Science.gov

Sample records for repetitive pulse stimulation

  1. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  2. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters

    PubMed Central

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2013-01-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  3. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  4. Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength

    PubMed Central

    Walsh, Joseph T.; Jansen, E. Duco; Bendett, Mark; Webb, Jim; Ralph, Heather; Richter, Claus-Peter

    2012-01-01

    Pulsed lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared laser stimulation of nerves and very little of the available optical parameter space has been studied. In this study, a pulsed diode laser, with wavelength between 1.844–1.873 μm, was used to elicit compound action potentials (CAPs) from the auditory system of the gerbil. We found that pulse durations as short as 35 μs elicit a CAP from the cochlea. In addition, repetition rates up to 13 Hz can continually stimulate cochlear spiral ganglion cells for extended periods of time. Varying the wavelength and, therefore, the optical penetration depth, allowed different populations of neurons to be stimulated. The technology of optical stimulation could significantly improve cochlear implants, which are hampered by a lack of spatial selectivity. PMID:17554829

  5. Repetitive transcranial magnetic stimulator with controllable pulse parameters (cTMS).

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2010-01-01

    We describe a novel transcranial magnetic stimulation (TMS) device that uses a circuit topology incorporating two energy-storage capacitors and two insulated-gate bipolar transistors (IGBTs) to generate near-rectangular electric field E-field) pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable-pulse-parameter TMS (cTMS) device can induce E-field pulses with phase widths of 5-200 µs and positive/negative phase amplitude ratio of 1-10. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by 78-82% and 55-57% and decreases coil heating by 15-33% and 31-41%, respectively. We demonstrate repetitive TMS (rTMS) trains of 3,000 pulses at frequencies up to 50 Hz with E-field pulse amplitude and width variability of less than 1.7% and 1%, respectively. The reduced power consumption and coil heating, and the flexible pulse parameter adjustment offered by cTMS could enhance existing TMS paradigms and could enable novel research and clinical applications with potentially enhanced potency. PMID:21095986

  6. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    NASA Astrophysics Data System (ADS)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  7. Repetitively pulsed plasma illumination source improvements

    NASA Astrophysics Data System (ADS)

    Root, Robert G.; Falkos, Paul

    1999-05-01

    A repetitively pulsed broad band visible illumination system has been developed that is suitable for capturing images of high speed motion over sizable areas. At full pulse energy, a two lamp system can illuminate 60 square feet for movies at f/4 with 400 ASA color film and framing rates as high as 1700 fps. At reduced energy, for smaller area applications, the framing rate can be doubled. The short pulse length (4.5 microsecond(s) at full energy, 1.5 microsecond(s) at reduced energy) produces sharp images of high speed objects. This paper reports developments since the last presentation, including: (1) higher pulse repetition rates (a few kilohertz), (2) synchronization with high speed camera, (3) full scale burst of several thousand pulses, (4) characteristics of a compact demonstration system, and (5) demonstration of the ability of the short pulse to freeze motion.

  8. Investigation of a repetitive pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.; Winsor, N. K.

    1986-01-01

    A pulsed electrothermal (PET) thruster with 1000:1 ratio nozzle is tested in a repetitive mode on water propellant. The thruster is driven by a 60J pulse forming network at repetition rates up to 10 Hz (600W). The pulse forming network has a .31 ohm impedance, well matched to the capillary discharge resistance of .40 ohm, and is directly coupled to the thruster electrodes without a switch. The discharge is initiated by high voltage breakdown, typically at 2500V, through the water vapor in the interelectrode gap. Water is injected as a jet through a .37 mm orifice on the thruster axis. Thruster voltage, current and impulse bit are recorded for several seconds at various power supply currents. Thruster to power ratio is typically T/P = .07 N/kW. Tank background pressure precludes direct measurement of exhaust velocity which is inferred from calculated pressure and temperature in the discharge to be about 14 km/sec. Efficiency, based on this velocity and measured T/P is .54 + or - .07. Thruster ablation is zero at the throat and becomes measurable further upstream, indicating that radiative ablation is occurring late in the pulse.

  9. Neural dynamics during repetitive visual stimulation

    NASA Astrophysics Data System (ADS)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  10. The repetitive high energy pulsed power module

    SciTech Connect

    Harjes, H.C.; Reed, K.W.; Buttram, M.T.; Turman, B.N.; Neau, E.L.; Martinez, L.; Adcock, J.; Weinbrecht, E.A.; Mann, G.A.; Morgan, F.A.; Laderach, G.E.; Pena, G.; Butler, M.; Schneider, L.X.; Wavrik, R.W.; Penn, K.J.; Weber, G.J.

    1990-01-01

    High average power magnetic pulse compression systems are being considered for use in several applications. One of the key issues in the design of a pulsed power driver for these applications is component reliability, efficiency, and lifetime. In the Repetitive High Energy Pulsed Power (RHEPP) module, pulse compression is done exclusively with magnetic switches (saturable reactors) because such switches have the potential of performing efficiently and reliably for >10{sup 10} shots. The objective of the RHEPP project is to explore the feasibility of using magnetic pulse compression technology in continuous high average power applications. The RHEPP system consists of a compressor which drives a linear induction voltage adder with a diode load. Prime power for the module is supplied by a 600 kW, 120 Hz, alternator (furnished by Westinghouse Electric Corporation). At present, construction and initial testing in a bipolar mode of the first two stages of the compressor has been completed. This system has operated for a total of 332 minutes (4.8 {times} 10{sup 6} pulses) at full power (600 kW) with an efficiency of 94+/{minus}3%. The first stage magnetic switch (MS1) has a pulse compression factor of 8.4 (4.2 ms to 500 {mu}s time to peak). It has two, parallel connected, 67 turn copper coils and a 760 kg core of 2 mil silicon steel with a magnetic cross sectional area of 0. 065 m{sup 2}. The second stage magnetic switch (MS2) has a pulse compression factor of 3 (500 {mu}s to 170 {mu}s). It has two, parallel connected, 36 turn copper coils and a 361 kg core of field annealed 2605CO Metglas with a magnetic area of 0.019 m{sup 2}. A discussion of RHEPP compressor design effort and its baseline design is given. In addition, initial results from the operation of the first two stages are presented. 11 refs., 8 figs., 4 tabs.

  11. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  12. [Repetitive transcranial magnetic stimulation in depression; stimulation of the brain in order to cure the psyche].

    PubMed

    Helmich, R C; Snijders, A H; Verkes, R J; Bloem, B R

    2004-02-28

    Transcranial magnetic stimulation (TMS) is a non-invasive approach to briefly stimulate or inhibit cortical brain areas. A novel approach entails the delivery of repetitive TMS pulses (rTMS) at a fixed frequency. In rTMS cortical activity is altered beyond the period of actual stimulation. The changes occur locally as well as at a distance in functionally connected brain areas. These features render rTMS a suitable tool to study normal brain functions and the pathophysiology of brain diseases. Furthermore, it is expected that rTMS could be used as a novel therapy for neurological or psychiatric diseases characterised by abnormal cortical activation. This possibility has been studied mostly in patients suffering from depression, where rTMS has been used to restore normal activity in the hypoactive prefrontal cortex. Despite statistically significant therapeutic effects in small sized trials, the clinical implications are still limited.

  13. Modulation of sensorimotor cortex by repetitive peripheral magnetic stimulation

    PubMed Central

    Gallasch, Eugen; Christova, Monica; Kunz, Alexander; Rafolt, Dietmar; Golaszewski, Stefan

    2015-01-01

    This study examines with transcranial magnetic stimulation (TMS) and with functional magnetic resonance imaging (fMRI) whether 20 min of repetitive peripheral magnetic stimulation (rPMS) has a facilitating effect on associated motor controlling regions. Trains of rPMS with a stimulus intensity of 150% of the motor threshold (MT) were applied over right hand flexor muscles of healthy volunteers. First, with TMS, 10 vs. 25 Hz rPMS was examined and compared to a control group. Single and paired pulse motor evoked potentials (MEPs) from flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles were recorded at baseline (T0), post rPMS (T1), 30 min post (T2), 1 h post (T3) and 2 h post rPMS (T4). Then, with fMRI, 25 Hz rPMS was compared to sham stimulation by utilizing a finger tapping activation paradigm. Changes in bloodoxygen level dependent (BOLD) contrast were examined at baseline (PRE), post rPMS (POST1) and 1 h post rPMS (POST2). With TMS facilitation was observed in the target muscle (FCR) following 25 Hz rPMS: MEP recruitment curves (RCs) were increased at T1, T2 and T3, and intracortical facilitation (ICF) was increased at T1 and T2. No effects were observed following 10 Hz rPMS. With fMRI the BOLD contrast at the left sensorimotor area was increased at POST1. Compared to inductions protocols based on transcutaneous electrical stimulation and mechanical stimulation, the rPMS induced effects appeared shorter lasting. PMID:26236220

  14. Series-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The local pulse is initiated simultaneously with the initiation of the counterpulse used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is automatically charged with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is reclosed to terminate the load pulse, the counterpulse capacitor discharges through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  15. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1987-02-10

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.

  16. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1987-01-01

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  17. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  18. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  19. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Peer, J.; Kendl, A.

    2010-06-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  20. Experiments on a repetitively pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.

    1987-01-01

    This paper presents experimental results from an investigation of a pulsed electrothermal (PET) thruster using water propellant. The PET thruster is operated on a calibrated thrust stand, and produces a thrust to power ratio of T/P = 0.07 + or - 0.01 N/kW. The discharge conditions are inferred from a numerical model which predicts pressure and temperature levels of 300-500 atm and 20,000 K, respectively. These values in turn correctly predict the measured values of impulse bit and discharge resistance. The inferred ideal exhaust velocity from these conditions is 17 km/sec, but the injection of water propellant produces a test tank background pressure of 10-20 Torr, which reduces the exhaust velocity to 14 km/sec. This value corresponds to a thrust efficiency of 54 + or - 7 percent when all experimental errors are taken into account.

  1. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    SciTech Connect

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  2. Repetitively pulsed Nd-glass slab lasers

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Kir'ianov, A. V.; Maliutin, A. A.; Kertesz, I.; Kroo, N.

    1989-09-01

    The possibility of obtaining high laser output energies at 1.32 micron using thin LiNdLa phosphate glass slabs with a high Nd(3+) concentration is discussed. Comparison data for 1.054 micron are also given. In the experiments, 3 x 14 x 125-mm slabs were prepared from LiNdLa phosphate glass with Nd concentration 1.2 x 10 to the 21st/cu cm. The uncoated slab facets were tested in a silver-coated quartz tube reflector pumped by 450-microsec flash-lamp pulses. The light passing through the slab returns to it after reflection from the tube surface. Most of the radiation falls on the wider side of the slab at large angles of incidence, thus maximizing its path inside the slab. The 150-mm laser resonator was formed by two flat mirrors. At 1.32 microns an output mirror of reflectivity r = 95 percent was used (with r less than 10 percent at 1.054 micron), while at 1.054 micron, r(output) = 50 percent was chosen. The pump-energy dependence of the output energy was measured.

  3. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  4. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  5. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  6. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  7. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-08-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  8. Series-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  9. Widely tunable repetition-rate and pulse-duration nanosecond pulses from two spectral beam combined fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hu, Man; Zheng, Ye; Yang, Yifeng; Chen, Xiaolong; Zhao, Chun; Liu, Kai; Wang, Jianhua; Qi, Yunfeng; He, Bing; Zhou, Jun

    2016-10-01

    Nanosecond pulses with a widely tunable repetition-rate and pulse-duration at 1 μm wavelength are obtained by spectrally combining two pulse fiber amplifiers using a home-made polarization-independent multilayer dielectric reflective diffraction grating. The width of the combined pulses can be tuned from 4 ns to 800 ns, and the pulse repetition-rate can be ranged from 1 MHz to 200 MHz. Thanks to the spectral beam combining system, the maximum repetition-rate and pulse-duration of the combined pulses are doubled, compared to the single pulse fiber amplifier, by setting a proper temporal delay between the two pulse channels.

  10. Repetitive magnetic stimulation induces plasticity of inhibitory synapses

    PubMed Central

    Lenz, Maximilian; Galanis, Christos; Müller-Dahlhaus, Florian; Opitz, Alexander; Wierenga, Corette J.; Szabó, Gábor; Ziemann, Ulf; Deller, Thomas; Funke, Klaus; Vlachos, Andreas

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is used as a therapeutic tool in neurology and psychiatry. While repetitive magnetic stimulation (rMS) has been shown to induce plasticity of excitatory synapses, it is unclear whether rMS can also modify structural and functional properties of inhibitory inputs. Here we employed 10-Hz rMS of entorhinohippocampal slice cultures to study plasticity of inhibitory neurotransmission on CA1 pyramidal neurons. Our experiments reveal a rMS-induced reduction in GABAergic synaptic strength (2–4 h after stimulation), which is Ca2+-dependent and accompanied by the remodelling of postsynaptic gephyrin scaffolds. Furthermore, we present evidence that 10-Hz rMS predominantly acts on dendritic, but not somatic inhibition. Consistent with this finding, a reduction in clustered gephyrin is detected in CA1 stratum radiatum of rTMS-treated anaesthetized mice. These results disclose that rTMS induces coordinated Ca2+-dependent structural and functional changes of specific inhibitory postsynapses on principal neurons. PMID:26743822

  11. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    SciTech Connect

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M; Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar'kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  12. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.

  13. Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate

    SciTech Connect

    Miracoli, R.; Gammino, S.; Celona, L.; Mascali, D.; Castro, G.; Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F.; Ciavola, G.

    2012-05-15

    The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

  14. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  15. Repetitive transcranial magnetic stimulation in anorexia nervosa: a pilot study.

    PubMed

    Van den Eynde, F; Guillaume, S; Broadbent, H; Campbell, I C; Schmidt, U

    2013-02-01

    The search for new treatments to improve outcome in people with anorexia nervosa continues. This pilot study investigated whether one session of high frequency repetitive transcranial magnetic stimulation (rTMS) delivered to the left dorsolateral prefrontal cortex reduces eating disorder related symptoms following exposure to visual and real food stimuli. Safety and tolerability were also assessed. Ten right-handed people with anorexia nervosa underwent one session of rTMS. Subjective experiences related to the eating disorder (e.g. urge to restrict, feeling full etc.) were assessed before and after rTMS. Non-parametric repeated measures tests were used. rTMS was safe and well-tolerated, and resulted in reduced levels of feeling full, feeling fat and feeling anxious. Thus, rTMS may reduce core symptoms of anorexia nervosa. Future research should establish the therapeutic potential of rTMS in anorexia nervosa. PMID:21880470

  16. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  17. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  18. Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization.

    PubMed

    de Vries, Oliver; Saule, Tobias; Plötner, Marco; Lücking, Fabian; Eidam, Tino; Hoffmann, Armin; Klenke, Arno; Hädrich, Steffen; Limpert, Jens; Holzberger, Simon; Schreiber, Thomas; Eberhardt, Ramona; Pupeza, Ioachim; Tünnermann, Andreas

    2015-07-27

    We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing. PMID:26367616

  19. Simple filtered repetitively pulsed vacuum arc plasma source

    SciTech Connect

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-15

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10{sup -2} mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  20. The discharge characteristics of surface dielectric barrier discharge sustained by repetitive nanosecond pulses in open air

    NASA Astrophysics Data System (ADS)

    Lei, Pang; Kun, He; Qiaogen, Zhang

    2016-09-01

    A nanosecond pulsed surface dielectric barrier discharge (NPSDBD) is a promising method for flow control and combustion. We systematically investigated the influence of pulse parameters on the discharge characteristics of NPSDBD, especially on the conduction current of discharge and the energy deposition curves. Meanwhile, the differences of the characteristics of the discharge generated by positive pulses and negative pulses are focused in this paper. The underlying physics is also discussed. Four different discharge regimes of NPSDBD are presented, which can be distinguished by the temporal emission behaviors of discharge and the conduction current of discharge. The transitions of four discharge regimes were also investigated by changing the pulse amplitude, repetitive rate, and voltage polarity. It was found that it is easier to translate quasi-uniform discharge to filamentary discharge or transition mode for the repetitive pulses with a negative polarity. A phenomenological model was proposed to explain the differences between a positive repetitive pulse discharge and a negative repetitive pulse discharge.

  1. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  2. Nanosecond repetitively pulsed discharge control of premixed lean methane-air combustion

    NASA Astrophysics Data System (ADS)

    Bak, Moon Soo; Cappelli, Mark A.

    2012-10-01

    Two-dimensional kinetic simulations are carried out to investigate the effects of the discharge repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse widths are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns respectively, while the total power is held constant. The lower repetition rates, because of their higher pulse energies, produce a larger fraction of radicals such as O, H, and OH. Surprisingly, however, the effect on flame stabilization is found to be essentially the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronic states, but the varying effects on stabilization is also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.

  3. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s. PMID:27370479

  4. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver

    NASA Astrophysics Data System (ADS)

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ˜50 ns and a flat top of ˜100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ˜560 kV, output current amplitude of ˜10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 104 pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  5. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  6. Low-frequency repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    PubMed

    Di Lazzaro, V; Pilato, F; Dileone, M; Profice, P; Oliviero, A; Mazzone, P; Insola, A; Ranieri, F; Tonali, P A; Rothwell, J C

    2008-09-15

    Previous studies have shown that low-frequency repetitive transcranial magnetic stimulation (rTMS) suppresses motor-evoked potentials (MEPs) evoked by single pulse TMS. The aim of the present paper was to investigate the central nervous system level at which rTMS produces a suppression of MEP amplitude. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after 1 Hz rTMS in five conscious subjects who had an electrode implanted in the cervical epidural space for the control of pain. One of the patients had Parkinson's disease and was studied on medication. Repetitive TMS significantly suppressed the amplitude of later I-waves, and reduced the amplitude of concomitantly recorded MEPs. The earliest I-wave was not significantly modified by rTMS. The present results show that 1 Hz rTMS may decrease the amplitude of later descending waves, consistent with a cortical origin of the effect of 1 Hz rTMS on MEPs. PMID:18653655

  7. Repetitive Transcranial Magnetic Stimulation of the Primary Somatosensory Cortex Modulates Perception of the Tendon Vibration Illusion.

    PubMed

    Huh, D C; Lee, J M; Oh, S M; Lee, J-H; Van Donkelaar, P; Lee, D H

    2016-10-01

    The effect of repetitive transcranial magnetic stimulation on kinesthetic perception, when applied to the somatosensory cortex, was examined. Further, the facilitatory and inhibitory effects of repetitive transcranial magnetic stimulation using different stimulation frequencies were tested. Six female (M age = 32.0 years, SD = 6.7) and nine male (M age = 32.9 years, SD = 6.6) participants were asked to perceive the tendon vibration illusion of the left wrist joint and to replicate the illusion with their right hand. When comparing changes in the corresponding movement amplitude and velocity after three different repetitive transcranial magnetic stimulation protocols (sham, 1 Hz inhibitory, and 5 Hz facilitatory repetitive transcranial magnetic stimulation), the movement amplitude was found to decrease with the inhibitory repetitive transcranial magnetic stimulation, while the movement velocity respectively increased and decreased with the facilitatory and inhibitory repetitive transcranial magnetic stimulation. These results confirmed the modulating effects of repetitive transcranial magnetic stimulation on kinesthetic perception in a single experimental paradigm. PMID:27516411

  8. Repetitive Transcranial Magnetic Stimulation of the Primary Somatosensory Cortex Modulates Perception of the Tendon Vibration Illusion.

    PubMed

    Huh, D C; Lee, J M; Oh, S M; Lee, J-H; Van Donkelaar, P; Lee, D H

    2016-10-01

    The effect of repetitive transcranial magnetic stimulation on kinesthetic perception, when applied to the somatosensory cortex, was examined. Further, the facilitatory and inhibitory effects of repetitive transcranial magnetic stimulation using different stimulation frequencies were tested. Six female (M age = 32.0 years, SD = 6.7) and nine male (M age = 32.9 years, SD = 6.6) participants were asked to perceive the tendon vibration illusion of the left wrist joint and to replicate the illusion with their right hand. When comparing changes in the corresponding movement amplitude and velocity after three different repetitive transcranial magnetic stimulation protocols (sham, 1 Hz inhibitory, and 5 Hz facilitatory repetitive transcranial magnetic stimulation), the movement amplitude was found to decrease with the inhibitory repetitive transcranial magnetic stimulation, while the movement velocity respectively increased and decreased with the facilitatory and inhibitory repetitive transcranial magnetic stimulation. These results confirmed the modulating effects of repetitive transcranial magnetic stimulation on kinesthetic perception in a single experimental paradigm.

  9. Repetitively rated plasma relativistic microwave oscillator with a controllable frequency in every pulse

    SciTech Connect

    Bogdankevich, I. L.; Grishin, D. M.; Gunin, A. V.; Ivanov, I. E.; Korovin, S. D.; Loza, O. T.; Mesyats, G. A.; Pavlov, D. A.; Rostov, V. V.; Strelkov, P. S.; Ul'yanov, D. K.

    2008-10-15

    A repetitively rated microwave oscillator whose frequency can be varied electronically from pulse to pulse in a predetermined manner is created for the first time. The microwave oscillator has a power on the order of 10{sup 8} W and is based on the Cherenkov interaction of a high-current relativistic electron beam with a plasma preformed before each pulse. Electronic control over the plasma properties allows one to arbitrarily vary the microwave frequency from pulse to pulse at a pulse repetition rate of up to 50 Hz.

  10. Alternative approach for cavitation damage study utilizing repetitive laser pulses

    SciTech Connect

    Ren, Fei; Wang, Jy-An John; Wang, Hong

    2010-01-01

    Cavitation is a common phenomenon in fluid systems that can lead to dramatic degradation of solid materials surface in contact with the cavitating media. Study of cavitation damage has great significance in many engineering fields. Current techniques for cavitation damage study either require large scale equipments or tend to introduce damages from other mechanisms. In this project, we utilized the cavitation phenomenon induced by laser optical breakdown and developed a prototype apparatus for cavitation damage study. In our approach, cavitation was generated by the repetitive pressure waves induced by high-power laser pulses. As proof of principal study, stainless steel and aluminum samples were tested using the novel apparatus. Surface characterization via scanning electron microscopy revealed damages such as indentation and surface pitting, which were similar to those reported in literature using other state-of-the-art techniques. These preliminary results demonstrated the new device was capable of generating cavitation damages and could be used as an alternative method for cavitation damage study.

  11. Power neodymium-glass amplifier of a repetitively pulsed laser

    SciTech Connect

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  12. Power neodymium-glass amplifier of a repetitively pulsed laser

    NASA Astrophysics Data System (ADS)

    Vinogradov, Aleksandr V.; Gaganov, V. E.; Garanin, Sergey G.; Zhidkov, N. V.; Krotov, V. A.; Martynenko, S. P.; Pozdnyakov, E. V.; Solomatin, I. I.

    2011-11-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ~40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ~3.2, the linear gain ~0.031 cm-1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 — 0.21 J cm-3. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  13. Repetitive transcranial magnetic stimulation decreases the kindling induced synaptic potentiation: effects of frequency and coil shape.

    PubMed

    Yadollahpour, Ali; Firouzabadi, Seyed Mohammad; Shahpari, Marzieh; Mirnajafi-Zadeh, Javad

    2014-02-01

    The present study was aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on kindling-induced synaptic potentiation and to study the effect of frequency and coil shape on rTMS effectiveness. Seizures were induced in rats by perforant path stimulation in a rapid kindling manner (12 stimulations/day). rTMS was applied at different frequencies (0.5, 1 and 2 Hz), using either figure-8 shaped or circular coils at different times (during or before kindling stimulations). rTMS had antiepileptogenic effect at all frequencies and imposed inhibitory effects on enhancement of population excitatory postsynaptic potential slope and population spike amplitude when applied during kindling acquisition. Furthermore, it prevented the kindling-induced changes in paired pulse indices. The inhibitory effect of rTMS was higher at the frequency of 1 Hz compared to 0.5 and 2 Hz. Application of rTMS 1Hz by circular coil imposed a weaker inhibitory action compared with the figure-8 coil. In addition, the results showed that pretreatment of animals by both coils had similar preventing effect on kindling acquisition as well as kindling-induced synaptic potentiation. Obtained results demonstrated that the antiepileptogenic effect of low frequency rTMS is accompanied with the preventing of the kindling induced potentiation. This effect is dependent on rTMS frequency and slightly on coil-type.

  14. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    NASA Astrophysics Data System (ADS)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  15. Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity.

    PubMed

    Steelman, Zachary A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L

    2016-09-23

    Nanosecond electric pulses (nsEP's) are a well-studied phenomena in biophysics that cause substantial alterations to cellular membrane dynamics, internal biochemistry, and cytoskeletal structure, and induce apoptotic and necrotic cell death. While several studies have attempted to measure the effects of multiple nanosecond pulses, the effect of pulse repetition rate (PRR) has received little attention, especially at frequencies greater than 100 Hz. In this study, uptake of Propidium Iodide, FM 1-43, and YO-PRO-1 fluorescent dyes in CHO-K1 cells was monitored across a wide range of PRRs (5 Hz-500 KHz) using a laser-scanning confocal microscope in order to better understand how high frequency repetition rates impact induced biophysical changes. We show that frequency trends depend on the identity of the dye under study, which could implicate transmembrane protein channels in the uptake response due to their chemical selectivity. Finally, YO-PRO-1 fluorescence was monitored in the presence of Gadolinium (Gd(3+)), Ruthenium Red, and in calcium-free solution to elucidate a mechanism for its unique frequency trend. PMID:27553279

  16. Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses

    NASA Astrophysics Data System (ADS)

    Ran, Huijuan; Wang, Lei; Wang, Jue; Wang, Tao; Yan, Ping

    2014-05-01

    The characteristics of high pressure sulphur hexafluoride (SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper. The influencing factors on discharge process, such as gas pressure, pulse repetition frequency (PRF), and number of applied pulses, are analyzed. Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses. Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current. The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure. The reduced electric field (E/p) decreases with the increase of PRF in all circumstances. The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.

  17. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Nishijima, D.; Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M.; Kawai, T.; Ueda, Y.; Fukumoto, N.; Doerner, R. P.

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of ˜0.5 ms, incident ion energy of ˜30 eV, and surface absorbed energy density of ˜0.3-0.7 MJ/m2. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of ˜0.7 MJ/m2, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  18. A pulsed electromagnetic stimulator for bone-growth studies.

    PubMed

    Reddy, G N; Saha, S; Tuai, G L

    1983-01-01

    A variable-pulse electromagnetic pulse generator has been developed to study the effect of the magnetic field on bone growth. The unit's repetition frequency can be varied from 2 to 200 Hz, and the peak current that it can drive is 10 A. The duty cycle of the pulse can be varied in steps of 10, 12.5, 17, 25, 50, 75, 83, 87.5, and 90% and is independent of the repetition frequency. The trailing edge of the output pulse can be controlled to produce any desired voltage-time pulse characteristic. This decay adjustment makes it possible to generate a variable-pulse frequency spectrum.

  19. Repetitively pulsed regime of Nd : glass large-aperture laser amplifiers

    SciTech Connect

    Kuzmin, A A; Khazanov, Efim A; Shaykin, A A

    2012-04-30

    A repetitively pulsed operation regime of neodymium glass rod laser amplifiers with apertures of 4.5, 6, 8.5, and 10 cm is analysed using experimental data. The limits of an increase in the pulse repetition rates are determined. Universal dependences are obtained, which help finding a compromise between increasing the repetition rate and enhancing the gain for each particular case. In particular, it is shown that an amplifier 4.5-cm in diameter exhibits a five-fold safety factor with respect to a thermo-mechanical breakdown at a repetition rate of 1 pulse min{sup -1} and stored energy of above 100 J. A strong thermally induced birefringence in two such amplifiers is experimentally reduced to a 'cold' level by employing a 90 Degree-Sign optical rotator.

  20. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson's disease.

    PubMed

    Khedr, Eman M; Rothwell, John C; Shawky, Ola A; Ahmed, Mohamed A; Hamdy, Ahmed

    2006-12-01

    Previous studies in patients with Parkinson's disease have reported that a single session of repetitive transcranial magnetic stimulation (rTMS) can improve some or all of the motor symptoms for 30 to 60 minutes. A recent study suggested that repeated sessions of rTMS lead to effects that can last for at least 1 month. Here we report data that both confirm and extend this work. Fifty-five unmedicated PD patients were classified into four groups: two groups (early and late PD) received 25 Hz rTMS bilaterally on the motor arm and leg areas; other groups acted as control for frequency (10 Hz) and for site of stimulation (occipital stimulation). All patients received six consecutive daily sessions (3,000 pulses for each session). The first two groups then received a further three booster sessions (3 consecutive days of rTMS) after 1, 2, and 3 months, while the third group had only one additional session after the first month. Unified Parkinson's Disease Rating Scale (UPDRS), walking time, key-tapping speed, and self-assessment scale were measured for each patient before and after each rTMS session and before and after the monthly sessions. Compared to occipital stimulation, 25 Hz rTMS over motor areas improved all measures in both early and late groups; the group that received 10 Hz rTMS improved more than the occipital group but less than the 25 Hz groups. The effect built up gradually during the sessions and was maintained for 1 month after, with a slight reduction in efficacy. Interestingly, the effect was restored and maintained for the next month by the booster sessions. We conclude that 25 Hz rTMS can lead to cumulative and long-lasting effects on motor performance.

  1. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    SciTech Connect

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A

    2013-07-31

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  2. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  3. High-power pulsed thulium fiber oscillator modulated by stimulated Brillouin scattering

    SciTech Connect

    Tang, Yulong Xu, Jianqiu

    2014-01-06

    A pulsed ∼2-μm thulium-doped fiber laser passively modulated by distributed stimulated Brillouin scattering achieves 10.2 W average power and >100 kHz repetition rate with a very simple all-fiber configuration. The maximum pulse energy and peak power surpass 100 μJ and 6 kW, respectively. Another distinct property is that the pulse width is clamped around 17 ns at all power levels. All the average-power, pulse energy, and peak power show the highest values from passively modulated fiber lasers in all wavelength regions.

  4. Direct laser writing of amorphous silicon on Si-substrate induced by high repetition femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2010-10-01

    This research aimed to study the effects of laser parameters on direct silicon amorphorization. It was found that higher repetition rate of laser pulses gives smooth morphology with better repeatability. Increasing pulse duration and number of pulses were seen to increase the line width. However, increasing the number of pulses does not result in ablation of the target area. An analytical model is developed for the calculation of the average surface temperature after n-pulses; it was found that for a constant power and a constant repetition rate, an increase in the pulse number does not correspond to a significant increase in the surface temperature. Moreover, at the controlled laser power level, the surface temperature will not exceed the melting point of silicon. Therefore, thermal induced damage is not observed during the amorphization.

  5. Multiple-circuit pulse generator for high repetition rate rare gas halide lasers.

    PubMed

    Wang, C P

    1978-10-01

    A multiple-circuit high pulse repetition frequency (PRF) pulse generator for the pumping of rare gas halide lasers is reported. With this multiple-circuit design, high PRF can be achieved by the use of existing low PRF thyratron switches and capacitors. A two-circuit pulse generator was constructed, and its performance is described. By means of this pulse generator and a blowdown-type fast transverse-flow system, high PRF laser action in XeF was obtained, typically, 6 mJ/pulse at 1 kHz or 6 W average power. High PRF laser action in N(2) was also observed.

  6. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    PubMed Central

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  7. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  8. Study of periodic surface profile on improving the window capacity at single and repetitive pulses

    SciTech Connect

    Liu, Y. S.; Zhang, X. W.; Zhang, Z. Q.; Shao, H.; Wang, Y.; Liu, W. Y.; Ke, C. F.; Chen, C. H.; Liang, Y. Q.; Wu, X. L.; Guo, L. T.; Chang, C.

    2015-09-15

    The surface breakdown of dielectric windows seriously limits the transmission of high power microwaves (HPM), and has blocked the development of microwave technology in recent decades. In this paper, X-band HPM experiments of window breakdown at the vacuum/dielectric interface and the atmosphere/dielectric interface at single and repetitive pulses were conducted. The cross-linked polystyrene (CLPS) dielectric window with a periodic surface profile can significantly improve the breakdown threshold at single and repetitive pulses. Furthermore, the flat surface layer of CLPS was discovered to be carbonized to a depth of several millimeters and filled with electrical trees at repetitive pulses. Theoretical models were built to understand the underlying physics behind the phenomena in experiments. With the analysis of the electron resonance process breaking the molecular bond and the temperature rise caused by the traversing current in the dielectric material, a microscopic explanation for the carbonization of the dielectric window was introduced.

  9. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    SciTech Connect

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  10. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  11. Citalopram for continuation therapy following repetitive transcranial magnetic stimulation (rTMS) in vascular depression

    PubMed Central

    Tenev, Veselin; Robinson, Robert G.; Jorge, Ricardo E.

    2009-01-01

    Objectives We previously reported that repetitive transcranial magnetic stimulation (rTMS) produced a response rate of 39.4% among 62 patients with treatment resistant vascular depression. The current study was undertaken to assess the outcome of continuation therapy to prevent relapse among these patients during 9 weeks after completion of rTMS. Design Patients were randomly assigned to 18,000 pulses of rTMS given over 3 weeks or sham treatment using double blind methods. Following rTMS, all patients were given 20 mg per day of citalopram for 9 weeks and reevaluated at 3, 6 and 9 weeks. Setting Outpatient continuation treatment trial. Participants Patients with vascular depression (n=62), as determined by MRI hyperintensities and/or 3 or more clinical risk factors for vascular disease without other major medical illness, were recruited. They had onset of major depression after age 50 and failed at least one trial of antidepressants. Intervention Following rTMS or sham treatment, all treatment responders were given citalopram for 9 weeks. Results Among the 33 patients given rTMS, 13 responded (i.e. >50% decline in Hamilton Depression Scale score). Of these 13, all completed the 9 weeks of continuation treatment. There were 9 patients who continued to be responders and 4 who had a relapse of depression. Conclusion More effective methods are needed to treat elderly patients with treatment resistant vascular depression and to prevent relapse among treatment responders. PMID:19625785

  12. High-power pulse repetitive HF(DF) laser with a solid-state pump generator

    NASA Astrophysics Data System (ADS)

    Velikanov, S. D.; Domazhirov, A. P.; Zaretskiy, N. A.; Kazantsev, S. Yu; Kononov, I. G.; Kromin, A. A.; Podlesnykh, S. V.; Sivachev, A. A.; Firsov, K. N.; Kharitonov, S. V.; Tsykin, V. S.; Shchurov, V. V.; Yutkin, I. M.

    2015-11-01

    Operation of a repetitively pulsed electric-discharge HF(DF) laser with an all-solid-state pump generator based on FID switches is demonstrated. The energy stored in the pump generator capacitors was 880 J at an open-circuit voltage of 240 kV and a discharge pulse repetition rate of 25 Hz. The specific energy extractions were 3.8 and 3.4 J L-1 for the HF and DF lasers, respectively. The possibilities of improving the output laser characteristics are discussed.

  13. Field Intensity Detection of Individual Terahertz Pulses at 80 MHz Repetition Rate

    NASA Astrophysics Data System (ADS)

    Rettich, F.; Vieweg, N.; Cojocari, O.; Deninger, A.

    2015-07-01

    We present a new approach to detect the intensity of individual terahertz pulses at repetition rates as high as 80 MHz. Our setup comprises a femtosecond fiber laser, an InGaAs-based terahertz emitter, a zero-bias Schottky detector, and a high-speed data acquisition unit. The detected pulses consist of two lobes with half-widths of 1-2 ns, which is much shorter than the inverse repetition rate of the laser. The system lends itself for high-speed terahertz transmission measurements, e.g., to study wetting dynamics in real time.

  14. High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Emery, Silvio L.; Gotoff, Steven W.; D'Amico, Francis M.

    1992-07-01

    A multiple wavelength, pulsed CO2 lidar system operating at a pulse repetition frequency of 200 Hz and permitting the random selection of CO2 laser wavelengths for each laser pulse is presented. This system was employed to measure target reflectance and atmospheric transmission by using laser pulse bursts consisting of groups with as many as 16 different wavelengths at a repetition rate of 12 Hz. The wavelength tuning mechanism of the transversely excited atmospheric laser consists of a stationary grating and a flat mirror controlled by a galvanometer. Multiple wavelength, differential absorption lidar (DIAL) measurements reduce the effects of differential target reflectance and molecular absorption interference. Examples of multiwavelength DIAL detection for ammonia and water vapor show the dynamic interaction between these two trace gases. Target reflectance measurements for maple trees in winter and autumn are presented.

  15. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements.

    PubMed

    Ben-David, A; Emery, S L; Gotoff, S W; D'Amico, F M

    1992-07-20

    A multiple wavelength, pulsed CO(2) lidar system operating at a pulse repetition frequency of 200 Hz and permitting the random selection of CO(2) laser wavelengths for each laser pulse is presented. This system was employed to measure target reflectance and atmospheric transmission by using laser pulse bursts consisting of groups with as many as 16 different wavelengths at a repetition rate of 12 Hz. The wavelength tuning mechanism of the transversely excited atmospheric laser consists of a stationary grating and a flat mirror controlled by a galvanometer. Multiple wavelength, differential absorption lidar (DIAL) measurements reduce the effects of differential target reflectance and molecular absorption interference. Examples of multiwavelength DIAL detection for ammonia and water vapor show the dynamic interaction between these two trace gases. Target reflectance measurements for maple trees in winter and autumn are presented. PMID:20725406

  16. Unilateral and bilateral MRI-targeted repetitive transcranial magnetic stimulation for treatment-resistant depression: a randomized controlled study

    PubMed Central

    Blumberger, Daniel M.; Maller, Jerome J.; Thomson, Lauren; Mulsant, Benoit H.; Rajji, Tarek K.; Maher, Missy; Brown, Patrick E.; Downar, Jonathan; Vila-Rodriguez, Fidel; Fitzgerald, Paul B.; Daskalakis, Zafiris J.

    2016-01-01

    Background Several factors may mitigate the efficacy of repetitive transcranial magnetic stimulation (rTMS) over sham rTMS in patients with treatment-resistant depression (TRD). These factors include unilateral stimulation (i.e., treatment of only the left dorsolateral prefrontal cortex [DLPFC]), suboptimal methods of targeting the DLPFC and insufficient stimulation intensity (based on coil-to-cortex distance). Methods We recruited patients with TRD between the ages of 18 and 85 years from a university hospital, and participants were randomized to receive sequential bilateral rTMS (600 pulses at 1 Hz followed by 1500 pulses at 10 Hz), unilateral high-frequency left (HFL)-rTMS (2100 pulses at 10 Hz) or sham rTMS for 3 or 6 weeks depending on treatment response. Stimulation was targeted with MRI localization over the junction of the middle and anterior thirds of the middle frontal gyrus, using 120% of the coil-to-cortex adjusted motor threshold. Our primary outcome of interest was the remission rate. Results A total of 121 patients participated in this study. The remission rate was significantly higher in the bilateral group than the sham group. The remission rate in the HFL-rTMS group was intermediate and did not differ statistically from the rate in the 2 other groups. There were no significant differences in reduction of depression scores among the 3 groups. Limitations The number of pulses used per session in the unilateral group was somewhat lower in our trial than in more recent trials, and the sham condition did not involve active stimulation. Conclusion Our findings suggest that sequential bilateral rTMS is superior to sham rTMS; however, adjusting for coil-to-cortex distance did not yield enhanced efficacy rates. PMID:27269205

  17. Treatment of spasticity with repetitive magnetic stimulation; a double-blind placebo-controlled study.

    PubMed

    Nielsen, J F; Sinkjaer, T; Jakobsen, J

    1996-12-01

    The effect of repetitive magnetic stimulation on spasticity was evaluated in 38 patients with multiple sclerosis in a double-blind placebo-controlled study. One group was treated with repetitive magnetic stimulation (n = 21) and the other group with sham stimulation (n = 17). Both groups were treated twice daily for 7 consecutive days. Primary end-points of the study were changes in the patients self-score, in clinical spasticity score, and in the stretch reflex threshold. The self-score of ease of daily day activities improved by 22% (P = 0.007) after treatment and by 29% (P = 0.004) after sham stimulation. The clinical spasticity score improved -3.3 +/- 4.7 arbitrary unit (AU) in treated patients and 0.7 +/- 2.5 AU in sham stimulation (P = 0.003). The stretch reflex threshold increased 4.3 +/- 7.5 deg/s in treated patients and -3.8 +/- 9.7 deg/s in sham stimulation (P = 0.001). The data presented in this study supports the idea that repetitive magnetic stimulation has an antispastic effect in multiple sclerosis. Future studies should clarify the optimal treatment regimen.

  18. Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review.

    PubMed

    Pereira, Luisa Santos; Müller, Vanessa Teixeira; da Mota Gomes, Marleide; Rotenberg, Alexander; Fregni, Felipe

    2016-04-01

    Approximately one-third of patients with epilepsy remain with pharmacologically intractable seizures. An emerging therapeutic modality for seizure suppression is repetitive transcranial magnetic stimulation (rTMS). Despite being considered a safe technique, rTMS carries the risk of inducing seizures, among other milder adverse events, and thus, its safety in the population with epilepsy should be continuously assessed. We performed an updated systematic review on the safety and tolerability of rTMS in patients with epilepsy, similar to a previous report published in 2007 (Bae EH, Schrader LM, Machii K, Alonso-Alonso M, Riviello JJ, Pascual-Leone A, Rotenberg A. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav. 2007; 10 (4): 521-8), and estimated the risk of seizures and other adverse events during or shortly after rTMS application. We searched the literature for reports of rTMS being applied on patients with epilepsy, with no time or language restrictions, and obtained studies published from January 1990 to August 2015. A total of 46 publications were identified, of which 16 were new studies published after the previous safety review of 2007. We noted the total number of subjects with epilepsy undergoing rTMS, medication usage, incidence of adverse events, and rTMS protocol parameters: frequency, intensity, total number of stimuli, train duration, intertrain intervals, coil type, and stimulation site. Our main data analysis included separate calculations for crude per subject risk of seizure and other adverse events, as well as risk per 1000 stimuli. We also performed an exploratory, secondary analysis on the risk of seizure and other adverse events according to the type of coil used (figure-of-8 or circular), stimulation frequency (≤ 1 Hz or > 1 Hz), pulse intensity in terms of motor threshold (<100% or ≥ 100%), and number of stimuli per session (< 500 or ≥ 500

  19. A compact repetitive high-voltage nanosecond pulse generator for the application of gas discharge.

    PubMed

    Pang, Lei; Zhang, Qiaogen; Ren, Baozhong; He, Kun

    2011-04-01

    Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application.

  20. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  1. Method and means for generating a synchronizing pulse from a repetitive wave of varying frequency

    DOEpatents

    DeVolpi, Alexander; Pecina, Ronald J.; Travis, Dale J.

    1976-01-01

    An event that occurs repetitively at continuously changing frequencies can be used to generate a triggering pulse which is used to synchronize or control. The triggering pulse is generated at a predetermined percentage of the period of the repetitive waveform without regard to frequency. Counts are accumulated in two counters, the first counting during the "on" fraction of the period, and the second counting during the "off" fraction. The counts accumulated during each cycle are compared. On equality the trigger pulse is generated. Count input rates to each counter are determined by the ratio of the on-off fractions of the event waveform and the desired phase relationship. This invention is of particular utility in providing a trigger or synchronizing pulse during the open period of the shutter of a high-speed framing camera during its acceleration as well as its period of substantially constant speed.

  2. Phantom limb pain: low frequency repetitive transcranial magnetic stimulation in unaffected hemisphere.

    PubMed

    Di Rollo, Andrea; Pallanti, Stefano

    2011-01-01

    Phantom limb pain is very common after limb amputation and is often difficult to treat. The motor cortex stimulation is a valid treatment for deafferentation pain that does not respond to conventional pain treatment, with relief for 50% to 70% of patients. This treatment is invasive as it uses implanted epidural electrodes. Cortical stimulation can be performed noninvasively by repetitive transcranial magnetic stimulation (rTMS). The stimulation of the hemisphere that isn't involved in phantom limb (unaffected hemisphere), remains unexplored. We report a case of phantom limb pain treated with 1 Hz rTMS stimulation over motor cortex in unaffected hemisphere. This stimulation produces a relevant clinical improvement of phantom limb pain; however, further studies are necessary to determine the efficacy of the method and the stimulation parameters.

  3. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    ERIC Educational Resources Information Center

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  4. Repetitive magnetic stimulation affects the microenvironment of nerve regeneration and evoked potentials after spinal cord injury

    PubMed Central

    Jiang, Jin-lan; Guo, Xu-dong; Zhang, Shu-quan; Wang, Xin-gang; Wu, Shi-feng

    2016-01-01

    Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord injury using the modified Allen's method. After 4 hours of injury, rat models received repetitive magnetic stimulation, with a stimulus intensity of 35% maximum output intensity, 5-Hz frequency, 5 seconds for each sequence, and an interval of 2 minutes. This was repeated for a total of 10 sequences, once a day, 5 days in a week, for 2 consecutive weeks. After repetitive magnetic stimulation, the number of apoptotic cells decreased, matrix metalloproteinase 9/2 gene and protein expression decreased, nestin expression increased, somatosensory and motor-evoked potentials recovered, and motor function recovered in the injured spinal cord. These findings confirm that repetitive magnetic stimulation of the spinal cord improved the microenvironment of neural regeneration, reduced neuronal apoptosis, and induced neuroprotective and repair effects on the injured spinal cord. PMID:27335567

  5. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-10-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement.

  6. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  7. Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses.

    PubMed

    Baldacchini, Tommaso; Snider, Scott; Zadoyan, Ruben

    2012-12-31

    We describe fabrication of microstructures by two-photon polymerization using bursts of femtosecond laser pulses. With the aid of an acousto-optic modulator driven by a function generator, two-photon polymerization is performed at variable burst repetition rates. We investigate how the time between the bursts of laser pulses influences the ultimate dimensions of lines written in a photosensitive resin. We observe that when using the same laser fluence, polymer lines fabricated at different burst repetition rates have different dimensions. In particular, the widths of two-photon polymerized lines become smaller with decreasing burst repetition rates. Based on the thermal properties of the resin and experimental writing conditions, we attribute this effect to localized heat accumulation. PMID:23388815

  8. Effect of the pulse repetition rate on fiber-assisted tissue ablation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook

    2016-07-01

    The effect of the pulse repetition rate on ablation performance was evaluated ex vivo at various fiber sweeping speeds for an effective 532-nm laser prostatectomy. Three pulse repetition rates (7.5, 15, and 30 kHz) at 100 W were delivered to bovine liver tissue at three sweeping speeds (2, 4, and 6 mm/s) to achieve bulky tissue removal. Ablation performance was quantitatively compared in terms of the ablation volume and the coagulation thickness. The lowest pulse repetition rate of 7.5 kHz attained the highest ablation volume (101.5 ± 12.0 mm3) and the thinnest coagulation (0.7 ± 0.1 mm) along with superficial carbonization. The highest pulse repetition rate of 30 kHz was associated with the least tissue removal (65.8 ± 5.0 mm3) and the deepest thermal denaturation (1.1 ± 0.2 mm). Quantitative evaluations of laser parameters can be instrumental in facilitating ablation efficiency and maintaining hemostatic coagulation during treatment of large-sized benign prostate hyperplasia.

  9. Variable pulse repetition frequency output from an optically injected solid state laser.

    PubMed

    Kane, D M; Toomey, J P

    2011-02-28

    An optically injected solid state laser (OISSL) system is known to generate complex nonlinear dynamics within the parameter space of varying the injection strength of the master laser and the frequency detuning between the master and slave lasers. Here we show that within these complex nonlinear dynamics, a system which can be operated as a source of laser pulses with a pulse repetition frequency (prf) that can be continuously varied by a single control, is embedded. Generation of pulse repetition frequencies ranging from 200 kHz up to 4 MHz is shown to be achievable for an optically injected Nd:YVO4 solid state laser system from analysis of prior experimental and simulation results. Generalizing this to other optically injected solid state laser systems, the upper bound on the repetition frequency is of order the relaxation oscillation frequency for the lasers. The system is discussed in the context of prf versatile laser systems more generally. Proposals are made for the next generation of OISSLs that will increase understanding of the variable pulse repetition frequency operation, and determine its practical limitations. Such variable prf laser systems; both low powered, and, higher powered systems achieved using one or more optical power amplifier stages; have many potential applications from interrogating resonance behaviors in microscale structures, through sensing and diagnostics, to laser processing.

  10. Nanosecond pulse pumped, narrow linewidth all-fiber Raman amplifier with stimulated Brillouin scattering suppression

    NASA Astrophysics Data System (ADS)

    Su, Rongtao; Zhou, Pu; Wang, Xiaolin; Lü, Haibin; Xu, Xiaojun

    2014-01-01

    We report on a narrow linewidth nanosecond all-fiber Raman amplifier core pumped by a pulsed laser at approximately 1030 nm. The Raman amplifier was based on a standard single-mode fiber with a length of ∼1 km, and stimulated Brillouin scattering (SBS) was suppressed by employing pulses with a short pulse width. 1083 nm pulses with an average power of 32.6 mW, a repetition rate of 2 MHz, and pulse widths of ∼7.2 ns were achieved. A maximum slope efficiency of 46.1% and a gain of 31 dB were obtained. The output Raman power can be scaled further by using fiber with shorter lengths and pump pulses with a higher power.

  11. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  12. Thermally induced phase mismatching in a repetitively Gaussian pulsed pumping KTP crystal: a spatiotemporal treatment.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Askari, Hadi; Khazrk, Iman

    2015-05-20

    Thermally induced phase mismatching (TIPM) has been proven to be an influential issue in nonlinear phenomena. It occurs when refractive indices of crystal are changed due to temperature rise. In this work, the authors report on a modeling of spatiotemporal dependence of TIPM in a repetitively pulsed pumping KTP crystal. Gaussian profiles for both spatial and temporal dependences of pump beam were used to generate second-harmonic waves in a type II configuration. This modeling is of importance in predicting the nonlinear conversion efficiency of crystals when heat is loaded in the system. To this end, at first, an approach to solve the heat equation in a repetitively pulsed pumping system with consideration of the temperature dependence of thermal conductivity and realistic cooling mechanisms such as conduction, convection, and radiation, is presented. The TIPM is then calculated through the use of experimental thermal dispersion relations of KTP crystal. The results show how accumulative behaviors of temperature and TIPM (with its reverse sign) happen when the number of pulses is increased. Fluctuations accompanying temperature and TIPM were observed which were attributed to the off-time between successive pulses. Moreover, in this work, a numerical procedure for solving a repetitively pulsed pumped crystal is introduced. This procedure enables us to solve the problem with home-used computing machines. PMID:26192515

  13. Thermally induced phase mismatching in a repetitively Gaussian pulsed pumping KTP crystal: a spatiotemporal treatment.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Askari, Hadi; Khazrk, Iman

    2015-05-20

    Thermally induced phase mismatching (TIPM) has been proven to be an influential issue in nonlinear phenomena. It occurs when refractive indices of crystal are changed due to temperature rise. In this work, the authors report on a modeling of spatiotemporal dependence of TIPM in a repetitively pulsed pumping KTP crystal. Gaussian profiles for both spatial and temporal dependences of pump beam were used to generate second-harmonic waves in a type II configuration. This modeling is of importance in predicting the nonlinear conversion efficiency of crystals when heat is loaded in the system. To this end, at first, an approach to solve the heat equation in a repetitively pulsed pumping system with consideration of the temperature dependence of thermal conductivity and realistic cooling mechanisms such as conduction, convection, and radiation, is presented. The TIPM is then calculated through the use of experimental thermal dispersion relations of KTP crystal. The results show how accumulative behaviors of temperature and TIPM (with its reverse sign) happen when the number of pulses is increased. Fluctuations accompanying temperature and TIPM were observed which were attributed to the off-time between successive pulses. Moreover, in this work, a numerical procedure for solving a repetitively pulsed pumped crystal is introduced. This procedure enables us to solve the problem with home-used computing machines.

  14. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  15. Tunable repetitively pulsed Cr{sup 2+} : ZnSe laser

    SciTech Connect

    Egorov, A S; Eremeikin, O N; Pavlenko, K Yu; Savikin, A P; Sharkov, V V

    2012-12-31

    Methods of wavelength tuning of a polycrystalline Cr{sup 2+} : ZnSe laser pumped by a repetitively pulsed Tm : YLF laser (pulse duration {approx}100 ns, pulse repetition rate 3 KHz) are studied. With the use of a prism selector, the laser wavelength was tuned within the range of 2070 - 2400 nm at a linewidth of 11 nm for a SiO{sub 2} prism and 30 nm for a CaF{sub 2} prism. The use of a Lyot filter made it possible to tune the Cr{sup 2+} : ZnSe laser wavelength (with replacement of the cavity mirrors) within the spectral ranges of 2130 - 2400 and 2530 - 2750 nm at a linewidth of 4 nm. (lasers)

  16. Plasma-Assisted Flame Ignition and Stabilization using Nanosecond Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Laux, Christophe

    2007-10-01

    Ever more stringent environmental regulations are providing impetus for reducing pollutant emissions, in particular nitric oxides and soot, in internal combustion and aircraft engines. Lean or diluted combustible mixtures are of particular interest because they burn at lower flame temperatures than stoichiometric mixtures and thus produce lesser amounts of thermal nitric oxides. Over the past decade, high voltage nanosecond pulsed discharges have been demonstrated as energy efficient way to ignite such mixtures. However, the practical application of these discharges for ignition purposes is limited by the very high electric fields required, especially in high pressure combustion chambers. Moreover, stabilization requires a steady-state addition of energy that cannot be achieved with single or low repetition frequency pulses. In the present work, we investigate the applicability and effectiveness of high voltage nanosecond discharges with high pulse repetition frequencies, typically up to 100 kHz. The high repetition frequencies are chosen to exceed the recombination rate of chemically active species. In this way, the concentration of active species can build up between consecutive pulses, thus yielding significantly higher concentrations than with low frequency pulses. These discharges are investigated for two applications, the ignition of diluted air/propane mixtures at pressures up to several bars in a constant volume chamber, and the stabilization of atmospheric pressure lean premixed air/propane flames. Time-resolved electric and spectroscopic measurements are presented to analyze the discharge regimes, the energy deposition, the gas temperature evolution, the electron number density, and the production of excited species. The results show that nanosecond repetitive pulses produce ultrafast gas heating and atomic oxygen generation, both on nanosecond time scales, via excitation of molecular nitrogen followed by dissociative quenching of molecular oxygen. These

  17. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented. PMID:24182161

  18. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  19. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ˜30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  20. The influence of repetitive painful stimulation on peripheral and trigeminal pain thresholds.

    PubMed

    Dirkwinkel, Monika; Gralow, Ingrid; Colak-Ekici, Reyhan; Wolowski, Anne; Marziniak, Martin; Evers, Stefan

    2008-10-15

    We were interested in how continuous painful stimulation which is performed as inurement exercises in some Asian martial arts influences sensory and pain perception. Therefore, we examined 15 Kung Fu disciples before and after a 14 day period with repetitive inurement exercises and measured sensory and pain thresholds and intensities in both the trigeminal and the peripheral (peroneal nerve) region. The results of the probands were compared to those of 15 healthy control subjects who were performing sports without painful stimulation during this period. The probands showed a significantly decreased trigeminal pain intensity after repetitive electrical stimulation whereas the control subjects did not show any changes of sensory or pain perception during the study period. This suggests a change of central sensitisation and inhibitory control mechanisms in the nociceptive spinal or cerebral pathways by inurement exercises. In addition, pain thresholds showed an (not significant) increase after the study period whereas the control subjects showed a significant decrease of pain thresholds. In summary, our pilot study suggests that inurement exercises, i.e. repetitive painful stimulation, over a period of 14 days might induce changes of pain perception resulting in trigeminal pain habituation and higher pain thresholds.

  1. Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kozlov, A. Yu.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2016-07-01

    A slab first-overtone CO laser of improved design excited by repetitively pulsed RF discharge was researched and developed. Its quasi-sealed-off operation appeared to be possible only by using active gas mixture composition with extremely high content of oxygen — up to 50 % with respect to CO concentration. Average output power of the first-overtone CO laser came up to ~2 W with the efficiency of ~2 %. The laser spectrum obtained by using three sets of output couplers consisted of more than 100 vibrational-rotational spectral lines in 28 vibrational first-overtone bands of CO molecule within 2.55÷3.90 μm wavelength range. The number of laser radiation pulses which could be produced by the laser in sealed-off mode of operation (without gas mixture renovation) reached ~5×105 at the averaged output power near its maximum, and ~106 at lower (near its half-maximum) averaged output power. Special features of laser radiation temporal behavior were discussed. Under repetitively pulse pump with repetition rate from 300 up to 7500 Hz, a temporal profile of the CO laser radiation changed from the train of time-separated laser pulses with high peak power to quasi-CW mode of operation.

  2. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  3. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  4. Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro.

    PubMed

    Liu, Hua; Han, Xiao-hua; Chen, Hong; Zheng, Cai-xia; Yang, Yi; Huang, Xiao-lin

    2015-10-01

    Neural stem cells (NSCs) proliferation can be influenced by repetitive transcranial magnetic stimulation (rTMS) in vivo via microRNA-106b-25 cluster, but the underlying mechanisms are poorly understood. This study investigated the involvement of microRNA-106b-25 cluster in the proliferation of NSCs after repetitive magnetic stimulation (rMS) in vitro. NSCs were stimulated by rMS (200/400/600/800/1000 pulses per day, with 10 Hz frequency and 50% maximum machine output) over a 3-day period. NSCs proliferation was detected by using ki-67 and EdU staining. Ki-67, p21, p57, cyclinD1, cyclinE, cyclinA, cdk2, cdk4 proteins and miR-106b, miR-93, miR-25 mRNAs were detected by Western blotting and qRT-PCR, respectively. The results showed that rMS could promote NSCs proliferation in a dose-dependent manner. The proportions of ki-67+ and Edu+ cells in 1000 pulses group were 20.65% and 4.00%, respectively, significantly higher than those in control group (9.25%, 2.05%). The expression levels of miR-106b and miR-93 were significantly upregulated in 600-1000 pulses groups compared with control group (P<0.05 or 0.01 for all). The expression levels of p21 protein were decreased significantly in 800/1000 pulses groups, and those of cyclinD1, cyclinA, cyclinE, cdk2 and cdk4 were obviously increased after rMS as compared with control group (P<0.05 or 0.01 for all). In conclusion, our findings suggested that rMS enhances the NSCs proliferation in vitro in a dose-dependent manner and miR-106b/p21/cdks/cyclins pathway was involved in the process.

  5. A study of high repetition rate pulse generation and all-optical add/drop multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin

    Ultra high-speed optical time-division-multiplexed (OTDM) transmission technologies are essential for the construction of ultra high-speed all-optical networks needed in the information era. In this Ph. D thesis dissertation, essential mechanisms associated with ultra high speed OTDM transmission systems, such as, high speed ultra short pulse generation, all optical demultiplexing and all optical add/drop multiplexing, have been studied. Both experimental demonstrations and numerical simulations have been performed. In order to realize high-speed optical TDM systems, high repetition rate, ultra short pulses are needed. A rational harmonic mode-locked ring fiber laser has been used to produce ultrashort pulses, the pulse jitter will be eliminated using a Phase-Locked-Loop (PLL), and the self-pulsation has been suppressed using a semiconductor optical amplifier (SOA). Sub pico-second pulses are very important for all optical sampling in the ultrahigh-speed OTDM transmission system. In this thesis, a two stage compression scheme utilizing the nonlinearity and dispersion of the optical fibers has been constructed and used to compress the gain switched DFB laser pulses. Also a nonlinear optical loop mirror has been constructed to suppress the wings associated with nonlinear compression. Pedestal free, transform-limited pulses with pulse widths in range of 0.2 to 0.4 ps have been generated. LiNbO3 modulators play a very important role in fiber optical communication systems. In this thesis, LiNbO3 modulators have been used to perform high repetition rate pulse generation, all optical demultiplexing and all optical add/drop for the TDM transmission system.

  6. Numerical Analysis of Narrow Band Ultrasonic Wave Generation with High Repetition Pulse Laser and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Yamaguchi, K.; Biwa, S.

    2014-06-01

    Although the easiest way to enhance ultrasonic energy generated with pulse laser is to increase laser output, excessive laser output causes damage of the surface. This study introduced an alternative way to generate burst signals without any damages at the surface using a newly developed high repetition pulse laser controlled by galvano mirrors. The calculation results using two-dimensional elastodynamic finite integration technique coupled with thermoelastic effect proved that burst wave of 1 MHz and its higher harmonics were generated while supressing excessive temperature rise using this technique. Moreover, significantly large displacements at the frequency range sufficiently lower than laser repetition rate were observed of the same order of displacements generated with one single shot with the same input energy.

  7. The role of molecular vibration in nanosecond repetitively pulsed discharges and in DBDs in hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Colonna, G.; D'Ammando, G.; Pietanza, L. D.

    2016-10-01

    A self-consistent state-to-state model of pure hydrogen has been used to investigate the development of nanosecond repetitively pulsed discharges and dielectric barrier discharges, the latter coupling the kinetic model with an equation for the circuit, thus mimicking an insulated electrode with an external capacitance. Vibrationally excited states play a fundamental role, affecting the degrees of dissociation and ionization, as well as internal and free-electron distributions.

  8. Experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed discharge in air

    NASA Astrophysics Data System (ADS)

    Xu, Da A.; Lacoste, Deanna A.; Rusterholtz, Diane L.; Elias, Paul-Quentin; Stancu, Gabi D.; Laux, Christophe O.

    2011-09-01

    We report on an experimental study of the hydrodynamic expansion following a nanosecond repetitively pulsed (NRP) discharge in atmospheric pressure air preheated up to 1000 K. Single-shot schlieren images starting from 50 ns after the discharge were recorded to show the shock-wave propagation and the expansion of the heated gas channel. The temporal evolution of the gas temperature behind the shock-front is estimated from the measured shock-wave velocity by using the Rankine-Hugoniot relationships. The results show that a gas temperature increase of up to 1100 K can be observed 50 ns after the nanosecond pulse.

  9. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  10. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  11. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  12. Extraction of pulse repetition intervals from sperm whale click trains for ocean acoustic data mining.

    PubMed

    Zaugg, Serge; van der Schaar, Mike; Houégnigan, Ludwig; André, Michel

    2013-02-01

    The analysis of acoustic data from the ocean is a valuable tool to study free ranging cetaceans and anthropogenic noise. Due to the typically large volume of acquired data, there is a demand for automated analysis techniques. Many cetaceans produce acoustic pulses (echolocation clicks) with a pulse repetition interval (PRI) remaining nearly constant over several pulses. Analyzing these pulse trains is challenging because they are often interleaved. This article presents an algorithm that estimates a pulse's PRI with respect to neighboring pulses. It includes a deinterleaving step that operates via a spectral dissimilarity metric. The sperm whale (SW) produces trains with PRIs between 0.5 and 2 s. As a validation, the algorithm was used for the PRI-based identification of SW click trains with data from the NEMO-ONDE observatory that contained other pulsed sounds, mainly from ship propellers. Separation of files containing SW clicks with a medium and high signal to noise ratio from files containing other pulsed sounds gave an area under the receiver operating characteristic curve value of 0.96. This study demonstrates that PRI can be used for the automated identification of SW clicks and that deinterleaving via spectral dissimilarity contributes to algorithm performance.

  13. Effect of laser pulse repetition frequency on the optical breakdown threshold of quartz glass

    SciTech Connect

    Kononenko, T V; Konov, V I; Schöneseiffen, S; Dausinger, F

    2013-08-31

    The thresholds of optical breakdown in the volume of quartz glass were measured in relation to the number of pulses under irradiation by ultrashort laser pulses with different pulse repetition frequencies (1 – 400 kHz). Increasing this frequency from 10 to 400 kHz was found to substantially lower the breakdown threshold for 500-fs long pulses (at a wavelength of 1030 nm) and to lower to a smaller degree for 5-ps long pulses (515 nm). A strong frequency dependence of the breakdown threshold is observed under the same conditions as a manifold decrease of the breakdown threshold with increase in the number of pulses in a pulse train. The dependence of the optical breakdown on the number of pulses is attributable to the accumulation of point defects under multiple subthreshold irradiation, which affects the mechanism of collisional ionisation. In this case, the frequency dependence of the breakdown threshold of quartz glass is determined by the engagement of shortlived defects in the ionisation mechanism. (interaction of laser radiation with matter)

  14. The Effect of 10 Hz Repetitive Transcranial Magnetic Stimulation of Posterior Parietal Cortex on Visual Attention

    PubMed Central

    Dombrowe, Isabel; Juravle, Georgiana; Alavash, Mohsen; Gießing, Carsten; Hilgetag, Claus C.

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the posterior parietal cortex (PPC) at frequencies lower than 5 Hz transiently inhibits the stimulated area. In healthy participants, such a protocol can induce a transient attentional bias to the visual hemifield ipsilateral to the stimulated hemisphere. This bias might be due to a relatively less active stimulated hemisphere and a relatively more active unstimulated hemisphere. In a previous study, Jin and Hilgetag (2008) tried to switch the attention bias from the hemifield ipsilateral to the hemifield contralateral to the stimulated hemisphere by applying high frequency rTMS. High frequency rTMS has been shown to excite, rather than inhibit, the stimulated brain area. However, the bias to the ipsilateral hemifield was still present. The participants’ performance decreased when stimuli were presented in the hemifield contralateral to the stimulation site. In the present study we tested if this unexpected result was related to the fact that participants were passively resting during stimulation rather than performing a task. Using a fully crossed factorial design, we compared the effects of high frequency rTMS applied during a visual detection task and high frequency rTMS during passive rest on the subsequent offline performance in the same detection task. Our results were mixed. After sham stimulation, performance was better after rest than after task. After active 10 Hz rTMS, participants’ performance was overall better after task than after rest. However, this effect did not reach statistical significance. The comparison of performance after rTMS with task and performance after sham stimulation with task showed that 10 Hz stimulation significantly improved performance in the whole visual field. Thus, although we found a trend to better performance after rTMS with task than after rTMS during rest, we could not reject the hypothesis that high frequency rTMS with task and high frequency rTMS during rest

  15. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  16. Repetitive Transcranial Magnetic Stimulation in Cervical Dystonia: Effect of Site and Repetition in a Randomized Pilot Trial

    PubMed Central

    Pirio Richardson, Sarah; Tinaz, Sule; Chen, Robert

    2015-01-01

    Dystonia is characterized by abnormal posturing due to sustained muscle contraction, which leads to pain and significant disability. New therapeutic targets are needed in this disorder. The objective of this randomized, sham-controlled, blinded exploratory study is to identify a specific motor system target for non-invasive neuromodulation and to evaluate this target in terms of safety and tolerability in the cervical dystonia (CD) population. Eight CD subjects were given 15-minute sessions of low-frequency (0.2 Hz) repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (MC), dorsal premotor cortex (dPM), supplementary motor area (SMA), anterior cingulate cortex (ACC) and a sham condition with each session separated by at least two days. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) score was rated in a blinded fashion immediately pre- and post-intervention. Secondary outcomes included physiology and tolerability ratings. The mean change in TWSTRS severity score by site was 0.25 ± 1.7 (ACC), -2.9 ± 3.4 (dPM), -3.0 ± 4.8 (MC), -0.5 ± 1.1 (SHAM), and -1.5 ± 3.2 (SMA) with negative numbers indicating improvement in symptom control. TWSTRS scores decreased from Session 1 (15.1 ± 5.1) to Session 5 (11.0 ± 7.6). The treatment was tolerable and safe. Physiology data were acquired on 6 of 8 subjects and showed no change over time. These results suggest rTMS can modulate CD symptoms. Both dPM and MC are areas to be targeted in further rTMS studies. The improvement in TWSTRS scores over time with multiple rTMS sessions deserves further evaluation. Trial Registration ClinicalTrials.gov NCT01859247 PMID:25923718

  17. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  18. Characteristics of a velvet cathode under high repetition rate pulse operation

    SciTech Connect

    Xun Tao; Zhang Jiande; Yang Hanwu; Zhang Zicheng; Fan Yuwei

    2009-10-15

    As commonly used material for cold cathodes, velvet works well in single shot and low repetition rate (rep-rate) high-power microwave (HPM) sources. In order to determine the feasibility of velvet cathodes under high rep-rate operation, a series of experiments are carried out on a high-power diode, driven by a {approx}300 kV, {approx}6 ns, {approx}100 {omega}, and 1-300 Hz rep-rate pulser, Torch 02. Characteristics of vacuum compatibility and cathode lifetime under different pulse rep-rate are focused on in this paper. Results of time-resolved pressure history, diode performance, shot-to-shot reproducibility, and velvet microstructure changes are presented. As the rep-rate increases, the equilibrium pressure grows hyperlinearly and the velvet lifetime decreases sharply. At 300 Hz, the pressure in the given diode exceeded 1 Pa, and the utility shots decreased to 2000 pulses for nonstop mode. While, until the velvet begins to degrade, the pulse-to-pulse instability of diode voltage and current is quite small, even under high rep-rate conditions. Possible reasons for the operation limits are discussed, and methods to improve the performance of a rep-rate velvet cathode are also suggested. These results may be of interest to the repetitive HPM systems with cold cathodes.

  19. Ultrafast XUV Pulses at High Repetition Rate for Time Resolved Photoelectron Spectroscopy of Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Zhao, Peng; Li, Xinlong; Muraca, Amanda R.; Kershis, Matthew D.; White, Michael G.; Allison, Thomas K.

    2016-05-01

    Ultrafast photoelectron studies of surface dynamics are often limited by low repetition rates. At Stony Brook we have built a cavity-enhanced high-harmonic generation XUV source that delivers ultrafast pulses to a surface science apparatus for photoelectron spectroscopy. We begin with a Ytterbium fiber laser at a repetition rate of 78 MHz and up to 90 W of average power. After compression the pulses have μJ's of energy with < 180 fs pulse width. We then use an enhancement cavity with a finesse of a few hundred to build up to the peak intensity required for high harmonic generation. The enhancement cavity is a six mirror double folded bow-tie geometry with a focus of 15 μm at a Krypton gas jet, followed by a Sapphire crystal at Brewster's angle for the fundamental to allow outcoupling of the harmonics. A single harmonic is selected using a time-preserving monochromator to maintain the short pulses, and is sent to an ultra high vacuum chamber with sample preparation and diagnostic tools as well as an electron energy spectrometer. This allows us to study the electronic dynamics of semiconductor surfaces and their interfaces with adsorbed molecules which enable various charge transfer effects. Supported by AFOSR.

  20. Repetitive Transcranial Magnetic Stimulation to Supplementary Motor Area in Refractory Obsessive-Compulsive Disorder Treatment: a Sham-Controlled Trial

    PubMed Central

    Harika-Germaneau, Ghina; Rachid, Fady; Gaudeau-Bosma, Christian; Tanguy, Marie-Laure; BenAdhira, Rene; Bouaziz, Noomane; Popa, Traian; Wassouf, Issa; Saba, Ghassen; Januel, Dominique; Jaafari, Nematollah

    2016-01-01

    Background: Repetitive transcranial magnetic stimulation has been explored in patients with obsessive-compulsive disorder, but with negative or conflicting results. This randomized double-blind study was designed to assess the efficacy of 1-Hz repetitive transcranial magnetic stimulation over the presupplementary area. Methods: Forty medication-resistant patients were assigned to 4 weeks of either active or sham repetitive transcranial magnetic stimulation targeting the presupplementary area with the help of a neuronavigation system. Results: According to the Yale-Brown obsessive-compulsive scale, the baseline-week 4 evolution showed no significant differences between groups. Responder rates at week 4 were not different between groups (repetitive transcranial magnetic stimulation 10.5% vs sham 20%; P=.63). Conclusion: Low-frequency repetitive transcranial magnetic stimulation applied to the presupplementary area seems ineffective for the treatment of obsessive-compulsive disorder patients, at least in severe and drug-refractory cases such as those included in this study. Further research is required to determine profiles of responder patients and appropriate repetitive transcranial magnetic stimulation parameters for obsessive-compulsive disorder. PMID:27207923

  1. Accumulated destructive effect of nanosecond repetitive voltage pulses on the insulated coatings of Fe-based nanocrystalline ribbon

    SciTech Connect

    Zhang, Yu; Liu, Jinliang

    2013-03-11

    Fe-based nanocrystalline ribbon is widely employed in pulsed power devices and accelerators. A temperature accumulation model is put forward to explain the accumulated destructive effect of discharge plasma bombardment on the TiO{sub 2} coatings of nanocrystalline ribbon under 50 Hz/100 ns voltage pulses. Experimental results revealed that the plasma channel expansion caused by air breakdown in the coating crack heated the coating repetitively, and the coating temperature was increased and accumulated around the crack. The fact that repetitive voltage pulses were more destructive than a single pulse with the same amplitude was caused by the intensified coating ablation under the temperature accumulation effect.

  2. Role of the optical pulse repetition rate in the efficiency of terahertz emitters

    NASA Astrophysics Data System (ADS)

    Reklaitis, Antanas

    2016-07-01

    Excitation of n-GaAs and p-InAs terahertz emitters by the series of optical pulses is studied by ensemble Monte Carlo simulations. It is found that the spatial separation of photoexcited electrons and holes dramatically reduces the recombination intensity in n-GaAs emitter, the operation of which is based on the surface field effect. The spatial separation of carriers does not affect the recombination intensity in p-InAs emitter, the operation of which is based on the photo-Dember effect. Therefore, the recovery time of equilibrium state after optical pulse in n-GaAs emitter significantly exceeds the corresponding recovery time in p-InAs emitter. This fact leads to a substantial reduction of photocurrent amplitude in n-GaAs emitter excited by the optical pulse series at high repetition rate.

  3. Synchronized and timing-stabilized pulse generation from a gain-switched laser diode for stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Tokunaga, Kyoya; Fang, Yi-Cheng; Yokoyama, Hiroyuki; Ozeki, Yasuyuki

    2016-03-01

    We present a picosecond laser source based on a gain-switched laser diode (GS-LD) that can be applied to stimulated Raman scattering (SRS) microscopy. A 1.06-μm GS-LD was used to generate 14-ps pulses at a repetition rate of 38 MHz. The GS-LD was driven by 200-ps electrical pulses, which were triggered through a toggle flip-flop (T-FF). As a result, the GS-LD pulses were subharmonically synchronized to Ti:sapphire laser (TSL) pulses at a repetition rate of 76 MHz. We investigated the timing jitter of GS-LD pulses and found it to be less than 2.5 ps. We also show that the trigger delay can be less sensitive to the optical power of TSL pulses by controlling the threshold voltage of the T-FF. As a result, GS-LD pulses sufficiently overlapped with TSL pulses even when we scanned the wavelength of the TSL pulses. We demonstrate the SRS imaging of HeLa cells with GS-LD pulses and TSL pulses, proving that GS-LD is readily applicable to SRS microscopy as a compact and stable pulse source.

  4. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  5. Repetitive transcranial magnetic stimulation may induce language switching in bilingual patients.

    PubMed

    Holtzheimer, Paul; Fawaz, Walid; Wilson, Christopher; Avery, David

    2005-09-01

    The dorsolateral prefrontal cortex (DLPFC) may participate in the process of language switching in multilingual individuals. We present two cases of bilingual patients who experienced unexpected language switching after receiving high-frequency, repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC as a treatment for major depression. These preliminary findings support the role of the DLPFC in language switching in polyglots and highlight the potential value of rTMS for non-invasively investigating language function in humans. Further investigation is warranted. PMID:16098377

  6. Repetitive transcranial magnetic stimulation may induce language switching in bilingual patients.

    PubMed

    Holtzheimer, Paul; Fawaz, Walid; Wilson, Christopher; Avery, David

    2005-09-01

    The dorsolateral prefrontal cortex (DLPFC) may participate in the process of language switching in multilingual individuals. We present two cases of bilingual patients who experienced unexpected language switching after receiving high-frequency, repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC as a treatment for major depression. These preliminary findings support the role of the DLPFC in language switching in polyglots and highlight the potential value of rTMS for non-invasively investigating language function in humans. Further investigation is warranted.

  7. Effect of master oscillator stability over pulse repetition frequency on hybrid semiconductor mode-locked laser

    NASA Astrophysics Data System (ADS)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.

    2015-04-01

    Semiconductor mode-locked lasers are a very attractive laser pulse source for high accuracy length metrology. However, for some applications, this kind of device does not have the required frequency stability. Operating the laser in hybrid mode will increase the laser pulse repetition frequency (PRF) stability. In this study it is showed that the laser PRF is not only locked to the master oscillator but also maintains the same level of stability of the master oscillator. The device used in this work is a 10 mm long mode-locked asymmetrical cladding single section InAs/InP quantum dash diode laser emitting at 1580 nm with a pulse repetition frequency of ≈4.37 GHz. The laser nominal stability in passive mode (no external oscillator) shows direct dependence with the gain current and the stability range goes from 10-4 to 10-7. Several oscillators with different stabilities were used for the hybrid-mode operation (with external oscillator) and the resulting mode-locked laser stability compared. For low cost oscillators with low stability, the laser PRF stability achieves a value of 10-7 and for higher stable oscillation source (such as oven controlled quartz oscillators (OXCO)) the stability can reach values up to 10-12 (τ =1 s).

  8. Electron density measurements in a pulse-repetitive microwave discharge in air

    SciTech Connect

    Nikolic, M.; Popovic, S.; Vuskovic, L.; Herring, G. C.; Exton, R. J.

    2011-12-01

    We have developed a technique for absolute measurements of electron density in pulse-repetitive microwave discharges in air. The technique is based on the time-resolved absolute intensity of a nitrogen spectral band belonging to the Second Positive System, the kinetic model and the detailed particle balance of the N{sub 2}C{sup 3}{Pi}{sub u} ({nu} = 0) state. This new approach bridges the gap between two existing electron density measurement methods (Langmuir probe and Stark broadening). The electron density is obtained from the time-dependent rate equation for the population of N{sub 2}C{sup 3}{Pi}{sub u} ({nu} = 0) using recorded waveforms of the absolute C{sup 3}{Pi}{sub u}{yields}B{sup 3}{Pi}{sub g} (0-0) band intensity, the forward and reflected microwave power density. Measured electron density waveforms using numerical and approximated analytical methods are presented for the case of pulse repetitive planar surface microwave discharge at the aperture of a horn antenna covered with alumina ceramic plate. The discharge was generated in air at 11.8 Torr with a X-band microwave generator using 3.5 {mu}s microwave pulses at peak power of 210 kW. In this case, we were able to time resolve the electron density within a single 3.5 {mu}s pulse. We obtained (9.0 {+-} 0.6) x 10{sup 13} cm{sup -3} for the peak and (5.0 {+-} 0.6) x 10{sup 13} cm{sup -3} for the pulse-average electron density. The technique presents a convenient, non-intrusive diagnostic method for local, time-defined measurements of electron density in short duration discharges near atmospheric pressures.

  9. Daily left prefrontal repetitive transcranial magnetic stimulation for medication-resistant burning mouth syndrome.

    PubMed

    Umezaki, Y; Badran, B W; Gonzales, T S; George, M S

    2015-08-01

    Burning mouth syndrome (BMS) is a persistent and chronic burning sensation in the mouth in the absence of any abnormal organic findings. The pathophysiology of BMS is unclear and its treatment is not fully established. Although antidepressant medication is commonly used for treatment, there are some medication-resistant patients, and a new treatment for medication-resistant BMS is needed. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technology approved by the US Food and Drug Administration (FDA) for the treatment of depression. Recent studies have found beneficial effects of TMS for the treatment of pain. A case of BMS treated successfully with daily left prefrontal rTMS over a 2-week period is reported here. Based on this patient's clinical course and a recent pain study, the mechanism by which TMS may act to decrease the burning pain is discussed. PMID:25979192

  10. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory.

    PubMed

    Bagherzadeh, Yasaman; Khorrami, Anahita; Zarrindast, Mohammad Reza; Shariat, Seyed Vahid; Pantazis, Dimitrios

    2016-07-01

    Neuroimaging and electrophysiological studies have unequivocally identified the dorsolateral prefrontal cortex (DLPFC) as a crucial structure for top-down control of working memory (WM) processes. By modulating the excitability of neurons in a targeted cortical area, transcranial magnetic stimulation (TMS) offers a unique way to modulate DLPFC function, opening the possibility of WM facilitation. Even though TMS neuromodulation effects over the left DLPFC have successfully improved WM performance in patients with depression and schizophrenia in a multitude of studies, raising the potential of TMS as a safe efficacious treatment for WM deficits, TMS interventions in healthy individuals have produced mixed and inconclusive results. Here, we stimulated the left DLPFC of healthy individuals using a high-frequency repetitive TMS protocol and evaluated behavioral performance in a battery of cognitive tasks. We found that TMS treatment enhanced WM performance in a verbal digit span and a visuospatial 2-back task.

  11. Update on repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: different targets.

    PubMed

    Blom, Rianne M; Figee, Martijn; Vulink, Nienke; Denys, Damiaan

    2011-08-01

    Obsessive-compulsive disorder (OCD) is a chronic, disabling disorder. Ten percent of patients remain treatment refractory despite several treatments. For these severe, treatment-refractory patients, repetitive transcranial magnetic stimulation (rTMS) has been suggested as a treatment option. Since 1997, in published trials, a total of 110 OCD patients have been treated with rTMS. This review aims to provide an update on rTMS treatment in patients with OCD. First, the mechanism of action is discussed, followed by the efficacy and side effects of rTMS at various brain targets, and finally implications for the future. Due to the lack of studies with comparable stimulation or treatment parameters and with reliable designs, it is difficult to draw clear conclusions. In general, rTMS appears to be effective in open-label studies; however, this has not yet been replicated in randomized, sham-controlled trials. PMID:21547545

  12. The effect of repetitive electrical stimulation on the motor evoked hemodynamic responses.

    PubMed

    Khaslavskaia, Svetlana; Klucharev, Vasily; Chen, Andrew C N; Sinkjaer, Thomas

    2006-03-01

    The aim of this study was to investigate the influence of short-term repetitive electrical stimulation (rES training session) on the motor-evoked hemodynamic responses. The fMRI echo-planar images (EPI) were recorded before and after the rES training. The right median nerve (MN) was stimulated during rES. The rES training resulted in a significant increase in activity in a number of supraspinal regions, including sensorimotor and associative cortical areas. On the subcortical level, the effect was also found in the cerebellum, the midbrain, and the thalamus. Possible mechanisms of the neuronal plastic changes observed after rES, and memory processes involved in learning are discussed.

  13. Detector response in time-of-flight mass spectrometry at high pulse repetition frequencies

    NASA Technical Reports Server (NTRS)

    Gulcicek, Erol E.; Boyle, James G.

    1993-01-01

    Dead time effects in chevron configured dual microchannel plates (MCPs) are investigated. Response times are determined experimentally for one chevron-configured dual MCP-type detector and two discrete dynode-type electron multipliers with 16 and 23 resistively divided stages. All of these detectors are found to be suitable for time-of-flight mass spectrometry (TOF MS), yielding 3-6-ns (FWHM) response times triggered on a single ion pulse. It is concluded that, unless there are viable solutions to overcome dead time disadvantages for continuous dynode detectors, suitable discrete dynode detectors for TOF MS appear to have a significant advantage for high repetition rate operation.

  14. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  15. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal. PMID:24690803

  16. Effects of Repetitive Transcranial Magnetic Stimulation on Behavioral Recovery during Early Stage of Traumatic Brain Injury in Rats.

    PubMed

    Yoon, Kyung Jae; Lee, Yong-Taek; Chung, Pil-Wook; Lee, Yun Kyung; Kim, Dae Yul; Chun, Min Ho

    2015-10-01

    Repetitive transcranial magnetic stimulation (rTMS) is a promising technique that modulates neural networks. However, there were few studies evaluating the effects of rTMS in traumatic brain injury (TBI). Herein, we assessed the effectiveness of rTMS on behavioral recovery and metabolic changes using brain magnetic resonance spectroscopy (MRS) in a rat model of TBI. We also evaluated the safety of rTMS by measuring brain swelling with brain magnetic resonance imaging (MRI). Twenty male Sprague-Dawley rats underwent lateral fluid percussion and were randomly assigned to the sham (n=10) or the rTMS (n=10) group. rTMS was applied on the fourth day after TBI and consisted of 10 daily sessions for 2 weeks with 10 Hz frequency (total pulses=3,000). Although the rTMS group showed an anti-apoptotic effect around the peri-lesional area, functional improvements were not significantly different between the two groups. Additionally, rTMS did not modulate brain metabolites in MRS, nor was there any change of brain lesion or edema after magnetic stimulation. These data suggest that rTMS did not have beneficial effects on motor recovery during early stages of TBI, although an anti-apoptosis was observed in the peri-lesional area.

  17. Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography

    NASA Astrophysics Data System (ADS)

    Tian, Fenghua; Kozel, F. Andrew; Yennu, Amarnath; Croarkin, Paul E.; McClintock, Shawn M.; Mapes, Kimberly S.; Husain, Mustafa M.; Liu, Hanli

    2012-11-01

    Repetitive transcranial magnetic stimulation (rTMS) is a technology that stimulates neurons with rapidly changing magnetic pulses with demonstrated therapeutic applications for various neuropsychiatric disorders. Functional near-infrared spectroscopy (fNIRS) is a suitable tool to assess rTMS-evoked brain responses without interference from the magnetic or electric fields generated by the TMS coil. We have previously reported a channel-wise study of combined rTMS/fNIRS on the motor and prefrontal cortices, showing a robust decrease of oxygenated hemoglobin concentration (Δ[HbO2]) at the sites of 1-Hz rTMS and the contralateral brain regions. However, the reliability of this putative clinical tool is unknown. In this study, we develop a rapid optical topography approach to spatially characterize the rTMS-evoked hemodynamic responses on a standard brain atlas. A hemispherical approximation of the brain is employed to convert the three-dimensional topography on the complex brain surface to a two-dimensional topography in the spherical coordinate system. The test-retest reliability of the combined rTMS/fNIRS is assessed using repeated measurements performed two to three days apart. The results demonstrate that the Δ[HbO2] amplitudes have moderate-to-high reliability at the group level; and the spatial patterns of the topographic images have high reproducibility in size and a moderate degree of overlap at the individual level.

  18. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms.

    PubMed

    Pell, Gaby S; Roth, Yiftach; Zangen, Abraham

    2011-01-01

    Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that activates neurons via generation of brief pulses of high-intensity magnetic field. If these pulses are applied in a repetitive fashion (rTMS), persistent modulation of neural excitability can be achieved. The technique has proved beneficial in the treatment of a number of neurological and psychiatric conditions. However, the effect of rTMS on excitability and the other performance indicators shows a considerable degree of variability across different sessions and subjects. The frequency of stimulation has always been considered as the main determinant of the direction of excitability modulation. However, interactions exist between frequency and several other stimulation parameters that also influence the degree of modulation. In addition, the spatial interaction of the transient electric field induced by the TMS pulse with the cortical neurons is another contributor to variability. Consideration of all of these factors is necessary in order to improve the consistency of the conditioning effect and to better understand the outcomes of investigations with rTMS. These user-controlled sources of variability are discussed against the background of the mechanisms that are believed to drive the excitability changes. The mechanism behind synaptic plasticity is commonly accepted as the driver of sustained excitability modulation for rTMS and indeed, plasticity and rTMS share many characteristics, but definitive evidence is lacking for this. It is more likely that there is a multiplicity of mechanisms behind the action of rTMS. The different mechanisms interact with each other and this will contribute to the variability of rTMS-induced excitability changes. This review investigates the links between rTMS and synaptic plasticity, describes their similarities and differences, and highlights a neglected contribution of the membrane potential. In summary, the principal aims of this review

  19. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  20. The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats.

    PubMed

    Mishima, S

    1988-03-01

    The author performed experiments in order to investigate what biological effect on the bone would be produced by long-term pulsing electromagnetic field (PEMF) systemic stimulation. In some of the mature female rats used as experimental animals, bilateral ovariectomy and right sciatic neurectomy were performed in order to make a model osteoporosis. PEMF stimulation was produced by repetitive pulse burst (RPB) waves at a positive amplitude of 25 mV, negative amplitude of 62.5 mV, burst width of 4.2 ms, pulse width of 230 microseconds and 12 Hz, with the magnetic field strength within a cage being set at 3-10 Gauss. PEMF stimulation over 6 months did not produce any effects on the physiologically aged bones. PEMF stimulation also did not produce any effects on losed cortical bone in osteoporotic hindlegs. On the other hand, an increase of bone volume and bone formation activity was observed in the cancellous bone of osteoporotic hindlegs. These findings suggested that PEMF stimulation exerted a preventive effect against bone loss of osteoporotic hindlegs. Furthermore, an observed increase in bone marrow blood flow seemed to be related with this increase of bone volume and bone formation activity.

  1. Modulation of N400 in Chronic Non-Fluent Aphasia Using Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS)

    ERIC Educational Resources Information Center

    Barwood, Caroline H. S.; Murdoch, Bruce E.; Whelan, Brooke-Mai; Lloyd, David; Riek, Stephan; O'Sullivan, John D.; Coulthard, Alan; Wong, Andrew

    2011-01-01

    Low frequency Repetitive Transcranial Magnetic Stimulation (rTMS) has previously been applied to language homologues in non-fluent populations of persons with aphasia yielding significant improvements in behavioral language function up to 43 months post stimulation. The present study aimed to investigate the electrophysiological correlates…

  2. SBS (stimulated Brillouin scattering) pulse distortion in multimode optical fibers

    SciTech Connect

    Smith, J.R.; Hawkins, R.J.; Laumann, C.W.; Hatch, J. )

    1989-01-01

    We have observed sever temporal-pulse-shape distortion due to stimulated Brillouin scattering (SBS) in multimode optical fibers used to diagnose 351 m laser pulses on the Nova laser system. Our measurements can be fit by a basic model of SBS and provide a clear indication of the intensity and temporal regimes where significant SBS-induced temporal-pulse-shape distortion can be avoided. 15 refs., 3 figs., 1 tab.

  3. Photoluminescence of Traces of Aromatic Compounds in Aqueous Solutions Upon Excitation by a Repetitively Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Agal'Tsov, A. M.; Gorelik, V. S.; Moro, R. A.

    2000-06-01

    A method is suggested for quantitative and qualitative analysis of aromatic compounds in water at extremely low concentrations (<1 ng/l). The method is based on excitation of luminescence by short (20 ns) UV laser pulses with a peak power of 104 W at 255.3 nm and a pulse repetition rate of 10 kHz. The shape of luminescence spectra of benzene, benzoic acid, saccharin, aspirin, and L-tryptophan at low concentrations in water is analyzed. The luminescence kinetics of these compounds is studied at short delay times (10 20 ns). The lifetimes of the electronic excited states of the aromatic compounds are measured. The applications of the method for studies of low-concentration aqueous solutions of biological and medicine compounds are analyzed.

  4. [Clinical Introduction of Repetitive Transcranial Magnetic Stimulation for Major Depression in Japan].

    PubMed

    Nakamura, Motoaki

    2015-01-01

    Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) have long been awaited for not only neurological but also psychiatric disorders as a low-invasive transcranial brain stimulation. In 2008, the Food and Drug Administration (FDA) of the United States finally approved repetitive transcranial magnetic stimulation (rTMS) for medication-resistant patients with major depression. More recently, at the beginning of 2013, a deep TMS device with the H-coil received FDA approval as the second TMS device for major depression. In Japan, it is estimated that more than 200,000 patients with medication-resistant major depression could be candidates for rTMS treatment. To promote the clinical introduction of rTMS for major depression, joint discussion has been ongoing including the Japanese Society of Psychiatry and Neurology (JSPN), the Japanese Ministry of Health, Labour, and Welfare (MHLW), and the Pharmaceutical and Medical Devices Agency (PMDA). On the other hand, some corporate efforts have begun to get MHLW/PMDA approval for a few types of rTMS device. In 2013, the JSPN established a new committee in order to discuss the introduction of neuromodulation methods such as rTMS in Japan. The committee has been discussing how rTMS should be introduced appropriately with expedition, considering the MHLW regulations for the expedited introduction or provisional use of advanced medical technology. Also, the MHLW has required related psychiatric societies to formulate clinical guidelines of rTMS for major depression in order to avoid any potential overuse or misuse. A number of controversies are ongoing, such as standards for the appropriate clinical application of rTMS, a suitable position of rTMS within the comprehensive treatment algorithm of major depression, and bioethical standards for brain stimulation (neuroethics). Moreover, there are some pragmatic issues. For instance, the Japanese Society of Clinical Neurophysiology (JSCN) has restricted

  5. [Clinical Introduction of Repetitive Transcranial Magnetic Stimulation for Major Depression in Japan].

    PubMed

    Nakamura, Motoaki

    2015-01-01

    Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) have long been awaited for not only neurological but also psychiatric disorders as a low-invasive transcranial brain stimulation. In 2008, the Food and Drug Administration (FDA) of the United States finally approved repetitive transcranial magnetic stimulation (rTMS) for medication-resistant patients with major depression. More recently, at the beginning of 2013, a deep TMS device with the H-coil received FDA approval as the second TMS device for major depression. In Japan, it is estimated that more than 200,000 patients with medication-resistant major depression could be candidates for rTMS treatment. To promote the clinical introduction of rTMS for major depression, joint discussion has been ongoing including the Japanese Society of Psychiatry and Neurology (JSPN), the Japanese Ministry of Health, Labour, and Welfare (MHLW), and the Pharmaceutical and Medical Devices Agency (PMDA). On the other hand, some corporate efforts have begun to get MHLW/PMDA approval for a few types of rTMS device. In 2013, the JSPN established a new committee in order to discuss the introduction of neuromodulation methods such as rTMS in Japan. The committee has been discussing how rTMS should be introduced appropriately with expedition, considering the MHLW regulations for the expedited introduction or provisional use of advanced medical technology. Also, the MHLW has required related psychiatric societies to formulate clinical guidelines of rTMS for major depression in order to avoid any potential overuse or misuse. A number of controversies are ongoing, such as standards for the appropriate clinical application of rTMS, a suitable position of rTMS within the comprehensive treatment algorithm of major depression, and bioethical standards for brain stimulation (neuroethics). Moreover, there are some pragmatic issues. For instance, the Japanese Society of Clinical Neurophysiology (JSCN) has restricted

  6. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  7. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro.

    PubMed

    Tang, Alexander D; Hong, Ivan; Boddington, Laura J; Garrett, Andrew R; Etherington, Sarah; Reynolds, John N J; Rodger, Jennifer

    2016-10-29

    Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n=9 cells from 7 animals) or sham (n=10 cells from 9 animals), immediately after stimulation, as well as 10 and 20min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity. PMID:27568058

  8. Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Zhao, Zhigang; Kobayashi, Yohei

    2016-01-01

    A 100 W Yb-doped, fiber-based, femtosecond, chirped pulse amplification laser system was developed with a repetition rate of 1 MHz, corresponding to a pulse energy of 100 µJ. Large-scale, fused-silica transmission gratings were used for both the pulse stretcher and compressor, with a compression throughput efficiency of ∼85%. A pulse duration of 270 fs was measured by second harmonic generation frequency-resolved optical gating (SHG-FROG). To the best of our knowledge, this is the shortest pulse duration ever achieved by a 100-W-level fiber chirped pulse amplification laser system at a repetition rate of few megahertz, without any special post-compression manipulation.

  9. A Dual-Capacitors Type Energy Recovery Power System for Repetitive Pulsed High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Xiang, Y. M.; Wan, Q.; Yang, R.; Xiao, H. X.; Ding, H. F.; Li, L.

    2013-03-01

    As a flexible and convenient tool, a repetitive pulsed high magnetic field (RPHMF) would be employed for scientific research and industrial applications. A novel RPHMF system design adopting a dual-capacitors type energy recovery power system is introduced in this paper. The energy stored in the magnet can be fed back to the capacitor by a choke coil and a resonant capacitor while the energy dissipated in the discharge will be replenished to the capacitor through a high frequency resonant capacitor charging power system (CCPS). The main advantages of the design are as followed: first, the energy feedback make the system more efficient; second, during the whole process there is no reverse voltage on the metalized film capacitors, improving the energy storage capacitors' service lifetime and reliability remarkably; finally, convenience can be brought to the high frequency CCPS's application. In this paper, theoretic analysis of RPHMF system is described and an experimental device with a bitter magnet as the load is built to test the design for its verification. A 1.2 Hz, 8 T repetitive pulsed high magnetic field is generated. Experimental results show that there is no reverse voltage on the energy storage capacitors in the whole process. The factors influencing the efficiency and frequency of the system are analyzed in detail.

  10. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  11. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  12. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Sivakumar, Manickam; Venkatakrishnan, Krishnan; Tan, Bo

    2011-12-01

    In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4 f and Si 2 p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure.

  13. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    PubMed Central

    2011-01-01

    In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure. PMID:21711595

  14. Research on chirped pulse stimulated Raman scattering in ethanol

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Yang; Zou, Xiao; Xu, Yi; Lu, Xiao-Ming; Wang, Cheng; Liu, Yan-Qi; Li, Yan-Yan; Leng, Yu-Xin; Li, Ru-Xin

    2014-11-01

    We report a generation of 10.6% conversion efficiency near 1053 nm first order Stokes pulse in stimulated Raman scattering pumped using 800 nm Ti:sapphire based femtosecond pulses that are stretched to 460 ps, obtained by use of a single pass ethonal Raman shifter. The Stokes pulse almost maintains the bandwidth of the pump and is compressed to ~10 ps using a mismatched grating-pair. The spectral characteristic of the Raman pulse is calculated and the results explain the observed transient features.

  15. Dentin bond strength after ablation using a CO2 laser operating at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Hedayatollahnajafi, Saba; Staninec, Michal; Watanabe, Larry; Lee, Chulsung; Fried, Daniel

    2009-02-01

    Pulsed CO2 lasers show great promise for the rapid and efficient ablation of dental hard tissues. Our objective was to demonstrate that CO2 lasers operated at high repetition rates can be used for the rapid removal of dentin without excessive thermal damage and without compromising adhesion to restorative materials. Human dentin samples (3x3mm2) were rapidly ablated with a pulsed CO2 laser operating at a wavelength of 9.3-µm, pulse repetition rate of 300-Hz and an irradiation intensity of 18-J/cm2. The bond strength to composite was determined by the modified single plane shear test. There were 8 test groups each containing 10 blocks: negative control (non-irradiated non-etched), positive control (non-irradiated acid-etched), and six laser treated groups (three etched and three non-etched sets). The first and second etched and non-etched sets were ablated at a speed of 25 mm/sec and 50 mm/sec with water, respectively. The third set was also ablated at 50 mm/sec without application of water during laser irradiation. Minimal thermal damage was observed on the dentin surfaces for which water cooling was applied. Bond strengths exceeded 20 MPa for laser treated surfaces that were acid-etched after ablation (25-mm/sec: 29.9-MPa, 50-mm/sec: 21.3-MPa). The water-cooled etched laser groups all produced significantly stronger bonds than the negative control (p<0.001) and a lower bond strength than the positive control (p<0.05). These measurements demonstrate that dentin surfaces can be rapidly ablated by a CO2 lasers with minimal peripheral thermal damage. Additional studies are needed to determine if a lower bond strength than the acid-etched control samples is clinically significant where durability of these bonded restoration supersedes high bond strength.

  16. [Evaluation of repetitive transcranial magnetic stimulation effectiveness in treatment of psychiatric and neurologic diseases].

    PubMed

    Pastuszak, Żanna; Stępień, Anna; Piusińska-Macoch, Renata; Brodacki, Bogdan; Tomczykiewicz, Kazimierz

    2016-06-01

    Repetitive transcranial magnetic stimulation (rTMS) is a treatment option with proved effectiveness especially in drug resist depression. It is used in functional brain mapping before neurosurgery operations and diagnostic of corticospinal tract transmission. Many studies are performed to evaluate rTMS using in treatment of obsessive - compulsive disorder, schizophrenia, autism, strokes, tinnitus, Alzheimer and Parkinson diseases, cranial traumas. Moreover rTMS was used in treatment of multiple sclerosis, migraine, dystonia. Electromagnetical field generated by rTMS penetrate skin of the scalp and infiltrate brain tissues to a depth of 2 cm, cause neurons depolarization and generating motor, cognitive and affective effects. Depending on the stimulation frequency rTMS can stimuli or inhibit brain cortex. rTMS mechanism of action remains elusive. Probably it is connected with enhancement of neurotransmitters, modulation of signals transductions pathways in Central Nervous System, gene transcription and release of neuroprotective substances. Studies with use of animals revealed that rTMS stimulation can generate brain changes similar to those seen after electric shock therapy without provoking seizures. The aim of presenting study was to analyze actual researches evaluating rTMS use in treatment of psychiatric and neurological diseases. PMID:27403908

  17. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Nardone, R; Tezzon, F; Höller, Y; Golaszewski, S; Trinka, E; Brigo, F

    2014-06-01

    Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high-density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long-lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well-controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.

  18. Spinal cord stimulation with interleaved pulses: a randomized, controlled trial.

    PubMed

    North, Richard B; Kidd, David H; Olin, John; Sieracki, Jeffrey M; Boulay, Marc

    2007-10-01

    Objectives.  The development of multicontact electrodes and programmable, implanted pulse generators has increased the therapeutic success of spinal cord stimulation (SCS) by enhancing the ability to capture and maintain pain/paresthesia overlap. This study sought to determine if interleaved stimulation and/or frequency doubling improves pain/paresthesia overlap in patients with failed back surgery syndrome. Methods.  Using a patient-interactive computer system that quantifies SCS performance and presents stimulation settings in randomized, double-blind fashion, we compared the effect on pain/paresthesia overlap of interleaved stimulation (rapidly interleaved pulse trains using two different contact combinations) vs. standard treatment with a single contact combination, controlling for frequency doubling. Stimulation amplitude (charge per phase, as determined by varying pulse voltage or width) was adjusted to a subjectively comfortable intensity (usage amplitude), which was maintained for all trials in each patient. The number of percutaneous spinal electrodes used (one or two) and the phase angle between interleaved pulses were additional study variables. Results.  Multivariate analysis of 266 test results from 15 patients revealed a statistically significant (p ≤ 0.05) association between increased computer-calculated pain/paresthesia overlap and 1) high- and low-frequency interleaved stimulation using two combinations of contacts and 2) frequency doubling using one combination. We found no significant effect for electrode configuration (single or dual), pulse width matching, or phase angle. Conclusions.  The statistically significant advantages we observed for SCS with interleaved stimulation are explained, at least in part, by the effects of frequency doubling. These findings have important implications for the design and adjustment of pulse generators. PMID:22150894

  19. H-coil repetitive transcranial magnetic stimulation for treatment of temporal lobe epilepsy: A case report.

    PubMed

    Gersner, R; Oberman, L; Sanchez, M J; Chiriboga, N; Kaye, H L; Pascual-Leone, A; Libenson, M; Roth, Y; Zangen, A; Rotenberg, A

    2016-01-01

    Low frequency repetitive TMS (rTMS) of a cortical seizure focus is emerging as an antiepileptic treatment. While conventional rTMS stimulators activate only superficial cortical areas, reaching deep epileptic foci, for example in temporal lobe epilepsy (TLE), is possible using specially designed H-coils. We report the results of rTMS in a young adult with pharmacoresistant bilateral TLE who underwent three courses (of 10, 15, and 30 daily sessions) of unilateral rTMS over the hemisphere from which seizures originated most often. Seizure frequency was assessed before and after each block of rTMS sessions, as was the tolerability of the procedure. Seizure frequency declined significantly, by 50 to 70% following each rTMS course. All sessions were well-tolerated. PMID:27114902

  20. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser.

    PubMed

    Qi, You-Li; Liu, Hao; Cui, Hu; Huang, Yu-Qi; Ning, Qiu-Yi; Liu, Meng; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-13

    We report on the generation of a high-repetition-rate pulse in a fiber laser using a graphene-deposited microfiber photonic device (GMPD) and a Fabry-Perot filter. Taking advantage of the unique nonlinear optical properties of the GMPD, dissipative four-wave mixing effect (DFWM) could be induced at low pump power. Based on DFWM mode-locking mechanism, the fiber laser delivers a 100 GHz repetition rate pulse train. The results indicate that the small sized GMPD offers an alternative candidate of highly nonlinear optical component to achieve high-repetition rate pulses, and also opens up possibilities for the investigation of other abundant nonlinear effects or related fields of photonics. PMID:26191834

  1. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  2. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge.

    PubMed

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-08-13

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H(2)O, CO, CO(2), H(2), CH(2)O, CH(3)OH, C(2)H(6), C(2)H(4) and C(2)H(2). A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH(2)O and CH(3)OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH(3)O(2) radical reactions and methane reactions with O((1)D), are responsible for this disagreement. PMID:26170433

  3. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge

    PubMed Central

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-01-01

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H2O, CO, CO2, H2, CH2O, CH3OH, C2H6, C2H4 and C2H2. A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH2O and CH3OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH3O2 radical reactions and methane reactions with O(1D), are responsible for this disagreement. PMID:26170433

  4. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  5. Design and construction of a low cost dsPIC controller based repetitive transcranial magnetic stimulator (rTMS).

    PubMed

    Burunkaya, Mustafa

    2010-02-01

    In this work, a digital signal peripheral interface controller (dsPIC) based repetitive transcranial magnetic stimulator (rTMS) was designed and tested under low voltages. In addition, some limited knowledge of TMS, especially design parameters and notions concerned with it, also were investigated. The reason employing the dsPIC in the design is that design parameters can effectively be controlled. Pulse width modulation and switching output of the control unit, which is necessary to control the rTMS device, were controlled in a more effective way. The other novelty is that developed system can be used for therapeutic or diagnostic purposes in future work provided by digital signal processing performance of dsPIC. Bounded-cylindrical in shape head model made from nonmagnetic material, was used during the tests of the system. Spectrum analyses of clicking sounds were performed with FFT by using MATLAB. The effectiveness of the designed system have been proved by its' measurement results compared with previous works.

  6. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  7. Repetitive Noninvasive Brain Stimulation to Modulate Cognitive Functions in Schizophrenia: A Systematic Review of Primary and Secondary Outcomes.

    PubMed

    Hasan, Alkomiet; Strube, Wolfgang; Palm, Ulrich; Wobrock, Thomas

    2016-07-01

    Despite many years of research, there is still an urgent need for new therapeutic options for the treatment of cognitive deficits in schizophrenia. Noninvasive brain stimulation (NIBS) has been proposed to be such a novel add-on treatment option. The main objective of this review was to systematically evaluate the cognitive effects of repetitive NIBS in schizophrenia. As most studies have not been specifically designed to investigate cognition as primary outcome, we have focused on both, primary and secondary outcomes. The PubMed/MEDLINE database (1985-2015) was systematically searched for interventional studies investigating the effects of repetitive NIBS on schizophrenia symptoms. All interventional clinical trials using repetitive transcranial stimulation, transcranial theta burst stimulation, and transcranial direct current stimulation for the treatment of schizophrenia were extracted and analyzed with regard to cognitive measures as primary or secondary outcomes. Seventy-six full-text articles were assessed for eligibility of which 33 studies were included in the qualitative synthesis. Of these 33 studies, only 4 studies included cognition as primary outcome, whereas 29 studies included cognitive measures as secondary outcomes. A beneficial effect of frontal NIBS could not be clearly established. No evidence for a cognitive disruptive effect of NIBS (temporal lobe) in schizophrenia could be detected. Finally, a large heterogeneity between studies in terms of inclusion criteria, stimulation parameters, applied cognitive measures, and follow-up intervals was observed. This review provides the first systematic overview regarding cognitive effects of repetitive NIBS in schizophrenia. PMID:27460623

  8. Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate.

    PubMed

    Novotny, Steffen; Durairaj, Vasuki; Shavrin, Igor; Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti; Ludvigsen, Hanne

    2014-06-01

    We present a picosecond supercontinuum light source designed for stroboscopic white-light interferometry. This source offers a potential for high-resolution characterization of vibrational fields in electromechanical components with frequencies up to the GHz range. The light source concept combines a gain-switched laser diode, the output of which is amplified in a two-stage fiber amplifier, with supercontinuum generation in a microstructured optical fiber. Implemented in our white-light interferometer setup, optical pulses with optimized spectral properties and below 310 ps duration are used for stroboscopic illumination at freely adjustable repetition rates. The performance of the source is demonstrated by characterizing the surface vibration field of a square-plate silicon MEMS resonator at 3.37 MHz. A minimum detectable vibration amplitude of less than 100 pm is reached.

  9. Fixed lag smoothing target tracking in clutter for a high pulse repetition frequency radar

    NASA Astrophysics Data System (ADS)

    Khan, Uzair; Shi, Yi Fang; Song, Taek Lyul

    2015-12-01

    A new method to smooth the target hybrid state with Gaussian mixture measurement likelihood-integrated track splitting (GMM-ITS) in the presence of clutter for a high pulse repetition frequency (HPRF) radar is proposed. This method smooths the target state at fixed lag N and considers all feasible multi-scan target existence sequences in the temporal window of scans in order to smooth the target hybrid state. The smoothing window can be of any length N. The proposed method to smooth the target hybrid state at fixed lag is also applied to the enhanced multiple model (EMM) tracking algorithm. Simulation results indicate that the performance of fixed lag smoothing GMM-ITS significantly improves false track discrimination and root mean square errors (RMSEs).

  10. Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses

    SciTech Connect

    Chen Tao; Si Jinhai; Hou Xun; Kanehira, Shingo; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-01

    We studied the photoluminescence (PL) from black silicon that was fabricated using an 800 nm, 250 kHz femtosecond laser in air. By changing the scan velocity and the fluence of the femtosecond laser, the formation of the PL band between the orange (600 nm) and red bands (near 680 nm) could be controlled. The red band PL from the photoinduced microstructures on the black silicon was observed even without annealing due to the thermal accumulation of high-repetition rate femtosecond laser pulses. The orange band PL was easily quenched under 532 nm cw laser irradiation, whereas the red band PL was more stable; this can be attributed to ''defect luminescence'' and ''quantum confinement'', respectively.

  11. Modeling and optimization of single-pass laser amplifiers for high-repetition-rate laser pulses

    SciTech Connect

    Ozawa, Akira; Udem, Thomas; Zeitner, Uwe D.; Haensch, Theodor W.; Hommelhoff, Peter

    2010-09-15

    We propose a model for a continuously pumped single-pass amplifier for continuous and pulsed laser beams. The model takes into account Gaussian shape and focusing geometry of pump and seed beam. As the full-wave simulation is complex we have developed a largely simplified numerical method that can be applied to rotationally symmetric geometries. With the tapered-shell model we treat (focused) propagation and amplification of an initially Gaussian beam in a gain crystal. The implementation can be done with a few lines of code that are given in this paper. With this code, a numerical parameter optimization is straightforward and example results are shown. We compare the results of our simple model with those of a full-wave simulation and show that they agree well. A comparison of model and experimental data also shows good agreement. We investigate in detail different regimes of amplification, namely the unsaturated, the fully saturated, and the intermediate regime. Because the amplification process is affected by spatially varying saturation and exhibits a nonlinear response against pump and seed power, no analytical expression for the expected output is available. For modeling of the amplification we employ a four-level system and show that if the fluorescence lifetime of the gain medium is larger than the inverse repetition rate of the seed beam, continuous-wave amplification can be employed to describe the amplification process of ultrashort pulse trains. We limit ourselves to this regime, which implies that if titanium:sapphire is chosen as gain medium the laser repetition rate has to be larger than a few megahertz. We show detailed simulation results for titanium:sapphire for a large parameter set.

  12. Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma.

    PubMed

    Yang, Haidi; Xiong, Hao; Ou, Yongkang; Xu, Yaodong; Pang, Jiaqi; Lai, Lan; Zheng, Yiqing

    2016-09-01

    Repetitive transcranial magnetic stimulation (rTMS) is one form of non-invasive brain stimulation and increasingly shows neuroprotection in multiple neurological disorders. However, the potential of rTMS for protective action on auditory function following acoustic trauma has not been investigated. Here, we examined effect of TMS on hearing conservation, neurons survival and brain-derived neurotrophin factor (BDNF) expression in the cochlea and auditory cortex following acoustic trauma in rats. Wistar rats were exposed to intense pure tone noise (10 kHz, 120 dB SPL for 2 h) followed by rTMS treatment or sham treatment (handling control) daily for 14 days. Auditory brainstem response revealed there was no significant difference in hearing threshold shifts between rTMS- and sham-treated rats, although rTMS-treated rats showed less neuron loss in the auditory cortex in comparison with sham rats. Additionally, acoustic trauma increased BDNF expression in the cochlea and auditory cortex, and this elevation could be attenuated by rTMS treatment. Our results suggest present regiment of rTMS does not protect hearing against acoustic trauma, but maybe have implications for tinnitus treatment. PMID:27230393

  13. Randomized sham controlled double-blind trial of repetitive transcranial magnetic stimulation for adults with severe Tourette syndrome

    PubMed Central

    Landeros-Weisenberger, Angeli; Mantovani, Antonio; Motlagh, Maria; de Alvarenga, Pedro Gomes; Katsovich, Liliya; Leckman, James F.; Lisanby, Sarah H.

    2014-01-01

    Background A small proportion of individuals with Tourette syndrome (TS) have a lifelong course of illness that fails to respond to conventional treatments. Open label studies have suggested that low frequency (1-Hz) repetitive transcranial magnetic stimulation (rTMS) targeting the supplementary motor area (SMA) may be effective in reducing tic severity. Objective/Hypothesis To examine the efficacy of rTMS over the SMA for TS in a randomized double-blind sham-controlled trial (RCT). Methods We conducted a two-site RCT-rTMS with 20 adults with severe TS for 3 weeks. Treatment consisted of 15 sessions (1-Hz; 30 min; 1,800 pulses per day) of active or sham rTMS at 110% of the motor threshold over the SMA. A subsequent 3 week course of active rTMS treatment was offered. Results Of the 20 patients (16 males; mean age of 33.7 ± 12.2 years), 9 received active and 11 received sham rTMS. After 3 weeks, patients receiving active rTMS showed on average a 17.3% reduction in the YGTSS total tic score compared to a 13.2% reduction in those receiving sham rTMS, resulting in no statistically significant reduction in tic severity (p=0.27). An additional 3 week open label active treatment for those patients (n = 7) initially randomized to active rTMS resulted in a significant overall 29.7% reduction in tic severity compared to baseline (p=0.04). Conclusion This RCT did not demonstrate efficacy of 3-week SMA-targeted low frequency rTMS in the treatment of severe adult TS. Further studies using longer or alternative stimulation protocols are warranted. PMID:25912296

  14. Loss of echogenicity and onset of cavitation from echogenic liposomes: pulse repetition frequency independence

    PubMed Central

    Radhakrishnan, Kirthi; Haworth, Kevin J; Peng, Tao; McPherson, David D.; Holland, Christy K.

    2014-01-01

    Echogenic liposomes (ELIP) are being developed for the early detection and treatment of atherosclerotic lesions. An 80% loss of echogenicity of ELIP (Radhakrishnan et al. 2013) has been shown to be concomitant with the onset of stable and inertial cavitation. The ultrasound pressure amplitude at which this occurs is weakly dependent on pulse duration. Smith et al. (2007) have reported that the rapid fragmentation threshold of ELIP (based on changes in echogenicity) is dependent on the insonation pulse repetition frequency (PRF). The current study evaluates the relationship between loss of echogenicity and cavitation emissions from ELIP insonified by duplex Doppler pulses at four PRFs (1.25 kHz, 2.5 kHz, 5 kHz, and 8.33 kHz). Loss of echogenicity was evaluated on B-mode images of ELIP. Cavitation emissions from ELIP were recorded passively on a focused single-element transducer and a linear array. Emissions recorded by the linear array were beamformed and the spatial widths of stable and inertial cavitation emissions were compared to the calibrated azimuthal beamwidth of the Doppler pulse exceeding the stable and inertial cavitation thresholds. The inertial cavitation thresholds had a very weak dependence on PRF and stable cavitation thresholds were independent of PRF. The spatial widths of the cavitation emissions recorded by the passive cavitation imaging system agreed with the calibrated Doppler beamwidths. The results also show that 64%–79% loss of echogenicity can be used to classify the presence or absence of cavitation emissions with greater than 80% accuracy. PMID:25438849

  15. Resting state connectivity in alcohol dependent patients and the effect of repetitive transcranial magnetic stimulation.

    PubMed

    Jansen, Jochem M; van Wingen, Guido; van den Brink, Wim; Goudriaan, Anna E

    2015-12-01

    Alcohol dependence is thought to result from an overactive neural motivation system and a deficient cognitive control system, and rebalancing these systems may mitigate excessive alcohol use. This study examines the differences in functional connectivity of the fronto-parietal cognitive control network (FPn) and the motivational network (striatum and orbitofrontal cortex) between alcohol dependent patients (ADPs) and healthy controls (HCs), and the effect of repetitive transcranial magnetic stimulation (rTMS) on these networks. This randomized controlled trial included 38 ADPs and 37 HCs, matched on age, gender and education. Participants were randomly assigned to sham or right dorsolateral prefrontal cortex (dlPFC) stimulation with rTMS. A 3T resting state functional Magnetic Resonance Imaging (fMRI) scan was acquired before and after active or sham 10Hz rTMS. Group differences of within and between network connectivity and the effect of rTMS on network connectivity was assessed using independent component analysis. Results showed higher connectivity within the left FPn (p=0.012) and the left fronto-striatal motivational network (p=0.03) in ADPs versus HCs, and a further increase in connectivity within the left FPn after active stimulation in ADPs. ADPs also showed higher connectivity between the left and the right FPns (p=0.025), and this higher connectivity was related to fewer alcohol related problems (r=0.30, p=0.06). The results show higher within and between network connectivity in ADPs and a further increase in fronto-parietal connectivity after right dlPFC rTMS in ADPs, suggesting that frontal rTMS may have a beneficial influence on cognitive control and may result in lower relapse rates.

  16. Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob Brian

    Absolute number densities of atomic species produced by nanosecond duration, repetitively pulsed electric discharges are measured by two-photon absorption laser-induced fluorescence (TALIF). Relatively high plasma discharge pulse energies (=1 mJ/pulse) are used to generate atomic hydrogen, oxygen, and nitrogen in a variety of discharge conditions and geometries. Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF). Fs-TALIF offers a number of advantages compared to more conventional ns-pulse-duration laser systems, including better accuracy of direct quenching measurements in challenging environments, significantly reduced photolytic interference including photo-dissociation and photo-ionization, higher signal and increased laser-pulse bandwidth, the ability to collect two-dimensional images of atomic species number densities with far greater spatial resolution compared with more conventional diagnostics, and much higher laser repetition rates allowing for more efficient and accurate measurements of atomic species number densities. In order to fully characterize the fs-TALIF diagnostic and compare it with conventional ns-TALIF, low pressure (100 Torr) ns-duration pulsed discharges are operated in mixtures of H2, O2, and N2 with different buffer gases including argon, helium, and nitrogen. These discharge conditions are used to demonstrate the capability for two-dimensional imaging measurements. The images produced are the first of their kind and offer quantitative insight into spatially and temporally resolved kinetics and transport in ns-pulsed discharge plasmas. The two-dimensional images make possible comparison with high-fidelity plasma kinetics models of the presented data. The comparison with the quasi-one-dimensional kinetic model show good spatial and temporal agreement. The same diagnostics are used at atmospheric pressure, when atomic oxygen fs-TALIF is performed in an atmospheric-pressure plasma jet (APPJ). Here, the

  17. Effect of low frequency repetitive transcranial magnetic stimulation on kindling-induced changes in electrophysiological properties of rat CA1 pyramidal neurons.

    PubMed

    Moradi Chameh, Homeira; Janahmadi, Mahyar; Semnanian, Saeed; Shojaei, Amir; Mirnajafi-Zadeh, Javad

    2015-05-01

    In this study, the effect of repetitive transcranial magnetic stimulation (rTMS) on the kindling induced changes in electrophysiological firing properties of hippocampal CA1 pyramidal neurons was investigated. Male Wistar rats were kindled by daily electrical stimulation of the basolateral amygdala in a semi-rapid manner (12 stimulations/day) until they achieved stage-5 seizure. One group (kindled+rTMS (KrTMS)) of animals received rTMS (240 pulses at 1 Hz) at 5 min after termination of daily kindling stimulations. Twenty-four hours following the last kindling stimulation electrophysiological properties of hippocampal CA1 pyramidal neurons were investigated using a whole-cell patch clamp technique, under current clamp condition. Amygdala kindling significantly decreased the adaptation index, post-afterhyperpolarization, rheobase current, utilization time, and delay to the first rebound spike. It also caused an increase in the voltage sag, number of rebound spikes and number of evoked action potential. Results of the present study revealed that application of rTMS following kindling stimulations had antiepileptogenic effects. In addition, application of rTMS prevented hyperexcitability of CA1 pyramidal neurons induced by kindling and conserved the normal neuronal firing.

  18. NEO-LISP: Deflecting near-earth objects using high average power, repetitively pulsed lasers

    SciTech Connect

    Phipps, C.R.; Michaelis, M.M.

    1994-10-01

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime, (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory, and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA`s) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  19. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  20. Short-pulse amplification by strongly coupled stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Jia, Qing; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2016-08-01

    We examine the feasibility of strongly coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  1. Cryogenic disk Yb : YAG laser with 120-mJ energy at 500-Hz pulse repetition rate

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Palashov, O V; Khazanov, Efim A

    2013-03-31

    A repetitively pulsed laser system based on cryogenically cooled Yb : YAG disks is developed. The creation of Yb : YAG/YAG composites and the use of an active liquid nitrogen cooling system made it possible to significantly decrease the effect of amplified spontaneous emission. The average output power of the system is 60 W. (extreme light fields and their applications)

  2. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    PubMed Central

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  3. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  4. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  5. 486nm blue laser operating at 500 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  6. Effects of Repetitive Transcranial Magnetic Stimulation in Performing Eye-Hand Integration Tasks: Four Preliminary Studies with Children Showing Low-Functioning Autism

    ERIC Educational Resources Information Center

    Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P.; Elia, Maurizio

    2014-01-01

    This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and…

  7. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    NASA Astrophysics Data System (ADS)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  8. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  9. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  10. Poststroke dysphagia rehabilitation by repetitive transcranial magnetic stimulation: a noncontrolled pilot study.

    PubMed

    Verin, E; Leroi, A M

    2009-06-01

    Poststroke dysphagia is frequent and significantly increases patient mortality. In two thirds of cases there is a spontaneous improvement in a few weeks, but in the other third, oropharyngeal dysphagia persists. Repetitive transcranial magnetic stimulation (rTMS) is known to excite or inhibit cortical neurons, depending on stimulation frequency. The aim of this noncontrolled pilot study was to assess the feasibility and the effects of 1-Hz rTMS, known to have an inhibitory effect, on poststroke dysphagia. Seven patients (3 females, age = 65 +/- 10 years), with poststroke dysphagia due to hemispheric or subhemispheric stroke more than 6 months earlier (56 +/- 50 months) diagnosed by videofluoroscopy, participated in the study. rTMS at 1 Hz was applied for 20 min per day every day for 5 days to the healthy hemisphere to decrease transcallosal inhibition. The evaluation was performed using the dysphagia handicap index and videofluoroscopy. The dysphagia handicap index demonstrated that the patients had mild oropharyngeal dysphagia. Initially, the score was 43 +/- 9 of a possible 120 which decreased to 30 +/- 7 (p < 0.05) after rTMS. After rTMS, there was an improvement of swallowing coordination, with a decrease in swallow reaction time for liquids (p = 0.0506) and paste (p < 0.01), although oral transit time, pharyngeal transit time, and laryngeal closure duration were not modified. Aspiration score significantly decreased for liquids (p < 0.05) and residue score decreased for paste (p < 0.05). This pilot study demonstrated that rTMS is feasible in poststroke dysphagia and improves swallowing coordination. Our results now need to be confirmed by a randomized controlled study with a larger patient population.

  11. Repetitive transcranial magnetic stimulation over frontal eye fields disrupts visually cued auditory attention.

    PubMed

    Smith, Daniel T; Jackson, Stephen R; Rorden, Chris

    2009-04-01

    Voluntary eye movements and covert shifts of visual attention activate the same brain regions. Specifically, the intraparietal sulcus and the frontal eye fields (FEF) appear to be involved both with generating voluntary saccades as well with attending to a peripheral spatial location. Furthermore, these regions appear to be required by both tasks--functional disruption of these regions impairs both tasks. Therefore, it appears that the targeting system that allows us to plan saccades is the same system that allows us to covertly track peripheral visual information. Recent neuroimaging studies suggest that these brain regions are also activated when participants engage in auditory spatial attention tasks. However, it remains unclear whether these regions are required by these tasks. We used repetitive transcranial magnetic stimulation (rTMS) to disrupt the FEF while participants performed an auditory localization task. On each trial, a visual cue directed attention to the probable laterality of the auditory target, and the participant decided whether the subsequent target sound came from an upper or lower speaker. In the absence of TMS, individuals were faster to respond to targets that occurred on the cued side (valid trials) than when the target appears contralaterally to the cued side (invalid side). TMS interfered with this effect, such that the costs associated with ipsilateral invalidly cued targets were substantially reduced. These results suggest that the eye-movement system is needed for normal auditory attention. PMID:20502626

  12. Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury.

    PubMed

    Rajan, Thangavelu Soundara; Cuzzocrea, Salvatore; Bruschetta, Daniele; Quartarone, Angelo

    2016-01-01

    Traumatic brain injury (TBI) in humans causes a broad range of structural damage and functional deficits due to both primary and secondary injury mechanisms. Over the past three decades, animal models have been established to replicate the diverse changes of human TBI, to study the underlying pathophysiology and to develop new therapeutic strategies. However, drugs that were identified as neuroprotective in animal brain injury models were not successful in clinical trials phase II or phase III. Repetitive transcranial magnetic stimulation (rTMS) is a powerful noninvasive approach to excite cortical neurons in humans and animals, widely applied for therapeutic purpose in patients with brain diseases. In addition, recent animal studies showed rTMS as a strong neuroprotective tool. In this chapter, we discuss the rationale and mechanisms related to rTMS as well as therapeutic applications and putative molecular mechanisms. Furthermore, relevant biochemical studies and neuroprotective effect in animal models and possible application of rTMS as a novel treatment for rodent brain injury models are discussed. PMID:27604732

  13. Effect of repetitive transcranial magnetic stimulation on mood in healthy subjects

    PubMed Central

    Moulier, Virginie; Gaudeau-Bosma, Christian; Isaac, Clémence; Allard, Anne-Camille; Bouaziz, Noomane; Sidhoumi, Djedia; Braha-Zeitoun, Sonia; Benadhira, René; Thomas, Fanny; Januel, Dominique

    2016-01-01

    Background High frequency repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) has shown significant efficiency in the treatment of resistant depression. However in healthy subjects, the effects of rTMS remain unclear. Objective Our aim was to determine the impact of 10 sessions of rTMS applied to the DLPFC on mood and emotion recognition in healthy subjects. Design In a randomised double-blind study, 20 subjects received 10 daily sessions of active (10 Hz frequency) or sham rTMS. The TMS coil was positioned on the left DLPFC through neuronavigation. Several dimensions of mood and emotion processing were assessed at baseline and after rTMS with clinical scales, visual analogue scales (VASs), and the Ekman 60 faces test. Results The 10 rTMS sessions targeting the DLPFC were well tolerated. No significant difference was found between the active group and the control group for clinical scales and the Ekman 60 faces test. Compared to the control group, the active rTMS group presented a significant improvement in their adaptation to daily life, which was assessed through VAS. Conclusion This study did not show any deleterious effect on mood and emotion recognition of 10 sessions of rTMS applied on the DLPFC in healthy subjects. This study also suggested a positive effect of rTMS on quality of life. PMID:26993786

  14. Online repetitive transcranial magnetic stimulation (TMS) to the parietal operculum disrupts haptic memory for grasping.

    PubMed

    Cattaneo, Luigi; Maule, Francesca; Tabarelli, Davide; Brochier, Thomas; Barchiesi, Guido

    2015-11-01

    The parietal operculum (OP) contains haptic memory on the geometry of objects that is readily transferrable to the motor cortex but a causal role of OP in memory-guided grasping is only speculative. We explored this issue by using online high-frequency repetitive transcranial magnetic stimulation (rTMS). The experimental task was performed by blindfolded participants acting on objects of variable size. Trials consisted in three phases: haptic exploration of an object, delay, and reach-grasp movement onto the explored object. Motor performance was evaluated by the kinematics of finger aperture. Online rTMS was applied to the left OP region separately in each of the three phases of the task. The results showed that rTMS altered grip aperture only when applied in the delay phase to the OP. In a second experiment a haptic discriminative (match-to-sample) task was carried out on objects similar to those used in the first experiment. Online rTMS was applied to the left OP. No psychophysical effects were induced by rTMS on the detection of explicit haptic object size. We conclude that neural activity in the OP region is necessary for proficient memory-guided haptic grasping. The function of OP seems to be critical while maintaining the haptic memory trace and less so while encoding it or retrieving it.

  15. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS).

    PubMed

    Klomjai, Wanalee; Katz, Rose; Lackmy-Vallée, Alexandra

    2015-09-01

    Transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS) are indirect and non-invasive methods used to induce excitability changes in the motor cortex via a wire coil generating a magnetic field that passes through the scalp. Today, TMS has become a key method to investigate brain functioning in humans. Moreover, because rTMS can lead to long-lasting after-effects in the brain, it is thought to be able to induce plasticity. This tool appears to be a potential therapy for neurological and psychiatric diseases. However, the physiological mechanisms underlying the effects induced by TMS and rTMS have not yet been clearly identified. The purpose of the present review is to summarize the main knowledge available for TMS and rTMS to allow for understanding their mode of action and to specify the different parameters that influence their effects. This review takes an inventory of the most-used rTMS paradigms in clinical research and exhibits the hypotheses commonly assumed to explain rTMS after-effects.

  16. Potentiation of quantitative electroencephalograms following prefrontal repetitive transcranial magnetic stimulation in patients with major depression.

    PubMed

    Noda, Yoshihiro; Nakamura, Motoaki; Saeki, Takashi; Inoue, Misa; Iwanari, Hideo; Kasai, Kiyoto

    2013-01-01

    The long-lasting effects of repetitive transcranial magnetic stimulation (rTMS) on electroencephalogram (EEG) activity are not clear. We aimed to investigate the cumulative rTMS effects on EEG and clinical outcomes in patients with major depression. Twenty-five patients with medication-resistant depression underwent 10 daily rTMS sessions over the left dorsolateral prefrontal cortex. We measured resting EEG and spectrum-power before and after the rTMS course. Clinical efficacy was evaluated with the Hamilton's Depression Rating Scale (HAM-D) and Wisconsin Card Sorting Test (WCST). In an ANOVA model, including all prefrontal electrodes, post hoc analyses revealed significant time effects on the theta (F1,24 = 7.89, P = 0.010; +43%), delta (F1,24 = 6.58, P = 0.017; +26%), and alpha (F1,24 = 4.64, P = 0.042; 31%) bands without site specificity. Clinical correlations were observed between F4 alpha power increases and improvements in HAM-D retardation, F3 alpha power increases and improvements of the absolute changes in perseveration and error number on the WCST, and C3 and C4 theta power increases and improvements of the percent change in perseveration and error number on the WCST following rTMS. Consecutive prefrontal rTMS could induce long-lasting EEG potentiations beyond the aftereffects, resulting in improved cognitive and depressive symptoms.

  17. Potentiation of quantitative electroencephalograms following prefrontal repetitive transcranial magnetic stimulation in patients with major depression.

    PubMed

    Noda, Yoshihiro; Nakamura, Motoaki; Saeki, Takashi; Inoue, Misa; Iwanari, Hideo; Kasai, Kiyoto

    2013-01-01

    The long-lasting effects of repetitive transcranial magnetic stimulation (rTMS) on electroencephalogram (EEG) activity are not clear. We aimed to investigate the cumulative rTMS effects on EEG and clinical outcomes in patients with major depression. Twenty-five patients with medication-resistant depression underwent 10 daily rTMS sessions over the left dorsolateral prefrontal cortex. We measured resting EEG and spectrum-power before and after the rTMS course. Clinical efficacy was evaluated with the Hamilton's Depression Rating Scale (HAM-D) and Wisconsin Card Sorting Test (WCST). In an ANOVA model, including all prefrontal electrodes, post hoc analyses revealed significant time effects on the theta (F1,24 = 7.89, P = 0.010; +43%), delta (F1,24 = 6.58, P = 0.017; +26%), and alpha (F1,24 = 4.64, P = 0.042; 31%) bands without site specificity. Clinical correlations were observed between F4 alpha power increases and improvements in HAM-D retardation, F3 alpha power increases and improvements of the absolute changes in perseveration and error number on the WCST, and C3 and C4 theta power increases and improvements of the percent change in perseveration and error number on the WCST following rTMS. Consecutive prefrontal rTMS could induce long-lasting EEG potentiations beyond the aftereffects, resulting in improved cognitive and depressive symptoms. PMID:23827366

  18. Short-term effects of repetitive transcranial magnetic stimulation on sleep bruxism - a pilot study.

    PubMed

    Zhou, Wei-Na; Fu, Hai-Yang; Du, Yi-Fei; Sun, Jian-Hua; Zhang, Jing-Lu; Wang, Chen; Svensson, Peter; Wang, Ke-Lun

    2016-03-01

    The purpose of this study was to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on patients with sleep bruxism (SB). Twelve patients with SB were included in an open, single-intervention pilot study. rTMS at 1 Hz and an intensity of 80% of the active motor threshold was applied to the 'hot spot' of the masseter muscle representation at the primary motor cortex bilaterally for 20 min per side each day for 5 consecutive days. The jaw-closing muscle electromyographic (EMG) activity during sleep was recorded with a portable EMG recorder at baseline, during rTMS treatment and at follow-up for 5 days. In addition, patients scored their jaw-closing muscle soreness on a 0-10 numerical rating scale (NRS). Data were analysed with analysis of variance. The intensity of the EMG activity was suppressed during and after rTMS compared to the baseline (P = 0.04; P = 0.02, respectively). The NRS score of soreness decreased significantly during and after rTMS compared with baseline (P < 0.01). These findings indicated a significant inhibition of jaw-closing muscle activity during sleep along with a decrease of muscle soreness. This pilot study raises the possibility of therapeutic benefits from rTMS in patients with bruxism and calls for further and more controlled studies. PMID:27025267

  19. Effects of repetitive transcranial magnetic stimulation on clinical, social, and cognitive performance in postpartum depression

    PubMed Central

    Myczkowski, Martin Luiz; Dias, Álvaro Machado; Luvisotto, Tatiana; Arnaut, Debora; Bellini, Bianca Boura; Mansur, Carlos Gustavo; Rennó, Joel; Tortella, Gabriel; Ribeiro, Philip Leite; Marcolin, Marco Antônio

    2012-01-01

    Background: This randomized, placebo-controlled, double-blind pilot study evaluated the impact of repetitive transcranial magnetic stimulation (rTMS) on clinical, cognitive, and social performance in women suffering with postpartum depression. Methods: Fourteen patients were randomized to receive 20 sessions of sham rTMS or active 5 Hz rTMS over the left dorsolateral prefrontal cortex. Psychiatric clinical scales and a neuropsychological battery were applied at baseline (pretreatment), week 4 (end of treatment), and week 6 (follow-up, posttreatment week 2). Results: The active rTMS group showed significant improvement 2 weeks after the end of rTMS treatment (week 6) in Hamilton Depression Rating Scale (P = 0.020), Global Assessment Scale (P = 0.037), Clinical Global Impression (P = 0.047), and Social Adjustment Scale-Self Report-Work at Home (P = 0.020). Conclusion: This study suggests that rTMS has the potential to improve the clinical condition in postpartum depression, while producing marginal gains in social and cognitive function. PMID:23118543

  20. Short-term effects of repetitive transcranial magnetic stimulation on sleep bruxism – a pilot study

    PubMed Central

    Zhou, Wei-Na; Fu, Hai-Yang; Du, Yi-Fei; Sun, Jian-Hua; Zhang, Jing-Lu; Wang, Chen; Svensson, Peter; Wang, Ke-Lun

    2016-01-01

    The purpose of this study was to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on patients with sleep bruxism (SB). Twelve patients with SB were included in an open, single-intervention pilot study. rTMS at 1 Hz and an intensity of 80% of the active motor threshold was applied to the ‘hot spot' of the masseter muscle representation at the primary motor cortex bilaterally for 20 min per side each day for 5 consecutive days. The jaw-closing muscle electromyographic (EMG) activity during sleep was recorded with a portable EMG recorder at baseline, during rTMS treatment and at follow-up for 5 days. In addition, patients scored their jaw-closing muscle soreness on a 0–10 numerical rating scale (NRS). Data were analysed with analysis of variance. The intensity of the EMG activity was suppressed during and after rTMS compared to the baseline (P = 0.04; P = 0.02, respectively). The NRS score of soreness decreased significantly during and after rTMS compared with baseline (P < 0.01). These findings indicated a significant inhibition of jaw-closing muscle activity during sleep along with a decrease of muscle soreness. This pilot study raises the possibility of therapeutic benefits from rTMS in patients with bruxism and calls for further and more controlled studies. PMID:27025267

  1. Innovative treatment approaches in schizophrenia enhancing neuroplasticity: aerobic exercise, erythropoetin and repetitive transcranial magnetic stimulation.

    PubMed

    Wobrock, T; Hasan, A; Falkai, P

    2012-06-01

    Schizophrenia is a brain disorder associated with subtle, but replicable cerebral volume loss mostly prevalent in frontal and temporal brain regions. Post-mortem studies of the hippocampus point to a reduction of the neuropil constituting mainly of synapses associated with changes of molecules mediating plastic responses of neurons during development and learning. Derived from animal studies interventions to enhance neuroplasticity by inducing adult neurogenesis, synaptogenesis, angiogenesis and long-term potentiation (LTP) were developed and the results translated into clinical studies in schizophrenia. Out of these interventions aerobic exercise has been shown to increase hippocampal volume, elevate N-acetyl-aspartate in the hippocampus as neuronal marker, and improve short-term memory in schizophrenia. The hematopoietic growth factor erythropoetin (EPO) is involved in brain development and associated with the production and differentiation of neuronal precursor cells. A first study demonstrated a positive effect of EPO application on cognition in schizophrenia patients. In randomised controlled studies with small sample size, the efficacy of repetitive transcranial magnetic stimulation (rTMS), a biological intervention focussing on the enhancement of LTP, has been shown for the improvement of positive and negative symptoms in schizophrenia,. The putative underlying neurobiological mechanisms of these interventions including the role of neurotrophic factors are outlined and implications for future research regarding neuroprotection strategies to improve schizophrenia are discussed.

  2. Combining near-infrared spectroscopy with electroencephalography and repetitive transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Näsi, Tiina; Kotilahti, Kalle; Mäki, Hanna; Nissilä, Ilkka; Meriläinen, Pekka

    2009-07-01

    The objective of the study was to assess the usability of a near-infrared spectroscopy (NIRS) device in multimodal measurements. We combined NIRS with electroencephalography (EEG) to record hemodynamic responses and evoked potentials simultaneously, and with transcranial magnetic stimulation (TMS) to investigate hemodynamic responses to repetitive TMS (rTMS). Hemodynamic responses and visual evoked potentials (VEPs) to 3, 6, and 12 s stimuli consisting of pattern-reversing checkerboards were successfully recorded in the NIRS/EEG measurement, and ipsi- and contralateral hemodynamic responses to 0.5, 1, and 2 Hz rTMS in the NIRS/TMS measurement. In the NIRS/EEG measurements, the amplitudes of the hemodynamic responses increased from 3- to 6-s stimulus, but not from 6- to 12-s stimulus, and the VEPs showed peaks N75, P100, and N135. In the NIRS/TMS measurements, the 2-Hz stimulus produced the strongest hemodynamic responses compared to the 0.5- and 1-Hz stimuli. In two subjects oxyhemoglobin concentration decreased and in one increased as a consequence of the 2-Hz rTMS. To locate the origin of the measured NIRS responses, methods have to be developed to investigate TMS-induced scalp muscle contractions. In the future, multimodal measurements may prove useful in monitoring or treating diseases such as stroke or Alzheimer's disease.

  3. Stimulated scattering effects in gold-nanorod-water samples pumped by 532 nm laser pulses

    PubMed Central

    Shi, Jiulin; Wu, Haopeng; Liu, Juan; Li, Shujing; He, Xingdao

    2015-01-01

    Stimulated scattering in gold-nanorod-water samples has been investigated experimentally. The scattering centers are impurity particles rather than the atoms or molecules of conventional homogeneous scattering media. The pump source for exciting stimulated scattering is a pulsed and narrow linewidth second-harmonic Nd: YAG laser, with 532 nm wavelength, ~8 ns pulse duration, and 10 Hz repetition rate. Experimental results indicate that SMBS, SBS and STRS can be generated in gold-nanorod-water samples under appropriate pump and absorption conditions. The incident pump energy has to be larger than a certain threshold value before stimulated scattering can be detected. The absorption coefficient of samples at 532 nm wavelength depends on the one of characteristic absorption bands of gold nanorods located around 530 nm. A critical absorption coefficient can be determined for the transition from SBS to STRS. Also, the spectral-line-broadening effects of STRS have been observed, the line-shape presents a pseudo-Voigt profile due to the random thermal motion of molecules and strong particle collision. PMID:26173804

  4. A Randomised Controlled Trial of Neuronavigated Repetitive Transcranial Magnetic Stimulation (rTMS) in Anorexia Nervosa

    PubMed Central

    McClelland, Jessica; Kekic, Maria; Bozhilova, Natali; Nestler, Steffen; Dew, Tracy; Van den Eynde, Frederique; David, Anthony S.; Rubia, Katya; Campbell, Iain C.; Schmidt, Ulrike

    2016-01-01

    Background Anorexia nervosa (AN) is associated with morbid fear of fatness, extreme food restriction and altered self-regulation. Neuroimaging data implicate fronto-striatal circuitry, including the dorsolateral prefrontal cortex (DLPFC). Methods In this double-blind parallel group study, we investigated the effects of one session of sham-controlled high-frequency repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC (l-DLPFC) in 60 individuals with AN. A food exposure task was administered before and after the procedure to elicit AN-related symptoms. Outcomes The primary outcome measure was ‘core AN symptoms’, a variable which combined several subjective AN-related experiences. The effects of rTMS on other measures of psychopathology (e.g. mood), temporal discounting (TD; intertemporal choice behaviour) and on salivary cortisol concentrations were also investigated. Safety, tolerability and acceptability were assessed. Results Fourty-nine participants completed the study. Whilst there were no interaction effects of rTMS on core AN symptoms, there was a trend for group differences (p = 0.056): after controlling for pre-rTMS scores, individuals who received real rTMS had reduced symptoms post-rTMS and at 24-hour follow-up, relative to those who received sham stimulation. Other psychopathology was not altered differentially following real/sham rTMS. In relation to TD, there was an interaction trend (p = 0.060): real versus sham rTMS resulted in reduced rates of TD (more reflective choice behaviour). Salivary cortisol concentrations were unchanged by stimulation. rTMS was safe, well–tolerated and was considered an acceptable intervention. Conclusions This study provides modest evidence that rTMS to the l-DLPFC transiently reduces core symptoms of AN and encourages prudent decision making. Importantly, individuals with AN considered rTMS to be a viable treatment option. These findings require replication in multiple-session studies to evaluate

  5. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    NASA Astrophysics Data System (ADS)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  6. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    SciTech Connect

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-15

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  7. A rapidly-tuned, short-pulse-length, high-repetition-rate CO{sub 2} laser for IR dial

    SciTech Connect

    Zaugg, T.; Thompson, D.; Leland, W.T.; Busch, G.

    1997-08-01

    Analysis of noise sources in Differential Absorption LIDAR (DIAL) in the infrared region of the spectrum indicates that the signal-to-noise ratio for direct detection can be improved if multiple-wavelength, short-pulse-length beams are transmitted and received at high repetition rates. Atmospheric effects can be minimized, albedo can be rapidly scanned, and uncorrelated speckle can be acquired at the maximum possible rate. A compact, rugged, RF-excited waveguide laser can produce 15 nanosecond pulses at a 100 kHz rate with sufficient energy per pulse to reach the speckle limit of the signal-to-noise ratio. A high-repetition-rate laser has been procured and will be used to verify these signal and noise scaling relationships at high repetition rates. Current line-tuning devices are mechanical and are capable of switching lines at a rate up to a few hundred Hertz. Acousto-optic modulators, deflectors or tunable filters can be substituted for these mechanical devices in the resonator of a CO{sub 2} laser and used to rapidly line-tune the laser across the 9 and 10 micron bands at a rate as high as 100 kHz. Several configurations for line tuning using acousto-optic and electro-optic devices with and without gratings are presented. The merits of and constraints on each design are also discussed. A pair of large aperture, acousto-optic deflectors has been purchased and the various line-tuning designs will be evaluated in a conventional, glass tube, CO{sub 2} laser, with a view to incorporation into the high-repetition-rate, waveguide laser. A computer model of the dynamics of an RF-excited, short-pulse-length, high-repetition-rate waveguide laser has been developed. The model will be used to test the consequences of various line-tuning designs.

  8. Observation of repetitively nanosecond pulse-width transverse patterns in microchip self-Q-switched laser

    SciTech Connect

    Dong, Jun; Ueda, Ken-ichi

    2006-05-15

    Repetitively nanosecond pulse-width transverse pattern formation in a plane-parallel microchip Cr,Nd: yttrium-aluminum-garnet (YAG) self-Q-switched laser was investigated. The complex point-symmetric transverse patterns were observed by varying the pump beam diameter incident on the Cr,Nd:YAG crystal. The gain guiding effect and the thermal effect induced by the pump power in microchip Cr,Nd:YAG laser control the oscillating transverse modes. These transverse pattern formations were due to the variation of the saturated inversion population and the thermal induced index profile along radial and longitudinal direction in the Cr,Nd:YAG crystal induced by the pump power incident on the Cr,Nd:YAG crystal. These were intrinsic properties of such a microchip self-Q-switched laser. The longitudinal distribution of the saturated inversion population inside the gain medium plays an important role on the transverse pattern formation. Different sets of the transverse patterns corresponds to the different saturated inversion population distribution inside microchip Cr,Nd:YAG crystal.

  9. Nanosecond repetitively pulsed discharges in N2-O2 mixtures: inception cloud and streamer emergence

    NASA Astrophysics Data System (ADS)

    Chen, She; Heijmans, L. C. J.; Zeng, Rong; Nijdam, S.; Ebert, U.

    2015-05-01

    We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in a 16 cm point-plane gap in high purity nitrogen 6.0 and in N2-O2 gas mixtures with oxygen contents of 100 ppm, 0.2%, 2% and 20%, for pressures between 66.7 and 200 mbar. The voltage pulses have amplitudes of 20 to 40 kV with rise times of 20 or 60 ns and repetition frequencies of 0.1 to 10 Hz. The discharges first rapidly form a growing cloud around the tip, then they expand much more slowly like a shell and finally after a stagnation stage they can break up into rapid streamers. The radius of cloud and shell in artificial air is about 10% below the theoretically predicted value and scales with pressure p as theoretically expected, while the observed scaling of time scales with p raises questions. We find characteristic dependences on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers emerge immediately. The radius of cloud and shell increases with oxygen concentration. On the other hand, the stagnation time after the shell phase is maximal for the intermediate oxygen concentration of 0.1% and the number of streamers formed is minimal; here the cloud and shell phase seem to be particularly stable against destabilization into streamers.

  10. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGES

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  11. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: An Economic Analysis

    PubMed Central

    Tu, Hong Anh; Palimaka, Stefan; Sehatzadeh, Shayan; Blackhouse, Gord; Yap, Belinda; Tsoi, Bernice; Bowen, Jim; O'Reilly, Daria

    2016-01-01

    Background Major depressive disorder (MDD, 10% over a person's lifetime) is common and costly to the health system. Unfortunately, many MDD cases are resistant to treatment with antidepressant drugs and require other treatment to reduce or eliminate depression. Electroconvulsive therapy (ECT) has long been used to treat persons with treatment-resistant depression (TRD). Despite its effectiveness, ECT has side effects that make patients intolerant to the treatment, or they refuse to use it. Repetitive transcranial magnetic stimulation (rTMS), which has fewer side effects than ECT and might be an alternative for TRD patients who are ineligible for or unwilling to undergo ECT, has been developed to treat TRD. Objectives This analysis evaluates the cost-effectiveness of rTMS for patients with TRD compared with ECT or sham rTMS and estimates the potential budgetary impact of various levels of implementation of rTMS in Ontario. Review Methods A cost-utility analysis compared the costs and health outcomes of two treatments for persons with TRD in Ontario: rTMS alone compared with ECT alone and rTMS alone compared with sham rTMS. We calculated the six-month incremental costs and quality-adjusted life-years (QALYs) for these treatments. One-way and probabilistic sensitivity analyses were performed to test the robustness of the model's results. A 1-year budget impact analysis estimated the costs of providing funding for rTMS. The base-case analysis examined the additional costs for funding six centres, where rTMS infrastructure is in place. Sensitivity and scenario analyses explored the impact of increasing diffusion of rTMS to centres with existing ECT infrastructure. All analyses were conducted from the Ontario health care payer perspective. Results ECT was cost effective compared to rTMS when the willingness to pay is greater than $37,640.66 per QALY. In the base-case analysis, which had a six-month time horizon, the cost and effectiveness for rTMS was $5,272 and 0

  12. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death

  13. Repetitive transcranial magnetic stimulation versus botulinum toxin injection in chronic migraine prophylaxis: a pilot randomized trial

    PubMed Central

    Shehata, Hatem S; Esmail, Eman H; Abdelalim, Ahmad; El-Jaafary, Shaimaa; Elmazny, Alaa; Sabbah, Asmaa; Shalaby, Nevin M

    2016-01-01

    Background Chronic migraine is a prevalent disabling disease, with major health-related burden and poor quality of life. Long-term use of preventive medications carries risk of side effects. Objectives The aim of this study was to compare repetitive transcranial magnetic stimulation (rTMS) to botulinum toxin-A (BTX-A) injection as preventive therapies for chronic migraine. Methods A pilot, randomized study was conducted on a small-scale sample of 29 Egyptian patients with chronic migraine, recruited from Kasr Al-Aini teaching hospital outpatient clinic and diagnosed according to ICHD-III (beta version). Patients were randomly assigned into two groups; 15 patients received BTX-A injection following the Phase III Research Evaluating Migraine Prophylaxis Therapy injection paradigm and 14 patients were subjected to 12 rTMS sessions delivered at high frequency (10 Hz) over the left motor cortex (MC, M1). All the patients were requested to have their 1-month headache calendar, and they were subjected to a baseline 25-item (beta version) Henry Ford Hospital Headache Disability Inventory (HDI), Headache Impact Test (HIT-6), and visual analogue scale assessment of headache intensity. The primary efficacy measures were headache frequency and severity; secondary measures were 25-item HDI, HIT-6, and number of acute medications. Follow-up visits were scheduled at weeks 4, 6, 8, 10, and 12 after baseline visit. Results A reduction in all outcome measures was achieved in both the groups. However, this improvement was more sustained in the BTX-A group, and both the therapies were well tolerated. Conclusion BTX-A injection and rTMS have favorable efficacy and safety profiles in chronic migraineurs. rTMS is of comparable efficacy to BTX-A injection in chronic migraine therapy, but with less sustained effect. PMID:27785091

  14. Repetitive Transcranial Magnetic Stimulation Affects behavior by Biasing Endogenous Cortical Oscillations

    PubMed Central

    Hamidi, Massihullah; Slagter, Heleen A.; Tononi, Giulio; Postle, Bradley R.

    2009-01-01

    A governing assumption about repetitive transcranial magnetic stimulation (rTMS) has been that it interferes with task-related neuronal activity – in effect, by “injecting noise” into the brain – and thereby disrupts behavior. Recent reports of rTMS-produced behavioral enhancement, however, call this assumption into question. We investigated the neurophysiological effects of rTMS delivered during the delay period of a visual working memory task by simultaneously recording brain activity with electroencephalography (EEG). Subjects performed visual working memory for locations or for shapes, and in half the trials a 10-Hz train of rTMS was delivered to the superior parietal lobule (SPL) or a control brain area. The wide range of individual differences in the effects of rTMS on task accuracy, from improvement to impairment, was predicted by individual differences in the effect of rTMS on power in the alpha-band of the EEG (∼10 Hz): a decrease in alpha-band power corresponded to improved performance, whereas an increase in alpha-band power corresponded to the opposite. The EEG effect was localized to cortical sources encompassing the frontal eye fields and the intraparietal sulcus, and was specific to task (location, but not object memory) and to rTMS target (SPL, not control area). Furthermore, for the same task condition, rTMS-induced changes in cross-frequency phase synchrony between alpha- and gamma-band (>40 Hz) oscillations predicted changes in behavior. These results suggest that alpha-band oscillations play an active role cognitive processes and do not simply reflect absence of processing. Furthermore, this study shows that the complex effects of rTMS on behavior can result from biasing endogenous patterns of network-level oscillations. PMID:19587850

  15. Cognitive safety of dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression.

    PubMed

    Schulze, Laura; Wheeler, Sarah; McAndrews, Mary Pat; Solomon, Chloe J E; Giacobbe, Peter; Downar, Jonathan

    2016-07-01

    The most widely used target for repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant depression (TRD) is the dorsolateral prefrontal cortex (DLPFC). Despite convergent evidence that the dorsomedial prefrontal cortex (DMPFC) may be a promising alternative target for rTMS in TRD, its cognitive safety profile has not previously been assessed. Here, we applied 20 sessions of rTMS to the DMPFC in 21 TRD patients. Before and after treatment, a battery of neuropsychological tasks was administered to evaluate changes in cognition across three general cognitive domains: learning and memory, attention and processing speed, and cognitive flexibility. Subjects also completed the 17-item Hamilton Rating Scale for Depression (HamD17) prior to and following treatment to measure changes in severity of depressive symptoms, and to assess the relationship between mood and cognitive performance over the course of treatment. No serious adverse effects or significant deterioration in cognitive performance were observed. Overall, subjects improved significantly on Stroop Inhibition/Switching and on Trails B, and this improvement was independent of the degree of improvement in depression symptoms. No domains or items significantly predicted clinical outcome, with the exception of baseline performance on Visual Elevator Accuracy. Clinical improvement correlated to improved performance in the overall domain of attention and processing speed, although this effect was not evident following covariate adjustment. DMPFC-rTMS did not produce any detectable cognitive adverse effects during treatment of TRD. Performance did not deteriorate significantly on any measures. Taken together, the present findings support the tolerability and cognitive safety of DMPFC-rTMS in refractory depression. PMID:27157074

  16. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  17. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation

    PubMed Central

    Kang, Jun-Il; Huppé-Gourgues, Frédéric; Vaucher, Elvire

    2015-01-01

    Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1) induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR), M1 and M2 muscarinic (mAChR) or GABAergic A (GABAAR) receptors was performed during the training session and visual evoked potentials (VEPs) were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD), suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by nAChRs, M2 m

  18. Treatment-Resistant Depression Entering Remission Following a Seizure during the Course of Repetitive Transcranial Magnetic Stimulation.

    PubMed

    Kim, Ju-Wan; Bae, Kyung-Yeol; Kim, Sung-Wan; Kang, Hee-Ju; Shin, Il-Seon; Yoon, Jin-Sang; Kim, Jae-Min

    2016-07-01

    Major depressive disorder is often resistant to antidepressant treatment. Repetitive transcranial magnetic stimulation (rTMS) has been used in treatment-resistant depression (TRD). Known adverse events of rTMS include transient headache, local pain, syncope, seizure induction, and hypomania induction. This report outlines a patient with TRD who unexpectedly improved following a seizure during the course of rTMS, which has never been reported. PMID:27482250

  19. Treatment-Resistant Depression Entering Remission Following a Seizure during the Course of Repetitive Transcranial Magnetic Stimulation

    PubMed Central

    Kim, Ju-Wan; Bae, Kyung-Yeol; Kim, Sung-Wan; Kang, Hee-Ju; Shin, Il-Seon; Yoon, Jin-Sang

    2016-01-01

    Major depressive disorder is often resistant to antidepressant treatment. Repetitive transcranial magnetic stimulation (rTMS) has been used in treatment-resistant depression (TRD). Known adverse events of rTMS include transient headache, local pain, syncope, seizure induction, and hypomania induction. This report outlines a patient with TRD who unexpectedly improved following a seizure during the course of rTMS, which has never been reported. PMID:27482250

  20. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-01

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  1. Discovery of pulsed OH maser emission stimulated by a pulsar.

    PubMed

    Weisberg, Joel M; Johnston, Simon; Koribalski, Bärbel; Stanimirovic, Snezana

    2005-07-01

    Stimulated emission of radiation has not been directly observed in astrophysical situations up to this time. Here we demonstrate that photons from pulsar B1641-45 stimulate pulses of excess 1720-megahertz line emission in an interstellar hydroxyl (OH) cloud. As this stimulated emission is driven by the pulsar, it varies on a few-millisecond time scale, which is orders of magnitude shorter than the quickest OH maser variations previously detected. Our 1612-megahertz spectra are inverted copies of the 1720-megahertz spectra. This "conjugate line" phenomenon enables us to constrain the properties of the interstellar OH line-producing gas. We also show that pulsar signals undergo significantly deeper OH absorption than do other background sources, which confirms earlier tentative findings that OH clouds are clumpier on small scales than are neutral hydrogen clouds.

  2. Repetitive transcranial magnetic stimulation over the orbitofrontal cortex for obsessive-compulsive disorder: a double-blind, crossover study

    PubMed Central

    Nauczyciel, C; Le Jeune, F; Naudet, F; Douabin, S; Esquevin, A; Vérin, M; Dondaine, T; Robert, G; Drapier, D; Millet, B

    2014-01-01

    This pilot study was designed to assess the efficacy of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the right orbitofrontal cortex (OFC) by means of a double-cone coil in patients suffering from obsessive-compulsive disorder. We hypothesized that low-frequency stimulation of the OFC would lead to a reduction in clinical symptoms, as measured on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). A randomized, double-blind, crossover design was implemented with two 1-week treatment periods (active stimulation versus sham stimulation) separated by a 1-month washout period. Concomitantly, a subgroup of patients underwent a positron emission tomography (PET) scan after each stimulation sequence. Statistical analyses compared the Y-BOCS scores at the end of each period. At day 7, we observed a significant decrease from baseline in the Y-BOCS scores, after both active (P<0.01) and sham stimulation (P=0.02). This decrease tended to be larger after active stimulation than after sham stimulation: −6 (−29, 0) points versus −2 (−20, 4) points (P=0.07). Active versus sham PET scan contrasts showed that stimulation was related to a bilateral decrease in the metabolism of the OFC. The OFC should definitely be regarded as a key neuroanatomical target for rTMS, as it is easier to reach than either the striatum or the subthalamic nucleus, structures favored in neurosurgical approaches. PMID:25203167

  3. Temporal evolution of temperature and OH density produced by nanosecond repetitively pulsed discharges in water vapour at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sainct, F. P.; Lacoste, D. A.; Kirkpatrick, M. J.; Odic, E.; Laux, C. O.

    2014-02-01

    We report on an experimental study of the temporal evolution of OH density and gas temperature in spark discharges created by nanosecond repetitively pulsed discharges in pure water vapour at 475 K and atmospheric pressure. The plasma was generated by 20 kV, 20 ns pulses, at a repetition frequency of 10 kHz. The temperature was measured during the discharge by optical emission spectroscopy of the second positive system of N2, and between two discharges by two-colour OH-planar laser induced fluorescence (OH-PLIF) using two pairs of rotational transitions. Between two successive discharges, the relative density of OH was measured by OH-PLIF and was found to decay very slowly, with a 1/e decay time of about 50 µs. With the use of a chemical kinetics model, the OH density was placed on an absolute scale.

  4. Self-mode-locked all-fibre erbium laser with a low repetition rate and high pulse energy

    SciTech Connect

    Denisov, Vladimir I; Nyushkov, B N; Pivtsov, V S

    2010-01-31

    Self-starting mode locking is demonstrated for the first time in an all-fibre erbium laser with a cavity length above 1 km and high positive (normal) intracavity dispersion. The unconventional cavity design, with polarisation instability compensation, ensures stable operation and good frequency stability. The laser generates pulses with a record low repetition rate (82.4 kHz) and record high energy (564.3 nJ). (lasers)

  5. Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers.

    PubMed

    Yamakawa, K; Aoyama, M; Matsuoka, S; Takuma, H; Barty, C P; Fittinghoff, D

    1998-04-01

    We describe a two-stage Ti:sapphire amplifier laser system that is capable of producing 16-fs pulses of 10-TW peak power at a 10-Hz repetition rate. Thin solid etalons were used to control gain narrowing and gain saturation during amplification. A cylindrical mirror expander was used to permit compensation of the dispersion of the system. An efficiency greater than 90% of the theoretical maximum for conversion of 532-nm pump light to 790-nm radiation is demonstrated.

  6. Criteria for formation of low-frequency sound under wide-aperture repetitively pulsed laser irradiation of solids

    SciTech Connect

    Tishchenko, V N; Posukh, V G; Gulidov, A I; Zapryagaev, V I; Pavlov, A A; Boyarintsev, Ye L; Golubev, M P; Kavun, I N; Melekhov, A V; Golobokova, L S; Miroshnichenko, I B; Pavlov, Al A; Shmakov, A S

    2011-10-31

    The criteria for merging shock waves formed by optical breakdowns on the surface of solids have been investigated. Targets made of different materials were successively irradiated by two CO{sub 2}-laser pulses with energies up to 200 J and a duration of {approx}1 {mu}s. It is shown that the criteria under consideration can be applied to different targets and irradiation regimes and make it possible to calculate the parameters of repetitively pulsed laser radiation that are necessary to generate low-frequency sound and ultrasound in air.

  7. On the possibility of using a corner-cube reflector in resonators of high-power repetitively pulsed lasers

    SciTech Connect

    Bulaev, V D; Gusev, V S; Lysenko, S L; Morozov, Yu B; Poznyshev, A N

    2012-08-31

    An optical cavity with a highly reflecting mirror in the form of a hollow corner-cube reflector (CCR) made of uncooled plane metal mirrors, which, in combination with a plane semitransparent output mirror, ensures complete filling of the output laser beam aperture, is studied. It is shown that, both in the pulsed and repetitively pulsed regimes of high-power far- and mid-IR lasers, it is possible to achieve beam divergence close to the diffraction limit (taking into account the drift of the radiation pattern axis) and dependent only on the quality of surfaces and accuracy of alignment of the hollow CCR mirrors and the resonator. (elements of laser systems)

  8. The Role of Pulse Repetition Rate in nsPEF-Induced Electroporation: A Biological and Numerical Investigation.

    PubMed

    Lamberti, Patrizia; Romeo, Stefania; Sannino, Anna; Zeni, Luigi; Zeni, Olga

    2015-09-01

    The impact of pulse repetition rate (PRR) in modulating electroporation (EP) induced by nanosecond pulsed electric fields (nsPEFs) in mammalian cells was approached here by performing both biological and numerical analysis. Plasma membrane permeabilization and viability of Jurkat cells were analyzed after exposure to 500, 1.3 MV/m, 40 ns PEFs with variable PRR (2-30 Hz). A finite-element model was used to investigate EP dynamics in a single cell under the same pulsing conditions, by looking at the time course of transmembrane voltage and pore density on the ns time scale. The biological observations showed an increased EP and reduced viability of the exposed cells at lower PRR in the considered range. The numerical analysis resulted in different dynamics of plasma membrane response when ns pulses were delivered with different PRR, consistently with a phenomenon of electrodesensitization recently hypothesized by another research group. PMID:25850084

  9. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  10. Repetitive transcranial magnetic stimulation over the supplementary motor area modifies breathing pattern in response to inspiratory loading in normal humans

    PubMed Central

    Nierat, Marie-Cécile; Hudson, Anna L.; Chaskalovic, Joël; Similowski, Thomas; Laviolette, Louis

    2015-01-01

    In awake humans, breathing depends on automatic brainstem pattern generators. It is also heavily influenced by cortical networks. For example, functional magnetic resonance imaging and electroencephalographic data show that the supplementary motor area becomes active when breathing is made difficult by inspiratory mechanical loads like resistances or threshold valves, which is associated with perceived respiratory discomfort. We hypothesized that manipulating the excitability of the supplementary motor area with repetitive transcranial magnetic stimulation would modify the breathing pattern response to an experimental inspiratory load and possibly respiratory discomfort. Seven subjects (three men, age 25 ± 4) were studied. Breathing pattern and respiratory discomfort during inspiratory loading were described before and after conditioning the supplementary motor area with repetitive stimulation, using an excitatory paradigm (5 Hz stimulation), an inhibitory paradigm, or sham stimulation. No significant change in breathing pattern during loading was observed after sham conditioning. Excitatory conditioning shortened inspiratory time (p = 0.001), decreased tidal volume (p = 0.016), and decreased ventilation (p = 0.003), as corroborated by an increased end-tidal expired carbon dioxide (p = 0.013). Inhibitory conditioning did not affect ventilation, but lengthened expiratory time (p = 0.031). Respiratory discomfort was mild under baseline conditions, and unchanged after conditioning of the supplementary motor area. This is the first study to show that repetitive transcranial magnetic stimulation conditioning of the cerebral cortex can alter breathing pattern. A 5 Hz conditioning protocol, known to enhance corticophrenic excitability, can reduce the amount of hyperventilation induced by inspiratory threshold loading. Further studies are needed to determine whether and under what circumstances rTMS can have an effect on dyspnoea. PMID:26483701

  11. Kinetic changes in tetanic Ca2+ transients in enzymatically dissociated muscle fibres under repetitive stimulation

    PubMed Central

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo

    2011-01-01

    Abstract We used enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres loaded with the fast Ca2+ dye Magfluo-4 AM, and adhered to Laminin, to test whether repetitive stimulation induces progressive changes in the kinetics of Ca2+ release and reuptake in a fibre-type-dependent fashion. We applied a protocol of tetani of 350 ms, 100 Hz, every 4 s to reach a mean amplitude reduction of 25% of the first peak. Morphology type I (MT-I) and morphology type II (MT-II) fibres underwent a total of 96 and 52.8 tetani (P < 0.01 between groups), respectively. The MT-II fibres (n = 18) showed significant reductions of the amplitude (19%), an increase in rise time (8.5%) and a further reduction of the amplitude/rise time ratio (25.5%) of the first peak of the tetanic transient after 40 tetani, while MT-I fibres (n = 5) did not show any of these changes. However, both fibre types showed significant reductions in the maximum rate of rise of the first peak after 40 tetani. Two subpopulations among the MT-II fibres could be distinguished according to Ca2+ reuptake changes. Fast-fatigable MT-II fibres (fMT-II) showed an increase of 32.2% in the half-width value of the first peak, while for fatigue-resistant MT-II fibres (rMT-II), the increase amounted to 6.9%, both after 40 tetani. Significant and non-significant increases of 36.4% and 11.9% in the first time constant of decay (t1) values were seen after 40 tetani in fMT-II and rMT-II fibres, respectively. MT-I fibres did not show kinetic changes in any of the Ca2+ reuptake variables. All changes were reversed after an average recovery of 7.5 and 15.4 min for MT-I and MT-II fibres, respectively. Further experiments ruled out the possibility that the differences in the kinetic changes of the first peak of the Ca2+ transients between fibres MT-I and MT-II could be related to the inactivation of Ca2+ release mechanism. In conclusion, we established a model of enzymatically dissociated fibres, loaded with Magfluo-4 and

  12. Monitoring Cortical Excitability during Repetitive Transcranial Magnetic Stimulation in Children with ADHD: A Single-Blind, Sham-Controlled TMS-EEG Study

    PubMed Central

    Helfrich, Christian; Pierau, Simone S.; Freitag, Christine M.; Roeper, Jochen; Ziemann, Ulf; Bender, Stephan

    2012-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children. Objective TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available. Methods In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition. Results TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation. Conclusion The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude

  13. Induction of central nervous system plasticity by repetitive transcranial magnetic stimulation to promote sensorimotor recovery in incomplete spinal cord injury

    PubMed Central

    Ellaway, Peter H.; Vásquez, Natalia; Craggs, Michael

    2014-01-01

    Cortical and spinal cord plasticity may be induced with non-invasive transcranial magnetic stimulation to encourage long term potentiation or depression of neuronal circuits. Such plasticity inducing stimulation provides an attractive approach to promote changes in sensorimotor circuits that have been degraded by spinal cord injury (SCI). If residual corticospinal circuits can be conditioned appropriately there should be the possibility that the changes are accompanied by functional recovery. This article reviews the attempts that have been made to restore sensorimotor function and to obtain functional benefits from the application of repetitive transcranial magnetic stimulation (rTMS) of the cortex following incomplete spinal cord injury. The confounding issues that arise with the application of rTMS, specifically in SCI, are enumerated. Finally, consideration is given to the potential for rTMS to be used in the restoration of bladder and bowel sphincter function and consequent functional recovery of the guarding reflex. PMID:24904326

  14. Stimulated LIF studied using pulsed digital holography and modelling

    NASA Astrophysics Data System (ADS)

    Amer, Eynas; Stenvall, Jonas; Gren, Per; Sjödahl, Mikael

    2013-04-01

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. The laser induced fluorescence (LIF) spectrum has been recorded using a spectrometer at different dye concentrations. The frequency doubled 532 nm beam from the same laser is used as a probe beam to pass through the excited volume of the dye. Because of stimulated emission an increase of the probe (532 nm) beam energy is recorded and a reduction of the spontaneous fluorescence spectrum intensity is observed. A model was developed that approaches the trend of the gain as a function of the probe beam energy at low dye concentrations (less than 0.08 g/L). The stimulated LIF is further recorded using digital holography. Digital holograms were recorded for different dye concentrations using collimated laser light (532 nm) passed through the dye volume. Two holograms without and with the UV laser beam were recorded. Intensity maps were calculated from the recorded digital holograms and are used to calculate the gain of the green laser beam due to the stimulated fluorescence emission which is coupled to the dye concentration. The gain of the coherent 532 nm beam is seen in the intensity maps and its value is about 40% for a dye concentration of 0.32 g/L and decreases with the decrease of the dye concentration. The results show that pulsed digital holography can be coupled to the stimulated LIF effect for imaging fluorescent species.

  15. Economic evaluation of resistant major depressive disorder treatment in Iranian population: a comparison between repetitive Transcranial Magnetic Stimulation with electroconvulsive

    PubMed Central

    Ghiasvand, Hesam; Moradi- Joo, Mohammad; Abolhassani, Nazanin; Ravaghi, Hamid; Raygani, Seyed Mansoor; Mohabbat-Bahar, Sahar

    2016-01-01

    Background: It is estimated that major depression disorders constitute 8.2% of years lived with disability (YLDs) globally. The repetitive Transcranial Magnetic Stimulation (rTMS) and Electroconvulsive Therapy (ECT) are two relative common interventions to treat major depressive disorders, especially for treatment resistant depression. In this study the cost- effectiveness and cost-utility of rTMS were compared with ECT in Iranian population suffering from major depressive disorder using a decision tree model. Methods: A decision tree model conducted to compare the cost-effectiveness ratio of rTMS with ECT in a health system prospective and 7 months’ time horizon. The outcome variables were: response rate, remission rate and quality-adjusted life-years (QALYs) of the rTMS and ECT as primary and secondary outcomes extracted from systematic reviews and randomized control trials. The costs were also calculated through a field study in one clinic and one hospital; the direct costs have only been considered. Results: The total cost for rTMS and ECTstrategieswere11015000Rials (373US$) and 11742700 Rials (397.7US$), respectively. Also the rTMS/ECT ratio of costs per improved patients was 1194410Rials (40.5 US$); the ratio for costs per QALYs utility was 21017139 Rials (711.72 US$). The incremental cost- effectiveness ratio of rTMS versus ECT was 1194410 Rials (40.44 US$) after treatment and maintenance courses. Conclusion: Given the current prevalence of depressive disorders in Iranian population, the ECT is more cost-effective than TMS. The sensitivity analysis showed that if the prevalence of major depressive disorders declines to below 5% or the costs of rTMS decrease (rTMS provided by public sector), then the rTMS becomes more cost-effective compared with ECT. However, efficacy of rTMS depends on the frequency of pulsed magnetic field, the location of rTMS on the head, the number of therapeutic sessions and the length of each session. PMID:27390700

  16. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  17. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed. PMID:26625047

  18. Generation of synchronized picosecond pulses by a 1.06-µm gain-switched laser diode for stimulated Raman scattering microscopy.

    PubMed

    Tokunaga, Kyoya; Fang, Yi-Cheng; Yokoyama, Hiroyuki; Ozeki, Yasuyuki

    2016-05-01

    We propose that a gain-switched laser diode (GS-LD) can be used as a picosecond laser source for stimulated Raman scattering (SRS) microscopy. We employed a 1.06-µm GS-LD to generate ~13-ps pulses at a repetition rate of 38 MHz and amplified them to >100 mW with Yb-doped fiber amplifiers. The GS-LD was driven by 200-ps electrical pulses, which were triggered through a toggle flip-flop (T-FF) so that the GS-LD pulses were synchronized to Ti:sapphire laser (TSL) pulses at a repetition rate of 76 MHz. We found the timing jitter of GS-LD pulses to be approximately 2.7 ps in a jitter bandwidth of 7 MHz. We also show that the delay of electrical pulses can be less sensitive to the optical power of TSL pulses by controlling the threshold voltage of the T-FF. We demonstrate the SRS imaging of polymer beads and of HeLa cells with GS-LD pulses and TSL pulses, proving that GS-LD is readily applicable to SRS microscopy as a compact and stable pulse source. PMID:27137575

  19. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients.

    PubMed

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-07-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  20. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients

    PubMed Central

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-01-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  1. Low and High Frequency Repetitive Transcranial Magnetic Stimulation for the Treatment of Spasticity

    ERIC Educational Resources Information Center

    Valle, Angela C.; Dionisio, Karen; Pitskel, Naomi Bass; Pascual-Leone, Alvaro; Orsati, Fernanda; Ferreira, Merari J. L.; Boggio, Paulo S.; Lima, Moises C.; Rigonatti, Sergio P.; Fregni, Felipe

    2007-01-01

    The development of non-invasive techniques of cortical stimulation, such as transcranial magnetic stimulation (TMS), has opened new potential avenues for the treatment of neuropsychiatric diseases. We hypothesized that an increase in the activity in the motor cortex by cortical stimulation would increase its inhibitory influence on spinal…

  2. Laminar lean premixed methane/air combustion near the lean flammability limit using nanosecond repetitive pulsed discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bak, Moon Soo; Do, Hyungrok; Mungal, Mark G.; Cappelli, Mark A.

    2011-10-01

    Gas chromatographic and temperature measurements have been carried out to investigate the extent of premixed methane/air combustion with the application of nanosecond repetitive pulsed discharges around the lean flammability limit for laminar flows. The results show that the discharges lead to the complete combustion when the equivalence ratio is above 0.54, but when the ratio is below the limit, the combustion is quenched at the downstream flow. To investigate the kinetics in detail, 2-D simulations of plasma-induced combustion have been conducted for methane/air mixtures at below and above the lean flammability limit. The simulations reveal that methane is mostly combusted in the discharge region since the discharge repetition timescale is much shorter than the species diffusion and advection timescales, and so the discharge serves more as a heat and radical source rather than a small combustor, to flame hold near the lean flammability limit.

  3. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  4. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation

    PubMed Central

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W.; Akens, Margarete K.; Lilge, Lothar; Marjoribanks, Robin S.

    2016-01-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  5. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NASA Astrophysics Data System (ADS)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  6. A short pulse (7 {mu}s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    SciTech Connect

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; Janssen, Maurice H. M.; Ende, Daan A. van den; Groen, Wilhelm A.

    2009-11-15

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 {mu}s have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 {mu}m nozzle releases about 10{sup 16} particles/pulse and the beam brightness was estimated to be 4x10{sup 22} particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10{sup -6} Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow ({Delta}v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas

  7. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.

    PubMed

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  8. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  9. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice.

    PubMed

    Nguyen, Khanh T; Barrett, John N; García-Chacón, Luis; David, Gavriel; Barrett, Ellen F

    2011-06-01

    Mitochondria in motor nerve terminals temporarily sequester large Ca(2+) loads during repetitive stimulation. In wild-type mice this Ca(2+) uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Ψ(m), motor nerve stimulated at 100 Hz for 5s). We demonstrate that this stimulation-induced Ψ(m) depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Ψ(m) depolarizations decayed slowly and incremented with successive stimulus trains. Additional Ψ(m) depolarizations occurred that were not synchronized with stimulation. These large Ψ(m) depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 μM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca(2+) with Sr(2+), which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Ψ(m) depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca(2+) influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca(2+) loads and might thereby contribute to motor terminal degeneration in fALS mice. Ψ(m) depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following a 0.5-1h exposure to diamide (200 μM), which produces an oxidative stress, but these depolarizations were not reduced by CsA. PMID:21310237

  10. Temporal evolution of the electron density produced by nanosecond repetitively pulsed discharges in water vapor at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sainct, Florent; Lacoste, Deanna; Kirkpatrick, Michael; Odic, Emmanuel; Laux, Christophe

    2014-10-01

    A study of plasma discharges produced by nanosecond repetitive pulses (NRP) in water vapor at 450 K and 1 atm is presented. The plasma was generated between two point electrodes with 20-ns duration, high-voltage (0--20 kV) pulses, at a repetition frequency of 10 kHz, in the spark regime (2 mJ/pulse). Atomic lines measured by optical emission spectroscopy were used to determine the electron number density in this non-equilibrium water-vapor plasma. The broadenings and shifts of the Hα and Hβ lines of the hydrogen Balmer series and of the atomic oxygen triplet at 777 nm were analyzed. For a maximum reduced electric field of about 200 Td, a maximum electron density of 2 × 1018 cm-3 was measured, corresponding to an ionization level of about 10 %. This ionization level is two orders of magnitude higher than the one obtained for similar NRP discharges in air at atmospheric pressure.

  11. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  12. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans.

    PubMed

    Oliveri, Massimiliano; Koch, Giacomo; Torriero, Sara; Caltagirone, Carlo

    2005-03-16

    Connections between the cerebellum and the contralateral motor cortex are dense and important, but their physiological significance is difficult to measure in humans. We have studied a group of 10 healthy subjects to test whether a modulation of the excitability of the left cerebellum can affect the excitability of the contralateral motor cortex. We used repetitive transcranial magnetic stimulation (rTMS) at 1 Hz frequency to transiently depress the excitability of the left cerebellar cortex and paired-pulse TMS testing of intracortical inhibition (ICI) and intracortical facilitation (ICF) to probe the excitability of cortico-cortical connections in the right motor cortex. The cortical silent period was also measured before and after cerebellar rTMS. Motor evoked potentials (MEPs) were significantly larger after than before conditioning rTMS trains (p < 0.01). Moreover, left cerebellar rTMS increased the ICF of the right motor cortex as measured with paired-pulses separated by an interstimulus interval (ISI) of 15 ms. The effect lasted for up to 30 min afterward and was specific for the contralateral (right) motor cortex. The cortical silent period was unaffected by cerebellar rTMS. The implication is that rTMS of the cerebellar cortex can shape the flowing of inhibition from Purkinje cells toward deep nuclei, thereby increasing the excitability of interconnected brain areas.

  13. Chemiluminometric Immuno-Analysis of Innate Immune Response against Repetitive Bacterial Stimulations for the Same Mammalian Cells

    PubMed Central

    Jeon, Jin-Woo; Cho, Il-Hoon; Ha, Un-Hwan; Seo, Sung-Kyu; Paek, Se-Hwan

    2014-01-01

    For monitoring of human cellular response to repetitive bacterial stimulations (e.g., Pseudomonas aeruginosa in a lysate form), we devised a chemiluminescent immuno-analytical system for toll-like receptor 1 (TLR1) as marker present on cell surfaces (e.g., A549). Upon stimulation, TLR1 recognizes pathogen-associated molecular patterns of the infectious agent and are then up-regulated via activation of the nuclear factor-κB (NF-κB) pathway. In this study, the receptor density was quantified by employing an antibody specific to the target receptor and by producing a chemiluminometric signal from an enzyme labeled to the binder. The activated status was then switched back to normal down-regulated stage, by changing the culture medium to one containing animal serum. The major factors affecting activation were the stimulation dose of the bacterial lysate, stimulation timing during starvation, and up- and down-regulation time intervals. Reiterative TLR regulation switching up to three times was not affected by either antibody remained after immunoassay or enzyme substrate (e.g., hydrogen peroxide) in solution. This immuno-analysis for TLRs could be unique to acquire accumulated response of the human cells to repeated stimulations and, therefore, can eventually apply to persistency testing of the cellular regulation in screening of anti-inflammatory substances. PMID:25109895

  14. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    SciTech Connect

    Glova, A F; Lysikov, A Yu

    2011-10-31

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  15. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats.

    PubMed

    Shang, Yingchun; Wang, Xin; Shang, Xueliang; Zhang, Hui; Liu, Zhipeng; Yin, Tao; Zhang, Tao

    2016-10-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique, by which cognitive deficits can be alleviated. Furthermore, rTMS may facilitate learning and memory. However, its underlying mechanism is still little known. The aim of this study was to investigate if the facilitation of spatial cognition and synaptic plasticity, induced by rTMS, is regulated by enhancing pre- and postsynaptic proteins in normal rats. Morris water maze (MWM) test was performed to examine the spatial cognition. The synaptic plasticity, including long-term potentiation (LTP) and depotentiation (DEP), presynaptic plasticity paired-pulse facilitation (PPF), from the hippocampal Schaffer collaterals to CA1 region was subsequently measured using in vivo electrophysiological techniques. The expressions of brain-derived neurotrophic factor (BDNF), presynaptic protein synaptophysin (SYP) and postsynaptic protein NR2B were measured by Western blot. Our data show that the spatial learning/memory and reversal learning/memory in rTMS rats were remarkably enhanced compared to that in the Sham group. Furthermore, LTP and DEP as well as PPF were effectively facilitated by 5Hz-rTMS. Additionally, the expressions of BDNF, SYP and NR2B were significantly increased via magnetic stimulation. The results suggest that rTMS considerably increases the expressions of BDNF, postsynaptic protein NR2B and presynaptic protein SYP, and thereby significantly enhances the synaptic plasticity and spatial cognition in normal animals. PMID:27555233

  16. Cognitive effects and autonomic responses to transcranial pulsed current stimulation.

    PubMed

    Morales-Quezada, Leon; Cosmo, Camila; Carvalho, Sandra; Leite, Jorge; Castillo-Saavedra, Laura; Rozisky, Joanna R; Fregni, Felipe

    2015-03-01

    Transcranial pulsed current stimulation (tPCS) is emerging as an option in the field of neuromodulation; however, little is known about its effects on cognition and behavior and its neurophysiological correlates as indexed by autonomic responses. Our aim was to identify the effects of tPCS on arithmetic processing and risk-taking behavior, and to further categorize physiological autonomic responses by heart rate variability (HRV) and electrodermal activity measurements before, during, and after exposure to task performance and stimulation. Thirty healthy volunteers were randomized to receive a single session of sham or active stimulation with a current intensity of 2 mA and a random frequency between 1 and 5 Hz. Our results showed that tPCS has a modest and specific effect on cognitive performance as indexed by the cognitive tasks chosen in this study. There was a modest effect of active tPCS only on performance facilitation on a complex-level mathematical task as compared to sham stimulation. On autonomic responses, we observed that HRV total power increased while LF/HF ratio decreased in the tPCS active group compared to sham. There were no group differences for adverse effects. Based on our results, we conclude that tPCS, in healthy subjects, has a modest and specific cognitive effect as shown by the facilitation of arithmetical processing on complex mathematical task. These effects are accompanied by modulation of the central autonomic network providing sympathetic-vagal balance during stressful conditions. Although behavioral results were modest, they contribute to the understanding of tPCS effects and cognitive enhancement. PMID:25479736

  17. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    SciTech Connect

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  18. Enhancement of the amplitude of somatosensory evoked potentials following magnetic pulse stimulation of the human brain.

    PubMed

    Seyal, M; Browne, J K; Masuoka, L K; Gabor, A J

    1993-01-01

    In this study we have demonstrated an enhancement of cortically generated wave forms of the somatosensory evoked potential (SEP) following magnetic pulse stimulation of the human brain. Subcortically generated activity was unaltered. The enhancement of SEP amplitude was greatest when the median nerve was stimulated 30-70 msec following magnetic pulse stimulation over the contralateral parietal scalp. We posit that the enhancement of the SEP is the result of synchronization of pyramidal cells in the sensorimotor cortex resulting from the magnetic pulse.

  19. High-Frequency Repetitive Sensory Stimulation as Intervention to Improve Sensory Loss in Patients with Complex Regional Pain Syndrome I

    PubMed Central

    David, Marianne; Dinse, Hubert R.; Mainka, Tina; Tegenthoff, Martin; Maier, Christoph

    2015-01-01

    Achieving perceptual gains in healthy individuals or facilitating rehabilitation in patients is generally considered to require intense training to engage neuronal plasticity mechanisms. Recent work, however, suggested that beneficial outcome similar to training can be effectively acquired by a complementary approach in which the learning occurs in response to mere exposure to repetitive sensory stimulation (rSS). For example, high-frequency repetitive sensory stimulation (HF-rSS) enhances tactile performance and induces cortical reorganization in healthy subjects and patients after stroke. Patients with complex regional pain syndrome (CRPS) show impaired tactile performance associated with shrinkage of cortical maps. We here investigated the feasibility and efficacy of HF-rSS, and low-frequency rSS (LF-rSS) to enhance tactile performance and reduce pain intensity in 20 patients with CRPS type I. Intermittent high- or low-frequency electrical stimuli were applied for 45 min/day to all fingertips of the affected hand for 5 days. Main outcome measures were spatial two-point-discrimination thresholds and mechanical detection thresholds measured on the tip of the index finger bilaterally. Secondary endpoint was current pain intensity. All measures were assessed before and on day 5 after the last stimulation session. HF-rSS applied in 16 patients improved tactile discrimination on the affected hand significantly without changes contralaterally. Current pain intensity remained unchanged on average, but decreased in four patients by ≥30%. This limited pain relief might be due to the short stimulation period of 5 days only. In contrast, after LF-rSS, tactile discrimination was impaired in all four patients, while detection thresholds and pain were not affected. Our data suggest that HF-rSS could be used as a novel approach in CRPS treatment to improve sensory loss. Longer treatment periods might be required to induce consistent pain relief. PMID:26635719

  20. Preliminary Evidence of the Effects of High-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Swallowing Functions in Post-Stroke Individuals with Chronic Dysphagia

    ERIC Educational Resources Information Center

    Cheng, Ivy K. Y.; Chan, Karen M. K.; Wong, C. S.; Cheung, Raymond T. F.

    2015-01-01

    Background: There is growing evidence of potential benefits of repetitive transcranial magnetic stimulation (rTMS) in the rehabilitation of dysphagia. However, the site and frequency of stimulation for optimal effects are not clear. Aims: The aim of this pilot study is to investigate the short-term effects of high-frequency 5 Hz rTMS applied to…

  1. Repair of nonunions by electrically pulsed current stimulation.

    PubMed

    Zichner, L

    1981-01-01

    Five congenital and 52 acquired nonunions of bone were stimulated using an invasive device. The unit delivered a constant but pulsed right-angled current of positive polarity measuring 20 to 25 muAmps (voltage of 750 mV) and a frequency of 20 Hz. The power pack encapsulated in epoxy resin was implanted at the time of operative fragment stabilization. THe cathode was inserted at the site of the nonunion gap. After two to 12 months, all but two of the acquired nonunions and one of the congenital pseudarthroses healed. In the unsuccessful cases, the bone ends were often totally necrotic. Four cases required reimplantation because of broken wires or expiration of the battery, and two cases failed owing to purulent infection. Electrostimulation is an adjuvant treatment to fragment stabilization in hyporeactive and hypovascular or congenital pseudarthroses. Electrical stimuli may be assumed to simulate conditions which are essential for bone healing.

  2. Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dual-wavelength Nd:YLF Laser

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Cheshev, E. A.; Gorbunkov, M. V.; Koromyslov, A. L.; Krokhin, O. N.; Mityagin, Yu. A.; Popov, Yu. M.; Savinov, S. A.; Tunkin, V. G.

    We present modification of difference frequency generator of coherent THz radiation in a nonlinear GaSe crystal using dual-wavelength diode-pumped solid-state Nd:YLF laser. Generation at the two wavelengths (1.047 and 1.053 μm) was carried out by equalization of the gains at these wavelengths near the frequency degeneracy of the transverse modes in resonator cavity, Q-switched by acousto-optical modulator. The main parameters of the device were measured: angular synchronism (width 0.6 degrees), polarization ratio (1:100), conversion efficiency (10-7), pulse power (0.8 mW), frequency and width (53,8 сm-1, 0,6 сm-1), pulse width and repetition rate (10 ns,7 kHz). The method is promising for practical purposes.

  3. Laser beam deflection monitoring of Nd: YAG laser ablation: pulse shape and repetition rate effects

    NASA Astrophysics Data System (ADS)

    Diaci, Janez; Možina, Janez

    1993-05-01

    The laser beam deflection probe has been employed to study blast waves generated during ablation of metallic surfaces by sequences of 1.06 μm Nd:YAG laser pulses separated by less than 1μs. A fluence threshold has been found, below which the effects of individual pulses can be resolved by the laser probe. Above that, the deflection signal has a similar form as if the surface were irradiated with a single pulse. Analysis of the signals in terms of the spherical blast wave theory shows that a pulse sequence generates a weaker blast wave than a single pulse of equal total energy. On the other hand, the sequence yields a higher etch depth than the single pulse.

  4. A megawatt solid-state modulator for high repetition rate pulse generation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pribyl, P.; Gekelman, W.

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  5. A megawatt solid-state modulator for high repetition rate pulse generation.

    PubMed

    Wang, Y; Pribyl, P; Gekelman, W

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented. PMID:26931851

  6. A megawatt solid-state modulator for high repetition rate pulse generation.

    PubMed

    Wang, Y; Pribyl, P; Gekelman, W

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  7. LASERS: Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    NASA Astrophysics Data System (ADS)

    Annenkov, V. I.; Garanin, Sergey G.; Eroshenko, V. A.; Zhidkov, N. V.; Zubkov, A. V.; Kalipanov, S. V.; Kalmykov, N. A.; Kovalenko, V. P.; Krotov, V. A.; Lapin, S. G.; Martynenko, S. P.; Pankratov, V. I.; Faizullin, V. S.; Khrustalev, V. A.; Khudikov, N. M.; Chebotar, V. S.

    2009-08-01

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being ~0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse.

  8. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study.

    PubMed

    Datta, Abhishek; Dmochowski, Jacek P; Guleyupoglu, Berkan; Bikson, Marom; Fregni, Felipe

    2013-01-15

    The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS). In order to understand further the mechanisms of CES, we aimed to model CES using a magnetic resonance imaging (MRI)-derived finite element head model including cortical and also subcortical structures. Cortical electric field (current density) peak intensities and distributions were analyzed. We evaluated different electrode configurations of CES including in-ear and over-ear montages. Our results confirm that significant amounts of current pass the skull and reach cortical and subcortical structures. In addition, depending on the montage, induced currents at subcortical areas, such as midbrain, pons, thalamus and hypothalamus are of similar magnitude than that of cortical areas. Incremental variations of electrode position on the head surface also influence which cortical regions are modulated. The high-resolution modeling predictions suggest that details of electrode montage influence current flow through superficial and deep structures. Finally we present laptop based methods for tPCS dose design using dominant frequency and spherical models. These modeling predictions and tools are the first step to advance rational and optimized use of tPCS and CES.

  9. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex

    NASA Astrophysics Data System (ADS)

    Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.

    2013-06-01

    Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.

  10. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex

    PubMed Central

    Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.

    2013-01-01

    Abstract. Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects. PMID:23757042

  11. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    NASA Astrophysics Data System (ADS)

    Heitz, Sylvain A.; Moeck, Jonas P.; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna A.

    2016-04-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region.

  12. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate

    PubMed Central

    Lee, Keunwoo; Lee, Joohyung; Jang, Yoon-Soo; Han, Seongheum; Jang, Heesuk; Kim, Young-Jin; Kim, Seung-Woo

    2015-01-01

    Femtosecond lasers allow for simultaneous detection of multiple absorption lines of a specimen over a broad spectral range of infrared or visible light with a single spectroscopic measurement. Here, we present an 8-THz bandwidth, 0.5-GHz resolution scheme of Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser. A resolving power of 1.6 × 104 about a 1560-nm center wavelength is achieved by sweeping the pulse repetition rate of the light source on a fiber Mach-Zehnder interferometer configured to capture interferograms with a 0.02-fs temporal sampling accuracy through a well-stabilized 60-m unbalance arm length. A dual-servo mechanism is realized by combining a mechanical linear stage with an electro-optic modulator (EOM) within the fiber laser cavity, enabling stable sweeping control of the pulse repetition rate over a 1.0-MHz scan range with 0.4-Hz steps with reference to the Rb clock. Experimental results demonstrate that the P-branch lines of the H13CN reference cell can be observed with a signal-to-noise ratio reaching 350 for the most intense line. PMID:26503257

  13. Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers

    SciTech Connect

    Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi

    2007-02-15

    We have proposed a way to obtain large optically controlled delay for subnanosecond pulses and simultaneously avoid the pulse distortions via stimulated Brillouin scattering (SBS) in optical fibers at cw pumping by the use of longitudinally nonuniform fibers with the Brillouin frequency linearly varying with distance. If the range of Brillouin frequency variation along the fiber covers the whole pulse spectrum, the delay of subnanosecond pulses is linearly proportional to the gain, could be larger than the pulse duration, and the pulse broadening is minimum. We have shown this by solving three-wave SBS equations for realistic fiber lengths, both single subnanosecond pulses and sequences of subnanosecond pulses.

  14. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate

    NASA Astrophysics Data System (ADS)

    Karsch, Leonhard

    2016-04-01

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  15. Comparison of two high-repetition-rate pulsed CO/sub 2/ laser discharge geometries

    SciTech Connect

    Faszer, W.; Tulip, J.; Seguin, H.

    1980-11-01

    Two discharge geometries are commonly used for pumping high-repetition-rate transversely excited atmosphere (TEA) lasers. One uses solid electrodes with preionization provided by downstream spark pins. The other uses a solid electrode and a screen electrode with preionization provided by an auxiliary discharge behind the screen. In this study the performance of the two systems was compared. The repetition rate at which arcing occurs was found to increase linearly with flow velocity but decrease with increasing energy density. It was also dependent on system geometry and the spark pin preionized system performed better than the auxiliary discharge preionized system. Data are given for discharges in N/sub 2/, CO/sub 2/, He, and a CO/sub 2/ laser mixture.

  16. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  17. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    NASA Astrophysics Data System (ADS)

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-10-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist-Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light-matter interactions and nonlinear processes at the nanoscale.

  18. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling

    PubMed Central

    Wang, Haomin; Wang, Le; Xu, Xiaoji G.

    2016-01-01

    Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360

  19. Deception rate in a "lying game": different effects of excitatory repetitive transcranial magnetic stimulation of right and left dorsolateral prefrontal cortex not found with inhibitory stimulation.

    PubMed

    Karton, Inga; Palu, Annegrete; Jõks, Kerli; Bachmann, Talis

    2014-11-01

    Knowing the brain processes involved in lying is the key point in today's deception detection studies. We have previously found that stimulating the dorsolateral prefrontal cortex (DLPFC) with repetitive transcranial magnetic stimulation (rTMS) affects the rate of spontaneous lying in simple behavioural tasks. The main idea of this study was to examine the role of rTMS applied to the DLPFC in the behavioural conditions where subjects were better motivated to lie compared to our earlier studies and where all possible conditions (inhibition of left and right DLPFC with 1-Hz and sham; excitation of left and right DLPFC with 10-Hz and sham) were administered to the same subjects. It was expected that excitation of the left DLPFC with rTMS decreases and excitation of the right DLPFC increases the rate of lying and that inhibitory stimulation reverses the effects. As was expected, excitation of the left DLPFC decreased lying compared to excitation of the right DLPFC, but contrary to the expectation, inhibition had no different effects. These findings suggest that propensity to lie can be manipulated by non-invasive excitatory brain stimulation by TMS targeted at DLPFC and the direction of the effect depends on the cortical target locus. PMID:25233864

  20. Effects of shifts in the rate of repetitive stimulation on sustained attention

    NASA Technical Reports Server (NTRS)

    Krulewitz, J. E.; Warm, J. S.; Wohl, T. H.

    1975-01-01

    The effects of shifts in the rate of presentation of repetitive neutral events (background event rate) were studied in a visual vigilance task. Four groups of subjects experienced either a high (21 events/min) or a low (6 events/min) event rate for 20 min and then experienced either the same or the alternate event rate for an additional 40 min. The temporal occurrence of critical target signals was identical for all groups, irrespective of event rate. The density of critical signals was 12 signals/20 min. By the end of the session, shifts in event rate were associated with changes in performance which resembled contrast effects found in other experimental situations in which shift paradigms were used. Relative to constant event rate control conditions, a shift from a low to a high event rate depressed the probability of signal detections, while a shift in the opposite direction enhanced the probability of signal detections.

  1. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  2. Improvement of white matter and functional connectivity abnormalities by repetitive transcranial magnetic stimulation in crossed aphasia in dextral.

    PubMed

    Lu, Haitao; Wu, Haiyan; Cheng, Hewei; Wei, Dongjie; Wang, Xiaoyan; Fan, Yong; Zhang, Hao; Zhang, Tong

    2014-01-01

    As a special aphasia, the occurrence of crossed aphasia in dextral (CAD) is unusual. This study aims to improve the language ability by applying 1 Hz repetitive transcranial magnetic stimulation (rTMS). We studied multiple modality imaging of structural connectivity (diffusion tensor imaging), functional connectivity (resting fMRI), PET, and neurolinguistic analysis on a patient with CAD. Furthermore, we applied rTMS of 1 Hz for 40 times and observed the language function improvement. The results indicated that a significantly reduced structural and function connectivity was found in DTI and fMRI data compared with the control. The PET imaging showed hypo-metabolism in right hemisphere and left cerebellum. In conclusion, one of the mechanisms of CAD is that right hemisphere is the language dominance. Stimulating left Wernicke area could improve auditory comprehension, stimulating left Broca's area could enhance expression, and the results outlasted 6 months by 1 Hz rTMS balancing the excitability inter-hemisphere in CAD. PMID:25419415

  3. Empathy Moderates the Effect of Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex on Costly Punishment

    PubMed Central

    Heinisch, Christine; Tas, Cumhur; Wischniewski, Julia; Güntürkün, Onur

    2012-01-01

    Humans incur considerable costs to punish unfairness directed towards themselves or others. Recent studies using repetitive transcranial magnetic stimulation (rTMS) suggest that the right dorsolateral prefrontal cortex (DLPFC) is causally involved in such strategic decisions. Presently, two partly divergent hypotheses are discussed, suggesting either that the right DLPFC is necessary to control selfish motives by implementing culturally transmitted social norms, or is involved in suppressing emotion-driven prepotent responses to perceived unfairness. Accordingly, we studied the role of the DLPFC in costly (i.e. third party) punishment by applying rTMS to the left and right DLPFC before playing a Dictator Game with the option to punish observed unfair behavior (DG-P). In addition, sham stimulation took place. Individual differences in empathy were assessed with the German version of the Interpersonal Reactivity Index. Costly punishment increased (non-significantly) upon disruption of the right – but not the left – DLPFC as compared to sham stimulation. However, empathy emerged as a highly significant moderator variable of the effect of rTMS over the right, but not left, DLPFC, suggesting that the right DLPFC is involved in controlling prepotent emotional responses to observed unfairness, depending on individual differences in empathy. PMID:23028601

  4. Effects of repetitive transcranial magnetic stimulation on non-veridical decision making.

    PubMed

    Tulviste, Jaan; Goldberg, Elkhonon; Podell, Kenneth; Bachmann, Talis

    2016-01-01

    We test the emerging hypothesis that prefrontal cortical mechanisms involved in non-veridical decision making do not overlap with those of veridical decision making. Healthy female subjects performed an experimental task assessing free choice, agent-centered decision making (The Cognitive Bias Task) and a veridical control task related to visuospatial working memory (the Moving Spot Task). Transcranial magnetic stimulation (TMS) was applied to the left and right dorsolateral prefrontal cortex (DLPFC) using 1 Hz and 10 Hz (intermittent) rTMS and sham protocols. Both 1 Hz and 10 Hz stimulation of the DLPFC triggered a shift towards a more context-independent, internal representations driven non-veridical selection bias. A significantly reduced preference for choosing objects based on similarity was detected, following both 1 Hz and 10 Hz treatment of the right as well as 1 Hz rTMS of the left DLPFC. 1 Hz rTMS treatment of the right DLPFC also triggered a significant improvement in visuospatial working memory performance on the veridical task. The effects induced by prefrontal TMS mimicked those of posterior lesions, suggesting that prefrontal stimulation influenced neuronal activity in remote cortical regions interconnected with the stimulation site via longitudinal fasciculi. PMID:27685771

  5. Effects of repetitive transcranial magnetic stimulation on non-veridical decision making.

    PubMed

    Tulviste, Jaan; Goldberg, Elkhonon; Podell, Kenneth; Bachmann, Talis

    2016-01-01

    We test the emerging hypothesis that prefrontal cortical mechanisms involved in non-veridical decision making do not overlap with those of veridical decision making. Healthy female subjects performed an experimental task assessing free choice, agent-centered decision making (The Cognitive Bias Task) and a veridical control task related to visuospatial working memory (the Moving Spot Task). Transcranial magnetic stimulation (TMS) was applied to the left and right dorsolateral prefrontal cortex (DLPFC) using 1 Hz and 10 Hz (intermittent) rTMS and sham protocols. Both 1 Hz and 10 Hz stimulation of the DLPFC triggered a shift towards a more context-independent, internal representations driven non-veridical selection bias. A significantly reduced preference for choosing objects based on similarity was detected, following both 1 Hz and 10 Hz treatment of the right as well as 1 Hz rTMS of the left DLPFC. 1 Hz rTMS treatment of the right DLPFC also triggered a significant improvement in visuospatial working memory performance on the veridical task. The effects induced by prefrontal TMS mimicked those of posterior lesions, suggesting that prefrontal stimulation influenced neuronal activity in remote cortical regions interconnected with the stimulation site via longitudinal fasciculi.

  6. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  7. Effects of unilateral repetitive transcranial magnetic stimulation of the motor cortex on chronic widespread pain in fibromyalgia.

    PubMed

    Passard, A; Attal, N; Benadhira, R; Brasseur, L; Saba, G; Sichere, P; Perrot, S; Januel, D; Bouhassira, D

    2007-10-01

    Non-invasive unilateral repetitive transcranial magnetic stimulation (rTMS) of the motor cortex induces analgesic effects in focal chronic pain syndromes, probably by modifying central pain modulatory systems. Neuroimaging studies have shown bilateral activation of a large number of structures, including some of those involved in pain processing, suggesting that such stimulation may induce generalized analgesic effects. The goal of this study was to assess the effects of unilateral rTMS of the motor cortex on chronic widespread pain in patients with fibromyalgia. Thirty patients with fibromyalgia syndrome (age: 52.6 +/- 7.9) were randomly assigned, in a double-blind fashion, to two groups, one receiving active rTMS (n = 15) and the other sham stimulation (n = 15), applied to the left primary motor cortex in 10 daily sessions. The primary outcome measure was self-reported average pain intensity over the last 24 h, measured at baseline, daily during the stimulation period and then 15, 30 and 60 days after the first stimulation. Other outcome measures included: sensory and affective pain scores for the McGill pain Questionnaire, quality of life (assessed with the pain interference items of the Brief Pain Inventory and the Fibromyalgia Impact Questionnaire), mood and anxiety (assessed with the Hamilton Depression Rating Scale, the Beck Depression Inventory and the Hospital Anxiety and Depression Scale). We also assessed the effects of rTMS on the pressure pain threshold at tender points ipsi- and contralateral to stimulation. Follow-up data were obtained for all the patients on days 15 and 30 and for 26 patients (13 in each treatment group) on day 60. Active rTMS significantly reduced pain and improved several aspects of quality of life (including fatigue, morning tiredness, general activity, walking and sleep) for up to 2 weeks after treatment had ended. The analgesic effects were observed from the fifth stimulation onwards and were not related to changes in mood or

  8. An Open-Label Feasibility Trial of Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Major Depressive Episodes.

    PubMed

    Fujiwara, Masaki; Inagaki, Masatoshi; Higuchi, Yuji; Uchitomi, Yosuke; Terada, Seishi; Kodama, Masafumi; Kishi, Yoshiki; Yamada, Norihito

    2016-08-01

    Repetitive transcranial magnetic stimulation (rTMS) has been reported to be a new treatment option for treatment-resistant depression. In Japan, there has been limited research into its feasibility, efficacy, and tolerability. We have launched a trial of rTMS for treating medication-resistant major depressive disorder and bipolar depression. We are investigating low-frequency rTMS to the right dorsolateral prefrontal cortex and traditional high-frequency rTMS to the left dorsolateral prefrontal cortex, in 20 patients. The primary outcome of the study is the treatment completion rate. This study will provide new data on the usefulness of rTMS for treatment-resistant depression in Japan. PMID:27549679

  9. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    PubMed

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  10. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning

    PubMed Central

    Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  11. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Event-Related Potential (ERP) Indices of Attention in Autism

    PubMed Central

    Casanova, Manuel F.; Baruth, Joshua M.; El-Baz, Ayman; Tasman, Allan; Sears, Lonnie; Sokhadze, Estate

    2014-01-01

    Individuals with autism spectrum disorder (ASD) have previously been shown to have significantly augmented and prolonged event-related potentials (ERP) to irrelevant visual stimuli compared to controls at both early and later stages (e.g., N200, P300) of visual processing and evidence of an overall lack of stimulus discrimination. Abnormally large and indiscriminative cortical responses to sensory stimuli may reflect cortical inhibitory deficits and a disruption in the excitation/inhibition ratio. Low-frequency (≤1HZ) repetitive transcranial magnetic stimulation (rTMS) has been shown to increase inhibition of stimulated cortex by the activation of inhibitory circuits. It was our prediction that after 12 sessions of low-frequency rTMS applied bilaterally to the dorsolateral prefrontal cortices in individuals with ASD there would be a significant improvement in ERP indices of selective attention evoked at later (i.e., 200–600 ms) stages of attentional processing as well as an improvement in motor response error rate. We assessed 25 participants with ASD in a task of selective attention using illusory figures before and after 12 sessions of rTMS in a controlled design where a waiting-list group of 20 children with ASD performed the same task twice. We found a significant improvement in both N200 and P300 components as a result of rTMS as well as a significant reduction in response errors. We also found significant reductions in both repetitive behavior and irritability according to clinical behavioral questionnaires as a result of rTMS. We propose that rTMS has the potential to become an important therapeutic tool in ASD research and treatment. PMID:24683490

  12. Power, pulse width, and repetition rate agile low-cost multi-spectral semi-active laser simulator

    NASA Astrophysics Data System (ADS)

    O'Daniel, Jason K.; Young, Preston; Golden, Eric; Barton, Robert; Snyder, Donald

    2010-04-01

    The emergence of spectrally multimode smart missiles requires hardware-in-the-loop (HWIL) facilities to simulate multiple spectral signatures simultaneously. While traditional diode-pumped solid-state (DPSS) sources provide a great basic testing source for smart missiles, they typically are bulky and provide substantially more power peak power than what is required for laboratory simulation, have fixed pulse widths, and require some external means to attenuate the output power. HWIL facilities require systems capable of high speed variability of the angular divergence and optical intensity over several orders of magnitude, which is not typically provided by basic DPSS systems. In order to meet the needs of HWIL facilities, we present a low-cost semi-active laser (SAL) simulator source using laser diode sources that emits laser light at the critical wavelengths of 1064 nm and 1550 nm, along with light in the visible for alignment, from a single fiber aperture. Fiber delivery of the multi-spectral output can provide several advantages depending on the testing setup. The SAL simulator source presented is capable of providing attenuation of greater than 70 dB with a response time of a few milliseconds and provides a means to change the angular divergence over an entire dynamic range of 0.02- 6º in less than 400 ms. Further, the SAL simulator is pulse width and pulse repetition rate agile making it capable of producing both current and any future coding format necessary.

  13. Numerical simulation of high-power virtual-cathode reflex triode driven by repetitive short pulse electron gun

    SciTech Connect

    Yovchev, I.G.; Spassovsky, I.P.; Nikolov, N.A.; Dimitrov, D.P.; Messina, G.; Raimondi, P.; Barroso, J.J.; Correa, R.A.

    1996-06-01

    A virtual-cathode reflex triode is investigated by numerical simulations. A trapezoidal in shape voltage pulse with an amplitude of 300 kV is applied to the solid cathode of the device to drive the cathode negative. The electron beam-to-microwave power conversion efficiency {epsilon}, calculated for the pulse flat top with a duration {tau}{sub ft} = 1.2 ns is approximately the same (about 1.5--2%) as well as for a long flat top ({tau}{sub ft} = 4 ns). The simulations show a 10--15% increase of {epsilon} at {tau}{sub ft} shortening to 0.6 ns. However, this occurs when the anode mesh transparency is high (80--90%). Considerable enhancement of the efficiency (about four times) for {tau}{sub ft} = 0.6 ns has been calculated if the cathode side surface is brought near to the anode tube (from {approx}0.5% at cathode radius R{sub c} = 1.6 cm to {approx}2% at R{sub c} = 3.8 cm). The obtained results would find an application for the design of virtual-cathode reflex triode devices driven by a short pulse and high repetition rate electron gun.

  14. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor.

    PubMed

    Barbosa, S; Pilla, G; Lacoste, D A; Scouflaire, P; Ducruix, S; Laux, C O; Veynante, D

    2015-08-13

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  15. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  16. Adjunctive Low-frequency Repetitive Transcranial Magnetic Stimulation over the Right Dorsolateral Prefrontal Cortex in Patients with Treatment-resistant Obsessive-compulsive Disorder: A Randomized Controlled Trial

    PubMed Central

    Seo, Ho-Jun; Jung, Young-Eun; Lim, Hyun Kook; Um, Yoo-Hyun; Lee, Chang Uk; Chae, Jeong-Ho

    2016-01-01

    Objective The present study aimed to evaluate the efficacy of low frequency (LF) repetitive transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex (DLPFC) for the treatment of obsessive-compulsive disorder (OCD). Methods Twenty-seven patients with treatment resistant OCD were randomly assigned to 3 week either active (n=14) or sham (n=13) rTMS. The active rTMS parameters consisted of 1 Hz, 20-minute trains (1,200 pulses/day) at 100% of the resting motor threshold (MT). OCD symptoms, mood, and anxiety were assessed at baseline and every week throughout the treatment period. Results A repeated-measures analysis of variance (ANOVA) was used to evaluate changes on the Yale-Brown Obsessive Compulsive Scale (YBOCS). Our results revealed a significant reduction in YBOCS scores in the active group compared with the sham group after 3 weeks. Similarly, a repeated-measures ANOVA revealed significant effect of time and time×group interaction on scores on the Hamilton Depression Rating Scale and the Clinical Global Impression-Severity scale. There were no reports of any serious adverse effects following the active and sham rTMS treatments. Conclusion LF rTMS over the right DLPFC appeared to be superior to sham rTMS for relieving OCD symptoms and depression in patients with treatment-resistant OCD. Further trials with larger sample sizes should be conducted to confirm the present findings. PMID:27121426

  17. Wavelength dependence of repetitive-pulse laser-induced damage threshold in beta-BaB2O4.

    PubMed

    Kouta, H

    1999-01-20

    The dependence on wavelength of repetitive-pulse (10 Hz, 8-10 ns) laser-induced damage on beta barium metaborate (BBO) has been investigated. The thresholds of dielectric breakdown in bulk crystal have been found to be 0.3 GW/cm(2) at 266 nm, 0.9 GW/cm(2) at 355 nm, 2.3 GW/cm(2) at 532 nm, and 4.5 GW/cm(2) at 1064 nm. Results indicate two-photon absorption at 266 and 355 nm, which helps to produce an avalanche effect that causes breakdown at each of the four wavelengths tested. Neither the BBO refractive indices nor the absorption spectrum change until breakdown occurs.

  18. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Shut'ko, Yuliya V.; Yan, Ping

    2011-05-01

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of ˜15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  19. X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

    SciTech Connect

    Shao Tao; Yan Ping; Tarasenko, Victor F.; Shut'ko, Yuliya V.; Zhang Cheng

    2011-05-15

    In this paper, using two repetitive nanosecond generators, x-rays were detected in atmospheric air with a highly inhomogeneous electric field by a point-to- plane gap. The rise times of the generators were about 15 and 1 ns. The x-rays were directly measured by various dosimeters and a NaI scintillator with a photomultiplier tube. X-rays were detected in the continuous mode at pulse repetition frequency up to 1 kHz and a voltage pulse rise time of {approx}15 ns. It is shown that the maximum x-ray intensity is attainable at different pulse repetition frequencies depending on the voltage pulse parameters and cathode design. In atmospheric pressure air the x-ray intensity is found to increase with increasing the pulse repetition frequency up to 1 kHz. It is confirmed that the maximum x-ray intensity is attained in a diffuse discharge in a point-to-plane gap.

  20. 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate.

    PubMed

    Fischer, Jonathan; Heinrich, Alexander-Cornelius; Maier, Simon; Jungwirth, Julian; Brida, Daniele; Leitenstorfer, Alfred

    2016-01-15

    A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

  1. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Limpert, Jens; Tünnermann, Andreas

    2012-05-01

    We report on an OPCPA system delivering CEP-stable pulses with a pulse duration of only 1.7 optical cycles at 880 nm wavelength. This pulse duration is achieved by the generation, optical parametric amplification and compression of a full optical octave of bandwidth. The system is pumped by a high average power Yb-fiber laser system, which allows for operation of the OPCPA at up to 1 MHz repetition rate and 22 W of average output power. Further scaling towards single-cycle pulses, higher energy and output power is discussed. PMID:22565712

  2. Efficacy of repetitive transcranial magnetic stimulation with quetiapine in treating bipolar II depression: a randomized, double-blinded, control study

    PubMed Central

    Hu, Shao-hua; Lai, Jian-bo; Xu, Dong-rong; Qi, Hong-li; Peterson, Bradley S.; Bao, Ai-min; Hu, Chan-chan; Huang, Man-li; Chen, Jing-kai; Wei, Ning; Hu, Jian-bo; Li, Shu-lan; Zhou, Wei-hua; Xu, Wei-juan; Xu, Yi

    2016-01-01

    The clinical and cognitive responses to repetitive transcranial magnetic stimulation (rTMS) in bipolar II depressed patients remain unclear. In this study, thirty-eight bipolar II depressed patients were randomly assigned into three groups: (i) left high-frequency (n = 12), (ii) right low-frequency (n = 13), (iii) sham stimulation (n = 13), and underwent four-week rTMS with quetiapine concomitantly. Clinical efficacy was evaluated at baseline and weekly intervals using the 17-item Hamilton Depression Rating Scale (HDRS-17) and Montgomery-Asberg Depression Rating Scale (MADRS). Cognitive functioning was assessed before and after the study with the Wisconsin Card Sorting Test (WCST), Stroop Word-Color Interference Test (Stroop), and Trail Making Test (TMT). Thirty-five patients were included in the final analysis. Overall, the mean scores of both the HDRS-17 and the MADRS significantly decreased over the 4-week trial, which did not differ among the three groups. Exploratory analyses revealed no differences in factor scores of HDRS-17s, or in response or remission rates. Scores of WCST, Stroop, or TMT did not differ across the three groups. These findings indicated active rTMS combined with quetiapine was not superior to quetiapine monotherapy in improving depressive symptoms or cognitive performance in patients with bipolar II depression. PMID:27460201

  3. Efficacy of repetitive transcranial magnetic stimulation with quetiapine in treating bipolar II depression: a randomized, double-blinded, control study.

    PubMed

    Hu, Shao-Hua; Lai, Jian-Bo; Xu, Dong-Rong; Qi, Hong-Li; Peterson, Bradley S; Bao, Ai-Min; Hu, Chan-Chan; Huang, Man-Li; Chen, Jing-Kai; Wei, Ning; Hu, Jian-Bo; Li, Shu-Lan; Zhou, Wei-Hua; Xu, Wei-Juan; Xu, Yi

    2016-01-01

    The clinical and cognitive responses to repetitive transcranial magnetic stimulation (rTMS) in bipolar II depressed patients remain unclear. In this study, thirty-eight bipolar II depressed patients were randomly assigned into three groups: (i) left high-frequency (n = 12), (ii) right low-frequency (n = 13), (iii) sham stimulation (n = 13), and underwent four-week rTMS with quetiapine concomitantly. Clinical efficacy was evaluated at baseline and weekly intervals using the 17-item Hamilton Depression Rating Scale (HDRS-17) and Montgomery-Asberg Depression Rating Scale (MADRS). Cognitive functioning was assessed before and after the study with the Wisconsin Card Sorting Test (WCST), Stroop Word-Color Interference Test (Stroop), and Trail Making Test (TMT). Thirty-five patients were included in the final analysis. Overall, the mean scores of both the HDRS-17 and the MADRS significantly decreased over the 4-week trial, which did not differ among the three groups. Exploratory analyses revealed no differences in factor scores of HDRS-17s, or in response or remission rates. Scores of WCST, Stroop, or TMT did not differ across the three groups. These findings indicated active rTMS combined with quetiapine was not superior to quetiapine monotherapy in improving depressive symptoms or cognitive performance in patients with bipolar II depression. PMID:27460201

  4. Measurement of repetitive surface displacement modulation induced by illuminating femto-second laser pulses

    NASA Astrophysics Data System (ADS)

    Tozawa, Ryoma; Barada, Daisuke; Kawata, Shigeo

    2015-09-01

    In this study, a light-driven deformable mirror is fabricated by electron beam lithography. The mirror is consisted of a deformation layer and a micromirror array. The deformation layer is made of an azobenzene polymer and the micromirro array is deposited on the deformation layer. The deformation of azobenzene polymer is induced by illuminating a continuum wave beam or femto-second pulse laser beam. Then, the micromirror is displaced. The displacement modulation is experimentally confirmed by interference measurement.

  5. Modeling and optimizing of low-repetition-rate high-energy pulse amplification in high-concentration erbium-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Dai, Zhiyong; Ou, Zhonghua; Zhang, Lixun; Liu, Yongzhi; Liu, Yong

    2009-09-01

    Starting from the modeling of isolated ions and ion-pairs, a closed form rate and power evolution equations for pulse amplification in high-concentration erbium-doped fiber amplifiers (EDFAs) are constructed. According to the equations, the effects of ion-pairs on the performance of a high-concentration EDFA in steady state including upper-state population, ASE powers without input signal are analyzed numerically. Furthermore, the effects of ion-pairs on the dynamic characteristics of low-repetition-rate pulse amplification in the EDFA including the storied energy, output pulse energy and evolution of pulse waveform distortion are systematically studied by using the finite-difference method. The results show that the presence of the ion-pairs deteriorates amplifier performance, such as the upper-state population, ASE power, storied energy, output pulse energy, and saturated gain, etc. For the high-concentration EDFA, the optimum fiber length should be modified to achieve a better performance. The relations between the evolution of pulse waveform distortion or output pulse energy and the input pulse peak power are also discussed. The results can provide important guide for the design and optimization of the low-repetition-rate pulse amplification in high-concentration EDFAs.

  6. A proof-of-concept study on the combination of repetitive transcranial magnetic stimulation and relaxation techniques in chronic tinnitus.

    PubMed

    Kreuzer, Peter M; Poeppl, Timm B; Bulla, Jan; Schlee, Winfried; Lehner, Astrid; Langguth, Berthold; Schecklmann, Martin

    2016-10-01

    Interference of ongoing neuronal activity and brain stimulation motivated this study to combine repetitive transcranial magnetic stimulation (rTMS) and relaxation techniques in tinnitus patients. Forty-two patients were enrolled in this one-arm proof-of-concept study to receive ten sessions of rTMS applied to the left dorsolateral prefrontal cortex and temporo-parietal cortex. During stimulation, patients listened to five different kinds of relaxation audios. Variables of interest were tinnitus questionnaires, tinnitus numeric rating scales, depressivity, and quality of life. Results were compared to results of historical control groups having received the same rTMS protocol (active control) and sham treatment (placebo) without relaxation techniques. Thirty-eight patients completed the treatment, drop-out rates and adverse events were low. Responder rates (reduction in tinnitus questionnaire (TQ) score ≥5 points 10 weeks after treatment) were 44.7 % in the study, 27.8 % in the active control group, and 21.7 % in the placebo group, differing between groups on a near significant level. For the tinnitus handicap inventory (THI), the main effect of group was not significant. However, linear mixed model analyses showed that the relaxation/rTMS group differed significantly from the active control group showing steeper negative THI trend for the relaxation/rTMS group indicating better amelioration over the course of the trial. Deepness of relaxation during rTMS and selection of active relaxation vs. passive listening to music predicted larger TQ. All remaining secondary outcomes turned out non-significant. This combined treatment proved to be a safe, feasible and promising approach to enhance rTMS treatment effects in chronic tinnitus. PMID:27315823

  7. Low-Frequency Repetitive Transcranial Magnetic Stimulation and Intensive Occupational Therapy for Poststroke Patients with Upper Limb Hemiparesis: Preliminary Study of a 15-Day Protocol

    ERIC Educational Resources Information Center

    Kakuda, Wataru; Abo, Masahiro; Kobayashi, Kazushige; Momosaki, Ryo; Yokoi, Aki; Fukuda, Akiko; Ishikawa, Atsushi; Ito, Hiroshi; Tominaga, Ayumi

    2010-01-01

    The purpose of the study was to determine the safety and feasibility of a 15-day protocol of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with intensive occupational therapy (OT) on motor function and spasticity in hemiparetic upper limbs in poststroke patients. Fifteen poststroke patients (age at study entry 55 [plus…

  8. Complete anisotropic time-dependent heat equation in KTP crystal under repetitively pulsed Gaussian beams: a numerical approach.

    PubMed

    Rezaee, Mostafa Mohammad; Sabaeian, Mohammad; Motazedian, Alireza; Jalil-Abadi, Fatemeh Sedaghat; Khaldi-Nasab, Ali

    2015-02-20

    In this work, a thorough and detailed solution for the time-dependent heat equation for a cylindrical nonlinear potassium titanyl phosphate (KTP) crystal under a repetitively pulsed pumping source is developed. The convection and radiation boundary conditions, which are usually ignored in the literature, have been taken into account, and their importance on the temperature distribution has been discussed in detail. Moreover, the temperature dependence of thermal conductivity of KTP was considered in the calculations, and its impact is discussed. It is shown that the radiation term has a negligible effect and can be dropped safely, while the temperature dependence of thermal conductivity is more influential, such that ignorance of it brings some errors into the modeling. The time evolution of the temperature while the crystal is pumping with a train of successive Gaussian pulses until reaching equilibrium is shown. To accomplish numerical calculations, we developed a homemade code written with the finite difference time domain method in Intel Fortran (ifort) and ran it with the Linux operating system. PMID:25968183

  9. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE

    SciTech Connect

    Schmidt, J. Helm, M.; Winnerl, S.; Seidel, W.; Schneider, H.; Bauer, C.; Gensch, M.

    2015-06-15

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  10. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  11. Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    SciTech Connect

    Omel'chenko, A I; Sobol', E N

    2009-03-31

    The thermomechanical effect of 1.56-{mu}m fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs. (laser biology and medicine)

  12. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G. I.; Giapintzakis, J.

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10-3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  13. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet.

    PubMed

    Noe, G Timothy; Zhang, Qi; Lee, Joseph; Kato, Eiji; Woods, Gary L; Nojiri, Hiroyuki; Kono, Junichiro

    2014-09-10

    We have performed terahertz time-domain magnetospectroscopy by combining a rapid scanning terahertz time-domain spectrometer based on the electronically controlled optical sampling method with a table-top minicoil pulsed magnet capable of producing magnetic fields up to 30 T. We demonstrate the capability of this system by measuring coherent cyclotron resonance oscillations in a high-mobility two-dimensional electron gas in GaAs and interference-induced terahertz transmittance modifications in a magnetoplasma in lightly doped n-InSb.

  14. Motion as motivation: using repetitive flexion movements to stimulate the approach system.

    PubMed

    Haeffel, Gerald J

    2011-12-01

    Research suggests that having a healthy approach system is critical for adaptive emotional functioning. The goal of the current study (n=186 undergraduates) was to determine the efficacy of an easy-to-disseminate and cost-efficient strategy for stimulating this system. The experiment tested the effects of repeated flexion movements (rFM) on approach system activation as measured by both self-report (BAS scales) and behavior. The results showed that rFM increased approach system motivation in men but not women. Men who completed the rFM task reported significantly greater levels of fun-seeking motivation than men in the control task. Moreover, the rFM task led to changes in actual behavior. Men who completed the rFM task exhibited significantly greater persistence on a difficult laboratory task than men in the control task. In contrast, women who completed the rFM task reported significantly lower levels of fun seeking and tended to exhibit less persistence on a difficult laboratory task than women in the control task. These results provide support for embodied theories of emotion as well as additional evidence for a gender difference in approach-avoidance tendencies.

  15. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  16. Continuous-wave vs. pulsed infrared laser stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation has recently been developed as an alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuouswave (CW) infrared laser radiation, for potential diagnostic applications. A Thulium fiber laser (λ = 1870 nm) was used for non-contact optical stimulation of the rat prostate cavernous nerves, in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in either CW mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation was observed to be primarily dependent on a threshold nerve temperature (42-45 °C), not an incident fluence, as previously reported. CW optical nerve stimulation provides a significantly faster ICP response time using a laser with lower power output than pulsed stimulation. CW optical nerve stimulation may therefore represent an alternative mode of stimulation for intra-operative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  17. Priority of repetitive adaptation to mismatch response following undiscriminable auditory stimulation: a magnetoencephalographic study.

    PubMed

    Hoshiyama, Minoru; Okamoto, Hidehiko; Kakigi, Ryusuke

    2007-02-01

    We analysed two different neural mechanisms related to the unconscious processing of auditory stimulation, neural adaptation and mismatch negativity (MMN), using magnetoencephalography in healthy non-musicians. Four kinds of conditioning stimulus (CS): white noise, a 675-Hz pure tone, and complex tones with six (CT6) and seven components (CT7), were used for analysing neural adaptation. The seven spectral components of CT7 were spaced by 1/7 octaves between 500 and 906 Hz on the logarithmic scale. The CT6 components contained the same spectral components as CT7, except for the center frequency, 675 kHz. Subjects could not distinguish CT6 from CT7 in a discrimination test. A test stimulus (TS), a 675-Hz tone, was presented after CS, and the effects of the presence of the same 675-Hz frequency in the CS on the magnetoencephalographic response elicited by TS was evaluated. The P2m component following CT7 was significantly smaller in current strength than that following CT6. The equivalent current dipole for P2m was located approximately 10 mm anterior to the preceding N1m. This result indicated that neural adaptation was taking place in the anterior part of the auditory cortex, even if the sound difference was subthreshold. By contrast, the magnetic counterpart of the MMN was not recorded when CT6 and CT7 were used as standard and deviant stimuli, respectively, being consistent with the discrimination test. In conclusion, neural adaptation is considered to be more sensitive than our consciousness or the MMN, or is caused by an independent mechanism.

  18. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster

    PubMed Central

    Qiu, Shuang; Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation) on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior). In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS). Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS) flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification. PMID:27684063

  19. Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Trigub, M. V.; Evtushenko, G. S.; Torgaev, S. N.; Shiyanov, D. V.; Evtushenko, T. G.

    2016-10-01

    The paper presents a laser monitor with 10 μs time-resolution based on a high-frequency copper bromide vapor brightness amplifier. A sync circuit has been designed for single-pulse imaging. The analysis of amplifying characteristics of the active elements and active optical system (laser monitor) parameters allowed to determine the optimal concentration of HBr at which the images can be obtained with minimum distortions. For the active element operating at high frequencies (more than 50 kHz) as a brightness amplifier, the concentration of HBr must be lower than that needed for obtaining the maximum output power. The limiting brightness temperature of the background radiation which does not affect the image quality is determined. The potential feasibility of using a proposed brightness amplifier for visualizing processes blocked from viewing by the background radiation with the brightness temperature up to 8000 K is demonstrated.

  20. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    PubMed

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  1. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury

    PubMed Central

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523

  2. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    PubMed

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523

  3. Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors

    PubMed Central

    Dunlop, Katharine; Woodside, Blake; Lam, Eileen; Olmsted, Marion; Colton, Patricia; Giacobbe, Peter; Downar, Jonathan

    2015-01-01

    Background Conventional treatments for eating disorders are associated with poor response rates and frequent relapse. Novel treatments are needed, in combination with markers to characterize and predict treatment response. Here, resting-state functional magnetic resonance imaging (rs-fMRI) was used to identify predictors and correlates of response to repetitive transcranial magnetic stimulation (rTMS) of the dorsomedial prefrontal cortex (dmPFC) at 10 Hz for eating disorders with refractory binge/purge symptomatology. Methods 28 subjects with anorexia nervosa, binge−purge subtype or bulimia nervosa underwent 20–30 sessions of 10 Hz dmPFC rTMS. rs-fMRI data were collected before and after rTMS. Subjects were stratified into responder and nonresponder groups using a criterion of ≥50% reduction in weekly binge/purge frequency. Neural predictors and correlates of response were identified using seed-based functional connectivity (FC), using the dmPFC and adjacent dorsal anterior cingulate cortex (dACC) as regions of interest. Results 16 of 28 subjects met response criteria. Treatment responders had lower baseline FC from dmPFC to lateral orbitofrontal cortex and right posterior insula, and from dACC to right posterior insula and hippocampus. Responders had low baseline FC from the dACC to the ventral striatum and anterior insula; this connectivity increased over treatment. However, in nonresponders, frontostriatal FC was high at baseline, and dmPFC-rTMS suppressed FC in association with symptomatic worsening. Conclusions Enhanced frontostriatal connectivity was associated with responders to dmPFC-rTMS for binge/purge behavior. rTMS caused paradoxical suppression of frontostriatal connectivity in nonresponders. rs-fMRI could prove critical for optimizing stimulation parameters in a future sham-controlled trial of rTMS in disordered eating. PMID:26199873

  4. The effect of computer-assisted cognitive rehabilitation and repetitive transcranial magnetic stimulation on cognitive function for stroke patients

    PubMed Central

    Park, In-Seok; Yoon, Jung-Gyu

    2015-01-01

    [Purpose] This study investigated the effects of computer-assisted cognitive rehabilitation (CACR) and repetitive transcranial magnetic stimulation (rTMS) on cognitive function in patients with stroke. [Subjects and Methods] We enrolled 20 patients and divided them into CACR and rTMS groups. CACR and rTMS were performed thrice a week for 4 weeks. Cognitive function was measured with the Korean Mini-Mental State Examination (K-MMSE) and Lowenstein Occupational Therapy Cognitive Assessment-Geriatric (LOTCA-G) before and after treatment. The independent samples t-test was performed to test the homogeneity of K-MMSE and LOTCA-G before treatment and compare the differences in cognitive improvement between the CACR and rTMS groups. A paired samples t-test was used to compare cognitive function before and after treatment. [Results] Cognitive function of both the groups significantly improved after the intervention based on the K-MMSE and LOTCA-G scores. While the LOTCA-G score improved significantly more in the CACR group than in the rTMS group, no significant difference was seen in the K-MMSE scores. [Conclusion] We showed that CACR is more effective than rTMS in improving cognitive function after stroke. PMID:25931728

  5. Impact of Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysmnesia and the Role of BDNF Val66Met SNP

    PubMed Central

    Lu, Haitao; Zhang, Tong; Wen, Mei; Sun, Li

    2015-01-01

    Background Little is known about the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) on dysmnesia and the impact of brain nucleotide neurotrophic factor (BDNF) Val66Met single-nucleotide polymorphism (SNP). This study investigated the impact of low-frequency rTMS on post-stroke dysmnesia and the impact of BDNF Val66Met SNP. Material/Methods Forty patients with post-stroke dysmnesia were prospectively randomized into the rTMS and sham groups. BDNF Val66Met SNP was determined using restriction fragment length polymorphism. Montreal Cognitive Assessment (MoCA), Loewenstein Occupational Therapy of Cognitive Assessment (LOTCA), and Rivermead Behavior Memory Test (RBMT) scores, as well as plasma BDNF concentrations, were measured at baseline and at 3 days and 2 months post-treatment. Results MoCA, LOTCA, and RBMT scores were higher after rTMS. Three days after treatment, BDNF decreased in the rTMS group but it increased in the sham group (P<0.05). Two months after treatment, RMBT scores in the rTMS group were higher than in the sham group, but not MoCA and LOTCA scores. Conclusions Low-frequency rTMS may improve after-stoke memory through various pathways, which may involve polymorphisms and several neural genes, but not through an increase in BDNF levels. PMID:25770310

  6. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS) on Brain Functional Marker of Auditory Hallucinations in Schizophrenia Patients

    PubMed Central

    Maïza, Olivier; Hervé, Pierre-Yve; Etard, Olivier; Razafimandimby, Annick; Montagne-Larmurier, Aurélie; Dollfus, Sonia

    2013-01-01

    Several cross-sectional functional Magnetic Resonance Imaging (fMRI) studies reported a negative correlation between auditory verbal hallucination (AVH) severity and amplitude of the activations during language tasks. The present study assessed the time course of this correlation and its possible structural underpinnings by combining structural, functional MRI and repetitive Transcranial Magnetic Stimulation (rTMS). Methods: Nine schizophrenia patients with AVH (evaluated with the Auditory Hallucination Rating scale; AHRS) and nine healthy participants underwent two sessions of an fMRI speech listening paradigm. Meanwhile, patients received high frequency (20 Hz) rTMS. Results: Before rTMS, activations were negatively correlated with AHRS in a left posterior superior temporal sulcus (pSTS) cluster, considered henceforward as a functional region of interest (fROI). After rTMS, activations in this fROI no longer correlated with AHRS. This decoupling was explained by a significant decrease of AHRS scores after rTMS that contrasted with a relative stability of cerebral activations. A voxel-based-morphometry analysis evidenced a cluster of the left pSTS where grey matter volume negatively correlated with AHRS before rTMS and positively correlated with activations in the fROI at both sessions. Conclusion: rTMS decreases the severity of AVH leading to modify the functional correlate of AVH underlain by grey matter abnormalities. PMID:24961421

  7. Chemo-somatosensory event-related potentials in response to repetitive painful chemical stimulation of the nasal mucosa.

    PubMed

    Hummel, T; Gruber, M; Pauli, E; Kobal, G

    1994-09-01

    The aim of the study was to investigate how chemo-somatosensory event-related potentials (CSSERPs) and pain ratings are modified by repetitive painful stimulation of the nasal mucosa (58% v/v CO2, 200 msec duration). Twenty-two subjects performed 3 experiments during which trains of stimuli were applied. The interstimulus interval (ISI) between stimuli was constant for each experiment, but varied between experiments (8, 4, and 2 sec). CSSERPs were obtained from 5 positions (Fz, C3, Cz, C4, and Pz). The subjects not only rated the overall perceived intensities but also reported the quality of the stimuli. At an ISI of 8 sec estimates decreased and only stinging sensations were reported. In contrast, at an interval of 2 sec estimates increased being accompanied by the buildup of burning pain. This phenomenon was interpreted in terms of the superposition of first (sharp and stinging pain: A delta fibers) and second pain (dull and burning pain: C fibers), respectively. However, given the special circumstances of short ISIs CSSERP amplitudes decreased the more the shorter the ISI was. In line with previous investigations it is hypothesised that CSSERPs predominantly reflect nociceptive information transmitted via A delta fibers.

  8. Repetitive transcranial magnetic stimulation improves both hearing function and tinnitus perception in sudden sensorineural hearing loss patients

    PubMed Central

    Zhang, Dai; Ma, Yuewen

    2015-01-01

    The occurrence of sudden sensorineural hearing loss (SSHL) affects not only cochlear activity but also neural activity in the central auditory system. Repetitive transcranial magnetic stimulation (rTMS) above the auditory cortex has been reported to improve auditory processing and to reduce the perception of tinnitus, which results from network dysfunction involving both auditory and non-auditory brain regions. SSHL patients who were refractory to standard corticosteroid therapy (SCT) and hyperbaric oxygen (HBO) therapy received 20 sessions of 1 Hz rTMS to the temporoparietal junction ipsilateral to the symptomatic ear (rTMS group). RTMS therapy administered in addition to SCT and HBO therapy resulted in significantly greater recovery of hearing function and improvement of tinnitus perception compared SCT and HBO therapy without rTMS therapy. Additionally, the single photon emission computed tomography (SPECT) measurements obtained in a subgroup of patients suggested that the rTMS therapy could have alleviated the decrease in regional cerebral brain flow (rCBF) in SSHL patients. RTMS appears to be an effective, practical, and safe treatment strategy for SSHL. PMID:26463446

  9. Repetitive transcranial magnetic stimulation over the left parietal cortex facilitates visual search for a letter among its mirror images.

    PubMed

    Mangano, Giuseppa Renata; Oliveri, Massimiliano; Turriziani, Patrizia; Smirni, Daniela; Zhaoping, Li; Cipolotti, Lisa

    2015-04-01

    Interference by task irrelevant information is seen in visual search paradigms using letters. Thus, it is harder to find the letter 'N' among its mirror reversals 'И' than vice versa. This observation, termed the reversed letter effect, involves both a linguistic association and an interference of task irrelevant information—the shape of 'N' or 'И' is irrelevant, the search requires merely distinguishing the tilts of oblique bars. We adapted the repetitive transcranial magnetic stimulation (rTMS) methods that we previously used, and conducted three rTMS experiments using healthy subjects. The first experiment investigated the effects of rTMS on the left and right posterior parietal cortex (PPC) on the search performance. The second experiment focused on the role of the left PPC. The third experiment explored whether another left posterior region, known to be involved in word reading (ventral occipito-temporal cortex, vOTC), plays a role. We found that rTMS on right PPC and left VOTC had no effect on the speed and accuracy of the visual search regardless of whether the target is 'N' or its mirror reversal. In contrast, rTMS on the left PPC speeded up the search on finding target 'N' among its mirror images. We suggest that left PPC is involved in letter recognition, and that rTMS on left PPC facilitated our visual search task by reducing task interference triggered by task irrelevant letter recognition.

  10. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2013-03-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  11. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2014-02-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  12. Conversion of CH4 /CO2 by a nanosecond repetitively pulsed discharge

    NASA Astrophysics Data System (ADS)

    Scapinello, M.; Martini, L. M.; Dilecce, G.; Tosi, P.

    2016-02-01

    A possible way to store both renewable energy and CO2 in chemical energy is to produce value-added chemicals and fuels starting from CO2 and green electricity. This can be done by exploiting the non-equilibrium properties of gaseous electrical discharges. Discharges, in addition, can be switched on and off quickly, thus being suitable to be coupled with an intermittent energy source. In this study, we have used a nanosecond pulsed discharge to dissociate CO2 and CH4 in a 1:1 mixture at atmospheric pressure, and compared our results with literature data obtained by other discharges. The main products are CO, H2, C2H2, water and solid carbon. We estimate an energy efficiency of 40% for syngas (CO and H2) production, higher if other products are also considered. Such values are among the highest compared to other discharges, and, although not very high on an absolute scale, are likely improvable via possible routes discussed in the paper and by coupling to the discharge a heterogeneous catalysis stage.

  13. A Focused Low-Intensity Pulsed Ultrasound (FLIPUS) System for Cell Stimulation: Physical and Biological Proof of Principle.

    PubMed

    Puts, Regina; Ruschke, Karen; Ambrosi, Thomas H; Kadow-Romacker, Anke; Knaus, Petra; Jenderka, Klaus-Vitold; Raum, Kay

    2016-01-01

    Quantitative ultrasound (QUS) is a promising technique for bone tissue evaluation. Highly focused transducers used for QUS also have the capability to be applied for tissue-regenerative purposes and can provide spatially limited deposition of acoustic energy. We describe a focused low-intensity pulsed ultrasound (FLIPUS) system, which has been developed for the stimulation of cell monolayers in the defocused far field of the transducer through the bottom of the well plate. Tissue culture well plates, carrying the cells, were incubated in a special chamber, immersed in a temperature-controlled water tank. A stimulation frequency of 3.6 MHz provided an optimal sound transmission through the polystyrene well plate. The ultrasound was pulsed for 20 min daily at 100-Hz repetition frequency with 27.8% duty cycle. The calibrated output intensity corresponded to I(SATA) = 44.5 ± 7.1 mW/cm2, which is comparable to the most frequently reported nominal output levels in LIPUS studies. No temperature change by the ultrasound exposure was observed in the well plate. The system was used to stimulate rat mesenchymal stem cells (rMSCs). The applied intensity had no apoptotic effect and enhanced the expression of osteogenic markers, i.e., osteopontin (OPN), collagen 1 (Col-1), the osteoblast-specific transcription factor-Runx-2 and E11 protein, an early osteocyte marker, in stimulated cells on day 5. The proposed FLIPUS setup opens new perspectives for the evaluation of the mechanistic effects of LIPUS. PMID:26552085

  14. Stimulated Raman X waves in ultrashort optical pulse filamentation

    NASA Astrophysics Data System (ADS)

    Faccio, Daniele; Averchi, Alessandro; Dubietis, Audrius; Polesana, Paolo; Piskarskas, Algis; di Trapani, Paolo; Couairon, Arnaud

    2007-01-01

    We demonstrate that ultrashort pulse filamentation in liquids with strong Raman gain leads to the spontaneous formation of nonlinear X waves at a Raman-shifted wavelength. We measured as much as 75% energy conversion efficiency into a Raman X wave in ethanol starting from 1ps pulses due to the group velocity matching between the pump and Raman X pulses. Large Raman gain of a weak seed signal was observed in water, associated with a strong spatiotemporal transformation of the seed into an X wave.

  15. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice.

    PubMed

    Ma, Jun; Zhang, Zhanchi; Kang, Lin; Geng, Dandan; Wang, Yanyong; Wang, Mingwei; Cui, Huixian

    2014-10-01

    Normal aging is characteristic with the gradual decline in cognitive function associated with the progressive reduction of structural and functional plasticity in the hippocampus. Repetitive transcranial magnetic stimulation (rTMS) has developed into a novel neurological and psychiatric tool that can be used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency rTMS (≤1Hz) affects synaptic plasticity in rats with vascular dementia (VaD), and it ameliorates the spatial cognitive ability in mice with Aβ1-42-mediated memory deficits, but there are little concerns about the effects of rTMS on normal aging related cognition and synaptic plasticity changes. Thus, the current study investigated the effects of rTMS on spatial memory behavior, neuron and synapse morphology in the hippocampus, and synaptic protein markers and brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) in normal aging mice, to illustrate the mechanisms of rTMS in regulating cognitive capacity. Relative to adult animals, aging caused hippocampal-dependent cognitive impairment, simultaneously inhibited the activation of the BDNF-TrkB signaling pathway, reduced the transcription and expression of synaptic protein markers: synaptophysin (SYN), growth associated protein 43 (GAP43) and post-synaptic density protein 95 (PSD95), as well as decreased synapse density and PSD (post-synaptic density) thickness. Interestingly, rTMS with low intensity (110% average resting motor threshold intensity, 1Hz, LIMS) triggered the activation of BDNF and TrkB, upregulated the level of synaptic protein markers, and increased synapse density and thickened PSD, and further reversed the spatial cognition dysfunction in aging mice. Conversely, high-intensity magnetic stimulation (150% average resting motor threshold intensity, 1Hz, HIMS) appeared to be detrimental, inducing thinning of PSDs, disordered synaptic structure, and a large number of

  16. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses

    SciTech Connect

    Amano, Sho

    2014-06-15

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ∼10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stable output power was achieved continuously from the plasma emission at frequencies of 1–10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range.

  17. Laser plasma cryogenic target on translating substrate for generation of continuously repetitive EUV and soft X-ray pulses.

    PubMed

    Amano, Sho

    2014-06-01

    To generate continuously repetitive EUV and soft X-ray pulses with various wavelengths from laser-produced plasmas, a one-dimensionally translating substrate system with a closed He gas cryostat that can continuously supply various cryogenic targets for ~10 Hz laser pulses has been developed. The system was successfully operated at a lowest temperature of 15 K and at a maximum up-down speed of 12 mm/s. Solid Ar, Kr, and Xe layers were formed, and their growth rates and the laser crater sizes on them were studied. By optimization of the operational parameters in accordance with our design rule, it was shown that stable output power was achieved continuously from the plasma emission at frequencies of 1-10 Hz. The average soft X-ray and EUV powers obtained were 19 mW at 3.2 nm, 33 mW at 10.0 nm, and 66 mW at 10.8 nm, with 10% bandwidths, from the Ar, Kr, and Xe solid targets, respectively, with a laser power of 1 W. We will be able to achieve higher frequencies using a high beam quality laser that produces smaller craters, and can expect higher powers. Although only Ar, Kr, and Xe gases were tested in this study, the target system achieved a temperature of 15 K and can thus solidify almost all target gases, apart from H and He, and can continuously supply the solid target. The use of various target materials will enable expansion of the EUV and soft X-ray emission wavelength range. PMID:24985796

  18. Nonlinear Theory of Entrainment in EEG Under Photo-Stimulation by Periodic Rectangular Pulse

    NASA Astrophysics Data System (ADS)

    Konno, H.; Chatani, H.; Sakata, A.; Tobimatsu, S.

    2007-07-01

    Nonlinear theory of entrainment is presented based on a generalized Kubo oscillator (GKO) wherein effect of frequency modulation and that of photo-stimulation with periodic rectangular pulse are accounted. It is shown that the GKO model gives qualitative properties of nonlinear responses under the photo-stimulation in human brain.

  19. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1-10 Hz)

    NASA Astrophysics Data System (ADS)

    Valverde-Alva, M. A.; García-Fernández, T.; Esparza-Alegría, E.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; de la Mora, M. B.; Márquez-Herrera, C. E.; Sánchez Llamazares, J. L.

    2016-10-01

    We studied the effect of the repetition rate of laser pulses (RRLP) in the range from 1-10 Hz in the production of silver nanoparticles (Ag-NPs) by laser ablation in ethanol. Laser pulses with a duration of 7 ns, a wavelength of 1064 nm and an energy of 60 mJ were used to ablate a 99.99% pure silver target immersed in 10 ml of ethanol. Transmittance analysis and atomic absorption spectroscopy were used to study the silver concentration in the colloidal solutions. The ablation process was studied by measuring the transmission of the laser pulses through the colloid. It is shown that for a fixed number of laser pulses (NLP) the ablation efficiency, in terms of the ablated silver mass per laser pulse, increases with the RRLP. This result contradicts what had previously been established in the literature.

  20. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed. PMID:27587178

  1. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  2. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches

    NASA Astrophysics Data System (ADS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  3. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Sehatzadeh, Shayan; Tu, Hong Anh; Palimaka, Stefan; Yap, Belinda; O'Reilly, Daria; Bowen, Jim

    2016-01-01

    Background To date, several randomized controlled trials (RCTs) have shown the efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depression. Objective This analysis examined the antidepressant efficacy of rTMS in patients with treatment-resistant unipolar depression. Methods A literature search was performed for RCTs published from January 1, 1994, to November 20, 2014. The search was updated on March 1, 2015. Two independent reviewers evaluated the abstracts for inclusion, reviewed full texts of eligible studies, and abstracted data. Meta-analyses were conducted to obtain summary estimates. The primary outcome was changes in depression scores measured by the Hamilton Rating Scale for Depression (HRSD), and we considered, a priori, the mean difference of 3.5 points to be a clinically important treatment effect. Remission and response to the treatment were secondary outcomes, and we calculated number needed to treat on the basis of these outcomes. We examined the possibility of publication bias by constructing funnel plots and by Begg's and Egger's tests. A meta-regression was undertaken to examine the effect of specific rTMS technical parameters on the treatment effects. Results Twenty-three RCTs compared rTMS with sham, and six RCTs compared rTMS with electroconvulsive therapy (ECT). Trials of rTMS versus sham showed a statistically significant improvement in depression scores with rTMS (weighted mean difference [WMD] 2.31, 95% CI 1.19–3.43; P < .001). This improvement was smaller than the pre-specified clinically important treatment effect. There was a 10% absolute difference between rTMS and sham in the rates of remission or response. This translates to a number needed to treat of 10. Risk ratios for remission and response were 2.20 (95% CI 1.44–3.38, P = .001 and 1.72 [95% CI], 1.13–2.62, P = .01), respectively, favouring rTMS. No publication bias was detected. Trials of rTMS versus ECT showed a statistically and

  4. The Role of Right Inferior Parietal Cortex in Auditory Spatial Attention: A Repetitive Transcranial Magnetic Stimulation Study

    PubMed Central

    Karhson, Debra S.; Mock, Jeffrey R.; Golob, Edward J.

    2015-01-01

    Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs) to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS) to the right inferior parietal cortex. Subjects (n = 16) listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90°) and responded to stimuli at one target location (-90°, +90°, separate blocks). ERPs as a function of non-target location were examined before (baseline) and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230–340, parietal 400–460, frontal 550–750 ms). Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity. PMID:26636333

  5. Bihemispheric repetitive transcranial magnetic stimulation combined with intensive occupational therapy for upper limb hemiparesis after stroke: a preliminary study.

    PubMed

    Yamada, Naoki; Kakuda, Wataru; Kondo, Takahiro; Shimizu, Masato; Mitani, Sugao; Abo, Masahiro

    2013-12-01

    We investigated the safety, feasibility, and efficacy of the combination of bihemispheric repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) for upper limb hemiparesis in poststroke patients. The study participants were eight poststroke patients with upper limb hemiparesis (age at intervention: 62.8±4.9 years, time after stroke: 84.3±87.2 months, mean±SD). During 15 days of hospitalization, each patient received 10 sessions of 40-min bihemispheric rTMS and 240-min intensive OT (120-min one-to-one training and 120-min self-training). One session of bihemispheric rTMS comprised the application of both 1 and 10 Hz rTMS (2000 stimuli for each hemisphere). The Fugl-Meyer Assessment, Wolf Motor Function Test, and the Modified Ashworth Scale were administered on the day of admission and at discharge. All patients completed the treatment without any adverse effects. Motor function of the affected upper limb improved significantly, on the basis of changes in Fugl-Meyer Assessment and Wolf Motor Function Test (P<0.05, each). A significant decrease in the Modified Ashworth Scale score was noted in the elbow, wrist, and finger flexors of the affected upper limb (P<0.05, each). The combination of bihemispheric rTMS and intensive OT was safe and feasible therapy for poststroke hemiparetic patients, and improved motor function of the hemiparetic upper limb in poststroke patients. The findings provide a new avenue for the treatment of patients with poststroke hemiparesis.

  6. Factors Associated With Upper Extremity Functional Recovery Following Low-Frequency Repetitive Transcranial Magnetic Stimulation in Stroke Patients

    PubMed Central

    2016-01-01

    Objective To investigate the factors related to upper extremity functional improvement following inhibitory repetitive transcranial magnetic stimulation (rTMS) in stroke patients. Methods Forty-one stroke patients received low-frequency rTMS over the contralesional hemisphere according to a standard protocol, in addition to conventional physical and occupational therapy. The rTMS-treated patients were divided into two groups according to their responsiveness to rTMS measured by the self-care score of the Korean version of Modified Barthel Index (K-MBI): responded group (n=19) and non-responded group (n=22). Forty-one age-matched stroke patients who had not received rTMS served as controls. Neurological, cognitive and functional assessments were performed before rTMS and 4 weeks after rTMS treatment. Results Among the rTMS-treated patients, the responded group was significantly younger than the non-responded group (51.6±10.5 years and 65.5±13.7 years, respectively; p=0.001). Four weeks after rTMS, the National Institutes of Health Stroke Scale, the Brunnstrom recovery stage and upper extremity muscle power scores were significantly more improved in the responded group than in the control group. Besides the self-care score, the mobility score of the K-MBI was also more improved in the responded group than in the non-responded group or controls. Conclusion Age is the most obvious factor determining upper extremity functional responsiveness to low-frequency rTMS in stroke patients. PMID:27446773

  7. Cognitive and Anatomical Underpinnings of the Conceptual Knowledge for Common Objects and Familiar People: A Repetitive Transcranial Magnetic Stimulation Study

    PubMed Central

    Campanella, Fabio; Fabbro, Franco; Urgesi, Cosimo

    2013-01-01

    Several studies have addressed the issue of how knowledge of common objects is organized in the brain, whereas the cognitive and anatomical underpinnings of familiar people knowledge have been less explored. Here we applied repetitive transcranial magnetic stimulation (rTMS) over the left and right temporal poles before asking healthy individuals to perform a speeded word-to-picture matching task using familiar people and common objects as stimuli. We manipulated two widely used semantic variables, namely the semantic distance and the familiarity of stimuli, to assess whether the semantic organization of familiar people knowledge is similar to that of common objects. For both objects and faces we reliably found semantic distance and familiarity effects, with less accurate and slower responses for stimulus pairs that were more closely related and less familiar. However, the effects of semantic variables differed across categories, with semantic distance effects larger for objects and familiarity effects larger for faces, suggesting that objects and faces might share a partially comparable organization of their semantic representations. The application of rTMS to the left temporal pole modulated, for both categories, semantic distance, but not familiarity effects, revealing that accessing object and face concepts might rely on overlapping processes within left anterior temporal regions. Crucially, rTMS of the left temporal pole affected only the recognition of pairs of stimuli that could be discriminated at specific levels of categorization (e.g., two kitchen tools or two famous persons), with no effect for discriminations at either superordinate or individual levels. Conversely, rTMS of the right temporal pole induced an overall slowing of reaction times that positively correlated with the visual similarity of the stimuli, suggesting a more perceptual rather than semantic role of the right anterior temporal regions. Results are discussed in the light of current

  8. Evaluating the Effect of Repetitive Transcranial Magnetic Stimulation on Disorders of Consciousness by Using TMS-EEG

    PubMed Central

    Bai, Yang; Xia, Xiaoyu; Kang, Jiannan; Yin, Xiaoxiao; Yang, Yi; He, Jianghong; Li, Xiaoli

    2016-01-01

    Background: The modulation efficacy of Transcranial magnetic stimulation (TMS) on consciousness improvement of patient with disorder of consciousness (DOC) has not been definitely confirmed. Objective: This study proposes TMS-EEG to assess effects of repetitive TMS (rTMS) on brain modulation of DOC. Methods: Twenty sessions of 10 Hz rTMS were applied over the dorsolateral prefrontal cortex for a patient with DOC. Measures of Coma Recovery Scale-Revised (CRS-R) score, TMS-evoked potential (TEP), perturbation complexity index (PCI), and global mean field power (GMFP) were used to evaluate the consciousness level of the patient at three intervals: before the rTMS protocol (T0), immediately after one session rTMS (T1), and immediately after 20 sessions (T2). Results: It was found that the patient was diagnosed of a minimally conscious state minus (MCS-) by means of CRS-R at the interval of T0, however the TEP and PCI indicated the patient was vegetative state (VS). At the interval of T1, there was not any clinical behavioral improvement in CRS-R, but we could find significant changes in TEP, PCI, and GMFP. At the interval of T2 there was a significant increase of consciousness level according by CRS-R score, PCI value, TEP, and GMFP after 20 sessions of 10 Hz rTMS on the patient with DOC. Conclusions: We demonstrated that TMS-EEG might be an efficient assessment tool for evaluating rTMS protocol therapeutic efficiency in DOC. PMID:27812319

  9. Cognitive and anatomical underpinnings of the conceptual knowledge for common objects and familiar people: a repetitive transcranial magnetic stimulation study.

    PubMed

    Campanella, Fabio; Fabbro, Franco; Urgesi, Cosimo

    2013-01-01

    Several studies have addressed the issue of how knowledge of common objects is organized in the brain, whereas the cognitive and anatomical underpinnings of familiar people knowledge have been less explored. Here we applied repetitive transcranial magnetic stimulation (rTMS) over the left and right temporal poles before asking healthy individuals to perform a speeded word-to-picture matching task using familiar people and common objects as stimuli. We manipulated two widely used semantic variables, namely the semantic distance and the familiarity of stimuli, to assess whether the semantic organization of familiar people knowledge is similar to that of common objects. For both objects and faces we reliably found semantic distance and familiarity effects, with less accurate and slower responses for stimulus pairs that were more closely related and less familiar. However, the effects of semantic variables differed across categories, with semantic distance effects larger for objects and familiarity effects larger for faces, suggesting that objects and faces might share a partially comparable organization of their semantic representations. The application of rTMS to the left temporal pole modulated, for both categories, semantic distance, but not familiarity effects, revealing that accessing object and face concepts might rely on overlapping processes within left anterior temporal regions. Crucially, rTMS of the left temporal pole affected only the recognition of pairs of stimuli that could be discriminated at specific levels of categorization (e.g., two kitchen tools or two famous persons), with no effect for discriminations at either superordinate or individual levels. Conversely, rTMS of the right temporal pole induced an overall slowing of reaction times that positively correlated with the visual similarity of the stimuli, suggesting a more perceptual rather than semantic role of the right anterior temporal regions. Results are discussed in the light of current

  10. The Role of Right Inferior Parietal Cortex in Auditory Spatial Attention: A Repetitive Transcranial Magnetic Stimulation Study.

    PubMed

    Karhson, Debra S; Mock, Jeffrey R; Golob, Edward J

    2015-01-01

    Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs) to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS) to the right inferior parietal cortex. Subjects (n = 16) listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90°) and responded to stimuli at one target location (-90°, +90°, separate blocks). ERPs as a function of non-target location were examined before (baseline) and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230-340, parietal 400-460, frontal 550-750 ms). Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity. PMID:26636333

  11. Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced movement therapy in pediatric hemiparesis: a randomized trial

    PubMed Central

    GILLICK, BERNADETTE T; KRACH, LINDA E; FEYMA, TIM; RICH, TONYA L; MOBERG, KELLI; THOMAS, WILLIAM; CASSIDY, JESSICA M; MENK, JEREMIAH; CAREY, JAMES R

    2013-01-01

    Aim The aim of this study was to determine the feasibility and efficacy of five treatments of 6Hz primed, low-frequency, repetitive transcranial magnetic stimulation (rTMS) combined with constraint-induced movement therapy (CIMT) to promote recovery of the paretic hand in children with congenital hemiparesis. Method Nineteen children with congenital hemiparesis aged between 8 and 17 years (10 males, nine females; mean age 10y 10mo, SD 2y 10mo; Manual Ability Classification Scale levels I-III) underwent five sessions of either real rTMS (n=10) or sham rTMS (n=9) alternated daily with CIMT. CIMT consisted of 13 days of continuous long-arm casting with five skin-check sessions. Each child received a total of 10 hours of one-to-one therapy. The primary outcome measure was the Assisting Hand Assessment (AHA) and the secondary outcome variables were the Canadian Occupational Performance Measure (COPM) and stereognosis. A Wilcoxon signed-rank sum test was used to analyze differences between pre- and post-test scores within the groups. Analysis of covariance was used to compute mean differences between groups adjusting for baseline. Fisher’s exact test was used to compare individual change in AHA raw scores with the smallest detectable difference (SDD) of 4 points. Results All participants receiving treatment finished the study. Improvement in AHA differed significantly between groups (p=0.007). No significant differences in the secondary outcome measures were found. Eight out of 10 participants in the rTMS/CIMT group showed improvement greater than the SDD, but only two out of nine in the sham rTMS/CIMT group showed such improvement (p=0.023). No serious adverse events occurred. Interpretation Primed, low-frequency rTMS combined with CIMT appears to be safe, feasible, and efficacious in pediatric hemiparesis. Larger clinical trials are now indicated. PMID:23962321

  12. Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: a systematic review and meta-analysis.

    PubMed

    Ren, Juanjuan; Li, Hui; Palaniyappan, Lena; Liu, Hongmei; Wang, Jijun; Li, Chunbo; Rossini, Paolo Maria

    2014-06-01

    Electroconvulsive therapy (ECT) is the most effective treatment of depression. During the last decades repetitive transcranial magnetic stimulation (rTMS), an alternative method using electric stimulation of the brain, has revealed possible alternative to ECT in the treatment of depression. There are some clinical trials comparing their efficacies and safeties but without clear conclusions, mainly due to their small sample sizes. In the present study, a meta-analysis had been carried out to gain statistical power. Outcomes were response, remission, acceptability and cognitive effects in depression. Following a comprehensive literature search that included both English and Chinese language databases, we identified all randomized controlled trials that directly compared rTMS and ECT for major depression. 10 articles (9 trials) with a total of 425 patients were identified. Methodological quality, heterogeneity, sensitivity and publication bias were systematically evaluated. ECT was superior to high frequency rTMS in terms of response (64.4% vs. 48.7%, RR = 1.41, p = 0.03), remission (52.9% vs. 33.6%, RR = 1.38, p = 0.006) while discontinuation was not significantly different between the two treatments (8.3% vs. 9.4%, RR = 1.11, p = 0.80). According to the subgroup analysis, the superiority of ECT was more apparent in those with psychotic depression, while high frequency rTMS was as effective as ECT in those with non-psychotic depression. The same results were obtained in the comparison of ECT with low frequency rTMS. ECT had a non-significant advantage over high frequency rTMS on the overall improvement in HAMD scores (p = 0.11). There was insufficient data on medium or long term efficacy. Both rTMS and ECT were well tolerated with only minor side effects reported. Results based on 3 studies suggested that specific cognitive domains such as visual memory and verbal fluency were more impaired in patients receiving ECT. In conclusion, ECT seemed more effective than and

  13. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses.

    PubMed

    Ozeki, Yasuyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2012-02-01

    We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter. After amplification by fiber amplifiers, we obtain narrowband pulses with a spectral width of <3.3 cm(-1) and a wavelength tunability of >225 cm(-1). By using these pulses, we accomplish SRS imaging of polymer beads with spectral information.

  14. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses.

    PubMed

    Ozeki, Yasuyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2012-02-01

    We demonstrate a technique of hyperspectral imaging in stimulated Raman scattering (SRS) microscopy using a tunable optical filter, whose transmission wavelength can be varied quickly by a galvanometer mirror. Experimentally, broadband Yb fiber laser pulses are synchronized with picosecond Ti:sapphire pulses, and then spectrally filtered out by the filter. After amplification by fiber amplifiers, we obtain narrowband pulses with a spectral width of <3.3 cm(-1) and a wavelength tunability of >225 cm(-1). By using these pulses, we accomplish SRS imaging of polymer beads with spectral information. PMID:22297376

  15. Contribution of Ih to the relative facilitation of synaptic responses induced by carbachol in the entorhinal cortex during repetitive stimulation of the parasubiculum.

    PubMed

    Sparks, D W; Chapman, C A

    2014-10-10

    Neurons in the superficial layers of the entorhinal cortex provide the hippocampus with the majority of its cortical sensory input, and also receive the major output projection from the parasubiculum. This puts the parasubiculum in a position to modulate the activity of entorhinal neurons that project to the hippocampus. These brain areas receive cholinergic projections that are active during periods of theta- and gamma-frequency electroencephalographic (EEG) activity. The purpose of this study was to investigate how cholinergic receptor activation affects the strength of repetitive synaptic responses at these frequencies in the parasubiculo-entorhinal pathway and the cellular mechanisms involved. Whole-cell patch-clamp recordings of rat layer II medial entorhinal neurons were conducted using an acute slice preparation, and responses to 5-pulse trains of stimulation at theta- and gamma-frequency delivered to the parasubiculum were recorded. The cholinergic agonist carbachol (CCh) suppressed the amplitude of single synaptic responses, but also produced a relative facilitation of synaptic responses evoked during stimulation trains. The N-methyl-d-aspartate (NMDA) glutamate receptor blocker APV did not significantly reduce the relative facilitation effect. However, the hyperpolarization-activated cationic current (Ih) channel blocker ZD7288 mimicked the relative facilitation induced by CCh, suggesting that CCh-induced inhibition of Ih could produce the effect by increasing dendritic input resistance (Rin). Inward-rectifying and leak K(+) currents are known to interact with Ih to affect synaptic excitability. Application of the K(+) channel antagonist Ba(2+) depolarized neurons and enhanced temporal summation, but did not block further facilitation of train-evoked responses by ZD7288. The Ih-dependent facilitation of synaptic responses can therefore occur during reductions in inward-rectifying potassium current (IKir) associated with dendritic depolarization. Thus, in

  16. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    PubMed Central

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID

  17. Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO{sub 2} laser preionised by a surface corona discharge

    SciTech Connect

    Aram, M; Shabanzadeh, M; Mansori, F; Behjat, A

    2007-01-31

    The design of a TEA CO{sub 2} laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO{sub 2} molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines. (lasers)

  18. Effect of pulse magnetic field stimulation on calcium channel current

    NASA Astrophysics Data System (ADS)

    Fan, J.; Lee, Z. H.; Ng, W. C.; Khoa, W. L.; Teoh, S. H.; Soong, T. H.; Qin, Y. R.; Zhang, Z. Y.; Li, X. P.

    2012-10-01

    This study aimed to investigate the effect of low frequency and high amplitude pulse magnetic field (PMF) on Calcium ion channel current of cells. Measurements were done on the Human Embryonic Kidney 293 cells (HEK 293), which have only Calcium ion channels functioning. The whole cell current was measured by patch clamp method, with the clamped voltage ramping from -90 mV to +50 mV across the cell membrane. A PMF was generated by a 400-turn coil connected to a pulse current generator. The frequency of the pulse was 7 Hz, the width of the pulse was 3 ms, and the amplitude of the pulse, or the flux density, was ranging from 6 to 25 mT. The results showed that the profile of the whole cell Calcium channel current could be modified by the PMF. With the PMF applied, the phase shifting occurred: the onset of the channel opening took place several mili-seconds earlier than that without the PWF and correspondingly, the whole cell current reached its maximum earlier, and the current returned back to zero earlier as well. When the PWF was stopped, these effects persisted for a period of time, and then the current profile "recovered" to its original appearance. The decrease of the onset time and peak current time could be due to the local electric potential induced by the PWF and the direct interaction between PMF and ion channels/ions. The exact mechanisms of the observed effects of PMF on the cell are still unknown and need to be further studied.

  19. Investigation of the lasing characteristics of a barium vapor laser with pulse repetition frequencies up to 320 kHz for navigation

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Polunin, Yu. P.

    2015-11-01

    Results of experimental investigations into the characteristics of a laser on self-terminating transitions of the barium atom with λ = 1499 nm are presented for high pulse repetition frequencies (PRF). The frequency-energy characteristics are investigated in the self-heating mode of laser operation. Record values of PRF for the barium vapor laser, equal to ~320 kHz, have been attained.

  20. Supercontinuum generation at 1.55 μm in an all-normal dispersion photonic crystal fiber with high-repetition-rate picosecond pulses

    NASA Astrophysics Data System (ADS)

    Xu, Yong-zhao; Han, Tao; Song, Jian-xun; Ling, Dong-xiong; Li, Hong-tao

    2014-11-01

    We demonstrate the generation of supercontinuum (SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1 552 nm and repetition rate of 10 GHz into an all-normal dispersion photonic crystal fiber (PCF) with length of 80 m. The experimental results are in good agreement with the numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking (WB).

  1. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier.

    PubMed

    Zhou, Xiangyu; Yoshitomi, Dai; Kobayashi, Yohei; Torizuka, Kenji

    2010-05-15

    We demonstrate 1W average-power ultraviolet (UV) femtosecond (fs) ultrashort pulse generation at a wavelength of 259 nm and a repetition rate as high as 100 MHz by quadrupling a fs ytterbium-fiber laser. A cavity-enhanced design is employed for efficient frequency doubling to the UV region. The optical-to-optical efficiency of UV output to the pump diode is 2.6%.

  2. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    NASA Astrophysics Data System (ADS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-12-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80-90 ns, and a pulse repetition rate of up to 16 Hz.

  3. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    SciTech Connect

    Krastelev, E. G. Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  4. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  5. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  6. Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles.

    PubMed

    Wengraitis, Stephen; McCubbin, Patrick; Wade, Mary Margaret; Biggs, Tracey D; Hall, Shane; Williams, Leslie I; Zulich, Alan W

    2013-01-01

    A 2010 study exposed Staphylococcus aureus to ultraviolet (UV) radiation and thermal heating from pulsed xenon flash lamps. The results suggested that disinfection could be caused not only by photochemical changes from UV radiation, but also by photophysical stress damage caused by the disturbance from incoming pulses. The study called for more research in this area. The recent advances in light-emitting diode (LED) technology include the development of LEDs that emit in narrow bands in the ultraviolet-C (UV-C) range (100-280 nm), which is highly effective for UV disinfection of organisms. Further, LEDs would use less power, and allow more flexibility than other sources of UV energy in that the user may select various pulse repetition frequencies (PRFs), pulse irradiances, pulse widths, duty cycles and types of waveform output (e.g. square waves, sine waves, triangular waves, etc.). Our study exposed Escherichia coli samples to square pulses of 272 nm radiation at various PRFs and duty cycles. A statistically significant correlation was found between E. coli's disinfection sensitivity and these parameters. Although our sample size was small, these results show promise and are worthy of further investigation. Comparisons are also made with pulsed disinfection by LEDs emitting at 365 nm, and pulsed disinfection by xenon flash lamps.

  7. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation.

    PubMed

    Schintu, Selene; Martín-Arévalo, Elisa; Vesia, Michael; Rossetti, Yves; Salemme, Romeo; Pisella, Laure; Farnè, Alessandro; Reilly, Karen T

    2016-01-01

    Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA's effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPA per se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1. PMID:27418979

  8. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation

    PubMed Central

    Martín-Arévalo, Elisa; Salemme, Romeo; Pisella, Laure; Farnè, Alessandro

    2016-01-01

    Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA's effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPA per se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1. PMID:27418979

  9. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  10. Touch stimulated pulse generation in biomimetic single-layer graphene

    NASA Astrophysics Data System (ADS)

    Sul, Onejae; Chun, Hyunsuk; Choi, Eunseok; Choi, Jungbong; Cho, Kyeongwon; Jang, Dongpyo; Chun, Sungwoo; Park, Wanjun; Lee, Seung-Beck

    2016-02-01

    Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac point in the graphene energy band, which generates a sharp peak in the measured resistance. We found that by changing the gate potential it was possible to modulate the threshold pressure and using a series of graphene channels, a train of pulses were generated during a transient pressurizing stimulus demonstrating biomimetic behaviour.Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac

  11. Crack detection using pulsed eddy current stimulated thermography

    SciTech Connect

    Kostson, E.; Weekes, B.; Almond, D. P.; Wilson, J.; Tian, G. Y.

    2011-06-23

    This contribution presents results from studies investigating factors that influence the detection of surface breaking cracks using pulsed eddy current thermography. The influences of the current strength and crack orientation in both ferromagnetic and non-ferromagnetic metals have been investigated. It has been found that crack detection is far more sensitive to crack orientation in non-ferromagnetic metals than in ferromagnetic metals. The effects of crack size on detectability are presented for a large number of steel, nickel alloy and titanium samples. Results of studies comparing crack images obtained prior and after coating a nickel alloy sample with a thermal barrier coating are presented.

  12. Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus.

    PubMed

    Church, Deirdre L; Chow, Barbara L; Lloyd, Tracie; Gregson, Daniel B

    2011-01-01

    Automated repetitive polymerase chain reaction (PCR) (DiversiLab, bioMérieux, St. Laurent, Quebec, Canada) and single locus sequence typing of the Staphylococcus protein A (spa) gene with spa-type assignment by StaphType RIDOM software were compared to pulsed-field gel electrophoresis (PFGE) as the "gold standard" method for methicillin-resistant Staphylococcus aureus (MRSA) typing. Fifty-four MRSA isolates were typed by all methods: 10 of known PFGE CMRSA type and 44 clinical isolates. Correct assignment of CMRSA type or cluster occurred for 47 of 54 (87%) of the isolates when using a rep-PCR similarity index (SI) of ≥95%. Rep-PCR gave 7 discordant results [CMRSA1 (3), CMRSA2 (1), CMRSA4 (1), and CMRSA10 (2)], and some CMRSA clusters were not distinguished (CMRSA10/5/9, CMRSA 7/8, and CMRSA3/6). Several spa types occurred within a single PFGE or repetitive PCR types among the 19 different spa types found. spa type t037 was shared by CMRSA3 and CMRSA6 strains, and CMRSA9 and most CMRSA10 strains shared spa type t008. Time to results for PFGE, repetitive PCR, and spa typing was 3-4 days, 24 h, and 48 h, respectively. The annual costs of using spa or repetitive PCR were 2.4× and 1.9× higher, respectively, than PFGE but routine use of spa typing would lower annual labor costs by 0.10 full-time equivalents compared to PFGE. Repetitive PCR is a good method for rapid outbreak screening, but MRSA isolates that share the same repetitive PCR or PFGE patterns can be distinguished by spa typing.

  13. Repetitive stereotyped behaviors.

    PubMed

    Berkson, G

    1983-11-01

    This paper points to factors that determine whether repetitive stereotyped behavior occur in the behavior repertoire. The analysis pits an "intrinsic oscillator" mechanism against a "self-stimulation" theory and chooses to emphasize the latter. The paper accounts for the repetitive and rhythmic nature of stereotypy by suggesting that repetition in a rhythmic way is the most efficient way of self-stimulation. It proposes that rhythm may be a reinforcement in at least some cases. It raises the question of whether control of stimulation by the person is a necessary condition for maintaining stereotypy. The paper recognizes the possibility that stereotyped behaviors may have their origin in the common repetitive behaviors of infancy but emphasizes that pathological stereotypy may involve more than immature repetition. It suggests that there is reason to believe that early intervention to prevent pathological stereotyped behavior might be effective but that we do not know much about how stereotypies get started.

  14. Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC.

    PubMed

    Hung-Wei Chiu; Mu-Lien Lin; Chii-Wann Lin; I-Hsiu Ho; Wei-Tso Lin; Po-Hsiang Fang; Yi-Chin Lee; Yeong-Ray Wen; Shey-Shi Lu

    2010-12-01

    This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A body floating type rectifier achieves 84% voltage conversion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered by a PRF driver circuit. The PRF parameters include pulse duration, pulse frequency and repetition rate, which are controllable via 402 MHz RF receiver. The minimal required 3 V RF Vin and 2.2 V VDDr is achieved at 18 mm gap. The SoC chip is fabricated in a 0.35 μm CMOS process and mounted on a PCB with a flexible spiral antenna. The packaged PRF SoC was implanted into rats for the animal study. Von Frey was applied to test the mechanical allodynia in a blinded manner. This work has successfully demonstrated that implanted CMOS SoC stimulating DRG with 1.4 V, 500 kHz PRF could significantly reduce spinal nerve ligation (SNL) induced mechanical allodynia for 3-7 days. PMID:23850752

  15. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation.

    PubMed

    Jin, Qiaofeng; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yeh, Chih-Kuang

    2016-09-01

    Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications. PMID:27150739

  16. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields. PMID:26094455

  17. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  18. The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus.

    PubMed

    Wong, D; Maekawa, M; Tanaka, H

    1992-04-01

    1. Echo delay is the primary cue used by echolocating bats to determine target range. During target-directed flight, the repetition rate of pulse emission increases systematically as range decreases. Thus, we examined the delay tuning of 120 neurons in the auditory cortex of the bat, Myotis lucifugus, as repetition rate was varied. 2. Delay sensitivity was exhibited in 77% of the neurons over different ranges of pulse repetition rates (PRRs). Delay tuning typically narrowed and eventually disappeared at higher PRRs. 3. Two major types of delay-sensitive neurons were found: i) delay-tuned neurons (59%) had a single fixed best delay, while ii) tracking neurons (22%) changed their best delay with PRR. 4. PRRs from 1-100/s were represented by the population of delay-sensitive neurons, with the majority of neurons delay-sensitive at PRRs of at least 10-20/s. Thus, delay-dependent neurons in Myotis are most active during the search phase of echolocation. 5. Delay-sensitive neurons that also responded to single sounds were common. At PRRs where delay sensitivity was found, the responses to single sounds were reduced and the responses to pulse-echo pairs at particular delays were greater than the single-sound responses. In facilitated neurons (53%), the maximal delay-dependent response was always larger than the best single-sound responses, whereas in enhanced neurons (47%), these responses were comparable. The presence of neurons that respond maximally to single sounds at one PRR and to pulse-echo pairs with particular echo delays at other PRRs suggests that these neurons perform echo-ranging in conjunction with other biosonar functions during target pursuit. PMID:1625215

  19. Diode-pumped short pulse passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser at high repetition rate operation

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Wang, C.; Yan, R. P.; Li, X. D.; Gao, J.; Zhang, Z. H.; Yu, J. H.

    2010-06-01

    A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser is demonstrated for the first time. In a concave-piano cavity, pulsed 912 nm laser performance is investigated using two kinds of Cr:YAG crystal with different unsaturated transmission ( T U) of 95% and 90% at 912 nm as the saturable absorbers. When the T U = 90% Cr:YAG is used, as much as 2.6 W average output power for short pulsed 912 nm laser is achieved at an absorbed pump power of 34.0 W, corresponding to an optical efficiency of 7.6% and a slope efficiency of 20.3%. Moreover, 10.5 ns duration pulses and up to 2.3 kW peak power is obtained at the repetition rate around 81.6 kHz.

  20. Obtaining two attosecond pulses pulses for x-ray stimulated Raman spectroscopy

    SciTech Connect

    Zholents, Alexander; Penn, G.

    2009-06-23

    Attosecond x-ray pulses are an indispensable tool for the study of electronic and structural changes in molecules undergoing chemical reactions. They have a wide bandwidth comparable to the energy bands of valence electronic states and, therefore, are well suited for making and probing multiple valence electronic excitations using core electron transitions. Here we propose a method of creating a sequence of two attosecond soft x-ray pulses in a free electron laser by optical manipulation of electrons located in two different sections of the electron bunch. The energy of each x-ray pulse can be of the order of 100 nJ and the pulse width of the order of 250 attoseconds. The carrier frequency of each x-ray pulse can be independently tuned to a resonant core electron transition of a specific atom of the molecule. The time interval between the two attosecond pulses is tunable from a few femtoseconds to a hundred femtoseconds with better than 100 attoseconds precision.

  1. 5.2-W high-repetition-rate eye-safe laser at 1525 nm generated by Nd:YVO₄₋YVO₄stimulated Raman conversion.

    PubMed

    Ding, Xin; Fan, Chen; Sheng, Quan; Li, Bin; Yu, Xuanyi; Zhang, Guizhong; Sun, Bing; Wu, Liang; Zhang, Haiyong; Liu, Jian; Jiang, Pengbo; Zhang, Wei; Zhao, Cen; Yao, Jianquan

    2014-11-17

    We report herein an efficient eye-safe Raman laser, which is based upon Nd:YVO₄₋YVO₄ and in-band pumped by a wavelength-locked laser diode array at 878.6 nm. By virtue of mitigated thermal load and improved pump absorption, a maximum average output power of 5.2 W at 1525 nm is obtained under the incident pump power of 30.6 W with the pulse repetition frequency of 140 kHz, corresponding to an optical efficiency of 17.0%. PMID:25402149

  2. [The kinesiological, chemical and pathological analysis in pulsed magnetic stimulation to the brain].

    PubMed

    Mano, Y; Funakawa, I; Nakamuro, T; Takayanagi, T; Matsui, K

    1989-08-01

    Pulsed magnetic stimulation of the human brain and spinal region has been reported recently. Unlike electrical stimulation, magnetic stimulation excites the motor cortex without discomfort to the subject. This method will be used as a new clinical test to study the central motor pathway. Although no deleterious effects have been observed thus far, the safety of this technique is regarded as unproven. We have investigated kinesiological, neurochemical and pathological analysis. Our pulsed magnetic discharge system consists of a high voltage capacitor bank and flat circular coil of insulated copper wire. The high voltage capacitor bank has a maximum voltage of 900 V, a maximum current flow of 8,000 amp and 1,637 uF in condenser capacitance. Sixty four normal wistar rats each weighing 200 g were used in this study. The rats were separated into two groups. Rats in one group received pulsed magnetic stimulation 50 times in 0.5 Hz by a flat circular coil which surrounded the head of rat at 1 cm in front of the interauricular line. The rats were housed in a long circular chamber. Rats in the other group did not receive the pulsed magnetic stimulation in the long circular chamber. The details of kinesiological analysis by Animex II measurement were described in an other paper (Act Neurologica Scandinavica 73; 352-358, 1986). The measurement of monoamines, dopamine (DA), homovalinic acid (HVA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT), were made according to the Mefford's method 1 hour and 4 days after the magnetic stimulation. The analysis of the pathological state was also studied 1 hour and 4 days after the magnetic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2574648

  3. High-efficiency laser-pulse compression by stimulated Brillouin scattering.

    PubMed

    Damzen, M J; Hutchinson, M H

    1983-06-01

    Highly efficient compression of laser pulses down to 1 nsec in duration by stimulated Brillouin scattering has been demonstrated. Compression ratios of ~10 and energy-conversion efficiencies >70% have been produced. Several compressor systems have been investigated, including the use of tapered waveguides, long-focal-length geometries, and generator-amplifier systems. PMID:19718098

  4. Single Broadband Phase-Shaped Pulse Stimulated Raman Spectroscopy for Standoff Trace Explosive Detection.

    PubMed

    Glenn, Rachel; Dantus, Marcos

    2016-01-01

    Recent success with trace explosives detection based on the single ultrafast pulse excitation for remote stimulated Raman scattering (SUPER-SRS) prompts us to provide new results and a Perspective that describes the theoretical foundation of the strategy used for achieving the desired sensitivity and selectivity. SUPER-SRS provides fast and selective imaging while being blind to optical properties of the substrate such as color, texture, or laser speckle. We describe the strategy of combining coherent vibrational excitation with a reference pulse in order to detect stimulated Raman gain or loss. A theoretical model is used to reproduce experimental spectra and to determine the ideal pulse parameters for best sensitivity, selectivity, and resolution when detecting one or more compounds simultaneously. PMID:26654188

  5. Cell stimulation and calcium mobilization by picosecond electric pulses

    PubMed Central

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H.; Pakhomov, Andrei G.

    2015-01-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca2+ was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca2+ in both GH3 (by 114+/−48 nM) and NG108 cells (by 6 +/−1.1 nM). Trains of 100 psEP amplified the response to 379+/−33 nM and 719+/−315 nM, respectively. Ca2+ responses peaked within 2–15 s and recovered for over 100 s; they were 80–100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na+ with N-methyl-D-glucamine. There was no response to psEP in Ca2+-free medium, but adding external Ca2+ even 10 s later evoked Ca2+ response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 °K per psEP), or membrane depolarization by opening of VG Na+ channels. PMID:26011130

  6. Cell stimulation and calcium mobilization by picosecond electric pulses.

    PubMed

    Semenov, Iurii; Xiao, Shu; Kang, Dongkoo; Schoenbach, Karl H; Pakhomov, Andrei G

    2015-10-01

    We tested if picosecond electric pulses (psEP; 190 kV/cm, 500 ps at 50% height), which are much shorter than channel activation time, can activate voltage-gated (VG) channels. Cytosolic Ca(2+) was monitored by Fura-2 ratiometric imaging in GH3 and NG108 cells (which express multiple types of VG calcium channels, VGCC), and in CHO cells (which express no VGCC). Trains of up to 100 psEP at 1 kHz elicited no response in CHO cells. However, even a single psEP significantly increased Ca(2+) in both GH3 (by 114 ± 48 nM) and NG108 cells (by 6 ± 1.1 nM). Trains of 100 psEP amplified the response to 379 ± 33 nM and 719 ± 315 nM, respectively. Ca(2+) responses peaked within 2-15s and recovered for over 100 s; they were 80-100% inhibited by verapamil and ω-conotoxin, but not by the substitution of Na(+) with N-methyl-D-glucamine. There was no response to psEP in Ca(2+)-free medium, but adding external Ca(2+) even 10s later evoked Ca(2+) response. We conclude that electrical stimuli as short as 500 ps can cause long-lasting opening of VGCC by a mechanism which does not involve conventional electroporation, heating (which was under 0.06 K per psEP), or membrane depolarization by opening of VG Na(+) channels.

  7. Pulsed 808-nm infrared laser stimulation of the auditory nerve in guinea pig cochlea.

    PubMed

    Xia, Nan; Wu, Xiao Y; Wang, Xing; Mou, Zong X; Wang, Man Q; Gu, Xin; Zheng, Xiao L; Hou, Wen S

    2014-01-01

    Pulsed near-infrared radiation has been proposed as an alternative stimulus for auditory nerve stimulation and could be potentially used in the design of cochlear implant. Although the infrared with high absorption coefficient of water (i.e., wavelength ranged from 1.8 to 2.2 μm) has been widely investigated, the lymph in the cochlea absorbs most of the infrared energies, and only a small part can arrive at the target auditory nerves. The present study is aimed to test whether the short-wavelength near-infrared irradiation with lower absorption coefficients can penetrate the lymph fluid to stimulate the auditory nerves. An 808-nm near-infrared laser was chosen to stimulate the auditory nerve in the guinea pig cochlea. The infrared pulse was delivered by an optical fiber that was surgically inserted near the round window membrane and oriented toward the spiral ganglion cells in the basal turn of the cochlea. The 2-Hz infrared pulses were used to stimulate the cochlea before and after the deafness with different pulse durations (100-1,000 μs). Optically evoked compound action potentials (oCAPs) were recorded during the infrared radiation. We successfully recorded oCAPs from both normal hearing animals and deafened animals. The oCAP amplitude increased with the infrared radiation energy. The preliminary experiment suggests that the near-infrared with lower absorption coefficients can effectively pass through the lymph filled in the cochlea and stimulate the auditory nerve. Further studies will optimize the deafness animal model and determine the optimal stimulation parameters.

  8. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.

    PubMed

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S

    2014-12-01

    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  9. Controlling the stimulated Brillouin scattering of self-focusing nanosecond laser pulses in silica glasses

    SciTech Connect

    Mauger, Sarah; Berge, Luc; Skupin, Stefan

    2011-06-15

    We numerically investigate the interplay between Kerr self-focusing (SF) and transient stimulated Brillouin scattering (SBS) for nanosecond pulses in bulk silica. The influences of the input power, phase, or amplitude modulations in the pump pulse together with the incident beam shape on the filamentation dynamics are discussed. We show that appropriate amplitude modulations dividing nanosecond laser pumps into picosecond-long pulse trains inhibit SBS at any power. In contrast, phase-modulated pulses with comparable spectral width undergo multiple filamentation and earlier beam collapse due to modulational instabilities. We demonstrate, however, the existence of a critical pump bandwidth above which SBS can be efficiently suppressed by phase modulations even at high powers. This observation also holds for squared beam shapes with much broader spatial spectra, which decay more easily into multiple filaments over short distances. Intensity profiles of the reflected Stokes waves for such broad pumps are finally discussed.

  10. The effect of single-pulse transcranial magnetic stimulation and peripheral nerve stimulation on complexity of EMG signal: fractal analysis.

    PubMed

    Cukic, M; Oommen, J; Mutavdzic, D; Jorgovanovic, N; Ljubisavljevic, M

    2013-07-01

    The aim of this study was to examine whether single-pulse transcranial magnetic stimulation (spTMS) affects the pattern of corticospinal activity once voluntary drive has been restored after spTMS-induced EMG silence. We used fractal dimension (FD) to explore the 'complexity' of the electromyography (EMG) signal, and median frequency of the spectra (MDF) to examine changes in EMG spectral characteristics. FD and MDF of the raw EMG epochs immediately before were compared with those obtained from epochs after the EMG silence. Changes in FD and MDF after spTMS were examined with three levels of muscle contraction corresponding to weak (20-40%), moderate (40-60%) and strong (60-80% of maximal voluntary contraction) and three intensities of stimulation set at 10, 20 and 30% above the resting motor threshold. FD was calculated using the Higuchi fractal dimension algorithm. Finally, to discern the origin of FD changes between the CNS and muscle, we compared the effects of spTMS with the effects of peripheral nerve stimulation (PNS) on FD and MDF. The results show that spTMS induced significant decrease in both FD and MDF of EMG signal after stimulation. PNS did not have any significant effects on FD nor MDF. Changes in TMS intensity did not have any significant effect on FD or MDF after stimulation nor had the strength of muscle contraction. However, increase in contraction strength decreased FD before stimulation but only between weak and moderate contraction. The results suggest that the effects of spTMS on corticospinal activity, underlying voluntary motor output, outlast the TMS stimulus. It appears that the complexity of the EMG signal is reduced after spTMS, suggesting that TMS alters the dynamics of the ongoing corticospinal activity most likely temporarily synchronizing the neural network activity. Further studies are needed to confirm whether observed changes after TMS occur at the cortical level. PMID:23652725

  11. Neuromodulatory effects of offline low-frequency repetitive transcranial magnetic stimulation of the motor cortex: A functional magnetic resonance imaging study

    PubMed Central

    Min, Yu-Sun; Park, Jang Woo; Jin, Seong Uk; Jang, Kyung Eun; Lee, Byung-Joo; Lee, Hui Joong; Lee, Jongmin; Lee, Yang-Soo; Chang, Yongmin; Jung, Tae-Du

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) can modulate cortical excitability and is thought to influence activity in other brain areas. In this study, we investigated the anatomical and functional effects of rTMS of M1 and the time course of after-effects from a 1-Hz subthreshold rTMS to M1. Using an “offline” functional magnetic resonance imaging (fMRI)-rTMS paradigm, neural activation was mapped during simple finger movements after 1-Hz rTMS over the left M1 in a within-subjects repeated measurement design, including rTMS and sham stimulation. A significant decrease in the blood oxygen level dependent (BOLD) signal due to right hand motor activity during a simple finger-tapping task was observed in areas remote to the stimulated motor cortex after rTMS stimulation. This decrease in BOLD signal suggests that low frequency subthreshold rTMS may be sufficiently strong to elicit inhibitory modulation of remote brain regions. In addition, the time course patterns of BOLD activity showed this inhibitory modulation was maximal approximately 20 minutes after rTMS stimulation. PMID:27786301

  12. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE PAGES

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  13. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    SciTech Connect

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals are observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.

  14. Effect of Paired-Pulse Electrical Stimulation on the Activity of Cortical Circuits

    PubMed Central

    Saito, Kei; Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Fujimoto, Shuhei

    2015-01-01

    Objective: We investigated the transient effect of short-duration paired-pulse electrical stimulation (ppES) on corticospinal excitability and the after-effect of long-duration ppES on excitability, short-latency afferent inhibition (SAI), and afferent facilitation (AF). Methods: A total of 28 healthy subjects participated in two different experiments. In Experiment 1, motor-evoked potentials (MEPs) were measured in the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles before and immediately after short-duration ppES (5 s) at various inter-pulse intervals (2, 3, 4, 5, 6, 7, 10, 15, 20, and 30 ms). In Experiment 2, MEPs, SAI, and AF were measured before, immediately, and 20 and 40 min after long-duration ppES (20 min, inter-pulse interval of 5 and 15 ms) and peripheral electrical stimulation (20 min, 10 and 20 Hz). Results: Short-duration ppES with inter-pulse intervals of 5 and 20 ms significantly increased MEP measured in APB but not in ADM. Long-duration ppES with an inter-pulse interval of 5 ms significantly decreased SAI but not MEPs in APB. In contrast, long-duration ppES did not affect ADM. Conclusion: The afferent inputs induced by ppES-5 ms were effective for transiently increasing MEP and sustaining SAI reduction. PMID:26733847

  15. Detection of pulse trains in the electrically stimulated cochlea: Effects of cochlear healtha

    PubMed Central

    Pfingst, Bryan E.; Colesa, Deborah J.; Hembrador, Sheena; Kang, Stephen Y.; Middlebrooks, John C.; Raphael, Yehoash; Su, Gina L.

    2011-01-01

    Perception of electrical stimuli varies widely across users of cochlear implants and across stimulation sites in individual users. It is commonly assumed that the ability of subjects to detect and discriminate electrical signals is dependent, in part, on conditions in the implanted cochlea, but evidence supporting that hypothesis is sparse. The objective of this study was to define specific relationships between the survival of tissues near the implanted electrodes and the functional responses to electrical stimulation of those electrodes. Psychophysical and neurophysiological procedures were used to assess stimulus detection as a function of pulse rate under the various degrees of cochlear pathology. Cochlear morphology, assessed post-mortem, ranged from near-normal numbers of hair cells, peripheral processes and spiral ganglion cells, to complete absence of hair cells and peripheral processes and small numbers of surviving spiral ganglion cells. The psychophysical and neurophysiological studies indicated that slopes and levels of the threshold versus pulse rate functions reflected multipulse integration throughout the 200 ms pulse train with an additional contribution of interactions between adjacent pulses at high pulse rates. The amount of multipulse integration was correlated with the health of the implanted cochlea with implications for perception of more complex prosthetic stimuli. PMID:22225050

  16. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  17. Exploitation of stimulated Raman scattering in short-pulse fiber amplifiers.

    PubMed

    Zhou, Shian; Takamido, Tetsuji; Imai, Shinji; Wise, Frank

    2010-07-15

    Stimulated Raman scattering (SRS) generally limits the performance of short-pulse fiber amplifiers. We present the results of experiments that show that, under some conditions, SRS can extend the performance of amplifiers limited by nonlinear phase accumulation. The Stokes spectrum can be free of distortions arising from self-phase modulation and can circumvent the gain-narrowing limit of the amplifier. The generation of 1 microJ and 90 fs pulses from a single-mode fiber amplifier illustrates the potential of the process.

  18. Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses

    PubMed Central

    Biggs, Jason D.; Zhang, Yu; Healion, Daniel; Mukamel, Shaul

    2012-01-01

    Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole. PMID:22583220

  19. Gas-dynamic perturbations in an electric-discharge repetitively pulsed DF laser and the role of He in their suppression

    NASA Astrophysics Data System (ADS)

    Evdokimov, P. A.; Sokolov, D. V.

    2015-11-01

    The gas-dynamic perturbations in a repetitively pulsed DF laser are studied using a Michelson interferometer. Based on the analysis of experimental data obtained in two experimental sets (working medium without buffer gas and with up to 90% of He), it is concluded that such phenomena as isentropic expansion of a thermal plug, gas heating by shock waves and resonance acoustic waves do not considerably decrease the upper limit of the pulse repetition rate below a value determined by the time of the thermal plug flush out of the discharge gap. It is suggested that this decrease for a DF laser with the SF6 - D2 working mixture is caused by the development of overheat instability due to an increased energy deposition into the near-electrode regions and to the formation of electrode shock waves. Addition of He to the active media of the DF laser changes the discharge structure and improves its homogeneity over the discharge gape cross section, thus eliminating the reason for the development of this instability. A signification dilution of the active medium of a DF laser with helium up to the atmospheric pressure allowed us to achieve the limiting discharge initiation frequencies with the active medium replacement ratio K ~ 1.

  20. Generation of stable Ps, mJ pulses at high repetition rate for ultrafast diagnostic experiments: Final report

    SciTech Connect

    Mourou, G.

    1986-10-01

    Nd:Glass amplifiers have very good energy storage capabilities (5 J/cm/sup 2/), but, the energy extraction is extremely inefficient for short-pulse amplification. At relatively high peak intensities of approx. 10 GW/cm/sup 2/, nonlinear phase shifts occur, leading to beam wavefront distortion which can result in filamentation and irreversible damage. In order that the peak intensity in the amplifier remain below this damage level, a picosecond pulse can be amplified only to an energy density of approx. 10 mJ/cm/sup 2/, two orders of magnitude less than the stored energy level of 5 J/cm/sup 2/. We have developed an amplification system, which uses an optical pulse compression technique to circumvent this peak power limitation. This technique is analogous to a method developed over forty years ago for the amplification of radar pulses. Briefly: a long optical pulse is deliberately produced by stretching a short, low-energy pulse, amplified and then compressed. The frequency chirp and the temporal broadening are produced by propagating a high-intensity pulse along a single-mode fiber. At the beginning of the fiber, the pulse undergoes self-phase modulation which produces a frequncy chirp. The chirp is then linearized by the group-velocity dispersion of the fiber. This long, frequency-chirped, pulse is amplified, and then compressed to a pulsewidth approximately equal to 1/..delta..f, where ..delta..f is the chirped bandwidth. With this system, short pulses can reach the high saturation energy levels, with moderately low peak power levels being maintained in the amplifying medium.

  1. High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, J.; Petrov, G. M.; Nees, J. A.; He, Z.-H.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2016-10-01

    Using several-mJ energy pulses from a high-repetition rate (1/2 kHz), ultrashort (35 fs) pulsed laser interacting with a ˜ 10 μm diameter stream of free-flowing heavy water (D2O), we demonstrate a 2.45 MeV neutron flux of 105/s. Operating at high intensity (of order 1019 W/cm2), laser pulse energy is efficiently absorbed in the pre-plasma, generating energetic deuterons. These collide with deuterium nuclei in both the bulk target and the large volume of low density D2O vapor surrounding the target to generate neutrons through d ( d , n ) 3 He reactions. The neutron flux, as measured by a calibrated neutron bubble detector, increases as the laser pulse energy is increased from 6 mJ to 12 mJ. A quantitative comparison between the measured flux and the results derived from 2D-particle-in-cell simulations shows comparable neutron fluxes for laser characteristics similar to the experiment. The simulations reveal that there are two groups of deuterons. Forward moving deuterons generate deuterium-deuterium fusion reactions in the D2O stream and act as a point source of neutrons, while backward moving deuterons propagate through the low-density D2O vapor filled chamber and yield a volumetric source of neutrons.

  2. High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz

    NASA Astrophysics Data System (ADS)

    Lv, Zhi-Guo; Teng, Hao; Wang, Li-Na; Wang, Jun-Li; Wei, Zhi-Yi

    2016-09-01

    A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification (CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied. We find that the compressed pulse duration is dependent on the amplified energy, the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ, while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ. The measured energy fluctuation is approximately 0.46% root mean square (RMS) over 2 h. The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines, medical therapy, and scientific studies. Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAC23B03), the National Key Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11474002).

  3. The Neuronal Responses to Repetitive Acoustic Pulses in Different Fields of the Auditory Cortex of Awake Rats

    PubMed Central

    Ma, Lanlan; Tai, Xuhui; Su, Liye; Shi, Lijuan; Wang, Enhua; Qin, Ling

    2013-01-01

    Cortical representation of time-varying features of acoustic signals is a fundamental issue of acoustic processing remaining unresolved. The rat is a widely used animal model for auditory cortical processing. Though some electrophysiological studies have investigated the neural responses to temporal repetitive sounds in the auditory cortex (AC) of rats, most of them were conducted under anesthetized condition. Recently, it has been shown that anesthesia could significantly alter the temporal patterns of neural response. For this reason, we systematically examined the single-unit neural responses to click-trains in the core region of rat AC under awake condition. Consistent with the reports on anesthetized rats, we confirmed the existence of characteristic tonotopic organizations, which were used to divide the AC into anterior auditory field (AAF), primary auditory cortex (A1) and posterior auditory field (PAF). We further found that the neuron's capability to synchronize to the temporal repetitive stimuli progressively decreased along the anterior-to-posterior direction of AC. The median of maximum synchronization rate was 64, 32 and 16 Hz in AAF, A1 and PAF, respectively. On the other hand, the percentage of neurons, which showed non-synchronized responses and could represent the stimulus repetition rate by the mean firing rate, increased from 7% in AAF and A1 to 20% in PAF. These results suggest that the temporal resolution of acoustic processing gradually increases from the anterior to posterior part of AC, and thus there may be a hierarchical stream along this direction of rat AC. PMID:23696877

  4. Amplification of stimulated Brillouin scattering of two collinear pulsed laser beams with orthogonal polarizations.

    PubMed

    Shi, Jinwei; Chen, Xudong; Ouyang, Min; Liu, Juan; Liu, Dahe

    2009-06-10

    A polarization-controlling device was developed based on the fact that there can be a time delay between the seeder and the pumping beams during the amplification of a stimulated Brillouin scattering signal. The device causes two coaxially transmitted pulsed beams with orthogonal polarizations to have the same polarization in order to implement amplification by the pumping effect. An experiment showed that good pumping amplification can be achieved by using this technique. PMID:19516374

  5. Determination of the stimulated raman scattering threshold for a pump pulse of arbitrary width

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.

    2016-09-01

    A theoretical solution to the problem of determining the stimulated Raman scattering (SRS) threshold has been found within the undepleted pump approximation for a pump pulse of arbitrary width, which distinguishes it from the known solutions for the limiting cases of very short (highly transient SRS) and very long (quasi-steady-state SRS) pump pulses with respect to the oscillation dephasing time of the SRS medium. The general formula of the theoretical estimate of SRS threshold, in dependence of not only the pump radiation intensity and the SRS interaction length but also the pump-pulse width, is obtained based on the found solution. The theoretical estimate of the SRS threshold has been shown to be in good agreement with the experimental results on the excitation of picosecond SRS in crystals, which justifies the new express method for estimating the SRS gain in experimental measurements of the picosecond SRS threshold.

  6. Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers.

    PubMed

    Agrawal, G P

    1990-02-15

    The effect of intrapulse stimulated Raman scattering (ISRS) on the quality of soliton-effect pulse compression is analyzed by solving the generalized nonlinear Schrödinger equation numerically. The results show that ISRS can improve the performance of soliton-effect pulse compressors both qualitatively and quantitatively. The compressed pulse is shorter with a higher peak power when ISRS is taken into account. Furthermore it is pedestal free as it separates from the background. The separation is due to the soliton self-frequency shift initiated by the process of ISRS. It can also be understood in terms of the soliton decay. The optimum fiber length is found to be longer than that expected in the absence of ISRS.

  7. Multi-color carrier-envelope-phase stabilization for high-repetition-rate multi-pulse coherent synthesis.

    PubMed

    McCracken, Richard A; Gianani, Ilaria; Wyatt, Adam S; Reid, Derryck T

    2015-04-01

    Using a zero-offset carrier-envelope locking technique, we have synthesized an octave-spanning composite frequency comb exhibiting 132-attosecond timing jitter between the constituent pulses over a one-second observation window. In the frequency domain, this composite comb has a modal structure and coherence which are indistinguishable from those of a comb that might be produced by a hypothetical single mode locked oscillator of equivalent bandwidth. The associated phase stability enables the participating multi-color pulse sequences to be coherently combined, representing an example of multi-pulse synthesis using a femtosecond oscillator.

  8. Effects of low amplitude pulsed radiofrequency stimulation with different waveform in rats for neuropathic pain.

    PubMed

    Lin, W T; Chang, C H; Cheng, C Y; Chen, M C; Wen, Y R; Lin, C T; Lin, C W

    2013-01-01

    Pulsed-radiofrequency (PRF) electrical stimulation has been widely used for chronic pain treatment. It has been demonstrated with advantages of low temperature over traditional continuous radiofrequency (CRF) lesions with higher amplitude and mono polar electrode to treat pain in clinics (frequency 500 KHz, Pulse duration 20 msec, Amplitude 45 V, Treatment 2 min). We compare the effects of different pulse waveforms and PRF parameters (Pulse duration 25 ms, Treatment duration 5 min, low amplitude of 2.5/1.25 V) with a miniature bi-polar electrode on Dorsal root ganglion (DRG). The pain relief effect due to PRF is evaluated by using Von Frey method for the pain threshold index based on behavior response to mechanical stimulus of various strengths. Experimental results of Von Frey Score show that the sinusoidal group has higher responses than the square wave one. Both fast and secondary expressed proteins of c-fos and pp38 are measured from spinal cord tissue sectioning slides to characterize the pain associated inflammatory responses and their responses due to PRF stimulation.

  9. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared

    SciTech Connect

    Zhu, Liangdong; Liu, Weimin; Fang, Chong

    2014-07-28

    We demonstrate a versatile and efficient setup to perform femtosecond stimulated Raman spectroscopy (FSRS). Technical innovations are implemented to achieve the wavelength tunability for both the picosecond narrowband Raman pump pulse and femtosecond broadband Raman probe pulse. Using a simplified one-grating scheme in a home-built second harmonic bandwidth compressor followed by a two-stage noncollinear optical parametric amplifier, we tune the Raman pump pulse from ca. 480 to 750 nm. To generate the suitable Raman probe pulse in tandem, we rely on our recently demonstrated broadband up-converted multicolor array technique that readily provides tunable broadband laser sidebands across the visible to near-infrared range. This unique setup has unparalleled flexibility for conducting FSRS. We measure the ground-state Raman spectra of a cyclohexane standard using tunable pump-probe pairs at various wavelengths across the visible region. The best spectral resolution is ∼12 cm{sup −1}. By tuning the pump wavelength closer to the electronic absorption band of a photoacid pyranine in water, we observe the pre-resonantly enhanced Raman signal. The stimulated Raman gain of the 1627 cm{sup −1} mode is increased by over 15 times.

  10. Bilateral responses of prefrontal and motor cortices to repetitive transcranial magnetic stimulation as measured by functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Fenghua; Kozel, Frank Andrew; Dhamne, Sameer; McClintock, Shawn M.; Croarkin, Paul; Mapes, Kimberly; Husain, Mustafa M.; Liu, Hanli

    2009-02-01

    Simultaneously acquiring cortical functional Near Infrared Spectroscopy (fNIRS) during repeated Transcranial Magnetic Stimulation (rTMS) offers the possibility of directly investigating the effects of rTMS on brain regions without quantifiable behavioral changes. In this study, the left motor cortex and subsequently the left prefrontal cortex were stimulated at 1 Hz while fNIRS data was simultaneously acquired. Changes in hemodynamic signals were measured on both ipsilateral and contralateral sides. In each cortex, a significantly larger decrease in the concentration of oxygenated hemoglobin and a smaller increase in the concentration of deoxygenated hemoglobin during the stimulation periods were observed in both the motor and prefrontal cortices. The ipsilateral and contralateral changes showed high temporal consistency. Same experiment was repeated for each subject 2 or 3 days later. The hemodynamic responses associated with the stimulation showed good reproducibility in two sessions. To our knowledge, this is the first report of simultaneous fNIRS measurement of ipsilateral and contralateral changes of either the motor or prefrontal cortex during rTMS stimulation.

  11. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator.

    PubMed

    Barnett, D H; Parson, J M; Lynn, C F; Kelly, P M; Taylor, M; Calico, S; Scott, M C; Dickens, J C; Neuber, A A; Mankowski, J J

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  12. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator

    NASA Astrophysics Data System (ADS)

    Barnett, D. H.; Parson, J. M.; Lynn, C. F.; Kelly, P. M.; Taylor, M.; Calico, S.; Scott, M. C.; Dickens, J. C.; Neuber, A. A.; Mankowski, J. J.

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  13. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham controlled study.

    PubMed

    Garg, Shobit; Sinha, Vinod Kumar; Tikka, Sai Krishna; Mishra, Preeti; Goyal, Nishant

    2016-09-30

    Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic for schizophrenia. Treatment effects of rTMS have been variable across different symptom clusters, with negative symptoms showing better response, followed by auditory hallucinations. Cerebellum, especially vermis and its abnormalities (both structural and functional) have been implicated in cognitive, affective and positive symptoms of schizophrenia. rTMS to this alternate site has been suggested as a novel target for treating patients with this disorder. Hypothesizing cerebellar vermal magnetic stimulation as an adjunct to treat schizophrenia psychopathology, we conducted a double blind randomized sham controlled rTMS study. In this study, forty patients were randomly allocated (using block randomization method) to active high frequency (theta patterned) rTMS (n=20) and sham (n=20) groups. They received 10 sessions over 2 weeks. The Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS) scores were assessed at baseline, after last session and at 4 weeks (2 weeks post-rTMS). We found a significantly greater improvement in the group receiving active rTMS sessions, compared to the sham group on negative symptoms, and depressive symptoms. We conclude that cerebellar stimulation can be used as an effective adjunct to treat negative and affective symptoms. PMID:27450744

  14. Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale

    SciTech Connect

    Barbour, T.G.; Mihalik, G.R.

    1980-11-01

    An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.

  15. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report

    PubMed Central

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young

    2015-01-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  16. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report.

    PubMed

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young; Choi, In-Sung

    2015-08-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  17. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  18. Repetitively pulsed TEA CO2 laser and its application for second harmonic generation in ZnGeP2 crystal

    NASA Astrophysics Data System (ADS)

    Koval'chuk, L. V.; Grezev, A. N.; Niz'ev, V. G.; Yakunin, V. P.; Mezhevov, V. S.; Goryachkin, D. A.; Sergeev, V. V.; Kalintsev, A. G.

    2015-10-01

    Experimental results are presented on the development of a radiation source emitting at a wavelength of 4.775 μm with a pulse energy up to 50 mJ and an average power up to several watts in short pulse trains. A TEA CO2 laser and a nonlinear converter based on a ZnGeP2 crystal, which are specially designed for these experiments, are described. The main limitations of nonlinear conversion and possible ways to overcome these limitations are considered.

  19. Optimization of interaction conditions for efficient short laser pulse amplification by stimulated Brillouin scattering in the strongly coupled regime

    NASA Astrophysics Data System (ADS)

    Chiaramello, M.; Riconda, C.; Amiranoff, F.; Fuchs, J.; Grech, M.; Lancia, L.; Marquès, J.-R.; Vinci, T.; Weber, S.

    2016-07-01

    Plasma amplification of low energy, a short (˜100-500 fs) laser pulse by an energetic long (˜10 ps) pulse via strong coupling Stimulated Brillouin Backscattering is investigated with an extensive analysis of one-dimensional particle-in-cell simulations. Parameters relevant to nowadays experimental conditions are investigated. The obtained seed pulse spectra are analyzed as a function of the interaction conditions such as plasma profile, pulses delay, and seed or pulse duration. The factors affecting the amount of energy transferred are determined, and the competition between Brillouin-based amplification and parasitic Raman backscattering is analyzed, leading to the optimization of the interaction conditions.

  20. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects—A Pilot Study

    PubMed Central

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R.; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning. PMID:27375452

  1. Inhibition of long-term potentiation in the schaffer-CA1 pathway by repetitive high-intensity sound stimulation.

    PubMed

    Cunha, A O S; de Oliveira, J A C; Almeida, S S; Garcia-Cairasco, N; Leão, R M

    2015-12-01

    High-intensity sound can induce seizures in susceptible animals. After repeated acoustic stimuli changes in behavioural seizure repertoire and epileptic EEG activity might be seen in recruited limbic and forebrain structures, a phenomenon known as audiogenic kindling. It is postulated that audiogenic kindling can produce synaptic plasticity events leading to the spread of epileptogenic activity to the limbic system. In order to test this hypothesis, we investigated if long-term potentiation (LTP) of hippocampal Schaffer-CA1 synapses and spatial navigation memory are altered by a repeated high-intensity sound stimulation (HISS) protocol, consisting of one-minute 120 dB broadband noise applied twice a day for 10 days, in normal Wistar rats and in audiogenic seizure-prone rats (Wistar Audiogenic Rats - WARs). After HISS all WARs exhibited midbrain seizures and 50% of these animals developed limbic recruitment, while only 26% of Wistar rats presented midbrain seizures and none of them had limbic recruitment. In naïve animals, LTP in hippocampal CA1 neurons was induced by 50- or 100-Hz high-frequency stimulation of Schaffer fibres in slices from both Wistar and WAR animals similarly. Surprisingly, HISS suppressed LTP in CA1 neurons in slices from Wistar rats that did not present any seizure, and inhibited LTP in slices from Wistar rats with only midbrain seizures. However HISS had no effect on LTP in CA1 neurons from slices of WARs. Interestingly HISS did not alter spatial navigation and memory in both strains. These findings show that repeated high-intensity sound stimulation prevent LTP of Schaffer-CA1 synapses from Wistar rats, without affecting spatial memory. This effect was not seen in hippocampi from audiogenic seizure-prone WARs. In WARs the link between auditory stimulation and hippocampal LTP seems to be disrupted which could be relevant for the susceptibility to seizures in this strain.

  2. A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation

    PubMed Central

    Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-01-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453

  3. Stimulated Raman scattering in hydrogen by ultrashort laser pulse in the keV regime

    NASA Astrophysics Data System (ADS)

    Bachau, H.; Dondera, M.

    2016-04-01

    This letter addresses the problem of stimulated Raman excitation of a hydrogen atom submitted to an ultrashort and intense laser pulse in the keV regime. The pulse central frequency ω of 55 a.u. (about 1.5 keV) is in the weakly relativistic regime, ω ≤ c/a0 (c is the speed of light in vacuum and a 0 the Bohr radius) and the pulse duration is τ ≈ 18.85 a.u. (about 456 attoseconds). We solve the corresponding time-dependent Schrödinger equation (TDSE) using a spectral approach, retardation (or nondipole) effects are included up to O(1/c) , breaking the conservation of the magnetic quantum number m and forcing the resolution of the TDSE in a three-dimensional space. Due to the laser bandwidth, which is of the order of the ionization potential of hydrogen, stimulated Raman scattering populates nlm excited states (n and l are the principal and azimuthal quantum numbers, respectively). The populations of these excited states are calculated and analyzed in terms of l and m quantum numbers, this showing the contributions of the retardation effects and their relative importance.

  4. Optical discharge with absorption of repetitive CO{sub 2} laser pulses in supersonic air flow: wave structure and condition of a quasi-steady state

    SciTech Connect

    Bobarykina, T A; Malov, A N; Orishich, A M; Chirkashenko, V F; Yakovlev, V I

    2014-09-30

    We report a study of the wave structure formed by an optical discharge plasma upon the absorption of repetitively pulsed CO{sub 2} laser radiation in a supersonic (M = 1.36) air flow. Experimental data are presented on the configuration of the head shock wave and the geometry and characteristic dimensions of breakdown regions behind a laser plasma pulsating in the flow at a frequency of up to 150 kHz. The data are compared to calculation in a point explosion model with allowance for counterpressure, which makes it possible to identify the relationship between laser radiation and supersonic flow parameters that ensures quasisteady- state energy delivery and is necessary for extending the possibilities of controlling the structure of supersonic flows. (interaction of laser radiation with matter)

  5. Repetition-induced plasticity of motor representations of action sounds.

    PubMed

    Bourquin, Nathalie M-P; Simonin, Alexandre; Clarke, Stephanie

    2013-01-01

    Action-related sounds are known to increase the excitability of motoneurones within the primary motor cortex (M1), but the role of this auditory input remains unclear. We investigated repetition priming-induced plasticity, which is characteristic of semantic representations, in M1 by applying transcranial magnetic stimulation pulses to the hand area. Motor evoked potentials (MEPs) were larger while subjects were listening to sounds related versus unrelated to manual actions. Repeated exposure to the same manual-action-related sound yielded a significant decrease in MEPs when right, hand area was stimulated; no repetition effect was observed for manual-action-unrelated sounds. The shared repetition priming characteristics suggest that auditory input to the right primary motor cortex is part of auditory semantic representations. PMID:23064984

  6. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    NASA Astrophysics Data System (ADS)

    Kuramochi, Hikaru; Takeuchi, Satoshi; Tahara, Tahei

    2016-04-01

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm-1 region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  7. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  8. Neural correlates associated with symptom provocation in pediatric obsessive compulsive disorder after a single session of sham-controlled repetitive transcranial magnetic stimulation.

    PubMed

    Pedapati, Ernest; DiFrancesco, Mark; Wu, Steve; Giovanetti, Cathy; Nash, Tiffany; Mantovani, Antonio; Ammerman, Robert; Harris, Elana

    2015-09-30

    Treatments for pediatric obsessive-compulsive disorder (OCD) could be enhanced if the physiological changes engendered by treatment were known. This study examined neural correlates of a provocation task in youth with OCD, before and after sham-controlled repetitive transcranial magnetic stimulation (rTMS). We hypothesized that rTMS to the right dorsolateral prefrontal cortex would inhibit activity in cortico-striato-thalamic (CST) circuits associated with OCD to a greater extent than sham rTMS. After baseline (Time 1) functional magnetic resonance imaging (fMRI) during a provocation task, subjects received one session of either fMRI-guided sham (SG; n=8) or active (AG; n=10) 1-Hz rTMS over the rDLPFC for 30min. During rTMS, subjects were presented with personalized images that evoked OCD-related anxiety. Following stimulation, fMRI and the provocation task were repeated (Time 2). Contrary to our prediction for the provocation task, the AG was associated with no changes in BOLD response from Times 1 to 2. In contrast, the SG had a significant increase at Time 2 in BOLD response in the right inferior frontal gyrus and right putamen, which persisted after adjusting for age, gender, and time to scanner as covariates. This study provides an initial framework for TMS interrogation of the CST circuit in pediatric OCD. PMID:26228567

  9. In Vitro Assessment Reveals Parameters-Dependent Modulation on Excitability and Functional Connectivity of Cerebellar Slice by Repetitive Transcranial Magnetic Stimulation

    PubMed Central

    Tang, Rongyu; Zhang, Guanghao; Weng, Xiechuan; Han, Yao; Lang, Yiran; Zhao, Yuwei; Zhao, Xiaobo; Wang, Kun; Lin, Qiuxia; Wang, Changyong

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is an increasingly common technique used to selectively modify neural excitability and plasticity. There is still controversy concerning the cortical response to rTMS of different frequencies. In this study, a novel in vitro paradigm utilizing the Multi-Electrodes Array (MEA) system and acute cerebellar slicing is described. In a controllable environment that comprises perfusion, incubation, recording and stimulation modules, the spontaneous single-unit spiking activity in response to rTMS of different frequencies and powers was directly measured and analyzed. Investigation using this in vitro paradigm revealed frequency-dependent modulation upon the excitability and functional connectivity of cerebellar slices. The 1-Hz rTMS sessions induced short-term inhibition or lagged inhibition, whereas 20-Hz sessions induced excitation. The level of modulation is influenced by the value of power. However the long-term response fluctuated without persistent direction. The choice of evaluation method may also interfere with the interpretation of modulation direction. Furthermore, both short-term and long-term functional connectivity was strengthened by 1-Hz rTMS and weakened by 20-Hz rTMS. PMID:27000527

  10. Neural correlates associated with symptom provocation in pediatric obsessive compulsive disorder after a single session of sham-controlled repetitive transcranial magnetic stimulation.

    PubMed

    Pedapati, Ernest; DiFrancesco, Mark; Wu, Steve; Giovanetti, Cathy; Nash, Tiffany; Mantovani, Antonio; Ammerman, Robert; Harris, Elana

    2015-09-30

    Treatments for pediatric obsessive-compulsive disorder (OCD) could be enhanced if the physiological changes engendered by treatment were known. This study examined neural correlates of a provocation task in youth with OCD, before and after sham-controlled repetitive transcranial magnetic stimulation (rTMS). We hypothesized that rTMS to the right dorsolateral prefrontal cortex would inhibit activity in cortico-striato-thalamic (CST) circuits associated with OCD to a greater extent than sham rTMS. After baseline (Time 1) functional magnetic resonance imaging (fMRI) during a provocation task, subjects received one session of either fMRI-guided sham (SG; n=8) or active (AG; n=10) 1-Hz rTMS over the rDLPFC for 30min. During rTMS, subjects were presented with personalized images that evoked OCD-related anxiety. Following stimulation, fMRI and the provocation task were repeated (Time 2). Contrary to our prediction for the provocation task, the AG was associated with no changes in BOLD response from Times 1 to 2. In contrast, the SG had a significant increase at Time 2 in BOLD response in the right inferior frontal gyrus and right putamen, which persisted after adjusting for age, gender, and time to scanner as covariates. This study provides an initial framework for TMS interrogation of the CST circuit in pediatric OCD.

  11. Laser-induced molybdenum oxide formation by low energy (nJ)-high repetition rate (MHz) femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cano-Lara, M.; Camacho-López, S.; Esparza-García, A.; Camacho-López, M. A.

    2011-09-01

    Experimental results on femtosecond (fs) laser-induced oxidation of molybdenum (Mo) thin films are presented. The Mo thin films were deposited on fused silica substrates by the magnetron DC-sputtering technique. The as-deposited thin films were characterized by X-ray diffraction, which indicates that bbc-molybdenum was grown. The films were irradiated in ambient air, using a femtosecond Ti:Sapphire laser (800 nm, 60 fs pulse duration, 70 MHz and 6.5 nJ per pulse). The molybdenum thin films were laser scanned in the form of several millimeters long straight line traces, by using a per pulse laser fluence well below the (previously reported) ablation threshold. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) were used to study the laser-induced optical and morphology changes on the exposed zone. Energy Dispersive Spectrometry (EDS) and Micro-Raman Spectroscopy (MRS) were used to determine the degree of oxidation and the phase change across the laser irradiated paths on the Mo thin film. Under the above described experimental conditions our results show that it is possible to laser-induce a specific oxide phase from the molybdenum starting material. Our micro-Raman results clearly demonstrate that the fs-laser irradiation induces the m-MoO 2 and o-Mo 4O 11 crystalline phases at the directly laser irradiated trace and its close proximity.

  12. Three-dimensional polymer nanostructures for applications in cell biology generated by high-repetition rate sub-15 fs near-infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Licht, Martin; Straub, Martin; König, Karsten; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    In recent years two-photon photopolymerization has emerged as a novel and extremely powerful technique of three-dimensional nanostructure formation. Complex-shaped structures can be generated using appropriate beam steering or nanopositioning systems. Here, we report on the fabrication of three-dimensional arrangements made of biocompatible polymer material, which can be used as templates for cell growth. Using three-dimensional cell cages as cell culture substrates is advantageous, as cells may develop in a more natural environment as compared to conventional planar growth methods. The two-photon fabrication experiments were carried out on a commercial microscope setup. Sub-15 fs pulsed Ti:Sapphire laser light (centre wavelength 800 nm, bandwidth 120 nm, repetition rate 85 MHz) was focused into the polymer material by a high-numerical aperture oil immersion objective. Due to the high peak intensities picojoule pulse energies in the focal spot are sufficient to polymerize the material at sub-100 nm structural element dimensions. Therefore, cell cages of sophisticated architecture can be constructed involving very fine features which take into account the specific needs of various types of cells. Ultimately, our research aims at three-dimensional assemblies of photopolymerized structural elements involving sub-100 nm features, which provide cell culture substrates far superior to those currently existing.

  13. LASER BIOLOGY AND MEDICINE: Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2009-03-01

    The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.

  14. Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses

    SciTech Connect

    Shimizu, Masahiro; Miura, Kiyotaka; Hirao, Kazuyuki; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Ohnishi, Masatoshi; Nakaya, Takayuki

    2010-10-15

    Accumulation of thermal energies by highly repeated irradiation of femtosecond laser pulses inside a glass induces the heat-modification whose volume is much larger than that of the photoexcited region. It has been proposed that the heat-modification occurs in the region in which the temperature had overcome a threshold temperature during exposure of laser pulses. In order to understand the mechanism of the heat-modification, we investigated the temperature distribution during laser exposure and the threshold temperature by analyzing the volume of the modification based on a thermal diffusion model. We found that the threshold temperature becomes lower with increasing laser exposure time. The dependence of the threshold temperature on the laser exposure time was explained by the deformation mechanism based on the temperature-dependent viscosity and viscoelastic behavior of a glass under a stress loading by thermal expansion. The deformation mechanism also could simulate a tear-drop shape of a heat-modification by simultaneous double-beams' irradiation and the distribution of birefringence in a heat-modification. The mechanism proposed in this study means that the temperature-dependence of the viscosity of a glass should be essential for predicting and controlling the heat-modification.

  15. Transparent Si-DLC coatings on metals with high repetition bi-polar pulses of a PBII system

    NASA Astrophysics Data System (ADS)

    Ikeyama, Masami; Sonoda, Tsutomu

    2013-07-01

    Diamond-like carbon (DLC) is widely used because of its good properties. However, the color of DLC is usually dark brown or black. Recently, we have made fairly transparent Si contained DLC (Si-DLC) coatings in visible light region. The fairly transparent Si-DLC was made by using our original bi-polar pulse type plasma based ion implantation (PBII) system, with recently introduced high slew rate pulse power supply. The colors of metal sample surface were uniformly changed as subdued red, yellow, subdued green and subdued blue or violet, with the change of Si-DLC coating's thickness. The colors come from the interference between reflected lights at the surface of the Si-DLC coatings and the surface of the metal samples. The colors were also changed with the angle of glancing. Estimated refractive indexes show well agreements among almost all Si-DLC coatings, instead of the differences of coating conditions. Generally, the longer coating time or slower coating process makes the higher refractive index in near infrared region. Estimated band gap of a Si-DLC coating was about 1.5 eV. The developed Si-DLC coatings must be useful as not only protective but also decorative coatings.

  16. Stimulus-response profile during single-pulse transcranial magnetic stimulation to the primary motor cortex.

    PubMed

    Hanakawa, Takashi; Mima, Tatsuya; Matsumoto, Riki; Abe, Mitsunari; Inouchi, Morito; Urayama, Shin-Ichi; Anami, Kimitaka; Honda, Manabu; Fukuyama, Hidenao

    2009-11-01

    We examined the stimulus-response profile during single-pulse transcranial magnetic stimulation (TMS) by measuring motor-evoked potentials (MEPs) with electromyographic monitoring and hemodynamic responses with functional magnetic resonance imaging (fMRI) at 3 Tesla. In 16 healthy subjects, single TMS pulses were irregularly delivered to the left primary motor cortex at a mean frequency of 0.15 Hz with a wide range of stimulus intensities. The measurement of MEP proved a typical relationship between stimulus intensity and MEP amplitude in the concurrent TMS-fMRI environment. In the population-level analysis of the suprathreshold stimulation conditions, significant increases in hemodynamic responses were detected in the motor/somatosensory network, reflecting both direct and remote effects of TMS, and also the auditory/cognitive areas, perhaps related to detection of clicks. The stimulus-response profile showed both linear and nonlinear components in the direct and remote motor/somatosensory network. A detailed analysis suggested that the nonlinear components of the motor/somatosensory network activity might be induced by nonlinear recruitment of neurons in addition to sensory afferents resulting from movement. These findings expand our basic knowledge of the quantitative relationship between TMS-induced neural activations and hemodynamic signals measured by neuroimaging techniques.

  17. Theoretical study of rectangular pulse electrical stimulation (RPES) onskin cells (in vivo) under conforming electrodes.

    PubMed

    Cheng, K; Tarjan, P P; Mertz, P M

    1993-01-01

    Our previous in vivo experimental results have shown RPES can enhance skin wound healing by using conforming electrodes. Based on an equation of polarization transmembrane voltage [Cole, K. S. 1972], two equations were derived to describe the peak RPES intensity on skin cells in vivo: (1) U = 1.5 a J/sigma, (2) Jm = 1.5 a (J/sigma) (Cm/tau). Where U: polarization transmembrane voltage. a: radius (R) for spherical cells or semi-length (L) for long fibers parallel to the electrical field. J: external imposed pulse current density under the electrode. sigma: average conductivity of skin tissue. Jm: transmembrane displacement current density. Cm: membrane capacitance per unit area and tau: time constant. Calculations indicated that the sensory fibers (SF) would receive the strongest stimulation compared to other cells in skin since generally LSF > or = 100 R. The sensitivity of SF to the stimulation could enhance skin wound healing as well as protect normal skin cells from harmful electroporation. From these theoretical calculations. We proposed a theoretical range of the pulse current density as: U1 sigma/(1.5 L) < or = J < or = U2 sigma/(1.5 L), where U1 and U2 are the excitation threshold voltage (about 0.01 V) and polarization electroporation voltage (about 0.1 V) for a SF respectively, for RPES to enhance skin wound healing.

  18. Experimental Evidence of Short Light Pulse Amplification Using Strong-Coupling Stimulated Brillouin Scattering in the Pump Depletion Regime

    SciTech Connect

    Lancia, L.; Antici, P.; Marques, J.-R.; Nakatsutsumi, M.; Mancic, A.; Audebert, P.; Fuchs, J.; Riconda, C.; Weber, S.; Tikhonchuk, V. T.; Hueller, S.; Heron, A.

    2010-01-15

    The energy transfer from a long (3.5 ps) pump pulse to a short (400 fs) seed pulse due to stimulated Brillouin backscattering in the strong-coupling regime is investigated. The two pulses, both at the same wavelength of 1.057 {mu}m are quasicounterpropagating in a preformed underdense plasma. Relative amplification factors for the seed pulse of up to 32 are obtained. The maximum obtained amplified energy is 60 mJ. Simulations are in agreement with the experimental results and suggest paths for further improvement of the amplification scheme.

  19. Experimental evidence of short light pulse amplification using strong-coupling stimulated brillouin scattering in the pump depletion regime.

    PubMed

    Lancia, L; Marquès, J-R; Nakatsutsumi, M; Riconda, C; Weber, S; Hüller, S; Mancić, A; Antici, P; Tikhonchuk, V T; Héron, A; Audebert, P; Fuchs, J

    2010-01-15

    The energy transfer from a long (3.5 ps) pump pulse to a short (400 fs) seed pulse due to stimulated Brillouin backscattering in the strong-coupling regime is investigated. The two pulses, both at the same wavelength of 1.057 microm are quasicounterpropagating in a preformed underdense plasma. Relative amplification factors for the seed pulse of up to 32 are obtained. The maximum obtained amplified energy is 60 mJ. Simulations are in agreement with the experimental results and suggest paths for further improvement of the amplification scheme. PMID:20366602

  20. Effect of pulse repetition frequency and scan step size on the dimensions of the lesions formed in agar by HIFU histotripsy.

    PubMed

    Xu, Jin; Bigelow, Timothy A; Lee, Hangil

    2013-04-01

    Histotripsy uses high-intensity focused ultrasound pulses at low duty cycle to generate energetic bubble clouds inside tissue to fractionate a region. As a potential tumor treatment modality, this cavitation-based non-invasive technique has the advantages of easy monitoring and sharp borders. Aiming at therapy efficiency, we experimentally investigated the effects of pulse repetition frequency (PRF) and lateral scan step size on the dimensions of lesions formed through HIFU histotripsy in agar mimicking tissue in terms of mechanical (not acoustical) properties. The single-element spherically focused source (1.1 MHz, 6.34 cm focal length, f/1) was excited to reach the peak compressional and rarefactional pressures of ~102 and 17 MPa, respectively. A targeted rectangular block of 4.5 mm wide (lateral) and 6mm deep (axial) was scanned in a raster pattern with a constant axial step size of 3mm. The lateral step size was varied between 375, 750, 1500, 2250 and 4500 μm. Pulses at each treatment location consisted of 5000 20-cycle sine wave tone bursts with the PRF of 167, 333 or 1000 Hz. Results suggested that the bubble activity region could extend beyond the -3 dB region and that refining the lateral scan mesh and/or increasing PRF enlarged the lesion extent. The 1500 μm-333 Hz and the 1500 μm-1 kHz conditions were in a more favorable position to be viewed as optimal with regard to lesion volume generation rate, bubble activity region width, and the potential for thermal damage.

  1. The pulsed nature of the nightside contribution to polar cap convection: repetitive substorm activity under steady interplanetary driving

    NASA Astrophysics Data System (ADS)

    Sandholt, P. E.; Andalsvik, Y. L.; Farrugia, C. J.

    2012-10-01

    The aim of this study is to investigate the relative contributions of dayside and nightside processes to the spatial and temporal structure of polar cap plasma convection. The central parameter is the cross-polar cap potential (CPCP). Selecting a 10-h-long interval of stable interplanetary driving by an interplanetary CME (ICME), we are able to distinguish between the dayside and nightside sources of the convection. The event was initiated by an abrupt enhancement of the magnetopause (MP) reconnection rate triggered by a southward turning of the ICME magnetic field. This was followed by a long interval (10 h) of steady and strong driving. Under the latter condition a long series of electrojet intensifications was observed which recurred at 50 min intervals. The detailed temporal structure of polar cap convection in relation to polar cap contraction events is obtained by combining continuous ground observations of convection-related magnetic deflections (including polar cap magnetic indices in the Northern and Southern Hemispheres, PCN and PCS) and the more direct, but lower-resolution ion drift data obtained from a satellite (DMSP F13) in polar orbit. The observed PCN enhancements combined with DMSP satellite observations (F13 and F15 data) of polar cap contractions during the evolution of selected substorm expansions allowed us to estimate the CPCP enhancements (25%) associated with individual events in the series. Ground-satellite conjunctions are further used to investigate the spatial structure of polar cap convection, i.e., the homogeneous plasma flow in the centre (Vi ≤ 1 km s-1) versus channels of enhanced antisunward flows (Vi ≥ 1 km s-1) along the periphery of the polar cap. We emphasise the temporal structure of these polar cap flow phenomena in relation to the prevailing solar wind forcing and the repetitive substorm activity.

  2. Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Evoked-Gamma Frequency Oscillations in Autism Spectrum Disorder (ASD)

    PubMed Central

    Baruth, Joshua M.; Casanova, Manuel F.; El-Baz, Ayman; Horrell, Tim; Mathai, Grace; Sears, Lonnie; Sokhadze, Estate

    2010-01-01

    Introduction It has been reported that individuals with Autism Spectrum Disorder (ASD) have abnormal reactions to the sensory environment and visuo-perceptual abnormalities. Electrophysiological research has provided evidence that gamma band activity (30-80 Hz) is a physiological indicator of the co-activation of cortical cells engaged in processing visual stimuli and integrating different features of a stimulus. A number of studies have found augmented and indiscriminative gamma band power at early stages of visual processing in ASD; this may be related to decreased inhibitory processing and an increase in the ratio of cortical excitation to inhibition. Low frequency or ‘slow’ (≤1HZ) repetitive transcranial magnetic stimulation (rTMS) has been shown to increase inhibition of stimulated cortex by the activation of inhibitory circuits. Methods We wanted to test the hypothesis of gamma band abnormalities at early stages of visual processing in ASD by investigating relative evoked (i.e. ~ 100 ms) gamma power in 25 subjects with ASD and 20 age-matched controls using Kanizsa illusory figures. Additionally, we wanted to assess the effects of 12 sessions of bilateral ‘slow’ rTMS to the dorsolateral prefrontal cortex (DLPFC) on evoked gamma activity using a randomized controlled design. Results In individuals with ASD evoked gamma activity was not discriminative of stimulus type, whereas in controls early gamma power differences between target and non-target stimuli were highly significant. Following rTMS individuals with ASD showed significant improvement in discriminatory gamma activity between relevant and irrelevant visual stimuli. We also found significant improvement in the responses on behavioral questionnaires (i.e., irritability, repetitive behavior) as a result of rTMS. Conclusion We proposed that ‘slow’ rTMS may have increased cortical inhibitory tone which improved discriminatory gamma activity at early stages of visual processing. rTMS has the

  3. Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle

    PubMed Central

    Krouchev, Nedialko I.; Danner, Simon M.; Vinet, Alain; Rattay, Frank; Sawan, Mohamad

    2014-01-01

    Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP’s) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP’s are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential’s temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse’s shape whereas a rectangular pulse is most

  4. Spread of excitation varies for different electrical pulse shapes and stimulation modes in cochlear implants.

    PubMed

    Undurraga, Jaime A; Carlyon, Robert P; Macherey, Olivier; Wouters, Jan; van Wieringen, Astrid

    2012-08-01

    In cochlear implants (CI) bipolar (BP) electrical stimulation has been suggested as a method to reduce the spread of current along the cochlea. However, behavioral measurements in BP mode have shown either similar or worse performance than in monopolar (MP) mode. This could be explained by a bimodal excitation pattern, with two main excitation peaks at the sites of the stimulating electrodes. We measured the spread of excitation (SOE) by means of the electrically evoked compound action potential (ECAP), obtained using the forward-masked paradigm. The aim was to measure the bimodality of the excitation and to determine whether it could be reduced by using asymmetric pulses. Three types of maskers shapes were used: symmetric (SYM), pseudomonophasic (PS), and symmetric with a long inter-phase gap (SYM-IPG) pulses. Maskers were presented in BP + 9 (wide), BP + 3 (narrow) and MP (only SYM) mode on fixed electrodes. The SOE obtained with the MP masker showed a main excitation peak close to the masker electrode. Wide SYM maskers produced bimodal excitation patterns showing two peaks close to the electrodes of the masker channel, whereas SYM-IPG maskers showed a single main peak near the electrode for which the masker's second phase (responsible for most of the masking) was anodic. Narrow SYM maskers showed complex and wider excitation patterns than asymmetric stimuli consistent with the overlap of the patterns produced by each channel's electrodes. The masking produced by narrow SYM-IPG and PS stimuli was more pronounced close to the masker electrode for which the effective phase was anodic. These results showed that the anodic polarity is the most effective one in BP mode and that the bimodal patterns produced by SYM maskers could be partially reduced by using asymmetric pulses.

  5. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences.

  6. Single and paired pulse transcranial magnetic stimulation in drug naïve epilepsy.

    PubMed

    de Goede, Annika A; Ter Braack, Esther M; van Putten, Michel J A M

    2016-09-01

    Transcranial magnetic stimulation (TMS) measures cortical excitability and is therefore potentially suitable as an additional tool for epilepsy diagnostics and therapy evaluation. In this review we discuss the application of TMS in epilepsy research and systematically analyze single and paired pulse TMS outcomes from 31 drug naïve patient studies. Despite a large variety in used TMS protocols, there was no relation between specific protocol aspects and the occurrence of significant results. Protocols were often not in accordance with latest guidelines and recommendations. Cortical excitability, as measured by TMS, was increased in drug naïve epilepsy patients, being most prominent for generalized epilepsy. Single pulse TMS indicated a trend towards a lower resting motor threshold (rMT) and a prolonged cortical silent period (CSP) for generalized epilepsy, while inconclusive results were found for focal epilepsy. The paired pulse TMS outcomes, short intracortical inhibition (SICI) and long intracortical inhibition (LICI), showed the most consistent significant increase in cortical excitability in generalized and focal epilepsy patients. Future epilepsy research should especially focus on the interstimulus intervals 2 and 5ms for SICI, and 250 and 300ms for LICI. Furthermore, combining TMS with electroencephalography (EEG) may contribute to analysis on an individual patient level.

  7. Single and paired pulse transcranial magnetic stimulation in drug naïve epilepsy.

    PubMed

    de Goede, Annika A; Ter Braack, Esther M; van Putten, Michel J A M

    2016-09-01

    Transcranial magnetic stimulation (TMS) measures cortical excitability and is therefore potentially suitable as an additional tool for epilepsy diagnostics and therapy evaluation. In this review we discuss the application of TMS in epilepsy research and systematically analyze single and paired pulse TMS outcomes from 31 drug naïve patient studies. Despite a large variety in used TMS protocols, there was no relation between specific protocol aspects and the occurrence of significant results. Protocols were often not in accordance with latest guidelines and recommendations. Cortical excitability, as measured by TMS, was increased in drug naïve epilepsy patients, being most prominent for generalized epilepsy. Single pulse TMS indicated a trend towards a lower resting motor threshold (rMT) and a prolonged cortical silent period (CSP) for generalized epilepsy, while inconclusive results were found for focal epilepsy. The paired pulse TMS outcomes, short intracortical inhibition (SICI) and long intracortical inhibition (LICI), showed the most consistent significant increase in cortical excitability in generalized and focal epilepsy patients. Future epilepsy research should especially focus on the interstimulus intervals 2 and 5ms for SICI, and 250 and 300ms for LICI. Furthermore, combining TMS with electroencephalography (EEG) may contribute to analysis on an individual patient level. PMID:27472551

  8. 100 Repetitions

    ERIC Educational Resources Information Center

    Benson, Jeffrey

    2012-01-01

    One hundred repetitions--100 "useful" repetitions. This notion has guided the author's work in alternative education programs for almost 20 years, dealing with the most challenging students, from addicts to conduct-disordered adolescents to traumatized 5th graders. There are no magic tricks. The role of educators is to align with the healthy…

  9. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T

    SciTech Connect

    Noe, G. Timothy; Lee, Joseph; Woods, Gary L.; Nojiri, Hiroyuki; Léotin, Jean; Kono, Junichiro

    2013-12-15

    We have developed a mini-coil pulsed magnet system with direct optical access, ideally suited for nonlinear and ultrafast spectroscopy studies of materials in high magnetic fields up to 30 T. The apparatus consists of a small coil in a liquid nitrogen cryostat coupled with a helium flow cryostat to provide sample temperatures down to below 10 K. Direct optical access to the sample is achieved with the use of easily interchangeable windows separated by a short distance of ∼135 mm on either side of the coupled cryostats with numerical apertures of 0.20 and 0.03 for measurements employing the Faraday geometry. As a demonstration, we performed time-resolved and time-integrated photoluminescence measurements as well as transmission measurements on InGaAs quantum wells.

  10. Low-intensity pulsed ultrasound therapy: a potential strategy to stimulate tendon-bone junction healing.

    PubMed

    Ying, Zhi-min; Lin, Tiao; Yan, Shi-gui

    2012-12-01

    Incorporation of a tendon graft within the bone tunnel represents a challenging clinical problem. Successful anterior cruciate ligament (ACL) reconstruction requires solid healing of the tendon graft in the bone tunnel. Enhancement of graft healing to bone is important to facilitate early aggressive rehabilitation and a rapid return to pre-injury activity levels. No convenient, effective or inexpensive procedures exist to enhance tendon-bone (T-B) healing after surgery. Low-intensity pulsed ultrasound (LIPUS) improves local blood perfusion and angiogenesis, stimulates cartilage maturation, enhances differentiation and proliferation of osteoblasts, and motivates osteogenic differentiation of mesenchymal stem cells (MSCs), and therefore, appears to be a potential non-invasive tool for T-B healing in early stage of rehabilitation of ACL reconstruction. It is conceivable that LIPUS could be used to stimulate T-B tunnel healing in the home, with the aim of accelerating rehabilitation and an earlier return to normal activities in the near future. The purpose of this review is to demonstrate how LIPUS stimulates T-B healing at the cellular and molecular levels, describe studies in animal models, and provide a future direction for research.

  11. Can Temporal Repetitive Transcranial Magnetic Stimulation be Enhanced by Targeting Affective Components of Tinnitus with Frontal rTMS? A Randomized Controlled Pilot Trial

    PubMed Central

    Kreuzer, Peter Michael; Landgrebe, Michael; Schecklmann, Martin; Poeppl, Timm B.; Vielsmeier, Veronika; Hajak, Goeran; Kleinjung, Tobias; Langguth, Berthold

    2011-01-01

    Objectives: Low-frequency repetitive transcranial magnetic stimulation (rTMS) of the temporal cortex has been investigated as a new treatment tool for chronic tinnitus during the last years and has shown moderate efficacy. However, there is growing evidence that tinnitus is not a pathology of a specific brain region, but rather the result of network dysfunction involving both auditory and non-auditory brain regions. In functional imaging studies the right dorsolateral prefrontal cortex has been identified as an important hub in tinnitus related networks and has been shown to particularly reflect the affective components of tinnitus. Based on these findings we aimed to investigate whether the effects of left low-frequency rTMS can be enhanced by antecedent right prefrontal low-frequency rTMS. Study Design: Fifty-six patients were randomized to receive either low-frequency left temporal rTMS or a combination of low-frequency right prefrontal followed by low-frequency left temporal rTMS. The change of the tinnitus questionnaire (TQ) score was the primary outcome, secondary outcome parameters included the Tinnitus Handicap Inventory, numeric rating scales, and the Beck Depression Inventory. The study is registered in clinicaltrials.gov (NCT01261949). Results: Directly after therapy there was a significant improvement of the TQ-score in both groups. Comparison of both groups revealed a trend toward more pronounced effects for the combined group (effect size: Cohen’s d = 0.176), but this effect did not reach significance. A persistent trend toward better efficacy was also observed in all other outcome criteria. Conclusion: Additional stimulation of the right prefrontal cortex seems to be a promising strategy for enhancing TMS effects over the temporal cortex. These results further support the involvement of the right DLPFC in the pathophysiology of tinnitus. The small effect size might be due to the study design comparing the protocol to an active control condition

  12. Synergistic effects of noradrenergic modulation with atomoxetine and 10 Hz repetitive transcranial magnetic stimulation on motor learning in healthy humans

    PubMed Central

    2014-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) is able to induce changes in neuronal activity that outlast stimulation. The underlying mechanisms are not completely understood. They might be analogous to long-term potentiation or depression, as the duration of the effects seems to implicate changes in synaptic plasticity. Norepinephrine (NE) has been shown to play a crucial role in neuronal plasticity in the healthy and injured human brain. Atomoxetine (ATX) and other NE reuptake inhibitors have been shown to increase excitability in different systems and to influence learning processes. Thus, the combination of two facilitative interventions may lead to further increase in excitability and motor learning. But in some cases homeostatic metaplasticity might protect the brain from harmful hyperexcitability. In this study, the combination of 60 mg ATX and 10 Hz rTMS over the primary motor cortex was used to examine changes in cortical excitability and motor learning and to investigate their influence on synaptic plasticity mechanisms. Results The results of this double-blind placebo-controlled study showed that ATX facilitated corticospinal and intracortical excitability in motor cortex. 10 Hertz rTMS applied during a motor task was able to further increase intracortical excitability only in combination with ATX. In addition, only the combination of 10 Hz rTMS and ATX was capable of enhancing the total number of correct responses and reaction time significantly, indicating an interaction effect between rTMS and ATX without signs of homeostatic metaplasticity. Conclusion These results suggest that pharmacologically enhanced NE transmission and 10 Hz rTMS exert a synergistic effect on motor cortex excitability and motor learning in healthy humans. PMID:24690416

  13. Numerical simulation of de-NOx performance by repetitive pulsed discharge when added with hydrocarbons such as ethylene

    NASA Astrophysics Data System (ADS)

    Onda, Kazuo; Kusunoki, Hironobu; Ito, Kohei; Ibaraki, Hiroshi; Araki, Takuto

    2005-01-01

    Emission regulations are gradually being tightened recently to prevent further air pollution. Cost-effective and efficient technologies must be developed to process the NOx generated in the combustion of fossil fuels. One of the candidate technologies to process NOx is the denitrification of flue gas by pulsed corona discharge, which has been demonstrated experimentally to show high de-NOx performance. However, the optimization of operation conditions and the appropriate understanding of the de-NOx process still remain to be clarified. Therefore, following our previous study on ammonia injection, we have simulated in the present study the de-NOx process to which hydrocarbons such as ethylene have been added to provide guidelines on its proper operation conditions and its main reaction paths to remove NOx. The simulated results show that the removal efficiency in a case of ethylene addition becomes lower than for ammonia addition, but the de-NOx energy consumption rate becomes lower than for ammonia injection. However, with ethylene injection the production of the pollutant, formaldehyde, limits the allowable amount of injected ethylene. The de-NOx performance is better with propylene than ethylene injection because propylene reacts with the OH radical more than ethylene to oxide NOx. However, formaldehyde is also produced in the case of propylene injection, limiting the allowable amount of injected propylene. The de-NOx performance is also assessed in a case where HNO2 is considered as NxOy.

  14. Numerical Simulation of DeNOx Performance by Repetitive Pulsed Discharge added by Hydrocarbon such as Ethylene

    NASA Astrophysics Data System (ADS)

    Kusunoki, Hironobu; Ibaraki, Hiroshi; Ito, Kohei; Araki, Takuto; Onda, Kazuo

    Emission regulation is being tightened up recently to prevent expansion of air pollution. Economic and efficient technologies are desired to process NOx generated in combustion of fossil fuel. One of the candidate technologies to process NOx is the denitrification of flue gas by pulsed corona discharge, which has been demonstrated experimentally to have the high deNOx performance. However, the optimization of operation conditions and the appropriate understanding of the deNOx process are still remained not to be cleared. Therefore, we have simulated in this study the deNOx process added by hydrocarbon such as ethylene to give its proper operation conditions and its main reaction paths to remove NOx, following our previous study on ammonia addition. The simulated results show that the removal efficiency in a case of ethylene addition becomes lower than that in ammonia addition, but the deNOx energy consumption rate becomes lower than the ammonia injection case. However, the ethylene injection leads to produce the pollutant of formaldehyde, which limits the allowable amount of injected ethylene. In a case of propylene injection its deNOx performance is better than the ethylene addition case, because propylene reacts with OH radical more than ethylene to oxide NOx. However, formaldehyde is also produced in propylene injection case, limiting the allowable amount of injected propylene.

  15. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed COIL

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-02-28

    The influence of gas temperature on the characteristics of a self-sustained volume discharge was studied in the working mixtures of a chemical oxygen – iodine laser with pulsed electricdischarge production of iodine atoms. In experiments, laser working mixtures were modelled by the mixture of air and iodide C{sub 2}H{sub 5}I. It was established that mixture heating is accompanied by an increase in the voltage across the discharge plasma and by a decrease in the discharge current. By varying the temperature of the mixture with the iodine content of ∼2.7% and initial pressure p=12 Torr from 22 °C to 96 °C, the current amplitude falls by ∼12%, and at the instant corresponding to a maximal current the voltage raises by ∼22%. Such a change in the discharge characteristics is explained by a higher rate of electron attachment to vibrationally excited iodide molecules at elevated temperatures. (active media)

  16. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses

    PubMed Central

    2012-01-01

    In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites. PMID:22999219

  17. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses.

    PubMed

    Kiani, Amirkianoosh; Waraich, Palneet Singh; Venkatakrishnan, Krishnan; Tan, Bo

    2012-01-01

    : In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites. PMID:22999219

  18. Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Waraich, Palneet Singh; Venkatakrishnan, Krishnan; Tan, Bo

    2012-09-01

    In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites.

  19. Repetitive Transcranial Magnetic Stimulation Changes Cerebral Oxygenation on the Left Dorsolateral Prefrontal Cortex in Bulimia Nervosa: A Near-Infrared Spectroscopy Pilot Study.

    PubMed

    Sutoh, Chihiro; Koga, Yasuko; Kimura, Hiroshi; Kanahara, Nobuhisa; Numata, Noriko; Hirano, Yoshiyuki; Matsuzawa, Daisuke; Iyo, Masaomi; Nakazato, Michiko; Shimizu, Eiji

    2016-01-01

    Previous studies showed that food craving in eating disorders can be weakened with high-frequency repetitive transcranial magnetic stimulation (rTMS) on the left dorsolateral prefrontal cortex (DLPFC). The aims of this study were to assess cerebral oxygenation change induced with rTMS and to assess the short-term impact of rTMS on food craving and other bulimic symptoms in patients with bulimia nervosa (BN). Eight women diagnosed with BN according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria participated in this study. We measured haemoglobin concentration changes in the DLPFC with near-infrared spectroscopy during cognitive tasks measuring self-regulatory control in response to food photo stimuli, both at baseline and after a single session of rTMS. Subjective ratings for food cravings demonstrated significant reduction. A significant decrease in cerebral oxygenation of the left DLPFC was also observed after a single session of rTMS. Measurement with NIRS after rTMS intervention may be applicable for discussing the mechanisms underlying rTMS modulation in patients with BN.

  20. Repetitive Transcranial Magnetic Stimulation Changes Cerebral Oxygenation on the Left Dorsolateral Prefrontal Cortex in Bulimia Nervosa: A Near-Infrared Spectroscopy Pilot Study.

    PubMed

    Sutoh, Chihiro; Koga, Yasuko; Kimura, Hiroshi; Kanahara, Nobuhisa; Numata, Noriko; Hirano, Yoshiyuki; Matsuzawa, Daisuke; Iyo, Masaomi; Nakazato, Michiko; Shimizu, Eiji

    2016-01-01

    Previous studies showed that food craving in eating disorders can be weakened with high-frequency repetitive transcranial magnetic stimulation (rTMS) on the left dorsolateral prefrontal cortex (DLPFC). The aims of this study were to assess cerebral oxygenation change induced with rTMS and to assess the short-term impact of rTMS on food craving and other bulimic symptoms in patients with bulimia nervosa (BN). Eight women diagnosed with BN according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria participated in this study. We measured haemoglobin concentration changes in the DLPFC with near-infrared spectroscopy during cognitive tasks measuring self-regulatory control in response to food photo stimuli, both at baseline and after a single session of rTMS. Subjective ratings for food cravings demonstrated significant reduction. A significant decrease in cerebral oxygenation of the left DLPFC was also observed after a single session of rTMS. Measurement with NIRS after rTMS intervention may be applicable for discussing the mechanisms underlying rTMS modulation in patients with BN. PMID:26481583

  1. Self-harm and suicidal acts: a suitable case for treatment of impulsivity-driven behaviour with repetitive transcranial magnetic stimulation (rTMS)

    PubMed Central

    Shergill, Sukhwinder S.; David, Anthony S.; Fonagy, Peter; Zaman, Rashid; Downar, Jonathan; Eliott, Emma; Bhui, Kamaldeep

    2015-01-01

    Summary Suicidal thinking, self-harm and suicidal acts are common, although determining their precise prevalence is complex. Epidemiological work has identified a number of associated demographic and clinical factors, though, with the exception of past acts of self-harm, these are non-specific and weak future predictors. There is a critical need shift focus from managing ‘suicidality-by-proxy’ through general mental health treatments, to better understand the neuropsychology and neurophysiology of such behaviour to guide targeted interventions. The model of the cognitive control of emotion (MCCE) offers such a paradigm, with an underlying pan-diagnostic pathophysiology of a hypoactive prefrontal cortex failing to suitably inhibit an overactive threat-responding limbic system. The result is a phenotype – from any number of causative gene–environment interactions – primed to impulsively self-harm. We argue that such neural dysconnectivity is open to potential therapeutic modification from repetitive transcranial magnetic stimulation (rTMS). The current evidence base for this is undoubtedly extremely limited, but the societal and clinical burden self-harm and suicide pose warrants such investigation. Declaration of interest K.B. is the Editor of BJPsych Open, but had no editorial involvement in the review or decision process regarding this paper. Copyright and usage © The Royal College of Psychiatrists 2015. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence. PMID:27703728

  2. Chemosensory event-related potentials to trigeminal stimuli change in relation to the interval between repetitive stimulation of the nasal mucosa.

    PubMed

    Hummel, T; Kobal, G

    1999-01-01

    Event-related potentials (ERPs) to olfactory and trigeminal stimuli have been used commonly to evaluate chemosensory dysfunction. The aim of the present study was to investigate how ERPs could be modified by repetitive stimulations of the intranasal trigeminal nerve using 52% v/v CO2 stimuli for 200 ms periods. Nine subjects were exposed to 6 sessions each during which trains of 16 stimuli were applied. The interval between stimuli was constant for each experiment, but varied between experiments (10, 20, 30, 40, 60, and 90 s). Trigeminal ERPs were obtained from three positions on the skull. Both intensity ratings and ERP amplitudes decreased as the interstimulus interval (ISI) shortened. Specifically, ratings and response amplitudes were most strongly reduced by approximately 30-50% at the shortest ISI used (10 s) and were largest at an ISI of 90 s. The decrease of amplitudes was strongest for the P46 amplitude. Our findings suggest that this may be the result of both habituation and stimulus predictability. We hypothesize that the ISI dependence of chemosensory ERPs may also be a function of an interaction between Adelta and C fibers.

  3. Repetitive Transcranial Magnetic Stimulation Ameliorates Anxiety-Like Behavior and Impaired Sensorimotor Gating in a Rat Model of Post-Traumatic Stress Disorder

    PubMed Central

    Wang, Hua-ning; Bai, Yuan-han; Chen, Yun-chun; Zhang, Rui-guo; Wang, Huai-hai; Zhang, Ya-hong; Gan, Jing-li; Peng, Zheng-wu; Tan, Qing-rong

    2015-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) has been employed for decades as a non-pharmacologic treatment for post-traumatic stress disorder (PTSD). Although a link has been suggested between PTSD and impaired sensorimotor gating (SG), studies assessing the effects of rTMS against PTSD or PTSD with impaired SG are scarce. Aim To assess the benefit of rTMS in a rat model of PTSD. Methods Using a modified single prolonged stress (SPS&S) rat model of PTSD, behavioral parameters were acquired using open field test (OFT), elevated plus maze test (EPMT), and prepulse inhibition trial (PPI), with or without 7 days of high frequency (10Hz) rTMS treatment of SPS&S rats. Results Anxiety-like behavior, impaired SG and increased plasma level of cortisol were observed in SPS&S animals after stress for a prolonged time. Interestingly, rTMS administered immediately after stress prevented those impairment. Conclusion Stress-induced anxiety-like behavior, increased plasma level of cortisol and impaired PPI occur after stress and high-frequency rTMS has the potential to ameliorate this behavior, suggesting that high frequency rTMS should be further evaluated for its use as a method for preventing PTSD. PMID:25659132

  4. Safety of primed repetitive transcranial magnetic stimulation and modified constraint-induced movement therapy in a randomized controlled trial in pediatric hemiparesis

    PubMed Central

    Gillick, Bernadette; Krach, Linda E; Feyma, Tim; Rich, Tonya L; Moberg, Kelli; Menk, Jeremiah; Cassidy, Jessica; Kimberley, Teresa; Carey, James R

    2014-01-01

    Objective To investigate the safety of combining 6-Hz primed low-frequency repetitive transcranial magnetic stimulation (rTMS) intervention in the contralesional hemisphere with a modified constraint-induced movement therapy (mCIMT) program in children with congenital hemiparesis. Design Phase 1 randomized, double-blinded, placebo-controlled pretest/posttest trial. Setting University academic facility and a pediatric specialty hospital. Participants Nineteen subjects aged 8 to 17 years with congenital hemiparesis due to ischemic stroke or periventricular leukomalacia. No subject withdrew due to adverse events. All subjects included completed the study. Interventions Subjects were randomized to one of two groups: either rTMSreal with mCIMT (n = 10) or rTMSsham with mCIMT (n = 9). Main Outcome Measures Adverse events, physician assessment, ipsilateral hand function, stereognosis, cognitive function, subject report of symptoms assessment and subject questionnaire. Results No major adverse events occurred. Minor adverse events were found in both groups. The most common were headaches (real: 50%, sham: 89%, p=0.14) and cast irritation (real: 30%, sham: 44%, p = 0.65). No differences between groups in secondary cognitive and unaffected hand motor measures were found. Conclusions Primed rTMS can be used safely with mCIMT in congenital hemiparesis. We provide new information on the use of rTMS in combination with mCIMT in children. These findings could be useful in research and future clinical applications in advancing function in congenital hemiparesis. PMID:25283350

  5. Bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Zhang, Y Q; Zhu, D; Zhou, X Y; Liu, Y Y; Qin, B; Ren, G P; Xie, P

    2015-03-01

    There has been concern regarding the use of controversial paradigms for repetitive transcranial magnetic stimulation (rTMS) to manage treatment-resistant depression (TRD). This meta-analysis assessed the efficacy of bilateral rTMS compared with unilateral and sham rTMS in patients with TRD. PubMed, Embase, CENTRAL, PsycINFO, Web of Science, EAGLE and NTIS databases were searched to identify relevant studies, and randomized controlled trials (RCTs) on bilateral rTMS for TRD patients were included. The response was defined as the primary outcome, and remission was the secondary outcome. Ten RCTs that included 634 patients met the eligibility criteria. The risk ratio (RRs) of both the primary and secondary outcomes of bilateral rTMS showed non-significant increases compared to unilateral rTMS (RR=1.01, P=0.93; odds ratio [OR]=0.77, P=0.22). Notably, the RR of the primary bilateral rTMS outcome was significantly increased compared to that for sham rTMS (RR=3.43, P=0.0004). The results of our analysis demonstrated that bilateral rTMS was significantly more effective than sham rTMS but not unilateral rTMS in patients with TRD. Thus, bilateral rTMS may not be a useful paradigm for patients with TRD.

  6. Bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Zhang, Y.Q.; Zhu, D.; Zhou, X.Y.; Liu, Y.Y.; Qin, B.; Ren, G.P.; Xie, P.

    2015-01-01

    There has been concern regarding the use of controversial paradigms for repetitive transcranial magnetic stimulation (rTMS) to manage treatment-resistant depression (TRD). This meta-analysis assessed the efficacy of bilateral rTMS compared with unilateral and sham rTMS in patients with TRD. PubMed, Embase, CENTRAL, PsycINFO, Web of Science, EAGLE and NTIS databases were searched to identify relevant studies, and randomized controlled trials (RCTs) on bilateral rTMS for TRD patients were included. The response was defined as the primary outcome, and remission was the secondary outcome. Ten RCTs that included 634 patients met the eligibility criteria. The risk ratio (RRs) of both the primary and secondary outcomes of bilateral rTMS showed non-significant increases compared to unilateral rTMS (RR=1.01, P=0.93; odds ratio [OR]=0.77, P=0.22). Notably, the RR of the primary bilateral rTMS outcome was significantly increased compared to that for sham rTMS (RR=3.43, P=0.0004). The results of our analysis demonstrated that bilateral rTMS was significantly more effective than sham rTMS but not unilateral rTMS in patients with TRD. Thus, bilateral rTMS may not be a useful paradigm for patients with TRD. PMID:25590350

  7. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves.

    PubMed

    Zivcak, Marek; Brestic, Marian; Kunderlikova, Kristyna; Sytar, Oksana; Allakhverdiev, Suleyman I

    2015-12-01

    It was previously found that photosystem I (PSI) photoinhibition represents mostly irreversible damage with a slow recovery; however, its physiological significance has not been sufficiently characterized. The aim of the study was to assess the effect of PSI photoinhibition on photosynthesis in vivo. The inactivation of PSI was done by a series of short light saturation pulses applied by fluorimeter in darkness (every 10 s for 15 min), which led to decrease of both PSI (~60 %) and photosystem II (PSII) (~15 %) photochemical activity. No PSI recovery was observed within 2 days, whereas the PSII was fully recovered. Strongly limited PSI electron transport led to an imbalance between PSII and PSI photochemistry, with a high excitation pressure on PSII acceptor side and low oxidation of the PSI donor side. Low and delayed light-induced NPQ and P700(+) rise in inactivated samples indicated a decrease in formation of transthylakoid proton gradient (ΔpH), which was confirmed also by analysis of electrochromic bandshift (ECSt) records. In parallel with photochemical parameters, the CO2 assimilation was also strongly inhibited, more in low light (~70 %) than in high light (~45 %); the decrease was not caused by stomatal closure. PSI electron transport limited the CO2 assimilation at low to moderate light intensities, but it seems not to be directly responsible for a low CO2 assimilation at high light. In this regard, the possible effects of PSI photoinhibition on the redox signaling in chloroplast and its role in downregulation of Calvin cycle activity are discussed.

  8. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    PubMed Central

    Vieira, J.; Trines, R. M. G. M.; Alves, E. P.; Fonseca, R. A.; Mendonça, J. T.; Bingham, R.; Norreys, P.; Silva, L. O.

    2016-01-01

    Twisted Laguerre–Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser–matter interactions. Here we show theoretically and with ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high–energy-density science, compact plasma-based accelerators and light sources. PMID:26817620

  9. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering.

    PubMed

    Vieira, J; Trines, R M G M; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high-energy-density science, compact plasma-based accelerators and light sources. PMID:26817620

  10. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  11. Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser.

    PubMed

    Han, Kyu Young; Ha, Taekjip

    2015-06-01

    We describe a dual-color three-dimensional stimulated emission depletion (3D-STED) microscopy employing a single laser source with a repetition rate of 80 MHz. Multiple excitation pulses synchronized with a STED pulse were generated by a photonic crystal fiber, and the desired wavelengths were selected by an acousto-optic tunable filter with high spectral purity. Selective excitation at different wavelengths permits simultaneous imaging of two fluorescent markers at a nanoscale resolution in three dimensions. PMID:26030581

  12. STUDENT AWARD FINALIST: Simulation of the ignition of a H2-air mixture at atmospheric pressure by a nanosecond repetitively pulsed discharge

    NASA Astrophysics Data System (ADS)

    Tholin, Fabien; Bourdon, Anne

    2012-10-01

    Nanosecond repetitively Pulsed Discharges (NRPD) have a great potential for many applications at atmospheric pressure due to their ability to produce efficiently many reactive chemical species at a low energy cost. Recent measurements have shown that in the ``spark'' regime of NRP discharges, an ultra-fast local heating of the gas could be obtained. This effect is of great interest for applications as flow control and plasma assisted combustion (PAC). In this work, we have carried out 2D numerical simulations of the coupling of the NRP discharge in air at atmospheric pressure in a point-point geometry with the background air. In particular, we have simulated shock waves generated by the NRPD in the spark regime and we have compared our results with experiments. Then, we have studied the production of active species by the NRP discharge in the spark regime. Finally, for plasma assisted combustion applications, we have simulated the ignition of a flame kernel in a lean H2-air mixture by a spark NRPD. Based on this work, the relative importance for the combustion ignition of gas heating and production of active species by the spark NRP is discussed.

  13. Comparison of pulsed-gel electrophoresis and a commercial repetitive-element PCR method for assessment of methicillin-resistant Staphylococcus aureus clustering in different health care facilities.

    PubMed

    Crnich, Christopher J; Duster, Megan; Warrack, Simone; Maki, Dennis; Safdar, Nasia

    2014-06-01

    Pulsed-field gel electrophoresis (PFGE) is a common method used to type methicillin-resistant Staphylococcus aureus (MRSA) in nosocomial investigations and epidemiological studies but is time-consuming and methodologically challenging. We compared typing results obtained using a commercial repetitive-element PCR (rep-PCR) system with PFGE in a sample of 86 unique MRSA isolates recovered from subjects in an academic referral hospital and two nursing homes in the same geographic region. Both methods reliably assigned isolates to the same Centers for Disease Control and Prevention (CDC) pulsotype. PFGE was significantly more discriminatory (Simpson's index of diversity, 0.92 at the 95% strain similarity threshold) than the commercial rep-PCR system (Simpson's index of diversity, 0.58). The global (adjusted Rand coefficient, 0.10) and directional congruence (adjusted Wallace coefficient(repPCR→PFGE) = 0.06; adjusted Wallace coefficient(PFGE → repPCR) = 0.52) between the two methods was low. MRSA strains recovered from study nursing homes that were clonal when typed by the commercial rep-PCR method were frequently noted to be genetically distinct when typed using PFGE. These data suggest that the commercial rep-PCR has less utility than PFGE in small-scale epidemiological assessments of MRSA in health care settings.

  14. Resonance ionization spectroscopy of sodium Rydberg levels using difference frequency generation of high-repetition-rate pulsed Ti:sapphire lasers

    NASA Astrophysics Data System (ADS)

    Naubereit, P.; Marín-Sáez, J.; Schneider, F.; Hakimi, A.; Franzmann, M.; Kron, T.; Richter, S.; Wendt, K.

    2016-05-01

    The generation of tunable laser light in the green to orange spectral range has generally been a deficiency of solid-state lasers. Hence, the formalisms of difference frequency generation (DFG) and optical parametric processes are well known, but the DFG of pulsed solid-state lasers was rarely efficient enough for its use in resonance ionization spectroscopy. Difference frequency generation of high-repetition-rate Ti:sapphire lasers was demonstrated for resonance ionization of sodium by efficiently exciting the well-known D1 and D2 lines in the orange spectral range (both ≈589 nm). In order to prove the applicability of the laser system for its use at resonance ionization laser ion sources of radioactive ion beam facilities, the first ionization potential of Na was remeasured by three-step resonance ionization into Rydberg levels and investigating Rydberg convergences. A result of EIP=41449.455 (6) stat(7) syscm-1 was obtained, which is in perfect agreement with the literature value of EIPlit =41449.451(2)cm-1 . A total of 41 level positions for the odd-parity Rydberg series n f 2F5/2,7/2o for principal quantum numbers of 10 ≤n ≤60 were determined experimentally.

  15. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  16. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  17. A Power-Efficient Multichannel Neural Stimulator Using High-Frequency Pulsed Excitation From an Unfiltered Dynamic Supply.

    PubMed

    van Dongen, Marijn N; Serdijn, Wouter A

    2016-02-01

    This paper presents a neural stimulator system that employs a fundamentally different way of stimulating neural tissue compared to classical constant current stimulation. A stimulation pulse is composed of a sequence of current pulses injected at a frequency of 1 MHz for which the duty cycle is used to control the stimulation intensity. The system features 8 independent channels that connect to any of the 16 electrodes at the output. A sophisticated control system allows for individual control of each channel's stimulation and timing parameters. This flexibility makes the system suitable for complex electrode configurations and current steering applications. Simultaneous multichannel stimulation is implemented using a high frequency alternating technique, which reduces the amount of electrode switches by a factor 8. The system has the advantage of requiring a single inductor as its only external component. Furthermore it offers a high power efficiency, which is nearly independent on both the voltage over the load as well as on the number of simultaneously operated channels. Measurements confirm this: in multichannel mode the power efficiency can be increased for specific cases to 40% compared to 20% that is achieved by state-of-the-art classical constant current stimulators with adaptive power supply. PMID:25438324

  18. Predicted effects of pulse width programming in spinal cord stimulation: a mathematical modeling study.

    PubMed

    Lee, Dongchul; Hershey, Brad; Bradley, Kerry; Yearwood, Thomas

    2011-07-01

    To understand the theoretical effects of pulse width (PW) programming in spinal cord stimulation (SCS), we implemented a mathematical model of electrical fields and neural activation in SCS to gain insight into the effects of PW programming. The computational model was composed of a finite element model for structure and electrical properties, coupled with a nonlinear double-cable axon model to predict nerve excitation for different myelinated fiber sizes. Mathematical modeling suggested that mediolateral lead position may affect chronaxie and rheobase values, as well as predict greater activation of medial dorsal column fibers with increased PW. These modeling results were validated by a companion clinical study. Thus, variable PW programming in SCS appears to have theoretical value, demonstrated by the ability to increase and even 'steer' spatial selectivity of dorsal column fiber recruitment. It is concluded that the computational SCS model is a valuable tool to understand basic mechanisms of nerve fiber excitation modulated by stimulation parameters such as PW and electric fields.

  19. Latency and initiation of the human vestibuloocular reflex to pulsed galvanic stimulation.

    PubMed

    Aw, Swee T; Todd, Michael J; Halmagyi, G Michael

    2006-08-01

    Cathodal galvanic currents activate primary vestibular afferents, whereas anodal currents inhibit them. Pulsed galvanic vestibular stimulation (GVS) was used to determine the latency and initiation of the human vestibuloocular reflex. Three-dimensional galvanic vestibuloocular reflex (g-VOR) was recorded with binocular dual-search coils in response to a bilateral bipolar 100-ms rectangular pulse of current at 0.9 (near-threshold), 2.5, 5.0, 7.5, and 10.0 mA in 11 normal subjects. The g-VOR consisted of three components: conjugate torsional eye rotation away from cathode toward anode; vertical divergence (skew deviation) with hypertropia of the eye on the cathodal and hypotropia of the eye on the anodal sides; and conjugate horizontal eye rotation away from cathode toward anode. The g-VOR was repeatable across all subjects, its magnitude a linear function of the current intensity, its latency about 9.0 ms with GVS of >or=2.5 mA, and was not suppressed by visual fixation. At 10-mA stimulation, the g-VOR [x, y, z] on the cathodal side was [0.77 +/- 0.10, -0.05 +/- 0.05, -0.18 +/- 0.06 degrees ] (mean +/- 95% confidence intervals) and on the anodal side was [0.79 +/- 0.10, 0.16 +/- 0.05, -0.19 +/- 0.06 degrees ], with a vertical divergence of 0.20 degrees . Although the horizontal g-VOR could have arisen from activation of the horizontal semicircular canal afferents, the vertical-torsional g-VOR resembled the vestibuloocular reflex in response to roll-plane head rotation about an Earth-horizontal axis and might be a result of both vertical semicircular canal and otolith afferent activations. Pulsed GVS is a promising technique to investigate latency and initiation of the human vestibuloocular reflex because it does not require a large mechanical apparatus nor does it pose problems of head inertia or slippage.

  20. Stimulants

    MedlinePlus

    Stimulants are drugs that increase your heart rate, breathing rate, and brain function. Some stimulants affect only a specific organ, such as the heart, lungs, brain, or nervous system. Epinephrine is a stimulant. It ...

  1. Comparison of 2 methods of non-invasive treatment between transcutaneous electrical stimulation and pulsed electromagnetic field stimulation as replacement of invasive manual acupuncture.

    PubMed

    Kim, Soo-Byeong; Kim, Jung-Yoon; Park, Sun-Woo; Lee, Na-Ra; Lee, Seung-Wook; Kim, Young-Ho; Lee, Yong-Heum

    2012-01-01

    The aim of this study was to find the non-invasive optimal alternative method for Manual Acupuncture. Existing researches had reported that Transcutaneous Electrical Acupoint Stimulation (TEAS) was an effective treatment method instead of manual acupuncture. In place of the TEAS, we suggested the Pulsed Electromagnetic Fields (PEMFs). Thus, we designed the PEMFs system which can stimulate only an acupoint. There have been no researches which reported therapeutic effect when stimulating at an identical acupoint by TEAS and PEMFs. Hence, this study investigated the therapeutic effect on the muscle fatigue after the strenuous knee extension/flexion exercise by two stimulations. We selected the stimulation method of both TEAS and PEMFs by using 2Hz biphasic rectangular wave pulse and pulse width 0.2ms. The magnetic flux was the 30.92mT (309.2gauss) at 2 Hz. The electromyogram (EMG) and the maximal voluntary contraction (MVC) at rectus femoris were measured. The Median Frequency (MF) at TEAS group was significantly effective at 6 minutes (p=0.499). The PEMFs group was recovered to the MF rapidly after 4 minutes (p=0.166). The results of the peak torque indicated that both non-stimulation group and TEAS group did not recover to the peak torque at pre-exercise during the recovery period (p<0.05). In contrast, the significant treatment effect of PEMFs group was found after 14 minutes (p=0.135). The results of this study demonstrated that PEMFs were better than TEAS as a non-invasive method to replace the manual acupuncture.

  2. Propagation of a strong x-ray pulse: Pulse compression, stimulated Raman scattering, amplified spontaneous emission, lasing without inversion, and four-wave mixing

    SciTech Connect

    Sun Yuping; Wang Chuankui; Liu Jicai; Gel'mukhanov, Faris

    2010-01-15

    We study the compression of strong x-ray pulses from x-ray free-electron lasers (XFELs) propagating through the resonant medium of atomic argon. The simulations are based on the three-level model with the frequency of the incident x-ray pulse tuned in the 2p{sub 3/2}-4s resonance. The pulse propagation is accompanied by the self-seeded stimulated resonant Raman scattering (SRRS). The SRRS starts from two channels of amplified spontaneous emission (ASE), 4s-2p{sub 3/2} and 3s-2p{sub 3/2}, which form the extensive ringing pattern and widen the power spectrum. The produced seed field triggers the Stokes ASE channel 3s-2p{sub 3/2}. The population inversion is quenched for longer propagation distances where the ASE is followed by the lasing without inversion (LWI), which amplifies the Stokes component. Both ASE and LWI reshape the input pulse: The compressed front part of the pulse (up to 100 as) is followed by the long tail of the ringing and beating between the pump and Stokes frequencies. The pump pulse also generates weaker Stokes and anti-Stokes fields caused by four-wave mixing. These four spectral bands have fine structures caused by the dynamical Stark effect. A slowdown of the XFEL pulse up to 78% of the speed of light in vacuum is found because of a large nonlinear refractive index.

  3. Effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on spontaneously hypertensive rats, an animal model of attention-deficit/hyperactivity disorder.

    PubMed

    Kim, Jungyun; Park, Heamen; Yu, Seong-Lan; Jee, Sungju; Cheon, Keun-Ah; Song, Dong Ho; Kim, Seung Jun; Im, Woo-Young; Kang, Jaeku

    2016-10-01

    The current treatment of choice for attention deficit hyperactivity disorder (ADHD) is pharmacotherapy. A search for new treatment options is underway, however, as the wide application of drugs to the general population of patients with ADHD is limited by side effects and the variance of pharmacokinetic effects of the drugs in each patient. In the present study, we applied repetitive transcranial magnetic stimulation (rTMS), a non-invasive treatment used in a number of other psychiatric disorders, to spontaneously hypertensive rats (SHRs), an animal model of ADHD, in order to assess the efficacy of the treatment in modifying behavioural symptoms as well as levels of dopamine, noradrenaline, serotonin, and brain-derived neurotrophic factor (BDNF). A total of fifteen sessions of high-frequency rTMS treatment were administered. Behavioural symptoms were observed using open field, Y-maze, and elevated plus-maze tests. Upon completion of the experiments, rats were sacrificed, and the neurochemical changes in brain tissue were analysed using high performance liquid chromatography and Western blotting. The SHRs treated with rTMS tended to exhibit less locomotor activity in the open field test over the course of treatment, but there was no improvement in inattention as measured by the Y-maze test. Furthermore, BDNF concentration increased and noradrenaline concentration decreased in the prefrontal cortex of SHRs treated with rTMS. The results of the present preclinical study indicate that rTMS may constitute a new modality of treatment for patients with ADHD, through further evaluation of specific treatment parameters as well as safety and efficacy in humans are required. PMID:27469434

  4. A single-subject study to evaluate the inhibitory repetitive transcranial magnetic stimulation combined with traditional dysphagia therapy in patients with post-stroke dysphagia

    PubMed Central

    Ghelichi, Leila; Joghataei, Mohammad Taghi; Jalaie, Shohreh; Nakhostin-Ansari, Noureddin; Forogh, Bijan; Mehrpour, Masoud

    2016-01-01

    Background: Post-stroke dysphagia is common and is associated with the development of pneumonia. To investigate the effects of repetitive transcranial magnetic stimulation (rTMS) combined with traditional dysphagia therapy (TDT) on swallowing function in patients with post-stroke dysphagia. Methods: In this single-subject study, four patients with dysphagia post-stroke included. The patients received the rTMS applied to the intact cerebral hemisphere at 1 Hz with train of 1200 for 5 consecutive days combined with TDT 3 days per week for 6 weeks. The main outcome measure was the Mann Assessment of Swallowing Ability (MASA). Measurements were taken before, after the end of 5th, 10th, 15th treatment sessions, and after the end of the treatment (18th session). Results: The MASA scores improved in all patients following treatment. The maximum and minimum change in level between the baseline phase and treatment phase was +84 and +36. The greatest percentage improvement was observed after 5th treatment sessions ranging between 11 and 35%. The treatment trend was upward shown by the directions of the slopes indicated by positive values (+9.1-+20.7). The dysphagia was resolved after 10th treatment session in all participants. The aspiration resolved in two participants after the 5th treatment session and resolved in another 2 participants after the 10th treatment session. Conclusion: The combination therapy of rTMS plus TDT improved swallowing function in patients with post-stroke dysphagia. Further research with a larger sample size is recommended.

  5. Effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on spontaneously hypertensive rats, an animal model of attention-deficit/hyperactivity disorder.

    PubMed

    Kim, Jungyun; Park, Heamen; Yu, Seong-Lan; Jee, Sungju; Cheon, Keun-Ah; Song, Dong Ho; Kim, Seung Jun; Im, Woo-Young; Kang, Jaeku

    2016-10-01

    The current treatment of choice for attention deficit hyperactivity disorder (ADHD) is pharmacotherapy. A search for new treatment options is underway, however, as the wide application of drugs to the general population of patients with ADHD is limited by side effects and the variance of pharmacokinetic effects of the drugs in each patient. In the present study, we applied repetitive transcranial magnetic stimulation (rTMS), a non-invasive treatment used in a number of other psychiatric disorders, to spontaneously hypertensive rats (SHRs), an animal model of ADHD, in order to assess the efficacy of the treatment in modifying behavioural symptoms as well as levels of dopamine, noradrenaline, serotonin, and brain-derived neurotrophic factor (BDNF). A total of fifteen sessions of high-frequency rTMS treatment were administered. Behavioural symptoms were observed using open field, Y-maze, and elevated plus-maze tests. Upon completion of the experiments, rats were sacrificed, and the neurochemical changes in brain tissue were analysed using high performance liquid chromatography and Western blotting. The SHRs treated with rTMS tended to exhibit less locomotor activity in the open field test over the course of treatment, but there was no improvement in inattention as measured by the Y-maze test. Furthermore, BDNF concentration increased and noradrenaline concentration decreased in the prefrontal cortex of SHRs treated with rTMS. The results of the present preclinical study indicate that rTMS may constitute a new modality of treatment for patients with ADHD, through further evaluation of specific treatment parameters as well as safety and efficacy in humans are required.

  6. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke

    PubMed Central

    Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Abo, Masahiro

    2016-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. Objectives To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Methods Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Results Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. Conclusions The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery. PMID:27007747

  7. A single-subject study to evaluate the inhibitory repetitive transcranial magnetic stimulation combined with traditional dysphagia therapy in patients with post-stroke dysphagia

    PubMed Central

    Ghelichi, Leila; Joghataei, Mohammad Taghi; Jalaie, Shohreh; Nakhostin-Ansari, Noureddin; Forogh, Bijan; Mehrpour, Masoud

    2016-01-01

    Background: Post-stroke dysphagia is common and is associated with the development of pneumonia. To investigate the effects of repetitive transcranial magnetic stimulation (rTMS) combined with traditional dysphagia therapy (TDT) on swallowing function in patients with post-stroke dysphagia. Methods: In this single-subject study, four patients with dysphagia post-stroke included. The patients received the rTMS applied to the intact cerebral hemisphere at 1 Hz with train of 1200 for 5 consecutive days combined with TDT 3 days per week for 6 weeks. The main outcome measure was the Mann Assessment of Swallowing Ability (MASA). Measurements were taken before, after the end of 5th, 10th, 15th treatment sessions, and after the end of the treatment (18th session). Results: The MASA scores improved in all patients following treatment. The maximum and minimum change in level between the baseline phase and treatment phase was +84 and +36. The greatest percentage improvement was observed after 5th treatment sessions ranging between 11 and 35%. The treatment trend was upward shown by the directions of the slopes indicated by positive values (+9.1-+20.7). The dysphagia was resolved after 10th treatment session in all participants. The aspiration resolved in two participants after the 5th treatment session and resolved in another 2 participants after the 10th treatment session. Conclusion: The combination therapy of rTMS plus TDT improved swallowing function in patients with post-stroke dysphagia. Further research with a larger sample size is recommended. PMID:27648175

  8. Synchronized ps fiber lasers with pulse durations (25, 50, 100-2000ps) and repetition rates (100kHz-150Mhz) continuously tunable over three orders of magnitude

    NASA Astrophysics Data System (ADS)

    Dupuis, Alexandre; Burgoyne, Bryan; Pena, Guido; Archambault, André; Lemieux, Dominic; Solomonean, Vasile; Duong, Maxime; Villeneuve, Alain

    2013-03-01

    Ultrafast lasers are enabling precision machining of a wide variety of materials. However, the optimal laser parameters for proper material processing can differ greatly from one material to another. In order to cut high aspect-ratio features at high processing speeds the laser parameters such as pulse energy, repetition rate, and cutting speed need to be optimized. In particular, a shorter pulse duration plays an important role in reducing the thermal damage in the Heat-Affected Zones. In this paper we present a novel ps fiber laser whose electronically tunable parameters aim to facilitate the search for optimal processing parameters. The 20W 1064nm Yb fiber laser is based on a Master Oscillator Power Amplifier (MOPA) architecture with a repetition rate that can be tuned continuously from 120kHz to 120MHz. More importantly, the integration of three different pulse generators enables the pulse duration to be switched from 25ps to 50ps, or to any value within the 55ps to 2000ps range. By reducing the pulse duration from the ns-regime down to 25ps, the laser approaches the transition from the thermal processing regime to the ablation regime of most materials. Moreover, in this paper we demonstrate the synchronization of the pulses from two such MOPA lasers. This enables more elaborate multipulse processing schemes where the pulses of each laser can be set to different parameter values, such as an initial etching pulse followed by a thermal annealing pulse. It should be noted that all the laser parameters are controlled electronically with no moving parts, including the synchronization.

  9. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.

    PubMed

    Stahl, Pierre; Macherey, Olivier; Meunier, Sabine; Roman, Stéphane

    2016-04-01

    Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea. PMID:27106306

  10. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.

    PubMed

    Stahl, Pierre; Macherey, Olivier; Meunier, Sabine; Roman, Stéphane

    2016-04-01

    Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.

  11. Comparison of the DiversiLab repetitive element PCR system with spa typing and pulsed-field gel electrophoresis for clonal characterization of methicillin-resistant Staphylococcus aureus.

    PubMed

    Babouee, B; Frei, R; Schultheiss, E; Widmer, A F; Goldenberger, D

    2011-04-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns.

  12. The midbrain central gray best suppresses chronic pain with electrical stimulation at very low pulse rates in two human cases.

    PubMed

    Hentall, Ian D; Luca, Corneliu C; Widerstrom-Noga, Eva; Vitores, Alberto; Fisher, Letitia D; Martinez-Arizala, Alberto; Jagid, Jonathan R

    2016-02-01

    Deep brain stimulation in the midbrain׳s central gray can relieve neuropathic pain in man, but for unclear reasons sometimes fails intraoperatively or in early weeks. Here we describe continuous bilateral stimulation in the central gray of two subjects with longstanding, severe neuropathic pain from spinal cord injury. Stimulation parameters were recursively adjusted over many weeks to optimize analgesia while minimizing adverse effects. In early weeks, adjustments were made in periodic office visits; subjects later selected ad libitum at home among several blinded choices while rating pain twice daily. Both subjects received significantly better pain relief when stimulus pulse rates were low. The best relief occurred with 2 Hz cycled on for 1s and off for 2s. After inferior parameters were set, pain typically climbed slowly over 1-2 days; superior parameters led to both slow and fast improvements. Over many weeks of stimulation at low pulse rates, both subjects experienced significantly less interference from pain with sleep. One subject, with major pain relief, also showed less interference with social/recreational ability and mood; the other subject, despite minor pain relief, experienced a significantly positive global impression of change. Oscillopsia, the only observed complication of stimulation, disappeared at low mean pulse rates (≤ 3/s). These subjects׳ responses are not likely to be unique even if they are uncommon. Thus daily or more frequent pain assessment, combined with slower periodic adjustment of stimulation parameters that incorporate mean pulse rates about one per second, will likely improve success with this treatment. PMID:26711853

  13. Heating of tissues in vivo by pulsed focused ultrasound to stimulate enhanced HSP expression

    NASA Astrophysics Data System (ADS)

    Kujawska, Tamara; Wójcik, Janusz; Nowicki, Andrzej

    2011-09-01

    The main aim of this work was numerical modeling of temperature fields induced in soft tissues in vivo by pulsed focused ultrasound during neurodegenerative disease treatment and experimental verification of the proposed model for a rat liver. The new therapeutic approach to neurodegenerative diseases consists of stimulation of enhanced expression of the Heat Shock Proteins (HSP) which are responsible for immunity of cells to stress. During therapy the temperature rise in tissues in vivo should not exceed 6 °C above level of the thermal norm (37 °C). First, the 3D acoustic pressure field, and the rate of heat production per unit volume due to that field, were calculated using our 3D numerical solver capable of predicting nonlinear propagation of pulsed high intensity waves generated from circular focused acoustic sources in multilayer configuration of attenuating media. The two-layer configuration of media (water—rat liver) assumed in calculations fairly well approximated both the real anatomic dimensions of rat liver and the geometric scheme of our experimental set-up. A numerical solution of the Pennes bio-heat transfer equation which accounted for the effects of heat diffusion, blood perfusion and metabolism rates, was employed to calculate the temperature fields induced in the rat liver by the ultrasonic beam. The numerical simulation results were verified experimentally using a thermocouple inserted in the liver of a rat under anesthesia at the beam focus. The quantitative analysis of the obtained results enabled estimation of the effects of several acoustic and thermal parameters of the rat liver in vivo on the temperature rise, as well as determination of exposure time for ultrasonic beams with varied acoustic power generated by a 2-MHz circular transducer of 15-mm diameter and 25-mm focal length, in order to avoid the tissue overheating that leads to cells necrosis, which would be unacceptable in neurodegenerative disease treatment.

  14. Intraoperative dorsal language network mapping by using single-pulse electrical stimulation.

    PubMed

    Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Arakawa, Yoshiki; Kobayashi, Katsuya; Usami, Kiyohide; Shibata, Sumiya; Kikuchi, Takayuki; Sawamoto, Nobukatsu; Mikuni, Nobuhiro; Ikeda, Akio; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-09-01

    The preservation of language function during brain surgery still poses a challenge. No intraoperative methods have been established to monitor the language network reliably. We aimed to establish intraoperative language network monitoring by means of cortico-cortical evoked potentials (CCEPs). Subjects were six patients with tumors located close to the arcuate fasciculus (AF) in the language-dominant left hemisphere. Under general anesthesia, the anterior perisylvian language area (AL) was first defined by the CCEP connectivity patterns between the ventrolateral frontal and temporoparietal area, and also by presurgical neuroimaging findings. We then monitored the integrity of the language network by stimulating AL and by recording CCEPs from the posterior perisylvian language area (PL) consecutively during both general anesthesia and awake condition. High-frequency electrical stimulation (ES) performed during awake craniotomy confirmed language function at AL in all six patients. Despite an amplitude decline (≤32%) in two patients, CCEP monitoring successfully prevented persistent language impairment. After tumor removal, single-pulse ES was applied to the white matter tract beneath the floor of the removal cavity in five patients, in order to trace its connections into the language cortices. In three patients in whom high-frequency ES of the white matter produced naming impairment, this "eloquent" subcortical site directly connected AL and PL, judging from the latencies and distributions of cortico- and subcortico-cortical evoked potentials. In conclusion, this study provided the direct evidence that AL, PL, and AF constitute the dorsal language network. Intraoperative CCEP monitoring is clinically useful for evaluating the integrity of the language network.

  15. Intraoperative dorsal language network mapping by using single-pulse electrical stimulation.

    PubMed

    Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Arakawa, Yoshiki; Kobayashi, Katsuya; Usami, Kiyohide; Shibata, Sumiya; Kikuchi, Takayuki; Sawamoto, Nobukatsu; Mikuni, Nobuhiro; Ikeda, Akio; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-09-01

    The preservation of language function during brain surgery still poses a challenge. No intraoperative methods have been established to monitor the language network reliably. We aimed to establish intraoperative language network monitoring by means of cortico-cortical evoked potentials (CCEPs). Subjects were six patients with tumors located close to the arcuate fasciculus (AF) in the language-dominant left hemisphere. Under general anesthesia, the anterior perisylvian language area (AL) was first defined by the CCEP connectivity patterns between the ventrolateral frontal and temporoparietal area, and also by presurgical neuroimaging findings. We then monitored the integrity of the language network by stimulating AL and by recording CCEPs from the posterior perisylvian language area (PL) consecutively during both general anesthesia and awake condition. High-frequency electrical stimulation (ES) performed during awake craniotomy confirmed language function at AL in all six patients. Despite an amplitude decline (≤32%) in two patients, CCEP monitoring successfully prevented persistent language impairment. After tumor removal, single-pulse ES was applied to the white matter tract beneath the floor of the removal cavity in five patients, in order to trace its connections into the language cortices. In three patients in whom high-frequency ES of the white matter produced naming impairment, this "eloquent" subcortical site directly connected AL and PL, judging from the latencies and distributions of cortico- and subcortico-cortical evoked potentials. In conclusion, this study provided the direct evidence that AL, PL, and AF constitute the dorsal language network. Intraoperative CCEP monitoring is clinically useful for evaluating the integrity of the language network. PMID:24615889

  16. Experimental investigation of stimulated Raman and Brillouin scattering instabilities driven by two successive collinear picosecond laser pulses.

    PubMed

    Rousseaux, C; Baton, S D; Bénisti, D; Gremillet, L; Loupias, B; Philippe, F; Tassin, V; Amiranoff, F; Kline, J L; Montgomery, D S; Afeyan, B B

    2016-04-01

    Backward stimulated Raman and Brillouin scattering (SRS and SBS) are experimentally investigated by using two successive 1-μm, 1.5-ps FWHM laser pulses. The collinear pulses, separated by 3 or 6 ps and of moderate laser intensities (∼2×10^{16}Wcm^{-2}), are fired into a preionized He plasma of density ∼2.5-6×10^{19}cm^{-3}. The electron plasma waves and ion acoustic waves, respectively driven by SRS and SBS, are analyzed through space- and time-resolved Thomson scattering. Depending on the laser and plasma parameters, we observe the effect of the first pulse on the time-resolved SRS and SBS signals of the second pulse. The measurements are found to qualitatively agree with the results of a large-scale particle-in-cell simulation. PMID:27176420

  17. Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    Peterchev, Angel V.; Goetz, Stefan M.; Westin, Gregory G.; Luber, Bruce; Lisanby, Sarah H.

    2013-01-01

    Objective To demonstrate the use of a novel controllable pulse parameter TMS (cTMS) device to characterize human corticospinal tract physiology. Methods Motor threshold and input-output (IO) curve of right first dorsal interosseus were determined in 26 and 12 healthy volunteers, respectively, at pulse widths of 30, 60, and 120 μs using a custom-built cTMS device. Strength–duration curve rheobase and time constant were estimated from the motor thresholds. IO slope was estimated from sigmoid functions fitted to the IO data. Results All procedures were well tolerated with no seizures or other serious adverse events. Increasing pulse width decreased the motor threshold and increased the pulse energy and IO slope. The average strength–duration curve time constant is estimated to be 196 μs, 95% CI [181 μs, 210 μs]. IO slope is inversely correlated with motor threshold both across and within pulse width. A simple quantitative model explains these dependencies. Conclusions Our strength–duration time constant estimate compares well to published values and may be more accurate given increased sample size and enhanced methodology. Multiplying the IO slope by the motor threshold may provide a sensitive measure of individual differences in corticospinal tract physiology. Significance Pulse parameter control offered by cTMS provides enhanced flexibility that can contribute novel insights in TMS studies. PMID:23434439

  18. Quasi-trapezoidal pulses to selectively block the activation of intrinsic laryngeal muscles during vagal nerve stimulation

    NASA Astrophysics Data System (ADS)

    Tosato, M.; Yoshida, K.; Toft, E.; Struijk, J. J.

    2007-09-01

    The stimulation of the vagus nerve has been used as an anti-epileptic treatment for over a decade, and its use for depression and chronic heart failure is currently under investigation. Co-activation of the intrinsic laryngeal muscles may limit the clinical use of vagal stimulation, especially in the case of prolonged activation. To prevent this, the use of a selective stimulation paradigm has been tested in seven acute pig experiments. Quasi-trapezoidal pulses successfully blocked the population of the largest and fastest vagal myelinated fibers being responsible for the co-activation. The first response in the vagus compound action potential was reduced by 75 ± 22% (mean ± SD) and the co-activated muscle action potential by 67 ± 25%. The vagal bradycardic effects remained unchanged during the selective block, confirming the leading role of thin nerve fibers for the vagal control of the heart. Quasi-trapezoidal pulses may be an alternative to rectangular pulses in clinical vagal stimulation when the co-activation of laryngeal muscles must be avoided.

  19. Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Affects Event-Related Potential Measures of Novelty Processing in Autism

    PubMed Central

    Baruth, Joshua; Tasman, Allan; Mansoor, Mehreen; Ramaswamy, Rajesh; Sears, Lonnie; Mathai, Grace; El-Baz, Ayman; Casanova, Manuel F.

    2009-01-01

    In our previous study on individuals with autism spectrum disorder (ASD) (Sokhadze et al., Appl Psychophysiol Biofeedback 34:37–51, 2009a) we reported abnormalities in the attention-orienting frontal event-related potentials (ERP) and the sustained-attention centro-parietal ERPs in a visual oddball experiment. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. In the present study we examine the effects of low-frequency, repetitive Transcranial Magnetic Stimulation (rTMS) on novelty processing as well as behavior and social functioning in 13 individuals with ASD. Our hypothesis was that low-frequency rTMS application to dorsolateral prefrontal cortex (DLFPC) would result in an alteration of the cortical excitatory/inhibitory balance through the activation of inhibitory GABAergic double bouquet interneurons. We expected to find post-TMS differences in amplitude and latency of early and late ERP components. The results of our current study validate the use of low-frequency rTMS as a modulatory tool that altered the disrupted ratio of cortical excitation to inhibition in autism. After rTMS the parieto-occipital P50 amplitude decreased to novel distracters but not to targets; also the amplitude and latency to targets increased for the frontal P50 while decreasing to non-target stimuli. Low-frequency rTMS minimized early cortical responses to irrelevant stimuli and increased responses to relevant stimuli. Improved selectivity in early cortical responses lead to better stimulus differentiation at later-stage responses as was made evident by our P3b and P3a component findings. These results indicate a significant change in early, middle-latency and late ERP components at the frontal, centro-parietal, and parieto-occipital regions of interest in response to target and distracter stimuli as a result of rTMS treatment. Overall, our preliminary results show that rTMS may prove to

  20. Nanosecond Pulsed Electric Field Stimulation of Reactive Oxygen Species in Human Pancreatic Cancer Cells is Ca2+-Dependent

    PubMed Central

    Nuccitelli, Richard; Lui, Kaying; Kreis, Mark; Athos, Brian; Nuccitelli, Pamela

    2013-01-01

    The cellular response to 100 ns pulsed electric fields (nsPEF) exposure includes the formation of transient nanopores in the plasma membrane and organelle membranes, an immediate increase in intracellular Ca2+, an increase in reactive oxygen species (ROS), DNA fragmentation and caspase activation. 100 ns, 30 kV/cm nsPEF stimulates an increase in ROS proportional to the pulse number. This increase is inhibited by the anti-oxidant, Trolox, as well as the presence of Ca2+ chelators in the intracellular and extracellular media. This suggests that the nsPEF-triggered Ca2+ increase is required for ROS generation. PMID:23680664