Properties of concrete containing ground palm oil fuel ash as fine aggregate replacement
NASA Astrophysics Data System (ADS)
Saffuan, W. A.; Muthusamy, K.; Salleh, N. A. Mohd; Nordin, N.
2017-11-01
Environmental degradation resulting from increasing sand mining activities and disposal of palm oil fuel ash (POFA), a solid waste generated from palm oil mill needs to be resolved. Thus, the present research investigates the effect of ground palm oil fuel ash as partial fine aggregate replacement on workability, compressive and flexural strength of concrete. Five mixtures of concrete containing POFA as partial sand replacement designed with 0%, 10%, 20%, 30% and 40% of POFA by the weight of sand were used in this experimental work. The cube and beam specimens were casted and water cured up to 28 days before subjected to compressive strength and flexural strength testing respectively. Finding shows that concrete workability reduces as the amount of POFA added become larger. It is worth to note that 10% of POFA is the best amount to be used as partial fine aggregate replacement to produce concrete with enhanced strength.
NASA Astrophysics Data System (ADS)
Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah
2017-10-01
One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.
Historical perspectives on biofuels
USDA-ARS?s Scientific Manuscript database
This chapter summarizes the history through about the 1940’s of biomass-derived fuels, particularly ethanol as replacement for gasoline and vegetable oil-derived diesel fuels, including biodiesel, as replacement for petroleum-derived diesel fuels....
Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler
USDA-ARS?s Scientific Manuscript database
A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...
Soybean-derived biofuels and home heating fuels.
Mushrush, George W; Wynne, James H; Willauer, Heather D; Lloyd, Christopher L
2006-01-01
It is environmentally enticing to consider replacing or blending petroleum derived heating fuels with biofuels for many reasons. Major considerations include the soaring worldwide price of petroleum products, especially home heating oil, the toxicity of the petroleum-derived fuels and the environmental damage that leaking petroleum tanks afford. For these reasons, it has been suggested that domestic renewable energy sources be considered as replacements, or at the least, as blending stocks for home heating fuels. If recycled soy restaurant cooking oils could be employed for this purpose, this would represent an environmental advantage. Renewable plant sources of energy tend to be less toxic than their petroleum counterparts. This is an important consideration when tank leakage occurs. Home fuel oil storage tanks practically always contain some bottom water. This water environment has a pH value that factors into heating fuel stability. Therefore, the question is: would the biofuel help or exacerbate fuel stability and furnace maintenance issues?
2010-03-01
this would complete the fossil fuel cycle, as algae are understood to be the progenitors of our current oil based fossil fuel stocks. As primary... oil . However, considering the scope of the world’s energy uses, these sources cannot possibly replace the fossil fuels currently in use. Some...122 Jatropha 1892 140 77 Coconut 2689 99 54 Oil Palm 5950 45 24 * For meeting 50% of transport fuel requirements in the United States
Synthetic Fuels and Biofuels: Questionable Replacements for Petroleum
2008-12-31
Hardy, D.R. Biodiesels fuels: Use of Soy Oil as a Blending Stock for Middle Distillate Petroleum Fuels. Ind. Eng. Chem. Res. 2000, 39(10), 3945...BACKGROUND The world market supply of oil along with growing environmental concerns has led to an increase demand in production of biodiesel...which differs from the ASTM D975-06 specification for diesel fuel oils as shown in Table 1 [8,9], in addition to key property requirements that are
Review of palm oil fuel ash and ceramic waste in the production of concrete
NASA Astrophysics Data System (ADS)
Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar
2017-11-01
High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.
NASA Astrophysics Data System (ADS)
Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.
2018-04-01
Palm oil fuel ash (POFA) is a by-product resulting from the combustion of palm oil waste such as palm oil shell and empty fruit bunches to generate electricity in the palm oil mills. Considerable quantities of POFA thus generated, accumulate in the open fields and landfills, which causes atmospheric pollution in the form of generating toxic gases. Firstly, to protect the environment; and secondly, having excellent properties for this purpose; POFA can be and has been used as partial cement replacement in concrete preparation. Therefore, this paper compiles the results obtained from previous studies that address the properties of concrete containing POFA as cement replacement in fresh and hardened states. The results indicate that there is a great potential to using POFA as cement replacement because of its ability to improve compressive strength, reduce hydration heat of cement mortar and positively affect other fresh and hardened concrete properties. The paper recommends that conducting further studies to exploit high volume of POFA along with other additives as cement replacement while maintaining high quality of concrete can help minimize CO2 emissions due to concrete.
78 FR 5126 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. This AD requires replacement of the fuel oil heat exchanger (FOHE). This AD was prompted...-84 turbofan engines with a fuel oil heat exchanger (FOHE), part number 47111-1241, installed. (d...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... and Security Act of 2007 (EISA) to reduce the use of fossil fuels and encourage increased production... renewable fuel to replace or reduce the quantity of fossil fuel present in transportation fuel. Under EPA's... quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel...
Effect of unground oil palm ash as mixing ingredient towards properties of concrete
NASA Astrophysics Data System (ADS)
Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.
2018-04-01
Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.
NASA Astrophysics Data System (ADS)
Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan
2018-04-01
Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.
Waste cooking oil as source for renewable fuel in Romania
NASA Astrophysics Data System (ADS)
Allah, F. Um Min; Alexandru, G.
2016-08-01
Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.
Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V
2010-04-01
The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.
Summaries of reports from the Congressional office of technology assessment
NASA Astrophysics Data System (ADS)
1985-11-01
A summary of reports from the Congressional office of technology assessment on the following topics is presented. (1) Residential Energy Conservation, 1979 (2) Energy Efficiency of Buildings in Cities, 1982 (3)Industrial Energy Use, 1983 (4)Increased Automobiles fuel efficiency and synthetic fuels, 1982. (5)U.S. Vulnerability to an oil import curtailment: The oil Replacement Capability, 1984. (6)Oil and Gas Technologies for the Arctic and Deep water, 1985. (7)Acid Rain and Transport Air pollutants: Implications for Public Policy. (AIP)
ERIC Educational Resources Information Center
American School and University, 1981
1981-01-01
Schools in Wilton (Connecticut) cut electric consumption 39 percent by replacing existing lamps with new types of energy saving lamps. Fuel oil consumption dropped 53 percent largely through attention paid to the operation of boilers and oil burners. (Author/MLF)
Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor
NASA Astrophysics Data System (ADS)
Hagiwara, S.; Nabetani, H.; Nakajima, M.
2015-04-01
Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non-edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.
An alternative transportation fuels update : a case study of the developing E85 industry.
DOT National Transportation Integrated Search
2011-10-01
As the United States imports more than half of its oil and overall consumption continues to climb, : the 1992 Energy Policy Act established the goal of having alternative fuels replace at least ten : percent of petroleum fuels used in the trans...
Review of Biojet Fuel Conversion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer
Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less
Reducing US Oil Dependence Using Simulation
NASA Technical Reports Server (NTRS)
Ayoub, Fadi; Arnaout, Georges M.
2011-01-01
People across the world are addicted to oil; as a result, the instability of oil prices and the shortage of oil reserves have influenced human behaviors and global businesses. Today, the United States makes up only 5% of the global population but consumes 25% of the. world total energy. Most of this energy is generated from fossil fuels in the form of electricity. The contribution of this paper is to examine the possibilities of replacing fossil fuel with renewable energies to generate electricity as well as to examine other methods to reduce oil and gas consumption. We propose a system dynamics model in an attempt to predict the future US dependence on fossil fuels by using renewable energy resources such as, nuclear, wind, solar, and hydro powers. Based on the findings of our model, the study expects to provide insights towards promising solutions of the oil dependency problem.
Estimated health impact of a shift from light fuel to residential wood-burning in Upper Austria.
Haluza, Daniela; Kaiser, August; Moshammer, Hanns; Flandorfer, Claudia; Kundi, Michael; Neuberger, Manfred
2012-07-01
The dependency on carbon-based fossil energy and growing awareness of climate change issues has induced ambitious policy initiatives to promote renewable energy sources for indoor heating. Combustion of regionally available material such as wood is considered a carbon-neutral alternative for oil and gas, but unregulated revival of wood stoves may cause detrimental health effects. For the prognosis of the health impact of air pollution due to the use of wood stoves, Upper Austria served for a case study. On the basis of recent measurements of particulate matter <10 μm in aerodynamic diameter (PM10) and nitrous gases (NO(x)), we compared the air pollution attributable to present energy mix (termed scenario 1) with two alternatives: For scenario 2, we assumed replacement of light fuel oil by either fossil gas or biomass, and for scenario 3, replacement of light fuel oil by biomass only. Compared with the current exposure from scenario 1, the increased annual mean PM10 levels are estimated to lead to 101 (95% CI 56;146) and 174 (95% CI 92;257) additional deaths among 1.4 million inhabitants per year for scenarios 2 and 3, respectively. Without adequate strategies for reducing the emissions of domestic heating facilities, replacement of fossil energy sources could lead to an increased health risk.
Replacing coal with natural gas would reduce warming
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-08-01
A debate has raged in the past couple of years as to whether natural gas is better or worse overall than coal and oil from a global warming perspective. The back-and-forth findings have been due to the timelines taken into consideration, the details of natural gas extraction, and the electricity-generating efficiency of various fuels. An analysis by Cathles, which focuses exclusively on potential warming and ignores secondary considerations, such as economic, political, or other environmental concerns, finds that natural gas is better for electricity generation than coal and oil under all realistic circumstances. To come to this conclusion, the author considered three different future fuel consumption scenarios: (1) a business-as-usual case, which sees energy generation capacity continue at its current pace with its current energy mix until the middle of the century, at which point the implementation of low-carbon energy sources dominates and fossil fuel-derived energy production declines; (2) a gas substitution scenario, where natural gas replaces all coal power production and any new oil-powered facilities, with the same midcentury shift; and (3) a low-carbon scenario, where all electricity generation is immediately and aggressively switched to non-fossil fuel sources such as solar, wind, and nuclear.
An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia
NASA Astrophysics Data System (ADS)
Yunus, S.; Abdullah, N. R.; Mamat, R.; Rashid, A. A.
2013-12-01
The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia.
THE COMBUSTION OF ORIMULSION AND ITS GENERATION OF AIR POLLUTANTS
Orimulsion, a bitumen-in-water emulsified fuel produced in Venezuela, has shown increased use throughout the world as a replacement for heavy fuel oil and, more frequently during the past several years, coal. Orimulsion has relatively high levels of sulfur, nickel, and vanad...
Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oasmaa, Anja; van de Beld, Bert; Saari, Pia
2015-04-16
Fast pyrolysis of woody biomass is close to full maturity, with first-of-its-kind commercial size installations for fuel production being commissioned in Finland (Fortum) and in The Netherlands (Empyro), and in the design phase in Brazil (Ensyn). In the industrial-scale combustion tests, the use of fast pyrolysis bio-oil (FPBO) has been demonstrated to be a viable option to replace heavy fuel oil in district heating applications. Commercially usable district heating boilers and burners suitable for FPBO are available. There is research on diesel-engine and gas-turbine applications but, so far, no proven demonstrations. FPBO is completely different from mineral oils; hence, standardsmore » are needed. Analytical methods have been systematically validated and modifications to the standards as well as completely new methods have been made. Two ASTM burner fuel standards already exist and European boiler fuel grades are being developed under CEN. The focus on CEN standardization is on boiler use, because of its commercial readiness.« less
Swedish tests on rape-seed oil as an alternative to diesel fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansson, E.; Nordstroem, O.
1982-01-01
The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularlymore » recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.« less
Botanochemicals and chemurgy in the petroleum drought ahead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagby, M.O.; Buchanan, R.A.; Duke, J.A.
1979-01-01
Green plants, collectively, are still a major under-exploited resource. However, new crops and agricultural systems are being developed for the production of fuels and materials in addition to foods and fibers. Whole-plant oils and botanochemicals are being evaluated as annually renewable replacements for petroleum crude and petrochemicals, respectively. Plant derived fuel alcohols are becoming a viable supplement to gasoline and fuel oils. Polyisoprenes, terpenes, oils, waxes, alcohols, phenols, furfural, methane, and producer gas from plant sources can potentially displace petroleum derived feedstocks for the synthetic chemical industry. Moreover, new botanochemical processing methods offer prospects for reducing US dependence on importsmore » for many specialty plant-products traditionally produced by labor-intensive methods. Extraction of essential oils, pharmaceutical intermediates, tannins, and vegetable dyes may be integrated with botanochemical processing to allow exploitation of the varied US climate for domestic production of nearly every botanical now imported.« less
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.
2017-03-01
In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.
A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.
2012-07-01
The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactorsmore » leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)« less
Biodiesel from microalgae beats bioethanol.
Chisti, Yusuf
2008-03-01
Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.
NASA Astrophysics Data System (ADS)
Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.
2015-05-01
The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.
In the most recent years, the world energy demand rose quickly. Production of millions of new cars every year, development of electronic devices that use hundreds of watts each, replacing human labor with machines in the factories and many others, lead world oil production close...
NASA Astrophysics Data System (ADS)
Prayuda, Hakas; Saleh, Fadillawaty; Ilham Maulana, Taufiq; Monika, Fanny
2018-05-01
Self-compacting Concrete (SCC) is a real innovation that can solidify itself without the help of tools to ease field practice. In its implementation, SCC can use alternative materials to reduce waste, such as Oil Palm Shell (OPS). In this research, OPS used as a replacement of crushed stone as the main coarse aggregate. The concrete mixture used consists of cement, sand, crushed stone, OPS as a variation of aggregate substitutes, palm oil fuel ash, and superplasticizer. OPS used were variated with 0%, 5%, 10%, 25% and 50% of crushed stone aggregate weight with age up to 28 days. Tests were conducted on fresh and mechanical properties. From the results, it is known that replacement of aggregate using OPS meets fresh properties criteria and although the compressive strength of OPS concrete mixture is lower than normal SCC, OPS still can be an alternative in making SCC and reducing palm oil industrial waste.
Synthetic fuels for ground transportation with special emphasis on hydrogen
NASA Technical Reports Server (NTRS)
Singh, J. J.
1975-01-01
The role of various synthetic fuels, for ground transportation in the United States, was examined for the near term (by 1985) and the longer term applications (1985-2000 and beyond 2000). Feasible options include synthetic oil, methanol, electric propulsion, and hydrogen. It is concluded that (1) the competition during the next 50 years will be for the fuels of all types, rather than among the fuels; (2) extensive domestic oil and gas exploration should be initiated concurrent with the development of several alternate fuels and related ancillaries; and (3) hydrogen, as an automotive fuel, seems to be equivalent to gasoline for optimum fuel to air mixtures. As a pollution free, high energy density fuel, hydrogen deserves consideration as the logical replacement for the hydrocarbons. Several research and development requirements, essential for the implementation of hydrogen economy for ground transportation, were identified. Extensive engineering development and testing activities should be initiated to establish hydrogen as the future automotive fuel, followed by demonstration projects and concerted efforts at public education.
Substitution for petroleum products in Brasil: Urgent issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Araujo, J.L.; Ghirardi, A.
Brazililan energy policy during the last decade has focused on the replacement of imported petroleum with domestic energy sources, combined with efforts at conservation. The substitution results, however, have been more spectacular by far. The strategy of replacement is based on two elements. first, to increase domestic petroleum exploration and production. Second, to promote non-petroleum fuels as alternatives to the industrial and transportation sectors, for the substitution of fuel oil and gasoline, respectively. A combination of the substitution strategy, the country's petroleum refining structure, and the composition of the substitution strategy, the country's petroleum refining structure, and the composition ofmore » demand, has resulted in large surpluses of both gasoline and fuel oil, while diesel has become the most used among petroleum products. The surpluses are not easily exportable because there is ample availability of fuel oil in the world market, and because the low octane number of the gasoline produced in Brasil is not compatible with the engines of cars elsewhere in the region and in the world. Furthermore, although gasoline might be upgraded, the question remains that prospects for the world market are not encouraging, and an export-based strategy does not seem justified in view of the growing surpluses. The objective of this analysis is to review the mechanisms of themajor petroleum-substitution programs currently in existence, identifying their past impact on the energy market and the possible consequences of changes in the goals and operating conditions of these programs, in the light of the new prospects for increased domestic oil production and self-sufficiency. 23 refs., 2 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Schmid, B. K.; Jackson, D. M.
1981-03-01
The Solvent Refined Coal (SRC-II) process which produces low-sulfur distillate fuel oil from coal is discussed. The process dissolves coal in a process-derived solvent at elevated temperature and pressure in the presence of hydrogen, separates the undissolved mineral residue, then recovers the original solvent by vacuum distillation. The distillate fuel oil produced is for use largely as a nonpolluting fuel for generating electrical power and steam and is expected to be competitive with petroleum fuels during the 1980s. During this period, the SRC-II fuel oil is expected to be attractive compared with combustion of coal with flue gas desulfurization in U.S. East Coast oil-burning power plants, as well as in small and medium-sized industrial boilers. The substantial quantities of methane, light hydrocarbons and naphtha produced by the process have value as feedstocks for preparation of pipeline gas, ethylene and high-octane unleaded gasoline, and can replace petroleum fractions in many applications. The liquid and gas products from a future large-scale plant, such as the 6000 t/day plant planned for Morgantown, West Virginia, are expected to have an overall selling price of $4.25 to $4.75/GJ.
NASA Astrophysics Data System (ADS)
Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.
2013-03-01
A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.
Low excess air burners keep boiler and air cleaner while cutting fuel costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, H.
1981-11-01
In the 1970s at the Humko Chemical Co., producers of fatty acids used in plastics, soaps, rubber products, and textiles, it was deemed necessary to modify existing boiler equipment to insure an adequate fuel supply and to increase efficienct. Existing equipment operated at an overall average efficiency of 77% and only 6% excess O/sub 2/ could be achieved with number 6 fuel oil and only 2.6% with natural gas. Cleaning the boilers and replacing existing burners with oil and gas firing units led to overall efficiency up to 84% with only 1% excess O/sub 2/. Even though fuel costs havemore » approximately tripled during the ensuing time, Humko's cost of producing steam has only doubled with the more efficienct equipment. (BLM)« less
Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina
2016-12-25
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.
Wang, Huamin; Elliott, Douglas C.; French, Richard J.; Deutch, Steve; Iisa, Kristiina
2016-01-01
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research. PMID:28060311
NASA Astrophysics Data System (ADS)
Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin
2017-05-01
Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.
Saloua, Fatnassi; Saber, Chatti; Hedi, Zarrouk
2010-05-01
Oil extracted from seeds of Maclura pomifera fruits grown in Tunisia was investigated as an alternative feedstock for the production of biodiesel fuel. Biodiesel was prepared by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. Maximum oil to ester conversion was 90%. The viscosity of the biodiesel oil (4.66 cSt) is similar to that of petroleum diesel (2.5-3.5 cSt). The density (0.889 g/cm(3)), kinematic viscosity (4.66 cSt), flash point (180 degrees Celsius), iodine number (125 degrees Celsius), neutralization number (0.4), pour point (-9 degrees Celsius), cloud point (-5 degrees Celsius), cetane number (48) are very similar to the values set forth by the ASTM and EN biodiesel standards for petroleum diesel (No. 2). The comparison shows that the methyl esters of M. pomifera oil could be possible diesel fuel replacements. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.
2012-07-01
Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.
Taher, Hanifa; Al-Zuhair, Sulaiman; Al-Marzouqi, Ali H.; Haik, Yousef; Farid, Mohammed M.
2011-01-01
Biodiesel is considered a promising replacement to petroleum-derived diesel. Using oils extracted from agricultural crops competes with their use as food and cannot realistically satisfy the global demand of diesel-fuel requirements. On the other hand, microalgae, which have a much higher oil yield per hectare, compared to oil crops, appear to be a source that has the potential to completely replace fossil diesel. Microalgae oil extraction is a major step in the overall biodiesel production process. Recently, supercritical carbon dioxide (SC-CO2) has been proposed to replace conventional solvent extraction techniques because it is nontoxic, nonhazardous, chemically stable, and inexpensive. It uses environmentally acceptable solvent, which can easily be separated from the products. In addition, the use of SC-CO2 as a reaction media has also been proposed to eliminate the inhibition limitations that encounter biodiesel production reaction using immobilized enzyme as a catalyst. Furthermore, using SC-CO2 allows easy separation of the product. In this paper, conventional biodiesel production with first generation feedstock, using chemical catalysts and solvent-extraction, is compared to new technologies with an emphasis on using microalgae, immobilized lipase, and SC-CO2 as an extraction solvent and reaction media. PMID:21915372
Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete
NASA Astrophysics Data System (ADS)
Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.
2018-03-01
This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
NASA Astrophysics Data System (ADS)
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
Preface to the Issue: Transformations of Biomass and its Derivatives to Fuels and Chemicals
Lin, Hongfei; Biddinger, Elizabeth J.; Mukarakate, Calvin; ...
2016-07-01
The research activities on biofuels and bio-products have been growing steadily regardless the volatility of the crude oil price in the past decade. The major driver is the imperative need of tackling the challenge of climate change. With the low carbon footprints, fuels and chemicals produced from renewable biomass resources, as the replacement of their petroleum counterparts, can contribute significantly on carbon emission reduction.
Fuel for the Future: Biodiesel - A Case study
NASA Astrophysics Data System (ADS)
Lutterbach, Márcia T. S.; Galvão, Mariana M.
High crude oil prices, concern over depletion of world reserves, and growing apprehension about the environment, encouraged the search for alternative energy sources that use renewable natural resources to reduce or replace traditional fossil fuels such as diesel and gasoline (Hill et al., 2006). Among renewable fuels, biodiesel has been attracting great interest, especially in Europe and the United States. Biodiesel is defined by the World Customs Organization (WCO) as 'a mixture of mono-alkyl esters of long-chain [C16-C18] fatty acids derived from vegetable oils or animal fats, which is a domestic renewable fuel for diesel engines and which meets the US specifications of ASTM D 6751'. Biodiesel is biodegradable and non toxic, produces 93% more energy than the fossil energy required for its production, reduces greenhouse gas emissions by 40% compared to fossil diesel (Peterson and Hustrulid, 1998; Hill et al., 2006) and stimulates agriculture.
Wang, Huamin; Elliott, Douglas C.; French, Richard J.; ...
2016-12-25
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamin; Elliott, Douglas C.; French, Richard J.
Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less
NASA Technical Reports Server (NTRS)
1982-01-01
The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.
Upgrading of bio-oil from the pyrolysis of biomass over the rice husk ash catalysts
NASA Astrophysics Data System (ADS)
Sutrisno, B.; Hidayat, A.
2016-11-01
The pyrolysis oils are complex mixtures of organic compounds that exhibit a wide spectrum of chemical functionality, and generally contain some water. Their direct use as fuels may present some difficulties due to their high viscosity, poor heating value, corrosiveness and instability. For possible future use as replacements for hydrocarbon chemical feedstocks and fuels, the liquids will require considerable upgrading to improve its characteristics. By esterification of the bio oil as the upgrading method, the properties of the bio-oil could be improved. In the paper, the upgrading of a bio-oil obtained by pyrolysis was studied over rice husk ash catalysts. The raw bio-oil was produced by pyrolysis of rice husk.From the experiment results, it can be concluded that the densities of upgraded bio-oil were reduced from 1.24 to 0.95 g.cm-3, and the higherheating value increased from 16.0 to 27.2 MJ/kg and the acidity of upgraded bio-oil was also alleviated from 2.3 to 4.4. The results of gas chromatography-mass spectrometry (GC-MS) and FT-IR analysis showed that the ester compounds in the upgraded bio-oil increased. It is possible to improve the properties of bio-oil by esterifying the raw bio-oil.
NASA Astrophysics Data System (ADS)
Garedew, Mahlet
The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.
Acute aquatic toxicity and biodegradation potential of biodiesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haws, R.A.; Zhang, X.; Marshall, E.A.
1995-12-31
Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicitymore » tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.« less
Converting campus waste into renewable energy - a case study for the University of Cincinnati.
Tu, Qingshi; Zhu, Chao; McAvoy, Drew C
2015-05-01
This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, S.; Ramsay, W.
1982-01-01
Two related papers (one by each author) examine some of the problems and point out some complexities that must be taken into account in evaluating the alcohol option. Islam notes particularly Brazil's dilemma in relinquishing its domination of world sugar markets in favor of fuel-alcohol programs that will offer more resilience to future oil shocks. Ramsay stresses the practicability of alcohol for fuel import replacement compared to other synthetic fuels; he prefers the alcohol-from-grain option, especially when considered within the context of government incentives and availability of idle land. 24 references. (DCK)
Razack, Sirajunnisa Abdul; Duraiarasan, Surendhiran
2016-01-01
In the recent scenario, consumption of petroleum fuels has increased to greater height which has led to deforestation and decline in fossil fuels. In order to tackle the perilous situation, alternative fuel has to be generated. Biofuels play a vital role in substituting the diesel fuels as they are renewable and ecofriendly. Biodiesel, often referred to as green fuel, could be a potential replacement as it could be synthesized from varied substrates, advantageous being the microalgae in several ways. The present investigation was dealt with the interesterification of waste cooking oil using immobilised lipase from mixed cultures for biodiesel production. In order to standardize the production for a scale up process, the parameters necessary for interesterification had been optimized using the statistical tool, Central Composite Design - Response Surface Methodology. The optimal conditions required to generate biodiesel were 2 g enzyme load, 1:12 oil to methyl acetate ratio, 60 h reaction time and 35 °C temperature, yielding a maximum of 93.61% biodiesel. The immobilised lipase beads remain stable without any changes in their function and structure even after 20 cycles which made this study, less cost intensive. In conclusion, the study revealed that the cooking oil, a residue of many dining centers, left as waste product, can be used as a potential raw material for the production of ecofriendly and cost effective biofuel, the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.
Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.
Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi
2014-01-01
The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.
Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete
Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa
2014-01-01
The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646
Fuels from renewable resources
NASA Astrophysics Data System (ADS)
Hoffmann, L.; Schnell, C.; Gieseler, G.
Consideration is given to fuel substitution based on regenerative plants. Methanol can be produced from regenerative plants by gasification followed by the catalytic hydration of carbon oxides. Ethanol can be used as a replacement fuel in gasoline and diesel engines and its high-knock rating allows it to be mixed with lead-free gasoline. Due to the depletion of oil and gas reserves, fermentation alcohol is being considered. The raw materials for the fermentation process can potentially include: (1) sugar (such as yeasts, beet or cane sugar); (2) starch (from potatoes or grain) and (3) cellulose which can be hydrolized into glucose for fermentation.
NASA Astrophysics Data System (ADS)
Sembodo, Bregas Siswahjono Tatag; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad
2018-02-01
Lignocellulosic biomass has recently received serious attention as an energy source that can replace fossil fuels. Corncob is one of lignocellulosic biomass wastes, which can be further processed into bio-oil through thermochemical liquefaction process. Bio-oil is expected to be further processed into fuel oil. In this research the effect of Na2CO3 catalyst weight on the yield of bio-oil was investigated. The composition of bio-oil produced in this process was analyzed by GC-MS. Bio-oil formation rate were analyzed through mathematical model development. First model aasumed as an isothermal process, while second model was not. It is found that both models were able to provide a good approach to experimental data. The average reaction rate constants was obtained from isothermal model, while the activation energy level and collision factors were obtained from non-isothermal model. The reaction rate will increase by addition of Na2CO3 (0 - 0.5 g) as catalyst to 250 mL system solution, then the activation energy will decrease from 1964.265 joules/mole to 1029.994 joules/mole. The GC-MS analysis results showed that the bio-oil were contained of ester compounds, phenolic compounds, cyclic compunds, heterocyclic compounds, and poly-alcohols compounds.
Tribological Properties Of Coal Slurries
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Schrubens, Dale L.
1988-01-01
Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2006-06-30
A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (*Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic,renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years.Fuels derived from cellulosic biomass—the fibrous, woody, and generally inedible portionsmore » of plant matter—offer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels.These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure.« less
Winning with Green Remediation Practices at the Former McClellan AFB, Sacramento CA
2011-05-12
PCE) Metals (lead, cadmium, chromium) Fuels (gas and diesel ) Radiological (Radium 226) Largest cleanup effort in the Air Force 318 sites...Existing pump and treat system replaced with sustainable in-situ bioremediation (passive vegetable oil injection) Cost to complete reduced by $15,000,000
Oil strategies benefits over different driving cycles using numerical simulation
NASA Astrophysics Data System (ADS)
Sara, Hanna; Chalet, David; Cormerais, Mickaël; Hetet, Jean-François
2017-08-01
95 g/km is the allowed quantity of CO2 emission normalized to NEDC to be set in 2020. In addition, NEDC will be replaced by more severe driving cycles and will be united worldwide. To respond to those criteria, automotive industries are working on every possible field. Thermal management has been proved to be effective in reducing fuel consumption. Cold start is a primordial reason of overconsumption, as the engine highest efficiency is at its optimal temperature. At cold start, the engine's oil is at its lowest temperature and thus its higher viscosity level. A high viscosity oil generates more friction, which is one of the most important heat losses in the engine. In this paper, hot oil storage is studied. Numerical simulations on GT-suite model were done. The model consists of a 4-cylinder turbocharged Diesel engine using a storage volume of 1 liter of hot oil. Ambient temperature variation were taken into consideration as well as different driving cycles. Furthermore, different configurations of the thermal strategy (multifunction oil sump) were proposed and evaluated. Lubricant temperature and viscosity profiles are presented in the article as well as fuel consumption savings for different configurations, driving cycles and ambient temperatures.
Applications of Nano palm oil fuel ash and Nano fly ash in concrete
NASA Astrophysics Data System (ADS)
Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.
2018-04-01
This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.
Beamed Energy and the Economics of Space Based Solar Power
NASA Astrophysics Data System (ADS)
Keith Henson, H.
2010-05-01
For space based solar power to replace fossil fuel, it must sell for 1-2 cents per kWh. To reach this sales price requires a launch cost to GEO of ˜100/kg. Proposed to reach this cost figure at 100 tonne/hour are two stages to GEO where a Skylon-rocket-plane first stage provides five km/sec and a laser stage provides 6.64 km/sec. The combination appears to reduce the cost to GEO to under 100/kg at a materials flow rate of ˜1 million tonnes per year, enough to initially construct 200 GW per year of power satellites. An extended Pro Forma business case indicates that peak investment to profitability might be ˜65 B. Over a 25-year period, production rises to two TW per year to undercut and replace most other sources of energy. Energy on this scale solves other supply problems such as water and liquid fuels. It could even allow removal of CO2 from the air and storage of carbon as synthetic oil in empty oil fields.
Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash
Alsubari, Belal; Shafigh, Payam; Jumaat, Mohd Zamin
2015-01-01
Palm oil fuel ash (POFA) has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC). POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.
Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.
Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun
2011-01-01
Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Chemistry and combustion of fit-for-purpose biofuels.
Rothamer, David A; Donohue, Timothy J
2013-06-01
From the inception of internal combustion engines, biologically derived fuels (biofuels) have played a role. Nicolaus Otto ran a predecessor to today's spark-ignition engine with an ethanol fuel blend in 1860. At the 1900 Paris world's fair, Rudolf Diesel ran his engine on peanut oil. Over 100 years of petroleum production has led to consistency and reliability of engines that demand standardized fuels. New biofuels can displace petroleum-based fuels and produce positive impacts on the environment, the economy, and the use of local energy sources. This review discusses the combustion, performance and other requirements of biofuels that will impact their near-term and long-term ability to replace petroleum fuels in transportation applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Caiazzo, Fabio; Malina, Robert; Staples, Mark D.; Wolfe, Philip J.; Yim, Steve H. L.; Barrett, Steven R. H.
2014-01-01
Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to - 161 gCO2e/MJ, or - 28% and - 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Qingshi; Zhu, Chao; McAvoy, Drew C., E-mail: mcavoydm@ucmail.uc.edu
Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of theirmore » implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.« less
Limited emission reductions from fuel subsidy removal except in energy-exporting regions.
Jewell, Jessica; McCollum, David; Emmerling, Johannes; Bertram, Christoph; Gernaat, David E H J; Krey, Volker; Paroussos, Leonidas; Berger, Loïc; Fragkiadakis, Kostas; Keppo, Ilkka; Saadi, Nawfal; Tavoni, Massimo; van Vuuren, Detlef; Vinichenko, Vadim; Riahi, Keywan
2018-02-07
Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders' Summit) to phase out fossil fuel subsidies and many national governments are using today's low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices. However, whether the removal of subsidies, even if implemented worldwide, would have a large impact on climate change mitigation has not been systematically explored. Here we show that removing fossil fuel subsidies would have an unexpectedly small impact on global energy demand and carbon dioxide emissions and would not increase renewable energy use by 2030. Subsidy removal would reduce the carbon price necessary to stabilize greenhouse gas concentration at 550 parts per million by only 2-12 per cent under low oil prices. Removing subsidies in most regions would deliver smaller emission reductions than the Paris Agreement (2015) climate pledges and in some regions global subsidy removal may actually lead to an increase in emissions, owing to either coal replacing subsidized oil and natural gas or natural-gas use shifting from subsidizing, energy-exporting regions to non-subsidizing, importing regions. Our results show that subsidy removal would result in the largest CO 2 emission reductions in high-income oil- and gas-exporting regions, where the reductions would exceed the climate pledges of these regions and where subsidy removal would affect fewer people living below the poverty line than in lower-income regions.
Limited emission reductions from fuel subsidy removal except in energy-exporting regions
NASA Astrophysics Data System (ADS)
Jewell, Jessica; McCollum, David; Emmerling, Johannes; Bertram, Christoph; Gernaat, David E. H. J.; Krey, Volker; Paroussos, Leonidas; Berger, Loïc; Fragkiadakis, Kostas; Keppo, Ilkka; Saadi, Nawfal; Tavoni, Massimo; van Vuuren, Detlef; Vinichenko, Vadim; Riahi, Keywan
2018-02-01
Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders’ Summit) to phase out fossil fuel subsidies and many national governments are using today’s low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices. However, whether the removal of subsidies, even if implemented worldwide, would have a large impact on climate change mitigation has not been systematically explored. Here we show that removing fossil fuel subsidies would have an unexpectedly small impact on global energy demand and carbon dioxide emissions and would not increase renewable energy use by 2030. Subsidy removal would reduce the carbon price necessary to stabilize greenhouse gas concentration at 550 parts per million by only 2-12 per cent under low oil prices. Removing subsidies in most regions would deliver smaller emission reductions than the Paris Agreement (2015) climate pledges and in some regions global subsidy removal may actually lead to an increase in emissions, owing to either coal replacing subsidized oil and natural gas or natural-gas use shifting from subsidizing, energy-exporting regions to non-subsidizing, importing regions. Our results show that subsidy removal would result in the largest CO2 emission reductions in high-income oil- and gas-exporting regions, where the reductions would exceed the climate pledges of these regions and where subsidy removal would affect fewer people living below the poverty line than in lower-income regions.
Merox catalyst innovation solves difficult kerosene treating problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verachtert, T.A.; Salazar, J.R.; Staehle, B.E.
1985-03-01
The UOP* Merox* process has enjoyed more than 25 years of successful commercial application. It is applied to treatment of mercaptanrich hydrocarbon streams ranging from a light gas to liquids as heavy as 350/sup 0/C (650/sup 0/F) endpoint diesel fuel. Although Merox has been applied successfully to many kerosenes, there are kerosenes from certain crudes that could not be treated using the standard Merox system. Recent UOP Merox research has centered on the development of new catalysts. From this research, an improved catalyst system (Merox 10*) for kerosene treatment now makes the Merox process applicable to the sweetening of anymore » kerosene boiling range material from any crude oil source now in production. This Merox catalyst innovation also could replace the more expensive hydrotreating still being used by refiners for reducing the mercaptan content of distillates. This paper discusses the application of the Merox process to the treatment of higher boiling fuels, particularly kerosene and jet fuel; however, it should be understood that the treatment of illuminating kerosene, stove oil, diesel fuel, and light furnace oil is quite similar although generally less complicated. Comparative economics and commercial data are provided for the Merox 10 and conventional fixed bed Merox systems. The well established superior economics of Merox over an equivalent duty hydrotreater are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, M.; Barnes, J.
The phased field development of the Lion and Panthere fields, offshore the Ivory Coast, includes a small floating production, storage, and offloading (FPSO) tanker with minimal processing capability as an early oil production system (EPS). For the long-term production scheme, the FPSO will be replaced by a converted jack up mobile offshore production system (MOPS) with full process equipment. The development also includes guyed-caisson well platforms, pipeline export for natural gas to fuel an onshore power plant, and a floating storage and offloading (FSO) tanker for oil export. Pipeline export for oil is a future possibility. This array of innovativemore » strategies and techniques seldom has been brought together in a single project. The paper describes the development plan, early oil, jack up MOPS, and transport and installation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hongfei; Biddinger, Elizabeth J.; Mukarakate, Calvin
The research activities on biofuels and bio-products have been growing steadily regardless the volatility of the crude oil price in the past decade. The major driver is the imperative need of tackling the challenge of climate change. With the low carbon footprints, fuels and chemicals produced from renewable biomass resources, as the replacement of their petroleum counterparts, can contribute significantly on carbon emission reduction.
Perspectives and advances of biological H2 production in microorganisms.
Rupprecht, Jens; Hankamer, Ben; Mussgnug, Jan H; Ananyev, Gennady; Dismukes, Charles; Kruse, Olaf
2006-09-01
The rapid development of clean fuels for the future is a critically important global challenge for two main reasons. First, new fuels are needed to supplement and ultimately replace depleting oil reserves. Second, fuels capable of zero CO2 emissions are needed to slow the impact of global warming. This review summarizes the development of solar powered bio-H2 production processes based on the conversion of photosynthetic products by fermentative bacteria, as well as using photoheterotrophic and photoautrophic organisms. The use of advanced bioreactor systems and their potential and limitations in terms of process design, efficiency, and cost are also briefly reviewed.
Alternative Fuels and Their Potential Impact on Aviation
NASA Technical Reports Server (NTRS)
Daggett, D.; Hendricks, R.; Walther, R.
2006-01-01
With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.
Understanding Methane Emission from Natural Gas Activities Using Inverse Modeling Techniques
NASA Astrophysics Data System (ADS)
Abdioskouei, M.; Carmichael, G. R.
2015-12-01
Natural gas (NG) has been promoted as a bridge fuel that can smooth the transition from fossil fuels to zero carbon energy sources by having lower carbon dioxide emission and lower global warming impacts in comparison to other fossil fuels. However, the uncertainty around the estimations of methane emissions from NG systems can lead to underestimation of climate and environmental impacts of using NG as a replacement for coal. Accurate estimates of methane emissions from NG operations is crucial for evaluation of environmental impacts of NG extraction and at larger scale, adoption of NG as transitional fuel. However there is a great inconsistency within the current estimates. Forward simulation of methane from oil and gas operation sites for the US is carried out based on NEI-2011 using the WRF-Chem model. Simulated values are compared against measurements of observations from different platforms such as airborne (FRAPPÉ field campaign) and ground-based measurements (NOAA Earth System Research Laboratory). A novel inverse modeling technique is used in this work to improve the model fit to the observation values and to constrain methane emission from oil and gas extraction sites.
Diatoms: a fossil fuel of the future.
Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G
2014-03-01
Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of performance and emissions of diesel engine using sunflower biodiesel
NASA Astrophysics Data System (ADS)
Tutunea, Dragos; Dumitru, Ilie
2017-10-01
The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.
Creating the electric energy mix of a non-connected Aegean island
NASA Astrophysics Data System (ADS)
Stamou, Paraskevi; Karali, Sophia; Chalakatevaki, Maria; Daniil, Vasiliki; Tzouka, Katerina; Dimitriadis, Panayiotis; Iliopoulou, Theano; Papanicolaou, Panos; Koutsoyiannis, Demetris; Mamasis, Nikos
2017-04-01
As the electric energy in the non-connected islands is mainly produced by oil-fueled power plants, the unit cost is extremely high. Here the various energy sources are examined in order to create the appropriate electric energy mix for a non-connected Aegean island. All energy sources (renewable and fossil fuels) are examined and each one is evaluated using technical, environmental and economic criteria. Finally the most appropriate energy sources are simulated considering the corresponding energy works. Special emphasis is given to the use of biomass and the possibility of replacing (even partially) the existing oil-fueled power plant. Finally, a synthesis of various energy sources is presented that satisfies the electric energy demand taking into account the base and peak electric loads of the island. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
Three essays in transportation energy and environmental policy
NASA Astrophysics Data System (ADS)
Hajiamiri, Sara
Concerns about climate change, dependence on oil, and unstable gasoline prices have led to significant efforts by policymakers to cut greenhouse gas (GHG) emissions and oil consumption. The transportation sector is one of the principle emitters of CO2 in the US. It accounts for two-thirds of total U.S. oil consumption and is almost entirely dependent on oil. Within the transportation sector, the light-duty vehicle (LDV) fleet is the main culprit. It is responsible for more than 65 percent of the oil used and for more than 60 percent of total GHG emissions. If a significant fraction of the LDV fleet is gradually replaced by more fuel-efficient technologies, meaningful reductions in GHG emissions and oil consumption will be achieved. This dissertation investigates the potential benefits and impacts of deploying more fuel-efficient vehicles in the LDV fleet. Findings can inform decisions surrounding the development and deployment of the next generation of LDVs. The first essay uses data on 2003 and 2006 model gasoline-powered passenger cars, light trucks and sport utility vehicles to investigate the implicit private cost of improving vehicle fuel efficiencies through reducing other desired attributes such as weight (that is valued for its perceived effect on personal safety) and horsepower. Breakeven gasoline prices that would justify the estimated implicit costs were also calculated. It is found that to justify higher fuel efficiency standards from a consumer perspective, either the external benefits need to be very large or technological advances will need to greatly reduce fuel efficiency costs. The second essay estimates the private benefits and societal impacts of electric vehicles. The findings from the analysis contribute to policy deliberations on how to incentivize the purchase and production of these vehicles. A spreadsheet model was developed to estimate the private benefits and societal impacts of purchasing and utilizing three electric vehicle technologies instead of a similar-sized conventional gasoline-powered vehicle (CV). The electric vehicle technologies considered are gasoline-powered hybrid and plug-in hybrid electric vehicles and battery electric vehicles. It is found that the private benefits are positive, but smaller than the expected short-term cost premiums on these technologies, which suggest the need for government support if a large-scale adoption of electric vehicles is desired. Also, it is found that the net present values of the societal benefits that are not internalized by the vehicle purchaser are not likely to exceed $1,700. This estimate accounts for changes in GHG emissions, criteria air pollutants, gasoline consumption and the driver's contribution to congestion. The third essay explores the implications of a large-scale adoption of electric vehicles on transportation finance. While fuel efficiency improvements are desirable with respect to goals for achieving energy security and environmental improvement, it has adverse implications for the current system of transportation finance. Reductions in gasoline consumption relative to the amount of driving that takes place would result in a decline in fuel tax revenues that are needed to fund planning, construction, maintenance, and operation of highways and public transit systems. In this paper the forgone fuel tax revenue that results when an electric vehicle replaces a similar-sized CV is estimated. It is found that under several vehicle electrification scenarios, the combined federal and state trust funds could decline by as much as 5 percent by 2020 and as much as 12.5 percent by 2030. Alternative fee systems that tie more directly to transportation system use rather then to fuel consumption could reconcile energy security, environmental, and transportation finance goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.
Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less
Fuel savings and emissions reductions from light duty fuel cell vehicles
NASA Astrophysics Data System (ADS)
Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.
1994-04-01
Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.
Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.
Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang
2015-09-01
It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solazyme Integrated Biorefinery (SzIBR): Diesel Fuels from Heterotrophic Algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkmann, David
2014-12-23
Under Department of Energy Award Number DE-EE0002877 (the “DOE Award”), Solazyme, Inc. (“Solazyme”) has built a demonstration scale “Solazyme Integrated Biorefinery (SzlBR).” The SzIBR was built to provide integrated scale-up of Solazyme’s novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of producing multiple algal oils, and to enable Solazyme to collect the data necessary to complete the design of its first commercial-scale facility. Solazyme’s technology enables it to convert a range of low-cost plant-based sugars into high-value oils. Solazyme’s renewable products replace or enhance oils derived from the world’s three existing sources—petroleum, plants, and animal fats. Solazymemore » tailors the composition of its oils to address specific customer requirements, offering superior performance characteristics and value. This report summarizes history and the results of the project.« less
High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing
2012-07-01
enable energy saving necessary for obtaining Energy Star certification for the whole boiler system. Widespread boiler control updates could be possible...adaptability to different boiler and oil/gas burner configurations, and extensibility to operation with nonconventional fuels (e.g., biogas and syngas...typically operating below or slightly above 80%. Higher efficiency improvements can certainly be obtained via boiler replacement and adoption of
Low Carbon Footprint mortar from Pozzolanic Waste Material
NASA Astrophysics Data System (ADS)
Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra
2017-04-01
Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawiec, F.; Thomas, T.; Jackson, F.
1980-11-01
An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchasedmore » by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)« less
A Review of the Mechanical Properties of Concrete Containing Biofillers
NASA Astrophysics Data System (ADS)
Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.
2016-11-01
Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.
Ultra Low Sulfur Home Heating Oil Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batey, John E.; McDonald, Roger
2015-09-30
This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directlymore » related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.« less
Ancient water supports today's energy needs
NASA Astrophysics Data System (ADS)
D'Odorico, Paolo; Natyzak, Jennifer L.; Castner, Elizabeth A.; Davis, Kyle F.; Emery, Kyle A.; Gephart, Jessica A.; Leach, Allison M.; Pace, Michael L.; Galloway, James N.
2017-05-01
The water footprint for fossil fuels typically accounts for water utilized in mining and fuel processing, whereas the water footprint of biofuels assesses the agricultural water used by crops through their lifetime. Fossil fuels have an additional water footprint that is not easily accounted for: ancient water that was used by plants millions of years ago, before they were transformed into fossil fuel. How much water is mankind using from the past to sustain current energy needs? We evaluate the link between ancient water virtually embodied in fossil fuels to current global energy demands by determining the water demand required to replace fossil fuels with biomass produced with water from the present. Using equal energy units of wood, bioethanol, and biodiesel to replace coal, natural gas, and crude oil, respectively, the resulting water demand is 7.39 × 1013 m3 y-1, approximately the same as the total annual evaporation from all land masses and transpiration from all terrestrial vegetation. Thus, there are strong hydrologic constraints to a reliance on biofuel energy produced with water from the present because the conversion from fossil fuels to biofuels would have a disproportionate and unsustainable impact on the modern water. By using fossil fuels to meet today's energy needs, we are virtually using water from a geological past. The water cycle is insufficient to sustain the production of the fuel presently consumed by human societies. Thus, non-fuel-based renewable energy sources are needed to decrease mankind's reliance on fossil fuel energy without placing an overwhelming pressure on global freshwater resources.
77 FR 39745 - Fuel Oil Systems for Emergency Power Supplies
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... fuel oil systems for safety-related emergency diesel generators and oil-fueled gas turbine generators... emergency diesel generators and oil-fueled gas turbine generators, including assurance of adequate fuel oil.... The DG-1282 is proposed revision 2 of Regulatory Guide 1.137, ``Fuel Oil Systems for Standby Diesel...
Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Foster, Hampton H
1939-01-01
Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.
Leveraging microbial biosynthetic pathways for the generation of ‘drop-in’ biofuels
Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.; ...
2017-04-17
Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less
Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.
Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D
2017-06-01
Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrocarbon group type determination in jet fuels by high performance liquid chromatography
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1977-01-01
Results are given for the analysis of some jet and diesel fuel samples which were prepared from oil shale and coal syncrudes. Thirty-two samples of varying chemical composition and physical properties were obtained. Hydrocarbon types in these samples were determined by fluorescent indicator adsorption (FIA) analysis, and the results from three laboratories are presented and compared. Recently, rapid high performance liquid chromatography (HPLC) methods have been proposed for hydrocarbon group type analysis, with some suggestion for their use as a replacement of the FIA technique. Two of these methods were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a...-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil fuel for delivery to an oil fired boiler, the equipment used for the preparation of heated oil fuel for...
Fuel oil and kerosene sales, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-22
Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2more » percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.« less
Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair
2010-04-01
An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
MacPherson, H. G.
1981-02-01
The crucial energy problem of this century is the balance between supply and demand for liquid fuels. Our conventional petroleum source is limited and much of it comes from countries that we consider unstable. Our near-term national energy effort should be devoted almost exclusively to reducing our dependence on petroleum, using every means at our disposal. Our present fleet of automobiles should be replaced as soon as possible with cars using less than half as much gasoline and with electrically propelled vehicles. We must move faster on the production of liquid fuels from coal and oil shale. A way must be found to cut through the politics and financial problems of converting our oilfired electricity generating plants to the use of coal or uranium. Houses and stores that are now heated with oil should be insulated to use less fuel and should be converted to heating with electricity, provided that the electricity is produced from coal or uranium. Our transmission lines should be strengthened so that electricity generated from coal or uranium can be wheeled to oil-burning areas of the country. Even with these measures and more, it will take all of the remainder of this century to reach even a moderately comfortable position with respect to liquid fuels. While this is happening we can expect to be sharing our ample supplies of coal with other NATO countries, and what we thought was several centuries' worth of coal will turn out to be more like one century's worth.
The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization
NASA Astrophysics Data System (ADS)
Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari
2017-05-01
This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.
Types of Refined Petroleum Products
These are derived from crude oils through processes such as catalytic cracking and fractional distillation. Examples described here are gasoline, kerosene, no. 2 fuel oil, no. 4 fuel oil, no. 5 fuel oil, no. 6 fuel oil, and lubricating oil.
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false On-specification used oil fuel. 279.72... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or...
The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.
Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry
2014-12-01
The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Engineering and sustainability aspect of palm oil shell powder in cement
NASA Astrophysics Data System (ADS)
Karim, Mohammad Razaul; Hossain, Md. Moktar; Yusoff, Sumiani Binti
2017-06-01
Palm oil shell (POS) is a waste material which significantly produced in palm oil mills. In current practice, this waste is dumped in open land or landfill sites or is used as fuel to run a steam turbine of a boiler, which leads to environmental pollutions. The characterization, engineering and sustainability aspect of this waste for using in cement-based applications lead to reduce the emission of carbon dioxide and cost, save natural resources for cement production and also sustainable usage of waste material. The characterization was carried out using particle size analyzer, XRF, SEM and total organic carbon analyzer. ASTM standard methods were used to observe the setting time and water for normal consistency. The compressive strength of palm oil shell powder (POSP) blended cement was explored with the water to cement and cement to sand ratio of 0.40 and 0.50, respectively up to 40% replacement levels of OPC. Result found that the setting time and water demand were increased, but compressive strength was decreased to replacement levels. However, the incorporation of POSP in cement was reduced 9.6% of CO2 emission, 25 % of the cost and save natural resource, i.e. limestone, clay, iron ore, silica shale and gypsum of 35.1%, 4.95%, 0.9%, 4.05 % and 1.2 %, respectively at 30% replacement level of OPC. The results of this extensive study on POSP characterization, effect on basic cement properties and sustainability aspect provide the guidance for using the POSP at industrial scale for cement production.
Land, energy and water: the constraints governing ideal U.S. population size.
Pimental, D; Pimental, M
1990-01-01
This document examines the constraints that are placed on US prosperity with increasing land, energy, and water usage. The report compares China and America and suggests that, if the US is not careful, our situation is headed toward the lack of prosperity found in China. US population is 246.1 million and we produce 47 times more goods and services (per capita) than the 1.1 billion people of China. This may be due to overpopulation contributing to diminished resources, food, natural forests, and increased erosion of the soil. Most of the resources we are currently using cannot be renewed after the next 100 years. Land area is diminishing, soil is eroding faster than replacement rates, 3 kcal of fossil fuel is expended to produce 1 kcal of food, natural gas is being depleted, oil supplies are limited to a 16 year supply, and groundwater is used faster than it can be replaced. Pollution (air, water, and soil) threatens these natural resources even more. The US must concentrate on the conversion from fossil fuel energy to solar energy, although much land is needed for solar energy systems. We may be able to increase our solar energy output 3-10 without affecting agriculture, and future fusion techniques may alleviate some of the fossil fuel pressures. Livestock manures could be used as fertilizers more often in order to decrease the waste of oil when synthetic fertilizers and pesticides are used. The ideal US population should be maintained at 40-100 million if we want to retain our current standard of living.
Recuperators for compressed-air energy storage plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.
1989-12-01
An R D study was conducted to provide an engineering solution to the potential problem of corrosion in the cold-end sections of recuperators operating in compressed-air energy storage (CAES) plants. Two options were developed: (1) a conventional, counterflow recuperator with an easily replaceable cold-end section and (2) a recuperator design which eliminates operation at tube temperatures below the exhaust-gas dew point (advanced design). The advanced design consists of an optimized combination of counterflow and parallel-flow sections. The following data resulting from these studies are included: a history of recuperator operating experience, a summary of lab-testing of various materials for corrosionmore » resistance, detailed design and descriptions of the recuperator designs, additional detail descriptions of alternative air-preheating and turboexpander-exhaust systems, and a comparative economic analysis of the various designs developed. The study concluded that for use with No. 2 fuel oil or lower-grade fuels, the advanced recuperator design with carbon-steel tubes and fins would be more cost-effective and trouble-free than one with an easily replaceable tube section. For CAES plants firing very low-sulfur fuel oil or natural gas, the lower capital-cost, counter-flow design can be considered. It was also concluded that a compressed-air bypass of the recuperator be included in the plant design in the event of recuperator outage, and that the recuperator be designed for operation without cavern air going through it. The advanced recuperator concept is currently being implemented at the 110-MW CAES plant for the Alabama Electric Cooperative, Inc. 6 refs., 24 figs., 20 tabs.« less
40 CFR 91.308 - Lubricating oil and test fuel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...
40 CFR 91.308 - Lubricating oil and test fuel.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...
40 CFR 91.308 - Lubricating oil and test fuel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...
40 CFR 91.308 - Lubricating oil and test fuel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...
40 CFR 91.308 - Lubricating oil and test fuel.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...
Carbon footprints of heating oil and LPG heating systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk
For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used thatmore » were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.« less
NASA Astrophysics Data System (ADS)
Rajagukguk, J. R.
2018-01-01
Plastic has become an important component in modern life today. Its role has replaced wood and metal, given its advantages such as light and strong, corrosion resistant, transparent and easy to color and good insulation properties. The research method is used with quantitative and engineering research methods. Research objective is to convert plastic waste into something more economical and to preserve the environment surrounding. Renewable fuel and lubricant variables are simultaneously influenced significantly to the sustainable environment. This is based on Fh> Ft of 62.101> 4.737) and its significance is 0.000 < 0.05. Then Ho concluded rejected Ha accepted which means that the variable of renewable fuels and lubricants or very large effect on the environment sustainable, the value of correlation coefficient 0.941 or 94.1% which means there is a very strong relationship between renewable fuel variables and lubricants to the sustainable environment. And utilizing plastic waste after being processed by pyrolysis method produces liquid hydrocarbons having elements of compounds such as crude oil and renewable fuels obtained from calculations are CO2 + H2O + C1-C4 + Residual substances. Then the plastic waste can be processed by isomerization process + catalyst to lubricating oil and the result of chemical calculation obtained is CO2, H2O, C18H21 and the rest.
The hydrodeoxygenation of bioderived furans into alkanes.
Sutton, Andrew D; Waldie, Fraser D; Wu, Ruilian; Schlaf, Marcel; Silks, Louis A Pete; Gordon, John C
2013-05-01
The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.
The hydrodeoxygenation of bioderived furans into alkanes
NASA Astrophysics Data System (ADS)
Sutton, Andrew D.; Waldie, Fraser D.; Wu, Ruilian; Schlaf, Marcel; ‘Pete' Silks, Louis A.; Gordon, John C.
2013-05-01
The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.
These substances are found in: Fuel oil Kerosene Gasoline There may be other sources of fuel oil. ... swallowing fuel oil. The main danger from swallowing kerosene is that it can also go into your ...
NASA Astrophysics Data System (ADS)
Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami
2017-03-01
Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagget, D.
Exploration for and mining of uranium ore is going on within 10 miles of the Grand Canyon National Park. The current rush started in 1980, when a Denver-based company, Energy Fuels Nuclear, took over a claim in Hack Canyon and uncovered a very rich deposit of uranium ore. Recent explorations have resulted in some 1300 claims in the area around the Grand Canyon, many of them in the Arizona Strip, the land between the Canyon and Utah. The center of current controversy is the 1872 Mining Law. Replacement of the law with a leasing system similar to that used formore » leasable minerals such as coal, oil shale, oil and gas, potash, and phosphate is advocated. 1 figure.« less
Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.
Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F
2016-02-07
Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.
Alkaline hydrothermal liquefaction of swine carcasses to bio-oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang
Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, themore » effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...
30 CFR 56.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil. ...
30 CFR 56.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2014 CFR
2014-07-01
... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil. ...
30 CFR 56.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2012 CFR
2012-07-01
... that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium nitrate-fuel oil, except that.... (b) Waste oil, including crankcase oil, shall not be used to prepare ammonium nitrate-fuel oil. ...
NASA Astrophysics Data System (ADS)
Rizal, M.; Wiharna, S.; Wahyudi, A.
2017-05-01
In 2015, national domestic fuel consumption is already above 1.5 million barrels per day, while production is under 800,000 barrels per day. The gap between production and consumption will be considerably widened, serious efforts is needed to save the use of petroleum and also look for alternative replacement with renewable natural energy. Two approaches that can be taken: First, save the use of fossil fuel directly by using citronella essential oil-based bioadditive by 20 percents, equal to at least Rp. 55.2 trillions of national petroleum subsidies. Second, encourage increased utilization of biofuel mixed with that bioaditives that gradually reduce dependence on fossil fuels while developing machines which will fully operated with biofuels. Development of Sustainable Agricultural Bioindustry (SAB) system by integrating crops (candle nut, citronella) with livestock (dairy cattle) in a specific region. could contribute to: a) production of biodiesel and bioadditive feedstocks, b) production foodstuffs like beef and/or milk, c) utilitization of non-productive land, d) employment, by absorbing large number of farmer, e) increase the farmers income, f), biogas that can be used to meet daily household energy needs, and g) environmental conservation and sequestration of carbon emissions.
Synfuels and the energy transition
NASA Astrophysics Data System (ADS)
Balzhiser, R. E.
1981-08-01
Various synfuel options and their impact on the electric utility industry are discussed. The energy transition for the U.S.A. is seen as moving from natural fluid fuels to solid fuels and renewable energy resources. The key to this transition is electrification, which can encompass both nuclear and renewable resources, centralized and dispersed technologies. It is shown that the fraction of total energy converted to electricity has risen steadily for the past 30 years, reaching 33% last year. The abundance and cost of production of the various fossil energy resources, including natural gas, heavy oil, oil shale, and coal are considered. EPRI analyses indicate that an integrated-combined-cycle power plant could be competitive with conventional coal plant technology. These plants would use only half the water of current coal-fired plants, would meet tighter sulfur emission standards, and would produce a vitreous ash that is less leachable than the ash from today's coal plants. Solvent-refined coal processes, currently being developed in the U.S.A. are a second approach to converting coal to liquid fuels. It is pointed out, however, that synfuels will complement, not replace, other sources of energy in the continued electrification of the U.S.A.
Manatee lays groundwork for commercial use of Orimulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makansi, J.
1994-09-01
This article describes the conversion of an oil fired plant to Orimulsion described as a fourth fossil fuel, Orimulsion will replace oil at FP and L's Manatee station. The project involves unique business arrangements as well as important combustion, emissions control, and fuel handling system modifications. Florida Power and Light Co (FP and L) spent several years investigating the use of Orimulsion, including a full-scale five-months demonstration at its Sanford Station Unit 4. Now, the utility has taken the next giant leap; it has committed to convert the Manatee station for full-scale use of this unique fuel. The resulting projectmore » breaks new ground in the electric-generating business in several ways, including these: It represents the first long-term commercial contract for use of Orimulsion in the US, and the largest commitment world-wide. It involves unique business arrangements--not the least of which is the second major contract at an electric-utility station for a third-party-owned and operated flue-gas desulfurization (FGD) system. It indicates risk-taking on the part of utilities--with two 800-MW units, Manatee embodies a substantial amount of FP and L's total and incremental capacity base.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... process energy 6 F Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual... biomass and petroleum 4 G Biodiesel, heating oil Canola/Rapeseed oil Trans-Esterification using natural gas or biomass for process energy 4 H Biodiesel, renewable diesel, jet fuel and heating oil Soy bean...
2016-05-01
UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of § 279.11 by performing analyses or obtaining copies of analyses or other information documenting...-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or... meets the specifications for used oil fuel under § 279.11, must keep copies of analyses of the used oil...
Advanced Thermally Stable Coal-Based Jet Fuels
2008-02-01
of hydrotreated refined chemical oil derived jet fuels in the pyrolytic regime. Preprints of Papers-American Chemical Society Division of Fuel...hydrogenation of a mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature...mixture of light cycle oil and refined chemical oil met or exceeded all but four JP-8 specifications. The fuel has excellent low-temperature viscosity
Fuel oil and kerosene sales 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil andmore » Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.« less
Results of industrial tests of carbonate additive to fuel oil
NASA Astrophysics Data System (ADS)
Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.
2017-08-01
Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.
Application of Coal Thermal Treatment Technology for Oil-Free Firing of Boilers
NASA Astrophysics Data System (ADS)
Aliyarov, B.; Mergalimova, A.; Zhalmagambetova, U.
2018-04-01
The theoretical and practical introduction of this kind of firing boiler units in coal thermal power plants is considered in the article. The results of an experimental study of three types of coals are presented in order to obtain the required gaseous fuel. The aim of the study is to develop a new, economically and ecologically more acceptable method for firing boilers at thermal power plants, which is able to exclude the use of expensive and inconvenient fuel oil. The tasks of the experiment are to develop a technological scheme of kindling of boilers at thermal power plants, using as a type of ignition fuel volatile combustible substances released during the heating of coal, and to investigate three types of coal for the suitability of obtaining gaseous fuels, in sufficient volume and with the required heat of combustion. The research methods include the analysis of technical and scientific-methodological literature on the problem of the present study, the study of the experience of scientists of other countries, the full-scale experiment on the production of volatile combustible substances. During the full-scale experiment, the coal of 3 fields of Kazakhstan has been studied: Shubarkul, Maikuben and Saryadyr. The analysis has been performed and the choice of the most convenient technology for boiler kindling and maintenance of steady burning of the torch has been made according to the proposed method, as well as the corresponding technological scheme has been developed. As a result of the experiment, it can be stated that from coal in the process of its heating (without access to oxygen), it is possible to obtain a sufficient amount of combustible volatile substances. The released gaseous fuel has the necessary parameters and is quite capable of replacing an expensive fuel oil. The resulting gaseous fuel is quite convenient to use and environmentally cleaner. The piloting scheme developed as a result of the experiment can be introduced in pulverized-coal thermal power plants, as a result of which they become single-fuel.
Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel
Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN
2010-11-23
Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.
46 CFR 30.10-48 - Oil fuel-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it is...
46 CFR 30.10-48 - Oil fuel-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it is...
46 CFR 30.10-48 - Oil fuel-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it is...
46 CFR 30.10-48 - Oil fuel-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it is...
46 CFR 30.10-48 - Oil fuel-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it is...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
46 CFR 30.10-48a - Oil fuel unit-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Oil fuel unit-TB/ALL. 30.10-48a Section 30.10-48a Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48a Oil fuel unit—TB/ALL. The term oil fuel unit means the equipment used for the preparation of oil...
The guava tree as bioindicator during the process of fuel replacement of an oil refinery.
Silva, Simone F; Meirelles, Sérgio T; Moraes, Regina M
2013-05-01
This study was performed to verify whether the exchange of the fuel used in the boilers of a crude oil refinery located in Cubatão (SE Brazil) would result in alterations on gas exchange, growth and leaf injuries in saplings of Psidium guajava 'Paluma'. The purpose of the refinery was to reduce the SO2 emission, but using natural gas as fuel could increase the concentrations of O3 precursors in the atmosphere. Thus a biomonitoring was performed with a native species sensitive to O3. The plants were exposed in five areas (CM1, CM5, CEPEMA, Centro, and RP) at different distances to the refinery, both before and after the fuel exchange. We performed six exposures under environmental conditions, with length of ca. 90 days each. With the utilization of natural gas, the saplings presented reductions in carbon assimilation rate under saturating light conditions (Asat, μmolCO2m(-2)s(-1)) and the stomatal conductance (gs, molH2Om(-2)s(-1)), and increase in height, number of leaves, and dry mass of leaves and shoots. There were also reductions in root dry mass and in the root/shoot ratio. The saplings also presented O3-induced leaf injuries. The responses of P. guajava 'Paluma' were altered after the fuel exchange as a result of a new combination of pollutants in the atmosphere. The fuel exchange has not resulted in environmental benefit to the surrounding forest; it has only altered the contamination profile of the region. Copyright © 2013 Elsevier Inc. All rights reserved.
76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... Propulsion Fuels and Lubricating Oils AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of..., Approval of Propulsion Fuels and Lubricating Oils. This AC provides guidance on regulations and policy... approve aircraft, engines, or APUs to operate with specified propulsion fuels and lubricating oils. DATES...
The Northeast heating fuel market: Assessment and options
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over themore » next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.« less
Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II
2015-01-01
This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810
Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.
Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M
2016-12-01
The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.
Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.
Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin
2007-01-01
In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.
33 CFR 157.33 - Water ballast in fuel oil tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water ballast in fuel oil tanks... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not carry ballast water in a fuel oil tank. [CGD 74-32, 40 FR 48283, Oct. 14, 1975, as amended by USCG-2000-7641, 66...
Fuel oil and kerosene sales 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-08-01
The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.
Fuel oil and kerosene sales, 1994 (for microcomputers). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
Annual petroleum marketing data are available on this diskette which contains statistics from the Fuel Oil and Kerosene Sales 1994 report. Included are annual sales data on petroleum volumes of kerosene, distillate fuel oil, and residual fuel oil by state. Annual historic data at the national level are provided in summary tables.
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
46 CFR 169.234 - Integral fuel oil tank examinations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...
46 CFR 169.234 - Integral fuel oil tank examinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...
46 CFR 169.234 - Integral fuel oil tank examinations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...
46 CFR 169.234 - Integral fuel oil tank examinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...
40 CFR 89.330 - Lubricating oil and test fuels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...
40 CFR 89.330 - Lubricating oil and test fuels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...
40 CFR 89.330 - Lubricating oil and test fuels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...
40 CFR 89.330 - Lubricating oil and test fuels.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...
40 CFR 89.330 - Lubricating oil and test fuels.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Lubricating oil and test fuels. 89.330... Equipment Provisions § 89.330 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... that is conducted by the Administrator shall be performed using test fuels that meet the specifications...
46 CFR 111.103-9 - Machinery stop stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fan, induced draft fan, blower of an inert gas system, fuel oil transfer pump, fuel oil unit, fuel oil service pump, and any other fuel oil pumps must have a stop control that is outside of the space containing the pump or fan. (b) Each stop control must meet § 111.103-7. ...
Oil cooling system for a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.; Kast, H. B. (Inventor)
1977-01-01
A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.
Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.
Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S
2013-02-13
There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.
API focuses on cleanliness, economics of fossil fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-15
Fossil fuels, consumed in free markets, are playing positive economic and environmental roles as the world economy becomes integrated, industry leader said last week. Environmental zealots threaten to force conversion from gasoline as a motor fuel in the U.S. and oppose the growing integration of the world economy. Fossil fuels, free markets, human creativity, and entrepreneurial spirit--not government intervention--are the keys to a clean environment, said API pres. Charles J. DiBona and outgoing Chairman C.J. (Pete) Silas, chairman and chief executive officer of Phillips Petroleum Co. DiBona said proponents of the BTU tax defeated earlier this year used erroneous assumptionsmore » to make a case against oil use in an effort to replace the efficiency of the marketplace with the inefficiency of bureaucracy. The government's role is to set tough standards and avoid dictating the way environmental standards are met, they said. Other speakers warned that voluntary measures put forward by the Clinton administration of address global climate change issues likely will fall short.« less
Fuel and fuel blending components from biomass derived pyrolysis oil
McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.
2012-12-11
A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.
40 CFR 49.124 - Rule for limiting visible emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...% opacity limit. (3) The visible emissions from an oil-fired boiler or solid fuel-fired boiler that..., fuel, fuel oil, fugitive dust, gaseous fuel, grate cleaning, marine vessel, mobile sources, motor..., PM10, PM2.5, reference method, refuse, Regional Administrator, residual fuel oil, smudge pot, solid...
40 CFR 49.124 - Rule for limiting visible emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...% opacity limit. (3) The visible emissions from an oil-fired boiler or solid fuel-fired boiler that..., fuel, fuel oil, fugitive dust, gaseous fuel, grate cleaning, marine vessel, mobile sources, motor..., PM10, PM2.5, reference method, refuse, Regional Administrator, residual fuel oil, smudge pot, solid...
30 CFR 57.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuel oil requirements for ANFO. 57.6309 Section... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels with flash points lower than that of No. 2 diesel oil (125 °F) shall not be used to prepare ammonium...
Determination of Calorific Ability of Fuel Briquettes on the Basis of Oil and Oil Slimes
NASA Astrophysics Data System (ADS)
Fedyaeva, O. A.; Poshelyuzhnaya, E. G.; Rakhmatulina, E. M.; Zakharov, V. A.; Fisenko, T. E.
2018-01-01
Utilization and neutralization of oil slimes is one of important environmental problems of the oil-extracting, oil-processing and petrochemical industry. The easiest and economic way of utilization of oil slimes is their use as a part of the bricketed boiler fuel. In this work the highest calorific ability of crude oil, the oil slimes and fuel briquettes made on their basis is defined. A research problem was carrying out the technical analysis of oil fuels on the content in them analytical moisture, the cindery rest and volatiles. It is established that in comparison with oil slimes crude oil possesses bigger highest calorific ability, has smaller humidity and an ash-content. The highest calorific abilities of the boiler briquettes made of samples of crude oil, oil slimes and peat made 14 - 26 MJ/kg.
46 CFR 78.17-75 - Requirements for fuel oil.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating the...
19 CFR 10.62 - Bunker fuel oil.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a Customs...
46 CFR 97.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...
19 CFR 10.62 - Bunker fuel oil.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a Customs...
46 CFR 196.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on board...
46 CFR 97.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...
46 CFR 196.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on board... 46 Shipping 7 2014-10-01 2014-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55...
46 CFR 97.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...
46 CFR 196.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on board...
46 CFR 78.17-75 - Requirements for fuel oil.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating the...
46 CFR 196.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Requirements for fuel oil. 196.15-55 Section 196.15-55... Test, Drills, and Inspections § 196.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on board...
19 CFR 10.62 - Bunker fuel oil.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a Customs...
46 CFR 97.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...
19 CFR 10.62 - Bunker fuel oil.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a Customs...
46 CFR 78.17-75 - Requirements for fuel oil.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating the...
19 CFR 10.62 - Bunker fuel oil.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a Customs...
46 CFR 78.17-75 - Requirements for fuel oil.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating the...
46 CFR 125.115 - Oil fuel tank protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Oil fuel tank protection. 125.115 Section 125.115... Oil fuel tank protection. (a) An OSV of at least 6,000 GT ITC (500 GRT if GT ITC is not assigned) that is delivered after August 1, 2010, with an aggregate capacity of 600 cubic meters or more of oil fuel...
46 CFR 97.15-55 - Requirements for fuel oil.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...
PROJECTIONS OF REGIONAL FUEL OIL AND NATURAL GAS PRICES
The report presents delivered regional oil and natural gas price forecasts for the industrial and electric utility sectors. Delivered energy price projections by Federal region through the year 2045 are provided for distillate fuel oil, residual fuel oil, and natural gas. Methodo...
Synthesis of biodiesel fuel from safflower oil using various reaction parameters.
Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P
2006-01-01
Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.
Fuel oil and kerosene sales 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-27
This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate salesmore » rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.« less
Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.
Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.
Goodrum, John W; Geller, Daniel P
2005-05-01
Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.
Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner
NASA Astrophysics Data System (ADS)
Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir
2018-03-01
Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.
Alternative fuels for multiple-hearth furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, B.D.; Lawson, T.U.
1980-04-01
A study of alternative procedures for reducing the consumption of No. 2 fuel oil at the Lower Molonglo Water Quality Control Centre near Canberra, Aust., indicated that in comparison with the present system of incineration with heat supplied by burning fuel oil, the installation of a sludge drying operation, consisting of a rotary dryer heated by furnace exhaust gases with the dried sludge used to fuel the furnace, would become economically desirable by 1985 if afterburning is not required, and would be justified immediately if afterburning is required to meet air pollution control regulations. The substitution of any of fourmore » waste fuels (refuse-derived fuel, waste paper, wood waste, or waste oil) or of coal for the No. 2 fuel oil would not be cost-effective through 1989. The furnace system, including afterburning and fuel oil requirements, the envisioned alternative fuel use systems, sludge processing alternatives, heat balance results, and economics are discussed.« less
Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar
2017-10-18
The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.
Utilization of alternative fuels in diesel engines
NASA Technical Reports Server (NTRS)
Lestz, S. A.
1984-01-01
Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.
From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
Diwan, Batul; Parkhey, Piyush; Gupta, Pratima
2018-04-23
The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is PUFA-rich oil production (for competing with algal omega oils) or neutral bulk oil production (for overcoming yield limitations and managing process economy) to establish this potential source as future resource.
Environmental assessment of used oil management methods.
Boughton, Bob; Horvath, Arpad
2004-01-15
The 1 billion gal of used oil generated in the U.S. each year are managed in three primary ways: rerefined into base oil for reuse, distilled into marine diesel oil fuel, and marketed as untreated fuel oil. Management of used oil has local, regional and global impacts. Because of the globally distributed nature of fuel markets, used oil as fuel has localized and regional impacts in many areas. In this paper, the human health and environmental tradeoffs of the management options are quantified and characterized. The goal of this study was to assess and compare the environmental impacts and benefits of each management method in a product end-of-life scenario using a life-cycle assessment (LCA) approach. A life-cycle inventory showed that 800 mg of zinc and 30 mg of lead air emissions may result from the combustion of 1 L of used oil as fuel (50-100 times that of crude-derived fuel oils). As an example, up to 136 Mg of zinc and 5 Mg of lead air emissions may be generated from combustion of over 50 M gal of California-generated used oil each year. While occurring elsewhere, these levels are significant (of the same magnitude as reported total stationary source emissions in California). An impact assessment showed that heavy metals-related toxicity dominates the comparison of management methods. Zinc and lead emissions were the primary contributors to the terrestrial and human toxicity impact potentials that were calculated to be 150 and 5 times higher, respectively, for used oil combusted as fuel than for rerefining or distillation. Low profits and weak markets increasingly drive the used oil management method selection toward the untreated fuel oil market. Instead, both the rerefining and distillation methods and associated product markets should be strongly supported because they are environmentally preferable to the combustion of unprocessed used oil as fuel.
2016-01-01
Provides information, illustrations and state-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses.
Maximizing the stability of pyrolysis oil/diesel fuel emulsions
USDA-ARS?s Scientific Manuscript database
Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.
Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBKmore » wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.« less
Put a Coalatom in Your Tank: The Compelling Case for a Marriage of Coal and Nuclear Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfield, Scott R. Jr.; Bolthrunis, Charles O.
2006-07-01
Increasing costs and security concerns with present fossil energy sources, plus environmental concerns related to CO{sub 2} emissions and the emergence of new technologies in the energy and transportation sectors set the stage for a marriage of convenience between coal and nuclear energy. As the price of oil continues to increase and supply becomes increasingly constrained, coal offers a secure domestic alternative to foreign oil as a source of liquid fuels. However, conventional technologies for converting coal to liquid fuels produce large quantities of CO{sub 2} that must be released or sequestered. Advanced nuclear technologies, particularly the High-Temperature Gas-Cooled Reactormore » (HTGR), have the potential to produce hydrogen via water splitting; however, the transportation and storage of hydrogen are significant barriers to the 'Holy Grail', the Hydrogen Economy. In a coal/nuclear marriage, the hydrogen and oxygen provided by nuclear energy are joined with coal as a source of carbon to provide liquid fuels with negligible CO{sub 2} release from the process. In combination with emerging hybrid vehicles, fuels based on a coal/nuclear marriage promise stable prices, increased domestic security and a reduction in CO{sub 2} emissions without the need to completely replace our transportation fuels infrastructure. The intent of this paper is to outline the technical basis for the above points and to show that process energy applications of nuclear energy can provide the basis for answering some of the tougher questions related to energy and the environment. (authors)« less
Proceedings of the 1995 SAE alternative fuels conference. P-294
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.
Fossil Energy: Drivers and Challenges.
NASA Astrophysics Data System (ADS)
Friedmann, Julio
2007-04-01
Concerns about rapid economic growth, energy security, and global climate change have created a new landscape for fossil energy exploration, production, and utilization. Since 85% of primary energy supply comes from fossil fuels, and 85% of greenhouse gas emissions come from fossil fuel consumption, new and difficult technical and political challenges confront commercial, governmental, and public stakeholders. As such, concerns over climate change are explicitly weighed against security of international and domestic energy supplies, with economic premiums paid for either or both. Efficiency improvements, fuel conservation, and deployment of nuclear and renewable supplies will help both concerns, but are unlikely to offset growth in the coming decades. As such, new technologies and undertakings must both provide high quality fossil energy with minimal environmental impacts. The largest and most difficult of these undertakings is carbon management, wherein CO2 emissions are sequestered indefinitely at substantial incremental cost. Geological formations provide both high confidence and high capacity for CO2 storage, but present scientific and technical challenges. Oil and gas supply can be partially sustained and replaced through exploitation of unconventional fossil fuels such as tar-sands, methane hydrates, coal-to-liquids, and oil shales. These fuels provide enormous reserves that can be exploited at current costs, but generally require substantial energy to process. In most cases, the energy return on investment (EROI) is dropping, and unconventional fuels are generally more carbon intensive than conventional, presenting additional carbon management challenges. Ultimately, a large and sustained science and technology program akin to the Apollo project will be needed to address these concerns. Unfortunately, real funding in energy research has dropped dramatically (75%) in the past three decades, and novel designs in fission and fusion are not likely to provide any substantial offset in the next 30 years when they are most needed internationally.
1993-12-01
Signifi- and risk . cant capital replacement is also required for the boat, motor, and trailer needed to tend the "* Cost of acquiring waterfront property...after Barge & Shaker 1,800 Front-end Loader & Pump 950 depreciation and opportunity costs (Table 6). Fuel and Oil This high IRR reflects the "favorable...Long-term loan payment: Interest 5,722 Operating loan payment: Interest 0 Depreciation 10,044 Net returns to owner’s capital, management and risk
Tewari, Krishna C.; Foster, Edward P.
1985-01-01
Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.
Vegetable oils and animal fats for diesel fuels: a systems study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.
1982-01-01
This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production ofmore » triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)« less
40 CFR 90.308 - Lubricating oil and test fuels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...
40 CFR 90.308 - Lubricating oil and test fuels.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...
40 CFR 90.308 - Lubricating oil and test fuels.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...
40 CFR 90.308 - Lubricating oil and test fuels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...
40 CFR 90.308 - Lubricating oil and test fuels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuels. 90.308... Equipment Provisions § 90.308 Lubricating oil and test fuels. (a) Lubricating oil. Use the engine... manufacturer. (b) Test Fuels—Certification. (1) The manufacturer must use gasoline having the specifications...
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On...
Chen, Chun-Chi; Lee, Wen-Jhy
2008-01-01
The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.
30 CFR 56.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuel oil requirements for ANFO. 56.6309 Section 56.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels with flash points lower than...
30 CFR 57.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels...
30 CFR 56.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel oil requirements for ANFO. 56.6309 Section 56.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels with flash points lower than...
30 CFR 57.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels...
Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels
NASA Astrophysics Data System (ADS)
Klyus, Oleg; Bezyukov, O.
2017-06-01
The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.
Production of bio-jet fuel from microalgae
NASA Astrophysics Data System (ADS)
Elmoraghy, Marian
The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.
Catalytic combustion with incompletely vaporized residual fuel
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1981-01-01
Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydro-skimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A study of the refinery expansion project takes into consideration earlier studies and, equally important, recognizes the extensive work done by TOR in rehabilitating the refinery. The program, carried out in phases because of funding limitations, has addressed the critical repairs and replacements in the process unitsmore » and utilities necessary to prolong the life of the refinery and assure reliability and safe operation. It undertook the task of investigating the feasibility of modernizing and expanding the refinery at Tema, Ghana to meet projected market demands until the year 2005. A process planning study was conducted to select the optimal process and utility configuration which would result in economic benefits to Ghana.« less
Polyphosphazenes - New polymers with inorganic backbone atoms
NASA Technical Reports Server (NTRS)
Allcock, H. R.
1976-01-01
Unique and useful properties of the class of nonhydrocarbon, nonhalocarbon, nonsilicone polymers known as polyphosphazenes are discussed at length. These polymers, with molecular weights to 4 million (degree of polymerization 15,000), can be fabricated as tubes, fibers, woven fabrics, flexible films, or plates, and many variants are stable to attack by water, bases, aqueous acids, jet fuels, oils, hydraulic fluids, gasoline, or other hydrocarbons. Rubbery polymers with these properties can be fashioned into flexible hose, fuel hose, gaskets, or O-rings. Since they do not provoke clotting reactions in blood, and reveal no carcinogenic effects to date, they are considered for internal prosthetic applications (replacement bone, temporary skin, heart valves), as biodegradable suturing material, as carriers for slow release of drugs, and as carriers for chemotherapeutic agents against cancers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.71 Prohibitions. A used oil fuel marketer may initiate a shipment of off-specification used oil only to a used oil burner who: (a...
Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.
To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, andmore » the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.« less
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
Combustion performance evaluation of air staging of palm oil blends.
Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif
2012-02-21
The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.
46 CFR 56.50-90 - Sounding devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fuel-oil tank may terminate in any space where the risk of ignition of spillage from the pipe might... following requirements are met: (1) In addition to the sounding pipe, the fuel-oil tank has an oil-level... of oil-level gauges with flat glasses and self-closing valves between the gauges and fuel tanks is...
Detection of unburned fuel as contaminant in engine oil by a gas microsensor array
NASA Astrophysics Data System (ADS)
Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.
2007-05-01
We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).
Concentration measurements of biodiesel in engine oil and in diesel fuel
NASA Astrophysics Data System (ADS)
Mäder, A.; Eskiner, M.; Burger, C.; Ruck, W.; Rossner, M.; Krahl, J.
2012-05-01
This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.
31 CFR 561.319 - Petroleum products.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum gases, pentanes plus, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet fuel, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, special naphthas...
31 CFR 561.319 - Petroleum products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum gases, pentanes plus, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet fuel, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, special naphthas...
31 CFR 561.319 - Petroleum products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum gases, pentanes plus, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet fuel, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, special naphthas...
High liquid fuel yielding biofuel processes and a roadmap for the future transportation
NASA Astrophysics Data System (ADS)
Singh, Navneet R.
In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to liquid fuel, rather than growing biomass. Furthermore, based on the Sun-to-Wheels recovery for different transportation pathways, synergistic and complementary use of electricity, hydrogen and biomass, all derived from solar energy, is presented in an energy efficient roadmap to successfully propel the entire future transportation sector.
Techno-economic and resource analysis of hydroprocessed renewable jet fuel.
Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng
2017-01-01
Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.
NASA Astrophysics Data System (ADS)
Rekos, N. F., Jr.; Parsons, E. L., Jr.
1989-09-01
For the past decade, the Department of Energy (DOE) has sponsored projects to develop diesel and gas turbine engines capable of operating on low-cost, coal-based fuels. Much of the current work addresses the use of coal-water fuel (CWF) in diesel and turbines, although there is some work with dry coal feed and other coal fuels. Both the diesel and gas turbine portions of the program include proof-of-concept and support projects. Specific highlights of the program include: engine tests and economic analyses have shown that CWF can replace 70 percent of the diesel oil used in the duty cycle of a typical main-line locomotive; A. D. Little and Cooper-Bessemer completed a system and economic study of coal-fueled diesel engines for modular power and industrial cogeneration markets. The coal-fueled diesel was found to be competitive at fuel oil prices of $5.50 per million British thermal units (MBtu); Over 200 hours of testing have been completed using CWF in full-scale, single-cylinder diesel engines. Combustion efficiencies have exceeded 99 percent; Both CWF and dry coal fuel forms can be burned in short residence time in-line combustors and in off-base combustors with a combustion efficiency of over 99 percent; Rich/lean combustion systems employed by the three major DOE contractors have demonstrated low NO(sub x) emissions levels; Contractors have also achieved promising results for controlling sulfur oxide (SO(sub x)) emissions using calcium-based sorbents; Slagging combustors have achieved between 65 and 95 percent slag capture, which will limit particulate loading on pre-turbine cleanup devices. For many of the gas turbine and diesel applications emission standards do not exist. Our goal is to develop coal-fueled diesels and gas turbines that not only meet all applicable emission standards that do exist, but also are capable of meeting possible future standards.
Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz
2011-12-15
The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.
40 CFR 49.130 - Rule for limiting sulfur in fuels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...
40 CFR 49.130 - Rule for limiting sulfur in fuels.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...
40 CFR 49.130 - Rule for limiting sulfur in fuels.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...
Method for cold stable biojet fuel
Seames, Wayne S.; Aulich, Ted
2015-12-08
Plant or animal oils are processed to produce a fuel that operates at very cold temperatures and is suitable as an aviation turbine fuel, a diesel fuel, a fuel blendstock, or any fuel having a low cloud point, pour point or freeze point. The process is based on the cracking of plant or animal oils or their associated esters, known as biodiesel, to generate lighter chemical compounds that have substantially lower cloud, pour, and/or freeze points than the original oil or biodiesel. Cracked oil is processed using separation steps together with analysis to collect fractions with desired low temperature properties by removing undesirable compounds that do not possess the desired temperature properties.
Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.
Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne
2016-02-01
Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.
Biodiesel Production using Heterogeneous Catalyst in CSTR: Sensitivity Analysis and Optimization
NASA Astrophysics Data System (ADS)
Keong, L. S.; Patle, D. S.; Shukor, S. R.; Ahmad, Z.
2016-03-01
Biodiesel as a renewable fuel has emerged as a potential replacement for petroleum-based diesels. Heterogeneous catalyst has become the focus of researches in biodiesel production with the intention to overcome problems associated with homogeneous catalyzed processes. The simulation of heterogeneous catalyzed biodiesel production has not been thoroughly studied. Hence, a simulation of carbon-based solid acid catalyzed biodiesel production from waste oil with high FFA content (50 weight%) was developed in the present work to study the feasibility and potential of the simulated process. The simulated process produces biodiesel through simultaneous transesterification and esterification with the consideration of reaction kinetics. The developed simulation is feasible and capable to produce 2.81kmol/hr of FAME meeting the international standard (EN 14214). Yields of 68.61% and 97.19% are achieved for transesterification and esterification respectively. Sensitivity analyses of FFA composition in waste oil, methanol to oil ratio, reactor pressure and temperature towards FAME yield from both reactions were carried out. Optimization of reactor temperature was done to maximize FAME products.
Fuel system for diesel engine with multi-stage heated
NASA Astrophysics Data System (ADS)
Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.
2017-09-01
The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.
10 CFR 490.8 - Replacement fuel production goal.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...
10 CFR 490.8 - Replacement fuel production goal.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...
10 CFR 490.8 - Replacement fuel production goal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...
10 CFR 490.8 - Replacement fuel production goal.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...
10 CFR 490.8 - Replacement fuel production goal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Replacement fuel production goal. 490.8 Section 490.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General... sufficient to replace, on an energy equivalent basis, at least 30 percent of motor fuel consumption in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...
Code of Federal Regulations, 2013 CFR
2013-07-01
... annual covercrops Fermentation using natural gas, biomass, or biogas for process energy 6 F Biodiesel...-Esterification Hydrotreating Excluding processes that co-process renewable biomass and petroleum 4 G Biodiesel... Biodiesel, renewable diesel, jet fuel and heating oil Soy bean oil; Oil from annual covercrops; Algal oil...
Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel
to the tire specifications provided by the manufacturer. Recommended Motor Oil Using the manufacturer's recommended grade of motor oil in an engine can improve fuel economy by 1%-2%. Check your owner's manual for the manufacturer's recommended grade of motor oil. Also, you may select motor oil that
Alternative Fuels Data Center: Cooking Oil Powers Biodiesel Vehicles in
Rhode Island Cooking Oil Powers Biodiesel Vehicles in Rhode Island to someone by E-mail Share Alternative Fuels Data Center: Cooking Oil Powers Biodiesel Vehicles in Rhode Island on Facebook Tweet about Alternative Fuels Data Center: Cooking Oil Powers Biodiesel Vehicles in Rhode Island on Twitter Bookmark
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
1990 Fuel oil utilization workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, B.L.; Lange, H.B.; Miller, M.N.
1992-01-01
Following a 1983 EPRI-sponsored workshop on utility boiler problems (EPRI report AP-3753), the Institute has responded to the need for better information on fuel utilization by sponsoring annual utility-focused workshops. This workshop is the sixth in a series of annual events designed to address this need. The objective was to provide utility personnel with an opportunity to exchange information on residual oil use in fossil steam plants. Participants at the 1990 workshop, held in Arlington, Virginia, October 31-November 1, 1990, included 37 representatives from 19 electric utilities, including representatives from Mexico, Canada, and Spain, as well as the Institute demore » Investigaciones Electricas in Mexico. The workshop comprised formal presentations followed by question-and-answer sessions and three 2-hour discussion group sessions. Topics included a water/oil emulsion test summary, a NO{sub x} reduction program, particulate and unburned carbon emissions reductions from oil-fired boilers using combustion promoters, a utility perspective on oil spills, and size distribution and opacity of particulate matter emissions from combustion of residual fuel oils. In addition, participants discussed the development of a coke formation index, instability and compatibility of residual fuel oils, the clean combustion of heavy liquid fuels, toxic air emissions from the combustion of residual fuel oils, H{sub 2}S release from residual fuel oils, and increased reliability of superheater and reheater tubes and headers by optimization of steam-side and gas-side temperatures.« less
Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels
NASA Astrophysics Data System (ADS)
Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.
2018-01-01
The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.
Effects of chronic ingestion of No. 2 fuel oil on mallard ducklings
Szaro, Robert C.; Hensler, G.L.; Heinz, G.H.
1981-01-01
No. 2 fuel oil was fed to mallard (Anas platyrhynchos) ducklings in concentrations of 0.5 and 5.0% of the diet from hatching to 18 wk of age to assess the effects of chronic oil ingestion during early development. Five growth parameters (body weight, wing length, ninth primary length, tarsal length, and bill length) were depressed in birds receiving a diet containing 5% fuel oil. There was no oil-related mortality. The 5% fuel oil diet impaired avoidance behavior of 9-d-old mallard ducklings compared with controls or ducklings fed 0.5% oil. Open-field activity was greatly increased in 16-wk-old ducklings fed 5.0% oil. Liver hypertrophy and splenic atrophy were gross evidences of pathological effects in birds on the 5.0% oil diet. More subtle effects included biochemical lesions that resulted in the elevation of plasma alanine aminotransferase and ornithine carbamoyltransferase activity.
Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L
2016-09-15
As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drop-in Jet and Diesel Fuels from Renewable Oils
2011-05-11
Feed Stock Availability • Commercialization Approach 3 Current Alternate Fuel Technologies • Fischer-Tropsch (FT) and Syngas Fuels • First used in...FL • CH Crude oil production • > 24-hour continuous operation • Steady-state performance • 90-93% FA conversion • 5+ gal/hr • Camelina oil feed ...byproduct recovery/value • Demonstrate water management • Optimization hydrotreating • Evaluate additional feed stocks • Algal oil, Camelina oil, other
Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger
2017-03-01
In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of temperature on porosity of iron ore sinter with biochar derived from EFB
NASA Astrophysics Data System (ADS)
Purwanto, H.; Rozhan, A. N.; Zakiyuddin, A.; Mohamad, A. S.
2018-01-01
In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LITZKE,W.
2004-08-01
Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantagesmore » of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.« less
Can industry`s `fourth` fossil fuel establish presence in US?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armor, A.F.; Dene, C.E.
1996-09-01
After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion nowmore » fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.« less
Alternative Fuels (Briefing Charts)
2009-06-19
Fuels Focus Various conversion processes Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm, etc...Products (Volume Anticipated / Required) World crude oil production reaches its peak Concerns about Global Warming dictates addressing worldwide carbon
Fuel Cells: Status and Technical/Economic Needs
NASA Technical Reports Server (NTRS)
Rambach, Glenn
1996-01-01
The need for fuel cell and alternative fuels has become increasingly important in that the U.S. spends 1 billion dollars per week to import oil, and is expected to import 80-100 billion per year in oil by the year 2010. These imports account for half of our oil supply. If 20% of the U.S. vehicle fleet were powered by fuel cells there would be: an offset 1.1 million barrels of oil per day; and a reduction of 2 million tons per year of regulated air pollutants. Fueling fuel cells with hydrogen from reformed natural gas results in more than 90% reduction in regulated emissions, and a 70% reduction in CO2, a greenhouse gas. And fueling fuel cells with hydrogen from renewables (wind, solar geothermal, hydro) results in total elimination of all emissions. When fuel cells become commercialized: they will improve America's economic competitiveness; and the regions where they are produced will benefit economically.
Increased Automobile Fuel Efficiency and Synthetic Fuels: Alternatives for Reducing Oil Imports
DOT National Transportation Integrated Search
1982-09-01
This report assesses and compares increased automobile fuel efficiency and synthetic fuels production with respect to their potential to reduce conventional oil consumption, and their costs and impacts. Conservation and fuel switching as a means of r...
Utilization of waste cooking oil as an alternative fuel for Turkey.
Arslan, Ridvan; Ulusoy, Yahya
2017-04-03
This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.
Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels
2016-01-28
49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A
Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk
2015-01-01
Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits. PMID:26761834
Effect of Replacing Beef Fat with Poppy Seed Oil on Quality of Turkish Sucuk.
Gök, Vel
2015-01-01
Sucuk is the most popular dry-fermented meat product. Sucuk has a relatively high fat. Poppy seed oil as animal fat replacer was used in Turkish sucuk and effects of its use on sucuk quality were investigated. There was a significant (p<0.5) treatment × ripening time interaction for moisture, pH (p<0.05) and 2-thiobarbituric acid reactive substances (TBARS) values (p<0.01). Increasing poppy seed oil level decreased (p<0.05) TBARS values. Addition of poppy seed oil to the sucuks had a significant effect (p<0.01) on hardness, cohesiveness, gumminess, chewiness and springiness values. Cholesterol content of sucuks decreased (p<0.05) with poppy seed oil addition. Using pre-emulsified poppy seed oil as partial fat replacer in Turkish sucuk decreased cholesterol and saturated fatty acid content, but increased polyunsaturated fatty acids. Poppy seed oil as partial animal fat replacer in Turkish sucuk may have significant health benefits.
Electrolytes for Hydrocarbon Air Fuel Cells.
1981-01-01
finding an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially...and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially available materials received prime consideration. However, ECO’s...was to obtain an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. This
Fried, Brian J.
2011-01-01
Objectives. We examined the effect of worldwide oil price fluctuations on household fuel use and child respiratory health in Guatemala. Methods. We regressed measures of household fuel use and child respiratory health on the average worldwide oil price and a rich set of covariates. We leveraged variation in oil prices over the 6-month period of the survey to identify associations between fuel prices, fuel choice, and child respiratory outcomes. Results. A $1 (3.4% point) increase in worldwide fuel prices was associated with a 2.8% point decrease in liquid propane gasoline use (P < .05), a 0.75% point increase in wood use (P < .05), and a 1.5% point increase in the likelihood of the child reporting a respiratory symptom (P < .1). The association between oil prices and the fuel choice indicators was largest for households in the middle of the income distribution. Conclusions. Fluctuations in worldwide fuel prices affected household fuel use and, consequently, child health. Policies to help households tide over fuel price shocks or reduce pollution from biomass sources would confer positive health benefits. Such policies would be most effective if they targeted both poor and middle-income households. PMID:21778480
THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION
The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...
77 FR 48177 - Fuel Oil Systems for Emergency Power Supplies
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0159] Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; extension of comment period. SUMMARY: On... Regulatory Guide, DG- 1282, ``Fuel Oil Systems for Emergency Power Supplies,'' in the Federal Register for a...
Biomass in the manufacture of industrial products—the use of proteins and amino acids
Peter, Francisc; Sanders, Johan
2007-01-01
The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO2 emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals: the replacement of fossil resources with CO2 neutral biomass. Allied with this, the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion to either materials or (functional) chemicals with the aid of co-reagents such as ammonia and various process steps to introduce functionalities such as -NH2 into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this to bypass the use, and preparation of, co-reagents as well as eliminating various process steps by utilizing suitable biomass-based precursors for the production of chemicals. It is the aim of this mini-review to describe the scope of the possibilities to generate current functionalized chemical materials using amino acids from biomass instead of fossil resources, thereby taking advantage of the biomass structure in a more efficient way than solely utilizing biomass for the production of fuels or electricity. PMID:17387469
Issues of Commonality. Volume II. Issue Analysis.
1980-12-01
lubricating oil, and residual oil. 68 ° B Diesel fuel and kerosene make up what are known as the middle distillates. Jet fuels are blends from this...group of distillates which include some gasoline and some heavier oils. The range of hydrocarbons selected for this blending determines the "cut" of...the fuel. Wide-cut fuels are blended fram a wide range of hydrocarbons; narrow-cut fuels include only a small range of hydrocarbons from the
Techno-economic and resource analysis of hydroprocessed renewable jet fuel
Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; ...
2017-11-09
Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.« less
Techno-economic and resource analysis of hydroprocessed renewable jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Ling; Milbrandt, Anelia; Zhang, Yanan
Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.« less
Oil and related toxicant effects on mallard immune defenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocke, T.E.; Yuill, T.M.; Hinsdill, R.D.
A crude oil, a petroleum distillate, and chemically dispersed oil were tested for their effects on resistance to bacterial infection and the immune response in waterfowl. Sublethal oral doses for mallards were determined for South Louisiana crude oil, Bunker C fuel oil a dispersant-Corexit 9527, and oil/Corexit combinations by gizzard intubation. Resistance to bacterial challange (Pasteurella multocida) was significantly lowered in mallards receiving 2.5 or 4.0 ml/kg of Bunker C fuel oil, 4.0 ml/kg of South Louisiana crude oil, and 4.0 ml/kg of a 50:1 Bunker C fuel oil/Corexit mixture daily for 28 days. Ingestion of oil or oil/Corexit mixturesmore » had no effect on mallard antibody-producing capability as measured by the direct spleen plaque-forming assay.« less
NASA Astrophysics Data System (ADS)
Chan, Ngo Yeung
This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste stream from becoming reactive or even explosive. High energy consumption is another drawback in the UAOD process. A typical 10 minutes ultrasonication applied in the UAOD process to achieve 95% desulfurization for 20g of diesel requires 450 kJ of energy, which is equivalent to approximately 50% of the energy that can be provided by the treated diesel. This great expenditure of energy is impractical for industries to adopt. In this study, modifications of the UAOD process, including the application of superoxide and selection of catalysts, were applied to lower the oxidant dosage and to improve the applicability towards heavy-distillates such as residual oil. The results demonstrated that the new system required 80% less oxidant as compared to previous generations of UAOD process without the loss of desulfurization efficiency. The new system demonstrated its suitability towards desulfurizing commercial mid-distillates including jet fuels, marine gas oil and sour diesel. This process also demonstrated a new method to desulfurize residual oil with high desulfurization yields. The new process development has been supported by Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California. A feasibility study on UV assisted desulfurization by replacing ultrasound with UV irradiation was also conducted. The study demonstrated that the UV assisted desulfurization process consumes 90% less energy than the comparable process using ultrasonication. These process modifications demonstrated over 98% desulfurization efficiency on diesel oils and more than 75% on residual oils with significantly less oxidant and energy consumption. Also the feasibility to desulfurize commercial sour heavy oil was demonstrated. Based on the UAOD process and the commercialized modifications by Wan and Cheng, the feasible applications of superoxide and UV irradiation in the UAOD process could provide deep-desulfurization on various fuels with practical cost.
Comparison of Selected EIA-782 Data With Other Data Sources
2012-01-01
This article compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on-highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual volumes from other sources.
Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.
1997-10-01
For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lease during the period for which any royalty or net profit share is accrued or reserved to the United... royalty oil are turned back. Refined petroleum product means gasoline, kerosene, distillates (including Number 2 fuel oil), refined lubricating oils, or diesel fuel. Royalty oil means that amount of oil that...
Hydrogen in the U.S. energy picture
NASA Technical Reports Server (NTRS)
Kelley, J. H.; Manvi, R.
1979-01-01
A study of hydrogen in the U.S. program performed by the Hydrogen Energy Systems Technology (HEST) investigation is reported. Historic production and use of hydrogen, hydrogen use projections, hydrogen supply, economics of hydrogen production and supply, and future research and development needs are discussed. The study found current U.S. hydrogen utilization to be dominated by chemical and petroleum industries, and to represent 3% of total energy consumption. Hydrogen uses are projected to grow by a factor of 5 to 20 during the remainder of this century, and new applications in synthetic fuel from coal manufacture and directly as energy storage or fuel are expected to develop. The study concluded that development of new methods of supplying hydrogen replacing natural gas and petroleum feedstocks with alternate sources such as coal and heavy oils, and electrolysis techniques is imperative.
2014-12-22
the commercial viability of CTL fuels depends on coal being significantly cheaper than crude oil on an energy basis. Additionally, current...1990 1995 2000 2005 2010 2015 P ro d u ct S u p p li ed (M il li o n B a rr el s p er D a y ) Residual Fuel Oil Liquified Petroleum Gases Kerosene...Type Jet Fuel Finished Motor Gasoline Distillate Fuel Oil Aviation Gasoline 4 Independence and Security Act (EISA) of 2007 2 effectively prohibits
1983-08-12
NOTICIAS, 5 Jul 83) 29 Spreading Tax Evasion Noted, Fiscal Reform Seen Needed (Editorial; DIARIO DE NOTICIAS, 6 Jul 83...in parenthesis. Super gasoline, 84 escudos (74); regular gasoline, 81 escudos (70); kerosene for lamps, 46 escudos (40); kerosene, 47 escudos (41...diesel fuel, 46 escudos (40); fuel oil, one percent, 21 escudos (19); fuel oil, 3.5 percent, 19.50 escudos (17.50); fuel oil, one percent (EDP
Can We Outlive Our Way of Life?
NASA Astrophysics Data System (ADS)
Patzek, T. W.
2007-12-01
In this presentation I outline the rational, science-based arguments that question current wisdom of replacing fossil plant fuels (coal, oil and natural gas) with fresh plant agrofuels. This 1:1 replacement is absolutely impossible for more than a few years, because of the ways the planet Earth works and maintains life. After these few years, the denuded Earth will be a different planet, hostile to human life. I argue that with the current set of objective constraints a continuous stable solution to human life cannot exist in the near-future, unless we all rapidly implement much more limited ways of using the Earth's resources, while reducing the global populations of cars, trucks, livestock and, eventually, also humans. To avoid economic and ecological disasters, I recommend to decrease all automotive fuel use in the EU by up to 6 percent per year in 8 years, while switching to the increasingly rechargeable hybrid and all-electric cars, progressively driven by photovoltaic cells. The actual schedule of the rate of decrease should also depend on the exigencies of greenhouse gas abatement. The photovoltaic cell-battery-electric motor system is 100 to 600 times more efficient than major agrofuel systems.
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil (as... associated with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil (as... associated with the RIN in an application other than for use as transportation fuel, jet fuel, or heating oil... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
40 CFR 80.1460 - What acts are prohibited under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... application other than for use as transportation fuel, jet fuel, or heating oil (as defined in § 80.1401). (3... in an application other than for use as transportation fuel, jet fuel, or heating oil (as defined in... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1460 What acts are...
Spectrophotometric determination of vanadium and its application to gas-turbine fuel-oils.
Banerjee, S; Sinha, B P; Dutta, R K
1975-08-01
A very sensitive spectrophotometric method for the determination of vanadium in furnace oils is described. The intense indigo-blue colour developed by the reaction of vanadium with tannin and thioglycollic acid is measured at a wavelength of 600 nm at pH 4 and obeys Beer's law between 0.5 and 5 ppm vanadium. The method is applicable to gas-turbine fuel-oil and special navy fuel-oils. The common mineral constituents usually present in such oils do not interfere.
Report on the Procurement and Delivery of Fuel Oil.
ERIC Educational Resources Information Center
Richardson, William M.; Baacke, Clifford M.
Annual use of fuel oil for heating schools and other facilities of the Montgomery County (Maryland) Public Schools, Montgomery County Government, and Montgomery College exceeds four-million gallons. This report examines the processes by which purchases and distributions of fuel oil are made, makes recommendations based on the examination, and…
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
....m., manifold pressure, and time at critical pressure altitude and sea level pressure altitude for... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery... operation. (2) Fuel designation or specification. (3) Oil grade or specification. (4) Hydraulic fluid...
Cuphea oil as a potential biodiesel feedstock to improve fuel properties
USDA-ARS?s Scientific Manuscript database
One of the approaches to improving the fuel properties of biodiesel, a fuel derived from vegetable oils, animal fats, or other triacylglycerol-containing materials, is to use a feedstock with an inherently different fatty acid profile than most common feedstocks such as commodity vegetable oils. Cup...
Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan
2018-02-01
In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.
Evaluation of chosen fruit seeds oils as potential biofuel
NASA Astrophysics Data System (ADS)
Agbede, O. O.; Alade, A. O.; Adebayo, G. A.; Salam, K. K.; Bakare, T.
2012-04-01
Oils available in mango, tangerine and African star seeds were extracted and characterized to determine their fuel worthiness for biofuel production. Furthermore, the fuel properties of the three oils were within the range observed for some common oil seeds like rapeseed, soybean and sunflower, which are widely sourced for the production of biodiesel on an industrial scale. The low iodine values of the oil extend their applications as non-drying oil for lubrication purposes, however, the fuel properties exhibited by the oils enlist them as potential oil seeds for the production of biofuel and further research on the improvement of their properties will make them suitable biofuel of high economic values.
33 CFR 155.320 - Fuel oil and bulk lubricating oil discharge containment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel oil and bulk lubricating oil discharge containment. 155.320 Section 155.320 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR...
Biofuel plantations on forested lands: double jeopardy for biodiversity and climate.
Danielsen, Finn; Beukema, Hendrien; Burgess, Neil D; Parish, Faizal; Brühl, Carsten A; Donald, Paul F; Murdiyarso, Daniel; Phalan, Ben; Reijnders, Lucas; Struebig, Matthew; Fitzherbert, Emily B
2009-04-01
The growing demand for biofuels is promoting the expansion of a number of agricultural commodities, including oil palm (Elaeis guineensis). Oil-palm plantations cover over 13 million ha, primarily in Southeast Asia, where they have directly or indirectly replaced tropical rainforest. We explored the impact of the spread of oil-palm plantations on greenhouse gas emission and biodiversity. We assessed changes in carbon stocks with changing land use and compared this with the amount of fossil-fuel carbon emission avoided through its replacement by biofuel carbon. We estimated it would take between 75 and 93 years for the carbon emissions saved through use of biofuel to compensate for the carbon lost through forest conversion, depending on how the forest was cleared. If the original habitat was peatland, carbon balance would take more than 600 years. Conversely, planting oil palms on degraded grassland would lead to a net removal of carbon within 10 years. These estimates have associated uncertainty, but their magnitude and relative proportions seem credible. We carried out a meta-analysis of published faunal studies that compared forest with oil palm. We found that plantations supported species-poor communities containing few forest species. Because no published data on flora were available, we present results from our sampling of plants in oil palm and forest plots in Indonesia. Although the species richness of pteridophytes was higher in plantations, they held few forest species. Trees, lianas, epiphytic orchids, and indigenous palms were wholly absent from oil-palm plantations. The majority of individual plants and animals in oil-palm plantations belonged to a small number of generalist species of low conservation concern. As countries strive to meet obligations to reduce carbon emissions under one international agreement (Kyoto Protocol), they may not only fail to meet their obligations under another (Convention on Biological Diversity) but may actually hasten global climate change. Reducing deforestation is likely to represent a more effective climate-change mitigation strategy than converting forest for biofuel production, and it may help nations meet their international commitments to reduce biodiversity loss.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Segregation of fuel oil and ballast water on new oceangoing ships of 4,000 gross tons and above, other than oil tankers, and on new... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.440 Segregation of fuel oil and ballast water on...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Segregation of fuel oil and ballast water on new oceangoing ships of 4,000 gross tons and above, other than oil tankers, and on new... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.440 Segregation of fuel oil and ballast water on...
NASA Astrophysics Data System (ADS)
Ahmad, K. H.; Hossain, A. K.
2017-11-01
Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The results obtained from the second stage of investigation proved that butanol acted as a surfactant and thus addition of butanol helped to improve the properties of the biofuel-nanoparticle blends. In the third stage of the study, the spray characteristics of fossil diesel, biodiesel, biodiesel + 100ppm aluminium oxide nanoparticles, rapeseed oil, rapeseed oil + 100ppm aluminium oxide nanoparticles, 90% biodiesel & 10% butanol, 90% biodiesel & 10% butanol + 100ppm aluminium oxide nanoparticles, 90% rapeseed oil & 10% butanol and 90% rapeseed oil & 10% butanol + 100ppm aluminium oxide nanoparticles were investigated. It was found that amongst all fuels, blend containing 90% biodiesel + 10% butanol + 100ppm aluminium oxide nanoparticles gave better spray characteristics; for example, the liquid sheet angle was 7.14% lower and the spray cone angle was 7.87% higher than the corresponding fossil diesel values. The study concluded that the spray characteristics and properties of biofuels could be improved by blending with both aluminium oxide nanoparticles and butanol.
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.
Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; ...
2016-07-12
Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
Improving oil classification quality from oil spill fingerprint beyond six sigma approach.
Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin
2017-07-15
This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving F stat >F critical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., corporation, or other business entity. (e) Petroleum distillates means: (1) Jet fuels, including, but not limited to, all commercial and military specification jet fuels; and (2) Diesel fuels and fuel oils...) Wholesale means: (1) All purchases or sales of crude oil or jet fuel; and (2) All purchases or sales of...
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
46 CFR 58.01-25 - Means of stopping machinery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... forced-draft and induced-draft fans, fuel-oil transfer pumps, fuel-oil unit and service pumps, and similar fuel-oil pumps must be fitted with remote controls from a readily accessible position outside the space concerned so that the fans or pumps may be stopped in case of fire in the compartment in which...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... will no longer accept nominations for the transportation of jet fuel or distillates, violates the...., United Airlines, Inc., UPS Fuel Services, Inc. v. Enterprise TE Products Pipeline Company, LLC; Notice of... LLC; MFA Oil Company; Southwest Airline Co.; United Airlines, Inc.; and UPS Fuel Services, Inc...
Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety
and delivery systems for road vehicles. Oil-Change Intervals Cleaner-burning fuels have a direct impact on extending the useful life of the engine's lubricating oil. In conventionally fueled vehicles , engine oil degrades as a result of soot and other impurities from the combustion process that get
Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.
Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oilmore » produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less
Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mante, Ofei D.; Butcher, Thomas A.; Wei, George
The utilization of advanced biofuels in stationary applications, such as home heating, is considered as an early entry point for biomass-derived fuels into the distillate fuel market sector. Two renewable fuels produced by a biomass fluidized catalytic cracking (BFCC) process, followed by hydroprocessing and fractionation, were tested. The evaluation was performed on a pure (100%) distillate fraction, 50% blend of the distillate fraction with petroleum-based heating oil, and 20% blend of a heavier gas oil fraction. Combustion experiments were carried out in a transparent quartz chamber and a typical oil-fired residential boiler. The flame stability, size, and shape produced bymore » the fuels were examined. The flue gas was analyzed for O 2, CO, NO x, and smoke. The elastomer compatibility test was performed with nitrile slabs at 43 °C for 1 month. Fuel stability was examined at 80 °C for 1 week. The results from the combustion studies suggest that the distillate fuel blends could be used as alternative fuels to No. 2 heating oil, even up to 100% without any operational issues. The distillate fuels were found to be stable. and the nitrile slab volume swell (~10%) suggests that the fuel could be compatible to legacy elastomers.« less
Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil
Mante, Ofei D.; Butcher, Thomas A.; Wei, George; ...
2015-09-18
The utilization of advanced biofuels in stationary applications, such as home heating, is considered as an early entry point for biomass-derived fuels into the distillate fuel market sector. Two renewable fuels produced by a biomass fluidized catalytic cracking (BFCC) process, followed by hydroprocessing and fractionation, were tested. The evaluation was performed on a pure (100%) distillate fraction, 50% blend of the distillate fraction with petroleum-based heating oil, and 20% blend of a heavier gas oil fraction. Combustion experiments were carried out in a transparent quartz chamber and a typical oil-fired residential boiler. The flame stability, size, and shape produced bymore » the fuels were examined. The flue gas was analyzed for O 2, CO, NO x, and smoke. The elastomer compatibility test was performed with nitrile slabs at 43 °C for 1 month. Fuel stability was examined at 80 °C for 1 week. The results from the combustion studies suggest that the distillate fuel blends could be used as alternative fuels to No. 2 heating oil, even up to 100% without any operational issues. The distillate fuels were found to be stable. and the nitrile slab volume swell (~10%) suggests that the fuel could be compatible to legacy elastomers.« less
Oil and the Future of Marine Corps Aviation
2007-01-01
World Oil Consumption by Sector 2003-2030 21 2 World Oil Consumption by Region and Country Group 2003-2030 21 3 Hubbert’s Original 1956...is increasing. This theory will be examined in more detail below. Unconventional fuels created from coal , tar sands, and oil shale are a potential...produce liquid hydrocarbon fuel from coal . The so called Fischer-Tropsch (FT) process supplied a substantial amount of Germany’s fuels during World War II
NASA Astrophysics Data System (ADS)
Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.
2017-06-01
In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.
Fuel oil and kerosene sales 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.
Experimental investigation on fuel properties of biodiesel prepared from cottonseed oil
NASA Astrophysics Data System (ADS)
Payl, Ashish Naha; Mashud, Mohammad
2017-06-01
In recent time's world's energy demands are satisfied by coal, natural gas as well as petroleum though the prices of these are escalating. If this continues, global recession is unavoidable and diminution of world reserve accelerates undoubtedly. Recently, Biodiesel is found to be more sustainable, non-toxic and energy efficient alternative which is also biodegradable. The use of biofuels in compression ignition engines is now a contemplation attention in place of petrochemicals. In view of this, cottonseed oil is quite a favorable candidate as an alternative fuel. The present study covers the various aspects of biodiesels fuel prepared from cottonseed oil. In this work Biodiesel was prepared from cottonseed oil through transesterification process with methanol, using sodium hydroxide as catalyst. The fuel properties of cottonseed oil methyl esters, kinematic viscosity, flash point, density, calorific value, boiling point etc. were evaluated and discussed in the light of Conventional Diesel Fuel. The properties of biodiesel produced from cotton seed oil are quite close to that of diesel except from flash point. And so the methyl esters of cottonseed oil can be used in existing diesel engines without any modifications.
Economics of selected energy applications of peat in Panama and Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, G.R.; Ramirez E., O.; Ramirez, A.
Studies were performed to determine the economic competitiveness of peat in Costa Rica and Panama. The cases examined were (1) electrical production in Panama, and (2) industrial boilers and cement plants in Costa Rica. Based on estimates of peat mining costs and the end-use costs we calculated for each application, the price of coal and oil at which the levelized life cycle cost of energy using peat was the same as that when coal or oil was used. We found that a peat-fueled power plant in Panama would be economic if the price of fuel oil was above $0.10 permore » liter and the cost of coal was above $40.00 per metric ton delivered. In Costa Rica, peat was competitive with fuel oil for large boilers (34,000 kg of steam per hour) when the cost of oil was above $0.10 per liter. For smaller boilers (5,000 kg of steam per hour) peat was cheaper than fuel oil when oil was above $0.08 per liter. Peat would be competitive in a cement plant when fuel oil prices were above $0.075 per liter. 5 figs.« less
Studies on exhaust emissions of mahua oil operated compression ignition engine.
Kapilan, N; Reddy, R P
2009-07-01
The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.
Future sustainability forecasting by exchange markets: basic theory and an application.
Malyshkina, Nataliya; Niemeier, Deb
2010-12-01
Setting sustainability targets and evaluating systems progress are of great importance nowadays due to threats to the human society, to economic development and to ecosystems, posed by unsustainable human activities. This research establishes a probabilistic theoretical approach based on market expectations reflected in prices of publicly traded securities to estimate the time horizon until the appearance of new technologies related to replacement of nonrenewable resources, for example, crude oil and oil products. To assess time T when technological innovations are likely to appear, we apply advanced pricing equations, based on a stochastic discount factor to those traded securities whose future cash flows critically depend on appearance of such innovations. In a simple approximation of the proposed approach applied to replacement of crude oil and oil products, we obtain T ≈ (P(0)(oil)/C(0))·ln (Δ·P(0)(oil)/P(0)(alt)), where P(0)(oil) and P(0)(alt) are the current aggregate market capitalizations of oil and alternative-energy companies, C(0) is the annual aggregate dividends that oil companies pay to their shareholders at the present, and Δ is the fraction of the oil (oil products) replaced at time T. This formula gives T ≈ 131 years for replacement of gasoline and diesel. The proposed market-expectations approach may allow policymakers to effectively develop policies and plan for long-term changes.
Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review
NASA Astrophysics Data System (ADS)
Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar
2017-05-01
The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.
40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...
40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...
46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...
32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...
32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...
32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...
32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...
Diesel fuel oil for increasing mountain pine beetle mortality in felled logs
S. A. Mata; J. M. Schmid; D. A. Leatherman
2002-01-01
Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....
41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...
41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...
41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...
41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...
41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Procurement of gasoline... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... capability to procure locally. Item Minimum annual requirement (gallons) Gasoline 10,000 Burner fuel oil 10...
46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...
46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...
46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40 Section 167.15-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... Consumption A. Demand for Biomass-Based Diesel B. Availability of Feedstocks To Produce 1.28 Billion Gallons of Biodiesel 1. Grease and Rendered Fats 2. Corn Oil 3. Soybean Oil 4. Effects on Food Prices 5. Other Bio-Oils C. Production Capacity D. Consumption Capacity E. Biomass-Based Diesel Distribution...
Optimized Co-Processing of Algae Bio-Crude through a Petroleum Refinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saydah, Ben; Behnke, Craig
2014-03-14
A middle distillate algal oil blend and red diesel algal oil blend from Sapphire Energy, Inc. were hydrotreated and distilled. The middle distillate feedstock blend was 8.0 wt.% biocrude and 92.0 wt.% middle distillate. The red diesel feedstock blend was 12.6 wt.% biocrude and 87.4 wt.% red diesel. During steady state, 151.4 kilograms of hydrotreated middle distillate/algal oil blend product was collected. During steady state, 312.6 kilograms of red diesel/algal oil blend hydrotreated product was collected. From the liquid product of the hydrotreated middle distillate/algal oil blend, 9.75 wt.% of the jet fuel cut is estimated to be from themore » algal oil. From the liquid product of the hydrotreated red diesel/algal oil blend, 11.3 wt.% of the diesel cut is estimated to be from the algal oil. The jet fuel cut of the middle distillate algal oil blend hydrotreated liquid product was analyzed using ASTM D1655, Standard Specification for Aviation Turbine Fuels. The diesel cut of the red diesel algal oil blend hydrotreated liquid product was analyzed using ASTM D975, Standard Specification for Diesel Fuel Oils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurationsmore » and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.« less
Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M
2013-07-16
Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.
NASA Astrophysics Data System (ADS)
Hinkley, James T.; McNaughton, Robbie K.; Pye, John; Saw, Woei; Stechel, Ellen B.
2016-05-01
Reforming of methane is practiced on a vast scale globally for the production of syngas as a precursor for the production of many commodities, including hydrogen, ammonia and synthetic liquid fuels. Solar reforming can reduce the greenhouse gas intensity of syngas production by up to about 40% by using solar thermal energy to provide the endothermic heat of reaction, traditionally supplied by combustion of some of the feed. This has the potential to enable the production of solar derived synthetic fuels as drop in replacements for conventional fuels with significantly lower CO2 intensity than conventional gas to liquids (GTL) processes. However, the intermittent nature of the solar resource - both diurnal and seasonal - poses significant challenges for such a concept, which relies on synthesis processes that typically run continuously on very stable feed compositions. We find that the integration of solar syngas production to a GTL process is a non-trivial exercise, with the ability to turn down the capacity of the GTL synthesis section, and indeed to suspend operations for short periods without significant detriment to product quality or process operability, likely to be a key driver for the commercial implementation of solar liquid fuels. Projected costs for liquid fuel synthesis suggest that solar reforming and small scale gas to liquid synthesis can potentially compete with conventional oil derived transport fuels in the short to medium term.
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine..., residual fuel oil, solid fuel, stack, standard conditions, stationary source, uncombined water, used oil...
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine..., residual fuel oil, solid fuel, stack, standard conditions, stationary source, uncombined water, used oil...
Oil cooling system for a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.; Kast, H. B. (Inventor)
1977-01-01
A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure.
A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric D. Larson; Stefano Consonni; Ryan E. Katofsky
Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Programmore » of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be attractive under many circumstances. For nearly all of the cases examined in the study, the IRR lies between 14% and 18%, assuming a 25-year levelized world oil price of $50/bbl--the US Department of Energy's 2006 reference oil price projection. The IRRs would rise to as high as 35% if positive incremental environmental benefits associated with biorefinery products are monetized (e.g., if an excise tax credit for the liquid fuel is available comparable to the one that exists for ethanol in the United States today). Moreover, if future crude oil prices are higher ($78/bbl levelized price, the US Department of Energy's 2006 high oil price scenario projection, representing an extrapolation of mid-2006 price levels), the calculated IRR exceeds 45% in some cases when environmental attributes are also monetized. In addition to the economic benefits to kraft pulp/paper producers, biorefineries widely implemented at pulp mills in the U.S. would result in nationally-significant liquid fuel production levels, petroleum savings, greenhouse gas emissions reductions, and criteria-pollutant reductions. These are quantified in this study. A fully-developed pulpmill biorefinery industry could be double or more the size of the current corn-ethanol industry in the United States in terms of annual liquid fuel production. Forest biomass resources are sufficient in the United States to sustainably support such a scale of forest biorefining in addition to the projected growth in pulp and paper production.« less
Driving it home: choosing the right path for fueling North America's transportation future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas
2007-06-15
North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Tablemore » of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.« less
Brandt, Adam R
2008-10-01
Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.
Fuel oil and kerosene sales 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-03
This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12more » (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).« less
Fuel oil and kerosene sales 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-29
This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12more » (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).« less
Usability of food industry waste oils as fuel for diesel engines.
Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch
2008-02-01
Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.
Conversion of vegetable oils and animal fats into paraffinic cetane enhancers for diesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, A.; Feng, Y.; Hogan, E.
1995-11-01
The two principal methods of producing biodiesel fuels are (a) transesterification of vegetable oils and animal fats with a monohydric alcohol, and (b) direct hydrotreating of tree oils, vegetable oils and animal fats. The patented hydrotreating technology is based on the catalytic processing of biomass oils and fats with hydrogen, under elevated temperature and pressure conditions. The typical mix of hydrotreated products is as follows: 5-15% light distillate (naphta), 40-60% middle distillate (cetane), 5-15% heavy distillate and 5-10% burner gas. The naptha fraction may be used as a gasoline supplement. The middle distillate is designed for use as a cetanemore » booster for diesel fuels. Both heavy distillate and light hydrocarbon gases are usable as power boiler fuels. Typically, the cetane enhancer would be admixed with diesel fuel in the range of 5 to 30% by volume. This new diesel blend meets the essential quality characteristics of the basic diesel fuel, for direct use in diesel engines without any modifications. The basic hydrotreatment technology has been evaluated further in the laboratory on degummed soya oil, yellow grease and animal tallow. The preliminary findings suggest that the technology can provide efficient conversion of these materials into cetane enhancers for diesel fuels.« less
Energy Security Role of Biofuels in Evolving Liquid Fuel Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Maxwell; Uria-Martinez, Rocio; Leiby, Paul N.
We explore the role of biofuels in mitigating the negative impacts of oil supply shocks on fuel markets under a range of oil price trajectories and biofuel blending mandate levels. Using a partial equilibrium model of US biofuels production and petroleum fuels trade, we discuss the adjustments in light-duty vehicle fuel mix, fuel prices, and renewable identification number (RIN) prices following each shock as well as the distribution of shock costs across market participants. Ethanol is used as both a complement (blend component in E10) and a substitute (in E15 and E85 blends) to gasoline. Results show that, during oilmore » supply shocks, the role of ethanol as a substitute dominates and allows some mitigation of the shock. As US petroleum imports decrease with growing US oil production, the net economic welfare effect of sudden oil price changes and the energy security role of biofuels becomes less clear than it has been in the past. Although fuel consumers lose when oil price increases due to an external shock, domestic fuel producers gain. In some cases, depending on import share and supply and demand elasticities, we show that the gain to producers could more than offset consumer losses. However, in most cases evaluated here, sudden oil-price increases remain costly.« less
Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.; Williams, A.; Christensen, E.
Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC)more » and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.« less
33 CFR 155.710 - Qualifications of person in charge.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS... Crude-Oil Washing (COW), inert-gas, and vapor-control systems—to safely conduct a transfer of fuel oil... of fuel oil, the transfer of liquid cargo in bulk, or cargo-tank cleaning, as appropriate to the...
33 CFR 155.710 - Qualifications of person in charge.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS... Crude-Oil Washing (COW), inert-gas, and vapor-control systems—to safely conduct a transfer of fuel oil... of fuel oil, the transfer of liquid cargo in bulk, or cargo-tank cleaning, as appropriate to the...
ERIC Educational Resources Information Center
Crank, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…
40 CFR 49.125 - Rule for limiting the emissions of particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollution sources? (1) Particulate matter emissions from a combustion source stack (except for wood-fired..., British thermal unit (Btu), coal, combustion source, distillate fuel oil, emission, fuel, fuel oil, gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine...
Biodiesel exhaust: the need for a systematic approach to health effects research.
Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard
2015-10-01
Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure. © 2015 Asian Pacific Society of Respirology.
ADM. Tanks: from left to right: fuel oil tank, fuel ...
ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Development of a Fuel Lubricity Haze Test (FLHT) for Naval Applications
2009-03-16
Protection Agency FLHT Fuel Lubricity Haze Tester FOA Fuel Oil Additive FSII Fuel System Icing Inhibitor (additive) FT Fisher Tropsch FY...Light Cycle Oil LSDF Low Sulfur Diesel Fuel MDFI Middle Distillate Flow Improver (additive) MIL-DTL Military Detail MSC Military Sealift...a chemical test for diesel fuel lubricity that included a base extraction, acidification, a back extraction, and analysis with gas chromatography
Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.
Li, Xue; Mupondwa, Edmund
2014-05-15
This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman
2010-01-01
In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
Tripathy, P P
2015-03-01
Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.
Energy data report: prices and margins of No. 2 distillate fuel oil. Monthly report, January 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whatley, A.
1982-03-22
Data are presented on the average prices and gross margins for the refining, reselling, and retailing sectors of the No. 2 distillate fuel oil market. Data are tabulated on prices and sales volumes of No. 2 fuel oil and No. 2 diesel fuel for residential, industrial/commercial, institutional/utility, other ultimate consumer sales, and nonultimate consumer sales. A brief discussion of the sampling and estimation procedures used in this report appears in the appendix.
Energy data report: prices and margins of No. 2 distillate fuel oil. Monthly report, October 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whatley, A.
1982-12-20
Data are presented on the average prices and gross margins for the refining, reselling, and retailing sectors of the No. 2 distillate fuel oil market. Data are tabulated on prices and sales volumes of No. 2 fuel oil and No. 2 diesel fuel for residential, industrial/commercial, institutional/utility, other ultimate consumer sales, and nonultimate consumer sales. A brief discussion of the sampling and estimation procedures used in this report appears in the appendix.
Energy data report: prices and margins of No. 2 distillate fuel oil. Monthly report, November 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whatley, A.
1983-01-18
Data are presented on the average prices and gross margins for the refining, reselling, and retailing sectors of the No. 2 distillate fuel oil market. Data are tabulated on prices and sales volumes of No. 2 fuel oil and No. 2 diesel fuel for residential, industrial/commercial, institutional/utility, other ultimate consumer sales, and nonultimate consumer sales. A brief discussion of the sampling and estimation procedures used in this report appears in the appendix.
Energy data report: prices and margins of No. 2 distillate fuel oil. Monthly report, December 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whatley, A.
1982-02-22
Data are presented on the average prices and gross margins for the refining, reselling, and retailing sectors of the No. 2 distillate fuel oil market. Data are tabulated on prices and sales volumes of No. 2 fuel oil and No. 2 diesel fuel for residential, industrial/commercial, institutional/utility, other ultimate consumer sales, and nonultimate consumer sales. A brief discussion of the sampling and estimation procedures used in this report appears in the appendix.
Production of Renewable Diesel Fuel
DOT National Transportation Integrated Search
2012-06-01
Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...
Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil
NASA Astrophysics Data System (ADS)
Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.
2017-03-01
Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.
NASA Astrophysics Data System (ADS)
Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin
2012-09-01
Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.
Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS
2013-04-10
ISS035-E-017699 (10 April 2013) --- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.
Cassidy conducts MDCA Fuel Reservoir Remove and Replace OPS
2013-04-10
ISS035-E-017712 (10 April 2013)?-- This is one of several photos documenting the Multi-user Droplet Combustion Apparatus (MDCA) Fuel Reservoir replacement in the U.S. lab Destiny. Here, Expedition 35 Flight Engineer Chris Cassidy removes and replaces one of the Fuel Reservoirs with the MDCA Chamber Insert Assembly (CIA) pulled partially out of the Combustion Chamber. The MDCA Fuel Reservoirs contain the liquid fuel used during droplet combustion experiments. This reservoir change-out was in support of the FLame EXtinguishment (FLEX)-2 experiment, scheduled to be executed by ground controllers.
Energizing our Future: How Disinformation and Ignorance are Misdirecting Our Efforts
NASA Astrophysics Data System (ADS)
Wilson, John
2007-03-01
Most of the energy-source choices that are being considered or implemented for future use by governments and by a wide variety of would-be manufacturers are driven by assumptions that are often uninformed and sometimes intentionally misinformed. These dangerous assumptions relate to ``drivers'' that range from the causes (and proposed fixes) of Global Warming to the myth of ``Peak Oil'' to the dubious viability of Hydrogen as a vehicle fuel to the uncertain feasibility of replacing most of our conventional fossil energy supplies with fuels such as Ethanol derived from Renewable Resources. Regrettably, many of these misinformed assumptions and misplaced beliefs are being used as the basis for major decisions involving huge investments in technologies that simply cannot do the job, a potential catastrophe. There is no place for what we will call ``Faith-Based Science'' in major business decisions of this kind. This talk will examine some of the key beliefs that are driving our current energy decision-making process and will expose the uncomfortable facts that dictate that fossil fuels, like it or not, should and will remain our primary energy source for many years to come, at least until solar energy becomes economically viable. For example, it will be shown that biomass-based fuels can, at best, be only a minor contributor to meeting the world's future energy needs; that the use of nuclear power, whether or not we consider it environmentally attractive; will be severely limited by a shortfall in nuclear fuel supplies; and that hydrogen as a transportation fuel will at best be a niche player and perhaps not a player at all. As we re-activate, improve and implement the many ``clean'' fossil-fuel technologies that were developed 25 years ago, we must also focus intensely on developing the energy technologies that really can replace fossil fuels in the years following 2050 or so when their availability will really be in decline. It will be argued that the optimum choices then will clearly be a combination of the various forms of solar energy and, of course, wind energy.
Rodríguez-Carpena, J G; Morcuende, D; Estévez, M
2011-09-01
The present study was aimed to examine the impact of partial back-fat replacement (50%) by avocado (A), sunflower (S), and olive (O) oil on the chemical composition, oxidative stability, color, and texture of porcine burger patties (10% fat) subjected to oven cooking (170 °C/18 min) and chilling (+ 4 °C/15 d). The addition of vegetable oils caused a significant reduction of saturated fatty acids and a concomitant enrichment in unsaturated fatty acids. The incorporation of vegetable oils to porcine patties caused a significant reduction of TBARS formed as a result of cooking and the subsequent chilling. The usage of vegetable oils as back-fat replacers had no impact on the formation of protein carbonyls. Porcine patties with A- and O-patties displayed a more favorable ratio between volatiles contributing to rancidity and those contributing pleasant odor notes. Treated and control patties underwent similar discoloration during processing. The usage of vegetable oils and particularly, avocado and olive oils, as back-fat replacers, could be an interesting strategy to improve the nutritional and technological properties of porcine patties. The present study highlights the potential nutritional and technological benefits of replacing animal fat by vegetable oils in porcine patties subjected to cooking and chilling. The industrial application of vegetable oils in processed meat products would meet the current consumers' interest towards healthier food products. In addition, the usage of avocado oil would contribute to boost the avocado industry by providing an additional value to a by-product of great biological significance. © 2011 Institute of Food Technologists®
Effect of subsidies to fossil fuel companies on United States crude oil production
NASA Astrophysics Data System (ADS)
Erickson, Peter; Down, Adrian; Lazarus, Michael; Koplow, Doug
2017-11-01
Countries in the G20 have committed to phase out `inefficient' fossil fuel subsidies. However, there remains a limited understanding of how subsidy removal would affect fossil fuel investment returns and production, particularly for subsidies to producers. Here, we assess the impact of major federal and state subsidies on US crude oil producers. We find that, at recent oil prices of US50 per barrel, tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades. This oil, equivalent to 6 billion tonnes of CO2, could make up as much as 20% of US oil production through 2050 under a carbon budget aimed at limiting warming to 2 °C. Our findings show that removal of tax incentives and other fossil fuel support policies could both fulfil G20 commitments and yield climate benefits.
Román, Laura; Martínez, Mario M; Gómez, Manuel
2015-08-01
Extruded flour represents an economical and environmental friendly alternative as fat replacer. In this research, the potential use of an extruded flour-water paste as fat replacer in an oil-in-water emulsion was studied. The effect of flour-water ratio and level of oil replacement (30, 50 and 70%) on the microstructure, rheological properties and stability of mayonnaise-like emulsion was evaluated. Fat replacement by extruded flour gradually increased the number and reduced the size of oil droplets. All the emulsion samples showed a pseudoplastic behaviour. At low shear rates a Newtonian region characterised by Carreau model appeared (R 2 >0.99). In general, the limiting viscosity of the Newtonian region and the consistency index increased with the decreased water content of the paste and increased the level of oil substitution. A decrease in oil concentration led to a greater thixotropic behaviour. Oscillatory test revealed that predominance of the continuous or dispersed phase influenced viscoelastic behaviour. Reduction in oil content resulted in an increased freeze-thaw stability. Results suggested that if the flour-water ratio of the paste is controlled, extruded flour is appropriate for preparing reduced-fat oil-in-water emulsion with similar rheological properties to the full fat and greater freeze-thaw stability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of Calorific Value of Tibarau Cane Briquette
NASA Astrophysics Data System (ADS)
Nurdin, H.; Hasanuddin, H.; Darmawi, D.; Prasetya, F.
2018-04-01
The development of product diversification through tibarau cane briquettes as an effort in obtaining alternative fuels. Tibarau cane is one of the potential materials of renewable energy sources that can be processed into briquette. So as to reduce dependence on energy fuel oil, which for the middle to lower class is the main requirement. Efforts and innovations tibarau cane briquettes in producing fuel that has quality and performance can be measured with calorific value. Prior to development of this potential required the existence of test and evaluation stages according to the order of the flow of new material product development. Through process technology of briquette product making with compaction and optimization of composition content on tapioca adhesive and mesh particles suitable to get optimum calorific value. The results obtained in this research are the development of tibarau cane briquette model which is recommended as replacement fuel. Where the calorific value of tibarau cane briquette is 11.221,72 kJ / kg at composition percentage 80: 20 and its density is 0,565 gr/cm3. The comparison of mass tibarau with tapioca, particle size, pressure force (compaction), can affect the calorific value and density of tibarau cane briquette.
Production characterization and working characteristics in DICI engine of Pongamia biodiesel.
Srinivasa Rao, M; Anand, R B
2015-11-01
Renewable energy plays a predominant role in solving the current energy requirement problems and biodiesel is a promising alternative fuel to tide over the energy crisis and conserve fossil fuels. The present work investigates an eco-friendly substitute for the replacement of fossil fuels and the experiments are designed to determine the effects of a catalyst in the biodiesel production processes. Pongamia pinnata oil was utilized to produce the biodiesel by using catalysts namely KOH and NaOH and the properties of the fuel were found by using Carbon Hydrogen Nitrogen Sulfur (CHNS) elemental analysis, Fourier Transform Infrared (FTIR) Spectroscopy, Gas Chromatography & Mass Spectrometry (GC-MS), and Proton Nuclear Magnetic Resonance ((1)H NMR) Spectroscopy and the thermophysical properties were compared with those of neat diesel. In continuation, the working characteristics of the biodiesel and biodiesel-water emulsions were accomplished in a four stroke compression ignition engine and the results were compared to those of neat diesel. It was found that the exhaust emission characteristics like brake specific carbon monoxide (BSCO), brake specific hydrocarbons (BSHC) and smoke opacity were better for neat biodiesel (except brake specific nitric oxide BSNO) than those of neat diesel. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of No. 2 fuel oil on hatchability of marine and estuarine bird eggs
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D.H.; King, K.A.; Coon, N.C.
1979-01-01
Eggs of Louisiana herons, sandwich terns, and laughing gulls were oiled with either 0, 5, or 20 ..mu..1 of No. 2 fuel oil in the field and in the laboratory. After 5 days of natural incubation, field-oiled and control eggs were opened and embryonic mortality was determined. No. 2 fuel oil produced 61% mortality in Louisiana heron eggs, 56% in sandwich tern eggs, and 83% in laughing gull eggs. Hatching success of artificially incubated, oiled eggs appeared to be lower than in control eggs. However, stress during shipment to the laboratory and problems within the incubator probably contributed to reducedmore » hatchability in both groups.« less
NASA Astrophysics Data System (ADS)
Tambichik, M. A.; Mohamad, N.; Samad, A. A. A.; Bosro, M. Z. M.; Iman, M. A.
2018-04-01
Green Concrete (GC) is defined as a concrete that utilize a waste material for at least one of its component. The production of GC has been increasing due to the drawback of conventional concrete that create many environmental problems. In Malaysia, the amount of waste generates from agricultural and construction industries were increasing every year. Hence, one of the solutions to reduce the impact of conventional concrete and limited landfill spaces due to excessive waste is by utilizing it in concrete. This paper reviews the possible use of construction waste (Recycle Concrete Aggregate) and agricultural waste (Palm Oil Fuel Ash, Rice Husk Ash and Palm Oil Fibre) as partial replacement for the basic material in a concrete to produce an innovative Green Concrete. The optimum replacement level for each type of waste was also been review. Green Concrete also has the potential to reduce environmental pollution and solve the depletion of natural sources. The result from this review shows that the addition of agricultural waste or construction waste in concrete indicate positive and satisfactory strength when compared to normal concrete. Finally, a mass production of Green Concrete can fulfil the Construction Industry Transformation Plan (CITP) 2016-2020 made by CIDB that emphasizes on a construction system which is environmentally sustainable.
Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohl, G.H.
1995-12-31
The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuelmore » supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.« less
Bio-Oil Deployment in the Home Heating Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T. A.; Trojanowski, R.; Mante, O.
Distillate fuel oil is used in many stationary heating applications, predominantly in the Northeastern part of the United States. Total estimated non-transportation distillate use in 2014 was estimated to be 10.9 billion gallons. This study has focused on potentially displacing part of this petroleum use with biofuel derived from woody biomass. The fuel production route considered is pyrolysis which creates a liquid fuel high in oxygen, organic acids, and water. While this fuel can be used in stationary applications without significant further processing, to do so would require significant upgrades in current heating equipment. Alternatively this raw pyrolysis oil canmore » be upgraded through catalytic hydrogenation to produce a bio-oil with near-negligible oxygen, water, and acidity. The focus of this work has been exploration of such upgraded fuels. The quality of upgraded fuels is affected by process conditions and there is a cost /quality tradeoff.« less
Particles of spilled oil-absorbing carbon in contact with water
Muradov, Nazim [Melbourne, FL
2011-03-29
Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.
Potential Coverage of Alternative Fuel Industries Under EPACT Section 501
DOT National Transportation Integrated Search
1996-01-01
The Energy Policy Act (EPACT) has a goal of replacing ten percent of : transportation petroleum fuel with alternative fuels and replacement fuels by : the year 2000, and 30 percent by 2010. Sections 501 and 507 of EPACT encourage : and mandate use of...
Refinery Integration of By-Products from Coal-Derived Jet Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caroline Clifford; Andre Boehman; Chunshan Song
2008-03-31
The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using knownmore » refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.« less
2006-06-01
oils typically are derived from: • canola ( Brassica napus or B. rapa) • crambe (Crambe abysinica) • mustard ( Brassica juncea) • rapeseed... Brassica napus) • safflower (Carthamus tinctorus) • sunflower (Heliothus annus). The oils are easily derived by crushing the seed and extracting the oils
Production of a solid fuel using sewage sludge and spent cooking oil by immersion frying.
Wu, Zhonghua; Zhang, Jing; Li, Zhanyong; Xie, Jian; Mujumdar, Arun S
2012-12-01
Sewage sludge and spent cooking oil are two main waste sources of modern Chinese cities. In this paper, the immersion frying method using spent cooking oil as the heating medium was applied to dry and convert wet sewage sludge into a solid fuel. The drying and oil uptake curves were plotted to demonstrate the fry-drying characteristics of the sewage sludge. Parametric studies were carried out to identify the governing parameters in the frying drying operation. It was found that at frying oil temperatures of 140-160°C, the wet sewage sludge could be dried completely in 6-9 min and converted into a solid fuel with a high calorific value of 21.55-24.08 MJ/kg. The fuel structure, chemical components, pyrolysis and combustion characteristics were investigated and the experimental results showed the solid fuel had a porous internal structure and a low ignition temperature of 250°C due to presence of oil. The frying drying mechanism was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
The impact of oil burning on kraft recovery furnace SO sub 2 emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Someshwar, A.V.; Pinkerton, J.E.; Caron, A.L.
1991-04-01
Auxiliary fossil fuel, either natural gas or fuel oil, is burned in kraft recovery furnaces during furnace startups and shutdowns, furnace upsets, and periods of substantially reduced rates of black liquor firing. The efficiency of sulfur capture and retention during normal operation of a kraft recovery furnace is inherently high. Consequently, not all the SO{sub 2} from occasional burning of sulfur-containing fuel oil in the furnace would be expected to end up in the stack gases. However, the extent to which such SO{sub 2} is captured by the alkali fume generation processes has not been well documented. In this paper,more » the authors examines the impact that burning oil in kraft recovery furnaces has on the SO{sub 2} emissions. The work included analyses of long-term SO{sub 2} data from a continuous emission monitoring system (CEMS) obtained for four furnaces that burned medium sulfur fuel oil as auxiliary fuel. It also included tests conducted on four furnaces in which varying amounts of oil were co-fired with black liquor.« less
Installation Restoration Program Records Search for Davis-Monthan Air Force Base, Arizona.
1982-08-01
inspection labs, and corrosion -2- control shops. These industrial operations generate varying quantities of waste oils , fuels , *solvents, and cleaners. The...standard procedures for the disposition of the majority of the waste oils , fuels , solvents, and cleaners has been (1) fire department training...and corrosion control shops. These industrial operations generate varying quantities of waste oils , fuels , solvents, and cleaners. The total quantity
$stitle set definition sets G Power Generators /gen1*gen2/ F Fuels /oil,gas/ K Constants in Fuel better TABLE A(G,F,K) Coefficients in the fuel consumption equations 0 1 gen1.oil 1.4609 .18223 gen1.gas 1.5742 .19572 gen2.oil 0.8008 .24372 gen2.gas 0.7266 .27072; PARAMETER PMAX(G) Maximum power outputs of
[Use of flour from sunflower oil cake in the biosynthesis of antigungal antibiotics].
Sukharevich, V M; Shvetsova, N N; Prodan, S I; Malkov, M A
1977-04-01
The possibility of replacing soybean meal and corn-steep liquor by food wastes of the oilpress industry and the meal of the sunflower oil cake in particular is discussed as applied to the fermentation media for production of antifungal antibiotics, such as levorin, mycoheptin, amphotericin. The studies showed that replacement of soybean meal by sunflower oil cake meal with simultaneous increasing of the amount of carbohydrates in the medium increased the levorin levels by 60--70 per cent as compared to the media used at present. When soybean meal and corn-steep liquor were simultaneously replaced by sunflower oil cake meal in amounts of 3--4 per cent the levels of mycoheptin in the fermentation broth increased by 30--65 per cent respectively. Replacement of soybean meal and corn-steep liquor by 3 per cent of sunflow oil cake meal in the medium used presently increased the amphotericin levels by 27 percent as compared to the control. Therefore, sunflower oil cake meal is a substitute of full value for soybean meal and corn-steep liquor in the fermentation media for production of antifungal antibiotics.
Utrilla, M C; García Ruiz, A; Soriano, A
2014-08-01
A venison salchichon was made using varying proportions of olive oil to replace the traditional pork meat and to obtain a healthier product. Six types of salchichon were produced. The control type contained 75% lean venison and 25% pork meat; in the other types, 15%, 25%, 35%, 45% and 55% of the pork meat were replaced by olive oil introduced in the form of an organogel (olive oil emulsified with soy protein and water). All types were satisfactory in terms of physicochemical characteristics (pH, a(w), moisture loss) and instrumental colour throughout ripening, and displayed acceptable levels of lipolysis (acidity index) and lipid oxidation (TBARS). Higher proportions of olive oil prompted an increase in monounsaturated fatty acid content (mainly C18:1). All six types of salchichon were judged acceptable by consumers, the highest scores being given to those in which no more than 25% of the pork meat was replaced by olive oil. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations.
Borneo, Rafael; Aguirre, Alicia; León, Alberto E
2010-06-01
This study determined the overall acceptability, sensory characteristics, functional properties, and nutrient content of cakes made using chia (Salvia hispanica L) gel as a replacement for oil or eggs. Chia gel was used to replace 25%, 50%, and 75% of oil or eggs in a control cake formulation. Seventy-five untrained panelists participated in rating cakes on a seven-point hedonic scale. Analysis of variance conducted on the sensory characteristics and overall acceptability indicated a statistically significant effect when replacing oil or eggs for color, taste, texture, and overall acceptability (P<0.05). Post hoc analysis (using Fisher's least significant difference method) indicated that the 25% chia gel cakes were not significantly different from the control for color, taste, texture, and overall acceptability. The 50% oil substituted (with chia gel) cake, compared to control, had 36 fewer kilocalories and 4 g less fat per 100-g portion. Cake weight was not affected by chia gel in the formulation, although cake volume was lower as the percentage of substitution increased. Symmetry was generally not affected. This study demonstrates that chia gel can replace as much as 25% of oil or eggs in cakes while yielding a more nutritious product with acceptable sensory characteristics. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB
2017-06-01
Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).
Morais, J S; Bezerra, L R; Silva, A M A; Araújo, M J; Oliveira, R L; Edvan, R L; Torreão, J N C; Lanna, D P D
2017-01-01
This study evaluated the effects of replacing ground corn with buriti oil ( L.) on feed intake and digestibility and on the production, composition, fatty acid profile and sensory characteristics of goat milk. A double Latin square (4 × 4) was used; eight goats were distributed in a completely randomized design. The square comprised four periods and four buriti oil concentration (0.00; 1.50; 3.00 and 4.50% of total DM) replacing corn. Intakes of DM, CP, NDF, ADF, non-fibrous carboydrates (NFC) and TDN were not affected by the replacement of corn with oil in the diet. However, lipids intake was increased ( < 0.01) by 100% in the diet of goats with 4.50% oil inclusion, as total DM. DM and CP digestibility were similar between the buriti oil concentrations. However, lipid digestibility increased linearly ( = 0.01) and may have contributed to a quadratic reduction in NDF digestibility ( = 0.01) and a linear reduction of NFC ( = 0.04) with buriti oil content in the goat feed. Goat milk production, corrected production and chemical composition were not influenced by the concentration of buriti oil replacement; however, milk fat concentration ( = 0.04) and feed efficiency ( < 0.01) increased linearly with the amount of buriti oil in the diet. There was a linear reduction on hypercholesterolemic SFA such as C12:0 ( < 0.01) and C14:0 ( < 0.01) as well as the atherogenic index (AI; < 0.01) with buriti oil inclusion in goat's diet. In contrast, the fatty acids C18:0 ( < 0.01) and C18:1 9 ( < 0.01) increased linearly in the milk of goats that were fed with buriti oil. However, CLA ( < 0.01) varied quadratically; the maximum production of 0.62 g/100 g of fat was observed when using 1.50% buriti oil. The sensory characteristics of the milk were not changed ( > 0.05) by the replacement of corn with buriti oil in the goats' diet. It is recommended to replace corn with buriti oil in goat feed by up to 4.5% of total DM, resulting in improved feed efficiency and milk fat without affecting production; this recommendation satisfies the minimum requirements of the industry and preserves the organoleptic characteristics of the milk and its acceptability for human consumption. In addition, buriti oil replacing ground corn by up to 4.5% DM in the diet of lactating goats decrease medium-chain SFA which are hypercholesterolemic and increase the concentrations of the C18:19, CLA and DFA in goat milk fat, helping to protect against cardiovascular disease.
Experimental investigation of engine emissions with marine gas oil-oxygenate blends.
Nabi, Md Nurun; Hustad, Johan Einar
2010-07-15
This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. Copyright 2010 Elsevier B.V. All rights reserved.
Huth, Peter J; Fulgoni, Victor L; Larson, Brian T
2015-11-01
High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: -8.0%, -10.9%, -7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and overall CHD risk. © 2015 American Society for Nutrition.
Huth, Peter J; Fulgoni, Victor L; Larson, Brian T
2015-01-01
High–oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)6 risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n–6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n–6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: −8.0%, −10.9%, −7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: −5.7%, −9.2%, −7.3%, −11.7%, −12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n–6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n–6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and overall CHD risk. PMID:26567193
Ruiz, Pamela; Ortiz-Zarragoitia, Maren; Orbea, Amaia; Theron, Michael; Le Floch, Stéphane; Cajaraville, Miren P
2012-07-15
Several accidental spills in European coastal areas have resulted in the release of different toxic compounds into the marine environment, such as heavy fuel oil type no. 6 in the "Erika" and "Prestige" oil spills and the highly toxic styrene after the loss of the "Ievoli Sun". There is a clear need to develop tools that might allow assessing the biological impact of these accidental spills on aquatic organisms. The aim of the present study was to determine the short-term effects and recovery after exposure of juvenile fish (Scophthalmus maximus) to heavy fuel oil no. 6 and styrene by using a battery of molecular, cell and tissue level biomarkers. Turbots were exposed to styrene for 7 days and to the diluted soluble fraction of the oil (10%) for 14 days, and then allowed to recover in clean seawater for the same time periods. cyp1a1 transcript was overexpressed in turbots after 3 and 14 days of exposure to heavy fuel oil, whereas ahr transcription was not modulated after heavy fuel oil and styrene exposure. pparα transcription level was significantly up-regulated after 3 days of treatment with styrene. Liver activity of peroxisomal acyl-CoA oxidase (AOX) was significantly induced after 14 days of oil exposure, but it was not affected by styrene. Hepatocyte lysosomal membrane stability (LMS) was significantly reduced after exposure to both treatments, indicating that the tested compounds significantly impaired fish health. Both AOX and LMS values returned to control levels after the recovery period. No differences in gamete development were observed between fuel- or styrene- exposed fish and control fish, and vitellogenin plasma levels were low, suggesting no xenoestrogenic effects of fuel oil or styrene. While styrene did not cause any increase in the prevalence of liver histopathological alterations, prevalence of extensive cell vacuolization increased after exposure to heavy fuel oil for 14 days. In conclusion, the suite of selected biomarkers proved to be useful to determine the early impact of and recovery from exposure to tested compounds in turbot. Copyright © 2012. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... Pier 95, near the Benicia-Martinez Bridge, Benicia. The refinery is used to produce fuels and other petroleum products. Products include gasoline, diesel, jet fuel, propane, butane, fuel oil, residual oil...
Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auld, D.L.; Bettis, B.L.; Peterson, C.L.
1982-01-01
The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energymore » content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.« less
NASA Astrophysics Data System (ADS)
Senthil, R.; Silambarasan, R.; Pranesh, G.
2017-03-01
The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.
Godoy-Faúndez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camaño, Andrés; Sáez-Navarrete, César
2008-03-01
Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration>50,000 mg kg(-1)) and sawdust (fuel concentration>225,000 mg kg(-1)) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 degrees C), constant moisture content (MC, 50%) and continuous aeration (16 l min(-1)) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p<0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct nutrient balance in order to achieve a maximum overall hydrocarbon removal of fuel oil in the weathered and aged contaminated wastes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... also finalizes our regulatory determination that canola oil biodiesel meets the biomass-based diesel... biodiesel fuel to generate biomass-based diesel Renewable Identification Numbers (RINs), providing that the fuel meets other definitional criteria for renewable fuel (e.g., produced from renewable biomass as...
NASA Astrophysics Data System (ADS)
Rama Krishna Reddy, E.; Dhana Raju, V.
2018-03-01
This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.
Adelphi-Goddard emulsified fuel project. [using water/oil emulsions
NASA Technical Reports Server (NTRS)
1977-01-01
Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, J.W.
1978-02-28
A process for forming a fuel-oil from coal is disclosed. The coal is treated in a low temperature carbonization retort to give coke, coal-gas and tar-oil. The coke is converted to water-gas which is then synthesized in a Fischer-Tropsch synthesizer to form fuel-oil. The tar-oil is hydrogenated in a hydro-treater by hydrogen produced from the coal-gas. Hydrogen is produced from coal-gas either in a thermal cracking chamber or by reforming the methane content to hydrogen and passing the resultant hydrogen/carbon monoxide mixture through a water-gas shift reactor and a carbon dioxide scrubber.
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.
1994-01-01
Flame diverted and extinguished without explosives. Oil-and-gas-fire snubber consists of pipe with two exit branches and large selector valve, positioned over well, on path of escaping fuel. Flame moved to one side; then flow of fuel moved to other side, away from flame. Two versions of snubber have different uses. First used only to extinguish fire. Exit branch only long enough to keep fuel away to prevent reignition. Second needed if well not capped after fire at well extinguished and oil and gas remained present in problem quantities. Exit branch long enough to extend to oil-storage tank, and gas separated from oil and vented or burned at convenient location.
Combining micro-structures and micro-algae to increase lipid production for bio-fuel
NASA Astrophysics Data System (ADS)
Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert
2011-03-01
3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.
Polypropylene Oil as a Fuel for Ni-YSZ | YSZ | LSCF Solid Oxide Fuel Cell
NASA Astrophysics Data System (ADS)
Pratiwi, Andini W.; Rahmawati, Fitria; Rochman, Refada A.; Syahputra, Rahmat J. E.; Prameswari, Arum P.
2018-01-01
This research aims to convert polypropylene plastic to polypropylene oil through pyrolysis method and use the polypropylene oil as fuel for Solid Oxide Fuel Cell, SOFC, to produce electricity. The material for SOFC single cell are Ni-YSZ, YSZ, and LSCF as anode, electrolyte and cathode, respectively. YSZ is yttria-stabilized-zirconia. Meanwhile, LSCF is a commercial La0.6Sr0.4Co0.2Fe0.8O3. The Ni-YSZ is a composite of YSZ with nickel powder. LSCF and Ni-YSZ slurry coated both side of YSZ electrolyte pellet through screen printing method. The result shows that, the produced polypropylene oil consist of C8 to C27 hydrocarbon chain. Meanwhile, a single cell performance test at 673 K, 773 K and 873 K with polypropylene oil as fuel, found that the maximum power density is 1.729 μW. cm-2 at 673 K with open circuit voltage value of 9.378 mV.
Residential releases of number 2 fuel oil: a contributor to indoor air pollution.
Kaplan, M B; Brandt-Rauf, P; Axley, J W; Shen, T T; Sewell, G H
1993-01-01
OBJECTIVES. Analysis of data from the New York City Fire Department showed that residential fuel oil releases frequently occur in quantities ranging from 5 to 1000 gal, primarily from storage tank leaks and overfill. A risk assessment was conducted to determine whether Number 2 fuel oil basement spills pose a significant risk to human health. METHODS. Exposure was derived from a simulated field study spill of Number 2 fuel oil in a townhouse basement to develop emission rates for the indicator constituent xylene. Distribution of xylene throughout the townhouse was determined using a multizone contaminant dispersal model. RESULTS. Spills of 85 and 21 gal resulted in xylene exposure estimates as high as 20 and 5 mg/kg/day, respectively. CONCLUSIONS. A spill of about 21 gal or more of Number 2 fuel oil would present a human health risk for central nervous and reproductive systems for 8 days or longer. Tank inspection and supervised delivery would provide effective prevention at minimal expense. PMID:8417613
Toxicity and sublethal effects of No. 2 fuel oil on the supralittoral isopod Lygia exotica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, T.M.; Neff, J.M.; Warner, J.S.
1978-09-01
No. 2 fuel oil was of relatively low toxicity to the intertidal isopod Lygia exotica as indicated by the TLm values of over 100% for the WSF and 73 ppM at 24 and 48 hours and 36.5 ppM at 96 hours for the OWD. Respiration was not significantly affected by short term exposure to several concentrations of No. 2 fuel oil prepared as either a WSF or OWD. Lygia contaminated by a spill of No. 2 fuel oil and Bunker C residual oil contained high concentrations of dibenzothiophenes. It is not known whether the dibenzothiophenes were accumulated by the Lygiamore » tissues or absorbed to the exoskeleton. Therefore, the high mortality of Lygia following the spill cannot yet be attributed to the dibenzothiophenes.« less
Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.
ERIC Educational Resources Information Center
Lloyd, William G.; Davenport, Derek A.
1980-01-01
Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... showed that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had... a dormant failure that could result in an unsafe condition. The PW615F-A engine Fuel Filter Bypass... that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had worn...
Production of distillate fuels from biomass-derived polyoxygenates
Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy
2017-03-14
The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.
Chapter 8: Pyrolysis of Biomass for Aviation Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, David J; Jenkins, Rhodri W.; Sutton, Andrew D.
2016-07-15
Pyrolysis, the breaking down of organic material using heat and the absence of oxygen, is a method that has been widely researched for the production of liquid fuels. In this chapter, we review the feedstocks typically used for pyrolysis, the properties and the composition of the liquid fraction (termed 'bio-oil') obtained, the studies in which pyrolysis has been used in an attempt to increase the bio-oil yield, and how the bio-oil has been upgraded to fuel-like molecules. We also discuss the viability of pyrolysis to produce jet fuel hydrocarbons.
[Progress and prospect of bio-jet fuels industry in domestic and overseas].
Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia
2016-10-25
We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. Thismore » test was discontinued because of extremely poor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kw single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40 percent by weight micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 hrs at full load and 1400 rpm on all fuels except themore » 40% by weight slurry. This test was discontinued because of extremely poor performance.« less
NASA Technical Reports Server (NTRS)
Butze, H. F.; Ehlers, R. C.
1975-01-01
The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.
Palm oil and the heart: A review
Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie
2015-01-01
Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono or polyunsaturated fatty acids. PMID:25810814
The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
No. 2 fuel oil was fed to mallard (Anas platyrhynchos) ducklings in concentrations of 0.5 and 5.0% of the diet from hatching to 18 wk of age to assess the effects of chronic oil ingestion during early development. Five growth parameters (body weight, wing length, ninth primary length, tarsal length, and bill length) were depressed in birds receiving a diet containing 5% fuel oil. There was no oil-related mortality. The 5% fuel oil diet impaired avoidance behavior of 9-d-old mallard ducklings compared with controls or ducklings fed 0.5% oil. Open-field activity was greatly increased in 16-wk-old ducklings fed 5.0% oil. Liver hypertrophy and splenic atrophy were gross evidences of pathological effects in birds on the 5.0% oil diet. More subtle effects included biochemical lesions that resulted in the elevation of plasma alanine aminotransferase and ornithine carbamoyltransferase activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... renewable biomass as a replacement fuel source for fossil fuels used to provide process heat or power in the... Bill) (Pub. L. 110-246), to replace the use of fossil fuels used to produce heat or power at their... reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a renewable biomass...
Jerónimo, Eliana; Alves, Susana P; Prates, José A M; Santos-Silva, José; Bessa, Rui J B
2009-11-01
The effect of stepwise replacement of dietary sunflower oil (SO) with linseed oil (LO) on carcass composition, meat colour and fatty acid (FA) composition of intramuscular lipids of lamb meat was investigated. Thirty-six lambs were fed one of four diets consisting of pellets of lucerne with oil (60g/kg): the diet varied in the composition of oil added and were: 100% SO; 66.6% SO plus 33.3% LO; 33.3% SO plus 66.6% LO and 100% LO. The experimental period was 7weeks. Live slaughter weight, hot carcass weight and intermuscular fat percentage of chump and shoulder increased linearly with replacement of SO by LO. Total FA content of longissimus dorsi muscle and polar and neutral lipids were not affected by the treatments. Replacement of SO with LO increased the content of 18:3n-3 and total n-3 long chain (⩾C(20)) PUFA (LC-PUFA) and decreased the 18:2n-6, total n-6 LC-PUFA and 18:2 cis-9, trans-11 in meat lipids. Maximum CLA concentration (42.9mg/100g fresh muscle) was observed with 100% of SO, decreasing linearly by SO with LO replacement. Maximum n-3 LC-PUFA was predicted to be 27mg/100g of fresh muscle at 78% of SO with LO replacement. Considering both CLA and n-3 LC-PUFA, the maximum levels were estimated to be reached at 52% of replacement of SO with LO. The utilization of blends of SO and LO is a good approach for obtaining lamb meat enriched with both CLA and n-3 LC-PUFA.
Review of NMR characterization of pyrolysis oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun
Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less
Review of NMR characterization of pyrolysis oils
Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...
2016-08-24
Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less
Los Alamos National Laboratory considers the use of biodiesel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlin, M. K.
2002-01-01
A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops,more » as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...
Code of Federal Regulations, 2010 CFR
2010-07-01
... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...
NASA Astrophysics Data System (ADS)
Padmanabhan, S.; Ganesan, S.; Jeswin Arputhabalan, J.; Chithrala, Varun; Ganesh Bairavan, P.
2017-05-01
The demand for diesel fuel is higher than that of petrol throughout the world hence seeking alternative to mineral diesel is a natural choice. Alternative fuels should be easily available at lower cost, environment friendly and fulfill energy needs without modifying engine’s operational parameters. Waste to energy is the trend in the selection of alternate fuels. In this work, Waste Plastic Pyrolysis oil (WPPO), Ethanol, Diesel blend with Cetane additive has been attempted as an alternative fuel. A Twin cylinder, Direct Injection engine was used to assess the engine performance and emission characteristics of waste plastic pyrolysis oil with cetane additive. Experimental results of blended plastic fuel and diesel fuel were compared.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the period for which any royalty or net profit share is accrued or reserved to the United States... only be made if substantial amounts of royalty oil are turned back. Refined petroleum product means gasoline, kerosene, distillates (including Number 2 fuel oil), refined lubricating oils, or diesel fuel...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the period for which any royalty or net profit share is accrued or reserved to the United States... only be made if substantial amounts of royalty oil are turned back. Refined petroleum product means gasoline, kerosene, distillates (including Number 2 fuel oil), refined lubricating oils, or diesel fuel...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the period for which any royalty or net profit share is accrued or reserved to the United States... only be made if substantial amounts of royalty oil are turned back. Refined petroleum product means gasoline, kerosene, distillates (including Number 2 fuel oil), refined lubricating oils, or diesel fuel...
Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.
Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie
2010-12-01
Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels. Published by Elsevier Ltd.
2009-06-11
equipment when supplying jet fuel not practicable or cost effective Unclassified 5 erna ve ue s ocus Petroleum Crude Oil (declining discovery / production...on Jet A/A-1 Approved fuels, DXXXX Unclassified 6 JP-8/5 (Commercial Jet Fuel, ASTM Spec) DARPA Alternative Jet Fuels • Agricultural crop oils ...canola, jatropha, soy, palm , etc.) Alternative fuels – University of North Dakota EERC – UOP – General Electric (GE) t i o n C o s t t i o n C o s t
Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei
2018-01-01
The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a high value α-olefin product with high carbon utilization.
USDA-ARS?s Scientific Manuscript database
The majority of biodiesel fuels are produced from vegetable oils or animal fats by transesterification of oil with alcohol in the presence of a catalyst. In this study, a new class of biofuel is explored by acetylation of fatty alcohols from Jojoba oil. Recently, we reported Jojoba oil methyl este...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...
Code of Federal Regulations, 2013 CFR
2013-10-01
... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...
Code of Federal Regulations, 2012 CFR
2012-10-01
... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...
Code of Federal Regulations, 2014 CFR
2014-10-01
... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...
Code of Federal Regulations, 2010 CFR
2010-10-01
... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...
Code of Federal Regulations, 2011 CFR
2011-10-01
... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...
Defense Energy Information System (DEIS): DEIS-80 Design System Specification. Revision A.
1981-07-01
and consumption of petroleum products such as aviation gasoline, jet fuels, motor gasolines, distillate, and residual oil within DoD. DEIS I software...water, fuel oil , coal, solar/thermal power, and wind power. This subsystem also reports environmental data such as degree days during a reporting period...Petroleum Oil and Lubricants Officer, the Fuels Officer, the Supply Of- ficer, or the Engineering Officer on the base or facility consolidate in
1977-05-01
444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...
NASA Technical Reports Server (NTRS)
Barnett, Henry C; Hibbard, Robert R
1953-01-01
Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.
Jet fuels from synthetic crudes
NASA Technical Reports Server (NTRS)
Antoine, A. C.; Gallagher, J. P.
1977-01-01
An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.
NASA Astrophysics Data System (ADS)
Duan, Qingyuan; Mai, Kangsen; Shentu, Jikang; Ai, Qinghui; Zhong, Huiying; Jiang, Yujian; Zhang, Lu; Zhang, Chunxiao; Guo, Sitong
2014-06-01
We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker ( Larmichthys crocea). The basal diet (FO) was formulated to contain 66.5% fish meal and 6.4% menhaden fish oil; whereas the other 3 experimental diets were formulated by replacing the fish oil with 50% soybean oil (SO50), 100% soybean oil (SO100) and 100% palm oil (PO100), respectively. The 4 diets were randomly assigned to 4 floating sea cages (3.0 m × 3.0 m × 3.0 m), and each was stocked with 250 fish individuals with an initial average weight of 245.29 g ± 7.45 g. The fish were fed to apparent satiation twice a day at 5:00 and 17:00, respectively, for 12 weeks. Experimental analysis showed that the specific growth rate of fish fed SO50 or PO100 were significantly higher than that of fish fed FO or SO100 ( P<0.05), and crude lipid contents of ventral muscle and viscera were significantly lower in fish fed FO than in those fed the other 3 diets ( P<0.05). No significant differences in condition factor, viscerosomatic index, hepatosomatic index, gutted yield and colorimetric values of fish among the dietary treatments were observed ( P>0.05). Compared to FO diet, SO50, SO100 and PO100 diets led to substantial decreases in the liquid loss and water loss from fresh fillets (1 d, 4°C) ( P<0.05). Similarly, thiobarbituric acid reactive substance (TBARS) values of fillets under different storage conditions (1 d, 4°C; 7 d, 4°C; 4 weeks, -20°C; 8 weeks, -20°C) decreased significantly after partial or complete replacement of fish oil with vegetable oils. These findings indicated that the growth performance and selected flesh quality properties (liquid holding capacity and TBARS value) of large yellow croaker were substantially improved by replacing dietary fish oil with vegetable oils.
Chemical fate of Bunker C fuel oil in a subtropical marine environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, D.L.; Van Vleet, E.S.
1996-12-31
On August 10, 1993, a major oil spill occurred when approximately 1.2 million liters of Bunker C (No. 6) fuel oil spilled from the fuel tanker Bouchard 155 after it collided with the phosphate freighter Balsa 37 in a shipping channel at the entrance to Tampa Bay, Florida. Although early hydrodynamic conditions with ebbing tides caused most of the oil to be carried several kilometers out of Tampa Bay and into the Gulf of Mexico, subsequent onshore winds and spring tides caused significant quantities of the oil to be deposited on nearby beaches and in mangrove, seagrass and estuarine habitatsmore » north of the mouth of Tampa Bay.« less
Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D.; Janke, Christopher James; Connatser, Raynella M.
We report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except formore » PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8–15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. Finally, the relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.« less
Advanced fuel system technology for utilizing broadened property aircraft fuels
NASA Technical Reports Server (NTRS)
Reck, G. M.
1980-01-01
Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zygarlicke, C J; Schmidt, D D; Olson, E S
Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area ofmore » developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.« less
NASA Astrophysics Data System (ADS)
Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.
2012-05-01
Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non-regulated exhaust gas components, some deviations from this linear trend were detected.
Three approaches to fuels from fatty compounds
USDA-ARS?s Scientific Manuscript database
Biodiesel, the alkyl esters, usually methyl esters, of vegetable oils, animal fats, or other triacylglycerol-containing materials, are the most common approach to producing a fuel from the mentioned materials. This fuel is obtained by transesterifying the oil or fat with an alcohol, usually methanol...
Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.
Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R
2016-01-01
The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.
Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization
Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.
2016-01-01
The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168