape anisotropy in single NiFe2O4 nanowire.

    PubMed

    Zhang, Junli; Zhu, Shimeng; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Fu, Jiecai

    2018-05-31

    Discovering how the magnetization reversal process is governed by the magnetic anisotropy in magnetic nanomaterials is essential and significant to understand the magnetic behaviour of micro-magnetics and to facilitate the design of magnetic nanostructures for diverse technological applications. In this study, we present a direct observation of a dynamical magnetization reversal process in single NiFe2O4 nanowire, thus clearly revealing the domination of shape anisotropy on its magnetic behaviour. Individual nanoparticles on the NiFe2O4 nanowire appear as single domain states in the remanence state, which is maintained until the magnetic field reaches 200 Oe. The magnetization reversal mechanism of the nanowire is observed to be a curling rotation mode. These observations are further verified by micromagnetic computational simulations. Our findings show that the modulation of shape anisotropy is an efficient way to tune the magnetic behaviours of cubic spinel nano-ferrites.

  14. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE PAGES

    Montoncello, F.; Giovannini, L.; Bang, Wonbae; ...

    2018-01-18

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  15. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoncello, F.; Giovannini, L.; Bang, Wonbae

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  16. IS MAGNETIC RECONNECTION THE CAUSE OF SUPERSONIC UPFLOWS IN GRANULAR CELLS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borrero, J. M.; Schmidt, W.; Martinez Pillet, V.

    In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the SUNRISE/IMaX instrument. In the present work, we investigate the physical origin of these events employing data from the same instrument but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc.) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the bestmore » result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blueshifted and redshifted line-of-sight velocities coexist above/below each other. These features can be explained in terms of magnetic reconnection, where the energy stored in the magnetic field is released in the form of kinetic and thermal energy when magnetic field lines of opposite polarities coalesce. However, the agreement with magnetic reconnection is not perfect and, therefore, other possible physical mechanisms might also play a role.« less

  17. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. B., E-mail: houbinghuang@gmail.com; Department of Physics, University of Science and Technology Beijing, Beijing 100083; Hu, J. M.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  18. A Thermally Re-mendable Cross-Linked Polymeric Material

    NASA Astrophysics Data System (ADS)

    Chen, Xiangxu; Dam, Matheus A.; Ono, Kanji; Mal, Ajit; Shen, Hongbin; Nutt, Steven R.; Sheran, Kevin; Wudl, Fred

    2002-03-01

    We have developed a transparent organic polymeric material that can repeatedly mend or ``re-mend'' itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120°C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of ``intermonomer'' linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.

  19. Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor

    NASA Astrophysics Data System (ADS)

    Krause, S.; Herzog, G.; Stapelfeldt, T.; Berbil-Bautista, L.; Bode, M.; Vedmedenko, E. Y.; Wiesendanger, R.

    2009-09-01

    The thermal switching behavior of individual in-plane magnetized Fe/W(110) nanoislands is investigated by a combined study of variable-temperature spin-polarized scanning tunneling microscopy and Monte Carlo simulations. Even for islands consisting of less than 100 atoms the magnetization reversal takes place via nucleation and propagation. The Arrhenius prefactor is found to strongly depend on the individual island size and shape, and based on the experimental results a simple model is developed to describe the magnetization reversal in terms of metastable states. Complementary Monte Carlo simulations confirm the model and provide new insight into the microscopic processes involved in magnetization reversal of smallest nanomagnets.

  20. Non-equilibrium dynamic reversal of in-plane ferromagnetic elliptical disk

    NASA Astrophysics Data System (ADS)

    Kim, June-Seo; Hwang, Hee-Kyeong; You, Chun-Yeol

    2018-01-01

    The ultrafast switching mechanism of an in-plane magnetized elliptical magnetic disk by applying dynamic out-of-plane magnetic field pulses is investigated by performing micromagnetic simulations. For the in-plane magnetized nanostructures, the out-of-plane magnetic field is able to rotate the direction of magnetization when the precession torque overcomes the shape anisotropy of the system. This type magnetization reversal is one of non-equilibrium dynamic within a certain transition time util the precession torque is equivalent to the damping torque. By controlling the rise time or fall times of dynamic out-of-plane field pulses, the transition time can be also successively tuned and then an ultrafast switching of an elliptical magnetic nano-disk is clearly achieved by controlling the precessional torque. As another reversal approach, sinusoidal magnetic fields in gigahertz range are applied to the system. Consequently, the thresholds of switching fields are drastically decreased. We also reveal that the ferromagnetic resonance frequencies at the center and the edge of the elliptical disk are most important for microwave sinusoidal out-of-plane magnetic field induced magnetization reversal.

  1. Magnetization reversal in exchange biased Co/CoO probed with anisotropic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Gredig, Thomas; Krivorotov, Ilya N.; Dahlberg, E. Dan

    2002-05-01

    The magnetization reversal in exchange coupled polycrystalline Co/CoO bilayers has been investigated as a function of CoO thickness using anisotropic magnetoresistance as a probe. The anisotropic magnetoresistance (AMR) was measured during the magnetization reversal and it was used to determine the orientation of the magnetization. For thin CoO layers large training effects were present; ergo the first hysteresis loop after field cooling was not the same as the second. The magnitude of the observed training was found to decrease with increasing CoO thickness. In the samples where substantial training was observed, the first magnetization reversal was dominated by nucleation of reversed domains. For the reversal from the antiparallel state back to the parallel direction, the AMR is consistent with a rotation process. In thicker CoO films where the training was less, the asymmetry was drastically reduced. A simple model that couples the antiferromagnetic grains to the ferromagnetic layer simulates qualitatively the observed magnetoresistance.

  2. Magnetization reversal dynamics in Co nanowires with competing magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Pal, Semanti; Saha, Susmita; Polley, Debanjan; Barman, Anjan

    2011-12-01

    We present the magnetization reversal dynamics of Co nanowires with competing magnetic anisotropies. The aspect ratio ( R) of the nanowires is varied between 2.5 and 60, and we observe a cross-over of the directions of the magnetic easy and hard axes at R=6.8. Micromagnetic simulations qualitatively reproduce the observed cross-over and give detailed insight into the reversal mechanisms associated with the cross-over. The reversal mechanism for a field applied along the long axis of the nanowire exhibits a quasi-coherent rotation mode and a corkscrew-like mode, respectively, above and below the cross-over, with the formation of a Bloch domain near the cross-over region. For a field applied along the short axis, the reversal occurs by nucleation and propagation of reversed domains from the two ends of the nanowires for very high values of the aspect ratio down to the cross-over region, but it transforms into quasi-coherent rotation mode for smaller aspect ratios (below the cross-over region).

  3. Magnetic noise as the cause of the spontaneous magnetization reversal of RE–TM–B permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitriev, A. I., E-mail: aid@icp.ac.ru; Talantsev, A. D., E-mail: artgtx32@mail.ru; Kunitsyna, E. I.

    2016-08-15

    The relation between the macroscopic spontaneous magnetization reversal (magnetic viscosity) of (NdDySm)(FeCo)B alloys and the spectral characteristics of magnetic noise, which is caused by the random microscopic processes of thermally activated domain wall motion in a potential landscape with uniformly distributed potential barrier heights, is found.

  4. Magnetization reversal processes in bonded magnets made from a mixture of Nd-(Fe,Co)-B and strontium ferrite powders

    NASA Astrophysics Data System (ADS)

    Dospial, M.; Plusa, D.

    2013-03-01

    Isotropic epoxy-resin bonded magnets composed of different amounts of Magnequench MQP-B and strontium ferrite powders have been prepared using a compression molding technique. The magnetic parameters for magnets with different amounts of strontium ferrite and magnetization reversal processes have been studied by the measurement of the initial magnetization curves, the major hysteresis loops measured at a field up to 14 T and sets of recoil loops. The enhancement of μ0MR and μ0HC is observed in comparison with the calculated values. From the recoil loops the field dependences of the reversible, irreversible and total magnetization components and the differential susceptibilities were derived. From the dependence of the irreversible magnetization component versus an applied field it was deduced that the main mechanism of magnetization reversal process is the pinning of domain walls in MQP-B and strontium ferrite grains. The interactions between the magnetic particles and grains have been examined by the analysis of the δM plot. The δM behavior of magnets with ferrite has been interpreted as being composed of magnetizing exchange coupling and demagnetizing dipolar interactions.

  5. Reversible electric-field manipulation of the adsorption morphology and magnetic anisotropy of small Fe and Co clusters on graphene

    NASA Astrophysics Data System (ADS)

    Tanveer, M.; Dorantes-Dávila, J.; Pastor, G. M.

    2017-12-01

    First-principles electronic calculations show how the adsorption morphology, orbital magnetism, and magnetic anisotropy energy (MAE) of small CoN and FeN clusters (N ≤3 ) on graphene (G) can be reversibly controlled under the action of an external electric field (EF). A variety of cluster-specific and EF-induced effects are revealed, including (i) perpendicular or canted adsorption configurations of the dimers and trimers, (ii) significant morphology-dependent permanent dipole moments and electric susceptibilities, (iii) EF-induced reversible transitions among the different metastable adsorption morphologies of Fe3 and Co3 on graphene, (iv) qualitative changes in the MAE landscape driven by structural changes, (v) colossal values of the magnetic anisotropy Δ E ≃45 meV per atom in Co2/G , (vi) EF-induced spin-reorientation transitions in Co3/G , and (vii) reversibly tunable coercive field and blocking temperatures, which in some cases allow a barrierless magnetization reversal of the cluster. These remarkable electric and magnetic fingerprints open new possibilities of characterizing and exploiting the size- and structural-dependent properties of magnetic nanostructures at surfaces.

  6. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yi; Xu, Ben; Hu, Shenyang Y.

    2015-09-25

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.

  7. Dynamic origin of segment magnetization reversal in thin-film Penrose tilings

    NASA Astrophysics Data System (ADS)

    Montoncello, F.; Giovannini, L.; Farmer, B.; De Long, L.

    2017-02-01

    We investigate the low-frequency spin wave dynamics involved in the magnetization reversal of a Penrose P2 tiling using the dynamical matrix method. This system consists of a two-dimensional, connected wire network of elongated thin-film segments, whose complete reversal occurs as a cascade of successive local segment reversals. Using soft mode theory, we interpret the reversal of an individual segment as a first order magnetic transition, in which magnetization curve of the system suffers a small discontinuity. Near this discontinuity a specific mode of the spin wave spectrum goes soft (i.e., its frequency goes to zero), triggering a local instability of the magnetization. We show that this mode is localized, and is at the origin of the local reversal. We discuss the correlation of the mode spatial profile with the ;reversal mechanism;, which is the passage of a domain wall through the segment. This process differs from reversal in periodic square or honeycomb artificial spin ices, where a cascade of reversing segments (e.g., ;Dirac string;) follows an extended (though irregular) path across the sample; here the spatial distribution of successive segment reversals is discontinuous, but strictly associated with the area where a soft mode is localized. The migration of the localization area across the P2 tiling (during reversal in decreasing applied fields) depends on changes in the internal effective field map. We discuss these results in the context of spin wave localization due to the unique topology of the P2 tiling.

  8. Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites

    NASA Astrophysics Data System (ADS)

    Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.

    2018-05-01

    Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.

  9. Electrical detection of microwave assisted magnetization reversal by spin pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad

    2014-03-24

    Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.

  10. Temperature and field direction dependences of first-order reversal curve (FORC) diagrams of hot-deformed Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Yomogita, Takahiro; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Sepehri-Amin, Hossein; Ohkubo, Tadakatsu; Hono, Kazuhiro; Akiya, Takahiro; Hioki, Keiko; Hattori, Atsushi

    2018-02-01

    First-order reversal curve (FORC) diagram has been previously adopted for the analyses of magnetization reversal process and/or quantitative evaluation of coercivity and interaction field dispersions in various magnetic samples. Although these kinds of information are valuable for permanent magnets, previously reported FORC diagrams of sintered Nd-Fe-B magnets exhibit very complicated patterns. In this paper, we have studied the FORC diagrams of hot-deformed Nd-Fe-B magnets under various conditions. Contrary to the previous reports on sintered Nd-Fe-B magnets, the FORC diagram of the hot-deformed Nd-Fe-B magnet exhibits a very simple pattern consisting of a strong spot and a weak line. From this FORC diagram pattern, it is revealed that the coercivity dispersion of the hot-deformed Nd-Fe-B magnets is surprisingly small. Moreover, this feature of the FORC diagram pattern is very robust and unaffected by changes in various conditions such as grain boundary diffusion process, temperature, and field direction, whereas these conditions significantly change the coercivity and the shape of magnetization curve. This fact indicates that the magnetization reversal process of the hot-deformed Nd-Fe-B magnets is almost unchanged against these conditions.

  11. Effects of head field and AC field on magnetization reversal for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Kase, Aina; Akagi, Fumiko; Yoshida, Kazuetsu

    2018-05-01

    Microwave assisted magnetic recording (MAMR) is a promising recording method for achieving high recording densities in hard disk drives. In MAMR, the AC field from a spin-torque oscillator (STO) assists the head field with magnetization reversal in a medium. Therefore, the relationship between the head field and the AC field is very important. In this study, the effects of the head field and the AC field on magnetization reversal were analyzed using a micromagnetic simulator that takes the magnetic interactions between a single-pole type (SPT) write-head, an exchange coupled composite (ECC) medium, and the STO into account. As a result, the magnetization reversal was assisted not just by the y-component of the AC field (Hstoy) but also by the y-component of the head field (Hhy) in the medium. The Hhy over 100 kA/m with a frequency of about 15.5 GHz induced the magnetic resonance. The large Hhy was produced by the field from the STO to the SPT head.

  12. Model of driven and decaying magnetic turbulence in a cylinder.

    PubMed

    Kemel, Koen; Brandenburg, Axel; Ji, Hantao

    2011-11-01

    Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly conducting boundaries and imposed axial magnetic and electric fields. The thus injected magnetic helicity in the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of the α effect in astrophysical applications. A stronger field reversal can be obtained if there is also a significant kinetic α effect. Application to the reversed field pinch in plasma confinement devices is discussed.

  13. Onset of a Propagating Self-Sustained Spin Reversal Front in a Magnetic System

    NASA Astrophysics Data System (ADS)

    Kent, Andrew D.

    2014-03-01

    The energy released in a magnetic material by reversing spins as they relax toward equilibrium can lead to a dynamical magnetic instability in which all the spins in a sample rapidly reverse in a run-away process known as magnetic deflagration. A well-defined front separating reversed and un-reversed spins develops that propagates at a constant speed. This process is akin to a chemical reaction in which a flammable substance ignites and the resulting exothermic reaction leads via thermal conduction to increases in the temperature of an adjacent unburned substance that ignites it. In a magnetic system the reaction is the reversal of spins that releases Zeeman energy and the magnetic anisotropy barrier is the reaction's activation energy. An interesting aspect of magnetic systems is that these key energies-the activation energy and the energy released-can be independently controlled by applied magnetic fields enabling systematic studies of these magnetic instabilities. We have studied the instability that leads to the ignition of magnetic deflagration in a thermally driven Mn12-Ac molecular magnet single crystal. Each Mn12-ac molecule is a uniaxial nanomagnet with spin 10 and energy barrier of 60 K. We use a longitudinal field (a field parallel to the easy axis) to set the energy released and a transverse field to control the activation energy. A heat pulse is applied to one end of the crystal to initiate the process. We study the crossover between slow magnetic relaxation and rapid, self-sustained magnetic deflagration as a function of these fields at low temperature (0.5 K). An array of Hall sensors adjacent to a single crystal is used to detect and measure the speed of the spin-reversal front. I will describe a simple model we developed based on a reaction-diffusion process that describes our experimental findings. I will also discuss prospects for observing spin-fronts driven by magnetic dipole interactions between molecules that can be sonic, i.e. travel near the speed of sound (~ 1000 m/s). In collaboration with P. Subedi, S. Velez, F. Macià, S. Li, M. P. Sarachik, J. Tejada, S. Mukherjee and G. Christou. Supported by NSF-DMR-1006575.

  14. REVERSAL LEARNING SET AND FUNCTIONAL EQUIVALENCE IN CHILDREN WITH AND WITHOUT AUTISM

    PubMed Central

    Lionello-DeNolf, Karen M.; McIlvane, William J.; Canovas, Daniela S.; de Souza, Deisy G.; Barros, Romariz S.

    2009-01-01

    To evaluate whether children with and without autism could exhibit (a) functional equivalence in the course of yoked repeated-reversal training and (b) reversal learning set, 6 children, in each of two experiments, were exposed to simple discrimination contingencies with three sets of stimuli. The discriminative functions of the set members were yoked and repeatedly reversed. In Experiment 1, all the children (of preschool age) showed gains in the efficiency of reversal learning across reversal problems and behavior that suggested formation of functional equivalence. In Experiment 2, 3 nonverbal children with autism exhibited strong evidence of reversal learning set and 2 showed evidence of functional equivalence. The data suggest a possible relationship between efficiency of reversal learning and functional equivalence test outcomes. Procedural variables may prove important in assessing the potential of young or nonverbal children to classify stimuli on the basis of shared discriminative functions. PMID:20186287

  15. Magnetic reversals from planetary dynamo waves.

    PubMed

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  16. Magnetic field evolution and reversals in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Dobbs, C. L.; Price, D. J.; Pettitt, A. R.; Bate, M. R.; Tricco, T. S.

    2016-10-01

    We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find that magnetic field reversals occur when the velocity jump across the spiral shock is above ≈20 km s-1, occurring where the velocity change is highest, typically at the inner Lindblad resonance in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the corotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at radii of around 4-6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using ATHENA, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.

  17. Thermally assisted magnetization reversal in sub-micron sized magnetic thin films

    NASA Astrophysics Data System (ADS)

    Koch, Roger H.

    2000-03-01

    We have measured the rate of thermally assisted magnetization reversal of sub-micron sized magnetic thin film elements. For fields H just less than the zero-temperature coercive field H_C, the probability of reversal, P^exps (t), increases for short times, t, achieves a maximum value, and then decreases exponentially. The temperature dependence of the reversal is consistent with a temperature independent barrier height. Micromagnetic simulations exhibit the same behavior, and show that the reversal for a film without disorder proceeds through the annihilation of two domain walls that move from opposite sides of the sample. The behavior of P^exps (t) can be understood using a simple ``energy-ladder" model of thermal activation. In this model, the film reverses its magnetization direction by thermally activating (reversibly) through a ladder of intermediate metastable states. The measured data are consistent with there being a handful of these states in the energy landscape of the film. These states are a result of the disorder in the film and we will show micromagnetic simulation movies depicting this behavior. In collaboration with G. Grinstein, G.A. Keefe, Yu Lu, P.L. Trouilloud, W. J. Gallagher, S.S.P. Parkin, S. Ingvarson, and G. Xaio

  18. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Alikhani, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2017-05-01

    Nanoscale magnetic alloy wires are being actively investigated, providing fundamental insights into tuning properties in magnetic data storage and processing technologies. However, previous studies give trivial information about the crossover angle of magnetization reversal process in alloy nanowires (NWs). Here, magnetic alloy NW arrays with different compositions, composed of Fe, Co and Ni have been electrochemically deposited into hard-anodic aluminum oxide templates with a pore diameter of approximately 150 nm. Under optimized conditions of alumina barrier layer and deposition bath concentrations, the resulting alloy NWs with aspect ratio and saturation magnetization (Ms) up to 550 and 1900 emu cm-3, respectively, are systematically investigated in terms of composition, crystalline structure and magnetic properties. Using angular dependence of coercivity extracted from hysteresis loops, the reversal processes are evaluated, indicating non-monotonic behavior. The crossover angle (θc) is found to depend on NW length and Ms. At a constant Ms, increasing NW length decreases θc, thereby decreasing the involvement of vortex mode during the magnetization reversal process. On the other hand, decreasing Ms decreases θc in large aspect ratio (>300) alloy NWs. Phenomenologically, it is newly found that increasing Ni content in the composition decreases θc. The angular first-order reversal curve (AFORC) measurements including the irreversibility of magnetization are also investigated to gain a more detailed insight into θc.

  19. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure.

    PubMed

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.

  20. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara, A.; Aliev, F. G., E-mail: farkhad.aliev@uam.es; Dobrovolskiy, O. V.

    2014-11-03

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magneticmore » permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.« less

  1. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-01-01

    Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1) for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively) of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°)=30°, σ=31° and θ1=ω1(0°)=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  2. Geophysics: A reversal of geomagnetic polarity

    USGS Publications Warehouse

    Mankinen, Edward A.

    1986-01-01

    The detailed behaviour of the geomagnetic field during reversals is documented by palaeomagnetists to constrain models of the geomagnetic dynamo. Reversals are studied by measuring the magnetic remanence preserved in rocks to obtain both the direction and intensity of the ancient magnetic field.

  3. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGES

    Li, Yi; Xu, Ben; Hu, Shenyang; ...

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  4. Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idigoras, O., E-mail: o.idigoras@nanogune.eu; Suszka, A. K.; Berger, A.

    2014-02-28

    This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field anglemore » dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.« less

  5. Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Shipeng; Yan, Liqin; Chai, Yisheng

    2014-01-20

    Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22} single crystal. The maximum magnetoelectric coefficient at 200 K reaches 1065 ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225 K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals howmore » to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.« less

  6. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  7. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  8. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    PubMed

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P < .001 for all) and increased end-diastolic LV segmental thickness (P < .001). Treatment of hypercortisolism was associated with an improvement in ventricular and atrial systolic performance, as reflected by a 15% increase in the LV ejection fraction (P = .029), a 45% increase in the LA ejection fraction (P < .001), and an 11% increase in the RV ejection fraction (P = NS). After treatment, the LV mass index and end-diastolic LV mass to volume ratio decreased by 17% (P < .001) and 10% (P = .002), respectively. None of the patients had late gadolinium myocardial enhancement. Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  9. Antiphase domains and reverse thermoremanent magnetism in ilmenite-hematite minerals

    USGS Publications Warehouse

    Lawson, C.A.; Nord, G.L.; Dowty, Eric; Hargraves, R.B.

    1981-01-01

    Examination of synthetic ilmenite-hematite samples by transmission electron microscopy has for the first time revealed the presence of well-defined antiphase domains and antiphase domain boundaries in this mineral system. Samples quenched from 1300??C have a high density of domain boundaries, whereas samples quenched from 900??C have a much lower density. Only the high-temperature samples acquire reverse thermoremanent magnetism when cooled in an applied magnetic field. The presence of a high density of domain boundaries seems to be a necessary condition for the acquisition of reverse thermoremanent magnetism.

  10. Magnetic reversal frequency in the Lower Cambrian Niutitang Formation, Hunan Province, South China

    NASA Astrophysics Data System (ADS)

    Duan, Zongqi; Liu, Qingsong; Ren, Shoumai; Li, Lihui; Deng, Xiaolong; Liu, Jianxing

    2018-05-01

    The reversal frequency of the paleomagnetic field bears great information of evolution of the Earth's deep interior. However, there are still debates on the frequency pattern during the older periods of the Phanerozoic. This study investigated the Niutitang Formation (Lower Cambrian) of the Ciye 1 Hole from south China. Rock magnetic results indicate that the dominant magnetic carrier is magnetite. Characteristic remanence magnetizations have been successfully isolated for the weakly-magnetized shale rocks through stepwise alternated field demagnetization using the 2 G Enterprises Rapid System Magnetometer with a low-noise thin-walled quartz-glass sample holder. Constrained by radiometric ages, our paleomagnetic results indicated frequent polarity reversals during the period of ˜524-514 Ma, which backs up the speculation about the episode of the Ediacaran-Cambrian (˜550-500 Ma) with a character of reversal hyperactivity.

  11. Fast switching of bistable magnetic nanowires through collective spin reversal

    NASA Astrophysics Data System (ADS)

    Vindigni, Alessandro; Rettori, Angelo; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta; Novak, Miguel A.

    2005-08-01

    The use of magnetic nanowires as memory units is made possible by the exponential divergence of the characteristic time for magnetization reversal at low temperature, but the slow relaxation makes the manipulation of the frozen magnetic states difficult. We suggest that finite-size segments can show a fast switching if collective reversal of the spins is taken into account. This mechanism gives rise at low temperatures to a scaling law for the dynamic susceptibility that has been experimentally observed for the dilute molecular chain Co(hfac)2NitPhOMe. These results suggest a possible way of engineering nanowires for fast switching of the magnetization.

  12. Magnetization reversal properties of Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Sanjay; Pal, Sudipta, E-mail: sudipta.pal@rediffmail.com; Bose, Esa

    2015-06-24

    We report measurements of the temperature dependent magnetic properties of single phase orthorhombic perovskites system associated with space group Pbnm compounds Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7). Magnetic properties radically changes with the doping of Gd or Nd. A magnetization reversal is observed below the Neel temperature (T{sub N}), in DC magnetization measurements (at 50 Oe) in the doped compounds. The reversal of magnetization may be due to the antiparallel coupling between the two magnetic sublattices (|Pr+ Gd/ Nd | and Mn). The hysteresis plot taken at 50K indicates a ferrimagnetic characteristic and existence of spin canting of ionsmore » in the magnetic sublattices.« less

  13. Magnetization reversal mechanism and coercivity enhancement in three-dimensional granular Nd-Fe-B magnets studied by micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog

    2017-08-01

    We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.

  14. Chemical and magnetic properties of rapidly cooled metastable ferri-ilmenite solid solutions - IV: the fine structure of self-reversed thermoremanent magnetization

    NASA Astrophysics Data System (ADS)

    Robinson, Peter; McEnroe, S. A.; Fabian, K.; Harrison, R. J.; Thomas, C. I.; Mukai, H.

    2014-03-01

    Magnetic experiments, a Monte Carlo simulation and transmission electron microscopy observations combine to confirm variable chemical phase separation during quench and annealing of metastable ferri-ilmenite compositions, caused by inhomogeneous Fe-Ti ordering and anti-ordering. Separation begins near interfaces between growing ordered and anti-ordered domains, the latter becoming progressively enriched in ilmenite component, moving the Ti-impoverished hematite component into Fe-enriched diffusion waves near the interfaces. Even when disordered regions are eliminated, Fe-enriched waves persist and enlarge on anti-phase boundaries between growing and shrinking ordered and anti-ordered domains. Magnetic results and conceptual models show that magnetic ordering with falling T initiates in the Fe-enriched wave crests. Although representing only a tiny fraction of material, identified at highest Ts on a field-cooling curve, they control the `pre-destiny' of progressive magnetization at lower T. They can provide a positive magnetic moment in a minority of ordered ferrimagnetic material, which, by exchange coupling, then creates a self-reversed negative moment in the remaining majority. Four Ts or T ranges are recognized on typical field-cooling curves: TPD is the T range of `pre-destination'; TC is the predominant Curie T where major positive magnetization increases sharply; TMAX is where magnetization reaches a positive maximum, beyond which it is outweighed by self-reversed magnetization and TZM is the T where total magnetization passes zero. Disposition of these Ts on cooling curves indicate the fine structure of self-reversed thermoremanent magnetization. These results confirm much earlier suspicions that the `x-phase' responsible for self-reversed magnetization resides in Fe-enriched phase boundaries.

  15. Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration

    NASA Astrophysics Data System (ADS)

    Ramadan, Qasem

    2009-12-01

    Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.

  16. Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: a repetition study using ERPs.

    PubMed

    Itier, Roxane J; Taylor, Margot J

    2002-02-01

    Using ERPs in a face recognition task, we investigated whether inversion and contrast reversal, which seem to disrupt different aspects of face configuration, differentially affected encoding and memory for faces. Upright, inverted, and negative (contrast-reversed) unknown faces were either immediately repeated (0-lag) or repeated after 1 intervening face (1-lag). The encoding condition (new) consisted of the first presentation of items correctly recognized in the two repeated conditions. 0-lag faces were recognized better and faster than 1-lag faces. Inverted and negative pictures elicited longer reaction times, lower hit rates, and higher false alarm rates than upright faces. ERP analyses revealed that negative and inverted faces affected both early (encoding) and late (recognition) stages of face processing. Early components (N170, VPP) were delayed and enhanced by both inversion and contrast reversal which also affected P1 and P2 components. Amplitudes were higher for inverted faces at frontal and parietal sites from 350 to 600 ms. Priming effects were seen at encoding stages, revealed by shorter latencies and smaller amplitudes of N170 for repeated stimuli, which did not differ depending on face type. Repeated faces yielded more positive amplitudes than new faces from 250 to 450 ms frontally and from 400 to 600 ms parietally. However, ERP differences revealed that the magnitude of this repetition effect was smaller for negative and inverted than upright faces at 0-lag but not at 1-lag condition. Thus, face encoding and recognition processes were affected by inversion and contrast-reversal differently.

  17. Micromachined magnetohydrodynamic actuators and sensors

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  18. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure

    PubMed Central

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-01-01

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to ‘set’ and ‘reset’ the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature. PMID:27271984

  19. Two-fluid dynamo relaxation and momentum transport induced by CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Hirono, Hidetoshi; Hanao, Takafumi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki

    2013-10-01

    Non-inductive current drive by using Multi-pulsing coaxial helicity injection was studied on HIST. In the double-pulsing CHI experiment, we have examined two-fluid effects by reversing polarity of the bias poloidal coil current. In the ST magnetic configurations with the right-handed magnetic field (positive CHI), there are a diamagnetic structure in the open flux column region and a paramagnetic structure in the closed flux region. It is naturally understood that the direction of the poloidal magnetic field (toroidal current) is reversed in reversing the polarity of the bias flux from positive to negative. However, the poloidal current is surprisingly reversed in reversing the magnetic helicity polarity. The direction of the poloidal current is opposite in the each region. The toroidal flow is reversed, but a shear profile of the poloidal flow is not changed significantly. In this configuration, the diamagnetic structure appears in the closed flux region. Thus, not only Jt×Bp but also Jp×Bt force contributes on pressure balance leading to a higher beta. We are studying a more general helicity conservation that constrains the interaction between flows and magnetic fields and momentum transport in the two-fluid framework.

  20. Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.

    2018-04-01

    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.

  1. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO 3/Pb(Mg,Nb,Ti)O 3 magneto-electric heterostructure

    DOE PAGES

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; ...

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O 3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO 3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier loweringmore » by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.« less

  2. Newborn Coronal Holes Associated with the Disappearance of Polarity Reversal Boundaries (P46)

    NASA Astrophysics Data System (ADS)

    Shelke, R.

    2006-11-01

    rajendra_shelke@yahoo.co.in Coronal holes play an important role in the occurrence of various kinds of solar events. The geomagnetic activity, coronal transients, type II radio bursts, and soft X ray blowouts have shown their strong association with coronal holes (Webb et al., 1978; Shelke and Pande, 1985; Bhatnagar, 1996; Hewish and Bravo, 1986). Recently, Shelke (2006) has linked the onset of interplanetary erupting stream disturbances with the evolutionary changes in the coronal holes. The present study reveals that there exists some physical relationship between the formation of new coronal holes and the disappearance of polarity reversal boundaries with or without the overlying prominences. About 124 new coronal holes are found to emerge at the locations where polarity reversal boundaries existed prior to their disappearance. Among them, nearly 66% and 18% newborn coronal holes have been associated with disappearing prominences and disappearing small unipolar magnetic regions (UMRs) with encircled polarity reversal boundaries respectively. Coronal holes and quiescent prominences are stable solar features that last for many solar rotations. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity at the photosphere, whereas solar prominence overlying the polarity reversal boundary straddles both the polarities of a bipolar magnetic region. The new coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The mechanism that leads to the eruption of polarity reversal boundaries with or without prominences seems to be interlinked with the mechanism that converts bipolar magnetic regions into unipolar magnetic regions characterizing coronal holes. The fundamental activity for the onset of erupting polarity reversal boundary seems to be the opening of preexisting closed magnetic structures into a new coronal hole, which can support mass motion including erupting prominence.

  3. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-07-22

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  4. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE PAGES

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; ...

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir 20Mn 80/Fe 20Ni 80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet,more » which leads to unexpected asymmetries in the annihilation and nucleation fields. Lastly, these results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  5. Magnetic flux trapping during field reversal in the formation of a field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    1985-11-01

    The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.

  6. Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain

    PubMed Central

    González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R

    2015-01-01

    Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni80Fe20) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients. PMID:25478682

  7. Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain.

    PubMed

    González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R

    2015-06-01

    Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni(80)Fe(20)) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.

  8. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  9. Emergent magnetic monopoles, disorder, and avalanches in artificial kagome spin ice (invited)

    NASA Astrophysics Data System (ADS)

    Hügli, R. V.; Duff, G.; O'Conchuir, B.; Mengotti, E.; Heyderman, L. J.; Rodríguez, A. Fraile; Nolting, F.; Braun, H. B.

    2012-04-01

    We study artificial spin ice with isolated elongated nanoscale islands arranged in a kagome lattice and solely interacting via long range dipolar fields. The artificial kagome spin ice displays a phenomenology similar to the microscopic pyrochlore system, where excitations at sub-Kelvin temperatures consist of emergent monopole quasiparticles that are connected via a solenoidal flux line, a classical and observable version of the Dirac string. We show that magnetization reversal in kagome spin ice is fundamentally different from the nucleation and extensive domain growth scenario expected for a generic 2D system. Here, the magnetization reverses in a strictly 1D fashion: After nucleation, a monopole-antimonopole dissociates along a 1D path, leaving a (Dirac) string of islands with reversed magnetization in its wake. Since the 2D artificial spin ice spontaneously decays into a 1D subsystem, magnetization reversal in kagome spin ice provides an example of dimensional reduction via frustration.

  10. Observation of a reversal of rotation in a sunspot during a solar flare

    PubMed Central

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Bo; Xu, Zhe

    2016-01-01

    The abrupt motion of the photospheric flux during a solar flare is thought to be a back reaction caused by the coronal field reconfiguration. However, the type of motion pattern and the physical mechanism responsible for the back reaction has been uncertain. Here we show that the direction of a sunspot's rotation is reversed during an X1.6 flare using observations from the Helioseismic and Magnetic Imager. A magnetic field extrapolation model shows that the corresponding coronal magnetic field shrinks with increasing magnetic twist density. This suggests that the abrupt reversal of rotation in the sunspot may be driven by a Lorentz torque that is produced by the gradient of twist density from the solar corona to the solar interior. These results support the view that the abrupt reversal in the rotation of the sunspot is a dynamic process responding to shrinkage of the coronal magnetic field during the flare. PMID:27958266

  11. Extended linear ion trap frequency standard apparatus

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor)

    1995-01-01

    A linear ion trap for frequency standard applications is provided with a plurality of trapping rods equally spaced and applied quadruple rf voltages for radial confinement of atomic ions and biased level pins at each end for axial confinement of the ions. The trapping rods are divided into two linear ion trap regions by a gap in each rod in a common radial plane to provide dc discontinuity, thus dc isolating one region from the other. A first region for ion-loading and preparation fluorescence is biased with a dc voltage to transport ions into a second region for resonance frequency comparison with a local oscillator derived frequency while the second region is held at zero voltage. The dc bias voltage of the regions is reversed for transporting the ions back into the first region for fluorescence measurement. The dual mode cycle is repeated continuously for comparison and feedback control of the local oscillator derived frequency. Only the second region requires magnetic shielding for the resonance function which is sensitive to any ambient magnetic fields.

  12. Micromagnetic simulation of energy consumption and excited eigenmodes in elliptical nanomagnetic switches

    NASA Astrophysics Data System (ADS)

    Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.

    2014-02-01

    Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process.

  13. Reduction in the write error rate of voltage-induced dynamic magnetization switching using the reverse bias method

    NASA Astrophysics Data System (ADS)

    Ikeura, Takuro; Nozaki, Takayuki; Shiota, Yoichi; Yamamoto, Tatsuya; Imamura, Hiroshi; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2018-04-01

    Using macro-spin modeling, we studied the reduction in the write error rate (WER) of voltage-induced dynamic magnetization switching by enhancing the effective thermal stability of the free layer using a voltage-controlled magnetic anisotropy change. Marked reductions in WER can be achieved by introducing reverse bias voltage pulses both before and after the write pulse. This procedure suppresses the thermal fluctuations of magnetization in the initial and final states. The proposed reverse bias method can offer a new way of improving the writing stability of voltage-driven spintronic devices.

  14. Tailoring superelasticity of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.

    2015-10-01

    Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials that can reversibly be addressed from outside by external magnetic fields. We discover a pronounced nonlinear superelastic stress-strain behavior of such materials using numerical simulations. This behavior results from a combination of two stress-induced mechanisms: a detachment mechanism of embedded particle aggregates and a reorientation mechanism of magnetic moments. The superelastic regime can be reversibly tuned or even be switched on and off by external magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of shape-memory alloys suggest analogous applications, with the additional benefit of reversible switchability and a higher biocompatibility of soft materials.

  15. Nanoscale imaging of magnetization reversal driven by spin-orbit torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.

    We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less

  16. Nanoscale imaging of magnetization reversal driven by spin-orbit torque

    DOE PAGES

    Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.; ...

    2016-09-23

    We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less

  17. Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets

    NASA Astrophysics Data System (ADS)

    Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.

    2016-10-01

    The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.

  18. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    PubMed

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.

  19. A general perspective on the magnetization reversal in cylindrical soft magnetic nanowires with dominant shape anisotropy

    NASA Astrophysics Data System (ADS)

    Kuncser, A.; Antohe, S.; Kuncser, V.

    2017-02-01

    Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio.

  20. Large and reversible inverse magnetocaloric effect in Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire

    NASA Astrophysics Data System (ADS)

    Qu, Y. H.; Cong, D. Y.; Chen, Z.; Gui, W. Y.; Sun, X. M.; Li, S. H.; Ma, L.; Wang, Y. D.

    2017-11-01

    High-performance magnetocaloric materials should have a large reversible magnetocaloric effect and good heat exchange capability. Here, we developed a Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire with a large and reversible inverse magnetocaloric effect. As compared to the bulk counterpart, the microwire shows a better combination of magnetostructural transformation parameters (magnetization difference across transformation ΔM, transformation entropy change ΔStr, thermal hysteresis ΔThys, and transformation interval ΔTint) and thus greatly reduced critical field required for complete and reversible magnetic-field-induced transformation. A strong and reversible metamagnetic transition occurred in the microwire, which facilitates the achievement of large reversible magnetoresponsive effects. Consequently, a large and reversible magnetic-field-induced entropy change ΔSm of 12.8 J kg-1 K-1 under 5 T was achieved in the microwire, which is the highest value reported heretofore in Ni-Mn-based magnetic shape memory wires. Furthermore, since microwires have a high surface/volume ratio, they exhibit very good heat exchange capability. The present Ni48.1Co2.9Mn35.0In14.0 microwire shows great potential for magnetic refrigeration. This study may stimulate further development of high-performance magnetocaloric wires for high-efficiency and environmentally friendly solid-state cooling.

  1. Synaptic transistor with a reversible and analog conductance modulation using a Pt/HfOx/n-IGZO memcapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Paul; Kim, Hyung Jun; Zheng, Hong; Beom, Geon Won; Park, Jong-Sung; Kang, Chi Jung; Yoon, Tae-Sik

    2017-06-01

    A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

  2. Synaptic transistor with a reversible and analog conductance modulation using a Pt/HfOx/n-IGZO memcapacitor.

    PubMed

    Yang, Paul; Jun Kim, Hyung; Zheng, Hong; Won Beom, Geon; Park, Jong-Sung; Jung Kang, Chi; Yoon, Tae-Sik

    2017-06-02

    A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

  3. Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach

    NASA Astrophysics Data System (ADS)

    Shaker Salem, Mohamed; Tejo, Felipe; Zierold, Robert; Sergelius, Philip; Montero Moreno, Josep M.; Goerlitz, Detlef; Nielsch, Kornelius; Escrig, Juan

    2018-02-01

    Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment.

  4. Roughness-Induced Magnetic Domain in Fe Thin Films on Land-and-Groove Structures Studied by Spin-Polarized Secondary Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu

    2003-10-01

    The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.

  5. Temperature-dependent magnetic field effect study on exciplex luminescence: probing the triton X-100 reverse micelle in cyclohexane.

    PubMed

    Das, Doyel; Nath, Deb Narayan

    2007-09-20

    The microenvironment within the reverse micelle of the nonionic surfactant Triton X-100 (TX-100) in cyclohexane has been investigated by studying the magnetic field effect (MFE) on pyrene-dimethylaniline exciplex luminescence. The nature of exciplex fluorescence and its behavior in the presence of a magnetic field have been found to vary significantly with the water content of the medium. Results are discussed in light of multiple exciplex formation within the micelle which is further supported by the fluorescence lifetime measurements. Those exciplexes emitting at longer wavelength are found to be magnetic field sensitive while those emitting toward the blue region of the spectrum are insensitive toward magnetic field. Since the exciplex's emission characteristics and magnetic field sensitivity depend on its immediate surrounding, it has been concluded that the environment within the micelle is nonuniform. With an increase in hydration level, different zones of varying polarity are created within the reverse micelle. It has been pointed out that the magnetic field sensitive components reside inside the polar core of the micelle while those located near the hydrocarbon tail are field insensitive. However it has been presumed that an interconversion between the different types of exciplexes is possible. The environment within the reverse micelle is found to be largely affected by the change in temperature, and this is reflected in the exciplex emission property and the extent of magnetic field effect. Interestingly, the variation of MFE with temperature follows different trends in the dry and the wet reverse micelle. A comparison has been drawn with the reverse micelle of the ionic surfactant to get an insight into the difference between the various types of micellar environment.

  6. Interactions and reversal-field memory in complex magnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Rotaru, Aurelian; Lim, Jin-Hee; Lenormand, Denny; Diaconu, Andrei; Wiley, John. B.; Postolache, Petronel; Stancu, Alexandru; Spinu, Leonard

    2011-10-01

    Interactions and magnetization reversal of Ni nanowire arrays have been investigated by the first-order reversal curve (FORC) method. Several series of samples with controlled spatial distribution were considered including simple wires of different lengths and diameters (70 and 110 nm) and complex wires with a single modulated diameter along their length. Subtle features of magnetic interactions are revealed through a quantitative analysis of the local interaction field profile distributions obtained from the FORC method. In addition, the FORC analysis indicates that the nanowire systems with a mean diameter of 70 nm appear to be organized in symmetric clusters indicative of a reversal-field memory effect.

  7. Magnetization reversal mechanism of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Liu, Cun-Ye; Li, Jian; Wang, Yue; Chen, Jian-Yong; Xu, Qing-Yu; Ni, Gang; Sang, Hai; Du, You-Wei

    2002-01-01

    Using the ion-beam-sputtering technique, we have fabricated Fe/Al2O3/Fe magnetic tunnelling junctions (MTJs). We have observed double-peaked shapes of curves, which have a level summit and a symmetrical feature, showing the magnetoresistance of the junction as a function of applied field. We have measured the tunnel conductance of MTJs which have insulating layers of different thicknesses. We have studied the dependence of the magnetoresistance of MTJs on tunnel conductance. The microstructures of hard- and soft-magnetic layers and interfaces of ferromagnets and insulators were probed. Analysing the influence of MJT microstructures, including those having clusters or/and granules in magnetic and non-magnetic films, a magnetization reversal mechanism (MRM) is proposed, which suggests that the MRM of tunnelling junctions may be explained by using a group-by-group reversal model of magnetic moments of the mesoscopical particles. We discuss the influence of MTJ microstructures, including those with clusters or/and granules in the ferromagnetic and non-magnetic films, on the MRM.

  8. Magnetic field manipulation of spin current in a single-molecule magnet tunnel junction with two-electron Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin

    2018-04-01

    In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.

  9. The effects of monoamine oxidase inhibitors on the ejaculatory response induced by 5-methoxy-N,N-dimethyltryptamine in the rat.

    PubMed Central

    Rényi, L.

    1986-01-01

    The ejaculatory response and other components of the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1, i.p.) were studied following single and repeated treatment of rats with eight different monoamine oxidase (MAO) inhibitors. Single and repeated treatment with the 5-HT agonist 5-MeODMT, and with low doses of the potent releaser of 5-HT, p-chloroamphetamine (PCA) were also included in the study. Repeated but not single treatment with 5-MeODMT reduced strongly but reversibly the ejaculatory response and the behavioural responses. Repeated but not single treatment with the nonselective and irreversible MAO inhibitors nialamide and pargyline reduced markedly the ejaculatory response but only slightly the 5-HT behavioural responses. Repeated treatment with the irreversible MAO-B inhibitor (-)-deprenyl, with the irreversible MAO-A inhibitor, clorgyline, with the reversible MAO-A inhibitor moclobemide, and with low doses of PCA did not affect either of the responses. Repeated but not single combined treatment with clorgyline plus PCA caused an almost complete blockade of all the four responses. The selective and reversible MAO-A inhibitors (as well as 5-HT releasers) amiflamine, alpha-ethyltryptamine, and alpha-methyltryptamine reduced markedly the ejaculatory response after both single and repeated treatments. The behavioural responses were blocked only after repeated treatment. It is concluded that single and repeated treatments of rats with different MAO inhibitors do not produce a common alteration in 5-HT2 receptor functions. Repeated treatment with 5-MeODMT caused a blockade of 75-95% of the ejaculatory response and 5-HT behavioural responses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3091132

  10. Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal

    NASA Astrophysics Data System (ADS)

    Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.

    2017-12-01

    The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.

  11. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J.; Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At lowmore » magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.« less

  12. Fast chirality reversal of the magnetic vortex by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, W. L., E-mail: wlimnd@gmail.com; Liu, R. H.; Urazhdin, S., E-mail: sergei.urazhdin@emory.edu

    2014-12-01

    The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. Themore » reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.« less

  13. Reversal of spontaneous magnetization and spontaneous exchange bias for Sm1-xYxCrO3: The effect of Y doping

    NASA Astrophysics Data System (ADS)

    Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao

    2017-11-01

    We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.

  14. Observation of magnetization and exchange bias reversals in NdFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Sharannia, M. P.; De, Santanu; Singh, Ripandeep; Das, A.; Nirmala, R.; Santhosh, P. N.

    2017-05-01

    Polycrystalline NdFe0.5Cr0.5O3 has orthorhombic structure with Pnma space group and is magnetically ordered at room temperature as confirmed by neutron diffraction. The magnetic structure involves CxGyFz type ordering of Fe3+/Cr3+ ions. NdFe0.5Cr0.5O3 shows magnetization reversal and sign reversal of exchange bias at 16 K. Nd3+ moments that get induced by the internal field of |Fe+Cr| sublattice couple antiferromagnetically with the ferromagnetic component of |Fe+Cr| sublattice. Nd3+ moments overcome the |Fe+Cr| moments at 16 K below which the material shows negative magnetization and positive exchange bias.

  15. Unveiling the Nature of Soft Gamma Repeaters and Magnetars: Scientists Measure the Most Powerful Magnet Known

    NASA Technical Reports Server (NTRS)

    Swank, Jean (Technical Monitor); Parke, William

    2002-01-01

    This newsletter from NASA Goddard Space Flight Center (GSFC) announces measurements of the magnetic field of a magnetar. The magnetic field was approx. 10(exp 15) gauss, up to 10 times more powerful than previous estimates. The newsletter also describes how the star's magnetic field slows its rotation, and how starquakes emit protons, which are trapped in this neutron star's magnetic field, and make it a soft gamma repeater (SGR).

  16. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  17. Temperature characteristics and magnetization mechanism of Fe1.2Co films

    NASA Astrophysics Data System (ADS)

    Dong, Dashun; Fang, Qingqing; Wang, Wenwen; Yang, Jingjing

    2017-11-01

    Fe1.2Co films with various thicknesses were prepared on glass substrates by pulsed laser deposition (PLD). The Fe1.2Co crystal structure exhibited a preferred orientation in the <1 1 0> direction. Also, we found that changing the film thickness affected its magnetic properties and the formation of its reversed nucleus. By measuring magnetism-temperature (M-T) curves under applied field cooling (FC) and zero-field cooling (ZFC), we found that the mechanism of the formation and growth of the reversed nucleus played a main role in blocking the motion of domain walls: the mechanism was competition between a ferromagnetic phase (FM) and an anti-ferromagnetic phase (AFM) at 10-300 K. Moreover, we found that the reversed nucleus blocked the motion of magnetic domains more at 10 K than at 300 K. We suggest that the reversed nucleus affects the magnetism more at low temperatures, which causes the coercivity to be higher at low temperature than at room temperature. These results will help us to understand the magnetic properties and temperature characteristics of FeCo thin films.

  18. Geomagnetic Polarity Epochs: Sierra Nevada II.

    PubMed

    Cox, A; Doell, R R; Dalrymple, G B

    1963-10-18

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  19. Geomagnetic polarity epochs: Sierra Nevada II

    USGS Publications Warehouse

    Cox, A.; Doell, Richard R.; Brent, Dalrymple G.

    1963-01-01

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  20. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  1. Reversible magnetic-field-induced martensitic transformation over a wide temperature window in Ni42-xCoxCu8Mn37Ga13 alloys

    NASA Astrophysics Data System (ADS)

    Hua, Hui; Wang, Jingmin; Jiang, Chengbao; Xu, Huibin

    2018-05-01

    Ni42-xCoxCu8Mn37Ga13 (0 ≤ x ≤ 14) alloys are reported to exhibit a magnetostructural transition from weakly-magnetic martensite to ferromagnetic austenite over a rather wide temperature window ranging from 200 K to 380 K. Simultaneously a large magnetization change Δσ of up to 105 Am2 kg-1 is obtained at the martensitic transformation. A reversible magnetic-field-induced martensitic transformation is realized, resulting in a large magnetocaloric effect related to the high magnetic entropy change with a broad working temperature span. This work shows how it is possible to effectively tailor the magnetostructural transition in Ni-Mn-Ga alloys so as to achieve a reversible magnetic-field-induced martensitic transformation and associated functionalities.

  2. Influence of magnetic field on zebrafish activity and orientation in a plus maze.

    PubMed

    Osipova, Elena A; Pavlova, Vera V; Nepomnyashchikh, Valentin A; Krylov, Viacheslav V

    2016-01-01

    We describe an impact of the geomagnetic field (GMF) and its modification on zebrafish's orientation and locomotor activity in a plus maze with four arms oriented to the north, east, south and west. Zebrafish's directional preferences were bimodal in GMF: they visited two arms oriented in opposed directions (east-west) most frequently. This bimodal preference remained stable for same individuals across experiments divided by several days. When the horizontal GMF component was turned 90° clockwise, the preference accordingly shifted by 90° to arms oriented to the north and south. Other modifications of GMF (reversal of both vertical and horizontal GMF components; reversal of vertical component only; and reversal of horizontal component only) did not exert any discernible effect on the orientation of zebrafish. The 90° turn of horizontal component also resulted in a significant increase of fish's locomotor activity in comparison with the natural GMF. This increase became even more pronounced when the horizontal component was repeatedly turned by 90° and back with 1min interval between turns. Our results show that GMF and its variations should be taken into account when interpreting zebrafish's directional preferences and locomotor activity in mazes and other experimental devices. Copyright © 2015. Published by Elsevier B.V.

  3. Cu-Ag alloy Bitter type magnet for repeating pulsed field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motokawa, M.; Nojiri, H.; Mitsudo, S.

    1996-07-01

    Cu-Ag alloy is used for the repeating pulsed field magnets. It is found that fields up to 22 T or more will be available for this purpose instead of 16 T which is obtained with normal copper magnet used at present. This result is a big advantage for neutron diffraction experiments.

  4. Cardiac Structure and Function in Cushing's Syndrome: A Cardiac Magnetic Resonance Imaging Study

    PubMed Central

    Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-01-01

    Background: Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. Objectives: The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Methods: Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2–12 mo) after the treatment of hypercortisolism. Results: Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P < .001 for all) and increased end-diastolic LV segmental thickness (P < .001). Treatment of hypercortisolism was associated with an improvement in ventricular and atrial systolic performance, as reflected by a 15% increase in the LV ejection fraction (P = .029), a 45% increase in the LA ejection fraction (P < .001), and an 11% increase in the RV ejection fraction (P = NS). After treatment, the LV mass index and end-diastolic LV mass to volume ratio decreased by 17% (P < .001) and 10% (P = .002), respectively. None of the patients had late gadolinium myocardial enhancement. Conclusion: Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism. PMID:25093618

  5. Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Kashi, M. Almasi; Ramazani, A.

    2018-05-01

    Magnetic nanowires electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeCoNi NWs with varied diameters (between 60 and 150 nm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. X-ray diffraction patterns indicated the formation of FeCoNi NWs with fcc FeNi and bcc FeCo alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing diameter. First-order reversal curve measurements revealed that, with increasing diameter from 60 to 150 nm, besides a transition from a single domain (SD) state to a pseudo SD state, an increase in the reversible magnetization component of the NWs from 11% to 24% occurred.

  6. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  7. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    PubMed

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  8. Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4

    NASA Astrophysics Data System (ADS)

    Honda, T.; White, J. S.; Harris, A. B.; Chapon, L. C.; Fennell, A.; Roessli, B.; Zaharko, O.; Murakami, Y.; Kenzelmann, M.; Kimura, T.

    2017-06-01

    Despite remarkable progress in developing multifunctional materials, spin-driven ferroelectrics featuring both spontaneous magnetization and electric polarization are still rare. Among such ferromagnetic ferroelectrics are conical spin spiral magnets with a simultaneous reversal of magnetization and electric polarization that is still little understood. Such materials can feature various multiferroic domains that complicates their study. Here we study the multiferroic domains in ferromagnetic ferroelectric Mn2GeO4 using neutron diffraction, and show that it features a double-Q conical magnetic structure that, apart from trivial 180o commensurate magnetic domains, can be described by ferromagnetic and ferroelectric domains only. We show unconventional magnetoelectric couplings such as the magnetic-field-driven reversal of ferroelectric polarization with no change of spin-helicity, and present a phenomenological theory that successfully explains the magnetoelectric coupling. Our measurements establish Mn2GeO4 as a conceptually simple multiferroic in which the magnetic-field-driven flop of conical spin spirals leads to the simultaneous reversal of magnetization and electric polarization.

  9. Influence of repeated insertion-removal cycles on the force and magnetic flux leakage of magnetic attachments: an in vitro study.

    PubMed

    Hao, Zhichao; Chao, Yonglie; Meng, Yukun; Yin, Hongmin

    2014-08-01

    Magnetic attachments are widely used in overdentures and maxillofacial prostheses. Because the patient will routinely have to insert and remove a removable prosthesis, the retentive force and magnetic flux leakage of the magnetic attachments after repeated insertion and removal must be evaluated to assess their clinical performance. The purpose of this in vitro study was to investigate the retentive force and flux leakage of magnetic attachments after repeated insertion and removal. Magfit EX600W magnet-keeper combinations (n=5) were used in this study. After 5000, 10,000, and 20,000 insertion-removal cycles, the retentive force of the magnetic attachments was measured 5 times at a crosshead speed of 5 mm/min with a universal testing machine. Magnetic flux leakage at 3 positions (P1, the upper surface of the magnet; P2, the lower surface of the keeper; and P3, the lateral side of the magnetic attachment set) was evaluated with a gaussmeter. Data were statistically analyzed by 1-way ANOVA (α=.05). The morphology of the abraded surfaces for both the magnet and the keeper was observed with an optical microscope (5×). The mean retentive force decreased significantly after 5000, 10,000, and 20,000 insertion-removal movements (P<.05). Significant differences of flux leakage were also observed at P1 after 5000 cycles and 10,000 cycles, at P2 after 5000 cycles, and at P3 after 5000, 10,000, and 20,000 insertion-removal cycles (P < .05). However, no significant differences in flux leakage were evident after 20,000 cycles at P1 and 10,000 cycles and 20,000 cycles at P2. Repeated insertion and removal influenced the retentive force and magnetic flux leakage of the magnetic attachments. Retentive force decreased significantly after repeated insertion-removal cycles, whereas the variation of magnetic flux leakage depended on refitting cycles and positions of the magnetic attachments. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Barwal, Vineet; Husain, Sajid; Behera, Nilamani; Goyat, Ekta; Chaudhary, Sujeet

    2018-02-01

    Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (Ts) by DC-magnetron sputtering. An M -shaped curve is observed in the in-plane angular (0°-360°) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal ( M -shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (Mr/Ms) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.

  11. A Rare Complication of Cochlear Implantation After Magnetic Resonance Imaging: Reversion of the Magnet.

    PubMed

    Öztürk, Erkan; Doruk, Can; Orhan, Kadir Serkan; Çelik, Mehmet; Polat, Beldan; Güldiken, Yahya

    2017-06-01

    Cochlear implants are mechanical devices used for patients with severe sensory-neural hearing loss, which has an inner magnet. It is proven that 1.5 Tesla magnetic resonance imaging (MRI) scanners are safe to use in patients with cochlear implant. In our patient, the authors aim to introduce a rare complication caused after a 1.5 Tesla MRI scanning and the management of this situation; the reversion of the magnet of the implant without displacement and significance of surgery in management.

  12. Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy.

    PubMed

    Krichevtsov, Boris B; Gastev, Sergei V; Suturin, Sergey M; Fedorov, Vladimir V; Korovin, Alexander M; Bursian, Viktor E; Banshchikov, Alexander G; Volkov, Mikhail P; Tabuchi, Masao; Sokolov, Nikolai S

    2017-01-01

    Thin (4-20 nm) yttrium iron garnet (Y 3 Fe 5 O 12 , YIG) layers have been grown on gadolinium gallium garnet (Gd 3 Ga 5 O 12 , GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe 3+ sublattices were studied by XMCD.

  13. Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Krichevtsov, Boris B.; Gastev, Sergei V.; Suturin, Sergey M.; Fedorov, Vladimir V.; Korovin, Alexander M.; Bursian, Viktor E.; Banshchikov, Alexander G.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2017-12-01

    Thin (4-20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD.

  14. Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy

    PubMed Central

    Krichevtsov, Boris B.; Gastev, Sergei V.; Suturin, Sergey M.; Fedorov, Vladimir V.; Korovin, Alexander M.; Bursian, Viktor E.; Banshchikov, Alexander G.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2017-01-01

    Abstract Thin (4–20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700–1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner–Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD. PMID:28685003

  15. The topology of intrasector reversals of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  16. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dhritiman; Mamun Al-Rashid, Md; Atulasimha, Jayasimha

    2017-10-01

    Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

  17. Reversing pathological neural activity using targeted plasticity.

    PubMed

    Engineer, Navzer D; Riley, Jonathan R; Seale, Jonathan D; Vrana, Will A; Shetake, Jai A; Sudanagunta, Sindhu P; Borland, Michael S; Kilgard, Michael P

    2011-02-03

    Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders.

  18. Reversing pathological neural activity using targeted plasticity

    PubMed Central

    Engineer, Navzer D.; Riley, Jonathan R.; Seale, Jonathan D.; Vrana, Will A.; Shetake, Jai A.; Sudanagunta, Sindhu P.; Borland, Michael S.; Kilgard, Michael P.

    2012-01-01

    Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus1–3. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively1,4. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations5. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders. PMID:21228773

  19. Periodic alternating nystagmus during caloric stimulation.

    PubMed

    Taki, Masakatsu; Hasegawa, Tatsuhisa; Adachi, Naoko; Fujita, Tomoki; Sakaguchi, Hirofumi; Hisa, Yasuo

    2014-04-01

    Periodic alternating nystagmus (PAN) is a form of horizontal jerk nystagmus characterized by periodic reversals in direction. We report a case who exhibited transient PAN induced by caloric stimulation. The patient was a 75-year-old male. He had experienced floating sensation in January 2010. Eight months later, he was referred to our university hospital. Gaze nystagmus and positional tests revealed no nystagmus. Only weak right-beating horizontal nystagmus was observed during left Dix-Hallpike maneuver. Electronystagmography showed normal saccadic and smooth pursuit eye movements. The optokinetic nystagmus pattern test was also bilaterally normal. However, during the caloric stimulation to the right ear, at 166 s from the start of irrigation, the direction of nystagmus alternated from leftward to rightward, and thereafter this reversal of direction repeated 15 times. Magnetic resonance imaging showed no significant lesion except for chronic ischemia in the brain. The patient probably had some kind of latent lesion of impaired velocity storage and exhibited transient PAN induced by caloric stimulation. Caloric stimulation is useful and simple examination to disclose latent eye movement disorders of which velocity storage mechanism is impaired. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yue; Xu, Ke; Jiang, Weilin

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  1. On the age of the hominid fossils at the Sima de los Huesos, Sierra de Atapuerca, Spain: paleomagnetic evidence.

    PubMed

    Parés, J M; Pérez-González, A; Weil, A B; Arsuaga, J L

    2000-04-01

    We report new paleomagnetic data for the Middle Pleistocene hominid-bearing strata in the Sima de los Huesos, North Spain. Sediments (brown muds with human and bear fossils and the underlying sterile clayey and sandy unit) preserve both normal and reversed magnetic components. The sterile unit has exclusively reversed magnetization, dating back to the Matuyama Chron, and thus is Lower Pleistocene in age. The overlying fossiliferous muds have a dominant normal magnetization that overprints a partially resolved reversed magnetization. These data are compatible with one of the reversal events that occurred during the Brunhes Chron. Combined with the existing U-series dates and evidence from the macro- and microfauna, these paleomagnetic results suggest an age of the hominid fossils between 325 to 205 ka, whereas the underlying sand and silts are older than 780 ka. Copyright 2000 Wiley-Liss, Inc.

  2. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE PAGES

    Cao, Yue; Xu, Ke; Jiang, Weilin; ...

    2015-07-03

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  3. Dipping Magnetic Reversal Boundaries at Endeavor Deep: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Pockalny, R. A.; Shields, A. C.; Larson, R. L.; Popham, C.

    2005-12-01

    Endeavor Deep, created by ongoing rifting along the northeastern boundary of the Juan Fernandez Microplate, provides a generous 75-km long view of the upper 1-3 km of oceanic crust created ~3 Ma at a fast-spreading ridge (~80 km/Myr, half-rate). Recent near-bottom surveys with the ROV Jason collected high-resolution video, rock samples, and 3-component magnetometer data along a 5 km-wide section of the southern wall of the deep. The video and rock samples define a crustal section with 300-500 m of primarily pillows and flows overlying a 400-500 m transition zone of extrusives and dykes. Forward modeling of the total magnetic intensity calculated from the 3-component magnetometer data identifies a magnetic polarity reversal that corresponds to a reversal boundary within magnetic anomaly 2a (C2An.2r - C2AN.3n , ~3.33 Ma). The location of the modeled polarity transition suggests the reversal boundary dips downward toward the original ridge axis with shallow dips (15 degrees) in the extrusive layer becoming increasingly steeper (25 degrees) in the deeper transition zone. The dipping character of the reversal boundary has also been observed along the walls of the Blanco Fracture Zone and is consistent with evolving crustal accretion models for seafloor created at intermediate- and fast-spreading rates, which predicts the rotation of the upper extrusive layer back toward the ridge axis. As a consequence of this rotation, originally horizontal flow boundaries will dip back toward the ridge axis and the magnitude of the dip will increase with depth into the crustal section. A small reversed magnetic polarity is also observed deeper within normally magnetized C2AN.3n chron, but with a very shallow dip (3-5 degrees). We doubt this is another normal-reverse-normal polarity transition, since the anomaly suspiciously coincides with the transition from dykes to extrusives. Therefore, we believe this anomaly is either the result of an edge-effect created by the different magnetic properties of the dykes and extrusives or evidence off-axis volcanism that occurred during a more recent period of normal magnetization.

  4. Magnetic anomaly study and geologic implications for Gilbert and Tokelau seamounts, Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sager, W. W.; Koppers, A. A.; Staudigel, H.

    2006-12-01

    The Gilbert and Tokelau seamounts are linear chains in the central Pacific with trends similar to the Emperor seamounts, implying the two poorly-known chains were formed by the same mechanism, widely regarded as hotspot volcanism. Multibeam bathymetry and magnetic data were collected over many Gilbert and Tokelau seamounts and have been used to make magnetic models to help understand the geologic evolution of the two chains. Magnetic models were done for 10 Gilbert and 10 Tokelau seamounts. Gilbert seamounts gave about equal number of reversed and normal polarity models and several have complex magnetizations that may indicate a mixture of opposing polarity rocks. Both observations imply formation during a time that included multiple geomagnetic reversals, consistent with radiometric dates from dredged rocks (65-72 Ma) [Koppers, A., and H. Staudigel, Science, 307, p. 905, 2005]. In the Tokelau chain, large volcanic edifices with summit islands (Howland, Baker, Fakaofu) also appear to have complex anomalies, making interpretation difficult. These volcanoes may also have formed over periods of time including magnetic reversals. The rest of the modeled central Tokelau seamounts have simpler magnetic anomalies and all but one is reversely polarized (6 reversed, 1 normal). Although this bias seems unusual if the geomagnetic field spent equal time in both polarities, it is consistent with radiometric ages of 59-66 Ma [Koppers and Staudigel, 2005], a period of dominantly reversed polarity. Paleomagnetic poles calculated from both seamount groups fall along the N-S trend of the Late Cretaceous to Cenozoic Pacific apparent polar wander path, consistent with Latest Cretaceous or early Cenozoic radiometric ages. More than half of the poles lie >30° east of the accepted polar wander path, perhaps indicating that the early Cenozoic polar wander path should be farther east. Ten (55%) of the paleomagnetic poles have lower latitudes than expected for Late Cretaceous or Cenozoic seamounts and all but one of these seamounts is reversely polarized. This situation implies a present-field overprint that steepens the calculated magnetization vectors for these seamounts and also renders the calculated seamount paleolatitudes unsuitable for interpretation.

  5. Ultra-fast magnetic vortex core reversal by a local field pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less

  6. Random Fields and Collective Effects in Molecular Magnets

    DTIC Science & Technology

    2018-01-29

    longitudinal fields the final state consists of only partially reversed spins. Further, we measured the front speed as a function of applied magnetic...field. The theory of magnetic deflagration, together with a modification that takes into account the partial spin reversal, fits the transverse field...Conference Paper or Presentation Conference Name: APS March Meeting 2016 Conference Location: Baltimore, Paper Title: Time-resolved Measurements

  7. Magnetization dynamics of single-domain nanodots and minimum energy dissipation during either irreversible or reversible switching

    NASA Astrophysics Data System (ADS)

    Madami, Marco; Gubbiotti, Gianluca; Tacchi, Silvia; Carlotti, Giovanni

    2017-11-01

    Single- or multi-layered planar magnetic dots, with lateral dimensions ranging from tens to hundreds of nanometers, are used as elemental switches in current and forthcoming devices for information and communication technology (ICT), including magnetic memories, spin-torque oscillators and nano-magnetic logic gates. In this review article, we will first discuss energy dissipation during irreversible switching protocols of dots of different dimensions, ranging from a few tens of nanometers to the micrometric range. Then we will focus on the fundamental energy limits of adiabatic (slow) erasure and reversal of a magnetic nanodot, showing that dissipationless operation is achievable, provided that both dynamic reversibility (arbitrarily slow application of external fields) and entropic reversibility (no free entropy increase) are insured. However, recent theoretical and experimental tests of magnetic-dot erasure reveal that intrinsic defects related to materials imperfections such as roughness or polycrystallinity, may cause an excess of dissipation if compared to the minimum theoretical limit. We will conclude providing an outlook on the most promising strategies to achieve a new generation of power-saving nanomagnetic logic devices based on clusters of interacting dots and on straintronics.

  8. Magnetization reversal of an individual exchange-biased permalloy nanotube

    NASA Astrophysics Data System (ADS)

    Buchter, A.; Wölbing, R.; Wyss, M.; Kieler, O. F.; Weimann, T.; Kohlmann, J.; Zorin, A. B.; Rüffer, D.; Matteini, F.; Tütüncüoglu, G.; Heimbach, F.; Kleibert, A.; Fontcuberta i Morral, A.; Grundler, D.; Kleiner, R.; Koelle, D.; Poggio, M.

    2015-12-01

    We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and a temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18 ±2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by x-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.

  9. Annual Report 2015: High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2016-06-01

    simulations become unstable as time evolves leading to the magnetic island collision with the boundary and destruction of the close magnetic field structure...compares well with the results of the Hall-MHD code. 1 R. D. Milroy, "A magnetohydrodynamic model of rotating magnetic field current drive in a field...reversed configuration," Physics of Plasmas, vol. 7, no. 10. 2 Distribution A: Approved for Public Release. PA# 16202 Figure 1. Magnetic field

  10. Magnetic stripe domains of [Pt/Co/Cu]{sub 10} multilayer near spin reorientation transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L.; Liang, J. H.; Xiao, X.

    The dependence of magnetic anisotropy, magnetic domain patterns and magnetization reversal processes in [Pt/Co(t{sub Co})/Cu]{sub 10} film stack epitaxied on Cu (111) substrate have been studied as a function of the Co layer thickness t{sub Co}, by magneto-optic polar Kerr magnetometry and microscopy. We find the film undergoes spin reorientation transition from out-of-plane to in-plane as t{sub Co} increases. The SRT thickness is verified by Rotating-field Magneto-Optic Kerr effect method. The film exhibits the stripe domain structures at remanence with the width decreasing while t{sub Co} approaches SRT. As demonstrated by the first order reversal curve measurement, the magnetization reversalmore » process encompasses irreversible domain nucleation, domain annihilation at large field and reversible domain switching near remanence.« less

  11. Laboratory investigation of a novel method to accelerate healing in asphalt mixtures using thermal treatment.

    DOT National Transportation Integrated Search

    2009-08-01

    Asphalt binders have an inherent ability to reverse damage in the form of micro-cracks that is caused : due to the repeated action of external loads. This reversal occurs during rest periods between load : cycles. The phenomenon of crack reversal is ...

  12. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  13. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  14. Gravitational dynamos and the low-frequency geomagnetic secular variation

    PubMed Central

    Olson, P.

    2007-01-01

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  15. Reversal magnetization, spin reorientation, and exchange bias in YCr O3 doped with praseodymium

    NASA Astrophysics Data System (ADS)

    Durán, A.; Escamilla, R.; Escudero, R.; Morales, F.; Verdín, E.

    2018-01-01

    Crystal structure, thermal properties, and magnetic properties were studied systematically in Y1 -xP rxCr O3 with 0.0 ≤x ≤0.3 compositions. Magnetic susceptibility and specific-heat measurements show an increase in the antiferromagnetic transition temperature (TN) as Pr is substituted in the Y sites and notable magnetic features are observed below TN. Strong coupling between magnetic and crystalline parameters is observed in a small range of Pr compositions. A small perturbation in the lattice parameters by a Pr ion is sufficient to induce a spin-reorientation transition followed by magnetization reversal to finally induce the exchange-bias effect. The spin-reorientation temperature (TSR) is increased from 35 to 149 K for 0.025 ≤x ≤0.1 compositions. It is found that the Cr spin sublattice rotates continuously from TSR to a new spin configuration at lower temperature. In addition, magnetization reversal is observed at T*˜35 K for x =0.05 up to T*˜63 K for x =0.20 composition. The M -H curves show a negative exchange-bias effect induced by Pr ions, which are observed below 100 K and are more intense at 5 K. At 10 K, the magnetic contribution of the specific heat as well as the ZFC magnetization show the rise of a peak with increasing Pr content. The magnetic anomaly could be associated with the freezing of the Pr magnetic moment randomly distributed at the 4 c crystallographic site. A clear correspondence between spin reorientation, magnetization reversal, and exchange-bias anisotropy with the tilting and octahedral distortion is also discussed.

  16. Reversible Control of Interfacial Magnetism through Ionic-Liquid-Assisted Polarization Switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herklotz, Andreas; Guo, Er-Jia; Wong, Anthony T.

    The ability to control magnetism of materials via electric field enables a myriad of technological innovations in information storage, sensing, and computing. In this paper, we use ionic-liquid-assisted ferroelectric switching to demonstrate reversible modulation of interfacial magnetism in a multiferroic heterostructure composed of ferromagnetic (FM) La 0.8Sr 0.2MnO 3 and ferroelectric (FE) PbZr 0.2Ti 0.8O 3. It is shown that ionic liquids can be used to persistently and reversibly switch a large area of a FE film. Finally, this is a prerequisite for polarized neutron reflectometry (PNR) studies that are conducted to directly probe magnetoelectric coupling of the FE polarizationmore » to the interfacial magnetization.« less

  17. Hysteresis properties of the amorphous high permeability Co66Fe3Cr3Si15B13 alloy

    NASA Astrophysics Data System (ADS)

    Tsepelev, V. S.; Starodubtsev, Yu. N.; Tsepeleva, N. P.

    2018-04-01

    The scaling law of minor loops was studied on an amorphous alloy Co66Fe3Cr3Si15B13 with a very high initial permeability (more than 150000) and low coercivity (about 0.1 A/m). An analytical expression for the coercive force in the Rayleigh region was derived. The coercive force is connected with the maximal magnetic field Hmax via the reversibility coefficient μi/ηHmax. Reversibility coefficient shows the relationship between reversible and irreversible magnetization processes. A universal dependence of magnetic losses for hysteresis Wh on the remanence Br with a power factor of 1.35 is confirmed for a wide range of magnetic fields strengths.

  18. Reversible Control of Interfacial Magnetism through Ionic-Liquid-Assisted Polarization Switching

    DOE PAGES

    Herklotz, Andreas; Guo, Er-Jia; Wong, Anthony T.; ...

    2017-02-06

    The ability to control magnetism of materials via electric field enables a myriad of technological innovations in information storage, sensing, and computing. In this paper, we use ionic-liquid-assisted ferroelectric switching to demonstrate reversible modulation of interfacial magnetism in a multiferroic heterostructure composed of ferromagnetic (FM) La 0.8Sr 0.2MnO 3 and ferroelectric (FE) PbZr 0.2Ti 0.8O 3. It is shown that ionic liquids can be used to persistently and reversibly switch a large area of a FE film. Finally, this is a prerequisite for polarized neutron reflectometry (PNR) studies that are conducted to directly probe magnetoelectric coupling of the FE polarizationmore » to the interfacial magnetization.« less

  19. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    PubMed

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface.

  20. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    PubMed

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  1. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples.

    PubMed

    Prats-Alfonso, Elisabet; Abad, Llibertat; Casañ-Pastor, Nieves; Gonzalo-Ruiz, Javier; Baldrich, Eva

    2013-01-15

    This work demonstrates the implementation of iridium oxide films (IROF) grown on silicon-based thin-film platinum microelectrodes, their utilization as a pH sensor, and their successful formatting into a urea pH sensor. In this context, Pt electrodes were fabricated on Silicon by using standard photolithography and lift-off procedures and IROF thin films were growth by a dynamic oxidation electrodeposition method (AEIROF). The AEIROF pH sensor reported showed a super-Nerstian (72.9±0.9mV/pH) response between pH 3 and 11, with residual standard deviation of both repeatability and reproducibility below 5%, and resolution of 0.03 pH units. For their application as urea pH sensors, AEIROF electrodes were reversibly modified with urease-coated magnetic microparticles (MP) using a magnet. The urea pH sensor provided fast detection of urea between 78μM and 20mM in saline solution, in sample volumes of just 50μL. The applicability to urea determination in real urine samples is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Observation of end-vortex nucleation in individual ferromagnetic nanotubes

    NASA Astrophysics Data System (ADS)

    Mehlin, A.; Gross, B.; Wyss, M.; Schefer, T.; Tütüncüoglu, G.; Heimbach, F.; Fontcuberta i Morral, A.; Grundler, D.; Poggio, M.

    2018-04-01

    The reversal of uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to occur through the nucleation and propagation of vortex domains forming at the ends. We provide experimental evidence for this behavior through dynamic cantilever magnetometry measurements of individual FNTs. In particular, we identify the nucleation of the vortex end domains as a function of applied magnetic field and show that they mark the onset of magnetization reversal. We find that the nucleation field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end-vortex nucleation enabled by our findings is promising for the production of FNTs with tailored reversal properties.

  3. Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface.

    PubMed

    Mallik, Srijani; Mattauch, Stefan; Dalai, Manas Kumar; Brückel, Thomas; Bedanta, Subhankar

    2018-04-03

    Probing the hybridized magnetic interface between organic semiconductor (OSC) and ferromagnetic (FM) layers has drawn significant attention in recent years because of their potential in spintronic applications. Recent studies demonstrate various aspects of organic spintronics such as magnetoresistance, induced interface moment etc. However, not much work has been performed to investigate the implications of such OSC/FM interfaces on the magnetization reversal and domain structure which are the utmost requirements for any applications. Here, we show that non-magnetic Fullerene can obtain non-negligible magnetic moment at the interface of Fe(15 nm)/C 60 (40 nm) bilayer. This leads to substantial effect on both the magnetic domain structure as well as the magnetization reversal when compared to a single layer of Fe(15 nm). This is corroborated by the polarized neutron reflectivity (PNR) data which indicates presence of hybridization at the interface by the reduction of magnetic moment in Fe. Afterwards, upto 1.9 nm of C 60 near the interface exhibits magnetic moment. From the PNR measurements it was found that the magnetic C 60 layer prefers to be aligned anti-parallel with the Fe layer at the remanant state. The later observation has been confirmed by domain imaging via magneto-optic Kerr microscopy.

  4. Local observation of reverse-domain superconductivity in a superconductor-ferromagnet hybrid.

    PubMed

    Fritzsche, J; Moshchalkov, V V; Eitel, H; Koelle, D; Kleiner, R; Szymczak, R

    2006-06-23

    Nanoscale magnetic and superconducting properties of the superconductor-ferromagnet Nb/PbFe12O19 hybrid were studied as a function of applied magnetic fields. Low-temperature scanning laser microscopy (LTSLM) together with transport measurements were carried out in order to reveal local variations of superconductivity induced by the magnetic field template produced by the ferromagnetic substrate. Room temperature magnetic force microscopy (MFM) was performed and magnetization curves were taken at room and low temperature to investigate the magnetic properties of the hybrid. Comparative analysis of the LTSLM and the MFM images has convincingly demonstrated the presence of the reverse-domain superconductivity.

  5. System and method for manipulating domain pinning and reversal in ferromagnetic materials

    DOEpatents

    Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel

    2013-10-15

    A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.

  6. Investigations of stacking fault density in perpendicular recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi

    In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less

  7. Magnetization switching process in a torus nanoring with easy-plane surface anisotropy

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-11-01

    We have studied the effects of surface shape anisotropy in the magnetization behavior of a torus nanoring by means of Monte Carlo simulations. Stable states (vortex and reverse vortex states) and metastable states (onion and asymmetric onion states) were found in the torus nanoring. The probability of occurrence of the metastable states (stable states) tends to decrease (increase) as the amount of Monte Carlo steps per spin, temperature steps and negative values of the anisotropy constant increase. We evaluated under which conditions it is possible to switch the magnetic state of the torus nanoring from a vortex to a reverse vortex state by applying a circular magnetic field at certain temperature interval. The switching probability (from a vortex to a reverse vortex state) depends on the value of the current intensity, which generates the circular magnetic field, and the temperature interval where the magnetic field is applied. There is a linear relationship between the current intensity and the minimum temperature interval above which the vortex state can be switched.

  8. Spin torque oscillator for microwave assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Kubota, Hitoshi

    2018-05-01

    A theoretical study is given for the self-oscillation excited in a spin torque oscillator (STO) consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned layer in the presence of a perpendicular magnetic field. This type of STO is a potential candidate for a microwave source of microwave assisted magnetization reversal (MAMR). It is, however, found that the self-oscillation applicable to MAMR disappears when the perpendicular field is larger than a critical value, which is much smaller than a demagnetization field. This result provides a condition that the reversal field of a magnetic recording bit by MAMR in nanopillar structure should be smaller than the critical value. The analytical formulas of currents determining the critical field are obtained, which indicate that a material with a small damping is not preferable to acheive a wide range of the self-oscillation applicable to MAMR, although such a material is preferable from the viewpoint of the reduction of the power consumption.

  9. Electric-field-induced magnetic domain writing in a Co wire

    NASA Astrophysics Data System (ADS)

    Tanaka, Yuki; Hirai, Takamasa; Koyama, Tomohiro; Chiba, Daichi

    2018-05-01

    We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.

  10. Voltage control of magnetic single domains in Ni discs on ferroelectric BaTiO3

    NASA Astrophysics Data System (ADS)

    Ghidini, M.; Zhu, B.; Mansell, R.; Pellicelli, R.; Lesaine, A.; Moya, X.; Crossley, S.; Nair, B.; Maccherozzi, F.; Barnes, C. H. W.; Cowburn, R. P.; Dhesi, S. S.; Mathur, N. D.

    2018-06-01

    For 1 µm-diameter Ni discs on a BaTiO3 substrate, the local magnetization direction is determined by ferroelectric domain orientation as a consequence of growth strain, such that single-domain discs lie on single ferroelectric domains. On applying a voltage across the substrate, ferroelectric domain switching yields non-volatile magnetization rotations of 90°, while piezoelectric effects that are small and continuous yield non-volatile magnetization reversals that are non-deterministic. This demonstration of magnetization reversal without ferroelectric domain switching implies reduced fatigue, and therefore represents a step towards applications.

  11. Psi- vectors: murine leukemia virus-based self-inactivating and self-activating retroviral vectors.

    PubMed Central

    Delviks, K A; Hu, W S; Pathak, V K

    1997-01-01

    We have developed murine leukemia virus (MLV)-based self-inactivating and self-activating vectors to show that the previously demonstrated high-frequency direct repeat deletions are not unique to spleen necrosis virus (SNV) or the neomycin drug resistance gene. Retroviral vectors pKD-HTTK and pKD-HTpTK containing direct repeats composed of segments of the herpes simplex virus type 1 thymidine kinase (HTK) gene were constructed; in pKD-HTpTK, the direct repeat flanked the MLV packaging signal. The generation of hypoxanthine-aminopterin-thymidine-resistant colonies after one cycle of retroviral replication demonstrated functional reconstitution of the HTK gene. Quantitative Southern analysis indicated that direct repeat deletions occurred in 57 and 91% of the KD-HTTK and KD-HTpTK proviruses, respectively. These results demonstrate that (i) deletion of direct repeats occurs at similar high frequencies in SNV and MLV vectors, (ii) MLV psi can be efficiently deleted by using direct repeats, (iii) suicide genes can be functionally reconstituted during reverse transcription, and (iv) the psi region may be a hot spot for reverse transcriptase template switching events. PMID:9223521

  12. Observed nonpotential magnetic fields and the inferred flow of electric currents at a location of repeated flaring

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.

    1988-01-01

    The vector magnetic field of an active region at a location of repeated flaring is studied in order to explore the nature of the currents flowing in the areas where the flares initiated. The observed transverse component of the magnetic field is used to obtain the component of electric current density crossing the photosphere along the line-of-sight. It is found that currents flow out of an area of positive magnetic polarity and across the magnetic inversion line into two areas of negative polarity. Characteristics of the calculated source field are discussed.

  13. Genome Modification Leads to Phenotype Reversal in Human Myotonic Dystrophy type 1 iPS-cell Derived Neural Stem Cells

    PubMed Central

    Xia, Guangbin; Gao, Yuanzheng; Jin, Shouguang; Subramony, SH.; Terada, Naohiro; Ranum, Laura P.W.; Swanson, Maurice S.; Ashizawa, Tetsuo

    2015-01-01

    Objective Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3’ UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step towards autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Methods Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 iPS cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization (RNA-FISH). Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. Results The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs was reversed to normal pattern in genome-modified NSCs. Interpretation Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1. PMID:25702800

  14. The reversed and normal flux contributions to axial dipole decay for 1880-2015

    NASA Astrophysics Data System (ADS)

    Metman, M. C.; Livermore, P. W.; Mound, J. E.

    2018-03-01

    The axial dipole component of Earth's internal magnetic field has been weakening since at least 1840, an effect widely believed to be attributed to the evolution of reversed flux patches (RFPs). These are regions on the core-mantle boundary (CMB) where the sign of radial flux deviates from that of the dominant sign of hemispheric radial flux. We study dipole change over the past 135 years using the field models gufm1, COV-OBS.x1 and CHAOS-6; we examine the impact of the choice of magnetic equator on the identification of reversed flux, the contribution of reversed and normal flux to axial dipole decay, and how reversed and normal field evolution has influenced the axial dipole. We show that a magnetic equator defined as a null-flux curve of the magnetic field truncated at spherical harmonic degree 3 allows us to robustly identify reversed flux, which we demonstrate is a feature of at least degree 4 or 5. Additionally, our results indicate that the evolution of reversed flux accounts for approximately two-thirds of the decay of the axial dipole, while one third of the decay is attributed to the evolution of the normal field. We find that the decay of the axial dipole over the 20th century is associated with both the expansion and poleward migration of reversed flux patches. In contrast to this centennial evolution, changes in the structure of secular variation since epoch 2000 indicate that poleward migration currently plays a much reduced role in the ongoing dipole decay.

  15. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.

    PubMed

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young

    2012-08-01

    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.

  16. Magnetic elements for switching magnetization magnetic force microscopy tips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambel, V.; Elias, P.; Gregusova, D.

    2010-09-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less

  17. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime

    2014-11-15

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increasemore » again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.« less

  18. Electron temperature structures associated with magnetic tearing modes in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Stephens, Hillary Dianne

    Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient within an m/m = 1/5 island is observed just after a global reconnection event. This suggests local heating and relatively good confinement within the island. Local power balance calculations suggest reduced thermal transport within this island. During improved confinement plasmas with reduced stochasticity, brought about by a reduction in tearing instability temperature fluctuations correlated with magnetic modes are small with characteristic fluctuation amplitudes of T˜e/Te ˜ 2%.

  19. REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Z. G.; Wang, J. S.; Huang, Y. F.

    Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has suchmore » a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.« less

  20. Repeated nitrous oxide exposure in rats causes a thermoregulatory sign-reversal with concurrent activation of opposing thermoregulatory effectors

    PubMed Central

    Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J

    2014-01-01

    Initial administration of 60% nitrous oxide (N2O) to rats at an ambient temperature of 21°C decreases core temperature (Tc), primarily via increased heat loss (HL). Over repeated N2O administrations, rats first develop tolerance to this hypothermia and subsequently exhibit hyperthermia (a sign-reversal) due primarily to progressive increases in heat production (HP). When rats initially receive 60% N2O in a thermal gradient, they become hypothermic while selecting cooler ambient temperatures that facilitate HL. This study investigated whether rats repeatedly administered 60% N2O in a thermal gradient would use the gradient to behaviorally facilitate, or oppose, the development of chronic tolerance and a hyperthermic sign-reversal. Male Long-Evans rats (N = 16) received twelve 3-h administrations of 60% N2O in a gas-tight, live-in thermal gradient. Hypothermia (Sessions 1–3), complete chronic tolerance (Sessions 4–6), and a subsequent transient hyperthermic sign-reversal (Sessions 7–12) sequentially developed. Despite the progressive recovery and eventual hyperthermic sign-reversal of Tc, rats consistently selected cooler ambient temperatures during all N2O administrations. A final 60% N2O administration in a total calorimeter indicated that the hyperthermic sign-reversal resulted primarily from increased HP. Thus, rats did not facilitate chronic tolerance development by moving to warmer locations in the gradient, and instead selected cooler ambient temperatures while simultaneously increasing autonomic HP. The inefficient concurrent activation of opposing effectors and the development of a sign-reversal are incompatible with homeostatic models of drug-adaptation and may be better interpreted using a model of drug-induced allostasis. PMID:25938127

  1. Electric-field-driven switching of individual magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Hsu, Pin-Jui; Kubetzka, André; Finco, Aurore; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    2017-02-01

    Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields, including changes of material composition as a result of electric fields. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories.

  2. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    PubMed

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  3. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    NASA Astrophysics Data System (ADS)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  4. Understanding ferromagnetic hysteresis: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar

    2018-05-01

    This work presents a theoretical-mathematical model for the ferromagnetic hysteresis. Theoretical understanding on ferromagnetism can be achieved through addressing the self-interaction propensity between the magnetic dipole moments associated with the magnetic domains, in conjunction with the pinning effects of the dipoles with the defects in the domain sites. An expression which relates ferromagnetic magnetization to the effective magnetic field was established in our previous work (AIP Conference Proceedings 1665, 130042 (2015)). Using this relation and solving for the reversible and the irreversible components of the magnetization, we successfully show that the magnetic saturation and the magnetic remanence can be achieved theoretically. This work also estimates the range of the external field that can be used to trace a reversible M-H curve.

  5. The 16.6 Ma Steens Mountain Geomagnetic Polarity Reversal: Additional Complexity From a Composite Record of Five Stratigraphic Sections.

    NASA Astrophysics Data System (ADS)

    Jarboe, N. A.; Coe, R. S.; Glen, J. M.; Paul, R. R.

    2007-05-01

    The best known record of the earth's magnetic field behavior during a geomagnetic polarity reversal preserved in volcanic rock is the reverse to normal (R-N) polarity reversal found in the Steens Basalts of SE Oregon. At three locations where reverse to normal sections are found (Steens Mountain, Catlow Peak, and Poker Jim Ridge), four high precision 40Ar/39Ar plateau ages of plagioclase separates from transitionally magnetized rocks were determined. The ages are the same within error and have a weighted mean age of 16.58 ± 0.14 Ma. Errors are two sigma. A more precise constraint on the youngest possible age of the reversal is 16.548 ± 0.050 Ma determined from the normally magnetized Oregon Canyon tuff capping the Catlow Peak section. Comparison of these ages to the new geomagnetic polarity time scale of Gradstein et al. (A Geologic Time Scale 2004, 589 pp., Cambridge University Press, 2004.), after adjustments due to differences in Fish Canyon sanidine (FCs) standard ages (28.02 Ma, this study; 28.24 Ma, Gradstein et al.), shows that the Steens reversal is uniquely identified as the top of the C5Cr chron. The high precision of the ages and the Steens' reversal location in the geomagnetic polarity timescale convincingly demonstrate that these stratigraphically uncorrelated transitional sections were erupted during the same transition and their transitional paths should be combined. The high-quality, detailed benchmark record of this reversal (Mankinen et al., JGR, 90(B), 10.393-10.416, 1985; Prevot et al., Nature, 316, 230-234, 1985) is a composite derived from two sampled sections 2 km apart on Steens Mountain that overlapped significantly, Steens A above and Steens B below. This study showed that the magnetic field during the reversal moved from reverse to normal and then bounced back to transitional before finally returning to normal (a R-T-N-T-N path). The unexamined upper part of the Steens B section was later sampled and revealed an additional bounce of the field during the transition (Camps et al., JGR, 104(B8), 17747- 58, 1999). This increased the reversal's complexity to a R-T-N-T-N-T-N pattern. We have studied a R-N volcanic section at Catlow Peak 70 km SSE of Steens Mountain with 32 flows erupted during the transition. The transitional directions trace a path very close to the Steens A and B reversal path but contain an additional large swing through the reversed field direction, demonstrating an even more complex R-T-N-T-N-T-R-T-N path. We will also report on two R-N sections recently sampled at Poker Jim Ridge 80 km west of Steens Mountain that add new directions to the Steens record. The complex composite Steens reversal path recorded in these high fidelity lavas gives some credence to suggestions of very complex magnetic field behavior during reversals, previously seen only in sediment records where the acquisition of magnetization is less well understood.

  6. Effects of orientation on the time decay of magnetization for cobalt-alloy thin film media

    NASA Astrophysics Data System (ADS)

    Wang, J. P.; Alex, Michael; Tan, L. P.; Yan, M. L.

    1999-04-01

    The dependence of the time decay of magnetization on orientation ratio was investigated for longitudinal Co-alloy thin film media. The coercivity orientation ratio was controlled by the degree of mechanical texture. For oriented samples, it was found that the remanent magnetization along the circumferential direction decayed faster with time than that along the radial direction when the applied reverse magnetic field was near the remanent coercivity. However, the remanent magnetization along the circumferential direction decayed more slowly with time than that along the radial direction when the applied reverse magnetic field was less than roughly half the remanent coercivity. Anisotropic interactions and magnetic anisotropy distributions appear to be the cause for the different time decay of magnetization along the circumferential and radial directions for oriented media.

  7. Spurious behavior in volcanic records of geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Vella, Jerome; Valet, Jean-Pierre; Soler, Vicente; Legoff, Maxime

    2016-04-01

    Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal. Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled three lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last reversal. The results show an evolution of the magnetization direction from top to bottom. Thermal demagnetization experiments were conducted using different heating and cooling rates. Similarly, continuous demagnetization and measurements. In both cases, we did not notice any remagnetization associated with mineralogical transformations during the experiments. Magnetic grain sizes do not show any correlation with the amplitude of the deviations. Microscopic observations indicate poor exsolution, which could suggests post-cooling thermochemical remagnetization processes.

  8. Development of Metamaterial Composites for Compact High Power Microwave Systems and Antennas

    DTIC Science & Technology

    2016-05-01

    for the eddy currents to decay and thus the reverse magnetizing field becomes significant at the surface of the material. This reverse field shields ...76 Appendix A: Ceramic Magnetics , Inc. Ferrite Data Sheets…………………………………81 Appendix B: Conference Presentations and Journal...Figure 21: Magnetic loss tangent as a function of frequency for each of the five ferrite composites

  9. The self primer of the long terminal repeat retrotransposon Tf1 is not removed during reverse transcription.

    PubMed

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L; Levin, Henry L

    2006-08-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5' end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer.

  10. Integrated CoPtP Permanent Magnets for MEMS Electromagnetic Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Roy, Saibal

    2016-10-01

    This work reports the development of integrated Co rich CoPtP hard magnetic material for MEMS applications such as Electromagnetic Vibration Energy Harvesting. We report a new method of electrodeposition compared to the conventional DC plating, involving a combination of forward and reverse pulses for optimized deposition of Co rich CoPtP hard magnetic material. This results in significant improvements in the microstructure of the developed films as the pulse reverse plated films are smooth, stress free and uniform. Such improvements in the structural properties are reflected in the hard magnetic properties of the material as well. The intrinsic coercivities of the pulse reverse deposited film are more than 6 times higher for both in-plane and out-of-plane measurement directions and the squareness of the hysteresis loops also improve due to the similar reasons.

  11. Gradient Echo Quantum Memory in Warm Atomic Vapor

    PubMed Central

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M.; Everett, Jesse L.; Higginbottom, Daniel; Campbell, Geoff T.; Lam, Ping Koy; Buchler, Ben C.

    2013-01-01

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain. PMID:24300586

  12. Gradient echo quantum memory in warm atomic vapor.

    PubMed

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M; Everett, Jesse L; Higginbottom, Daniel; Campbell, Geoff T; Lam, Ping Koy; Buchler, Ben C

    2013-11-11

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.

  13. Analytical models for coupling reliability in identical two-magnet systems during slow reversals

    NASA Astrophysics Data System (ADS)

    Kani, Nickvash; Naeemi, Azad

    2017-12-01

    This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.

  14. Cooperative and noncooperative magnetization reversal in alnicos

    DOE PAGES

    Skomski, Ralph; Ke, Liqin; Kramer, Matthew J.; ...

    2017-02-08

    Here, we investigate how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we also analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. Furthermore, in alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.

  15. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    NASA Astrophysics Data System (ADS)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  16. The effects of intraparticle and interparticle interactions on the magnetic hysteresis loop of frozen suspensions of bionized nanoferrite particles

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    Bionized nano-ferrite (iron oxide/dextran) nanoparticles have been shown to have a large heating response in an alternating magnetic field, making them very promising for applications in magnetic nanoparticle hyperthermia cancer treatment. Magnetic hysteresis loop measurements of these particles provide insight into the magnetic reversal behavior of these particles, and thus their heating response. Measurements have been performed on frozen suspensions of nanoparticles dispersed in H2O, which have been frozen in a range of applied fields in order to tune the interparticle dipolar interactions through formation of linear chains. These experimental results are compared with micromagnetic models of both monolithic (single-domain) and internally structured (multi-grain) particles. It is found that the internal structure of the nanoparticles, which are made up of parallelepiped-shaped grains, is important for describing the magnetic reversal behavior of the particles and the resulting shape of the hysteresis loops. In addition to this, interparticle interactions between particles in a linear chain modify the reversal behavior and thus the shape of the hysteresis loop.

  17. An Introductory-Geology Exercise on the Polar-Reversal Time Scale.

    ERIC Educational Resources Information Center

    Shea, James Herbert

    1986-01-01

    Presents a three-part exercise which provides undergraduates with opportunities to work with data related to the earth's magnetic field. Includes student materials for activities in determining the history of the earth's magnetic field, in finding the general pattern of declination, and for looking for a polar reversal history. (ML)

  18. Paleomagnetic field variation with strong negative inclination during the Brunhes chron at the Banda Sea, equatorial southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Sheng; Lee, Teh-Quei; Hsu, Shu-Kun; Yang, Tein-Nan

    2009-03-01

    We reconstruct the earth magnetic field in the Brunhes epoch at the Banda Sea by studying the paleomagnetic data from core MD012380, collected during the International Marine Global Change Study (IMAGES) VII Cruise in 2001. Magnetic analysis is carried out for whole core with a sampling spacing of 1 cm by using u-channel. Magnetic susceptibility (χ), nature remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), and isothermal remanent magnetization (IRM) are measured in our paleomagnetic experiment. Results show the low latitude geomagnetic field variation at the Banda Sea during the last ∼820 kyr. Except for the Brunhes/Matuyama boundary (BMB), there is no clear signal of reverse events in paleo- inclination and paleo-declination patterns. However, the synthetic paleointensity curve displays the asymmetrical saw-tooth pattern that can be used for determining reverse events, and shows a maximum intensity drop at the BMB. The characteristics of paleointensity provide a useful tool to identify reverse signals and improve the difficulties from only using inclination and declination patterns, especially at low latitude. With the help of paleointensity, inclination and declination, we have identified five reverse events. Furthermore if we consider the secular variation effect, we think that the strong negative inclination observed in our study may be the zonal time-averaged field with paleo secular variation, rather than non-dipole effect within the Brunhes epoch.

  19. The magnetic polarity stratigraphy of the Mauch Chunk Formation, Pennsylvania

    PubMed Central

    Opdyke, Neil D.; DiVenere, Victor J.

    2004-01-01

    Three sections of Chesterian Mauch Chunk Formation in Pennsylvania have been studied paleomagnetically to determine a Late Mississippian magnetic polarity stratigraphy. The upper section at Lavelle includes a conglomerate with abundant red siltstone rip-up clasts that yielded a positive conglomerate test. All samples were subjected to progressive thermal demagnetization to temperatures as high as 700°C. Two components of magnetization were isolated: a synfolding “B” component and the prefolding “C” component. The conglomerate test is positive, indicating that the C component was acquired very early in the history of the sediment. A coherent pattern of magnetic polarity reversals was identified. Five magnetozones were identified in the upper Lavelle section, which yields a pattern that is an excellent match with the pattern of reversals obtained from the upper Mauch Chunk at the original type section of the Mississippian/Pennsylvanian boundary at Pottsville, PA. The frequency of reversals in the upper Mississippian, as identified in the Mauch Chunk Formation, is approximately one to two per million years, which is an average for field reversal through time. PMID:15353597

  20. The magnetic polarity stratigraphy of the Mauch Chunk Formation, Pennsylvania.

    PubMed

    Opdyke, Neil D; DiVenere, Victor J

    2004-09-14

    Three sections of Chesterian Mauch Chunk Formation in Pennsylvania have been studied paleomagnetically to determine a Late Mississippian magnetic polarity stratigraphy. The upper section at Lavelle includes a conglomerate with abundant red siltstone rip-up clasts that yielded a positive conglomerate test. All samples were subjected to progressive thermal demagnetization to temperatures as high as 700 degrees C. Two components of magnetization were isolated: a synfolding "B" component and the prefolding "C" component. The conglomerate test is positive, indicating that the C component was acquired very early in the history of the sediment. A coherent pattern of magnetic polarity reversals was identified. Five magnetozones were identified in the upper Lavelle section, which yields a pattern that is an excellent match with the pattern of reversals obtained from the upper Mauch Chunk at the original type section of the Mississippian/Pennsylvanian boundary at Pottsville, PA. The frequency of reversals in the upper Mississippian, as identified in the Mauch Chunk Formation, is approximately one to two per million years, which is an average for field reversal through time.

  1. Temporal Modulation of Stem Cell Activity Using Magnetoactive Hydrogels.

    PubMed

    Abdeen, Amr A; Lee, Junmin; Bharadwaj, N Ashwin; Ewoldt, Randy H; Kilian, Kristopher A

    2016-10-01

    Cell activity is coordinated by dynamic interactions with the extracellular matrix, often through stimuli-mediated spatiotemporal stiffening and softening. Dynamic changes in mechanics occur in vivo through enzymatic or chemical means, processes which are challenging to reconstruct in cell culture materials. Here a magnetoactive hydrogel material formed by embedding magnetic particles in a hydrogel matrix is presented whereby elasticity can be modulated reversibly by attenuation of a magnetic field. Orders of magnitude change in elasticity using low magnetic fields are shown and reversibility of stiffening with simple permanent magnets is demonstrated. The broad applicability of this technique is demonstrated with two therapeutically relevant bioactivities in mesenchymal stem cells: secretion of proangiogenic molecules, and dynamic control of osteogenesis. The ability to reversibly stiffen cell culture materials across the full spectrum of soft tissue mechanics, using simple materials and commercially available permanent magnets, makes this approach viable for a broad range of laboratory environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electric control of magnetism at the Fe/BaTiO 3 interface

    DOE PAGES

    Radaelli, G.; Petti, D.; Plekhanov, E.; ...

    2014-03-03

    Interfacial magnetoelectric coupling (MEC) is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO 3 (BTO) system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BTO dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial MEC in the Fe/BTO system. At the Fe/BTO interface, an ultrathin FeO x layer exists, whose magnetization can be electrically and reversibly switched on-off at room-temperature bymore » reversing the BTO polarization. The suppression / recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BTO produces on the exchange coupling constants in the adjacent FeOx layer. The observed giant magnetoelectric response holds potential for optimizing interfacial MEC in view of efficient, low-power spintronic devices.« less

  3. Magnetic field diffusion and dissipation in reversed-field plasmas

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Gladd, N. T.; Huba, J. D.

    1981-01-01

    A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.

  4. Magnetothermal Convection of Air in a Shallow Vessel under the Application of an Axisymmetric Magnetic Force

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanaka, Keito; Morimoto, Shotaro

    2017-02-01

    We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.

  5. An easy to assemble microfluidic perfusion device with a magnetic clamp

    PubMed Central

    Tkachenko, Eugene; Gutierrez, Edgar; Ginsberg, Mark H.; Groisman, Alex

    2009-01-01

    We have built and characterized a magnetic clamp for reversible sealing of PDMS microfluidic chips against cover glasses with cell cultures and a microfluidic chip for experiments on shear stress response of endothelial cells. The magnetic clamp exerts a reproducible uniform pressure on the microfluidic chip, achieving fast and reliable sealing for liquid pressures up to 40 kPa inside the chip with <10% deformations of microchannels and minimal variations of the substrate shear stress in perfusion flow. The microfluidic chip has 8 test regions with the substrate shear stress varying by a factor of 2 between each region, thus covering a 128-fold range from low venous to arterial. The perfusion is driven by differential pressure, which makes it possible to create pulsatile flows mimicking pulsing in the vasculature. The setup is tested by 15 – 40 hours perfusions over endothelial monolayers with shear stress in the range of 0.07 - 9 dyn/cm2. Excellent cell viability at all shear stresses and alignment of cells along the flow at high shear stresses are repeatedly observed. A scratch wound healing assay under a shear flow is demonstrated and cell migration velocities are measured. Transfection of cells with a fluorescent protein is performed, and migrating fluorescent cells are imaged at a high resolution under shear flow in real time. The magnetic clamp can be closed with minimal mechanical perturbation to cells on the substrate and used with a variety of microfluidic chips for experiments with adherent and non-adherent cells. PMID:19350090

  6. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    NASA Astrophysics Data System (ADS)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  7. Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities

    DOEpatents

    Humphrey, Floyd B.

    1987-01-01

    A marker for an electronic article surveillance system is disclosed comprising a body of magnetic material with retained stress and having a magnetic hysteresis loop with a large Barkhausen discontinuity such that, upon exposure of the marker to an external magnetic field whose field strength in the direction opposing the instantaneous magnetic polarization of the marker exceeds a predetermined threshold value, there results a regenerative reversal of the magnetic polarization of the marker. An electronic article surveillance system and a method utilizing the marker are also disclosed. Exciting the marker with a low frequency and low field strength, so long as the field strength exceeds the low threshold level for the marker, causes a regenerative reversal of magnetic polarity generating a harmonically rich pulse that is readily detected and easily distinguished.

  8. Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots

    NASA Astrophysics Data System (ADS)

    Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.

    2018-04-01

    The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.

  9. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    NASA Astrophysics Data System (ADS)

    Gu, Wei-Min; Dong, Yi-Ze; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-06-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche-lobe overflow mechanism can be responsible for the observed repeating behavior of FRB 121102.

  10. Reversal of haloperidol induced motor deficits in rats exposed to repeated immobilization stress.

    PubMed

    Shireen, Erum; Pervez, Sidra; Masroor, Maria; Ali, Wafa Binte; Rais, Qudsia; Khalil, Samira; Tariq, Anum; Haleem, Darakshan Jabeen

    2014-09-01

    Stress is defined as a non specific response of body to any physiological and psychological demand. Preclinical studies have shown that an uncontrollable stress condition produces neurochemical and behavioral deficits. The present study was conducted to test the hypothesis that a decrease in the responsiveness of somatodendritic 5-hydroxytryptamine (5-HT)-1A receptors following adaptation to stress could attenuate haloperidol induced acute parkinsonian like effect. Results showed that single exposure (2h) to immobilization stress markedly decreased food intake, growth rate and locomotor activity but these stress-induced behavioral deficits were not observed following repeated (2h/day for 5 days) exposure of immobilization stress suggesting behavioral tolerance occurs to similar stress. An important finding of present study is a reversal of haloperidol-induced motor deficits in animals exposed to repeated immobilization stress than respective control animals. It is suggested that stress induced possible desensitization of somatodendritic 5-HT-1A as well as 5-HT-2C receptors could release dopamine system from the inhibitory influence of serotonin. On the other hand, an increase in the effectiveness of postsynaptic 5-HT-1A receptors elicits a direct stimulatory influence on the activity of dopaminergic neuron and is possibly involved in the reversal of haloperidol-induced parkinsonian like symptoms in repeatedly immobilized rats.

  11. ON POLAR MAGNETIC FIELD REVERSAL AND SURFACE FLUX TRANSPORT DURING SOLAR CYCLE 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xudong; Todd Hoeksema, J.; Liu, Yang

    As each solar cycle progresses, remnant magnetic flux from active regions (ARs) migrates poleward to cancel the old-cycle polar field. We describe this polarity reversal process during Cycle 24 using four years (2010.33-2014.33) of line-of-sight magnetic field measurements from the Helioseismic and Magnetic Imager. The total flux associated with ARs reached maximum in the north in 2011, more than two years earlier than the south; the maximum is significantly weaker than Cycle 23. The process of polar field reversal is relatively slow, north-south asymmetric, and episodic. We estimate that the global axial dipole changed sign in 2013 October; the northernmore » and southern polar fields (mean above 60° latitude) reversed in 2012 November and 2014 March, respectively, about 16 months apart. Notably, the poleward surges of flux in each hemisphere alternated in polarity, giving rise to multiple reversals in the north. We show that the surges of the trailing sunspot polarity tend to correspond to normal mean AR tilt, higher total AR flux, or slower mid-latitude near-surface meridional flow, while exceptions occur during low magnetic activity. In particular, the AR flux and the mid-latitude poleward flow speed exhibit a clear anti-correlation. We discuss how these features can be explained in a surface flux transport process that includes a field-dependent converging flow toward the ARs, a characteristic that may contribute to solar cycle variability.« less

  12. A re-appraisal of the proposed rapid Matuyama-Brunhes geomagnetic reversal in the Sulmona Basin, Italy

    NASA Astrophysics Data System (ADS)

    Evans, M. E.; Muxworthy, A. R.

    2018-06-01

    An extremely sharp magnetic reversal observed in lacustrine sediments in central Italy has been interpreted as a record of the Matuyama-Brunhes geomagnetic polarity reversal that may represent less than a decade. Here, we report new results from the same Sulmona Basin outcrops that question this interpretation. In particular, we find evidence of reversed (Matuyama) directions well above the proposed Matuyama-Brunhes Boundary (MBB). Coercivity spectra of anhysteretic remanent magnetization imply a three-component magnetic mineralogy: low-, intermediate- and high-coercivity. The low-coercivity component is found in all but one of the samples and carries a strong modern overprint seen throughout the section. The high-coercivity component is dominated by volcanic material which is prone to remagnetization. Since it is much more magnetic than the surrounding lacustrine sediments, it may influence the remanence signal even when present at very low concentrations. The intermediate-coercivity component is the main carrier of any true primary remanence, but whether or not this can be isolated depends on the blocking temperature and coercivity spectra of individual samples and on the demagnetization method used. The complexity of the magnetization, the reversed zones above the proposed MBB and the normal zones that Sagnotti and colleagues found below it lead to the conclusion that this section does not carry a reliable high-resolution record of the geomagnetic field. Thus, we feel that inferences about the stratigraphic position and duration of the MBB are premature.

  13. Remagnetization of lava flows spanning the last geomagnetic reversal

    NASA Astrophysics Data System (ADS)

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando

    2017-08-01

    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  14. Magnetic stripes and skyrmions with helicity reversals.

    PubMed

    Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori

    2012-06-05

    It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.

  15. Magnetization reversal in orthorhombic Sr-doped LaFe0.5Cr0.5O3–δ

    NASA Astrophysics Data System (ADS)

    Coutinho, P. V.; Moreno, N. O.; Ochoa, E. A.; da Costa, M. E. H. Maia; Barrozo, Petrucio

    2018-06-01

    In this paper we studied the reversal magnetization of La1‑x Sr x Fe0.5Cr0.5O3‑δ (x  =  0, 0.1 and 0.2) samples produced by combustion synthesis. The structural analysis was carried out by x-ray diffraction with Rietveld analysis. These analyses revealed that all samples have an orthorhombic structure with space group Pbnm (62) and that the Sr-doping induces a decrease of the lattice parameter. The x-ray photoelectron spectroscopy analysis indicates that the Sr-doping favor the change of the valence states of the Fe3+ to Fe4+. The magnetization as a function of the temperature reveals an unusual magnetic behavior with a reversal of magnetization. The increase of the Sr content induces a decrease of the temperature where occurs an inversion of the magnetization and do the value of the magnetization at 5 K more negative. This effect is attributed to the increase of the concentration of Fe4+ with increasing of the Sr content. The Fe and Cr with a valence of 4+  act as paramagnetic impurities in the antiferromagnetic lattice and are responsible for the changes in the magnetic behavior.

  16. Reversed exchange-bias effect associated with magnetization reversal in the weak ferrimagnet LuF e0.5C r0.5O3

    NASA Astrophysics Data System (ADS)

    Fita, I.; Markovich, V.; Moskvin, A. S.; Wisniewski, A.; Puzniak, R.; Iwanowski, P.; Martin, C.; Maignan, A.; Carbonio, Raúl E.; Gutowska, M. U.; Szewczyk, A.; Gorodetsky, G.

    2018-03-01

    The exchange-bias (EB) effect with sign reversal was found in LuF e0.5C r0.5O3 ferrite-chromite, which is a weak ferrimagnet below TN=265 K , exhibiting antiparallel orientation of the ferromagnetic (FM) moments of the Fe and Cr sublattices due to opposite sign of the Fe-Cr Dzyaloshinskii vector, as compared to that of the Fe-Fe and Cr-Cr. The weak FM moments of the studied compound compensate each other at temperature Tcomp=23 0 K , leading to the net magnetic moment reversal and to observed negative magnetization, at moderate applied fields, below Tcomp. Both vertical and horizontal shifts from the origin were gotten in the field-cooled magnetization hysteresis loops. The EB sign was found to be positive below Tcomp and negative above Tcomp, with nonmonotonic dependence on cooling field Hcool. It sharply increases at small values of magnetic fields up to Hcool˜1 kOe , then remains almost unchanged in the range 1-30 kOe and strongly decreases with further increase of Hcool. This unusual behavior results from the competition of various Dzyaloshinskii-Moriya interactions between F e3 + and C r3 + ions.

  17. Magnetic vortex core reversal by excitation of spin waves.

    PubMed

    Kammerer, Matthias; Weigand, Markus; Curcic, Michael; Noske, Matthias; Sproll, Markus; Vansteenkiste, Arne; Van Waeyenberge, Bartel; Stoll, Hermann; Woltersdorf, Georg; Back, Christian H; Schuetz, Gisela

    2011-01-01

    Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.

  18. Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Emre, Baris; Yüce, Süheyla; Stern-Taulats, Enric; Planes, Antoni; Fabbrici, Simone; Albertini, Franca; Mañosa, Lluís

    2013-06-01

    Calorimetry under magnetic field has been used to study the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys. It is shown that the energy dissipated during a complete transformation loop only represents a small fraction (5% to 7%) of the latent heat of the martensitic transition. It is found that the entropy values obtained from isofield temperature scans agree well with those obtained from isothermal magnetic field scans. The reproducibility of the magnetocaloric effect has been studied from isothermal measurements. Reproducible entropy values under field cycling have been found within a temperature interval bounded by the start temperature of the forward transition at zero field and the start temperature of the reverse transition under applied field. Large reversible entropy changes around 11 J/kg K have been found for fields up to 6 T.

  19. The reversal of the spontaneous exchange bias effect and zero-field-cooling magnetization in La1.5Sr0.5Co1-xFexMnO6: the effect of Fe doping.

    PubMed

    Zhang, H G; Xie, L; Liu, X C; Xiong, M X; Cao, L L; Li, Y T

    2017-09-20

    The crystal structure, electronic structure and magnetic properties were systematically studied in a series of Fe-doped La 1.5 Sr 0.5 CoMnO 6 double perovskites. The X-ray diffraction patterns of the samples are all refined with a rhombohedral (R3[combining macron]c) structure. The parameters a and c continuously increase with increasing Fe doping concentration x. X-ray photoelectron spectroscopy (XPS) spectra of the Mn, Co, and Fe 2p core levels, consistent with the soft X-ray absorption spectroscopy (XAS) spectra of Mn, Co, and Fe L 2,3 edges, indicate that their valence states are Mn 3+ and Mn 4+ , Co 2+ and Co 3+ , and Fe 3+ , respectively. However, relative to samples with x ≤ 0.1, there is an abrupt change of photon energy in the Co- and Fe-2p XAS spectra for x ≥ 0.2, implying the spin state transition is from high to low. In addition, this is further confirmed by a comparison between the calculated effective spin moment from the paramagnetic data and the theoretical value. Interestingly, we demonstrate the reversal of both zero-field-cooling magnetization and the sign switching of the spontaneous exchange bias (SEB) with the doping concentration from magnetic measurements. The magnetization reverses from positive to negative with the temperature decreasing across the compensation temperature at the critical concentration x = 0.2. Meanwhile, the exchange bias field of the SEB reverses from large negative values to positive ones. Our findings allow us to propose that the spin state transition caused by inhomogeneity is considered to play an important role in the reversal of the magnetization and the SEB effect.

  20. The Self Primer of the Long Terminal Repeat Retrotransposon Tf1 Is Not Removed during Reverse Transcription

    PubMed Central

    Atwood-Moore, Angela; Yan, Kenneth; Judson, Robert L.; Levin, Henry L.

    2006-01-01

    The long terminal repeat retrotransposon Tf1 of Schizosaccharomyces pombe uses a unique mechanism of self priming to initiate reverse transcription. Instead of using a tRNA, Tf1 primes minus-strand synthesis with an 11-nucleotide RNA removed from the 5′ end of its own transcript. We tested whether the self primer of Tf1 was similar to tRNA primers in being removed from the cDNA by RNase H. Our analysis of Tf1 cDNA extracted from virus-like particles revealed the surprising observation that the dominant species of cDNA retained the self primer. This suggests that integration of the cDNA relies on mechanisms other than reverse transcription to remove the primer. PMID:16873283

  1. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  2. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  3. Free and forced Barkhausen noises in magnetic thin film based cross-junctions

    NASA Astrophysics Data System (ADS)

    Elzwawy, Amir; Talantsev, Artem; Kim, CheolGi

    2018-07-01

    Barkhausen noise, driven by thermal fluctuations in stationary magnetic field, and Barkhausen jumps, driven by sweeping magnetic field, are demonstrated to be effects of different orders of magnitude. The critical magnetic field for domain walls depinning, followed by avalanched and irreversible magnetization jumps, is determined. Magnetoresistive response of NiFe/M/NiFe (M = Au, Ta, Ag) trilayers to stationary and sweeping magnetic field is studied by means of anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) measurements. Thermal fluctuations result in local and reversible changes of magnetization of the layers in thin film magnetic junctions, while the sweeping magnetic field results in reversible and irreversible avalanched domain motion, dependently on the ratio between the values of sweeping magnetic field and domain wall depinning field. The correlation between AMR and PHE responses to Barkhausen jumps is studied. The value of this correlation is found to be dependent on the α angle between the directions of magnetic field and current path.

  4. Polymersome magneto-valves for reversible capture and release of nanoparticles

    PubMed Central

    van Rhee, P.G.; Rikken, R.S.M.; Abdelmohsen, L.K.E.A.; Maan, J.C.; Nolte, R.J.M.; van Hest, J.C.M.; Christianen, P.C.M.; Wilson, D.A.

    2014-01-01

    Stomatocytes are polymersomes with an infolded bowl-shaped architecture. This internal cavity is connected to the outside environment via a small ‘mouth’ region. Stomatocytes are assembled from diamagnetic amphiphilic block-copolymers with a highly anisotropic magnetic susceptibility, which permits to magnetically align and deform the polymeric self-assemblies. Here we show the reversible opening and closing of the mouth region of stomatocytes in homogeneous magnetic fields. The control over the size of the opening yields magneto-responsive supramolecular valves that are able to reversibly capture and release cargo. Furthermore, the increase in the size of the opening is gradual and starts at fields below 10 T, which opens the possibility of using these structures for delivery and nanoreactor applications. PMID:25248402

  5. Clinical implications of a multiparametric magnetic resonance imaging based nomogram applied to prostate cancer active surveillance.

    PubMed

    Siddiqui, M Minhaj; Truong, Hong; Rais-Bahrami, Soroush; Stamatakis, Lambros; Logan, Jennifer; Walton-Diaz, Annerleim; Turkbey, Baris; Choyke, Peter L; Wood, Bradford J; Simon, Richard M; Pinto, Peter A

    2015-06-01

    Multiparametric magnetic resonance imaging may be beneficial in the search for rational ways to decrease prostate cancer intervention in patients on active surveillance. We applied a previously generated nomogram based on multiparametric magnetic resonance imaging to predict active surveillance eligibility based on repeat biopsy outcomes. We reviewed the records of 85 patients who met active surveillance criteria at study entry based on initial biopsy and who then underwent 3.0 Tesla multiparametric magnetic resonance imaging with subsequent magnetic resonance imaging/ultrasound fusion guided prostate biopsy between 2007 and 2012. We assessed the accuracy of a previously published nomogram in patients on active surveillance before confirmatory biopsy. For each cutoff we determined the number of biopsies avoided (ie reliance on magnetic resonance imaging alone without rebiopsy) over the full range of nomogram cutoffs. We assessed the performance of the multiparametric magnetic resonance imaging active surveillance nomogram based on a decision to perform biopsy at various nomogram generated probabilities. Based on cutoff probabilities of 19% to 32% on the nomogram the number of patients who could be spared repeat biopsy was 27% to 68% of the active surveillance cohort. The sensitivity of the test in this interval was 97% to 71% and negative predictive value was 91% to 81%. Multiparametric magnetic resonance imaging based nomograms may reasonably decrease the number of repeat biopsies in patients on active surveillance by as much as 68%. Analysis over the full range of nomogram generated probabilities allows patient and caregiver preference based decision making on the risk assumed for the benefit of fewer repeat biopsies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  7. Streaming reversal of energetic particles in the magnetotail during a substorm

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  8. Hyperthermia in low aspect-ratio magnetic nanotubes for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gutierrez-Guzman, D. F.; Lizardi, L. I.; Otálora, J. A.; Landeros, P.

    2017-03-01

    A simple model for the magnetization reversal process of low aspect-ratio ferromagnetic nanotubes (MNTs) is presented. Because of advantages over other geometries, these structures are interesting for biomedical applications, such as magnetic hyperthermia cancer therapy, where the heat released during magnetic reversal is used to destroy tumors. For example, the tubular geometry provides two independent functional surfaces that may be selectively manipulated and also gives a storage cavity. Owing to their large surface to weight ratio and low mass density, MNTs are not decanted by gravity. We calculated magnetic phase diagrams, energy barriers, nucleation fields, and the amount of dissipated heat and specific absorption rate for magnetite nanotubes. The geometrical parameters were varied, and simple formulae were used to optimize the tube response under alternating excitation, as required for magnetic hyperthermia applications.

  9. Magnetization reversal of the domain structure in the anti-perovskite nitride Co{sub 3}FeN investigated by high-resolution X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajiri, T., E-mail: t.hajiri@numse.nagoya-u.ac.jp; Kuroki, Y.; Ando, H.

    2016-05-14

    We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co{sub 3}FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy,more » present in nanostructured thin films.« less

  10. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  11. Magnetization processes in core/shell exchange-spring structures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.

    2015-03-27

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less

  12. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA

    PubMed Central

    Naorem, Santa S.; Han, Jin; Wang, Shufang; Lee, William R.; Heng, Xiao; Miller, Jeff F.

    2017-01-01

    Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation. PMID:29109248

  13. ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences

    PubMed Central

    Danilowicz, Claudia; Hermans, Laura; Coljee, Vincent; Prévost, Chantal

    2017-01-01

    Abstract During DNA recombination and repair, RecA family proteins must promote rapid joining of homologous DNA. Repeated sequences with >100 base pair lengths occupy more than 1% of bacterial genomes; however, commitment to strand exchange was believed to occur after testing ∼20–30 bp. If that were true, pairings between different copies of long repeated sequences would usually become irreversible. Our experiments reveal that in the presence of ATP hydrolysis even 75 bp sequence-matched strand exchange products remain quite reversible. Experiments also indicate that when ATP hydrolysis is present, flanking heterologous dsDNA regions increase the reversibility of sequence matched strand exchange products with lengths up to ∼75 bp. Results of molecular dynamics simulations provide insight into how ATP hydrolysis destabilizes strand exchange products. These results inspired a model that shows how pairings between long repeated sequences could be efficiently rejected even though most homologous pairings form irreversible products. PMID:28854739

  14. Heterojunction-induced magnetic anisotropy and magnetization reversal of Ni wires on LiNbO3 substrate

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akinobu; Ohkochi, Takuo; Yasui, Akira; Kinoshita, Toyohiko; Yamada, Keisuke

    2018-05-01

    We report magnetic domain formation control within micro-scale polycrystalline Ni wires on a single-crystal Y-cut 128° LiNbO3 substrate. X-ray magnetic circular dichroism photoemission electron microscopy (XCDM-PEEM), micromagnetic simulations, and magnetoresistance (MR) measurements allowed us to estimate the uniaxial magnetic anisotropy induced by the magnetoelastic effect that originated at the interface between each Ni layer and the LiNbO3 substrate. Comparison of the XMCD-PEEM and MR measurement results shows that the competition between the shape magnetic anisotropy and the uniaxial magnetic anisotropy parallel to the orientation flat (OF) direction of the substrate leads to variations in both the magnetization order and the magnetization reversal process. The uniaxial magnetic anisotropy is estimated to be approximately 3.3 kJ/m3. This heterojunction structure composed of ferromagnetic and ferroelectric layers thus offers alternative ways to produce artificial functional multiferroic materials and devices.

  15. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  16. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  17. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  18. Thermoelectric current in topological insulator nanowires with impurities.

    PubMed

    Erlingsson, Sigurdur I; Bardarson, Jens H; Manolescu, Andrei

    2018-01-01

    In this paper we consider charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias. For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is increased. Here we study how this thermoelectric current sign reversal depends on the magnetic field and how impurities affect the size of the thermoelectric current. We consider both scalar and magnetic impurities and show that their influence on the current are quite similar, although the magnetic impurities seem to be more effective in reducing the effect. For moderate impurity concentration the sign reversal persists.

  19. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding

    PubMed Central

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    Abstract In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa. PMID:27877852

  20. Flexible Magnets Are Not Effective in Decreasing Pain Perception and Recovery Time After Muscle Microinjury

    PubMed Central

    Borsa, Paul A.; Liggett, Charles L.

    1998-01-01

    Objective: To assess the therapeutic effects of flexible magnets on pain perception, intramuscular swelling, range of motion, and muscular strength in individuals with a muscle microinjury. Design and Setting: This experiment was a single-blind, placebo study using a repeated-measures design. Subjects performed an intense exercise protocol to induce a muscle microinjury. After pretreatment measurements were recorded, subjects were randomly assigned to an experimental (magnet), placebo (imitation magnet), or control (no magnet) group. Posttreatment measurements were repeated at 24, 48, and 72 hours. Subjects: Forty-five healthy subjects participated in the study. Measurements: Subjects were measured repeatedly for pain perception, upper arm girth, range of motion, and static force production. Four separate univariate analyses of variances were used to reveal statistically significant mean (±SD) differences between variables over time. Interaction effects were analyzed using Scheffe post hoc analysis. Results: Analysis of variance revealed no statistically significant (P > .05) mean differences between conditions for any dependent pretreatment and posttreatment measurements. No significant interaction effects were demonstrated between conditions and times. Conclusions: No significant therapeutic effects on pain control and muscular dysfunction were observed in subjects wearing flexible magnets. ImagesFig 2.Fig 3. PMID:16558503

  1. Glutamine/glutamate (Glx) concentration in prefrontal cortex predicts reversal learning performance in the marmoset.

    PubMed

    Lacreuse, Agnès; Moore, Constance M; LaClair, Matthew; Payne, Laurellee; King, Jean A

    2018-07-02

    This study used Magnetic Resonance Spectroscopy (MRS) to identify potential neurometabolitic markers of cognitive performance in male (n = 7) and female (n = 8) middle-aged (∼5 years old) common marmosets (Callithrix jacchus). Anesthetized marmosets were scanned with a 4.7 T/40 cm horizontal magnet equipped with 450 mT/m magnetic field gradients and a 20 G/cm magnetic field gradient insert, within 3 months of completing the CANTAB serial Reversal Learning task. Neurometabolite concentrations of N-Acetyl Asparate, Myo-Inositol, Choline, Phosphocreatine + creatine, Glutamate and Glutamine were acquired from a 3 mm 3 voxel positioned in the Prefrontal Cortex (PFC). Males acquired the reversals (but not simple discriminations) faster than the females. Higher PFC Glx (glutamate + glutamine) concentration was associated with faster acquisition of the reversals. Interestingly, the correlation between cognitive performance and Glx was significant in males, but not in females. These results suggest that MRS is a useful tool to identify biochemical markers of cognitive performance in the healthy nonhuman primate brain and that biological sex modulates the relationship between neurochemical composition and cognition. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Directional change during a Miocene R-N geomagnetic polarity reversal recorded by mafic lava flows, Sheep Creek Range, north central Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bogue, S. W.; Glen, J. M. G.; Jarboe, N. A.

    2017-09-01

    Recurring transitional field directions during three Miocene geomagnetic reversals provide evidence that lateral inhomogeneity of the lower mantle affects flow in the outer core. We compare new paleomagnetic results from a composite sequence of 15.2 Ma lava flows in north central Nevada (Sheep Creek Range; 40.7°N, 243.2°E), erupted during a polarity reversal, to published data from Steens Mountain (250 km to the northwest in Oregon) and the Newberry Mountains (650 km to the south in California) that document reversals occurring millions of years and many polarity switches earlier. Alternating field demagnetization, followed by thermal demagnetization in half the samples, clearly isolated the primary thermoremanent magnetization of Sheep Creek Range flows. We correlated results from our three sampled sections to produce a composite record that begins with a single virtual geomagnetic pole (VGP) at low latitude in the Atlantic, followed by two VGPs situated near latitude 30°N in NE Africa. After jumping to 83°N (one VGP), the pole moves to equatorial South America (one VGP), back to NE Africa (three VGPs), to high southern latitudes (two VGPs), back to equatorial South America (three VGPs), and finally to high northern latitudes (nine VGPs). The repeated visits of the transitional VGP to positions in South America and near NE Africa, as well as the similar behavior recorded at Steens Mountain and the Newberry Mountains, suggest that lower mantle or core-mantle boundary features localize core flow structures, thereby imparting a discernible regional structure on the transitional geomagnetic field that persists for millions of years.

  3. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  4. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    NASA Astrophysics Data System (ADS)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  5. Magnetic switching, relaxation, and domain structure of a Co/Si(111) film

    NASA Astrophysics Data System (ADS)

    Baird, M. J.; Bland, J. A. C.; Gu, E.; Ives, A. J. R.; Schumann, F. O.; Hughes, H. P.

    1993-11-01

    We have used scanning magneto-optic Kerr effect (MOKE) microscopy to investigate the magnetic relaxation of a polycrystalline hcp 125 Å Co/Si(111) film with planar uniaxial anisotropy, on time scales between 10 and 2400 s and with a spatial resolution of 15 μm. In a static magnetic field slightly less than the coercive field and applied along the easy axis direction, domains develop and the magnetization reversal proceeds via displacements of 180° domain walls. Microscopic images of this metastable state allow the 180° domains to be identified by calibration of the MOKE signal with respect to that for the saturated magnetization states. The 180° reversed domains are observed to grow in the direction of the field in the form of narrow fingers, extending via short Barkhausen jumps, randomly spaced in time over the entire time-scale range investigated, with typical distances between pinning sites of the order of microns. This reversal behavior is qualitatively similar to that reported for Au/Co perpendicular anisotropy films a few monolayers thick.

  6. Enhancement of exchange bias in ferromagnetic/antiferromagnetic core-shell nanoparticles through ferromagnetic domain wall formation

    NASA Astrophysics Data System (ADS)

    Wu, Rui; Ding, Shilei; Lai, Youfang; Tian, Guang; Yang, Jinbo

    2018-01-01

    The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating the ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.

  7. Piezomagnetism and magnetoelastic memory in uranium dioxide

    DOE PAGES

    Jaime, M.; Saul, A.; Salamon, M.; ...

    2017-07-24

    Uranium dioxide (UO 2) is a prime nuclear fuel and perhaps the most thoroughly studied actinide material to date. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. The magnetic state of this cubic material is characterized by a non- collinear antiferromagnetic structure and multidomain Jahn-Teller distortions that could be behind novel thermal properties. Here we show that single crystals of UO 2, subjected to magnetic fields up to 95 T in the magnetic state, exhibit the abrupt appearance of positive linear magnetostriction leading to a trigonal distortion. Upon reversal ofmore » the field the linear term also reverses sign, a hallmark of piezomagnetism. The switching phenomenon occurs at ± 18 T and persists during subsequent field reversals, demonstrating robust magneto-elastic memory. This is the first example of piezomagnetism in an actinide spin system and the magneto-elastic memory loop here is nearly an order of magnitude wider in field than those previously observed, making UO 2 the hardest piezomagnet known. The possibility of an inverse phase with reduced magnetocrystalline anisotropy is considered to explain these effects.« less

  8. Piezomagnetism and magnetoelastic memory in uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaime, M.; Saul, A.; Salamon, M.

    Uranium dioxide (UO 2) is a prime nuclear fuel and perhaps the most thoroughly studied actinide material to date. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. The magnetic state of this cubic material is characterized by a non- collinear antiferromagnetic structure and multidomain Jahn-Teller distortions that could be behind novel thermal properties. Here we show that single crystals of UO 2, subjected to magnetic fields up to 95 T in the magnetic state, exhibit the abrupt appearance of positive linear magnetostriction leading to a trigonal distortion. Upon reversal ofmore » the field the linear term also reverses sign, a hallmark of piezomagnetism. The switching phenomenon occurs at ± 18 T and persists during subsequent field reversals, demonstrating robust magneto-elastic memory. This is the first example of piezomagnetism in an actinide spin system and the magneto-elastic memory loop here is nearly an order of magnitude wider in field than those previously observed, making UO 2 the hardest piezomagnet known. The possibility of an inverse phase with reduced magnetocrystalline anisotropy is considered to explain these effects.« less

  9. Magnetization reversal process in (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Liu, Zhuang; Zhang, Xin; Feng, Yanping; Wang, Chunxiao; Sun, Yingli; Lee, Don; Yan, Aru; Wu, Qiong

    2017-05-01

    Magnetization reversal mechanism is found to vary with cellular structures by a comparative study of the magnetization processes of three (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures. Analysis of domain walls, initial magnetization curves and recoil loops indicates that the morphology of cellular structure has a significant effect on the magnetization process, besides the obvious connection to the difference of domain energy density between cell boundary phase (CBP) and main phase. The magnetization of Sample 2 (with a moderate cell size and uniformly continuous CBPs) behaves as a strong coherence domain-wall pinning effect to the domain wall and lead to a highest coercivity in the magnet. The magnetization of Sample 1 (with thin and discontinuous CBPs) shows an inconsistent pinning effect to the domain wall while that of Sample 3 (with thick and aggregate CBPs) exhibits a two-phase separation magnetization. Both the two cases lead to lower coercivities. A simplified model is given as well to describe the relationships among cellular structure and magnetization behavior.

  10. Dependence of the duration of geomagnetic polarity reversals on site latitude.

    PubMed

    Clement, Bradford M

    2004-04-08

    An important constraint on the processes governing the geodynamo--the flow in the outer core responsible for generating Earth's magnetic field--is the duration of geomagnetic polarity reversals; that is, how long it takes for Earth's magnetic field to reverse. It is generally accepted that Earth's magnetic field strength drops to low levels during polarity reversals, and the field direction progresses through a 180 degrees change while the field is weak. The time it takes for this process to happen, however, remains uncertain, with estimates ranging from a few thousand up to 28,000 years. Here I present an analysis of the available sediment records of the four most recent polarity reversals. These records yield an average estimate of about 7,000 years for the time it takes for the directional change to occur. The variation about this mean duration is not random, but instead varies with site latitude, with shorter durations observed at low-latitude sites, and longer durations observed at mid- to high-latitude sites. Such variation of duration with site latitude is predicted by simple geometrical reversal models, in which non-dipole fields are allowed to persist while the axial dipole decays through zero and then builds in the opposite direction, and provides a constraint on numerical dynamo models.

  11. Delayed-onset Reversible Cortical Blindness after Resuscitation from Cardiac Arrest

    PubMed Central

    de Souza, Aaron; de Souza, Rainha J.; Pai Kakode, Varun R.

    2017-01-01

    We present a patient who presented with cortical blindness (CB) 1 week after repeated cardiac arrest while undergoing treatment for an acute myocardial infarction. He had been revived within 5 min in each instance and was apparently neurologically normal until presentation. Magnetic resonance imaging showed subtle hyperintensities on fluid-attenuated inversion recovery and diffusion-weighted imaging in both temporooccipital cortices. A rapid recovery over the next 2 weeks was remarkable for the appearance of metamorphopsia. CB may present even days to weeks after hypoxic-ischemic encephalopathy following cardiac arrest, even in patients apparently without immediate neurological sequelae. The pathogenesis of this phenomenon remains to be fully elucidated, but is likely to be due to delayed effects of anoxia on the occipital cortex and may be analogous to the previously described syndrome of delayed posthypoxic leukoencephalopathy. Prognosis for visual recovery appears to be good. PMID:28936091

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  13. Environmental enrichment reverses memory impairment induced by toluene in mice.

    PubMed

    Montes, Sergio; Solís-Guillén, Rocío Del Carmen; García-Jácome, David; Páez-Martínez, Nayeli

    2017-05-01

    Toluene is the main component of a variety of inhalants that are used for intoxication purposes. Alterations in memory have been reported in inhalant users; however, it is unclear whether these impairments could be reversed, and the mechanisms involved in the putative recovery. Therefore, the main purpose of this study was to model the deleterious effects of toluene on memory in mice and to evaluate the effect of environmental enrichment on that response. In the second part of the study, the concentrations of glutamate and GABA, following chronic toluene exposure and after environmental enrichment treatment, were evaluated. Adolescent mice were exposed to either a single or repeated schedule of toluene administration and their responses to object recognition were analyzed. An independent group of mice was repeatedly exposed to toluene and then housed either under environmental enrichment or standard conditions for four weeks. At the end of the housing period, the rodents' performance in object recognition test, as well as the concentrations of neurotransmitters, were analyzed. The results showed that toluene caused memory impairment in mice that received a single or repeated solvent exposure. Remarkably, environmental enrichment could reverse memory deficits induced by repeated administration of toluene. Cessation of toluene exposure in mice in standard housing did not produce that response. The glutamate and GABA tissue contents were not involved in the effects of toluene or environmental enrichment of memory. Copyright © 2017. Published by Elsevier Inc.

  14. Tuning the metal-insulator crossover and magnetism in SrRuO 3 by ionic gating

    DOE PAGES

    Yi, Hee Taek; Gao, Bin; Xie, Wei; ...

    2014-10-13

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. We report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO 3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K,more » respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.« less

  15. Tuning the metal-insulator crossover and magnetism in SrRuO₃ by ionic gating.

    PubMed

    Yi, Hee Taek; Gao, Bin; Xie, Wei; Cheong, Sang-Wook; Podzorov, Vitaly

    2014-10-13

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. Here we report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO₃. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90-250 K and 70-100 K, respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.

  16. Experimental Determination of Ultra-Sharp Stray Field Distribution from a Magnetic Vortex Core Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Zhu, Y.; Zhong, H.

    2009-08-01

    The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less

  17. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    PubMed Central

    Oezelt, Harald; Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon; Gusenbauer, Markus; Schubert, Christian; Albrecht, Manfred; Schrefl, Thomas

    2015-01-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. PMID:25937693

  18. Magnetic properties and large reversible magnetocaloric effect in Er3Pd2

    NASA Astrophysics Data System (ADS)

    Maji, Bibekananda; Ray, Mayukh K.; Modak, M.; Mondal, S.; Suresh, K. G.; Banerjee, S.

    2018-06-01

    The magnetic properties and magnetocaloric effect (MCE) of binary intermetallic compound Er3Pd2 were studied. It exhibits a paramagnetic (PM) to antiferromagnetic (AFM) transition at Néel temperature (TN) = 10 K. A large reversible MCE was observed which is related to a second order magnetic transition from PM to AFM state. The values of maximum magnetic entropy change (- Δ SMmax) and adiabatic temperature change (Δ Tadmax) reach 8.9 J/kg-K and 2.9 K respectively for the field change of 50 kOe with no obvious hysteresis loss. The effective magnetic moment was determined to be 10.16 μB/Er3+, which is notably higher than that of free ion value of Er3+ (9.59 μB), suggests that Pd ions also have considerable amount of magnetic moments in this compound.

  19. Magnetic properties and magnetocaloric effects in HoPd intermetallic

    NASA Astrophysics Data System (ADS)

    Zhao-Jun, Mo; Jun, Shen; Xin-Qiang, Gao; Yao, Liu; Jian-Feng, Wu; Bao-Gen, Shen; Ji-Rong, Sun

    2015-03-01

    A large reversible magnetocaloric effect accompanied by a second order magnetic phase transition from PM to FM is observed in the HoPd compound. Under the magnetic field change of and the refrigerant capacity RC for the compound are evaluated to be 20 J/(kg · K) and 342 J/kg, respectively. In particular, large (11.3 J/(kg · K)) and RC (142 J/kg) are achieved under a low magnetic field change of 0-2 T with no thermal hysteresis and magnetic hysteresis loss. The large reversible magnetocaloric effect (both the large -ΔSM and the high RC) indicates that HoPd is a promising material for magnetic refrigeration at low temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322605, 11104337, 51271192, and 11274357) and the Knowledge Innovation Project of the Chinese Academy of Sciences.

  20. ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent ofmore » the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.« less

  1. Controlling laser-induced magnetization reversal dynamics in a rare-earth iron garnet across the magnetization compensation point

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2018-04-01

    In this work we explore the ultrafast magnetization dynamics induced by femtosecond laser pulses in a doped film of gadolinium iron garnet over a broad temperature range including the magnetization compensation point TM. By exciting the phonon-assisted 6S→4G and 6S→4P electronic d -d transitions simultaneously by one- and two-photon absorption processes, we find out that the transfer of heat energy from the lattice to the spin has, at a temperature slightly below TM, a large influence on the magnetization dynamics. In particular, we show that the speed and the amplitude of the magnetization dynamics can be strongly increased when increasing either the external magnetic field or the laser energy density. The obtained results are explained by a magnetization reversal process across TM. Furthermore, we find that the dynamics has unusual characteristics which can be understood by considering the weak spin-phonon coupling in magnetic garnets. These results open new perspectives for controlling the magnetic state of magnetic dielectrics using an ultrashort optically induced heat pulse.

  2. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, Charles W.; Shearer, James W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  3. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOEpatents

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  4. Magnetic response in cultures of Streptococcus mutans ATCC-27607.

    PubMed

    Adamkiewicz, V W; Bassous, C; Morency, D; Lorrain, P; Lepage, J L

    1987-01-01

    Streptococcus mutans ATCC-27607 produces exopolysaccharides that adhere to glass. In the normal geomagnetic field about 50% more polysaccharide adhere preferentially to glass surfaces facing North as compared to South facing surfaces. Reversal of the direction of the magnetic field by 180 degrees produces a similar reversal in the direction of the preferential accumulation. Reduction of the field by 90% abolishes the preferential accumulation.

  5. Pharmacological enhancement of calcium-activated potassium channel function reduces the effects of repeated stress on fear memory

    PubMed Central

    Atchley, Derek; Hankosky, Emily R.; Gasparotto, Kaylyn; Rosenkranz, J. Amiel

    2012-01-01

    Repeated stress impacts emotion, and can induce mood and anxiety disorders. These disorders are characterized by imbalance of emotional responses. The amygdala is fundamental in expression of emotion, and is hyperactive in many patients with mood or anxiety disorders. Stress also leads to hyperactivity of the amygdala in humans. In rodent studies, repeated stress causes hyperactivity of the amygdala, and increases fear conditioning behavior that is mediated by the basolateral amygdala (BLA). Calcium-activated potassium (KCa) channels regulate BLA neuronal activity, and evidence suggests reduced small conductance KCa (SK) channel function in male rats exposed to repeated stress. Pharmacological enhancement of SK channels reverses the BLA neuronal hyperexcitability caused by repeated stress. However, it is not known if pharmacological targeting of SK channels can repair the effects of repeated stress on amygdala-dependent behaviors. The purpose of this study was to test whether enhancement of SK channel function reverses the effects of repeated restraint on BLA-dependent auditory fear conditioning. We found that repeated restraint stress increased the expression of cued conditioned fear in male rats. However, 1-EBIO (1 or 10 mg/kg) or CyPPA (5 mg/kg) administered 30 minutes prior to testing of fear expression brought conditioned freezing to control levels, with little impact on fear expression in control handled rats. These results demonstrate that enhancement of SK channel function can reduce the abnormalities of BLA-dependent fear memory caused by repeated stress. Furthermore, this indicates that pharmacological targeting of SK channels may provide a novel target for alleviation of psychiatric symptoms associated with amygdala hyperactivity. PMID:22487247

  6. Hybrid supercapacitors for reversible control of magnetism

    PubMed Central

    Molinari, Alan; Leufke, Philipp M.; Reitz, Christian; Dasgupta, Subho; Witte, Ralf; Kruk, Robert; Hahn, Horst

    2017-01-01

    Electric field tuning of magnetism is one of the most intensely pursued research topics of recent times aiming at the development of new-generation low-power spintronics and microelectronics. However, a reversible magnetoelectric effect with an on/off ratio suitable for easy and precise device operation is yet to be achieved. Here we propose a novel route to robustly tune magnetism via the charging/discharging processes of hybrid supercapacitors, which involve electrostatic (electric-double-layer capacitance) and electrochemical (pseudocapacitance) doping. We use both charging mechanisms—occurring at the La0.74Sr0.26MnO3/ionic liquid interface to control the balance between ferromagnetic and non-ferromagnetic phases of La1−xSrxMnO3 to an unprecedented extent. A magnetic modulation of up to ≈33% is reached above room temperature when applying an external potential of only about 2.0 V. Our case study intends to draw attention to new, reversible physico-chemical phenomena in the rather unexplored area of magnetoelectric supercapacitors. PMID:28489078

  7. Non-magnetic impurity effects in LiFeAs studied by STM/STS

    NASA Astrophysics Data System (ADS)

    Hanaguri, T.; Khim, Seung Hyun; Lee, Bumsung; Kim, Kee Hoon; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takigawa, M.; Takagi, H.

    2012-02-01

    Detecting the possible sign reversal of the superconducting gap in iron-based superconductors is highly non-trivial. Here we use non-magnetic impurity as a sign indicator. If the sign of the superconducting gap is positive everywhere in momentum space, in-gap bound state should not be observed near the impurity site unless it is magnetic. On the other hand, if there is a sign-reversal in the gap, even non-magnetic impurity may create in-gap bound state [1]. We performed STM/STS experiments on self-flux and Sn-flux grown LiFeAs crystals and examined the effects of Sn impurity. In STM images of Sn-flux grown samples, we found a ring-like object which may represent Sn. Tunneling spectrum taken at this defect site exhibits in-gap bound state. Together with flat-bottom superconducting gap observed far from the defects, sign-reversing s-wave gap is the most plausible gap structure in LiFeAs. [1] T. Kariyado and M. Ogata, JPSJ 79, 083704 (2010).

  8. Reversible solvatomagnetic switching in a single-ion magnet from an entatic state.

    PubMed

    Vallejo, J; Pardo, E; Viciano-Chumillas, M; Castro, I; Amorós, P; Déniz, M; Ruiz-Pérez, C; Yuste-Vivas, C; Krzystek, J; Julve, M; Lloret, F; Cano, J

    2017-05-01

    A vast impact on molecular nanoscience can be achieved using simple transition metal complexes as dynamic chemical systems to perform specific and selective tasks under the control of an external stimulus that switches "ON" and "OFF" their electronic properties. While the interest in single-ion magnets (SIMs) lies in their potential applications in information storage and quantum computing, the switching of their slow magnetic relaxation associated with host-guest processes is insufficiently explored. Herein, we report a unique example of a mononuclear cobalt(ii) complex in which geometrical constraints are the cause of easy and reversible water coordination and its release. As a result, a reversible and selective colour and SIM behaviour switch occurs between a "slow-relaxing" deep red anhydrous material (compound 1 ) and its "fast-relaxing" orange hydrated form (compound 2 ). The combination of this optical and magnetic switching in this new class of vapochromic and thermochromic SIMs offers fascinating possibilities for designing multifunctional molecular materials.

  9. Unusual magnetoelectric memory and polarization reversal in the kagome staircase compound N i3V2O8

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Wang, J. F.; He, Z. Z.; Lu, C. L.; Xia, Z. C.; Ouyang, Z. W.; Liu, C. B.; Chen, R.; Matsuo, A.; Kohama, Y.; Kindo, K.; Tokunaga, M.

    2018-05-01

    We study the electric polarization of the kagome staircase N i3V2O8 in magnetic fields up to 30 T and report a magnetoelectric memory effect controlled by bias electric fields. The explored ferroelectric phase in 19 -24 T is electrically controlled, whereas the ferroelectric phase in 2 -11 T exhibits unusual memory effects. We determine a characteristic critical magnetic field H3=11 T , below which strong memory exists and the polarization is frozen even in opposite bias fields. But when magnetic fields exceed H3, the frozen polarization is released and polarization reversal appears by tuning bias electric fields. We ascribe these phenomena to the pinning-depinning mechanism: nucleation and the accompanying pinning of chiral domain walls cooperatively induce the frozen behavior; the polarization reversal results from the depinning through the ferroelectrtic-to-paraelectric phase transition in high magnetic fields. Our experimental results reveal that the first-order phase transition plays an important role in these unusual memory effects.

  10. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique.

    PubMed

    Li, Hansheng; Zhang, Yaping; Wang, Shiying; Wu, Qin; Liu, Changhao

    2009-09-30

    A sol-gel process in reverse microemulsion combined with solvent-thermal technique was developed for synthesizing a series of nanomagnets supported TiO(2) (TiO(2)/NMs) photocatalysts in this study. The structure of TiO(2)/NMs photocatalysts was characterized by Fourier transform infrared (FTIR), TG-DSC, X-ray diffraction (XRD), Raman spectrometry, TEM, BET, and VSM. The influence of CoFe(2)O(4) dosage on the photocatalytic activity and magnetism of TiO(2)/NMs photocatalysts was investigated. The results showed that nanosized anatase TiO(2) were uniformly coated on spinel CoFe(2)O(4) in the prepared TiO(2)/NMs photocatalysts. They possessed typical ferromagnetic hysteresis and performed better photocatalytic activity in degradation of methylene blue than TiO(2) prepared by the same method. The existence of CoFe(2)O(4) nanomagnets played an important role on the crystalline grain size of TiO(2) and the specific surface area of the prepared TiO(2)/NMs photocatalysts, thus had an important influence on its photocatalytic performance and magnetism. The photocatalytic performance of TiO(2)/NMs photocatalysts is related to their specific surface area, crystalline grain sizes of TiO(2) and particle size, as well as the doping effect of Fe(3+). The highest photocatalytic activity in degradation of methylene blue for TiO(2)/NMs photocatalysts at the CoFe(2)O(4) content of 20wt.% was achieved, with k(p) 28.32% higher than that of pure TiO(2) photocatalyst. Moreover, the experiments on recycled use of TiO(2)/NMs photocatalyst demonstrated a good repeatability of the photocatalytic activity.

  11. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  12. Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.

    PubMed

    Dunn, J R; Fuller, M; Ito, H; Schmidt, V A

    1971-05-21

    A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.

  13. Incidence of posterior reversible encephalopathy syndrome in eclamptic and patients with preeclampsia with neurologic symptoms.

    PubMed

    Mayama, Michinori; Uno, Kaname; Tano, Sho; Yoshihara, Masato; Ukai, Mayu; Kishigami, Yasuyuki; Ito, Yasuhiro; Oguchi, Hidenori

    2016-08-01

    Posterior reversible encephalopathy syndrome is observed frequently in patients with eclampsia; however, it has also been reported in some patients with preeclampsia. The aim of this study was to determine the incidence of posterior reversible encephalopathy syndrome in patients with preeclampsia and eclampsia and to assess whether these 2 patient groups share similar pathophysiologic backgrounds by comparing clinical and radiologic characteristics. This was a retrospective cohort study of 4849 pregnant patients. A total of 49 patients with eclampsia and preeclampsia and with neurologic symptoms underwent magnetic resonance imaging and magnetic resonance angiography; 10 patients were excluded from further analysis because of a history of epilepsy or dissociative disorder. The age, parity, blood pressure, and routine laboratory data at the onset of symptoms were also recorded. Among 39 patients with neurologic symptoms, 12 of 13 patients with eclampsia (92.3%) and 5 of 26 patients with preeclampsia (19.2%) experienced the development of posterior reversible encephalopathy syndrome. Whereas age and blood pressure at onset were not significantly different between patients with and without encephalopathy, hematocrit, serum creatinine, aspartate transaminase, alanine transaminase, and lactate dehydrogenase values were significantly higher in patients with posterior reversible encephalopathy syndrome than in those without magnetic resonance imaging abnormalities. In contrast, patients with eclampsia with posterior reversible encephalopathy syndrome did not show any significant differences in clinical and laboratory data compared with patients with preeclampsia with posterior reversible encephalopathy syndrome. In addition to the parietooccipital regions, atypical regions (such as the frontal and temporal lobes), and basal ganglia were also involved in patients with eclampsia and patients with preeclampsia with posterior reversible encephalopathy syndrome. Finally, intraparenchymal hemorrhage was detected in 1 patient with eclampsia, and subarachnoid hemorrhage was observed in 1 patient with preeclampsia. Although the incidence of posterior reversible encephalopathy syndrome was high in patients with eclampsia, nearly 20% of the patients with preeclampsia with neurologic symptoms also experienced posterior reversible encephalopathy syndrome. The similarities in clinical and radiologic findings of posterior reversible encephalopathy syndrome between the 2 groups support the hypothesis that these 2 patient groups have a shared pathophysiologic background. Thus, magnetic resonance imaging studies should be considered for patients with the recent onset of neurologic symptoms, regardless of the development of eclampsia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Thermodynamic signatures for the existence of Dirac electrons in ZrTe 5

    DOE PAGES

    Nair, Nityan L.; Dumitrescu, Philipp T.; Channa, Sanyum; ...

    2017-09-12

    We combine transport, magnetization, and torque magnetometry measurements to investigate the electronic structure of ZrTe 5 and its evolution with temperature. At fields beyond the quantum limit, we observe a magnetization reversal from paramagnetic to diamagnetic response, which is characteristic of a Dirac semi-metal. We also observe a strong non-linearity in the magnetization that suggests the presence of additional low-lying carriers from other low-energy bands. Finally, we observe a striking sensitivity of the magnetic reversal to temperature that is not readily explained by simple band-structure models, but may be connected to a temperature dependent Lifshitz transition proposed to exist inmore » this material.« less

  15. Enhanced asymmetric magnetization reversal in nanoscale Co/CoO arrays: competition between exchange bias and magnetostatic coupling.

    PubMed

    Girgis, E; Portugal, R D; Loosvelt, H; Van Bael, M J; Gordon, I; Malfait, M; Temst, K; Van Haesendonck, C; Leunissen, L H A; Jonckheere, R

    2003-10-31

    Magnetization reversal was studied in square arrays of square Co/CoO dots with lateral size varying between 200 and 900 nm. While reference nonpatterned Co/CoO films show the typical shift and increased width of the hysteresis loop due to exchange bias, the patterned samples reveal a pronounced size dependence. In particular, an anomaly appears in the upper branch of the magnetization cycle and becomes stronger as the dot size decreases. This anomaly, which is absent at room temperature in the patterned samples, can be understood in terms of a competition between magnetostatic interdot interaction and exchange anisotropy during the magnetic switching process.

  16. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    PubMed

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  17. Magnetic Resonance Imaging With Cochlear Implant Magnet in Place: Safety and Imaging Quality.

    PubMed

    Carlson, Matthew L; Neff, Brian A; Link, Michael J; Lane, John I; Watson, Robert E; McGee, Kiaran P; Bernstein, Matt A; Driscoll, Colin L W

    2015-07-01

    To evaluate the safety and image quality of 1.5-T MRI in patients with cochlear implants and retained internal magnets. Retrospective case series from 2012 to 2014. Single tertiary academic referral center. All cochlear implant recipients undergoing 1.5-T MRI without internal magnet removal. MRI after tight headwrap application. Patient tolerance, complications, and characteristics of imaging artifact. Nineteen ears underwent a total of 34 MRI scans. Two patients did not tolerate imaging with the headwrap in place and required magnet removal before rescanning. One subject experienced two separate episodes of polarity reversal in the same device from physical realignment (i.e., flipping) of the internal magnet requiring surgical repositioning. Three patients were discovered to have canting of the internal magnet after imaging. In all three cases, the magnet could be reseated by applying gentle firm pressure to the scalp until the magnet "popped" back into place. These patients continue to use their device without difficulty and have not required surgical replacement. In patients receiving head MRI, the ipsilateral internal auditory canal and cerebellopontine angle could be visualized without difficulty in 94% of cases. There were no episodes of cochlear implant device failure or soft tissue complications. Under controlled conditions, 1.5-T MRI can be successfully performed in most patients without the need for cochlear implant magnet removal. In nearly all cases, imaging artifact does not impede evaluation of the ipsilateral skull base. Patients should be counseled regarding the risk of internal magnet movement that may occur in up to 15% of cases, even with tight headwrap application. If internal magnet polarity reversal occurs, a trial of reversing the external magnet can be considered. If canting or mild displacement of the internal magnet occurs, an attempt at reseating can be made by applying gentle firm pressure to the scalp over the internal magnet. If conservative measures fail, the magnet should be surgically repositioned to minimize interruption of device use and to prevent scalp complications.

  18. FeTi oxide mineralogy and the origin of normal and reverse remanent magnetization in dacitic pumice blocks from Mt. Shasta, California

    USGS Publications Warehouse

    Lawson, C.A.; Nord, G.L.; Champion, D.E.

    1987-01-01

    Detailed mineralogical analyses and rock magnetic experiments have made it possible to directly identify the FeTi oxide phases responsible for the normal and reverse magnetic components of two dacitic pumice blocks from Mt. Shasta, California. Both samples contain a normal component carried by 100 ??m size multi-domain (MD) titanomagnetite (Usp11-24). One sample also contains a second normal component carried by < 10 ??m size pseudo-single domain (PSD) or single domain (SD) Ti-free magnetite (Usp1) found in the dacitic glass. The MD titanomagnetite and PSD or SD magnetite dominate the strong field magnetic signal, but only the PSD or SD magnetite has any influence on the remanence signal. Unlike the strong field signal, the remanence signal of both samples is dominated by a reverse NRM component. This reverse component is carried by 100 ??m size ferrian ilmenite (Ilm53-65). The compositions of the ilmenites in both samples are within the range of compositions (Ilm50-75) known to have the ability to acquire self-reversing thermoremanent magnetizations (TRM). The results of the Lowric-Fuller test indicate that the remanence signal is dominated by PSD or SD carriers. Because one sample contains only large MD titanomagnetite and no SD Ti-free magnetite (in addition to ferrian ilmenite), the ferrian ilmenite must be a PSD or SD carrier. Oxide and pyroxene geothermometry indicate the FeTi oxides in the pumice crystallized at temperatures between 880 and 945??C. This temperature range is within the disordered region of the ilmenite-hematite phase diagram for Ilm53-65. Previous work on synthetic Ilm70 and Ilm80 has shown that cooling through the order-disorder transition into the ordered region develops a transformation-induced microstructure consisting of cation-ordered domains with disordered domain boundaries. An Ilm58-59 grain from one of the Mt. Shasta samples was examined in the transmission electron microscope and was found to contain 100-200 A?? diameter cation-ordered domains. These domains arose during cooling through the transition temperature, which is estimated at 800??C for Ilm58-59. The presence of the disordered domain boundaries provides an explanation for the magnetic behavior of the ferrian ilmenite. (1) The disordered boundaries are the higher Curie point phase necessary for the operation of the self-reversal mechanism. (2) The disordered domain boundaries either inhibit the formation of magnetic domain walls or restrict magnetic domain wall movement accounting for the PSD or SD behavior of the ferrian ilmenite. ?? 1987.

  19. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles.

    PubMed

    Mitsumata, Tetsu; Honda, Atomu; Kanazawa, Hiroki; Kawai, Mika

    2012-10-11

    A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of magnetic particles of 0.30 exhibited a reversible increase by a factor of 1400 of the storage modulus upon a magnetic field of 500 mT, which is the highest value in the past for magnetorheological soft materials. It is considered that the giant magnetoelastic behavior is caused by both high dispersibility and high mobility of magnetic particles in the carrageenan gel. The off-field storage modulus of the magnetic gel at volume fractions below 0.30 obeyed the Krieger-Dougherty equation, indicating random dispersion of magnetic particles. At 500 mT, the storage modulus was higher than 4.0 MPa, which is equal to that of magnetic fluids, indicating that the magnetic particles move and form a chain structure by magnetic fields. Morphological study revealed the evidence that the magnetic particles embedded in the gel were aligned in the direction of magnetic fields, accompanied by stretching of the gel network. We conclude that the giant magnetoelastic phenomenon originates from the chain structure consisting of magnetic particles similar to magnetic fluids.

  20. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, C. W., E-mail: craig.barton-2@postgrad.manchester.ac.uk; Thomson, T.

    2015-08-14

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol wouldmore » provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.« less

  1. Posterior Reversible Encephalopathy Syndrome as a Postpartum Complication.

    PubMed

    Kadić-Vukas, Samra; Hodžić, Mirsada; Tandir-Lihić, Lejla; Hrvat, Lejla; Kožo-Kajmaković, Azra; Kuzmanović, Nina; Vukas, Haris

    2018-05-20

    Posterior reversible encephalopathy syndrome (PRES) is a clinical-radiological syndrome with seizures, altered consciousness, visual disturbances and headache among other symptoms. Hinchey et al. first described Pres in 1996, with two other case series published shortly after. A 23-year-old women patient was emergency sent from General Hospital Tešanj due to a crisis of consciousness and repeated epileptic seizures. The patient had a second birth before 10 days (postpartum cesarean) in general endotracheal anaesthesia (two cesarean-born babies). On magnetic resonance imaging (MRI) of cranium described both sides of the symmetrically frontal, parietal (and pre-ventricular gyri) and occipitally visible T2W/FLAIR hyperintensity focuses on the cortex and the thin layer of white mass subcortically. In the projection of the lesions parts, discrete DWI hyperintensity is seen without a reliable ADC correlate. The patient improved after management with intravenous fluids, antibiotics, antiepileptics and monitoring of blood pressure. According to latest experiences delayed diagnosis and treatment may lead to mortality or irreversible neurological deficit. Aggravating circumstances are differential diagnoses that include cerebral infarction (ischemic, haemorrhage), venous thrombosis, vasculitis, pontine or extrapontine myelinolysis. MRI of the brain is key to make this distinction with crucial recognition and an open mind from radiology and neurology specialist.

  2. Vector magnetometry of Fe/Cr/Fe trilayers with biquadratic coupling

    NASA Astrophysics Data System (ADS)

    Mansell, R.; Petit, D.; Fernández-Pacheco, A.; Lee, J. H.; Chin, S.-L.; Lavrijsen, R.; Cowburn, R. P.

    2017-05-01

    The magnetic reversal of epitaxial Fe/Cr/Fe trilayer samples grown on GaAs is studied. In wedged samples both long and short period coupling oscillations associated with Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in Cr are seen in the easy axis saturation fields. By using vector vibrating sample magnetometry and both longitudinal and transverse magneto-optical Kerr effect magnetometry we are able to determine the exact reversal path of both the magnetic layers. Changes in the reversal behavior are seen with sub-monolayer changes of the thickness of the Cr interlayer. The two main reversal paths are described in terms of whether the reversal is dominated by bilinear RKKY coupling, which leads to an antiparallel state at remanence or by biquadratic coupling which leads to a 90 degree alignment of layers at remanence. The changing reversal behaviour is discussed with respect to the possibility of using such systems for multilayer memory applications and, in particular, the limits on the required accuracy of the sample growth.

  3. Magnetic moment scattering in a field reversal with nonzero BY component

    NASA Astrophysics Data System (ADS)

    Delcourt, D. C.; Zelenyi, L. M.; Sauvaud, J.-A.

    2000-01-01

    We examine the nonadiabatic motion of charged particles in a field reversal with nonzero BY. We show that magnetic moment variations are organized into three categories: (1) at small equatorial pitch angles, large magnetic moment enhancements regardless of gyration phase, (2) at intermediate pitch angles, a prominent dependence upon phase with either magnetic moment enhancement or damping, and (3) at large pitch angles, negligible magnetic moment changes. This three-branch pattern of magnetic moment variations resembles that obtained for zero BY, but it is here more or less developed when particles enter above or below the field reversal. We investigate this effect using the centrifugal impulse model developed for zero BY, whereby nonadiabatic behavior is viewed as the result of perturbation of the gyromotion by an impulsive centrifugal force. We show that nonzero BY leads to a rotation of the centrifugal impulse in the gyration plane and that the nonadiabatic particle behavior is attenuated or enhanced when this rotation opposes or goes together with the gyromotion, respectively. As a consequence of this, particles with opposite charge states or originating from opposite hemispheres behave in quite distinct manners, exhibiting for instance large or negligible magnetic moment changes depending upon their direction of propagation. More generally, we demonstrate that prominent hemispherical differences are obtained as a result of nonzero BY, be it for injection inside the loss cone or gyrophase bunching near the current sheet midplane.

  4. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  5. Reversible strain effect on the magnetization of LaCoO3 films

    NASA Astrophysics Data System (ADS)

    Herklotz, A.; Rata, A. D.; Schultz, L.; Dörr, K.

    2009-03-01

    The magnetization (M) of a LaCoO3 film grown epitaxially on a piezoelectric substrate has been investigated in dependence on the biaxial in-plane strain. M decreases with the reversible release of tensile strain, with a maximum change of at least 6% per 0.1% of biaxial strain near the Curie temperature (TC) . The biaxial strain response of TC is estimated to be below 5 K/% in the tensile strain state. This is in agreement with results from statically strained films on various substrates. As possible origins of the strain-induced magnetization are considered (i) the strain-dependent Curie temperature, (ii) a strain-dependent magnetically inhomogeneous (phase-separated) state, and (iii) a strain-dependent magnetic moment (spin state) of Co ions. The TC shift is found insufficient to explain the measured strain-induced magnetization change but contributions from mechanism (ii) or (iii) must be involved.

  6. Spin-flop and magnetodielectric reversal in Yb substituted GdMnO3

    NASA Astrophysics Data System (ADS)

    Pal, A.; Prellier, W.; Murugavel, P.

    2018-03-01

    The evolution of various spin structures in Yb doped GdMnO3 distorted orthorhombic perovskite system was investigated from their magnetic, dielectric and magnetodielectric characteristics. The Gd1-x Yb x MnO3 (0  ⩽  x  ⩽  0.15) revealed an enhanced magnetodielectric coupling when their magnetic structure is guided from ab to the bc-cycloidal spin structure upon Yb doping. The compounds exhibit magnetic field and temperature controlled spin-flop from c to a-axis. Additionally, magnetodielectric reversal is observed for the x  =  0.1 sample which depends on both magnetic field and temperature. The resultant correlation between magnetic and electric orderings is discussed in the frame of symmetric and antisymmetric exchange interaction models. These findings provide further insight in understanding the magnetoelectric materials and importantly show a way to tune the magnetic and magnetodielectric properties towards better application potential.

  7. Transition metal redox switches for reversible "on/off" and "slow/fast" single-molecule magnet behaviour in dysprosium and erbium bis-diamidoferrocene complexes.

    PubMed

    Dickie, Courtney M; Laughlin, Alexander L; Wofford, Joshua D; Bhuvanesh, Nattamai S; Nippe, Michael

    2017-12-01

    Single-molecule magnets (SMMs) are considered viable candidates for next-generation data storage and quantum computing. Systems featuring switchability of their magnetization dynamics are particularly interesting with respect to accessing more complex logic gates and device architectures. Here we show that transition metal based redox events can be exploited to enable reversible switchability of slow magnetic relaxation of magnetically anisotropic lanthanide ions. Specifically, we report anionic homoleptic bis-diamidoferrocene complexes of Dy 3+ (oblate) and Er 3+ (prolate) which can be reversibly oxidized by one electron to yield their respective charge neutral redox partners (Dy: [1] - , 1 ; Er: [2] - , 2 ). Importantly, compounds 1 and 2 are thermally stable which allowed for detailed studies of their magnetization dynamics. We show that the Dy 3+ [1] - / 1 system can function as an "on"/"off" or a "slow"/"fast" redox switchable SMM system in the absence or presence of applied dc fields, respectively. The Er 3+ based [2] - / 2 system features "on"/"off" switchability of SMM properties in the presence of applied fields. Results from electrochemical investigations, UV-vis-NIR spectroscopy, and 57 Fe Mössbauer spectroscopy indicate the presence of significant electronic communication between the mixed-valent Fe ions in 1 and 2 in both solution and solid state. This comparative evaluation of redox-switchable magnetization dynamics in low coordinate lanthanide complexes may be used as a potential blueprint toward the development of future switchable magnetic materials.

  8. On some approaches to model reversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Chwastek, K.; Baghel, A. P. S.; Sai Ram, B.; Borowik, B.; Daniel, L.; Kulkarni, S. V.

    2018-04-01

    This paper focuses on the problem of how reversible magnetization processes are taken into account in contemporary descriptions of hysteresis curves. For comparison, three versions of the phenomenological T(x) model based on hyperbolic tangent mapping are considered. Two of them are based on summing the output of the hysteresis operator with a linear or nonlinear mapping. The third description is inspired by the concept of the product Preisach model. Total susceptibility is modulated with a magnetization-dependent function. The models are verified using measurement data for grain-oriented electrical steel. The proposed third description represents minor loops most accurately.

  9. Improved particle confinement in transition from multiple-helicity to quasi-single-helicity regimes of a reversed-field pinch.

    PubMed

    Frassinetti, L; Predebon, I; Koguchi, H; Yagi, Y; Hirano, Y; Sakakita, H; Spizzo, G; White, R B

    2006-10-27

    The quasi-single-helicity (QSH) state of a reversed-field pinch (RFP) plasma is a regime in which the RFP configuration can be sustained by a dynamo produced mainly by a single tearing mode and in which a helical structure with well-defined magnetic flux surfaces arises. In this Letter, we show that spontaneous transitions to the QSH regime enhance the particle confinement. This improvement is originated by the simultaneous and cooperative action of the increase of the magnetic island and the reduction of the magnetic stochasticity.

  10. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii

    USDA-ARS?s Scientific Manuscript database

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2) using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/ CRISPR-associated) hom...

  11. Anisotropic heat transport in reversed shear configurations: shearless Cantori barriers and nonlocal transport

    NASA Astrophysics Data System (ADS)

    Blasevski, D.; Del-Castillo-Negrete, D.

    2012-10-01

    Heat transport in magnetized plasmas is a problem of fundamental interest in controlled fusion. In Ref.footnotetext D. del-Castillo-Negrete, and L. Chac'on, Phys. Rev. Lett., 106, 195004 (2011); Phys. Plasmas 19, 056112 (2012). we proposed a Lagrangian-Green's function (LG) method to study this problem in the strongly anisotropic (χ=0) regime. The LG method bypasses the need to discretize the transport operators on a grid and it is applicable to general parallel flux closures and 3-D magnetic fields. Here we apply the LG method to parallel transport (with local and nonlocal parallel flux closures) in reversed shear magnetic field configurations known to exhibit robust transport barriers in the vicinity of the extrema of the q-profile. By shearless Cantori (SC) we mean the invariant Cantor sets remaining after the destruction of toroidal flux surfaces with zero magnetic shear, q^'=0. We provide numerical evidence of the role of SC in the anomalously slow relaxation of radial temperature gradients in chaotic magnetic fields with no transport barriers. The spatio-temporal evolution of temperature pulses localized in the reversed shear region exhibits non-diffusive self-similar evolution and nonlocal effective radial transport.

  12. Magneto-optic evaluation of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Srinath; Panmand, Rajendra; Kumar, Ganapathy; Mahajan, Satish M.; Kale, Bharat B.

    2016-03-01

    This paper presents a prima facie study of the magneto-optic response of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate investigated by MOKE. The concentrations of the iron oxide nanoparticles in the films were varied from 8.6% to 21.5% and showed a linear increase in film thicknesses. As the concentration of the iron oxide nanoparticles were increased, the samples changed from a net-like morphology to a crystalline morphology. Magnetization reversals in the lower concentration samples were asymmetric with the reversals for the ascending and descending branch of the hysteresis loop occurring on the same side. The asymmetry in the magnetization reversal was attributed to the angle between the antiferromagnetic easy axis and the external magnetic field. With increase in concentration, an improvement in the magneto-optic response was observed with the magnetization reversal occurring via coherent rotation for both ascending and descending branches of the hysteresis loop. The changes in the magneto-optic behavior for the samples with higher concentrations is attributed to the strong exchange interactions and changes in the shape of the nanoparticles. Sensitivity studies performed on the samples showed an increased magneto-optic sensitivity to changes in magnetic field for samples of higher concentration. The high sensitivity of these samples could be exploited in magneto-optic sensors. Nanoparticles on a quartz substrate could find applications in bio-medicine due to their bio-compatibility.

  13. Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle C.; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri

    2015-08-01

    The 3-D magnetohydrodynamic (MHD) Anelastic Spherical Harmonic (ASH) code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo generated magnetic fields possesses many time scales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulations relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The time scales that appear to be relevant to the magnetic polarity reversal are also identified.

  14. Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Augustson, Kyle; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri

    2015-08-01

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  15. Pressure response of three-dimensional cyanide-bridged bimetallic magnets.

    PubMed

    Ohba, Masaaki; Kaneko, Wakako; Kitagawa, Susumu; Maeda, Takuho; Mito, Masaki

    2008-04-02

    Effects of pressure on the structures and magnetic properties of three types of 3-D cyanide-bridged bimetallic coordination polymer magnets, MnIICrIII ferrimagnet [Mn(en)]3[Cr(CN)6]2.4H2O (1; en = ethylenediamine), NiIICrIII ferromagnet [Ni(dipn)]3[Cr(CN)6]2.3H2O (2; dipn = N,N-di(3-aminopropyl)amine), and NiIIFeIII ferromagnet [Ni(dipn)]2[Ni(dipn)(H2O)][Fe(CN)6]2.11H2O (3), were systematically examined under hydrostatic pressure up to 19.8 GPa using a piston-cylinder-type pressure cell and a diamond anvil cell. The ferrimagnet 1 showed the reversible crystalline-to-amorphous-like phase change, and the magnetic phase transition temperature (TC) was reversibly changed from 69 K at 0 GPa to 126 K at 4.7 GPa. At higher pressure, the net magnetization was suppressed with increasing pressure, and the magnetic state at 19.8 GPa was assumed to be paramagnetic. The initial ferrimagnetic phase of 1 was not recovered after releasing the pressure from 19.8 GPa. The magnetic phase of 2 was reversibly converted between ferromagnetic and paramagnetic-like phase in the range 0

  16. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustson, Kyle; Miesch, Mark; Brun, Allan Sacha

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of themore » magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.« less

  17. Fast and Forceful Refolding of Stretched α-Helical Solenoid Proteins

    PubMed Central

    Kim, Minkyu; Abdi, Khadar; Lee, Gwangrog; Rabbi, Mahir; Lee, Whasil; Yang, Ming; Schofield, Christopher J.; Bennett, Vann; Marszalek, Piotr E.

    2010-01-01

    Abstract Anfinsen's thermodynamic hypothesis implies that proteins can encode for stretching through reversible loss of structure. However, large in vitro extensions of proteins that occur through a progressive unfolding of their domains typically dissipate a significant amount of energy, and therefore are not thermodynamically reversible. Some coiled-coil proteins have been found to stretch nearly reversibly, although their extension is typically limited to 2.5 times their folded length. Here, we report investigations on the mechanical properties of individual molecules of ankyrin-R, β-catenin, and clathrin, which are representative examples of over 800 predicted human proteins composed of tightly packed α-helical repeats (termed ANK, ARM, or HEAT repeats, respectively) that form spiral-shaped protein domains. Using atomic force spectroscopy, we find that these polypeptides possess unprecedented stretch ratios on the order of 10–15, exceeding that of other proteins studied so far, and their extension and relaxation occurs with minimal energy dissipation. Their sequence-encoded elasticity is governed by stepwise unfolding of small repeats, which upon relaxation of the stretching force rapidly and forcefully refold, minimizing the hysteresis between the stretching and relaxing parts of the cycle. Thus, we identify a new class of proteins that behave as highly reversible nanosprings that have the potential to function as mechanosensors in cells and as building blocks in springy nanostructures. Our physical view of the protein component of cells as being comprised of predominantly inextensible structural elements under tension may need revision to incorporate springs. PMID:20550922

  18. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (<1 nm) perpendicularly magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.

  19. Ice ages and geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Wu, Patrick

    1992-01-01

    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  20. Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers.

    PubMed

    Khalil, Islam S M; Tabak, Ahmet Fatih; Hamed, Youssef; Mitwally, Mohamed E; Tawakol, Mohamed; Klingner, Anke; Sitti, Metin

    2018-02-01

    Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two-tailed microrobot capable of reversing its swimming direction without making a U-turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

  1. THz-driven demagnetization with perpendicular magnetic anisotropy: towards ultrafast ballistic switching

    NASA Astrophysics Data System (ADS)

    Polley, Debanjan; Pancaldi, Matteo; Hudl, Matthias; Vavassori, Paolo; Urazhdin, Sergei; Bonetti, Stefano

    2018-02-01

    We study THz-driven spin dynamics in thin CoPt films with perpendicular magnetic anisotropy. Femtosecond magneto-optical Kerr effect measurements show that demagnetization amplitude of about 1% can be achieved with a peak THz electric field of 300 kV cm-1, and a corresponding peak magnetic field of 0.1 T. The effect is more than an order of magnitude larger than observed in samples with easy-plane anisotropy irradiated with the same field strength. We also utilize finite-element simulations to design a meta-material structure that can enhance the THz magnetic field by more than an order of magnitude, over an area of several tens of square micrometers. Magnetic fields exceeding 1 Tesla, generated in such meta-materials with the available laser-based THz sources, are expected to produce full magnetization reversal via ultrafast ballistic precession driven by the THz radiation. Our results demonstrate the possibility of table-top ultrafast magnetization reversal induced by THz radiation.

  2. Out-of-plane coercive field of Ni 80Fe 20 antidot arrays

    NASA Astrophysics Data System (ADS)

    Gao, Chunhong; Chen, Ke; Lü, Ling; Zhao, Jianwei; Chen, Peng

    2010-11-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  3. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  4. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2007-02-20

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  5. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-02-07

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  6. Magnetic field induced switching of the antiferromagnetic order parameter in thin films of magnetoelectric chromia

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Berger, Andreas; Binek, Christian

    2015-02-01

    A Landau-theoretical approach is utilized to model the magnetic field induced reversal of the antiferromagnetic order parameter in thin films of magnetoelectric antiferromagnets. A key ingredient of this peculiar switching phenomenon is the presence of a robust spin polarized state at the surface of the antiferromagnetic films. Surface or boundary magnetization is symmetry allowed in magnetoelectric antiferromagnets and experimentally established for chromia thin films. It couples rigidly to the antiferromagnetic order parameter and its Zeeman energy creates a pathway to switch the antiferromagnet via magnetic field application. In the framework of a minimalist Landau free energy expansion, the temperature dependence of the switching field and the field dependence of the transition width are derived. Least-squares fits to magnetometry data of (0001 ) textured chromia thin films strongly support this model of the magnetic reversal mechanism.

  7. Negative magnetic anomaly over Mt. Resnik, a subaerially erupted volcanic peak beneath the West Antarctic Ice Sheet

    USGS Publications Warehouse

    Behrendt, John C.; Finn, C.; Morse, D.L.; Blankenship, D.D.

    2006-01-01

    Mt. Resnik is one of the previously reported 18 subaerially erupted volcanoes (in the West Antarctic rift system), which have high elevation and high bed relief beneath the WAIS in the Central West Antarctica (CWA) aerogeophysical survey. Mt. Resnik lies 300 m below the surface of the West Antarctic Ice Sheet (WAIS); it has 1.6 km topographic relief, and a conical form defined by radar ice-sounding of bed topography. It has an associated complex negative magnetic anomaly revealed by the CWA survey. We calculated and interpreted magnetic models fit to the Mt. Resnik anomaly as a volcanic source comprising both reversely and normally magnetized (in the present field direction) volcanic flows, 0.5-2.5-km thick, erupted subaerially during a time of magnetic field reversal. The Mt. Resnik 305-nT anomaly is part of an approximately 50- by 40-km positive anomaly complex extending about 30 km to the west of the Mt. Resnik peak, associated with an underlying source complex of about the same area, whose top is at the bed of the WAIS. The bed relief of this shallow source complex has a maximum of only about 400 m, whereas the modeled source is >3 km thick. From the spatial relationship we interpret that this source and Mt Resnik are approximately contemporaneous. Any subglacially (older?) erupted edifices comprising hyaloclastite or other volcanic debris, which formerly overlaid the source to the west, were removed by the moving WAIS into which they were injected as is the general case for the ???1000 volcanic centers at the base of the WAIS. The presence of the magnetic field reversal modeled for Mt. Resnik may represent the Bruhnes-Matayama reversal at 780 ka (or an earlier reversal). There are ???100 short-wavelength, steep-gradient, negative magnetic anomalies observed over the West Antarctic Ice Sheet (WAIS), or about 10% of the approximately 1000 short-wavelength, shallow-source, high-amplitude (50- >1000 nT) "volcanic" magnetic anomalies in the CWA survey. These negative anomalies indicate volcanic activity during a period of magnetic reversal and therefore must also be at least 780 ka. The spatial extent and volume of volcanism can now be reassessed for the 1.2 ?? 106 km2 region of the WAIS characterized by magnetic anomalies defining interpreted volcanic centers associated with the West Antarctic rift system. The CWA covers an area of 3.54 ?? 105 km2; forty-four percent of that area exhibits short-wavelength, high-amplitude anomalies indicative of volcanic centers and subvolcanic intrusions. This equates to an area of 0.51 ?? 105 km2 and a volume of 106 km3 beneath the ice-covered West Antarctic rift system, of sufficient extent to be classified as a large igneous province interpreted to be of Oligocene to recent age.

  8. Field-Free Programmable Spin Logics via Chirality-Reversible Spin-Orbit Torque Switching.

    PubMed

    Wang, Xiao; Wan, Caihua; Kong, Wenjie; Zhang, Xuan; Xing, Yaowen; Fang, Chi; Tao, Bingshan; Yang, Wenlong; Huang, Li; Wu, Hao; Irfan, Muhammad; Han, Xiufeng

    2018-06-21

    Spin-orbit torque (SOT)-induced magnetization switching exhibits chirality (clockwise or counterclockwise), which offers the prospect of programmable spin-logic devices integrating nonvolatile spintronic memory cells with logic functions. Chirality is usually fixed by an applied or effective magnetic field in reported studies. Herein, utilizing an in-plane magnetic layer that is also switchable by SOT, the chirality of a perpendicular magnetic layer that is exchange-coupled with the in-plane layer can be reversed in a purely electrical way. In a single Hall bar device designed from this multilayer structure, three logic gates including AND, NAND, and NOT are reconfigured, which opens a gateway toward practical programmable spin-logic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Thantirige, Rukshan M.; John, Jacob; Pradhan, Nihar R.; Carter, Kenneth R.; Tuominen, Mark T.

    2016-06-01

    Here, we report wafer scale fabrication of densely packed Fe nanostripe-based magnetic thin films on a flexible substrate and their magnetic anisotropy properties. We find that Fe nanostripes exhibit large in-plane uniaxial anisotropy and nearly square hysteresis loops with energy products (BHmax) exceeding 3 MGOe at room temperature. High density Fe nanostripes were fabricated on 70 nm flexible polyethylene terephthalate (PET) gratings, which were made by a roll-to-roll (R2R) UV nanoimprint lithography technique. We observed large in-plane uniaxial anisotropies along the long dimension of nanostripes that can be attributed to the shape. Temperature dependent hysteresis measurements confirm that the magnetization reversal is driven by non-coherent rotation reversal processes.

  10. Directed Energy HPM, PP, & PPS Efforts: Magnetized Target Fusion - Field Reversed Configuration

    DTIC Science & Technology

    2006-08-04

    interior. 15. SUBJECT TERMS Magnetized Target Fusion (MTF), Field-Reversed Configuration (FRC), Alternative Confinement Concepts, Fusion Energy 16...research, the Department of Energy’s Office of Fusion Energy Studies (DOE OFES). Sections 2 through 4, which follow, describe in detail SAIC’s, FabTek’s...the plasma physics areas (FRCs and fusion energy ) in which we are working. The conference paper was submitted at this time, as well, and will

  11. Plasma flow in peripheral region of detached plasma in linear plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less

  12. Repeated aeromagnetic surveys in Shinmoe-dake volcano, Japan by using unmanned helicopter

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Kaneko, T.; Ohminato, T.; Watanabe, A.; Takeo, M.; Yanagisawa, T.; Honda, Y.

    2016-12-01

    We repeatedly conducted aeromagnetic surveys at Shinmoe-dake volcano, Japan by using unmanned helicopter, and elucidated magnetization structure and its temporal change. At the beginning of 2011, Shinmoe-dake volcano has done magmatic eruptions. After ceasing activities of volcanic eruptions, the first aeromagnetic survey by an unmanned helicopter was performed in the western part of Shinmoe-dake volcano in May 2011. The advantage to use unmanned vehicle for volcanic survey is ability of the safe flight in lower altitude with precise tracks. It enable us forthcoming repeated survey on the same tracks and elucidate the temporal changes of the magnetic fields. The geomagnetic total intensity measurement flight was conducted by installing cesium optical pumping magnetometer on the helicopter, in which the measurement line intervals were almost 100 m and the altitudes were also fixed at almost 100 m above the ground except above the crater. Total measurement length was about 85 km. The data analysis revealed that the averaged magnetization is about 1.5 A/m, typical value of andesite rock, and some horizontal anomalies can be shown.After that, we conducted four repeated surveys so far, and notable temporal changes are detected just around the crater of Shinmoe-dake volcano due to gaining magnetization by cooling of lava which has accumulated in the crater at the 2011 eruptions. The cooling rate just follows square root of elapsed time from the eruptive events, and thus the cooling is being simply done by thermal diffusion. Magnetizing, however, goes on too fast to be done by thermal diffusion only at the surface of lava, and so the cooling may be very effectively done also inside the lava by evaporating water.In this paper, we'll show the detailed results of measurements and discuss the temporal changes of magnetization.

  13. Does the planetary dynamo go cycling on? Re-examining the evidence for cycles in magnetic reversal rate

    NASA Astrophysics Data System (ADS)

    Melott, Adrian L.; Pivarunas, Anthony; Meert, Joseph G.; Lieberman, Bruce S.

    2018-01-01

    The record of reversals of the geomagnetic field has played an integral role in the development of plate tectonic theory. Statistical analyses of the reversal record are aimed at detailing patterns and linking those patterns to core-mantle processes. The geomagnetic polarity timescale is a dynamic record and new paleomagnetic and geochronologic data provide additional detail. In this paper, we examine the periodicity revealed in the reversal record back to 375 million years ago (Ma) using Fourier analysis. Four significant peaks were found in the reversal power spectra within the 16-40-million-year range (Myr). Plotting the function constructed from the sum of the frequencies of the proximal peaks yield a transient 26 Myr periodicity, suggesting chaotic motion with a periodic attractor. The possible 16 Myr periodicity, a previously recognized result, may be correlated with `pulsation' of mantle plumes and perhaps; more tentatively, with core-mantle dynamics originating near the large low shear velocity layers in the Pacific and Africa. Planetary magnetic fields shield against charged particles, which can give rise to radiation at the surface and ionize the atmosphere, which is a loss mechanism particularly relevant to M stars. Understanding the origin and development of planetary magnetic fields can shed light on the habitable zone.

  14. Changes in earth's dipole.

    PubMed

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  15. Pickup ion acceleration in the successive appearance of corotating interaction regions

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2017-04-01

    Acceleration of pickup ions (PUIs) in an environment surrounded by a pair of corotating interaction regions (CIRs) was investigated by numerical simulations using a hybrid code. Energetic particles associated with CIRs have been considered to be a result of the acceleration at their shock boundaries, but recent observations identified the ion flux peaks in the sub-MeV to MeV energy range in the rarefaction region, where two separate CIRs were likely connected by the magnetic field. Our simulation results confirmed these observational features. As the accelerated PUIs repeatedly bounce back and forth along the field lines between the reverse shock of the first CIR and the forward shock of the second one, the energetic population is accumulated in the rarefaction region. It was also verified that PUI acceleration in the dual CIR system had two different stages. First, because PUIs have large gyroradii, multiple shock crossing is possible for several tens of gyroperiods, and there is an energy gain in the component parallel to the magnetic field via shock drift acceleration. Second, as the field rarefaction evolves and the radial magnetic field becomes dominant, Fermi-type reflection takes place at the shock. The converging nature of two shocks results in a net energy gain. The PUI energy acquired through these processes is close to 0.5 MeV, which may be large enough for further acceleration, possibly resulting in the source of anomalous cosmic rays.

  16. Magnetic and velocity fluctuations from nonlinearly coupled tearing modes in the reversed field pinch with and without the reversal surface

    NASA Astrophysics Data System (ADS)

    Craig, D.; Martin, D.; Den Hartog, D. J.; Nornberg, M. D.; Reusch, J. A.

    2017-08-01

    We investigate the role of poloidal mode number m = 0 fluctuations on m = 1 velocity and magnetic field fluctuations in the Reversed Field Pinch (RFP). Removing the m = 0 resonant surface in the Madison Symmetric Torus (MST), results in suppressed m = 0 activity without a reduction in m = 1 magnetic activity. However, the m = 1 velocity fluctuations and fluctuation-induced mean emf are reduced as m = 0 modes are suppressed. Velocity fluctuations are measured directly using fast Doppler spectroscopy. Similar results are seen in visco-resistive MHD simulation with the DEBS code. An artificial line-averaged velocity diagnostic is developed for DEBS simulations to facilitate direct comparisons with experimental measurements. The sensitivity of the m = 1 velocity fluctuations and corresponding emf to changes in m = 0 mode activity is a feature of tearing modes in the nonlinear regime with a spectrum of interacting modes. These results have implications for RFP sustainment strategies and inform our understanding of the role of magnetic turbulence in astrophysical contexts.

  17. Impaired intracortical transmission in G2019S leucine rich-repeat kinase Parkinson patients.

    PubMed

    Ponzo, Viviana; Di Lorenzo, Francesco; Brusa, Livia; Schirinzi, Tommaso; Battistini, Stefania; Ricci, Claudia; Sambucci, Manolo; Caltagirone, Carlo; Koch, Giacomo

    2017-05-01

    A mutation in leucine-rich repeat kinase 2 is the most common cause of hereditary Parkinson's disease (PD), yet the neural mechanisms and the circuitry potentially involved are poorly understood. We used different transcranial magnetic stimulation protocols to explore in the primary motor cortex the activity of intracortical circuits and cortical plasticity (long-term potentiation) in patients with the G2019S leucine-rich repeat kinase 2 gene mutation when compared with idiopathic PD patients and age-matched healthy subjects. Paired pulse transcranial magnetic stimulation was used to investigate short intracortical inhibition and facilitation and short afferent inhibition. Intermittent theta burst stimulation, a form of repetitive transcranial magnetic stimulation, was used to test long-term potentiation-like cortical plasticity. Leucine-rich repeat kinase 2 and idiopathic PD were tested both in ON and in OFF l-dopa therapy. When compared with idiopathic PD and healthy subjects, leucine-rich repeat kinase 2 PD patients showed a remarkable reduction of short intracortical inhibition in both ON and in OFF l-dopa therapy. This reduction was paralleled by an increase of intracortical facilitation in OFF l-dopa therapy. Leucine-rich repeat kinase 2 PD showed abnormal long-term potentiation-like cortical plasticity in ON l-dopa therapy. The motor cortex in leucine-rich repeat kinase 2 mutated PD patients is strongly disinhibited and hyperexcitable. These abnormalities could be a result of an impairment of inhibitory (gamma-Aminobutyric acid) transmission eventually related to altered neurotransmitter release. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  18. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE PAGES

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta; ...

    2017-08-28

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  19. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  20. A record of reversed polarity carries by the iron sulphide greigite in British early Pleistocene sediments

    NASA Astrophysics Data System (ADS)

    Hallam, D. F.; Maher, B. A.

    1994-01-01

    Palaeomagnetic measurements were made on samples extracted from a short sequence of early Pleistocene estuarine clays, now exposed in a sea cliff near Sheringham on the north Norfolk coast, UK. On the basis of earlier palynological work, these clays had been ascribed a Pastonian (late Tiglian) age. The clays show marked changes in colour, from reddish-brown at the top of the unit, to blue-grey in the middle, and grey-brown at the base. The palaeomagnetic data vary in close association with these colour changes. The top and basal brown clays show scattered normal directions of low intensity, while the middle blue clays show strongly clustered reversed directions, of much higher intensities. Some samples taken from the boundary between the middle blue clays and upper red clays show upon demagnetisation a normal overprint on a stable reversed polarity. Using high-gradient magnetic extraction, magnetic concentrates have been obtained from the strongly magnetic middle blue clays. The presence of iron sulphide minerals in these concentrates was identified using energy-dispersive X-ray analysis during scanning electron microscopy. More specifically, X-ray diffraction identifies greigite as the only detectable ferrimagnetic mineral in the magnetic concentrates. Rock magnetic measurements show clear qualitative differences in the magnetic mineralogies of the three clay subunits, but absolute identification of the magnetic mineralogy of the weakly magnetic upper and basal brown clays has not yet been possible. We interpret the sequence as a primary reversed polarity record. This record is carried by the iron sulphide greigate as a chemical remanence acquired during `syn'-depositional reduction of iron via the decomposition of organic material in these anoxic tidal clays. Subsequently, the upper and basl subunits of the clay have been oxidised by permeation of groundwater from the adjacent coarse-grained sediments. Most of the griegite in the oxidised margins of the clay has been altered as a result, to a new, less efficient magnetic recording material which thus carries a later, scattered, low-intensity, normal overprint.

  1. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in

  2. Remagnetization in Some Transitional Flows

    NASA Astrophysics Data System (ADS)

    Valet, J. P.; Carlut, J. H.; Vella, J.; Le Goff, M.; Soler, V.

    2016-12-01

    Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal (Sagnotti et al., 2014). Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled two lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last geomagnetic reversal. The results show an evolution of the magnetization direction from top to bottom. Hysteresis, coercivity and thermomagnetic parameters do not show important variations and no correlation with the amplitude of the deviations could be established. Thermal demagnetization experiments conducted using continuous demagnetization (TRIAXE method) did not allow the detection of dubious behavior. Experimental evidences finally indicate that critical thermal activation of some of the magnetic grains during the moderate baking by the above flow may be responsible for the directional swing. Microscopic observations indicate poor exsolution, which suggest a link between Ti-rich magnetite and thermoviscous remagnetization.

  3. The Reversed Role of Magnets in St. Louis: Implications for Black Student Outcomes

    ERIC Educational Resources Information Center

    Grooms, Ain A.; Williams, Sheneka M.

    2015-01-01

    Magnet schools were originally created to attract a diverse student population. Using data from the 23 magnet schools in St. Louis, this longitudinal study is twofold: first, to review the performance outcomes of the magnet schools across a 5-year period, between 2005-2006 and 2009-2010, and second, to examine whether the magnet schools are…

  4. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  5. Electric control of magnetization reorientation in FeRh /BaTiO3 mediated by a magnetic phase transition

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj

    2017-10-01

    Employing first-principles calculations we predict magnetization reorientation in FeRh films epitaxially grown on BaTiO3 by reversing the electric polarization or applying the strain effect, which is associated with the recently discovered voltage-induced interfacial magnetic-phase transition by R. O. Cherifi et al. [Nat. Mater. 13, 345 (2014), 10.1038/nmat3870]. We propose that this transition from antiferromagnetic to ferromagnetic phase is the results of the mutual mechanisms of the polarization-reversal-induced volume/strain expansion in the interfacial FeRh layers and the competition between direct and indirect exchange interactions. These mechanisms are mainly driven by the ferroelectrically driven hybridization between Fe and Ti 3 d orbital states at the interface. Such a strong hybridization can further involve Rh 4 d states with large spin-orbit coupling, which, rather than the Fe 3 d orbitals, is responsible for magnetization reorientation at the magnetic-phase transition. These findings point toward the feasibility of electric field control of magnetization switching associated with the magnetic-phase transition in an antiferromagnet structure.

  6. Spin Transfer Torque in Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  7. Switching dynamics of doped CoFeB trilayers and a comparison to the quasistatic approximation

    NASA Astrophysics Data System (ADS)

    Forrester, Michael; Kusmartsev, Feodor; Kovács, Endre

    2013-05-01

    The investigation of the switching times of the magnetization reversal of two interacting CoFeB nanomagnets, with dimensions small enough to maintain a single-domain structure, has been carried out. A quasistatic approximation is shown to give valid results and to compare well to the damped dynamical solutions of the Landau-Lifshitz-Gilbert equations. The characteristics of the switching are shown in the associated hysteresis loops and we build a complete phase diagram of the various parallel, antiparallel, and scissoring states of the magnetization in terms of the coupling energy between the nanomagnets, magnetic anisotropy, and the interaction with an applied magnetic field. The phase diagram summarizes the different kinds of hysteresis associated with the magnetization reversal phenomena. The switching fields and times are estimated and the vulnerabilities of the magnetic phases to thermally induced magnetic field variations are examined. The stability of the phases is a fine balance between intrinsic and extrinsic magnetism and we examine its precarious nature. Our work identifies the structures that have the most robust magnetization states and hence a design ethic for creating nanomagnetic heterostructures with outstanding magnetoresistance properties based upon the two magnetic elements.

  8. Magnetic chaos healing in the helical reversed-field pinch: indications from the volume-preserving field line tracing code NEMATO

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Spizzo, G.

    2010-11-01

    The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of the dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code NEMATO [Finn J M and Chacón L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.

  9. Magnetic chaos healing in hte helical reversed-field pinch: indications from the volume-preserving field line tracing code NEMATO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfiglio, Daniele; Veranda, M.; Cappello, Susanna

    2010-01-01

    The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of themore » dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code nemato [Finn J M and Chacon L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.« less

  10. First order reversal curves (FORC) analysis of individual magnetic nanostructures using micro-Hall magnetometry.

    PubMed

    Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2016-11-01

    Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)-a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks-to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.

  11. A model for metastable magnetism in the hidden-order phase of URu2Si2

    NASA Astrophysics Data System (ADS)

    Boyer, Lance; Yakovenko, Victor M.

    2018-01-01

    We propose an explanation for the experiment by Schemm et al. (2015) where the polar Kerr effect (PKE), indicating time-reversal symmetry (TRS) breaking, was observed in the hidden-order (HO) phase of URu2Si2. The PKE signal on warmup was seen only if a training magnetic field was present on cool-down. Using a Ginzburg-Landau model for a complex order parameter, we show that the system can have a metastable ferromagnetic state producing the PKE, even if the HO ground state respects TRS. We predict that a strong reversed magnetic field should reset the PKE to zero.

  12. Further investigation of examining students understanding of Lenz's law and Faraday's law

    NASA Astrophysics Data System (ADS)

    Sanchez, Casey W.; Loverude, Michael E.

    2012-02-01

    Magnetic induction has been known to be a particularly difficult concept in introductory physics. In this project, we build upon our previous research on probing the difficulties students have with magnetic flux in regards to Lenz's Law and Faraday's Law. This presentation will explore student responses when the format of the instrument was reversed, so that students had to use a flux vs. time graph to infer details of the physical situation. Although the newer version of the survey identifies other difficulties students have, the student responses suggest the value of this reverse process in both probing student thinking and in instruction on magnetic flux.

  13. Applying "domino" model to study dipolar geomagnetic field reversals and secular variation

    NASA Astrophysics Data System (ADS)

    Peqini, Klaudio; Duka, Bejo

    2014-05-01

    Aiming to understand the physical processes underneath the reversals events of geomagnetic field, different numerical models have been conceived. We considered the so named "domino" model, an Ising-Heisenberg model of interacting magnetic spins aligned along a ring [Mazaud and Laj, EPSL, 1989; Mori et al., arXiv:1110.5062v2, 2012]. We will present here some results which are slightly different from the already published results, and will give our interpretation on the differences. Following the empirical studies of the long series of the axial magnetic moment (dipolar moment or "magnetization") generated by the model varying all model parameters, we defined the set of parameters that supply the longest mean time between reversals. Using this set of parameters, a short time series (about 10,000 years) of axial magnetic moment was generated. After de-noising the fluctuation of this time series, we compared it with the series of dipolar magnetic moment values supplied by CALS10K.1b model for the last 10000 years. We found similar behavior of the both series, even if the "domino" model could not supply a full explanation of the geomagnetic field SV. In a similar way we will compare a 14000 years long series with the dipolar magnetic moment obtained by the model SHA.DIF.14k [Pavón-Carrasco et al., EPSL, 2014].

  14. Magnetized environs of a repeating radio burst

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.

    2018-03-01

    One of the astrophysical sources that gives rise to the mysterious transients known as fast radio bursts is embedded in a highly magnetized environment, such as the vicinity of an accreting massive black hole or the birth nebula of a highly magnetized neutron star.

  15. Determinism and correlation dimension of Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Plewka, P.; Żebrowski, J. J.; Urbański, M.

    1998-06-01

    Barkhausen noise (BN) is measured in an amorphous ribbon in an open magnetic circuit. The experiment is set up in such a way as to obtain the BN signal with a high frequency range and low apparatus noise. The driving field is produced by a pair of Helmholtz coils and the pick-up coil is a low capacity radio coil. The signal is amplified by a custom designed two-stage, battery operated amplifier, which together with the coils and the ferromagnetic ribbon is screened by three coats of soft iron. The data acquisition is done by a 12-bit analog-digital card allowing one to obtain up to 1×106 data points with a sampling frequency up to 1 MHz. The correlation dimension of the BN signal is calculated using the Grassberger-Procaccia algorithm and the surrogate data method is used to exclude artifacts. The choice of the measurement conditions and the calculation parameters is discussed. The results show a low dimensionality of the Barkhausen noise that leads to the conclusion that the effect may contain or is caused by a deterministic mechanism. The experimental method allows one to obtain the BN signal over many magnetic reversals so that the repeatability of the results is shown and statistics on the correlation dimension values are performed.

  16. Recoil hysteresis of Sm -Co/Fe exchange-spring bilayers

    NASA Astrophysics Data System (ADS)

    Kang, K.; Lewis, L. H.; Jiang, J. S.; Bader, S. D.

    2005-12-01

    The exchange-spring behavior found in Sm-Co (20nm)/Fe epitaxial bilayer films was investigated by analyzing major hysteresis and recoil curves as a function of anneal conditions. The hard layer consists of nanocrystalline intermetallic Sm-Co hexagonal phases (majority phase Sm2Co7 with SmCo3 and SmCo5). Recoil curves, obtained from the successive removal to remanence and reapplication of an increasingly negative field from the major demagnetization curve, reveal the reversible and irreversible components of the magnetization. The Sm-Co thickness was fixed at 20nm while the Fe thicknesses of 10 and 20nm were studied, with ex situ annealing carried out in evacuated, sealed silica tubes at different temperatures. The peak in the recoil curve area is associated with the coercivity of the hard phase. The development of the soft component magnetization is revealed by the departure of the recoil area from zero with application of a reverse field. These two features together confirm that annealing stabilizes the 10nm Fe bilayer sample against local magnetic reversal while it weakens the 20nm bilayer sample. Furthermore, in both its as-deposited and annealed states the Sm -Co/Fe bilayer of 10nm Fe thickness always displays a higher exchange field and smaller recoil loop areas than the bilayer of 20nm Fe thickness, consistent with a stronger exchange response and more reversible magnetization in the former.

  17. Giant reversible magnetocaloric effect in the pyrochlore Er 2 Mn 2 O 7 due to a cooperative two-sublattice ferromagnetic order

    DOE PAGES

    Cai, Y. Q.; Jiao, Y. Y.; Cui, Qi; ...

    2017-11-29

    Most magnetic refrigeration materials showing a large and reversible magnetocaloric effect (MCE) undergo a second-order ferromagnetic (FM) transition involving large-moment magnetic species on one sublattice. Furthermore, a stronger MCE is expected near a cooperative FM order of two or more magnetic species with large magnetic moments residing on different sublattices, but experimental realizations are rare. Here we report on the discovery of large MCE in the cubic pyrochlore Er 2Mn 2O 7 near its second-order FM transition at T c ≈ 34K; under the magnetic field change of 1 and 5 T, the maximum magnetic entropy change –ΔS M ismore » 5.27 and 16.1Jkg –1K –1, and the estimated magnetic refrigerant capacity reaches 68 and 522Jkg –1, respectively. These latter values are among the largest for the known MCE materials. The observed giant and reversible MCE in Er 2Mn 2O 7 is mainly attributed to the large saturation moment of 18.9μ B per formula unit owing to a simultaneous FM ordering of the rear-earth Er 3+ and transition-metal Mn 4+ localized moments. Our results suggest that Er 2Mn 2O 7 pyrochlore is a promising candidate for magnetic refrigeration applications in the temperature range 20–80 K. More importantly, this work provides a new material system for developing high-performance MCE materials that can exhibit a strongly coupled FM transition involving two magnetic sublattices of large local moments in a single-phase material.« less

  18. Giant reversible magnetocaloric effect in the pyrochlore Er 2 Mn 2 O 7 due to a cooperative two-sublattice ferromagnetic order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y. Q.; Jiao, Y. Y.; Cui, Qi

    Most magnetic refrigeration materials showing a large and reversible magnetocaloric effect (MCE) undergo a second-order ferromagnetic (FM) transition involving large-moment magnetic species on one sublattice. Furthermore, a stronger MCE is expected near a cooperative FM order of two or more magnetic species with large magnetic moments residing on different sublattices, but experimental realizations are rare. Here we report on the discovery of large MCE in the cubic pyrochlore Er 2Mn 2O 7 near its second-order FM transition at T c ≈ 34K; under the magnetic field change of 1 and 5 T, the maximum magnetic entropy change –ΔS M ismore » 5.27 and 16.1Jkg –1K –1, and the estimated magnetic refrigerant capacity reaches 68 and 522Jkg –1, respectively. These latter values are among the largest for the known MCE materials. The observed giant and reversible MCE in Er 2Mn 2O 7 is mainly attributed to the large saturation moment of 18.9μ B per formula unit owing to a simultaneous FM ordering of the rear-earth Er 3+ and transition-metal Mn 4+ localized moments. Our results suggest that Er 2Mn 2O 7 pyrochlore is a promising candidate for magnetic refrigeration applications in the temperature range 20–80 K. More importantly, this work provides a new material system for developing high-performance MCE materials that can exhibit a strongly coupled FM transition involving two magnetic sublattices of large local moments in a single-phase material.« less

  19. Micromagnetics and second-order reversal-curves as a route to understanding FORC diagrams of nanoparticles

    NASA Astrophysics Data System (ADS)

    Winklhofer, M.

    2007-05-01

    First-order-reversal curve (FORC) diagrams have proven useful in characterizing fine magnetic particle systems in terms of microscopic switching field distributions, characteristic interaction strengths and mean-field effects. Despite the profusion of measured FORC data, we still lack a simple, generally valid recipe for the quantitative analysis of FORC diagrams, the reason being that most samples do not act like classical linear Preisach systems, giving rise to reversible magnetization changes that tend to blur contributions from irreversible switching events. A good example illustrating the confounding influence of reversible contributions are FORC diagrams for particle systems in which vortex configurations occur as remanent states. For non-interacting Fe nanodots with well-defined grain sizes around the zero-field SD/PSD transition and random easy-axis orientation, we will show how a combination of micromagnetic modelling and second-order- reversal-curves can be used to disentangle reversible and irreversible contributions to the FORC diagram. It will also be shown that remanence-based Preisach diagrams do not fully capture the irreversible parts.

  20. Magnetic Domain State Diagnosis in Soils, Loess, and Marine Sediments From Multiple First-Order Reversal Curve-Type Diagrams

    NASA Astrophysics Data System (ADS)

    Hu, P. X.; Zhao, X.; Roberts, A. P.; Heslop, D.; Viscarra Rossel, R. A.

    2018-02-01

    First-order reversal curve (FORC) diagrams provide information about domain states and magnetostatic interactions that underpin paleomagnetic interpretations. FORC diagrams are a complex representation of remanent, induced, and transient magnetizations that can be assessed individually using additional FORC-type measurements along with conventional measurements. We provide the first extensive assessment of the information provided by remanent, transient, and induced FORC diagrams for a diverse range of soil, loess/paleosol, and marine sediment samples. These new diagrams provide substantial information in addition to that provided by conventional FORC diagrams that aids comprehensive domain state diagnosis for mixed magnetic particle assemblages. In particular, we demonstrate from transient FORC diagrams that particles occur routinely in the magnetic vortex state. Likewise, remanent FORC diagrams provide information about the remanence-bearing magnetic particles that are of greatest interest in paleomagnetic studies.

  1. Experiments and modelling of active quasi-single helicity regime generation in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Brunsell, P. R.; Drake, J. R.

    2009-07-01

    The interaction of a static resonant magnetic perturbation (RMP) with a tearing mode (TM) is becoming a relevant topic in fusion plasma physics. RMPs can be generated by active coils and then used to affect the properties of TMs and of the corresponding magnetic islands. This paper shows how the feedback system of the EXTRAP T2R reversed field pinch (RFP) can produce a RMP that affects a rotating TM and stimulate the transition to the so-called quasi-single helicity (QSH) regime, a RFP plasma state characterized by a magnetic island surrounded by low magnetic chaos. The application of the RMP can increase the QSH probability up to 10% and enlarge the size of the corresponding island. Part of the experimental results are supported by a theoretical study that models the effect of the active coils on the magnetic island.

  2. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  3. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  4. First-order reversal curve of the magnetostructural phase transition in FeTe

    DOE PAGES

    Frampton, M. K.; Crocker, J.; Gilbert, D. A.; ...

    2017-06-05

    We apply the first-order reversal curve (FORC) method, adapted from studies of ferromagnetic materials, to the magnetostructural phase transition of Fe 1+yTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe 1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast, Fe 1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introducemore » uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. Finally, the work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.« less

  5. Repeatability of Brain Volume Measurements Made with the Atlas-based Method from T1-weighted Images Acquired Using a 0.4 Tesla Low Field MR Scanner.

    PubMed

    Goto, Masami; Suzuki, Makoto; Mizukami, Shinya; Abe, Osamu; Aoki, Shigeki; Miyati, Tosiaki; Fukuda, Michinari; Gomi, Tsutomu; Takeda, Tohoru

    2016-10-11

    An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T 1 -weighted images (3D-T 1 WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.

  6. First-order reversal curves of single domain particles: diluted random assemblages and chains

    NASA Astrophysics Data System (ADS)

    Egli, R.

    2009-04-01

    Exact magnetic models can be used to calculate first-order reversal curves (FORC) of single domain (SD) particle assemblages, as shown by Newell [2005] for the case of isolated Stoner-Wohlfarth particles. After overcoming experimental difficulties, a FORC diagram sharing many similarities to Newell's model has been measured on a lake sediment sample (see A.P. Chen et al., "Quantification of magnetofossils using first-order reversal curves", EGU General Assembly 2009, Abstracts Vol. 11, EGU2009-10719). This sample contains abundant magnetofossils, as shown by coercivity analysis and electron microscopy, therefore suggesting that well dispersed, intact magnetosome chains are the main SD carriers. Subtle differences between the reversible and the irreversible contributions of the measured FORC distribution suggest that magnetosome chains might not be correctly described by the Stoner-Wohlfarth model. To better understand the hysteresis properties of such chains, a simple magnetic model has been implemented, taking dipole-dipole interactions between particles within the same chain into account. The model results depend on the magnetosome elongation, the number of magnetosomes in a chain, and the gap between them. If the chain axis is subparallel to the applied field, the magnetic moment reverses by a pseudo-fanning mode, which is replaced by a pseudo-coherent rotation mode at greater angles. These reversal modes are intrinsically different from coherent rotation assumed Stoner-Wohlfarth model, resulting in FORC diagrams with a smaller reversible component. On the other hand, isolated authigenic SD particles can precipitate in the sediment matrix, as it might occur for pedogenic magnetite. In this case, an assembly of randomly located particles provides a possible model for the resulting FORC diagram. If the concentration of the particles is small, each particle is affected by a random interaction field whose statistical distribution can be calculated from first principles. In this case, the irreversible component of the FORC diagram, which is described by a Dirac delta function in the non-interacting case, converts into a continuous function that directly reflects the distribution of interaction fields. Such models provide a way to identify and characterize authigenic SD particles in sediments, and in some case allow one to isolate their magnetic contribution from that of other magnetic components. Newell, A.J. (2005), A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Gechem. Geophys. Geosyst., 6, Q05010, doi:10.1029/2004GC00877.

  7. A plasma model for reversed field pinch circuit design

    NASA Astrophysics Data System (ADS)

    Johnston, J. W.

    1981-03-01

    A plasma model has been developed for use in the design of circuits for reversed field pinch experiments. The magnetic field is assumed to evolve through a given series of relaxed states with the plasma resistivity specified as a function of time. At any instant the magnetic field configuration is determined by the field energy and the toroidal flux. If the Bessel function model is chosen as the relaxed state then the magnetic helicity can be used as an alternative to the magnetic energy without altering the results. Simulations of discharges on ZETA and ETA BETA II are presented. By suitable choices of the relaxed field configuration and plasma resistivity it is possible to obtain close agreement with the experimental waveforms. Application to the proposed RFX device is discussed.

  8. Magnetization reversal and coercivity of Fe3Se4 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Li, D.; Li, S. J.; Zhou, Y. T.; Bai, Y.; Zhu, Y. L.; Ren, W. J.; Long, G.; Zeng, H.; Zhang, Z. D.

    2015-05-01

    The microstructure and magnetic properties of Fe3Se4 nanowire (NW) arrays in anodic aluminum oxide (AAO) porous membrane are studied. Cross-sectional SEM and plane-view TEM images show that the mean wire diameter (dw) and the center-to-center spacing (D) of Fe3Se4 nanowires are about 220 nm and 330 nm, respectively. The field-cooled magnetization dependent on the temperature indicates a Curie temperature around 334 K for the Fe3Se4 nanowires. The coercivities of Fe3Se4 nanowires at 10 K, obtained from the in-plane and out-of-plane hysteresis loops, are as high as 22.4 kOe and 23.3 kOe, which can be understood from the magnetocrystalline anisotropy and the magnetization reversal process.

  9. Vacancy-induced ferromagnetism in ZnO probed by spin-polarized positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Maekawa, Masaki; Abe, Hiroshi; Miyashita, Atsumi; Sakai, Seiji; Yamamoto, Shunya; Kawasuso, Atsuo

    2017-04-01

    We investigated the ferromagnetism of ZnO induced by oxygen implantation by using spin-polarized positron annihilation spectroscopy together with magnetization measurements. The magnetization measurements showed the appearance of ferromagnetism after oxygen implantation and its disappearance during post-implantation annealing at temperatures above 573 K. The Doppler broadening of annihilation radiation (DBAR) spectrum showed asymmetry upon field reversal after oxygen implantation. The obtained differential DBAR spectrum between positive and negative magnetic fields was well-explained with a theoretical calculation considering zinc vacancies. The disappearance of the field-reversal asymmetry of the DBAR spectrum as a result of annealing agreed with the observations of ferromagnetism by magnetization measurements. These results suggest the radiation-induced zinc vacancies to be the source of the observed ferromagnetism of ZnO.

  10. Micromagnetic simulation and the angular dependence of coercivity and remanence for array of polycrystalline nickel nanowires

    NASA Astrophysics Data System (ADS)

    Fuentes, G. P.; Holanda, J.; Guerra, Y.; Silva, D. B. O.; Farias, B. V. M.; Padrón-Hernández, E.

    2017-02-01

    We present here our experimental results for the preparation and characterization of nanowires of nickel and the analysis of the angular dependence of coercivity and remanence using experimental data and micromagnetic simulation. The fabrication was made by using aluminum oxide membranes as templates and deposited nickel by an electrochemical route. The magnetic measurements showed that coercivity and remanence are dependent of the angle of application of the external magnetic field. Our results are different than that expected for the coherent, vortex and transversal modes of the reversion for the magnetic moments. According to the transmission electron microscopy analysis we can see that our nanowires have not a perfect cylindrical format. That is why we have used the ellipsoids chain model for better understanding the real structure of wires and its relation with the magnetic behavior. In order to generate theoretical results for this configuration we have made micromagnetic simulation using Nmag code. Our numerical results for the realistic distances are in correspondence with the magnetic measurements and we can see that there are contradictions if we assume the transverse reversal mode. Then, we can conclude that structure of nanowires should be taken into account to understand the discrepancies reported in the literature for the reversion mechanism in arrays of nickel nanowires.

  11. Neural Response After a Single ECT Session During Retrieval of Emotional Self-Referent Words in Depression: A Randomized, Sham-Controlled fMRI Study.

    PubMed

    Miskowiak, Kamilla W; Macoveanu, Julian; Jørgensen, Martin B; Støttrup, Mette M; Ott, Caroline V; Jensen, Hans M; Jørgensen, Anders; Harmer, J; Paulson, Olaf B; Kessing, Lars V; Siebner, Hartwig R

    2018-03-01

    Negative neurocognitive bias is a core feature of depression that is reversed by antidepressant drug treatment. However, it is unclear whether modulation of neurocognitive bias is a common mechanism of distinct biological treatments. This randomized controlled functional magnetic resonance imaging study explored the effects of a single electroconvulsive therapy session on self-referent emotional processing. Twenty-nine patients with treatment-resistant major depressive disorder were randomized to one active or sham electroconvulsive therapy session at the beginning of their electroconvulsive therapy course in a double-blind, between-groups design. The following day, patients were given a self-referential emotional word categorization test and a free recall test. This was followed by an incidental word recognition task during whole-brain functional magnetic resonance imaging at 3T. Mood was assessed at baseline, on the functional magnetic resonance imaging day, and after 6 electroconvulsive therapy sessions. Data were complete and analyzed for 25 patients (electroconvulsive therapy: n = 14, sham: n = 11). The functional magnetic resonance imaging data were analyzed using the FMRIB Software Library randomize algorithm, and the Threshold-Free Cluster Enhancement method was used to identify significant clusters (corrected at P < .05). A single electroconvulsive therapy session had no effect on hippocampal activity during retrieval of emotional words. However, electroconvulsive therapy reduced the retrieval-specific neural response for positive words in the left frontopolar cortex. This effect occurred in the absence of differences between groups in behavioral performance or mood symptoms. The observed effect of electroconvulsive therapy on prefrontal response may reflect early facilitation of memory for positive self-referent information, which could contribute to improvements in depressive symptoms including feelings of self-worth with repeated treatments.

  12. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    NASA Astrophysics Data System (ADS)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  13. Posterior reversible encephalopathy with late postpartum eclampsia and short-term memory loss: a case report.

    PubMed

    Gimovsky, Martin L; Guzman, Guillermo M; Koscica, Karen L; Nazir, Munir A; Ross, Diane E

    2010-01-01

    Late postpartum eclampsia is more frequently recognized than past reports indicate. This report describes the association of a reversible encephalopathy in a woman with late postpartum eclampsia. A woman with lupus nephritis presented 7 days postpartum with eclampsia. Postseizure findings included dramatic short-term memory loss. Although a computed tomography scan was negative, subsequent magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) demonstrated vascular changes associated with a reversible encephalopathy. Conservative treatment with analeptic and antihypertensive therapy allowed a rapid resolution of all symptomatology. In women with eclampsia and unusual neurologic findings, an MRI/MRA may be useful even in the presence of a negative computed tomography scan.

  14. Vortex jump behavior in coupled nanomagnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Phatak, C., E-mail: cd@anl.gov; Petford-Long, A. K.

    2014-11-24

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated andmore » the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.« less

  15. Optical magnetic mirrors without metals

    DOE PAGES

    Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...

    2014-01-01

    The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less

  16. Effects of surface topography on magnetization reversal of magnetic thin films.

    PubMed

    Girgis, E; Pogossian, S P; Benkhedar, M L

    2006-04-01

    The influence of the created surface roughness on the coercivity of magnetic thin films has been investigated. The magnetic thin films (CoFe and alternatively NiFe) are sputtered on top of smooth substrates that were previously covered with an array of considerably rougher lines with one of these materials Pt, Cu, CoFe, and NiFe. The lines have been patterned using optical lithography into arrays that are deposited with different thicknesses varying between 5 nm-15 nm. The lines have been designed to have a very rough edge and seated in two different angles relative to the wafer edge (zero and 45 degrees). Magneto-optic Kerr effect (MOKE) measurements showed two distinct switching fields in the hysteresis loops that are due to magnetic domain wall trapping created by the surface roughness. The magnetization reversal showed a strong dependence on the height, the orientation angle, and the material's type of the created surface roughness (the lines).

  17. Vortex jump behavior in coupled nanomagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Petford-Long, A. K.; Heinonen, O.; Phatak, C.

    2014-11-01

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.

  18. Dynamo generation of magnetic fields in three-dimensional space - Solar cycle main flux tube formation and reversals

    NASA Astrophysics Data System (ADS)

    Yoshimura, H.

    1983-08-01

    The case of the solar magnetic cycle is investigated as a prototype of the dynamo processes involved in the generation of magnetic fields in astrophysics. Magnetohydrodynamic (MHD) equations are solved using a numerical method with a prescribed velocity field in order follow the movement and deformation. It is shown that a simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the sun. These main flux tubes of the solar cycle are the progenitors of small-scale flux ropes of the solar activity. These findings indicate that magnetic fields can be generated by fluid motions and that MHD equations have a new type of oscillatory solution. It is shown that the solar cycle can be identified with one of these oscillatory solutions. It is proposed that the formation of magnetic flux tubes by streaming plasma flows is a universal mechanism of flux tube formation in astrophysics.

  19. Origin of the magnetic-field controlled polarization reversal in multiferroic TbMn2 O 5

    NASA Astrophysics Data System (ADS)

    Leo, N.; Meier, D.; Pisarev, R. V.; Park, S.; Cheong, S.-W.; Fiebig, M.

    2011-03-01

    The interplay of multi-dimensional complex magnetic order parameters leads to interesting effects like magnetically induced ferroelectricity. A particular interesting example is TbMn 2 O5 because of the associated magnetic-field controllable electric polarization. By optical second harmonic generation we show that the gigantic magnetoelectric effect originates in three independent ferroelectric contributions. Two of these are manganese-generated. The third contribution is related to the magnetism of the Tb 3+ sublattice and has not been identified so far. It mediates the remarkable magnetic-field induced polarization reversal. This model is verified by experiments on the isostructural YMn 2 O5 where Y3+ ions are nonmagnetic and only two polarization contributions are present and no magnetoelectric coupling is observed. These results underline the importance of the 3 d - 4 f -interaction for the intricate magnetoelectric coupling in the class of isostructural RMn 2 O5 compounds. This work was supported by the DFG through SFB 608.

  20. Magnetic anisotropy at material interfaces

    NASA Astrophysics Data System (ADS)

    Greene, Peter Kevin

    In this dissertation, a comprehensive set of depth dependent magnetic measurements, as well as structural characterizations, were carried out on the Co/Pd multilayer system. The first-order reversal curve (FORC) technique is applied extensively to identify reversal mechanisms and different reversal phases within the material. In particular, the extension of the FORC technique to x-ray magnetic circular dichroism (XMCD) as a surface sensitive technique that identifies reversible magnetization change was performed for the first time. Polarized neutron reflectivity (PNR) was also used to directly measure the magnetization as a function of depth. The effects of deposition pressure grading within the Co/Pd multilayers were investigated. Structures were graded with three distinct pressure regions. FORC analysis shows that not only does increasing the deposition pressure increase the coercivity and effective anisotropy within that region, but also the order in which the pressure is changed also affects the entire structure. Layers grown at high sputtering pressures tend to reverse via domain wall pinning and rotation while those grown at lower pressures reverse via rapid domain wall propagation laterally across the film. Having high pressure layers underneath low pressure layers causes disorder to vertically propagate and lessen the induced anisotropy gradient. This analysis is confirmed by depth dependent magnetization profiles obtain from PNR. Continuously pressure-graded Co/Pd multilayers were then sputtered at two incident angles onto porous aluminum oxide templates with different pore aspect ratios. The effects of pressure grading versus uniform low pressure deposition is studied, as well as the effect of the angle of the incident deposition flux. The coercivity of the pressure graded perpendicular flux sample is compared to the low pressure sample. Additionally the effect of deposition angle and pore sidewall deposition is investigated. It is shown that sidewall deposition strongly affects the reversal behavior. As another way to induce a vertical anisotropy gradient, Co/Pd multilayers were bombarded with Ar+ ions at different energies and fluences. The effects of the depth dependent structural damage as a function of irradiation conditions were investigated. It is shown that the structural damage weakens the perpendicular anisotropy of the surface layers, causing a tilting of the surface magnetic moment into the plane of the film. The surface behavior is explicitly measured and shown to have a significant tilting angle in the top 5 nm depending on irradiation energy and fluence. Continuing the study of vertical anisotropy gradients in Co/Pd multilayers, multilayers with varied Co thickness were studied. Four films with varying Co thickness profiles were created and then patterned into nanodot arrays with diameters between 700 nm and 70 nm. The different films were graded continuously, or in stacks with varying Co thicknesses. An anisotropy gradient is shown to be established in the graded samples, and the switching field is lowered as a result. Furthermore, in the continuously graded samples the magnetization reversal behavior is fundamentally different from all other samples. The thermal energy barriers are measured in the uniform and continuously graded samples, yielding similar results. Finally, the establishment of exchange anisotropy at the ferromagnet / antiferromagnet (FM/AFM) interface in the epitaxial Fe/CoO system is investigated as a function of AFM thickness. The establishment of frozen AFM moments is analyzed using the FORC technique. The FORC technique combined with vector coil measurements also shows the transition from rotatable AFM to pinned AFM moments and suggests a mechanism of winding domain walls within the bulk AFM. (Abstract shortened by UMI.).

  1. Inducing and manipulating magnetization in 2D zinc–oxide by strain and external voltage

    NASA Astrophysics Data System (ADS)

    Taivansaikhan, P.; Tsevelmaa, T.; Rhim, S. H.; Hong, S. C.; Odkhuu, D.

    2018-04-01

    Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1–2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin–orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.

  2. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation.

    PubMed

    Yang, Chao; Wu, Lei; Li, Gang

    2018-06-13

    A smart, magnetically responsive superhydrophobic surface was facilely prepared by combining spray coating and magnetic-field-directed self-assembly. The surface comprised a dense array of magnetorheological elastomer micropillars (MREMPs). Benefitting from the magnetic field-stiffening effect of the MREMPs, the surface exhibited reversible switching of the wettability and adhesion that was responsive to an on/off magnetic field. The wettability and adhesion properties of the surfaces with MREMPs were investigated under different magnetic fields. The results revealed that the adhesion force and sliding behaviors of these surfaces were strongly dependent on the intensity of the applied magnetic field and the mixing ratio of poly(dimethylsiloxane) (PDMS), iron particles, and solvent (in solution) used for preparation of the magnetically responsive superhydrophobic surfaces. The adhesion transition was attributed to the tunable mechanical properties of the MREMPs, which was easily controlled by an external magnetic field. It was also demonstrated that the magnetically responsive superhydrophobic surface can be used as a "mechanical hand" for no-loss liquid droplet transportation. This magnetically responsive superhydrophobic surface not only provides a novel interface for microfluidic control and droplet transportation, but also opens up new avenues for achieving smart liquid-repellent skin, programmable fluid collection and transport, and smart microfluidic devices.

  3. Ultrafast Magnetization Manipulation Using Single Femtosecond Light and Hot-Electron Pulses.

    PubMed

    Xu, Yong; Deb, Marwan; Malinowski, Grégory; Hehn, Michel; Zhao, Weisheng; Mangin, Stéphane

    2017-11-01

    Current-induced magnetization manipulation is a key issue for spintronic applications. This manipulation must be fast, deterministic, and nondestructive in order to function in device applications. Therefore, single- electronic-pulse-driven deterministic switching of the magnetization on the picosecond timescale represents a major step toward future developments of ultrafast spintronic systems. Here, the ultrafast magnetization dynamics in engineered Gd x [FeCo] 1- x -based structures are studied to compare the effect of femtosecond laser and hot-electron pulses. It is demonstrated that a single femtosecond hot-electron pulse causes deterministic magnetization reversal in either Gd-rich and FeCo-rich alloys similarly to a femtosecond laser pulse. In addition, it is shown that the limiting factor of such manipulation for perpendicular magnetized films arises from the formation of a multidomain state due to dipolar interactions. By performing time-resolved measurements under various magnetic fields, it is demonstrated that the same magnetization dynamics are observed for both light and hot-electron excitation, and that the full magnetization reversal takes place within 40 ps. The efficiency of the ultrafast current-induced magnetization manipulation is enhanced due to the ballistic transport of hot electrons before reaching the GdFeCo magnetic layer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Change of Paradigm for the Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Escande, D. F.

    2010-11-01

    The reversed field pinch (RFP) is a magnetic configuration germane to the tokamak, but it produces most of its magnetic field by the currents flowing inside the plasma; external coils provide only a small edge toroidal field whose sign is reversed with respect to the central one, whence the name of the configuration. Because of the presence of magnetic turbulence and chaos, the RFP had been considered for a long period as a terrible confinement configuration. However, recently a change of paradigm occurred for this device. Indeed, when the toroidal current is increased in the RFX-mod RFP in Padua (Italy), a self-organized helical state with an internal transport barrier (ITB) develops, and a broad zone of the plasma becomes hot (above 1 keV for a magnetic field above 0.8 T). The present theoretical picture of the RFP mainly comes from three-dimensional nonlinear visco-resistive MHD simulations whose dynamics has strong similarities with the experimental one, and triggered the experimental search for RFP states with improved confinement. The RFP ohmic state involves a helical electrostatic potential generating, as an electric drift, the so-called dynamo velocity field. The magnetic topology can bifurcate from a magnetic island to kink-like magnetic surfaces with higher resilience to magnetic chaos. This theoretical scenario was found to be relevant when ITB's enclosing a broad hot domain were discovered. The ITBs occur in the vicinity of the maximum of the safety factor. The new paradigm for the RFP supports its reappraisal as a low-external field, non-disruptive, ohmically heated approach to magnetic fusion, exploiting both self-organization and technological simplicity. Furthermore the RFP has the same Greenwald density limit as the tokamak, and it is an excellent test bed for the efficient control of multiple resistive wall modes. Its helical magnetic structure makes it germane to the stellarator too. As a result the RFP is also useful to bring support to the present two main lines of magnetic confinement.

  5. Repeatability of two-dimensional chemical shift imaging multivoxel proton magnetic resonance spectroscopy for measuring human cerebral choline-containing compounds.

    PubMed

    Puri, Basant K; Egan, Mary; Wallis, Fintan; Jakeman, Philip

    2018-03-22

    To investigate the repeatability of proton magnetic resonance spectroscopy in the in vivo measurement of human cerebral levels of choline-containing compounds (Cho). Two consecutive scans were carried out in six healthy resting subjects at a magnetic field strength of 1.5 T. On each occasion, neurospectroscopy data were collected from 64 voxels using the same 2D chemical shift imaging (CSI) sequence. The data were analyzed in the same way, using the same software, to obtain the values for each voxel of the ratio of Cho to creatine. The Wilcoxon related-samples signed-rank test, coefficient of variation (CV), repeatability coefficient (RC), and intraclass correlation coefficient (ICC) were used to assess the repeatability. The CV ranged from 2.75% to 33.99%, while the minimum RC was 5.68%. There was excellent reproducibility, as judged by significant ICC values, in 26 voxels. Just three voxels showed significant differences according to the Wilcoxon related-samples signed-rank test. It is therefore concluded that when CSI multivoxel proton neurospectroscopy is used to measure cerebral choline-containing compounds at 1.5 T, the reproducibility is highly acceptable.

  6. Magnetic phase transitions and magnetization reversal in MnRuP

    NASA Astrophysics Data System (ADS)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  7. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures.

    PubMed

    Tang, M H; Zhang, Zongzhi; Tian, S Y; Wang, J; Ma, B; Jin, Q Y

    2015-06-15

    Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique.

  8. Ultralow-fatigue shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-01

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle.

  9. Suppressing Electron Turbulence and Triggering Internal Transport Barriers with Reversed Magnetic Shear in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Peterson, Jayson Luc

    2011-10-01

    Observations in the National Spherical Torus Experiment (NSTX) have found electron temperature gradients that greatly exceed the linear threshold for the onset for electron temperature gradient-driven (ETG) turbulence. These discharges, deemed electron internal transport barriers (e-ITBs), coincide with a reversal in the shear of the magnetic field and with a reduction in electron-scale density fluctuations, qualitatively consistent with earlier gyrokinetic predictions. To investigate this phenomenon further, we numerically model electron turbulence in NSTX reversed-shear plasmas using the gyrokinetic turbulence code GYRO. These first-of-a-kind nonlinear gyrokinetic simulations of NSTX e-ITBs confirm that reversing the magnetic shear can allow the plasma to reach electron temperature gradients well beyond the critical gradient for the linear onset of instability. This effect is very strong, with the nonlinear threshold for significant transport approaching three times the linear critical gradient in some cases, in contrast with moderate shear cases, which can drive significant ETG turbulence at much lower gradients. In addition to the experimental implications of this upshifted nonlinear critical gradient, we explore the behavior of ETG turbulence during reversed shear discharges. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of NCCS at ORNL and NERSC at LBNL. M. Ono et al., Nucl. Fusion 40, 557 (2000).

  10. Effect of q-profile structure on intrinsic torque reversals

    NASA Astrophysics Data System (ADS)

    Lu, Zhixin

    2014-10-01

    Intrinsic toroidal rotation plays an important role in mitigating macroinstability and regulating turbulent transport in ITER, where neutral beams are not sufficient to provide the requisite torque. Recent experiments on C-Mod with LHCD observed rotation reversal related to a change in the q profile. In this work, we focus on understanding the physics of intrinsic rotation reversals in LHCD plasmas, using nonlinear, global gyro-kinetic simulations and analysis of mode structure and spectrum symmetry breaking. The sensitive dependence of turbulent residual stress on magnetic shear is identified and characterized. The basic residual stress is non-vanishing when the k-parallel spectrum symmetry is broken, e.g., by E × B shear induced radial shift, non-uniformity in turbulence intensity, etc.. It is found that at low magnetic shear, the poloidal harmonics can shift strongly in the radial direction, as a feature of non-local effects, due to radial propagation and amplitude variation of the mode. This new symmetry breaking mechanism leads to a change in the sign of spectrum averaged parallel wave vector and thus the direction of intrinsic torque. Theoretical study shows that the competition between magnetic drift and ion kinetic effects determines the non-local effects and the structure of the asymmetry. Specifically, it is found that the direction of the intrinsic torque changes from counter- to co-current in the core, when magnetic shear decreases through a critical value. A critical shear ŝR = 0 . 2 ~ 0 . 5 for reversal of CTEM-induced intrinsic torque found by simulation is consistent with that from the LHCD C-Mod reversal experiments. In addition, simulations indicate ŝR = 1 ~ 2 for the reversal of ITG-induced torque, a prediction which can be tested by experiments. This work is supported by CER and CMTFO, UCSD and U.S. DOE-PPPL Contract DE-AC02-09CH11466.

  11. Magnetic properties of the surface layer and its magnetic interaction with the interior of Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kurima; Nakamura, Michi-hide; Urushibata, Kimiko

    2015-05-01

    The magnetization and demagnetization mechanisms in the mechanically polished surface layers (SL) of the c-plane and a-b plane of Nd-Fe-B sintered magnets were investigated. The magnetic interaction between the SL and the interior of the magnet was clarified by using vibrating sample magnetometer measurements of a whole sample and magneto-force microscopy observations of the domain structure of the SL layer. The polishing eliminated the Nd-rich grain boundary phases, which was only about 2 nm thick, from the SL crystal grains in the sintered magnets. The a-b plane polishing caused the independent magnetic reversal of the a-b plane SL, which was about 5.5 μm thick, as in the platy samples. The coercivities (μ0Hc) of the SL were less than 0.3 T. In contrast, the c-plane polishing did not produce independent magnetic reversal of the SL, although the coercivity of bulk samples was clearly decreased by the formation of the c-plane SL. The grains in the SL should form clusters that alter the demagnetizing factors, depending on the shape of cluster as a magnetic unit. The magnetic interaction among the SL crystal grains is expected to play an important role in the coercivity mechanism of Nd-Fe-B sintered magnets.

  12. Irreversible evolution of angular-dependent coercivity in Fe80Ni20 nanowire arrays: Detection of a single vortex state

    NASA Astrophysics Data System (ADS)

    Alikhani, M.; Ramazani, A.; Almasi Kashi, M.; Samanifar, S.; Montazer, A. H.

    2016-09-01

    The irreversible evolution of magnetic coercivity in arrays of 75 nm diameter Fe80Ni20 nanowires (NWs) has been explored by means of first-order reversal curve (FORC) analysis as a function of the angle between the magnetic field and the NW axis (0°≤θ≤90°). The Fe80Ni20 NWs with lengths up to 60 μm were fabricated using a pulsed electrodeposition method into hard-anodic aluminum oxide templates with an interpore distance of 275 nm. Investigating the interwire and intrawire magnetostatic interactions, the angular FORC (AFORC) diagrams indicated enhanced intrawire interactions with increasing length and θ (<90°), induced by a magnetization reversal through vortex domain wall (VDW) propagation. Intriguingly, in addition to the VDW mode, a single vortex state with broad irreversible switching of nucleation and annihilation fields was detected at θ=83° for 60 μm long NWs. At θ=90°, the NWs reversed magnetization through transverse domain wall, involving a reversible component by a fraction of 95%. Furthermore, the transition angle between the reversal modes was found to decrease with increasing aspect ratio from 200 to 800. The irreversible angular-dependent coercivity (HcIrrev(θ)) of Fe80Ni20 NWs was extracted from the AFORC measurements and compared with the major angular dependence of coercivity (HcMajor(θ)) obtained from the conventional hysteresis loop measurements. While HcMajor(θ) showed a non-monotonic behavior, HcIrrev(θ) constantly increased with increasing θ (<90°). On the other hand, using analytical models, a 93% agreement was obtained between the theoretical angular-dependent nucleation field and experimental HcIrrev(θ) for irreversible switching of VDW when 0°≤θ≤86°.

  13. Search for a Permanent Electric Dipole Moment on MERCURY-199 Atoms as a Test of Time Reversal Symmetry

    NASA Astrophysics Data System (ADS)

    Jacobs, James Patrick

    Optically pumped atomic oscillators driven with a modulated light source have been used to measure the Permanent Electric Dipole Moment (PEDM) of the ^{199}Hg atom. A nonzero PEDM on the ground state of ^{199} Hg would be a direct violation of time reversal symmetry. The measurement was obtained by searching for a relative shift in the resonance frequency of the processing nuclear magnetic moments when an externally applied electric field was reversed relative to an externally applied magnetic field. The null result, d(^{199} Hg) = (.3 +/- 5.7 +/- 5.0) times 10 ^{-28} ecdotcm, represents nearly a factor of 15 improvement over previous ^{199}Hg measurements, and a factor of 25 improvement in statistical uncertainty. When combined with theoretical calculations, the result sets stringent limits on possible sources of time reversal symmetry violation in atomic systems.

  14. First order reversal curves (FORC) analysis of individual magnetic nanostructures using micro-Hall magnetometry

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2016-11-01

    Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)—a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks—to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.

  15. Toward constructing a time-series of geomagnetic field variations from thermal remanence in slowly cooled igneous rocks

    NASA Astrophysics Data System (ADS)

    Burns, Z.; Gee, J. S.

    2017-12-01

    Analysis of paleomagnetic data can not only help us to understand the behavior of the ancient magnetic field but may also further our understanding of the current field, as well as of the mechanisms and constraints of the geodynamo and geomagnetic reversals. A question of particular interest is the possible relationship between reversal frequency and geomagnetic field intensity. Some research appears to indicate a correlation between low intensity and high reversal frequency, seeming to support the theory that low field intensity is what makes reversals possible. In order to study this correlation, we obtained several hundred samples from the 182 Ma Dufek Massif, in Antarctica. This intrusion was cooled slowly, at depth, during the high reversal frequency era of the early Jurassic, and most of our samples record multiple polarity intervals. This, combined with their particularly homogeneous magnetic characteristics, makes them ideally suited for recovering a record of geomagnetic field variations. On approximately 300 samples from the lower portion of the intrusion, we performed step-wise thermal demagnetization of the natural remanent magnetization (NRM), followed by thermal demagnetization of a laboratory thermoremance (TRM), imparted as partial TRMs in three orthogonal directions to assess the reliability of the remanence. These two sets of measurements can tell us about the amount and direction of magnetization acquired at each temperature step and the sample's capacity to acquire a remanence. Corrected for anisotropy, the ratio of the NRM/TRM values at each step multiplied by the value of the lab field can give us an estimate of the paleofield intensity. When convolved with a thermal cooling model for the intrusion, this yields a model of the time-varying ancient field during the intrusion's cooling period. Initial analysis of our data shows average field values of around 20 µT and a minimum of four reversals. The average at this high-latitude site is lower than the present-day equatorial value (30 µT), so the correlation between low field intensity and high reversal frequency is supported.

  16. Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2

    DOE PAGES

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...

    2017-10-20

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  17. Bringing Science Research into Secondary Schools

    ERIC Educational Resources Information Center

    Allwood, Dan A.; Dean, Julian; Bryan, Matthew T.; Baker, Alan

    2009-01-01

    Finite element modelling software has been used to allow secondary school students to study nanoscale magnetic materials for hard drive recording applications. The students were introduced to the basic concepts of finite element modelling using a freely available internet game before modelling the magnetization reversal of single magnetic grains.…

  18. Currentless reversal of Néel vector in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Li, Xilai; Kim, Ki Wook

    The bias driven perpendicular magnetic anisotropy is a magneto-electric effect that can realize 900 magnetization rotation and even 1800 flip along the easy axis in the ferromagnets with a minimal energy consumption. This study theoretically demonstrates a similar phenomenon of the Néel vector reversal via a short electrical pulse that can mediate perpendicular magnetic anisotropy in the antiferromagnets. The analysis based on the dynamical equations as well as the micromagnetic simulations reveals the important role of the inertial behavior in the antiferromagnets that facilitates the Néel vector to overcome the barrier between two free-energy minima of the bistable states along the easy axis. In contrast to the ferromagnets, this Néel vector reversal does not accompany angular moment transfer to the environment, leading to acceleration in the dynamical response by a few orders of magnitude. Further, a small switching energy requirement of a few attojoules illustrates an added advantage of the phenomenon in low-power spintronic applications.

  19. Reverse Current Shock Induced by Plasma-Neutral Collision

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Haw, Magnus; Li, Hui; Li, Shengtai; Bellan, Paul

    2017-10-01

    The Caltech solar experiment creates an arched plasma-filled flux rope expanding into low density background plasma. A layer of electrical current flowing in the opposite direction with respect to the flux rope current is induced in the background plasma just ahead of the flux rope. Two dimensional spatial and temporal measurements by a 3-dimensional magnetic vector probe demonstrate the existence of this induced current layer forming ahead of the flux rope. The induced current magnitude is 20% of the magnitude of the current in the flux rope. The reverse current in the low density background plasma is thought to be a diamagnetic response that shields out the magnetic field ahead of the propagation. The spatial and magnetic characteristics of the reverse current layer are consistent with similar shock structures seen in 3-dimensional ideal MHD numerical simulations performed on the Turquoise supercomputer cluster using the Los Alamos COMPutational Astrophysics Simulation Suite. This discovery of the induced diamagnetic current provides useful insights for space and solar plasma.

  20. Heavy ion beam probe operation in time varying equilibria of improved confinement reversed field pinch discharges.

    PubMed

    Demers, D R; Chen, X; Schoch, P M; Fimognari, P J

    2010-10-01

    Operation of a heavy ion beam probe (HIBP) on a reversed field pinch is unique from other toroidal applications because the magnetic field is more temporal and largely produced by plasma current. Improved confinement, produced through the transient application of a poloidal electric field which leads to a reduction of dynamo activity, exhibits gradual changes in equilibrium plasma quantities. A consequence of this is sweeping of the HIBP trajectories by the dynamic magnetic field, resulting in motion of the sample volume. In addition, the plasma potential evolves with the magnetic equilibrium. Measurement of the potential as a function of time is thus a combination of temporal changes of the equilibrium and motion of the sample volume. A frequent additional complication is a nonideal balance of ion current on the detectors resulting from changes in the beam trajectory (magnetic field) and energy (plasma potential). This necessitates use of data selection criteria. Nevertheless, the HIBP on the Madison Symmetric Torus has acquired measurements as a function of time throughout improved confinement. A technique developed to infer the potential in the improved confinement reversed field pinch from HIBP data in light of the time varying plasma equilibrium will be discussed.

  1. 46 CFR 77.11-1 - When required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 77.11-1 When required. (a) All mechanically propelled vessels in ocean, coastwise or Great Lakes service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for the...

  2. 46 CFR 96.17-1 - When required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 96.17-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for the...

  3. 46 CFR 77.11-1 - When required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 77.11-1 When required. (a) All mechanically propelled vessels in ocean, coastwise or Great Lakes service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for the...

  4. 46 CFR 195.19-1 - When required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 195.19-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for the...

  5. 46 CFR 195.19-1 - When required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 195.19-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for the...

  6. 46 CFR 96.17-1 - When required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS SYSTEMS AND EQUIPMENT Magnetic Compass and Gyrocompass § 96.17-1 When required. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All... gyrocompass in addition to the magnetic compass. (c) Each vessel must have an illuminated repeater for the...

  7. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    PubMed Central

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  8. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood.

    PubMed

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period.

  9. Currentless reversal of Néel vector in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy G.; Li, Xi-Lai; Kim, Ki Wook

    2017-01-01

    The possibility of magnetization reversal via a bias-mediated perpendicular magnetic anisotropy is examined theoretically in an antiferromagnet. The numerical analyses based on a Néel vector formulation as well as the micromagnetic Landau-Lifshitz-Gilbert simulation reveal that the desired switching can be achieved through dynamical responses that are significantly different from their ferromagnetic counterparts. Instead of the usual precessional trajectories around the applied effective magnetic field, their motions are rather pendulum-like due to the layered magnetic sublattices with a strong antiparallel exchange interaction, where the inertial behavior plays a crucial role. The absence of spiral damping can also lead to faster relaxation by orders of magnitude. With no reliance on the current driven processes, the investigated mechanism is predicted with a low energy requirement of only a few aJ per switching operation in the antiferromagnets.

  10. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barquero, V.; Xu, S.; Desiati, P.

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity tomore » the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.« less

  11. Characterization of aging-induced microstructural changes in M250 maraging steel using magnetic parameters

    NASA Astrophysics Data System (ADS)

    Rajkumar, K. V.; Vaidyanathan, S.; Kumar, Anish; Jayakumar, T.; Raj, Baldev; Ray, K. K.

    2007-05-01

    The best combinations of mechanical properties (yield stress and fracture toughness) of M250 maraging steel is obtained through short-term thermal aging (3-10 h) at 755 K. This is attributed to the microstructure containing precipitation of intermetallic phases in austenite-free low-carbon martensite matrix. Over-aged microstructure, containing reverted austenite degrades the mechanical properties drastically. Hence, it necessitates identification of a suitable non-destructive evaluation (NDE) technique for detecting any reverted austenite unambiguously during aging. The influence of aging on microstructure, room temperature hardness and non-destructive magnetic parameters such as coercivity ( Hc), saturation magnetization ( Ms) and magnetic Barkhausen emission (MBE) RMS peak voltage is studied in order to derive correlations between these parameters in aged M250 maraging steel. Hardness was found to increase with precipitation of intermetallics during initial aging and decrease at longer durations due to austenite reversion. Among the different magnetic parameters studied, MBE RMS peak voltage was found to be very sensitive to austenite reversion (non-magnetic phase) as they decreased drastically up on initiation of austenite reversion. Hence, this parameter can be effectively utilized to detect and quantify the reverted austenite in maraging steel specimen. The present study clearly indicates that the combination of MBE RMS peak voltage and hardness can be used for unambiguous characterization of microstructural features of technological and practical importance (3-10 h of aging duration at 755 K) in M250 grade maraging steel.

  12. Effect of MgO spacer and annealing on interface and magnetic properties of ion beam sputtered NiFe/Mg/MgO/CoFe layer structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhusan Singh, Braj; Chaudhary, Sujeet

    2012-09-15

    The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less

  13. Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders

    NASA Astrophysics Data System (ADS)

    Bender, P.; Krämer, F.; Tschöpe, A.; Birringer, R.

    2015-04-01

    In this study the influence of dipolar interactions on the orientation-dependent magnetization behavior of an ensemble of single-domain nickel nanorods was investigated. The rods were synthesized by electrodeposition of nickel into porous alumina templates. Some of the rods were released from the oxide and embedded in gelatine hydrogels (ferrogel) at a sufficiently large average interparticle distance to suppress dipolar interactions. By comparing the orientation-dependent hystereses of the two ensembles in the template and the gel-matrix it could be shown that the dipolar interactions in the template considerably alter the functional form of the angular-dependent coercivity. Analysis of the magnetization curves for an angle of 60° between the rod-axes and the field revealed a significantly reduced coercivity of the template compared to the ferrogel, which could be directly attributed to a stray field induced magnetization reversal of a steadily increasing number of rods with increasing field strength. The magnetization curve of the template could be approximated by a weighted linear superposition of the hysteresis branches of the ferrogel. The magnetization reversal process of the rods was investigated by analyzing the angular-dependent coercivity of the non-interacting nanorods. Comparison of the functional form with analytical models and micromagnetic simulations emphasized the assumption of a localized magnetization reversal. Additionally, it could be shown that the nucleation field of rods with diameters in the range 18-29 nm tends to increase with increasing diameter.

  14. Absolute paleointensity results from the Equator and the Pliocene-Pleistocene dipole field

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kent, D. V.

    2013-12-01

    The current geomagnetic field (GMF) of the Earth is mostly geocentric dipolar with intensities in polar regions (~60 μT) about twice as high as in equatorial regions (~30 μT). However, Lawrence et al. [2009] found that the 0-5 Ma average paleointensity from 41 lava flow sites in Antarctica (~78°S) was only 31.5 μT. We present absolute paleointensity results from lava flows of similar age (0-3 Ma) from the Galapagos Islands located within 1°S of the Equator using a recently developed multidomain (MD) correction technique [Wang and Kent, 2013] on fresh subsets of the same samples that were recently analyzed for PSV [Kent, Wang & Rochette, 2010]. After standard Thellier series paleointensity experiments, we gave the samples total thermal remanent magnetizations (tTRM) by cooling from their Curie point in the presence of a laboratory-applied field (15 μT). We then repeated the paleointensity experiment on each sample, with the laboratory-applied tTRM as a synthetic natural remanent magnetization (NRM), using the same laboratory-applied field and temperature steps to obtain a synthetic Arai signature, which should only represent the domain-state dependent properties of the sample. We corrected the Arai diagrams from the original paleointensity experiment by using the Arai signatures from the repeated experiment, which neutralizes the typical MD concave-up Arai effect. We experimented on 3 specimens from each of 51 lava sites, 29 of which gave acceptable paleointensity results from one or more specimen(s). The average paleointensity of the 29 successful lava flow sites is ~29 μT (~23 μT for geometric mean). In these 29 sites, 12 of them are of normal polarity, yielding an average paleointensity of ~32 μT (geometric mean ~24 μT), and 17 of them are of reverse polarity, yielding an average paleointensity of ~27 μT (geometric mean ~23 μT). Mean paleomagnetic directions of the normal and reverse polarity sites are statistically antipodal and within a few degrees expected from the geocentric axial dipole (GAD) field, which together indicate that these data should be representative of the time-averaged geomagnetic field with no resolvable contributions from persistent non-dipole fields. These preliminary results from the Galapagos suggest that the average GMF intensity for the last few million years is comparable to the intensity of the present day field at the Equator. The results of Lawrence et al. [2009] from Antarctica also have mean paleomagnetic directions of normal and reverse polarity sites that are antipodal and conform to expectations from a GAD field, yet the mean GMF intensity is low by a factor of two compared to that from the Galapagos (or the present GMF). Either strongly biased paleointensity results or strong fluxes associated with the tangent cylinders in the outer core of the dynamo could be explanations of these observations.

  15. Coupling Influences SMM Properties for Pure 4 f Systems.

    PubMed

    Zhang, Xuejing; Liu, Shuang; Vieru, Veacheslav; Xu, Na; Gao, Chen; Wang, Bing-Wu; Shi, Wei; Chibotaru, Liviu F; Gao, Song; Cheng, Peng; Powell, Annie K

    2018-04-20

    Increasing both the energy barrier for magnetization reversal and the coercive field of the hysteresis loop are significant challenges in the field of single-molecule magnets (SMMs). Coordination geometries of lanthanide ions and magnetic interactions between lanthanide ions are both important for guiding the magnetic behavior of SMMs. We report a high energy barrier of 657 K (457 cm -1 ) in a diamagnetic-ion-diluted lanthanide chain compound with a constrained bisphenoid symmetry (D 2d ); this energy barrier is substantially higher than the barrier of 567 K (394 cm -1 ) of the non-diluted chain compound with intrachain ferromagnetic interactions. Although intrachain magnetic interaction lowers the energy barrier for magnetization reversal, it can greatly enhance the coercive fields and zero-field remanence of the hysteresis loops, which is crucial for the rational design of high-performance SMMs. Factors related to the coordination sphere of the lanthanide center, which govern the high magnetic relaxation barriers through the second excited Kramer's doublets and the magnetic interactions that affect the hysteresis loops, were revealed through ab initio calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoi, N.; Hamba, F.; Schmitt, D.

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solvedmore » simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.« less

  17. Negative magnetization and the sign reversal of exchange bias field in Co(Cr1-xMnx)2O4 (0≤x≤0.6)

    NASA Astrophysics Data System (ADS)

    Li, Canglong; Yan, Tengyun; Chakrabarti, Chiranjib; Zhang, Run; Chen, Xinghan; Fu, Qingshan; Yuan, Songliu; Barasa, Godfrey Okumu

    2018-03-01

    A series of Co(Cr1-xMnx)2O4 (0 ≤ x ≤ 0.6) ceramic samples have been synthesized by using the sol-gel method. The magnetic properties of the ceramics are experimentally studied through different protocols of dc magnetization measurements. It is found that Mn-doping continuously decreases the total magnetization for x in the range of 0 ≤ x ≤ 0.2 and the net magnetization becomes negative in the range of 0.3 ≤ x ≤ 0.5. The net magnetization reverses and becomes positive upon further increasing x to 0.6. This unusual magnetic phenomenon in the system for x = 0.3-0.5 can be called as negative magnetization. It is regarded as arising from the competition of the two magnetic sublattices at different crystallographic sites. For the sample x = 0.3, the magnetic switching effect near the compensation temperature Tcomp has been studied, and it shows potential applications in the spintronic devices. The magnetic configuration of the sample could be changed under a high magnetic field, and the spin is reoriented at TSR. Both positive and negative exchange bias effects are observed, which are ascribed to the pinning force of uncompensated spins on ferromagnetic moments and the magneto-structural transition, respectively.

  18. A multi-state synthetic ferrimagnet with controllable switching near room temperature

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2018-06-01

    Ferrite composites with temperature-induced magnetization reversal, and synthetic ferrimagnets and antiferromagnets have been of great interest to the scientific community due to their uncommon thermal properties and potential applications in magnetic storage, spintronic devices, and several other fields. One of the advantages of these structures is the strong antiferromagnetic coupling, which stabilizes the magnetization state and gives access to interesting static and dynamical magnetic behaviors. Some of their drawbacks lie in that it is difficult to induce temperature-induced magnetization reversal at room temperature in composites, and that the strong interaction makes it difficult to induce a parallel magnetization state (and thus a high magnetic moment). In this work, we study numerically the magnetization behaviour of a Cu(1 0 0)/Ni/Pt/[Co/Pt]4 synthetic ferrimagnet and show that is possible to revert the sign of its magnetization by varying the temperature in ranges around room temperature. We also show that the four parallel and antiparallel magnetization states are stable at temperatures up to 360 K, and demonstrate that it is possible to change deterministically between these states by increasing the temperature of the device and/or applying a magnetic field, showcasing simultaneous non-hysteretic and hysteretic switching processes induced by temperature. Thus, this structure opens the possibility to have reconfigurable magnetic devices with multiple purposes based on the nature of the different switching events and the interplay between them.

  19. Evolution-Inspired Computational Design of Symmetric Proteins.

    PubMed

    Voet, Arnout R D; Simoncini, David; Tame, Jeremy R H; Zhang, Kam Y J

    2017-01-01

    Monomeric proteins with a number of identical repeats creating symmetrical structures are potentially very valuable building blocks with a variety of bionanotechnological applications. As such proteins do not occur naturally, the emerging field of computational protein design serves as an excellent tool to create them from nonsymmetrical templates. Existing pseudo-symmetrical proteins are believed to have evolved from oligomeric precursors by duplication and fusion of identical repeats. Here we describe a computational workflow to reverse-engineer this evolutionary process in order to create stable proteins consisting of identical sequence repeats.

  20. Magnetic properties of electrical iron sheet under controlled magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takada, Shunji; Sasaki, Tadashi

    1993-11-01

    Power losses of electrical iron sheet were measured under the controlled magnetizing condition in which magnetic induction changes at a constant time rate for a fixed time and pauses at a certain induction for a varied time in every half magnetizing cycle. Considerable increase of losses per magnetizing cycle with a pause time has been found only in the case of magnetization pause at the maximum induction. The increase of losses is considered from magnetostriction measurements to be caused by internal magnetization rearrangement accompanied with flux reversal after the pause period.

  1. The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J. F.; Swisdak, M.; Opher, M.

    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant fluxmore » survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.« less

  2. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa

    PubMed

    Layer; Kroner; McWilliams

    1996-08-16

    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.

  3. Geomagnetic reversal in brunhes normal polarity epoch.

    PubMed

    Smith, J D; Foster, J H

    1969-02-07

    The magnetic stratigraphly of seven cores of deep-sea sediment established the existence of a short interval of reversed polarity in the upper part of the Brunches epoch of normal polarity. The reversed zone in the cores correlates well with paleontological boundaries and is named the Blake event. Its boundaries are estimated to be 108,000 and 114,000 years ago +/- 10 percent.

  4. A novel magnet based 3D printed marker wand as basis for repeated in-shoe multi segment foot analysis: a proof of concept.

    PubMed

    Eerdekens, Maarten; Staes, Filip; Pilkington, Thomas; Deschamps, Kevin

    2017-01-01

    Application of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition. The aim of this study therefore was to design novel magnet based 3D printed markers for repeated in-shoe measurements while using accordingly adapted modified shoes for a specific multi-segment foot model. Multi-segment foot kinematics of ten participants were recorded and kinematics of hindfoot, midfoot and forefoot were calculated. Dynamic trials were conducted to check for intra and inter-session repeatability when combining novel markers and modified shoes in a repeated measures design. Intraclass correlation coefficients were calculated to determine reliability. Both repeatability and reliability were proven to be good to excellent with maximum joint angle deviations of 1.11° for intra-session variability and 1.29° for same-day inter-session variability respectively and ICC values of >0.91. The novel markers can be reliably used in future research settings using in-shoe multi-segment foot kinematic analyses with multiple shod conditions.

  5. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    PubMed

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  6. 78 FR 21576 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... with Inspection Condition 5: Repeat the high frequency eddy current or magnetic particle inspection to... latch pins for discrepancies; and an HFEC or magnetic particle inspection of cam latch 1 and cam latch 2...

  7. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  8. Convection patterns in a liquid metal under an imposed horizontal magnetic field.

    PubMed

    Yanagisawa, Takatoshi; Hamano, Yozo; Miyagoshi, Takehiro; Yamagishi, Yasuko; Tasaka, Yuji; Takeda, Yasushi

    2013-12-01

    We performed laboratory experiments of Rayleigh-Bénard convection with liquid gallium under various intensities of a uniform imposed horizontal magnetic field. An ultrasonic velocity profiling method was used to visualize the spatiotemporal structure of the flows with simultaneous monitoring of the temperature fluctuations in the liquid gallium layer. The explored Rayleigh numbers Ra range from the critical value for onset of convection to 10(5); the Chandrasekhar number Q covers values up to 1100. A regime diagram of the convection patterns was established in relation to the Ra and Q values for a square vessel with aspect ratio 5. We identified five flow regimes: (I) a fluctuating large-scale pattern without rolls, (II) weakly constrained rolls with fluctuations, (III) a continuous oscillation of rolls, (IV) repeated roll number transitions with random reversals of the flow direction, and (V) steady two-dimensional (2D) rolls. These flow regimes are classified by the Ra/Q values, the ratio of the buoyancy to the Lorentz force. Power spectra from the temperature time series indicate that regimes I and II have the features of developed turbulence, while the other regimes do not. The region of steady 2D rolls (Busse balloon) extends to high Ra values in the present setting by a horizontal magnetic field and regime V is located inside the Busse balloon. Concerning the instabilities of the steady 2D rolls, regime III is the traveling wave convection developed from the oscillatory instability. Regime IV can be regarded as a state of phase turbulence, which is induced by intermittent occurrences of the skewed-varicose instability.

  9. Constraints on the nature of the ancient lunar magnetic field

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.

    1976-01-01

    Assuming that the physical properties of solar-wind ions have remained unchanged over the past 4 billion years, the observation of solar-wind ions in lunar breccias with compaction ages greater than 3.2 billion years places constraints on the nature and origin of the ancient lunar magnetic field. Solar-wind ions would not be expected to occur in old lunar breccias if a surface magnetic field of more than 0.03 gauss was present. Several explanations of this phenomenon are consistent with the global lunar dynamo theory of the origin of the lunar dipole field, including a wandering of the lunar dipole axis, late onset of dynamo action, and reversals of the lunar dipole field, producing a long-term field close to zero. Models invoking external field magnetization as the cause of the ancient lunar magnetic field constrain the dipole axis, precluding field reversals, and do not provide an alternative explanation for the observed occurrence of solar-wind ions in lunar breccias.

  10. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE PAGES

    Zhai, Kun; Wu, Yan; Shen, Shipeng; ...

    2017-09-12

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  11. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Kun; Wu, Yan; Shen, Shipeng

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  12. Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats.

    PubMed

    Da Silva, Luis F; Desantana, Josimari M; Sluka, Kathleen A

    2010-04-01

    Repeated injections of acidic saline into the gastrocnemius muscle induce both muscle and cutaneous hypersensitivity. We have previously shown that microinjection of local anesthetic into either the rostral ventromedial medulla (RVM) or the nucleus reticularis gigantocellularis (NGC) reverses this muscle and cutaneous hypersensitivity. Although prior studies show that NMDA receptors in the RVM play a clear role in mediating visceral and inflammatory hypersensitivity, the role of NMDA receptors in the NGC or in noninflammatory muscle pain is unclear. Therefore, the present study evaluated involvement of the NMDA receptors in the RVM and NGC in muscle and cutaneous hypersensitivity induced by repeated intramuscular injections of acidic saline. Repeated intramuscular injections of acidic saline, 5 days apart, resulted in a bilateral decrease in the withdrawal thresholds of the paw and muscle in all groups 24 hours after the second injection. Microinjection of NMDA receptor antagonists into the RVM reversed both the muscle and cutaneous hypersensitivity. However, microinjection of NMDA receptor antagonists into the NGC only reversed cutaneous but not muscle hypersensitivity. These results suggest that NMDA receptors in the RVM mediate both muscle and cutaneous hypersensitivity, but those in the NGC mediate only cutaneous hypersensitivity after muscle insult. The current study shows that NMDA receptors in supraspinal facilitatory sites maintain noninflammatory muscle pain. Clinical studies in people with chronic widespread, noninflammatory pain, similarly, show alterations in central excitability. Thus, understanding mechanisms in an animal model could lead to improved treatment for patients with chronic muscle pain. Copyright 2010 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Reconstruction of flux coordinates from discretized magnetic field maps

    NASA Astrophysics Data System (ADS)

    Predebon, I.; Momo, B.; Suzuki, Y.; Auriemma, F.

    2018-04-01

    We provide a simple method to build a straight field-line coordinate system from discretized (Poincaré) magnetic field maps. The method is suitable for any plasma domain with nested flux surfaces, including magnetic islands. Illustrative examples are shown for tokamak, heliotron, and reversed-field-pinch plasmas with m = 1 islands.

  14. Project scientists discover magnetic phenomenon under Bermuda Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-05-01

    Drilling results in water depths of 18,000 ft between Puerto Rico and Bermuda indicate strong magnetic reverses occur in the rocks underlying the seabed. These and other findings during a cruise of the Glomar Challenger are reported. Information is included on the location of magnetic anomalies, sedimentation, and open-sea drilling. (JRD)

  15. Vortex jump behavior in coupled nanomagnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Petford-Long, A. K.; Heinonen, O.

    2014-11-26

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here in this article, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy termsmore » were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. In conclusion, the work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.« less

  16. Parallel heat transport in reversed shear magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Blazevski, D.; Del-Castillo-Negrete, D.

    2012-03-01

    Transport in magnetized plasmas is a key problem in controlled fusion, space plasmas, and astrophysics. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos; and (iii) Nonlocal parallel transport. We have recently developed a Lagrangian Green's function (LG) method to solve the local and non-local parallel (χ/χ->∞) transport equation applicable to integrable and chaotic magnetic fields. footnotetext D. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, APS Invited paper, submitted (2011). The proposed method overcomes many of the difficulties faced by standard finite different methods related to the three issues mentioned above. Here we apply the LG method to study transport in reversed shear configurations. We focus on the following problems: (i) separatrix reconnection of magnetic islands and transport; (ii) robustness of shearless, q'=0, transport barriers; (iii) leaky barriers and shearless Cantori.

  17. Aeromagnetic and radio echo ice-sounding measurements show much greater area of the Dufek intrusion, Antarctica

    USGS Publications Warehouse

    Behrendt, John C.; Drewry, D.J.; Jankowski, E.; Grim, M.S.

    1980-01-01

    A combined aeromagnetic and radio echo ice-sounding survey made in 1978 in Antarctica over the Dufek layered mafic intrusion suggests a minimum area of the intrusion of about 50,000 square kilometers, making it comparable in size with the Bushveld Complex of Africa. Comparisons of the magnetic and subglacial topographic profiles illustrate the usefulness of this combination of methods in studying bedrock geology beneath ice-covered areas. Magnetic anomalies range in peak-to-trough amplitude from about 50 nanoteslas over the lowermost exposed portion of the section in the Dufek Massif to about 3600 nanoteslas over the uppermost part of the section in the Forrestal Range. Theoretical magnetic anomalies, computed from a model based on the subice topography fitted to the highest amplitude observed magnetic anomalies, required normal and reversed magnetizations ranging from 10-3 to 10-2 electromagnetic units per cubic centimeter. This result is interpreted as indicating that the Dufek intrusion cooled through the Curie isotherm during one or more reversals of the earth's magnetic field. Copyright ?? 1980 AAAS.

  18. Effects of magnets on pigeon homing

    NASA Technical Reports Server (NTRS)

    Keeton, W. T.

    1972-01-01

    The function of magnets in the navigation system of homing pigeons is investigated. Only experienced pigeons with magnets or brass bars were studied. Data show that on sunny days, pigeons with the magnets had some difficulty in orientation while those with brass bars had no problems. The same experiment was repeated on cloudy days. These results show that the magnets did not interfere with orientation. This difference suggests that sun and magnetic cues are used interchangeably, but that both together seldom function.

  19. Development of a precision reverse offset printing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunchang; Lee, Eonseok; Choi, Young-Man

    2016-01-15

    In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons. Finally, the printing position repeatability of 0.40 μm and 0.32 μm (x and y direction, respectively) atmore » a sigma level is obtained over the dimension of 100 mm under repeated printing tests with identical printing conditions.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orenstein, Joseph W

    Rotation of the plane of polarization of reflected light (Kerr effect) is a direct manifestation of broken time reversal symmetry and is generally associated with the appearance of a ferromagnetic moment. Here I identify magnetic structures that may arise within the unit cell of cuprate superconductors that generate polarization rotation despite the absence of a net moment. For these magnetic symmetries the Kerr effect is mediated by magnetoelectric coupling, which can arise when antiferromagnetic order breaks inversion symmetry. The structures identifed are candidates for a time-reversal breaking phase in the pseudogap regime of the cuprates.

  1. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    NASA Astrophysics Data System (ADS)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  2. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer.

    PubMed

    Adams, Ralph W; Aguilar, Juan A; Atkinson, Kevin D; Cowley, Michael J; Elliott, Paul I P; Duckett, Simon B; Green, Gary G R; Khazal, Iman G; López-Serrano, Joaquín; Williamson, David C

    2009-03-27

    The sensitivity of both nuclear magnetic resonance spectroscopy and magnetic resonance imaging is very low because the detected signal strength depends on the small population difference between spin states even in high magnetic fields. Hyperpolarization methods can be used to increase this difference and thereby enhance signal strength. This has been achieved previously by incorporating the molecular spin singlet para-hydrogen into hydrogenation reaction products. We show here that a metal complex can facilitate the reversible interaction of para-hydrogen with a suitable organic substrate such that up to an 800-fold increase in proton, carbon, and nitrogen signal strengths are seen for the substrate without its hydrogenation. These polarized signals can be selectively detected when combined with methods that suppress background signals.

  3. Magnetic Biasing of a Ferroelectric Hysteresis Loop in a Multiferroic Orthoferrite

    NASA Astrophysics Data System (ADS)

    Tokunaga, Y.; Taguchi, Y.; Arima, T.; Tokura, Y.

    2014-01-01

    In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign.

  4. Real-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices

    DOE PAGES

    Brajuskovic, V.; Barrows, F.; Phatak, C.; ...

    2016-10-03

    Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1Dmore » avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.« less

  5. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  6. Real-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brajuskovic, V.; Barrows, F.; Phatak, C.

    Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1Dmore » avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.« less

  7. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    NASA Astrophysics Data System (ADS)

    Gravestijn, R. M.; Drake, J. R.; Hedqvist, A.; Rachlew, E.

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, tgrs, has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of tgrs, first (EXTRAP-T2) with tgrs of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with tgrs much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence.

  8. Switching fields and their distributions in rounded-rectangle [Co/Pd]8 nanodots and nanorings with identical configuration

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Wang, Y.; He, X. D.; Adeyeye, A. O.

    2018-04-01

    We present two different types of magnetization reversal behaviors for the identically-configured Co/Pd multilayers with rounded-rectangular nanodots and nanorings for various edge-to-edge distances (s), by using focused magneto-optic Kerr measurements and magnetic force microscopy measurements. For the nanodots with a fixed outer diameter of d = 580 nm, the switching field Hsw and switching field distribution (SFD) are almost invariant with respect to s. However, the Hsw and SFD for the nanodot arrays could be easily modulated by varying d, which is ascribed to the size effect. In contrast, the Hsw and SFD are strongly dependent on s for the nanorings. Compared to the strongly coupled magnetic moments of the closely-packed nanorings, the magnetostatic interaction among nanodots is negligible, which should be responsible for the observed different magnetization reversal behaviors.

  9. Attempting nanolocalization of all-optical switching through nano-holes in an Al-mask

    NASA Astrophysics Data System (ADS)

    Savoini, M.; Reid, A. H.; Wang, T.; Graves, C. E.; Hoffmann, M. C.; Liu, T.-M.; Tsukamoto, A.; Stöhr, J.; Dürr, H. A.; Kirilyuk, A.; Kimel, A. V.; Rasing, T.

    2014-08-01

    We investigate the light-induced magnetization reversal in samples of rare-earth transition metal alloys, where we aim to spatially confine the switched region at the nanoscale, with the help of nano-holes in an Al-mask covering the sample. First of all, an optimum multilayer structure is designed for the optimum absorption of the incident light. Next, using finite difference time domain simulations we investigate light penetration through nano-holes of different diameter. We find that the holes of 200 nm diameter combine an optimum transmittance with a localization better than λ/4. Further, we have manufactured samples with the help of focused ion beam milling of Al-capped TbCoFe layers. Finally, employing magnetization-sensitive X-ray holography techniques, we have investigated the magnetization reversal with extremely high resolution. The results show severe processing effects on the switching characteristics of the magnetic layers.

  10. A magnetostatic-coupling based remote query sensor for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.

    1999-01-01

    A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.

    The rich physics associated with magnetism often centers around directional effects. Here we demonstrate how spin-transfer torques in general result in unidirectional ferromagnetic resonance dynamics upon field reversal. The unidirectionality is a direct consequence of both field-like and damping-like dynamic torques simultaneously driving the motion. This directional effect arises from the field-like torque being odd and the damping-like torque being even under field reversal. The directional effect is observed when the magnetization has both an in-plane and out-of-plane component, since then the linear combination of the torques rotates with a different handedness around the magnetization as the magnetization is tippedmore » out-of-plane. The effect is experimentally investigated via spin-torque ferromagnetic resonance measurements with the field applied at arbitrary directions away from the interface normal. The measured asymmetry of the voltage spectra are well explained within a phenomenological torque model.« less

  12. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  13. Resistivity profile effects in numerical magnetohydrodynamic simulations of the reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Sätherblom, H.-E.; Mazur, S.; Nordlund, P.

    1996-12-01

    The influence of the resistivity profile on reversed-field pinch (RFP) dynamics is investigated numerically using a three-dimensional resistive magnetohydrodynamic code. This investigation is motivated by experimental observations on the EXTRAP-T1 RFP (Nordlund P et al 1994 Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research IAEA-CN-60/A6/C-P-6). Two cases with profiles mainly differing in the edge region, i.e. in the region outside the reversal surface, are simulated. It is found that increasing the resistivity in this region results in a factor of two increase in magnetic fluctuation energy and an equal amount in the fluctuation-induced electric field. In spite of this, the parallel current decreases in the edge region, resulting in a factor two reduction of the field reversal ratio. The dynamics become more irregular and the characteristic timescale is reduced. The final state is characterized by a higher loop voltage, slightly lower values of the total (fluctuating plus mean part) magnetic energy and the magnetic helicity, but almost unchanged Taylor relaxation ratio. The results indicate that the edge region can be important for RFP confinement since cooling of the plasma in this region can lead to an increased fluctuation level and degraded performance.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perron, Justin K., E-mail: jperron@csusm.edu; Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; National Institute of Standards and Technology, Gaithersburg, Maryland 20899

    Pauli-spin blockade (PSB) is a transport phenomenon in double quantum dots that allows for a type of spin to charge conversion often used to probe fundamental physics such as spin relaxation and singlet-triplet coupling. In this paper, we theoretically explore Pauli-spin blockade as a function of magnetic field B applied parallel to the substrate. In the well-studied low magnetic field regime, where PSB occurs in the forward (1, 1) → (0, 2) tunneling direction, we highlight some aspects of PSB that are not discussed in detail in existing literature, including the change in size of both bias triangles measured inmore » the forward and reverse biasing directions as a function of B. At higher fields, we predict a crossover to “reverse PSB” in which current is blockaded in the reverse direction due to the occupation of a spin singlet as opposed to the traditional triplet blockade that occurs at low fields. The onset of reverse PSB coincides with the development of a tail like feature in the measured bias triangles and occurs when the Zeeman energy of the polarized triplet equals the exchange energy in the (0, 2) charge configuration. In Si quantum dots, these fields are experimentally accessible; thus, this work suggests a way to observe a crossover in magnetic field to qualitatively different behavior.« less

  15. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  16. Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque

    NASA Astrophysics Data System (ADS)

    Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.

    2018-05-01

    Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.

  17. Production of sunspots and their effects on the corona and solar wind: Insights from a new 3D flux-transport dynamo model

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Jouve, Laurène; Pinto, Rui F.; Rouillard, Alexis P.

    2018-01-01

    We present a three-dimensional numerical model for the generation and evolution of the magnetic field in the solar convection zone, in which sunspots are produced and contribute to the cyclic reversal of the large-scale magnetic field. We then assess the impact of this dynamo-generated field on the structure of the solar corona and solar wind. This model solves the induction equation in which the velocity field is prescribed. This velocity field is a combination of a solar-like differential rotation and meridional circulation. We develop an algorithm that enables the magnetic flux produced in the interior to be buoyantly transported towards the surface to produce bipolar spots. We find that those tilted bipolar magnetic regions contain a sufficient amount of flux to periodically reverse the polar magnetic field and sustain dynamo action. We then track the evolution of these magnetic features at the surface during a few consecutive magnetic cycles and analyze their effects on the topology of the corona and on properties of the solar wind (distribution of streamers and coronal holes, and of slow and fast wind streams) in connection with current observations of the Sun.

  18. How the geomagnetic field vector reverses polarity

    USGS Publications Warehouse

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  19. Progression of Hypertrophy and Myocardial Fibrosis in Aortic Stenosis: A Multicenter Cardiac Magnetic Resonance Study.

    PubMed

    Everett, Russell J; Tastet, Lionel; Clavel, Marie-Annick; Chin, Calvin W L; Capoulade, Romain; Vassiliou, Vassilios S; Kwiecinski, Jacek; Gomez, Miquel; van Beek, Edwin J R; White, Audrey C; Prasad, Sanjay K; Larose, Eric; Tuck, Christopher; Semple, Scott; Newby, David E; Pibarot, Philippe; Dweck, Marc R

    2018-06-01

    Aortic stenosis is accompanied by progressive left ventricular hypertrophy and fibrosis. We investigated the natural history of these processes in asymptomatic patients and their potential reversal post-aortic valve replacement (AVR). Asymptomatic and symptomatic patients with aortic stenosis underwent repeat echocardiography and magnetic resonance imaging. Changes in peak aortic-jet velocity, left ventricular mass index, diffuse fibrosis (indexed extracellular volume), and replacement fibrosis (late gadolinium enhancement [LGE]) were quantified. In 61 asymptomatic patients (43% mild, 34% moderate, and 23% severe aortic stenosis), significant increases in peak aortic-jet velocity, left ventricular mass index, indexed extracellular volume, and LGE mass were observed after 2.1±0.7 years, with the most rapid progression observed in patients with most severe stenosis. Patients with baseline midwall LGE (n=16 [26%]; LGE mass, 2.5 g [0.8-4.8 g]) demonstrated particularly rapid increases in scar burden (78% [50%-158%] increase in LGE mass per year). In 38 symptomatic patients (age, 66±8 years; 76% men) who underwent AVR, there was a 19% (11%-25%) reduction in left ventricular mass index ( P <0.0001) and an 11% (4%-16%) reduction in indexed extracellular volume ( P =0.003) 0.9±0.3 years after surgery. By contrast midwall LGE (n=10 [26%]; mass, 3.3 g [2.6-8.0 g]) did not change post-AVR (n=10; 3.5 g [2.1-8.0 g]; P =0.23), with no evidence of regression even out to 2 years. In patients with aortic stenosis, cellular hypertrophy and diffuse fibrosis progress in a rapid and balanced manner but are reversible after AVR. Once established, midwall LGE also accumulates rapidly but is irreversible post valve replacement. Given its adverse long-term prognosis, prompt AVR when midwall LGE is first identified may improve clinical outcomes. URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01755936 and NCT01679431. © 2018 The Authors.

  20. Magnetization reversal in circular vortex dots of small radius.

    PubMed

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  1. Magnetization reversal in ferromagnetic wires patterned with antiferromagnetic gratings

    NASA Astrophysics Data System (ADS)

    Sani, S. R.; Liu, F.; Ross, C. A.

    2017-04-01

    The magnetic reversal behavior is examined for exchange-biased ferromagnetic/antiferromagnetic nanostructures consisting of an array of 10 nm thick Ni80Fe20 stripes with width 200 nm and periodicity 400 nm, underneath an orthogonal array of 10 nm thick IrMn stripes with width ranging from 200 nm to 500 nm and periodicity from 400 nm to 1 μm. The Ni80Fe20 stripes show a hysteresis loop with one step when the IrMn width and spacing are small. However, upon increasing the IrMn width and spacing, the hysteresis loops showed two steps as the pinned and unpinned sections of the Ni80Fe20 stripes switch at different fields. Micromagnetic modeling reveals the influence of geometry on the reversal behavior.

  2. Stable, polymer-directed and SPION-nucleated magnetic amphiphilic block copolymer nanoprecipitates with readily reversible assembly in magnetic fields

    NASA Astrophysics Data System (ADS)

    Giardiello, Marco; Hatton, Fiona L.; Slater, Rebecca A.; Chambon, Pierre; North, Jocelyn; Peacock, Anita K.; He, Tao; McDonald, Tom O.; Owen, Andrew; Rannard, Steve P.

    2016-03-01

    The formation of inorganic-organic magnetic nanocomposites using reactive chemistry often leads to a loss of super-paramagnetisim when conducted in the presence of iron oxide nanoparticles. We present here a low energy and chemically-mild process of co-nanoprecipitation using SPIONs and homopolymers or amphiphilic block copolymers, of varying architecture and hydrophilic/hydrophobic balance, which efficiently generates near monodisperse SPION-containing polymer nanoparticles with complete retention of magnetism, and highly reversible aggregation and redispersion behaviour. When linear and branched block copolymers with inherent water-solubility are used, a SPION-directed nanoprecipitation mechanism appears to dominate the nanoparticle formation presenting new opportunities for tailoring and scaling highly functional systems for a range of applications.The formation of inorganic-organic magnetic nanocomposites using reactive chemistry often leads to a loss of super-paramagnetisim when conducted in the presence of iron oxide nanoparticles. We present here a low energy and chemically-mild process of co-nanoprecipitation using SPIONs and homopolymers or amphiphilic block copolymers, of varying architecture and hydrophilic/hydrophobic balance, which efficiently generates near monodisperse SPION-containing polymer nanoparticles with complete retention of magnetism, and highly reversible aggregation and redispersion behaviour. When linear and branched block copolymers with inherent water-solubility are used, a SPION-directed nanoprecipitation mechanism appears to dominate the nanoparticle formation presenting new opportunities for tailoring and scaling highly functional systems for a range of applications. Electronic supplementary information (ESI) available: Additional experimental details, NMR spectra, GPC chromatograms, kinetics experiments, graphs of nanopreciptate aggregation and cycling studies and SPION characterisation. See DOI: 10.1039/c6nr00788k

  3. High SNR Acquisitions Improve the Repeatability of Liver Fat Quantification Using Confounder-corrected Chemical Shift-encoded MR Imaging

    PubMed Central

    Motosugi, Utaroh; Hernando, Diego; Wiens, Curtis; Bannas, Peter; Reeder, Scott. B

    2017-01-01

    Purpose: To determine whether high signal-to-noise ratio (SNR) acquisitions improve the repeatability of liver proton density fat fraction (PDFF) measurements using confounder-corrected chemical shift-encoded magnetic resonance (MR) imaging (CSE-MRI). Materials and Methods: Eleven fat-water phantoms were scanned with 8 different protocols with varying SNR. After repositioning the phantoms, the same scans were repeated to evaluate the test-retest repeatability. Next, an in vivo study was performed with 20 volunteers and 28 patients scheduled for liver magnetic resonance imaging (MRI). Two CSE-MRI protocols with standard- and high-SNR were repeated to assess test-retest repeatability. MR spectroscopy (MRS)-based PDFF was acquired as a standard of reference. The standard deviation (SD) of the difference (Δ) of PDFF measured in the two repeated scans was defined to ascertain repeatability. The correlation between PDFF of CSE-MRI and MRS was calculated to assess accuracy. The SD of Δ and correlation coefficients of the two protocols (standard- and high-SNR) were compared using F-test and t-test, respectively. Two reconstruction algorithms (complex-based and magnitude-based) were used for both the phantom and in vivo experiments. Results: The phantom study demonstrated that higher SNR improved the repeatability for both complex- and magnitude-based reconstruction. Similarly, the in vivo study demonstrated that the repeatability of the high-SNR protocol (SD of Δ = 0.53 for complex- and = 0.85 for magnitude-based fit) was significantly higher than using the standard-SNR protocol (0.77 for complex, P < 0.001; and 0.94 for magnitude-based fit, P = 0.003). No significant difference was observed in the accuracy between standard- and high-SNR protocols. Conclusion: Higher SNR improves the repeatability of fat quantification using confounder-corrected CSE-MRI. PMID:28190853

  4. 40Ar/39Ar chronology and paleomagnetism of Quaternary basaltic lavas from the Perşani Mountains (East Carpathians)

    NASA Astrophysics Data System (ADS)

    Panaiotu, C. G.; Jicha, B. R.; Singer, B. S.; Ţugui, A.; Seghedi, I.; Panaiotu, A. G.; Necula, C.

    2013-08-01

    Quaternary volcanism in the Perşani Mountains forms an Na-alkali basaltic province inside the bend area of the Carpathians in the southeastern part of Europe. Previous K-Ar ages and paleomagnetic data reveal several transitional virtual geomagnetic poles, which were tentatively associated with the Cobb Mountain subchron and a Brunhes chron excursion. We report a new paleomagnetic and rock-magnetic study coupled with 40Ar/39Ar geochronology to better constrain the age of geomagnetic reversals or excursions that might be recorded and the timing of volcanism. Of the paleomagnetic directions obtained from sampled lava flows 4 are reversed polarity, 19 are normal polarity and 16 have transitional polarity. 40Ar/39Ar plateau ages determined from incremental heating experiments on groundmass indicate that two of the reversely magnetized lavas erupted at 1142 ± 41 and 800 ± 25 ka, four of the normally magnetized lavas erupted at 1060 ± 10, 1062 ± 24, 684 ± 21, and 683 ± 28 ka, and two transitionally magnetized lavas formed at 1221 ± 11 and 799 ± 21 ka. Both the new 40Ar/39Ar ages and the paleomagnetic data suggest at least five episodes of volcanic activity with the most active periods during the Jaramillo and Brunhes chrons. This results shows that the last phases of alkalic and calc-alkaline magmatism in the South-East Carpathians were contemporaneous. The age of the older transitionally magnetized lava flow is within error of recent unspiked K-Ar and astrochronologic ages for the reversal that defines the onset of the Cobb Mountain normal polarity subchron. The age of the younger transitional lava is similar to that of an excursion that preceded the Matuyama-Brunhes polarity reversal and which has come to be known as the Matuyama-Brunhes precursor. Omitting the excursion data, the dispersion of the virtual geomagnetic poles (around 19°) is larger than the expected value around 45°N from the global compilation, but closer to the value obtained only from the Time Averaged geomagnetic Field Initiative studies.

  5. Effect of magnetic soft phase on the magnetic properties of bulk anisotropic Nd2Fe14B/α-Fe nanocomposite permanent magnets

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo

    2018-01-01

    The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd-Fe-B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.

  6. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    PubMed

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  7. Precessional Switching of Thin Nanomagnets with Uniaxial Anisotropy

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut; Schumacher, Hans Werner; Chappert, Claude

    This review describes the evolution of the magnetization of uniaxial thin magnets when subjected to fast-rising magnetic-field pulses. We report detailed "all-electrical" experimental investigations of precessional switching on soft uniaxial micrometer-sized thin magnets, and we discuss them using a comprehensive, mostly analytical framework. General criteria are derived for the analytical assessment of the switching ability of any arbitrary set of experimental parameters. For this, we start from the Landau-Lifshitz equation and first consider the precessional switching in a much idealized macrospin, easy-plane loss-free system. We then test the main outputs of this model with time-resolved experiments on advanced Magnetic Random Access Memories (MRAM) cells. Using applied fields above the anisotropy field H k , we prove the quasiperiodic nature of the magnetization trajectory and we demonstrate experimental conditions ensuring a sub-200 ps ballistic magnetization reversal. We then upgrade our model accuracy by taking into account the uniaxial anisotropy and the behavior in hard-axis fields of the order of H k . We derive a simple though reliable estimate of the switching speed; its limiting factors highlight the experimental poor switching reproducibility when close to the minimal hard-axis reversal field H k /2. The latter field does not correspond to the minimal energy cost of the reversal, whose prospective evolution in the future generations of MRAM is predicted. Small departures from the macrospin state are discussed. The effect of damping is modeled using perturbation theory. Finite damping alters the precessional motion periodicity and puts some constraints on the field rise time. A special focus is dedicated to the relaxation-dominated precessional switching: the minimal hard-axis field triggering the switching is shown to be above H k /2 by an extra field cost linked to the damping constant times the square root of M S H k . Finally, the selective addressing and the direct-write of a magnetic cell with combined easy-axis and hard-axis fields are studied. We introduce the concept of bounce and revisit the dynamical astroid to derive the related characteristic reversal durations and their margins. We propose a field timing that is immune to the delay jitter between the combined addressing fields. We finish by investigating briefly the challenges and the promises of the "precessional" strategy for future MRAM generations.

  8. Magnetic latching solenoid

    DOEpatents

    Marts, Donna J.; Richardson, John G.; Albano, Richard K.; Morrison, Jr., John L.

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  9. Antidot patterned single and bilayer thin films based on ferrimagnetic Tb-Co alloy with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Kulesh, N. A.; Vázquez, M.; Lepalovskij, V. N.; Vas'kovskiy, V. O.

    2018-02-01

    Hysteresis properties and magnetization reversal in TbCo(30 nm) and FeNi(10 nm)/TbCo(30 nm) films with nanoscale antidot lattices are investigated to test the effect of nanoholes on the perpendicular anisotropy in the TbCo layer and the induced exchange bias in the FeNi layer. The antidots are introduced by depositing the films on top of hexagonally ordered porous anodic alumina substrates with pore diameter and interpore distance fixed to 75 nm and 105 nm, respectively. The analysis of combined vibrating sample magnetometry, Kerr microscopy and magnetic force microscopy imaging measurements has allowed us to link macroscopic and local magnetization reversal processes. For magnetically hard TbCo films, we demonstrate the tunability of magnetic anisotropy and coercive field (i.e., it increases from 0.2 T for the continuous film to 0.5 T for the antidot film). For the antidot FeNi/TbCo film, magnetization of FeNi is confirmed to be in plane. Although an exchange bias has been locally detected in the FeNi layer, the integrated hysteresis loop has increased coercivity and zero shift along the field axis due to the significantly decreased magnetic anisotropy of TbCo layer.

  10. Magnetic Flux Emergence Along the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Archontis, V.; Pariat, E.

    2014-12-01

    Flux emergence plays an important role along the solar cycle. Magnetic flux emergence builds sunspot groups and solar activity. The sunspot groups contribute to the large scale behaviour of the magnetic field over the 11 year cycle and the reversal of the North and South magnetic polarity every 22 years. The leading polarity of sunspot groups is opposite in the North and South hemispheres and reverses for each new solar cycle. However the hemispheric rule shows the conservation of sign of the magnetic helicity with positive and negative magnetic helicity in the South and North hemispheres, respectively. MHD models of emerging flux have been developed over the past twenty years but have not yet succeeded to reproduce solar observations. The emergence of flux occurs through plasma layers of very high gradients of pressure and changing of modes from a large β to a low β plasma (<1). With the new armada of high spatial and temporal resolution instruments on the ground and in space, emergence of magnetic flux is observed in tremendous detail and followed during their transit through the upper atmosphere. Signatures of flux emergence in the corona depend on the pre-existing magnetic configuration and on the strength of the emerging flux. We review in this paper new and established models as well as the recent observations.

  11. Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants.

    PubMed

    McCoy, Thomas M; Brown, Paul; Eastoe, Julian; Tabor, Rico F

    2015-01-28

    The unique charging properties of graphene oxide (GO) are exploited in the preparation of a range of noncovalent magnetic GO materials, using microparticles, nanoparticles, and magnetic surfactants. Adsorption and desorption are controlled by modification of pH within a narrow window of <2 pH units. The benefit conferred by using charge-based adsorption is that the process is reversible, and the GO can be captured and separated from the magnetic nanomaterial, such that both components can be recycled. Iron oxide (Fe2O3) microparticles form a loosely flocculated gel network with GO, which is demonstrated to undergo magnetic compressional dewatering in the presence of an external magnetic field. For composites formed from GO and Fe2O3 nanoparticles, it is found that low Fe2O3:GO mass ratios (<5:1) favor flocculation of GO, whereas higher ratios (>5:1) cause overcharging of the surfaces resulting in restabilization. The effectiveness of the GO adsorption and magnetic capture process is demonstrated by separating traditionally difficult-to-recover gold nanoparticles (d ≈ 10 nm) from water. The fully recyclable nature of the assembly and capture process, combined with the vast adsorption capacity of GO, presents obvious and appealing advantages for applications in decontamination and water treatment.

  12. A high-resolution record of the Matuyama-Brunhes transition from the Mediterranean region: The Valle di Manche section (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Macrì, Patrizia; Capraro, Luca; Ferretti, Patrizia; Scarponi, Daniele

    2018-05-01

    High-resolution palaeomagnetic and rock magnetic investigations on the Valle di Manche section (Crotone Basin, Calabria, Southern Italy) provide a detailed record of the Matuyama-Brunhes (M-B) reversal that, to our best knowledge, is the only available record of the last geomagnetic reversal for the Mediterranean on-land marine stratigraphy. The M-B transition can be pinpointed precisely, as it develops within a 3-cm-thick interval located just above a prominent tephra layer (the "Pitagora ash") where the sedimentation rates are about 27 cm/kyr. Demagnetization analyses indicate a stable palaeomagnetic behaviour throughout the section for both normal and reversed polarity directions, with demagnetization vectors aligned toward the origin of Zijderveld diagrams after the removal of a small viscous low-coercivity remanence component. In the lower part of the studied interval, some samples acquired a spurious gyromagnetic remanent magnetization (GRM) during AF demagnetization in high fields. Rock magnetic analyses confirm that magnetite is the main magnetic carrier for all measured specimens, which also have an abundant paramagnetic fraction. Only the lower part of the record, well below the M-B boundary, is characterized by a downward-increasing presence of iron sulphides (greigite). According to our chronology, which is based on a robust, cross-validated age model, the final reverse-to-normal directional change of the M-B transition occurred at ca. 786.9 ± 5 ka (error includes uncertainty in orbital tuning) and was very rapid, of the order of 100 years or less.

  13. Current-induced alternating reversed dual-echo-steady-state for joint estimation of tissue relaxation and electrical properties.

    PubMed

    Lee, Hyunyeol; Sohn, Chul-Ho; Park, Jaeseok

    2017-07-01

    To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T 1 , T 2 , and current-induced B z are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T 1 , T 2 , and current-induced B z , yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation. Magn Reson Med 78:107-120, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  15. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Banibrata; Rao, A.R., E-mail: bm@physics.iisc.ernet.in, E-mail: arrao@tifr.res.in

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a whitemore » dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.« less

  16. Electric field measurements across the harang discontinuity. [of the auroral zone

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.

    1974-01-01

    The Harang discontinuity, the area separating the positive and negative bay regions in the midnight sector of the auroral zone, is a focal point for changes in behavior of many phenomena. Through this region the electric field rotates through the west from a basically northward field in the positive bay region to a basically southward field in the negative bay region, appearing as a reversal in a single axis measurement; 32 of these reversals have been identified in the OGO-6 data from November and December, 1969. The discontinuity is dynamic in nature, moving southward and steepening its latitudinal profile as magnetic activity is increased. As activity decreases it relaxes poleward and spreads out in latitudinal width. It occurs over several hours of magnetic local time. The boundary in the electric field data is consistent with the reversal of ground magnetic disturbances from a positive to negative bay condition. The discontinuity is present in the electric field data both during substorms and during quiet times and appears to define a pattern on which other effects can occur.

  17. Simple Repeat-Primed PCR Analysis of the Myotonic Dystrophy Type 1 Gene in a Clinical Diagnostics Environment

    PubMed Central

    Dryland, Philippa A.; Doherty, Elaine; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Myotonic dystrophy type 1 is an autosomal dominant neuromuscular disorder that is caused by the expansion of a CTG trinucleotide repeat in the DMPK gene. The confirmation of a clinical diagnosis of DM-1 usually involves PCR amplification of the CTG repeat-containing region and subsequent sizing of the amplification products in order to deduce the number of CTG repeats. In the case of repeat hyperexpansions, Southern blotting is also used; however, the latter has largely been superseded by triplet repeat-primed PCR (TP-PCR), which does not yield a CTG repeat number but nevertheless provides a means of stratifying patients regarding their disease severity. We report here a combination of forward and reverse TP-PCR primers that allows for the simple and effective scoring of both the size of smaller alleles and the presence or absence of expanded repeat sequences. In addition, the CTG repeat-containing TP-PCR forward primer can target both the DM-1 and Huntington disease genes, thereby streamlining the work flow for confirmation of clinical diagnoses in a diagnostic laboratory. PMID:26317000

  18. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults.

    PubMed

    Tyagi, Avishkar; Yeganeh, Omid; Levin, Yakir; Hooker, Jonathan C; Hamilton, Gavin C; Wolfson, Tanya; Gamst, Anthony; Zand, Amir K; Heba, Elhamy; Loomba, Rohit; Schwimmer, Jeffrey; Middleton, Michael S; Sirlin, Claude B

    2015-10-01

    Determine intra- and inter-examination repeatability of magnitude-based magnetic resonance imaging (MRI-M), complex-based magnetic resonance imaging (MRI-C), and magnetic resonance spectroscopy (MRS) at 3T for estimating hepatic proton density fat fraction (PDFF), and using MRS as a reference, confirm MRI-M and MRI-C accuracy. Twenty-nine overweight and obese pediatric (n = 20) and adult (n = 9) subjects (23 male, 6 female) underwent three same-day 3T MR examinations. In each examination MRI-M, MRI-C, and single-voxel MRS were acquired three times. For each MRI acquisition, hepatic PDFF was estimated at the MRS voxel location. Intra- and inter-examination repeatability were assessed by computing standard deviations (SDs) and intra-class correlation coefficients (ICCs). Aggregate SD was computed for each method as the square root of the average of first repeat variances. MRI-M and MRI-C PDFF estimation accuracy was assessed using linear regression with MRS as a reference. For MRI-M, MRI-C, and MRS acquisitions, respectively, mean intra-examination SDs were 0.25%, 0.42%, and 0.49%; mean intra-examination ICCs were 0.999, 0.997, and 0.995; mean inter-examination SDs were 0.42%, 0.45%, and 0.46%; and inter-examination ICCs were 0.995, 0.992, and 0.990. Aggregate SD for each method was <0.9%. Using MRS as a reference, regression slope, intercept, average bias, and R (2), respectively, for MRI-M were 0.99%, 1.73%, 1.61%, and 0.986, and for MRI-C were 0.96%, 0.43%, 0.40%, and 0.991. MRI-M, MRI-C, and MRS showed high intra- and inter-examination hepatic PDFF estimation repeatability in overweight and obese subjects. Longitudinal hepatic PDFF change >1.8% (twice the maximum aggregate SD) may represent real change rather than measurement imprecision. Further research is needed to assess whether examinations performed on different days or with different MR technologists affect repeatability of MRS voxel placement and MRS-based PDFF measurements.

  19. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults

    PubMed Central

    Tyagi, Avishkar; Yeganeh, Omid; Levin, Yakir; Hooker, Jonathan C.; Hamilton, Gavin C.; Wolfson, Tanya; Gamst, Anthony; Zand, Amir K.; Heba, Elhamy; Loomba, Rohit; Schwimmer, Jeffrey; Middleton, Michael S.; Sirlin, Claude B.

    2016-01-01

    Purpose Determine intra- and inter-examination repeatability of magnitude-based magnetic resonance imaging (MRI-M), complex-based magnetic resonance imaging (MRI-C), and magnetic resonance spectroscopy (MRS) at 3T for estimating hepatic proton density fat fraction (PDFF), and using MRS as a reference, confirm MRI-M and MRI-C accuracy. Methods Twenty-nine overweight and obese pediatric (n = 20) and adult (n = 9) subjects (23 male, 6 female) underwent three same-day 3T MR examinations. In each examination MRI-M, MRI-C, and single-voxel MRS were acquired three times. For each MRI acquisition, hepatic PDFF was estimated at the MRS voxel location. Intra- and inter-examination repeatability were assessed by computing standard deviations (SDs) and intra-class correlation coefficients (ICCs). Aggregate SD was computed for each method as the square root of the average of first repeat variances. MRI-M and MRI-C PDFF estimation accuracy was assessed using linear regression with MRS as a reference. Results For MRI-M, MRI-C, and MRS acquisitions, respectively, mean intra-examination SDs were 0.25%, 0.42%, and 0.49%; mean intra-examination ICCs were 0.999, 0.997, and 0.995; mean inter-examination SDs were 0.42%, 0.45%, and 0.46%; and inter-examination ICCs were 0.995, 0.992, and 0.990. Aggregate SD for each method was <0.9%. Using MRS as a reference, regression slope, intercept, average bias, and R2, respectively, for MRI-M were 0.99%, 1.73%, 1.61%, and 0.986, and for MRI-C were 0.96%, 0.43%, 0.40%, and 0.991. Conclusion MRI-M, MRI-C, and MRS showed high intra- and inter-examination hepatic PDFF estimation repeatability in overweight and obese subjects. Longitudinal hepatic PDFF change >1.8% (twice the maximum aggregate SD) may represent real change rather than measurement imprecision. Further research is needed to assess whether examinations performed on different days or with different MR technologists affect repeatability of MRS voxel placement and MRS-based PDFF measurements. PMID:26350282

  20. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Changlian; Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University; Gao, Jianfeng

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI),more » could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.« less

  1. Myocardial scar location as detected by cardiac magnetic resonance is associated with the outcome in heart failure patients undergoing surgical ventricular reconstruction.

    PubMed

    Castelvecchio, Serenella; Careri, Giulia; Ambrogi, Federico; Camporeale, Antonia; Menicanti, Lorenzo; Secchi, Francesco; Lombardi, Massimo

    2018-01-01

    Post-infarction myocardial scar causes adverse left ventricular remodelling and negatively affects the prognosis. We sought to investigate whether scar extent and location obtained by cardiac magnetic resonance may affect the reverse remodelling and survival of heart failure patients undergoing surgical ventricular reconstruction. From January 2011 to December 2015, 151 consecutive patients with previous myocardial infarction and left ventricular remodelling underwent surgical ventricular reconstruction at our Institution, of which 88 (58%) patients had a preoperative protocol-standardized late gadolinium enhancement (LGE)-cardiac magnetic resonance examination during the week before surgery. We excluded 40 patients with devices (26%), 15 patients with irregular heart rhythm (permanent atrial fibrillation, 10% not included in the device group) or mixed contraindications (severe claustrophobia or presence of material magnetic resonance not compatible). Among the 145 survivors, 11 patients received an implantable cardioverter defibrillator after surgery (mostly for persistent low ejection fraction) and were excluded as well, yielding a total of 59 patients (48 men, aged 65 ± 9 years) who repeated a protocol-standardized LGE-cardiac magnetic resonance examination even 6 months postoperatively and therefore represent the study population. Patients were grouped according to the presence of LGE in the antero-basal left ventricular segments (Group A) or the absence of LGE in the same segments (Group B). The postoperative left ventricular end-systolic volume index was considered the primary end-point. After surgery, left ventricular end-systolic volume index and end-diastolic volume index significantly decreased (P < 0.001, for both), while diastolic sphericity index and ejection fraction significantly increased (P = 0.015 and P < 0.001, respectively). The presence of LGE in the antero-basal left ventricular segments (10 patients, Group A) was the only independent predictor of outcome (P = 0.02) at multivariate analysis, being the postoperative left ventricular end-systolic volume index significantly higher compared to that of patients of Group B (49 patients) (78 ± 26 ml/m2 vs 55 ± 20 ml/m2, P = 0.003). Furthermore, patients with a postoperative left ventricular end-systolic volume index >60 ml/m2 showed a higher risk of cardiac events (hazard ratio = 3.67, P = 0.02). In patients undergoing surgical ventricular reconstruction, LGE scar location affects the left ventricular reverse remodelling, which in turn might limit the survival benefit. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. Cluster observations of quasi-periodic impulsive signatures in the dayside northern lobe: High-latitude flux transfer events?

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; Balogh, A.; Reme, H.; Fazakerley, A. N.; Kistler, L. M.

    2004-01-01

    We report on a series of quasi-periodic reversals in GSM B(sub Z) observed by the four Cluster spacecraft in the northern dayside lobe poleward of the cusp on 23 February 2001. During an interval of about 35 min, multiple reversals (negative to positive) in B(sub Z) of approximately 1-min duration with an approximate 8-min recurrence time were observed. The individual structures do not resemble low-latitude flux transfer events (FTE) [Russell and Elphic, 1979] but the 8-min recurrence frequency suggests that intermittent reconnection may be occurring .Measurements (appropriately lagged) of the solar wind at ACE show that the IMF was southward-oriented with a strong B(sub X) and that a modest dynamic pressure increased as the events started. The multi-point observations afforded by the Cluster spacecraft were used to infer the motion (direction and speed) of the observed magnetic field reversals. The associated currents were also calculated and they are consistent with the spatial confinement of the observed magnetic field reversals. We propose that the observed reversals are due to flux tubes reconnecting with closed field lines on the dayside. Ancillary data from the Cluster Ion Spectrometry (CIS) and Plasma Electron And Current Experiment (PEACE) instruments were used to develop a physical picture of the reversals.

  3. FLiT: a field line trace code for magnetic confinement devices

    NASA Astrophysics Data System (ADS)

    Innocente, P.; Lorenzini, R.; Terranova, D.; Zanca, P.

    2017-04-01

    This paper presents a field line tracing code (FLiT) developed to study particle and energy transport as well as other phenomena related to magnetic topology in reversed-field pinch (RFP) and tokamak experiments. The code computes magnetic field lines in toroidal geometry using curvilinear coordinates (r, ϑ, ϕ) and calculates the intersections of these field lines with specified planes. The code also computes the magnetic and thermal diffusivity due to stochastic magnetic field in the collisionless limit. Compared to Hamiltonian codes, there are no constraints on the magnetic field functional formulation, which allows the integration of whichever magnetic field is required. The code uses the magnetic field computed by solving the zeroth-order axisymmetric equilibrium and the Newcomb equation for the first-order helical perturbation matching the edge magnetic field measurements in toroidal geometry. Two algorithms are developed to integrate the field lines: one is a dedicated implementation of a first-order semi-implicit volume-preserving integration method, and the other is based on the Adams-Moulton predictor-corrector method. As expected, the volume-preserving algorithm is accurate in conserving divergence, but slow because the low integration order requires small amplitude steps. The second algorithm proves to be quite fast and it is able to integrate the field lines in many partially and fully stochastic configurations accurately. The code has already been used to study the core and edge magnetic topology of the RFX-mod device in both the reversed-field pinch and tokamak magnetic configurations.

  4. A Highly Ordered Magnetic Field in a Crushed Pulsar Wind Nebula in G327.1-1.1

    NASA Astrophysics Data System (ADS)

    Ma, Yik Ki; Ng, Chi-Yung; Bucciantini, Niccolò; Gaensler, Bryan M.; Slane, Patrick O.; Temim, Tea

    2015-01-01

    A significant fraction of a pulsar's spin-down luminosity is in the form of a relativistic magnetized particle outflow known as a pulsar wind. Confinement of the wind by the ambient medium creates a synchrotron-emitting bubble called a pulsar wind nebula (PWN). Studies of PWNe is important for understanding the physics of relativistic shocks and particle acceleration. Simulations suggest that a PWN will be crushed by the reverse shock of its surrounding supernova remnant at an age of ~10^4 yr, resulting in a turbulent environment. However, given the short timescale of the interaction stage, only a few such systems are observed.We present radio polarization observations of the PWN in supernova remnant G327.1-1.1, taken with the Australia Telescope Compact Array. Previous works suggest that this system has recently interacted with the supernova reverse shock, providing a rare example for the study of magnetic field in a crushed PWN. We found a highly ordered magnetic field in the PWN, which is unexpected given the presumed turbulent interior of the nebula. This suggests that the magnetic pressure in the PWN could play an important role in the interaction with supernova reverse shock.The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.YKM and CYN are supported by a ECS grant of the Hong Kong Government under HKU 709713P

  5. Magnetization reversal process and evaluation of thermal stability factor in Cu doped granular L10 FePt films

    NASA Astrophysics Data System (ADS)

    Jain, S.; Papusoi, C.; Admana, R.; Yuan, H.; Acharya, R.

    2018-05-01

    Curie temperature TC distributions and magnetization reversal mechanism in Cu doped L10 FePt granular films is investigated as a function of film thickness in the range of ˜5-12 nm with Cu mol. % varying in the range of 0%-6%. It is shown that Cu doping increases the FePt tetragonality and chemical ordering. For Cu doped FePt-X films, coercivity (HC) exhibits a non-monotonic behavior with increasing film thickness, i.e., HC increases initially up to tcr ˜ 7 nm, and decreases thereafter. We attribute this behavior to the change in magnetization reversal mechanism from coherent to an incoherent (domain-wall driven) mode. While in un-doped films, the domain-walls nucleate at the grain boundaries, in doped films the Cu atoms may act as domain-wall nucleation and pinning sites, isolating magnetic spin clusters of reduced dimensionality with respect to the physical grain size. This is experimentally supported by a much poorer dependence of the AC susceptibility (both, real and imaginary components) on the film thickness above 7 nm than in the case of un-doped films. The formation of magnetic spin clusters inside the grains as a consequence of the reduced coupling between Fe-Fe and Fe-Pt-Fe atoms with increasing Cu doping can explain the experimentally evidenced reduction of both, the film Curie temperature, TC, and intrinsic anisotropy energy density, KC, with increasing Cu doping.

  6. Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research

    Cancer.gov

    Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).

  7. Study of magnetoresistance in the supercooled state of Dy-Y alloys

    NASA Astrophysics Data System (ADS)

    Jena, Rudra Prasad; Lakhani, Archana

    2018-02-01

    We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.

  8. Thermomagnetic analysis of meterorites. 4: Ureilites

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.; Larson, E. E.; Watson, D. E.

    1974-01-01

    Samples of all available ureilites have been analyzed thermomagnetically. For three of the six (Dyalpur, Goalpara and Havero) evidence was found for only low-nickel metallic-iron as the magnetic component and the (saturation magnetization vs, temperature) curves were reversible. In the Novo Urei ureilite, magnetite in addition to low-nickel metallic-iron was indicated and again the Js-T curve was reversible. For the two badly weathered ureilites, Dingo Pup Donga and North Haig, indication was also found that both initial magnetite and low-nickel metallic-iron were present. However, the Js-T curves were somewhat irreversible and the final saturation magnetization was 20% and 50% greater than initially for North Haig and Dingo Pup Donga, respectively. This behavior is interpreted to be the result of magnetite production from a secondary iron oxide during the experiment.

  9. Time-reversal and rotation symmetry breaking superconductivity in Dirac materials

    NASA Astrophysics Data System (ADS)

    Chirolli, Luca; de Juan, Fernando; Guinea, Francisco

    2017-05-01

    We consider mixed symmetry superconducting phases in Dirac materials in the odd-parity channel, where pseudoscalar and vector order parameters can coexist due to their similar critical temperatures when attractive interactions are of a finite range. We show that the coupling of these order parameters to unordered magnetic dopants favors the condensation of time-reversal symmetry breaking (TRSB) phases, characterized by a condensate magnetization, rotation symmetry breaking, and simultaneous ordering of the dopant moments. We find a rich phase diagram of mixed TRSB phases characterized by peculiar bulk quasiparticles, with Weyl nodes and nodal lines, and distinctive surface states. These findings are consistent with recent experiments on NbxBi2Se3 that report evidence of point nodes, nematicity, and TRSB superconductivity induced by Nb magnetic moments.

  10. Magnetization reversal in mixed ferrite-chromite perovskites with non magnetic cation on the A-site.

    PubMed

    Billoni, Orlando V; Pomiro, Fernando; Cannas, Sergio A; Martin, Christine; Maignan, Antoine; Carbonio, Raul E

    2016-11-30

    In this work, we have performed Monte Carlo simulations in a classical model for RFe1-x Cr x O3 with R  =  Y and Lu, comparing the numerical simulations with experiments and mean field calculations. In the analyzed compounds, the antisymmetric exchange or Dzyaloshinskii-Moriya (DM) interaction induced a weak ferromagnetism due to a canting of the antiferromagnetically ordered spins. This model is able to reproduce the magnetization reversal (MR) observed experimentally in a field cooling process for intermediate x values and the dependence with x of the critical temperatures. We also analyzed the conditions for the existence of MR in terms of the strength of DM interactions between Fe(3+) and Cr(3+) ions with the x values variations.

  11. The last frontier? High-resolution, near-bottom measurements of the Hawaiian Jurassic magnetic anomaly sequence

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Tominaga, M.; Sager, W. W.

    2012-12-01

    The Jurassic sequence of marine magnetic anomalies i.e. older than M29 remain the last part of the marine magnetic anomaly sequence of the geomagnetic polarity timescale (GPTS) that can be gleaned from the ocean crustal record. While Jurassic crust is present in several areas of the world's ocean basins, the oldest and arguably best preserved sequence is in the western Pacific where three lineations sets (Japanese, Hawaiian and Phoenix) converge on the oldest remaining ocean crust on the planet (i.e. crust that has not been subducted). The magnetic anomalies in these 3 lineation sets are marked by low amplitude, relatively indistinct anomalies (tiny wiggles) that collectively have been called the Jurassic quiet Zone (JQZ). Over the past 20 years we have been working on resolving the character and origin of these anomalies with various technologies to improve our resolution of this period. Following an aeromagnetic survey that revealed the possible presence of lineated anomalies older than M29 in the Japanese lineations, we conducted a deeptow magnetometer survey of the Japanese sequence in 1992. In 2002/03 we extended and confirmed this deeptow record with a deeptowed sidescan and magnetometer survey of the Japanese lineation sequence by tying in ODP Hole 801C and extending the anomaly sequence between M29 and M44. These surveys reveal remarkably fast reversals that are lineated and decrease in intensity back in time until M38, prior to which the sequence becomes somewhat confused (the LAZ or low amplitude zone) before recovering in both amplitude and lineated character around Hole 801C (M42). These results are partially supported by recently reported terrestrial magnetostratigraphy records that show the existence of reversals back to M38. A Jurassic GPTS was constructed from this Japanese anomaly sequence, but the overall global significance of the reversal sequence and systematic field intensity changes require confirmation from crustal records created at different spreading centers. In 2011, we undertook the next generation of near-bottom magnetic studies utilizing new autonomous underwater vehicle (AUV) technology (Sentry) and concurrent deeptow and seismic profiling surveys of the Hawaiian anomaly sequence. Preliminary results show a similar anomaly record to the Japanese sequence: an overall decrease in anomaly amplitude from M19 to M38 and a period of low amplitude, which in turn is preceded by a return to stronger amplitude anomalies. The magnetic anomaly correlations between Hawaiian and Japanese sea-surface level profiles confirm the reversal record back in time, at least, to M38. At the mid-water and near-bottom AUV levels, the magnetic data clearly show the short-wavelength anomaly character of the M29-M38 sequence, indicating that the fast reversals observed in the Japanese lineations are also present in the Hawaiian lineation set. The strong similarity of overall anomaly patterns between Japanese and Hawaiian sequences supports the preliminary conclusion that geomagnetic field behavior during the Jurassic was dynamic, with fast reversals and changing intensity, and certainly not "quiet". Finally, AUV surveys provide measurements of the marine magnetic anomaly record whose resolution is limited only by the crustal recording process and crustal magnetic architecture rather than spatial resolution.

  12. Partial self-reversal of TRM in baked soils and ceramics from Ecuador

    NASA Astrophysics Data System (ADS)

    Roperch, Pierrick; Chauvin, Annick; Valdez, Francisco

    2012-11-01

    Partial self-reversed thermoremanent magnetizations (SRTRMs) were observed in samples of baked soils, hearths and ceramics from the Rumipamba archeological site near Quito (Ecuador) and ceramics from sites near the town of Esmeraldas (Ecuador). The SRTRMs were recognized at room temperature on few samples but cooling the samples in liquid nitrogen enhanced the intensity of the SRTRM and measurement at 77°K enables its rapid detection in many samples from these sites. Alternating field demagnetization of the SRTRM indicate median destructive field of the order of 50 mT and thermal demagnetization give unblocking temperatures in the temperature range 280-380 °C. The magnetic carriers of the SRTRM are stable to heating in air or in vacuum up to 600 °C suggesting that titanomaghemite should not be the magnetic carrier of the SRTRM. The studied baked clays and ceramics contain detrital material of mainly volcanic origin. Ti-poor titanomagnetite is the main magnetic carrier identified by strong field data or susceptibility measurements versus temperature. Ilmeno-hematite grains were recognized with microscope observations under reflected light. Scanning electron microscope observations with energy dispersive X-ray spectrometry indicate a Ti/Fe ratio corresponding to an ilmenite content of ˜0.55. We also compared the magnetic properties of the partially self-reversed baked clays with those of the self-reversed Pinatubo pumices. The SRTRMs were measured upon cooling from room temperature to 20°K with the MPMS. Upon cooling to 20°K the SRTRM show a nearly tenfold increase in intensity with respect to the room temperature measurement. The baked clay and ceramics from Ecuador carrying the SRTRM share similar magnetic properties with the Pinatubo pumices (unblocking temperatures, low temperature behavior) supporting the interpretation that detrital hemoilmenite originating from the Holocene activity of the numerous Ecuadorian volcanoes is the main carrier of the SRTRM in the archeological samples. In some samples, anisotropy tensors of SRTRM show large anisotropy degree (>2). The high anisotropy observed when the total magnetization is the sum of a normal thermoremanent magnetization (TRM) and a SRTRM is likely amplified because the anisotropy carried by the SRTRM is larger than the one carried by the normal component. A component of SRTRM may be hidden in archeological materials containing detrital hemoilmenites related to dacitic/andesitic volcanism and this may affect the determination of paleointensity of the earth magnetic field especially when non thermal method are used.

  13. Development of 0.5-5 W, 10K Reverse Brayton Cycle Cryocoolers - Phase II Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doty, F. D.; Boman, A.; Arnold, S.

    2001-10-15

    Miniature cryocoolers for the 8-30 K range are needed to provide 0.5-5 w of cooling to high sensitivity detectors (for long-wave-length IR, magnetism, mm-wave, X-ray, dark matter, and possibly y-ray detection) while maintaining low mass, ultra-low vibration, and good efficiency. This project presents a new approach to eliminating the problems normally encountered in efforts to build low-vibration, fieldable, miniature cryocoolers. Using the reverse Brayton Cycle (RBC), the approach applies and expands on existing spinner technology previously used only in Nuclear Magnetic Resonance (NMR) probes.

  14. Nonthermal Photocoercivity Effect in a Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor

    NASA Astrophysics Data System (ADS)

    Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Kiessling, T.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.

    2009-05-01

    We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resistivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.

  15. Nonthermal photocoercivity effect in a low-doped (Ga,Mn)As ferromagnetic semiconductor.

    PubMed

    Astakhov, G V; Hoffmann, H; Korenev, V L; Kiessling, T; Schwittek, J; Schott, G M; Gould, C; Ossau, W; Brunner, K; Molenkamp, L W

    2009-05-08

    We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resistivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.

  16. Berezinskii-Kosterlitz-Thouless transition in the time-reversal-symmetric Hofstadter-Hubbard model

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2018-01-01

    Assuming that two-component Fermi gases with opposite artificial magnetic fields on a square optical lattice are well described by the so-called time-reversal-symmetric Hofstadter-Hubbard model, we explore the thermal superfluid properties along with the critical Berezinskii-Kosterlitz-Thouless (BKT) transition temperature in this model over a wide range of its parameters. In particular, since our self-consistent BCS-BKT approach takes the multiband butterfly spectrum explicitly into account, it unveils how dramatically the interband contribution to the phase stiffness dominates the intraband one with an increasing interaction strength for any given magnetic flux.

  17. Achieving a long-lived high-beta plasma state by energetic beam injection

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.

    2015-04-01

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  18. The posterior reversible encephalopathy syndrome.

    PubMed

    Sanjay, K Mandal; Partha, P Chakraborty

    2008-09-01

    The posterior/potentially reversible encephalopathy syndrome is a unique syndrome encountered commonly in hypertensive encephalopathy. A 13-year-old boy presented with of intermittent high grade fever, throbbing headache and non-projective vomiting for 5 days. The patient had a blood pressure of 120/80 mmHg but fundoscopy documented grade 3 hypertensive retinopathy. The patient improved symptomatically following conservative management. However, on the 5(th) post-admission day headache reappeared, and blood pressure measured at that time was 240/120 mmHg. Neuroimaging suggested white matter abnormalities. Search for the etiology of secondary hypertension led to the diagnosis of pheochromocytoma. Repeated MRI after successful surgical excision of the tumor patient showed reversal of white matter abnormalities. Reversible leucoencephalopathy due to pheochromocytoma have not been documented in literature previously.

  19. Tamper resistant magnetic stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naylor, R.B.; Sharp, D.J.

    1999-11-09

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180{degree} opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40 C, is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable timemore » limits.« less

  20. Magnetic Properties of NdFe10Mo2-N Bonded Magnet

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Wei; Hu, Bo-Ping; Han, Zhong-Fan; Jin, Han-Min; Fu, Quan

    1997-06-01

    The dependence of remanence and coercivity on the magnetizing field is studied for isotropic and anisotropic epoxy resin bonded magnets. It was found that the coercivity of the NdFe10Mo2-N bonded magnet is mainly controlled by nucleation of reversed magnetic domains. Variation of iHc with Zn content and heat treatment conditions is studied. The value of 0 iHc obtained in the best Zn-bonded condition is about 0.15 T higher than before bonding. The variation of the amount of α-Fe with processing conditions is demonstrated for anisotropic Zn-bonded magnets.

Top