Science.gov

Sample records for replica symmetric spin

  1. Spin Glass Field Theory with Replica Fourier Transforms

    NASA Astrophysics Data System (ADS)

    Pimentel, Iveta R.; De Dominicis, Cirano

    We develop a field theory for spin glasses using Replica Fourier Transforms (RFT). We present the formalism for the case of replica symmetry and the case of replica symmetry breaking on an ultrametric tree, with the number of replicas n and the number of replica symmetry breaking steps R generic integers. We show how the RFT applied to the two-replica fields allows to construct a new basis which block-diagonalizes the four-replica mass-matrix, into the replicon, anomalous and longitudinal modes. The eigenvalues are given in terms of the mass RFT and the propagators in the RFT space are obtained by inversion of the block-diagonal matrix. The formalism allows to express any i-replica vertex in the new RFT basis and hence enables to perform a standard perturbation expansion. We apply the formalism to calculate the contribution of the Gaussian fluctuations around the Parisi's solution for the free-energy of an Ising spin glass.

  2. Spin glass field theory with replica Fourier transforms

    NASA Astrophysics Data System (ADS)

    Pimentel, I. R.; De Dominicis, C.

    2014-11-01

    We develop a field theory for spin glasses using replica Fourier transforms (RFT). We present the formalism for the case of replica symmetry and the case of replica symmetry breaking on an ultrametric tree, with the number of replicas n and the number of replica symmetry breaking steps R generic integers. We show how the RFT applied to the two-replica fields allows one to construct a new basis which block-diagonalizes the four-replica mass-matrix, into the replicon, anomalous and longitudinal modes. The eigenvalues are given in terms of the mass RFT and the propagators in the RFT space are obtained by inversion of the block-diagonal matrix. The formalism allows one to express any i-replica vertex in the new RFT basis and hence enables one to perform a standard perturbation expansion. We apply the formalism to calculate the contribution of the Gaussian fluctuations around the Parisi solution for the free-energy of an Ising spin glass.

  3. Replica field theory and renormalization group for the Ising spin glass in an external magnetic field.

    PubMed

    Temesvári, T; De Dominicis, C

    2002-08-26

    We use the generic replica symmetric cubic field theory to study the transition of short-range Ising spin glasses in a magnetic field around the upper critical dimension. A novel fixed point is found from the application of the renormalization group. In the spin-glass limit, this fixed point governs the critical behavior of a class of systems characterized by a single cubic parameter. For this universality class, the spin-glass susceptibility diverges at criticality, whereas the longitudinal mode remains massive. The third mode, however, behaves unusually. The physical consequences of this unusual behavior are discussed, and a comparison with the conventional de Almeida-Thouless scenario is presented.

  4. Replica symmetry breaking in cold atoms and spin glasses

    NASA Astrophysics Data System (ADS)

    Rotondo, P.; Tesio, E.; Caracciolo, S.

    2015-01-01

    We consider a system composed by N atoms trapped within a multimode cavity, whose theoretical description is captured by a disordered multimode Dicke model. We show that in the resonant, zero-field limit the system exactly realizes the Sherrington-Kirkpatrick model. Upon a redefinition of the temperature, the same dynamics is realized in the dispersive, strong-field limit. This regime also gives access to spin-glass observables which can be used to detect replica symmetry breaking.

  5. The Replica Symmetric Solution for Potts Models on d-Regular Graphs

    NASA Astrophysics Data System (ADS)

    Dembo, Amir; Montanari, Andrea; Sly, Allan; Sun, Nike

    2014-04-01

    We establish an explicit formula for the limiting free energy density (log-partition function divided by the number of vertices) for ferromagnetic Potts models on uniformly sparse graph sequences converging locally to the d-regular tree for d even, covering all temperature regimes. This formula coincides with the Bethe free energy functional evaluated at a suitable fixed point of the belief propagation recursion on the d-regular tree, the so-called replica symmetric solution. For uniformly random d-regular graphs we further show that the replica symmetric Bethe formula is an upper bound for the asymptotic free energy for any model with permissive interactions.

  6. Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco

    By using a simple interpolation argument, in previous work we have proven the existence of the thermodynamic limit, for mean field disordered models, including the Sherrington-Kirkpatrick model, and the Derrida p-spin model. Here we extend this argument in order to compare the limiting free energy with the expression given by the Parisi Ansatz, and including full spontaneous replica symmetry breaking. Our main result is that the quenched average of the free energy is bounded from below by the value given in the Parisi Ansatz, uniformly in the size of the system. Moreover, the difference between the two expressions is given in the form of a sum rule, extending our previous work on the comparison between the true free energy and its replica symmetric Sherrington-Kirkpatrick approximation. We give also a variational bound for the infinite volume limit of the ground state energy per site.

  7. Full replica symmetry breaking in p-spin-glass-like systems

    NASA Astrophysics Data System (ADS)

    Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2017-02-01

    It is shown that continuously changing the effective number of interacting particles in p-spin-glass-like model allows to describe the transition from the full replica symmetry breaking glass solution to stable first replica symmetry breaking glass solution in the case of non-reflective symmetry diagonal operators used instead of Ising spins. As an example, axial quadrupole moments in place of Ising spins are considered and the boundary value pc 1 2.5 is found.

  8. Full replica symmetry breaking in p-spin-glass-like systems

    NASA Astrophysics Data System (ADS)

    Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2017-02-01

    It is shown that continuously changing the effective number of interacting particles in p-spin-glass-like model allows describing the transition from the full replica symmetry breaking glass solution to stable first replica symmetry breaking glass solution in the case of non-reflective symmetry diagonal operators used instead of Ising spins. As an example, axial quadrupole moments in place of Ising spins are considered and the boundary value {p_{{c_1}}} \\cong 2.5 is found.

  9. The replica symmetric solution for orthogonally constrained Heisenberg model on Bethe lattice

    NASA Astrophysics Data System (ADS)

    Concetti, Francesco

    2017-02-01

    In this paper, we study the thermodynamic properties of a system of D-components classical Heisenberg spins lying on the vertices of a random regular graph, with an unconventional first neighbor non-random interaction J{{≤ft({{\\mathbf{S}}i}\\centerdot {{\\mathbf{S}}k}\\right)}2} . We can consider this model as a continuum version of anti-ferromagnetic D-states Potts model. We compute the paramagnetic free energy, using a new approach, presented in this paper for the first time, based on the replica method. Through the linear stability analysis, we obtain an instability line on the temperature-connectivity plane that provides a bound to the appearance of a phase transition. We also argue about the character of the instability observed.

  10. Replica symmetry breaking transition of the weakly anisotropic Heisenberg spin glass in magnetic fields.

    PubMed

    Imagawa, Daisuke; Kawamura, Hikaru

    2004-02-20

    The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising spin glass, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.

  11. Replica exchange simulations of the three-dimensional Ising spin glass: static and dynamic properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.

    2012-02-01

    We present the results of a large-scale numerical study of the equilibrium three-dimensional Ising spin glass with Gaussian disorder. Using replica exchange (parallel tempering) Monte Carlo, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the replica exchange Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations (N <=10^3 spins) down to very low temperatures (T 0.2Tc) is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free energy landscape. We also discuss the size dependence of several static quantities.

  12. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    PubMed

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  13. Performance of replica-exchange Wang-Landau sampling for the study of spin systems

    NASA Astrophysics Data System (ADS)

    Li, Ying Wai; Eisenbach, Markus; Vogel, Thomas; Wüst, Thomas; Landau, David P.

    2014-03-01

    The recently proposed replica-exchange Wang-Landau sampling (REWL) is a novel, massively parallel Monte Carlo method which allows for the parallelization of Wang-Landau sampling based on a replica-exchange framework. The robustness of the scheme is demonstrated by its broad applicability on a variety of spin systems: from the simplest models with discrete or continuous energy domains, to complex systems captured by large-scale first principles density functional theory calculations. The accuracy of REWL is studied by comparing the thermodynamic properties with exact solutions and results obtained by the original, serial Wang-Landau sampling. The principles for the speed-up, the strong and weak scaling behavior of REWL are also investigated when different parameter settings are employed. We will show, with the aid of selected spin systems, that the method accelerates the simulations significantly with a possible improved accuracy. Phys. Rev. Lett. 110, 210603 (2013)

  14. Random SU(2)-symmetric spin-S chains

    NASA Astrophysics Data System (ADS)

    Quito, V. L.; Hoyos, José A.; Miranda, E.

    2016-08-01

    We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.

  15. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    NASA Astrophysics Data System (ADS)

    Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2013-02-01

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington-Kirkpatrick model with arbitrary diagonal operators Uˆ standing instead of Ising spins. We focus on the case when Uˆ is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of Uˆ is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  16. Spontaneous versus explicit replica symmetry breaking in the theory of disordered systems.

    PubMed

    Mouhanna, D; Tarjus, G

    2010-05-01

    We investigate the relation between spontaneous and explicit replica symmetry breaking in the theory of disordered systems. On general ground, we prove the equivalence between the replicon operator associated with the stability of the replica-symmetric solution in the standard replica scheme and the operator signaling a breakdown of the solution with analytic field dependence in a scheme in which replica symmetry is explicitly broken by applied sources. This opens the possibility to study, via the recently developed functional renormalization group, unresolved questions related to spontaneous replica symmetry breaking and spin-glass behavior in finite-dimensional disordered systems.

  17. Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking

    NASA Astrophysics Data System (ADS)

    Read, N.

    2014-09-01

    Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order Wd -ζ. These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q (x), if q(0)≠∫01dxq(x ), then the

  18. Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study.

    PubMed

    Perera, Dilina; Vogel, Thomas; Landau, David P

    2016-10-01

    Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.

  19. Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Vogel, Thomas; Landau, David P.

    2016-10-01

    Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian, facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were found to be sensitive to the particular choice of interatomic potential.

  20. Replica exchange Monte Carlo simulations of the ising spin glass: Static and dynamic properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Burcu

    Spin glasses have been the subject of intense study and considerable controversy for decades, and the low-temperature phase of short-range spin glasses is still poorly understood. Our main goal is to improve our understanding in this area and find an answer to the following question: Are there only a single pair or a countable infinity of pure states in the low temperature phase of the EA spin glass? To that aim we first start by introducing spin glasses and provide a brief history of their research, then proceed to describe our method of simulation, the parallel tempering Monte Carlo algorithm. Next, we present the results of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson Ising spin glass with Gaussian disorder. In order to understand how the parallel tempering algorithm works, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the parallel tempering Monte Carlo method. We examine the correlation between static and dynamic observables for ˜ 5000 disorder realizations and up to 1000 spins down to temperatures at 20% of the critical temperature, and our results show that autocorrelation times are directly correlated with the roughness of the free-energy landscape. In the following chapters, the three- and four-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied again via large scale Monte Carlo simulations at low temperatures, deep within the spin glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. We arrive to the following conclusion: The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a

  1. Phase Transition for Quenched Coupled Replicas in a Plaquette Spin Model of Glasses

    NASA Astrophysics Data System (ADS)

    Jack, Robert L.; Garrahan, Juan P.

    2016-02-01

    We study a three-dimensional plaquette spin model whose low temperature dynamics is glassy, due to localized defects and effective kinetic constraints. The thermodynamics of this system is smooth at all temperatures. We show that coupling it to a second system with a fixed (quenched) configuration leads to a phase transition, at finite coupling. The order parameter is the overlap between the copies, and the transition is between phases of low and high overlap. We find critical points whose properties are consistent with random-field Ising universality. We analyze the interfacial free energy cost between the high- and low-overlap states that coexist at (and below) the critical point, and we use this cost as the basis for a finite-size scaling analysis. We discuss these results in the context of mean-field and dynamical facilitation theories of the glass transition.

  2. Interface free-energy exponent in the one-dimensional Ising spin glass with long-range interactions in both the droplet and broken replica symmetry regions.

    PubMed

    Aspelmeier, T; Wang, Wenlong; Moore, M A; Katzgraber, Helmut G

    2016-08-01

    The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.

  3. Interface free-energy exponent in the one-dimensional Ising spin glass with long-range interactions in both the droplet and broken replica symmetry regions

    NASA Astrophysics Data System (ADS)

    Aspelmeier, T.; Wang, Wenlong; Moore, M. A.; Katzgraber, Helmut G.

    2016-08-01

    The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.

  4. Replica symmetry breaking for anisotropic magnets with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kogan, E.; Kaveh, M.

    2017-01-01

    We study critical behaviour of a magnet with cubic anisotropy and quenched scalar disorder which is taken into account by replica method. We derive to first order in ε approximation the renormalization group equations taking into account possible replica symmetry breaking. We study the stability of the replica symmetric fixed points with respect to perturbations without (in general case) replica symmetry. However, we find that if a fixed point is stable with respect to replica symmetric deviations, it is also stable with respect to deviations without replica symmetry.

  5. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes

    PubMed Central

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-01-01

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376

  6. Imaging of the Magnetization of a Symmetric Spin Valve

    NASA Astrophysics Data System (ADS)

    Nikitenko, V. I.; Gornakov, V. S.; Dedukh, L. M.; Kabanov, Yu. P.; Khapikov, A. F.; Bennett, L. H.; Egelhoff, W. F.; Chen, P. J.; McMichael, R. D.; Donahue, M. J.; Swartzendruber, L. J.; Shapiro, A. J.; Brown, H. J.

    1996-03-01

    The magnetization reversal processes in a 50nmNiO/2.5nmCo/2.3nmCu/6.1nmNiFe2.3nmCu2.5nmCo/50nmNiO spin valve were studied by a magneto-optical indicator film technique (MOIF), SQUID magnetometry, and giant magnetoresistance measurements. Stray magnetic fields from the sample edge and from domain walls were imaged using polarized light optical microscopy in reflective mode with a Bi-substituted YIG indicator film with in-plane anisotropy. The images indicate that magnetization reversal in the center NiFe layer of the spin valve occurs by a non-uniform process with a length scale on the order kof 10--50 μm. Magnetization reversal in the top and bottom Co layers proceeds by nucleation of domain walls at a much larger value of applied field. The ability of MOIF to observe the dynamics of the magnetization reversal processes suggests its use for fast nondestructive quality control in different stages of spin-valve manufacturing.

  7. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

    NASA Astrophysics Data System (ADS)

    Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou

    2016-02-01

    Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation.

  8. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

    PubMed Central

    Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou

    2016-01-01

    Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation. PMID:26856379

  9. An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Jayatilaka, Dylan

    1993-01-01

    A new open-shell perturbation theory is formulated in terms of symmetric spin orbitals. Only one set of spatial orbitals is required, thereby reducing the number of independent coefficients in the perturbed wavefunctions. For second order, the computational cost is shown to be similar to a closed-shell calculation. This formalism is therefore more efficient than the recently developed RMP, ROMP or RMP-MBPT theories. The perturbation theory described herein was designed to have a close correspondence with our recently proposed coupled-cluster theory based on symmetric spin orbitals. The first-order wavefunction contains contributions from only doubly excited determinants. Equilibrium structures and vibrational frequencies determined from second-order perturbation theory are presented for OH, NH, CH, 02, NH2 and CH2.

  10. Extension of the constant exchange probability method to multi-dimensional replica exchange Monte Carlo applied to the tri-critical spin-1 Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Higuchi, Saburo

    2016-12-01

    In replica exchange Monte Carlo (REM), tuning of the temperature set and the exchange scheduling are crucial in improving the accuracy and reducing calculation time. In multi-dimensional simulated tempering, the first order phase transition is accessible. Therefore it is important to study the tuning of parameter set and the scheduling of exchanges in the parallel counterpart, the multi-dimensional REM. We extend Hukushima’s constant exchange probability method to multi-dimensional REM for the parameter set. We further propose a combined method to use this set and the Bittner-Nußbaumer-Janke’s \\text{P}{{\\text{T}}τ} algorithm for scheduling. We test the proposed method in the two-dimensional spin-1 Blume-Capel model and find that it works efficiently, including the vicinity of the first order phase transition.

  11. Hyperfine coupling of hole and nuclear spins in symmetric (111)-grown GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Vidal, M.; Durnev, M. V.; Bouet, L.; Amand, T.; Glazov, M. M.; Ivchenko, E. L.; Zhou, P.; Wang, G.; Mano, T.; Kuroda, T.; Marie, X.; Sakoda, K.; Urbaszek, B.

    2016-09-01

    In self-assembled III-V semiconductor quantum dots, valence holes have longer spin coherence times than the conduction electrons, due to their weaker coupling to nuclear spin bath fluctuations. Prolonging hole spin stability relies on a better understanding of the hole to nuclear spin hyperfine coupling which we address both in experiment and theory in the symmetric (111) GaAs/AlGaAs droplet dots. In magnetic fields applied along the growth axis, we create a strong nuclear spin polarization detected through the positively charged trion X+ Zeeman and Overhauser splittings. The observation of four clearly resolved photoluminescence lines—a unique property of the (111) nanosystems—allows us to measure separately the electron and hole contribution to the Overhauser shift. The hyperfine interaction for holes is found to be about five times weaker than that for electrons. Our theory shows that this ratio depends not only on intrinsic material properties but also on the dot shape and carrier confinement through the heavy-hole mixing, an opportunity for engineering the hole-nuclear spin interaction by tuning dot size and shape.

  12. Spin Calogero models associated with Riemannian symmetric spaces of negative curvature

    NASA Astrophysics Data System (ADS)

    Fehér, L.; Pusztai, B. G.

    2006-09-01

    The Hamiltonian symmetry reduction of the geodesics system on a symmetric space of negative curvature by the maximal compact subgroup of the isometry group is investigated at an arbitrary value of the momentum map. Restricting to regular elements in the configuration space, the reduction generically yields a spin Calogero model with hyperbolic interaction potentials defined by the root system of the symmetric space. These models come equipped with Lax pairs and many constants of motion, and can be integrated by the projection method. The special values of the momentum map leading to spinless Calogero models are classified under some conditions, explaining why the BC models with two independent coupling constants are associated with SU(n+1,n)/S(U(n+1)×U(n)) as found by Olshanetsky and Perelomov. In the zero curvature limit our models reproduce rational spin Calogero models studied previously and similar models correspond to other (affine) symmetric spaces, too. The construction works at the quantized level as well.

  13. Spin-symmetric solution of an interacting quantum dot attached to superconducting leads: Andreev states and the 0- π transition

    NASA Astrophysics Data System (ADS)

    Janiš, Václav; Pokorný, Vladislav; Žonda, Martin

    2016-09-01

    Behavior of Andreev gap states in a quantum dot with Coulomb repulsion symmetrically attached to superconducting leads is studied via the perturbation expansion in the interaction strength. We find the exact asymptotic form of the spin-symmetric solution for the Andreev states continuously approaching the Fermi level. We thereby derive a critical interaction at which the Andreev states at zero temperature merge at the Fermi energy, being the upper bound for the 0-π transition. We show that the spin-symmetric solution becomes degenerate beyond this interaction, in the π phase, and the Andreev states do not split unless the degeneracy is lifted. We further demonstrate that the degeneracy of the spin-symmetric state extends also into the 0 phase in which the solutions with zero and non-zero frequencies of the Andreev states may coexist.

  14. Spontaneous symmetry breaking in replica field theory

    NASA Astrophysics Data System (ADS)

    Diaz, R. Acosta; Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.

    2017-09-01

    In this paper we discuss a disordered d -dimensional Euclidean λ φ4 model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-N Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of N instantons in the model.

  15. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  16. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  17. Quantized massive spin 1/2 fields on static spherically symmetric wormhole spacetimes

    NASA Astrophysics Data System (ADS)

    Shen, Zhiyong

    Traversable wormholes have become a subject of intensive studies since 1988 when Morris and Thorne published their paper which put forward the energy conditions for traversable wormholes. A number of researchers have calculated the stress-energy tensors of different fields but failed to find one that meets the requirement of the wormhole geometry. Some others find different schemes to sustain traversable wormholes but either on the Planck scale or hypothetically on a macroscopic scale. Groves has developed a method to compute the renormalized stress-energy tensor for a quantized massive spin 1/2 field in a general static spherically symmetric spacetime. Using this method, I have computed the renormalized stress-energy tensors of two quantized massive spin 1/2 fields in four static spherically symmetric wormhole spacetimes. The results of my calculation suggest that these two fields can be considered exotic. However, due to the technical difficulties in implementing this method, a series of approximations are used in the computation in order to make the problem mathematically tractable; but it is not clear under what physical circumstances these approximations could hold. Besides, the cases that I investigated turned out to involve unphysically large energy densities. Because of these reasons, no firm physical conclusions can be drawn.

  18. Pretty good quantum state transfer in symmetric spin networks via magnetic field

    NASA Astrophysics Data System (ADS)

    Kempton, Mark; Lippner, Gabor; Yau, Shing-Tung

    2017-09-01

    We study pretty good single-excitation quantum state transfer (i.e., state transfer that becomes arbitrarily close to perfect) between particles in symmetric spin networks, in the presence of an energy potential induced by a magnetic field. In particular, we show that if a network admits an involution that fixes at least one node or at least one link, then there exists a choice of potential on the nodes of the network for which we get pretty good state transfer between symmetric pairs of nodes. We show further that in many cases, the potential can be chosen so that it is only nonzero at the nodes between which we want pretty good state transfer. As a special case of this, we show that such a potential can be chosen on the endpoints of a spin chain to induce pretty good state transfer in chains of any length. This is in contrast to the result of Kempton et al. (Quantum Inf Comput 17(3):303-327, 2017), in which the authors show that there cannot be perfect state transfer in chains of length 4 or more, no matter what potential is chosen.

  19. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    NASA Astrophysics Data System (ADS)

    Sundell, Per; Yin, Yihao

    2017-01-01

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in arXiv:1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS4 region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  20. Combining symmetry-separated and bent-bond spin-coupled models of cylindrically symmetric multiple bonding

    NASA Astrophysics Data System (ADS)

    Penotti, Fabio E.; Cooper, David L.

    2015-07-01

    We examine the symmetry properties of spin-coupled (or full generalised valence bond) wavefunctions for C2H2 and N2. The symmetry-separated (σ,π) and bent-bond (ω) solutions are totally symmetric only in the D4h and D3h subgroups of D∞h, respectively. Two fairly different strategies are explored for imposing full cylindrical symmetry, with one of them (small nonorthogonal configuration interaction calculations involving rotated versions of the wavefunction) turning out to be somewhat preferable on energetic grounds to the other one (application of additional spin constraints to a single spatial configuration). It is also shown that mixing together the cylindrically symmetric symmetry-separated and bent-bond spin-coupled models leads to relatively small energy improvements unless the valence orbitals in each type of configuration are reoptimised.

  1. Selective Probing of Hidden Spin-Polarized States in Inversion-Symmetric Bulk MoS2

    NASA Astrophysics Data System (ADS)

    Razzoli, E.; Jaouen, T.; Mottas, M.-L.; Hildebrand, B.; Monney, G.; Pisoni, A.; Muff, S.; Fanciulli, M.; Plumb, N. C.; Rogalev, V. A.; Strocov, V. N.; Mesot, J.; Shi, M.; Dil, J. H.; Beck, H.; Aebi, P.

    2017-02-01

    Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2 . It is found that the measured spin polarization can be reversed by changing the handedness of incident circularly polarized light. Calculations based on a three-step model of photoemission show that the valley and layer-locked spin-polarized electronic states can be selectively addressed by circularly polarized light, therefore providing a novel route to probe these hidden spin-polarized states in inversion-symmetric systems as predicted by Zhang et al. [Nat. Phys. 10, 387 (2014)., 10.1038/nphys2933].

  2. Are Bosonic Replicas Faulty?

    NASA Astrophysics Data System (ADS)

    Osipov, Vladimir Al.; Kanzieper, Eugene

    2007-08-01

    Motivated by the ongoing discussion about a seeming asymmetry in the performance of fermionic and bosonic replicas, we present an exact, nonperturbative approach to both fermionic and bosonic zero-dimensional replica field theories belonging to the broadly interpreted β=2 Dyson symmetry class. We then utilize the formalism developed to demonstrate that the bosonic replicas do correctly reproduce the microscopic spectral density in the QCD-inspired chiral Gaussian unitary ensemble. This disproves the myth that the bosonic replica field theories are intrinsically faulty.

  3. Extrinsic spin- and orbital-Hall effect in cyclic group symmetric metamaterial (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Ui; Ozerov, Igor; Bedu, Frederic; Fages, Frederic; Wu, Jeong Weon

    2016-09-01

    We designed and fabricated cyclic group symmetric metamaterials (CGSMs), anisotropic media showing an extrinsic optical orbital Hall effect. An exchange of angular momentum between spin and orbital angular momenta takes place in an optical beam propagating through anisotropic media such as plasmonic nanoantennas of concentric ring and tapered arc (TA) shape. In case of TA antenna an cross-polarized circular polarization scattered beam exhibits an extrinsic orbital Hall effect. The CGSMs possess n-fold rotation symmetry and they are composed of plasmonic TA antennas. In case of circular polarization, the TA antennas effectively scatter incident light depending on the beam helicity. Both amplitude and phase gradients take place along the azimuthal direction for cross-polarized beams. We used electron beam lithography to fabricate 30nm thick gold metamaterials patterned on borosilicate glass substrates. Six types of CGSMs with the symmetry order n from 1 to 6 were fabricated and measured. Each CSGM is composed of multiple TA antennas with the width varying from 45nm to 150nm organized in 8*n azimuthal segments of concentric rings repeated with 600nm radial spacing. Measurements of orbital Hall transverse shifts of circularly polarized beams of right/left helicity were carried out at a wavelength of 1300nm. Because TA antennas are arranged in a metamaterial with a cyclic group n-fold rotation symmetry, the extrinsic orbital Hall transverse shifts from CGSM exhibit a geometrical pattern with the same symmetry. However, CGSMs with odd and even symmetry orders show a strongly contrasting difference in the character of transverse shifts. The observed geometrical patterns agree well with those obtained from FDTD theoretical simulation.

  4. Asymptotic quasinormal frequencies of different spin fields in spherically symmetric black holes

    SciTech Connect

    Cho, H. T.

    2006-01-15

    We consider the asymptotic quasinormal frequencies of various spin fields in Schwarzschild and Reissner-Nordstroem black holes. In the Schwarzschild case, the real part of the asymptotic frequency is ln3 for the spin 0 and the spin 2 fields, while for the spin 1/2, the spin 1, and the spin 3/2 fields it is zero. For the nonextreme charged black holes, the spin 3/2 Rarita-Schwinger field has the same asymptotic frequency as that of the integral spin fields. However, the asymptotic frequency of the Dirac field is different, and its real part is zero. For the extremal case, which is relevant to the supersymmetric consideration, all the spin fields have the same asymptotic frequency, the real part of which is zero. For the imaginary parts of the asymptotic frequencies, it is interesting to see that it has a universal spacing of 1/4M for all the spin fields in the single-horizon cases of the Schwarzschild and the extreme Reissner-Nordstroem black holes. The implications of these results to the universality of the asymptotic quasinormal frequencies are discussed.

  5. Categorization in the symmetrically dilute Hopfield network.

    PubMed

    Krebs, P R; Theumann, W K

    1999-10-01

    A symmetrically dilute Hopfield model with a Hebbian learning rule is used to study the effects of gradual dilution and of synaptic noise on the categorization ability of an attractor neural network with hierarchically correlated patterns in a two-level structure of ancestors and descendants. Categorization consists in recognizing the ancestors when the network has been trained exclusively with the descendants. We consider a macroscopic number of ancestors, each with a finite number of descendants, and take into account the stochastic noise produced by the former in an equilibrium study of the network, by means of replica-symmetric mean-field theory. Phase diagrams are obtained that exhibit a categorization, a spin-glass, and a paramagnetic phase, as well as the dependence of the order parameters on the relevant quantities. The de Almeida-Thouless lines that limit the validity of the replica-symmetric results are also obtained. It is shown that gradual dilution increases considerably the region where a stable categorization phase may be found.

  6. Dynamic stability of a spinning tube conveying a fluid through a symmetrical noncircular cross-section

    SciTech Connect

    Benedetti, G.A.

    1990-11-01

    When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.

  7. Crystal Ball Replica

    NASA Astrophysics Data System (ADS)

    Ajamian, John

    2016-09-01

    The A2 collaboration of the Institute for Nuclear Physics of Johannes Gutenberg University performs research on (multiple) meson photoproduction and nucleon structure and dynamics using a high energy polarized photon beam at specific targets. Particles scattered from the target are detected in the Crystal Ball, or CB. The CB is composed of 672 NaI crystals that surround the target and can analyze particle type and energy of ejected particles. Our project was to create a replica of the CB that could display what was happening in real time on a 3 Dimensional scale replica. Our replica was constructed to help explain the physics to the general public, be used as a tool when calibrating each of the 672 NaI crystals, and to better analyze the electron showering of particles coming from the target. This poster will focus on the hardware steps necessary to construct the replica and wire the 672 programmable LEDS in such a way that they can be mapped to correspond to the Crystal Ball elements. George Washington NSF Grant.

  8. Sublattice parallel replica dynamics

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Uberuaga, Blas P.; Voter, Arthur F.

    2014-06-01

    Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full advantage of the new computing paradigm. Atomistic simulation methods that offer full fidelity to the underlying potential, i.e., molecular dynamics (MD) and parallel replica dynamics, fail to use the whole machine speedup, leaving a region in time and sample size space that is unattainable with current algorithms. In this paper, we present an extension of the parallel replica dynamics algorithm [A. F. Voter, Phys. Rev. B 57, R13985 (1998), 10.1103/PhysRevB.57.R13985] by combining it with the synchronous sublattice approach of Shim and Amar [Y. Shim and J. G. Amar, Phys. Rev. B 71, 125432 (2005), 10.1103/PhysRevB.71.125432], thereby exploiting event locality to improve the algorithm scalability. This algorithm is based on a domain decomposition in which events happen independently in different regions in the sample. We develop an analytical expression for the speedup given by this sublattice parallel replica dynamics algorithm and compare it with parallel MD and traditional parallel replica dynamics. We demonstrate how this algorithm, which introduces a slight additional approximation of event locality, enables the study of physical systems unreachable with traditional methodologies and promises to better utilize the resources of current high performance and future exascale computers.

  9. Instantaneous mode contamination and parametric combination instability of spinning cyclically symmetric ring structures with expanding application to planetary gear ring

    NASA Astrophysics Data System (ADS)

    Wang, Shiyu; Sun, Wenjia; Wang, Yaoyao

    2016-08-01

    This work addresses the free and parametric elastic vibrations of the spinning cyclically symmetric ring structures. The focus is on the instantaneous mode contamination, parametric combination instability and their connections. An analytical model is developed by using the Hamilton's principle for the in-plane bending deflection, the distinction of which is in the arbitrary distributions of the attached mass and stiffness. A special case with equally-spaced discrete mass particles and spinning springs is detailed. The uneven tangential force and the time-invariant deflection caused by the mass particles are formulated. The results imply that the order of such deflection is equal to the number of the mass particles. The instantaneous mode contamination and parametric combination instability are captured by the perturbation and superposition mode shapes of the stationary smooth ring by introducing complex coefficients. The contamination rule is similar to that of the stationary structure but the contamination strength is time-variant due to the spinning springs. New analytical results and quantitative explanations on the contamination and instability especially their connections are presented. As an application of the proposed method, the free and parametric vibrations of the planetary gear ring are formulated. Main results are demonstrated by means of the numerical simulations and compared with the existing studies.

  10. Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Bowen; Lohmann, Mark; Barroso, David; Liao, Ingrid; Lin, Zhisheng; Liu, Yawen; Bartels, Ludwig; Watanabe, Kenji; Taniguchi, Takashi; Shi, Jing

    2017-07-01

    Despite its extremely weak intrinsic spin-orbit coupling (SOC), graphene has been shown to acquire considerable SOC by proximity coupling with exfoliated transition metal dichalcogenides (TMDs). Here we demonstrate strong induced Rashba SOC in graphene that is proximity coupled to a monolayer TMD film, Mo S2 or WS e2 , grown by chemical-vapor deposition with drastically different Fermi level positions. Graphene/TMD heterostructures are fabricated with a pickup-transfer technique utilizing hexagonal boron nitride, which serves as a flat template to promote intimate contact and therefore a strong interfacial interaction between TMD and graphene as evidenced by quenching of the TMD photoluminescence. We observe strong induced graphene SOC that manifests itself in a pronounced weak-antilocalization (WAL) effect in the graphene magnetoconductance. The spin-relaxation rate extracted from the WAL analysis varies linearly with the momentum scattering time and is independent of the carrier type. This indicates a dominantly Dyakonov-Perel spin-relaxation mechanism caused by the induced Rashba SOC. Our analysis yields a Rashba SOC energy of ˜1.5 meV in graphene/WS e2 and ˜0.9 meV in graphene/Mo S2 . The nearly electron-hole symmetric nature of the induced Rashba SOC provides a clue to possible underlying SOC mechanisms.

  11. Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques

    NASA Astrophysics Data System (ADS)

    Gui, Haichao; Vukovich, George

    2015-12-01

    The spin-axis stabilization of an axisymmetric spacecraft by two control torques perpendicular to the symmetry axis is addressed. Two control laws are designed to align the symmetry axis along a desired inertial direction despite the revolution around the symmetry axis. The first controller takes a saturated proportional-derivative form and can stabilize the spin-axis to the desired direction with a priori bounded torques in the absence of modeling uncertainties. In order to achieve better robustness, an adaptive controller is then designed to account for the inertia uncertainties and disturbances, in addition to actuator saturation. Numerical examples are presented to demonstrate the advantageous features of the proposed algorithm compared with conventional spin-axis stabilization methods.

  12. Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Maune, B. M.; Andrews, R. W.; Borselli, M. G.; Eng, K.; Jura, M. P.; Kiselev, A. A.; Ladd, T. D.; Merkel, S. T.; Milosavljevic, I.; Pritchett, E. J.; Rakher, M. T.; Ross, R. S.; Schmitz, A. E.; Smith, A.; Wright, J. A.; Gyure, M. F.; Hunter, A. T.

    2016-03-01

    We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double dot symmetrically between the charge-state anticrossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of 5 in comparison to operation near a charge-state anticrossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations.

  13. Divide and conquer the Hilbert space of translation-symmetric spin systems.

    PubMed

    Weisse, Alexander

    2013-04-01

    Iterative methods that operate with the full Hamiltonian matrix in the untrimmed Hilbert space of a finite system continue to be important tools for the study of one- and two-dimensional quantum spin models, in particular in the presence of frustration. To reach sensible system sizes such numerical calculations heavily depend on the use of symmetries. We describe a divide-and-conquer strategy for implementing translation symmetries of finite spin clusters, which efficiently uses and extends the "sublattice coding" of H. Q. Lin [Phys. Rev. B 42, 6561 (1990)]. With our method, the Hamiltonian matrix can be generated on-the-fly in each matrix vector multiplication, and problem dimensions beyond 10^{11} become accessible.

  14. Anti-symmetric spin-orbit force in the effective interaction for the shell model and its effect on nuclear structure

    SciTech Connect

    Tsunoda, N.; Shimizu, N.; Otsuka, T.; Suzuki, T.

    2011-05-06

    Anti-symmetric spin-orbit force (ALS) in the effective interaction for the shell model and its effect on nuclear structure is discussed. We investigate possible origins of the ALS and the effects on the level schemes of several nuclei.

  15. Replica methods for loopy sparse random graphs

    NASA Astrophysics Data System (ADS)

    Coolen, ACC

    2016-03-01

    I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs, the emerging theory has an appealing and intuitive structure, suggests how message passing algorithms should be adapted, and what is the structure of theories describing spin systems on loopy architectures. However, the formalism is still largely untested, and may require further adjustment and refinement. This paper is dedicated to the memory of our colleague and friend Jun-Ichi Inoue, with whom the author has had the great pleasure and privilege of collaborating.

  16. Critical bifurcation point of the openZ(5)-symmetric spin model

    NASA Astrophysics Data System (ADS)

    Bonnier, B.

    1991-07-01

    The critical behavior of the general isotropic, ferromagnetic two-dimensional spin system with openZ(5) symmetry is studied with use of high-temperature expansions of its mass gap. On the basis of these expansions we propose a simple analytic representation of the mass gap which naturally reproduces all the different phase transitions exhibited by this model (first order and second order of the Ising and of the Kosterlitz-Thouless types). In addition, the bifurcation point where the soft phases originate is clearly identified with the Fateev-Zamolodchikov value.

  17. Chiral transformations of spin-1 mesons in the non-symmetric vacuum

    NASA Astrophysics Data System (ADS)

    Osipov, A. A.; Volkov, M. K.

    2017-07-01

    A new sort of chiral transformations for spin-1 states is obtained as a result of a linearized diagonalization of πa1 mixing in the effective meson Lagrangian. Using this symmetry argument, we argue that there is no physical distinction between such theory and the theory in which a covariant nonlinear diagonalization is used instead. As an illuminating example, the Nambu-Jona-Lasinio type model with the broken SU(2) × SU(2) chiral symmetry in the one-quark-loop approximation is considered.

  18. Complex symmetric root square locus with an application to a spinning drag-free satellite

    NASA Technical Reports Server (NTRS)

    Tashker, M. G.; Debra, D. B.

    1976-01-01

    The parameters and relations associated with optimal systems are examined, taking into account a quadratic performance index and a root square locus plot, including the characteristic roots of the optimal system and its adjoint system as a function of the cost function weights. The calculation of the locus is described and the employment of the considered relations in studies of a drag-free satellite is discussed. Attention is given to weights regarding the initial states, questions of rotating integral control, approaches for experimental verification, and the performance of various methods for the reduction of fuel consumption due to center of spin offsets.

  19. Complex symmetric root square locus with an application to a spinning drag-free satellite

    NASA Technical Reports Server (NTRS)

    Tashker, M. G.; Debra, D. B.

    1976-01-01

    The parameters and relations associated with optimal systems are examined, taking into account a quadratic performance index and a root square locus plot, including the characteristic roots of the optimal system and its adjoint system as a function of the cost function weights. The calculation of the locus is described and the employment of the considered relations in studies of a drag-free satellite is discussed. Attention is given to weights regarding the initial states, questions of rotating integral control, approaches for experimental verification, and the performance of various methods for the reduction of fuel consumption due to center of spin offsets.

  20. Partition-function zeros of spherical spin glasses and their relevance to chaos

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Takahashi, Kazutaka

    2012-03-01

    We investigate the partition-function zeros of the many-body interacting spherical spin glass, the so-called p-spin spherical model, with respect to the complex temperature in the thermodynamic limit. We use the replica method and extend the procedure of the replica symmetry breaking ansatz to be applicable in the complex-parameter case. We derive the phase diagrams in the complex-temperature plane and calculate the density of zeros in each phase. Near the imaginary axis away from the origin, there is a replica symmetric phase having a large density. On the other hand, we observe no density in the spin-glass phases, irrespective of the replica symmetry breaking. We speculate that this suggests the absence of the temperature chaos. To confirm this, we investigate the multiple many-body interacting case which is known to exhibit the chaos effect. The result shows that the density of zeros actually takes finite values in the spin-glass phase, even on the real axis. These observations indicate that the density of zeros is more closely connected to the chaos effect than the replica symmetry breaking.

  1. Symmetric structure of field algebra of G-spin models determined by a normal subgroup

    SciTech Connect

    Xin, Qiaoling Jiang, Lining

    2014-09-15

    Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.

  2. Time evolution of the autocorrelation function in dynamical replica theory

    NASA Astrophysics Data System (ADS)

    Sakata, A.

    2013-04-01

    Asynchronous dynamics given by the master equation in the Sherrington-Kirkpatrick (SK) spin-glass model is studied based on dynamical replica theory (DRT) with an extension to take into account the autocorrelation function. The dynamical behaviour of the system is approximately described by dynamical equations of the macroscopic quantities: magnetization, energy contributed by randomness and the autocorrelation function. The dynamical equations under the replica symmetry assumption are derived by introducing the subshell equipartitioning assumption and exploiting the replica method. The obtained dynamical equations are compared with Monte Carlo simulations, and it is demonstrated that the proposed formula describes well the time evolution of the autocorrelation function in some parameter regions. The study offers a reasonable description of the autocorrelation function in the SK spin-glass system.

  3. Thermal entanglement of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain.

    PubMed

    Ananikian, N S; Ananikyan, L N; Chakhmakhchyan, L A; Rojas, Onofre

    2012-06-27

    The entanglement quantum properties of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain were analyzed. Due to the separable nature of the Ising-type exchange interactions between neighboring Heisenberg dimers, calculation of the entanglement can be performed exactly for each individual dimer. Pairwise thermal entanglement was studied in terms of the isotropic Ising-Heisenberg model and analytical expressions for the concurrence (as a measure of bipartite entanglement) were obtained. The effects of external magnetic field H and next-nearest neighbor interaction J(m) between nodal Ising sites were considered. The ground state structure and entanglement properties of the system were studied in a wide range of coupling constant values. Various regimes with different values of ground state entanglement were revealed, depending on the relation between competing interaction strengths. Finally, some novel effects, such as the two-peak behavior of concurrence versus temperature and coexistence of phases with different values of magnetic entanglement, were observed.

  4. Motion of spin-half particles in the axially symmetric field of naked singularities of the static q-metric

    NASA Astrophysics Data System (ADS)

    Neznamov, V. P.; Shemarulin, V. E.

    2017-04-01

    Quantum-mechanical motion of a half-spin particle was examined in the axially symmetric field of static naked singularities formed by mass distribution with quadrupole moment (q-metric). The analysis was performed by means of the method of effective potentials of the Dirac equation generalized for the case when radial and angular variables are not separated. As $-1=3/2.

  5. About a solvable mean field model of a Gaussian spin glass

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Genovese, Giuseppe; Guerra, Francesco; Tantari, Daniele

    2014-04-01

    In a series of papers, we have studied a modified Hopfield model of a neural network, with learned words characterized by a Gaussian distribution. The model can be represented as a bipartite spin glass, with one party described by dichotomic Ising spins, and the other party by continuous spin variables, with an a priori Gaussian distribution. By application of standard interpolation methods, we have found it useful to compare the neural network model (bipartite) from one side, with two spin glass models, each monopartite, from the other side. Of these, the first is the usual Sherrington-Kirkpatrick model, the second is a spin glass model, with continuous spins and inbuilt highly nonlinear smooth cut-off interactions. This model is an invaluable laboratory for testing all techniques which have been useful in the study of spin glasses. The purpose of this paper is to give a synthetic description of the most peculiar aspects, by stressing the necessary novelties in the treatment. In particular, it will be shown that the control of the infinite volume limit, according to the well-known Guerra-Toninelli strategy, requires in addition one to consider the involvement of the cut-off interaction in the interpolation procedure. Moreover, the control of the ergodic region, the annealed case, cannot be directly achieved through the standard application of the Borel-Cantelli lemma, but requires previous modification of the interaction. This remark could find useful application in other cases. The replica symmetric expression for the free energy can be easily reached through a suitable version of the doubly stochastic interpolation technique. However, this model shares the unique property that the fully broken replica symmetry ansatz can be explicitly calculated. A very simple sum rule connects the general expression of the fully broken free energy trial function with the replica symmetric one. The definite sign of the error term shows that the replica solution is optimal. Then

  6. Replica trick for rare samples

    NASA Astrophysics Data System (ADS)

    Rizzo, Tommaso

    2014-05-01

    In the context of disordered systems with quenched Hamiltonians I address the problem of characterizing rare samples where the thermal average of a specific observable has a value different from the typical one. These rare samples can be selected through a variation of the replica trick which amounts to replicating the system and dividing the replicas intwo two groups containing, respectively, M and -M replicas. Replicas in the first (second) group experience a positive (negative) small field O (1/M) conjugate to the observable considered and the M →∞ limit is to be taken in the end. Applications to the random-field Ising model and to the Sherrington-Kirkpatrick model are discussed.

  7. The phenomenon of spontaneous replica symmetry breaking in complex statistical mechanics systems

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco

    2013-06-01

    We analyze the main aspects of the phenomenon of spontaneous replica symmetry breaking, introduced by Giorgio Parisi. We work in the frame of real replicas, by taking into account the simple case of the random energy model. In particular, we study the phase space diagram for systems of coupled replicas, and the connected phase transitions. Our considerations can be generalized to the more complicated models of mean field spin glasses and neural networks. We report also about a letter of Ettore Majorana, written in December 1937 to his uncle Dante, very interesting for its methodological content.

  8. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  9. New Implementations of Replica-exchange Method for Simulations of Complex Systems: Designed-walk and Deterministic Replica-exchange Methods

    NASA Astrophysics Data System (ADS)

    Urano, Ryo; Okamoto, Yuko

    Two new methods of replica-exchange method (REM) are tested for a two-dimensional Ising spin model. The first method is the deterministic replica-exchange method (DETREM) which uses a differential equation based on Gibbs sampling method instead of Metropolis criteria. The other is the designed-walk replica-exchange method (DEWREM) which determines the trajectory of replica in temperature space without random walk. This method gives more number of tunneling events than conventional REM, where the tunneling event is a round-trip of temperature from the lowest to the highest back to the lowest. We examined physical quantities such as magnetization and susceptibility. Our new methods reproduced the results of the conventional random-walk REM.

  10. Frustration in Vicinity of Transition Point of Ising Spin Glasses

    NASA Astrophysics Data System (ADS)

    Miyazaki, Ryoji

    2013-09-01

    We conjecture the existence of a relationship between frustration and the transition point at zero temperature of Ising spin glasses. The relation reveals that, in several Ising spin glass models, the concentration of ferromagnetic bonds is close to the critical concentration at zero temperature when the output of a function about frustration is equal to unity. The function is the derivative of the average number of frustrated plaquettes with respect to the average number of antiferromagnetic bonds. This relation is conjectured in Ising spin glasses with binary couplings on two-dimensional lattices, hierarchical lattices, and three-body Ising spin glasses with binary couplings on two-dimensional lattices. In addition, the same argument in the Sherrington--Kirkpatrick model yields a point that is identical to the replica-symmetric solution of the transition point at zero temperature.

  11. A generalized parallel replica dynamics

    SciTech Connect

    Binder, Andrew; Lelièvre, Tony; Simpson, Gideon

    2015-03-01

    Metastability is a common obstacle to performing long molecular dynamics simulations. Many numerical methods have been proposed to overcome it. One method is parallel replica dynamics, which relies on the rapid convergence of the underlying stochastic process to a quasi-stationary distribution. Two requirements for applying parallel replica dynamics are knowledge of the time scale on which the process converges to the quasi-stationary distribution and a mechanism for generating samples from this distribution. By combining a Fleming–Viot particle system with convergence diagnostics to simultaneously identify when the process converges while also generating samples, we can address both points. This variation on the algorithm is illustrated with various numerical examples, including those with entropic barriers and the 2D Lennard-Jones cluster of seven atoms.

  12. A generalized parallel replica dynamics

    NASA Astrophysics Data System (ADS)

    Binder, Andrew; Lelièvre, Tony; Simpson, Gideon

    2015-03-01

    Metastability is a common obstacle to performing long molecular dynamics simulations. Many numerical methods have been proposed to overcome it. One method is parallel replica dynamics, which relies on the rapid convergence of the underlying stochastic process to a quasi-stationary distribution. Two requirements for applying parallel replica dynamics are knowledge of the time scale on which the process converges to the quasi-stationary distribution and a mechanism for generating samples from this distribution. By combining a Fleming-Viot particle system with convergence diagnostics to simultaneously identify when the process converges while also generating samples, we can address both points. This variation on the algorithm is illustrated with various numerical examples, including those with entropic barriers and the 2D Lennard-Jones cluster of seven atoms.

  13. Replica trick and string winding

    NASA Astrophysics Data System (ADS)

    Prudenziati, Andrea; Trancanelli, Diego

    2017-07-01

    We apply the replica trick to compute the entropy of a cylinder amplitude in string theory. We focus on the contribution from nonperturbative winding modes and impose tadpole cancellation to understand the correct prescription for integrating over moduli. Choosing the entangling surface to cut longitudinally over the whole length of the cylinder, we obtain an answer that is interpreted as the entropy of a density matrix. We recast this result in target space language, in both the open and closed string picture.

  14. Ising spin glass under continuous-distribution random magnetic fields: Tricritical points and instability lines.

    PubMed

    Crokidakis, Nuno; Nobre, Fernando D

    2008-04-01

    The effects of random magnetic fields are considered in an Ising spin-glass model defined in the limit of infinite-range interactions. The probability distribution for the random magnetic fields is a double Gaussian, which consists of two Gaussian distributions centered, respectively, at +H0 and -H0, presenting the same width sigma . It is argued that such a distribution is more appropriate for a theoretical description of real systems than its simpler particular two well-known limits, namely, the single Gaussian distribution (sigma>H0) and the bimodal one (sigma=0) . The model is investigated by means of the replica method, and phase diagrams are obtained within the replica-symmetric solution. Critical frontiers exhibiting tricritical points occur for different values of sigma , with the possibility of two tricritical points along the same critical frontier. To our knowledge, it is the first time that such a behavior is verified for a spin-glass model in the presence of a continuous-distribution random field, which represents a typical situation of a real system. The stability of the replica-symmetric solution is analyzed, and the usual Almeida-Thouless instability is verified for low temperatures. It is verified that the higher-temperature tricritical point always appears in the region of stability of the replica-symmetric solution; a condition involving the parameters H0 and sigma , for the occurrence of this tricritical point only, is obtained analytically. Some of our results are discussed in view of experimental measurements available in the literature.

  15. Hard templating of symmetric and asymmetric carbon thin films with three-dimensionally ordered mesoporosity.

    PubMed

    Tian, Zheng; Snyder, Mark A

    2014-08-19

    Sacrificial colloidal crystal templating of porous carbon films of tunable thickness is demonstrated using a facile thin-film assembly and hard-template-based nanoreplication process. Convectively assembled, colloidal crystal films composed of size-tunable silica nanoparticles (ca. 10-50 nm) serve as scalable sacrificial scaffolds for the formation of thickness-tunable, structurally robust, and flexible porous carbon films. Both precursor vapor infiltration (PVI) and precursor immersion/spin-off (PIS) techniques, suitable for replication by various carbon sources (e.g., furfural/oxalic acid, phenol-formaldehyde, resorcinol-formaldehyde, sucrose), result in continuous, crack-free porous replica films. Systematic PVI-based underfilling of the template film or PIS-based complete spin-off of excess carbon replica precursor results in porous carbon films endowed with a symmetric three-dimensionally ordered mesopore (3DOm) topology uniformly distributed across the film thickness. Alternatively, by tuning the nanoparticle crystal film thickness and the degree of overfilling (PVI) or rate of spin-off of the carbon replica precursor (PIS), films bearing an asymmetric structure composed of 3DOm-supported ultrathin carbon layers can be realized. The stability of the silica templates under polymerization and carbonization conditions helps bolster mesopore robustness within the replica films, eliminating uniaxial pore shrinkage upon template sacrifice. The decoupling of the template assembly and its replication enables film formation from a wide range of carbon sources and possibly a further expanded materials palette. Realization of porous carbon films on various substrates without degradation of the mesostructure is enabled by robustness of the coating/replication process to characteristic surface roughness at scales several-fold larger than the template particle size as well as to polymer-mediated film transfer. Among various possible applications, we demonstrate how

  16. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.

    PubMed

    Hillar, Alexander; Tripet, Brian; Zoetewey, David; Wood, Janet M; Hodges, Robert S; Boggs, Joan M

    2003-12-30

    Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer

  17. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  18. The 2003 Goddard Rocket Replica Project

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.

    2003-01-01

    A group of volunteers from Marshall Space Flight Center using information and records available,construct a working, flying replica of Robert Goddard's 1926 liquid rocket as well as accurate static display version. Document the effort for posterity.

  19. Flexible tubular replicas of abdominal aortic aneurysms.

    PubMed

    Berry, E; Marsden, A; Dalgarno, K W; Kessel, D; Scott, D J A

    2002-01-01

    The aim of this study was to manufacture life-size, flexible, tubular replicas of human abdominal aortic aneurysms and the associated vasculature, suitable for use in a training simulator for endovascular procedures. Selective laser sintering was used to create a geometrically correct master model for each of ten anatomical variations. The masters were used to generate flexible latex replicas. The use of the replicas in the training simulator was demonstrated. In total ten silicone rubber models were produced. When connected into the training simulator and perfused at arterial pressure it was possible to deploy an endovascular stent under fluoroscopic control and to perform angiography. The study has shown that conventional rapid prototyping technology can be used to manufacture flexible, radiolucent replicas which provide a realistic training environment for endovascular procedures.

  20. Effects of random fields in an antiferromagnetic Ising spin glass

    PubMed

    Vieira; Nobre; Yokoi

    2000-05-01

    The effects of random fields on the two-sublattice infinite-ranged Ising spin-glass model are investigated. This model is expected to be appropriate as a mean-field description of antiferromagnetic spin glasses such as FexMn1-xTiO3. Within replica-symmetric calculations, we study the influence of Gaussian and bimodal random fields on the phase transitions and phase diagrams. It is shown that, in the presence of random fields, the first-order transitions are weakened and may become continuous. Also, the antiferromagnetic phases are always destroyed by sufficiently strong random fields. A qualitative comparison with existing experimental results and the limitations of the present calculations are discussed.

  1. Control of Spinning Symmetric Airframes

    DTIC Science & Technology

    2006-11-14

    IdH dt UNCLASSIFIED UNCLASSIFIED again using the transport theorem IdH dt = BdH dt + ωB/I ×H V. Body Axis System Equations of Motion The equations... IdH dt X MExt = IdH dt = ³ IxxṖ + IQR− IQR ´ ı̂B + ³ IQ̇+ IxxPR− IPR ´ ĵB + ³ IṘ+ IPQ− IxxPQ ´ k̂B or in component form IxxṖ =Mx IQ̇+ IxxPR− IPR...moment equations are X MExt = IdH dt = φdH dt + ωφ/I ×H = φdĪC · ωB/I dt + ωφ/I × ³ ĪC · ωB/I ´ we must now pause and look at the time rate

  2. Symmetrical Diphosphatetraazacyclooctatetraenes.

    DTIC Science & Technology

    1980-06-26

    aryl, alkyl, perfluoroalkyl and perfluoroalkylether radcalsl Rf is selected from perfluoroalkyl and perfluoroalkylether radicals 20 as represented by...process for synthesizing symmetrical diphosphatetraazacyclooctatetraenes by reacting perfluoroalkyl or perfluoroalkylether amidine with a...symmetrical diphosphatetraazacyclooctatetraene. The substituent Rf can he selected from perfluoroalkyl and pertluoroalkylether groups as represented hy the

  3. Symmetric textures

    SciTech Connect

    Ramond, P. . Dept. of Physics)

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.

  4. Symmetric textures

    SciTech Connect

    Ramond, P.

    1993-04-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.

  5. Generalized gravitational entropy without replica symmetry

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Kelly, William R.

    2015-03-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  6. Effect of modularity on the Glauber dynamics of the dilute spin glass model

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Man

    2014-11-01

    We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r < 1/2 and q = (-1+4 r 2)/(32 r 4) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ and q = (-1+8 r 2)/(128 r 4) which is stable for r > 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.

  7. Nontrivial Critical Fixed Point for Replica-Symmetry-Breaking Transitions

    NASA Astrophysics Data System (ADS)

    Charbonneau, Patrick; Yaida, Sho

    2017-05-01

    The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon—the Gardner transition—has recently been predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has, however, long been questioned below their upper critical dimension, du=6 . Here, we obtain evidence for the existence of these transitions in d

  8. Scalable replica-exchange framework for Wang-Landau sampling.

    PubMed

    Vogel, Thomas; Li, Ying Wai; Wüst, Thomas; Landau, David P

    2014-08-01

    We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.

  9. Scalable replica-exchange framework for Wang-Landau sampling

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Li, Ying Wai; Wüst, Thomas; Landau, David P.

    2014-08-01

    We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.

  10. Two-Stage Lucite Replicas for Electron Fractography,

    DTIC Science & Technology

    Electron microscopical comparisons between replicas produced by the lucite technique and by the commonly-used cellulose acetate procedure indicate that those produced using lucite give better overall replica fidelity. (Author)

  11. Variational studies and replica symmetry breaking in the generalization problem of the binary perceptron

    PubMed

    Botelho; Mattos; Caticha

    2000-11-01

    We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally.

  12. Instituto de Fisica, UFRGS, CP 15051, 91501-970, Porto Alegre RS, Brazil: Replica theory of granular media

    NASA Astrophysics Data System (ADS)

    Arenzon, Jeferson J.

    1999-03-01

    An infinite range spin-glass-like model for granular systems is introduced and studied through the replica mean-field formalism. Equilibrium, density-dependent properties under vibration and gravity are obtained that qualitatively resemble the results from real and numerical experiments.

  13. Replica-Permutation Method with the Suwa-Todo Algorithm beyond the Replica-Exchange Method.

    PubMed

    Itoh, Satoru G; Okumura, Hisashi

    2013-01-08

    We propose a new method for molecular dynamics and Monte Carlo simulations, which is referred to as the replica-permutation method (RPM), to realize more efficient sampling than the replica-exchange method (REM). In RPM, not only exchanges between two replicas but also permutations among more than two replicas are performed. Furthermore, instead of the Metropolis algorithm, the Suwa-Todo algorithm is employed for replica-permutation trials to minimize its rejection ratio. We applied RPM to particles in a double-well potential energy, Met-enkephalin in a vacuum, and a C-peptide analog of ribonuclease A in explicit water. For comparison purposes, replica-exchange molecular dynamics simulations were also performed. As a result, RPM sampled not only the temperature space but also the conformational space more efficiently than REM for all systems. From our simulations of C-peptide, we obtained the α-helix structure with salt bridges between Gly2 and Arg10, which is known in experiments. Calculating its free-energy landscape, the folding pathway was revealed from an extended structure to the α-helix structure with the salt bridges. We found that the folding pathway consists of the two steps: The first step is the "salt-bridge formation step," and the second step is the "α-helix formation step."

  14. Evaluation of generalized degrees of freedom for sparse estimation by replica method

    NASA Astrophysics Data System (ADS)

    Sakata, A.

    2016-12-01

    We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.

  15. How could the replica method improve accuracy of performance assessment of channel coding?

    NASA Astrophysics Data System (ADS)

    Kabashima, Yoshiyuki

    2009-12-01

    We explore the relation between the techniques of statistical mechanics and information theory for assessing the performance of channel coding. We base our study on a framework developed by Gallager in IEEE Trans. Inform. Theory IT-11, 3 (1965), where the minimum decoding error probability is upper-bounded by an average of a generalized Chernoff's bound over a code ensemble. We show that the resulting bound in the framework can be directly assessed by the replica method, which has been developed in statistical mechanics of disordered systems, whereas in Gallager's original methodology further replacement by another bound utilizing Jensen's inequality is necessary. Our approach associates a seemingly ad hoc restriction with respect to an adjustable parameter for optimizing the bound with a phase transition between two replica symmetric solutions, and can improve the accuracy of performance assessments of general code ensembles including low density parity check codes, although its mathematical justification is still open.

  16. A spin glass approach to the directed feedback vertex set problem

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Jun

    2016-07-01

    A directed graph (digraph) is formed by vertices and arcs (directed edges) from one vertex to another. A feedback vertex set (FVS) is a set of vertices that contains at least one vertex of every directed cycle in this digraph. The directed feedback vertex set problem aims at constructing a FVS of minimum cardinality. This is a fundamental cycle-constrained hard combinatorial optimization problem with wide practical applications. In this paper we construct a spin glass model for the directed FVS problem by converting the global cycle constraints into local arc constraints, and study this model through the replica-symmetric (RS) mean field theory of statistical physics. We then implement a belief propagation-guided decimation (BPD) algorithm for single digraph instances. The BPD algorithm slightly outperforms the simulated annealing algorithm on large random graph instances. The RS mean field results and algorithmic results can be further improved by working on a more restrictive (and more difficult) spin glass model.

  17. DIRAC File Replica and Metadata Catalog

    NASA Astrophysics Data System (ADS)

    Tsaregorodtsev, A.; Poss, S.

    2012-12-01

    File replica and metadata catalogs are essential parts of any distributed data management system, which are largely determining its functionality and performance. A new File Catalog (DFC) was developed in the framework of the DIRAC Project that combines both replica and metadata catalog functionality. The DFC design is based on the practical experience with the data management system of the LHCb Collaboration. It is optimized for the most common patterns of the catalog usage in order to achieve maximum performance from the user perspective. The DFC supports bulk operations for replica queries and allows quick analysis of the storage usage globally and for each Storage Element separately. It supports flexible ACL rules with plug-ins for various policies that can be adopted by a particular community. The DFC catalog allows to store various types of metadata associated with files and directories and to perform efficient queries for the data based on complex metadata combinations. Definition of file ancestor-descendent relation chains is also possible. The DFC catalog is implemented in the general DIRAC distributed computing framework following the standard grid security architecture. In this paper we describe the design of the DFC and its implementation details. The performance measurements are compared with other grid file catalog implementations. The experience of the DFC Catalog usage in the CLIC detector project are discussed.

  18. RRS: Replica Registration Service for Data Grids

    SciTech Connect

    Shoshani, Arie; Sim, Alex; Stockinger, Kurt

    2005-07-15

    Over the last few years various scientific experiments and Grid projects have developed different catalogs for keeping track of their data files. Some projects use specialized file catalogs, others use distributed replica catalogs to reference files at different locations. Due to this diversity of catalogs, it is very hard to manage files across Grid projects, or to replace one catalog with another. In this paper we introduce a new Grid service called the Replica Registration Service (RRS). It can be thought of as an abstraction of the concepts for registering files and their replicas. In addition to traditional single file registration operations, the RRS supports collective file registration requests and keeps persistent registration queues. This approach is of particular importance for large-scale usage where thousands of files are copied and registered. Moreover, the RRS supports a set of error directives that are triggered in case of registration failures. Our goal is to provide a single uniform interface for various file catalogs to support the registration of files across multiple Grid projects, and to make Grid clients oblivious to the specific catalog used.

  19. Exchange frequency in replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.

    2008-01-01

    The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.

  20. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Pivkin, Igor V.; Shea, Joan-Emma

    2016-07-01

    In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble.

  1. Mean field spin glasses treated with PDE techniques

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele

    2013-07-01

    Following an original idea of Guerra, in these notes we analyze the Sherrington-Kirkpatrick model from different perspectives, all sharing the underlying approach which consists in linking the resolution of the statistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation (PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved in their native field and lastly bringing back the solution in the proper statistical mechanics framework. Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering the phase transition). Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities (namely of Aizenman-Contucci type, but merged within the Guerra's broken replica measures), whose interest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization to the ultrametric tree predicted by Parisi.

  2. Replica scaling specifications for materials and production

    NASA Astrophysics Data System (ADS)

    Aune, R. B.; Lindgard, J.; Nygard, K.; Olden, V.

    1995-03-01

    Laboratory experiments of repeatable full scale precision tests on reinforced concrete elements exposed to blast loads require considerable resources, and are in many cases impossible with the test equipment available nationally and internationally. In this respect testing of scaled structural elements is advantageous. Model laws must be applied, and the effect of relaxations of a strict model law application must be well understood. The objective of this report is to give specifications for production of reinforced concrete slabs in replica scaling. Three slabs with different dimensions are included: 300 x 300 x 30 mm (P1), 1000 x 1000 x 100 mm (P2) and 3000 x 3000 x 300 mm (P3). Concrete mixes are developed for all three slabs. Concrete quality comply with C35, and similitude in the compressive strength between the mixes is required. Use of replica scaled accumulated aggregate grading curves was a part of the scope of work. Specifications for production of deformed bars with diameters 1.6 mm and 5.3 mm for P1 and P2, respectively, are developed. The material properties of the deformed bars comply with the Norwegian quality K500TE for reinforcement. Acceptable similitude between the stress-strain curves for the two dimensions is obtained.

  3. Robustness of replica symmetry breaking phenomenology in random laser.

    PubMed

    Tommasi, Federico; Ignesti, Emilio; Lepri, Stefano; Cavalieri, Stefano

    2016-11-16

    Random lasers are optical sources where light is amplified by stimulated emission along random paths through an amplifying scattering medium. Connections between their physics and the one of quenched disordered nonlinear systems, notably spin glasses, have been recently suggested. Here we report a first experimental study of correlations of spectral fluctuations intensity in a random laser medium where the scatterers displacement significantly changes among consecutive shots. Remarkably, our results reveal that the replica symmetry breaking (RSB) phenomenology is robust with respect to an averaging over different realizations of the disorder. Moreover, besides opening new intriguing questions about the understanding of such a phenomenon, this work aims to clarify the connection between the RSB with the onset of the Lévy regime, i.e. the fluctuations regime that is a peculiar feature of the random lasing under critical conditions. Our results suggest that the former occurs independently of the latter and then the RSB phenomenology is a generic feature linked to the random laser threshold.

  4. Robustness of replica symmetry breaking phenomenology in random laser

    PubMed Central

    Tommasi, Federico; Ignesti, Emilio; Lepri, Stefano; Cavalieri, Stefano

    2016-01-01

    Random lasers are optical sources where light is amplified by stimulated emission along random paths through an amplifying scattering medium. Connections between their physics and the one of quenched disordered nonlinear systems, notably spin glasses, have been recently suggested. Here we report a first experimental study of correlations of spectral fluctuations intensity in a random laser medium where the scatterers displacement significantly changes among consecutive shots. Remarkably, our results reveal that the replica symmetry breaking (RSB) phenomenology is robust with respect to an averaging over different realizations of the disorder. Moreover, besides opening new intriguing questions about the understanding of such a phenomenon, this work aims to clarify the connection between the RSB with the onset of the Lévy regime, i.e. the fluctuations regime that is a peculiar feature of the random lasing under critical conditions. Our results suggest that the former occurs independently of the latter and then the RSB phenomenology is a generic feature linked to the random laser threshold. PMID:27849029

  5. Replica neutron guides for experiments with ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Vasil'ev, A. V.; Lasakov, M. S.; Siber, E. V.; Murashkin, A. N.; Egorov, A. I.; Fomin, A. K.; Sbitnev, S. V.; Geltenbort, P.; Zimmer, O.

    2017-01-01

    The method for producing neutron guides for ultracold neutrons based on the replica method has been described. A comparative analysis of the quality of replica neutron guides, neutron guides made from polished anode-mechanical steel tubes, and neutron guides from electropolished tubes has been given.

  6. Reversible folding simulation by hybrid Hamiltonian replica exchange

    NASA Astrophysics Data System (ADS)

    Xu, Weixin; Lai, Tingfeng; Yang, Ye; Mu, Yuguang

    2008-05-01

    Reversible foldings of a β-hairpin peptide, chignolin, by recently invented hybrid Hamiltonian replica exchange molecular dynamics simulations based on Poisson-Boltzmann model in explicit water are demonstrated. Initiated from extended structures the peptide folded and unfolded a couple of times in seven out of eight replica trajectories during 100 nanoseconds simulation. The folded states have the lowest all-atom root mean squared deviation of 1.3Å with respect to the NMR structures. At T =300K the occurrence of folded states was converged to 62% during 80ns simulation which agrees well with experimental data. Especially, a detailed structural evolution map was constructed based on 800 000 structural snapshots and from where a unique folding doorway emerges. Compared with 130ns standard replica exchange simulation using 24 replicas on the same system, the hybrid Hamiltonian replica exchange molecular dynamics simulation presents consistent results.

  7. Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing.

    PubMed

    Gallicchio, Emilio; Xia, Junchao; Flynn, William F; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M

    2015-11-01

    Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.

  8. Asynchronous replica exchange software for grid and heterogeneous computing

    NASA Astrophysics Data System (ADS)

    Gallicchio, Emilio; Xia, Junchao; Flynn, William F.; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M.

    2015-11-01

    Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.

  9. Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing

    PubMed Central

    Gallicchio, Emilio; Xia, Junchao; Flynn, William F.; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M.

    2015-01-01

    Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices. PMID:27103749

  10. Optimized replica gas estimation of absolute integrals and partition functions

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.

    2010-09-01

    In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising model.

  11. Optimized replica gas estimation of absolute integrals and partition functions.

    SciTech Connect

    Minh, D.

    2010-01-01

    In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising model.

  12. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  13. Shuttle Replica On The Way To Space Center Houston

    NASA Image and Video Library

    Atop a barge, the space shuttle full-scale replica nears the completion of its eight-day journey from the Kennedy Space Center destined for permanent retention at Space Center Houston, near the NAS...

  14. SRF Cavity Surface Topography Characterization Using Replica Techniques

    SciTech Connect

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  15. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  16. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  17. Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field

    NASA Astrophysics Data System (ADS)

    Magalhães, S. G.; Zimmer, F. M.; Kipper, C. J.; Calegari, E. J.

    2006-07-01

    The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and standard deviation J. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution for large g. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ.

  18. An axially symmetric solution of metric-affine gravity

    NASA Astrophysics Data System (ADS)

    Vlachynsky, E. J.; Tresguerres, R.; Obukhov, Yu N.; Hehl, F. W.

    1996-12-01

    We present an exact stationary axially symmetric vacuum solution of metric-affine gravity (MAG) which generalizes the recently reported spherically symmetric solution; besides the metric, it carries nonmetricity and torsion as post-Riemannian geometrical structures. The parameters of the solution are interpreted as mass and angular momentum and as dilation, shear and spin charges.

  19. From random walks to spin glasses

    NASA Astrophysics Data System (ADS)

    Derrida, B.

    1997-02-01

    The talk was a short review on systems which exhibit non-self-averaging effects: sums of random variables when the distribution has a long tail, mean field spin glasses, random map models and returns of a random walk to the origin. Non-self-averaging effects are identical in the case of sums of random variables and in the spin glass problem as predicted by the replica approach. Also we will see that for the random map models or for the problem of the returns of a random walk to the origin, the non-self-averaging effects coincide with the results of the replica approach when the number n of replica n = - {1}/{2} or n = -1.

  20. Low cost silicone renal replicas for surgical training - technical note.

    PubMed

    Smektala, T; Goląb, A; Królikowski, M; Slojewski, M

    2016-09-01

    The aim of this brief report was to present and evaluate workflow of preparation of lowcost individual silicone replicas of kidneys for laparoscopic training and surgical simulation of difficult nephron sparing surgeries. The work flow consists of four steps: 1.Image segmentation; 2.Casting mould designing; 3.Manufacturing of casting mould; 4.Silicone replica casting. To evaluate the cost and time required to execute the presented method, authors prepared 5 silicone models for 5 consecutive patients undergoing laparoscopic kidney tumorectomy due to renal cell cancer. Average times of image segmentation, casting mould design, casting mould printing and pouring of silicon replicas were 94 min, 22 min, 14 h and 30 min, respectively. Average costs of casting mould printing and casting of silicon replica were 14.4$ and 7.4$ respectively. The presented technique is simple to perform and beyond basic 3D printer it does not require any other expensive equipment. The final silicone model reproduces shape and elasticity of the living organ and has similar mechanical strength. These properties of silicone replica in combination with the presented technique can be used to prepare other artificial organs, ready for a simulation of treatment.

  1. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    PubMed

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  2. Replica exchange simulation method using temperature and solvent viscosity

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong H.

    2010-04-01

    We propose an efficient and simple method for fast conformational sampling by introducing the solvent viscosity as a parameter to the conventional temperature replica exchange molecular dynamics (T-REMD) simulation method. The method, named V-REMD (V stands for viscosity), uses both low solvent viscosity and high temperature to enhance sampling for each replica; therefore it requires fewer replicas than the T-REMD method. To reduce the solvent viscosity by a factor of λ in a molecular dynamics simulation, one can simply reduce the mass of solvent molecules by a factor of λ2. This makes the method as simple as the conventional method. Moreover, thermodynamic and conformational properties of structures in replicas are still useful as long as one has sufficiently sampled the Boltzmann ensemble. The advantage of the present method has been demonstrated with the simulations of the trialanine, deca-alanine, and a 16-residue β-hairpin peptides. It shows that the method could reduce the number of replicas by a factor of 1.5 to 2 as compared with the T-REMD method.

  3. Accuracy of three-dimensional printing for manufacturing replica teeth.

    PubMed

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung

    2015-09-01

    Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment.

  4. Filter replicas and permanent collections of recombinant DNA plasmids.

    PubMed Central

    Gergen, J P; Stern, R H; Wensink, P C

    1979-01-01

    A permanent, ordered collection of 23,000 recombinant DNA plasmids containing Drosophila melanogaster DNA has been established. Simple and practical methods for storing and manipulating this collection were developed. In addition, an improved, simple and inexpensive method for making paper filter replicas of such an ordered collection and of a high density (10,000 colonies/petri dish) unordered collection was developed. These filter replicas are suitable for nucleic acid hybridization screens of recombinant DNA colinies and each filter replica can be used for many (greater than 5) successive screens. The kinetics of this hybridization reaction were examined and allow design of experiments that detect colony complementarity to a nucleic acid that is 0.5% of the hybridization probe. Images PMID:118435

  5. Protein structure refinement with adaptively restrained homologous replicas.

    PubMed

    Della Corte, Dennis; Wildberg, André; Schröder, Gunnar F

    2016-09-01

    A novel protein refinement protocol is presented which utilizes molecular dynamics (MD) simulations of an ensemble of adaptively restrained homologous replicas. This approach adds evolutionary information to the force field and reduces random conformational fluctuations by coupling of several replicas. It is shown that this protocol refines the majority of models from the CASP11 refinement category and that larger conformational changes of the starting structure are possible than with current state of the art methods. The performance of this protocol in the CASP11 experiment is discussed. We found that the quality of the refined model is correlated with the structural variance of the coupled replicas, which therefore provides a good estimator of model quality. Furthermore, some remarkable refinement results are discussed in detail. Proteins 2016; 84(Suppl 1):302-313. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Reconstruction of Monte Carlo replicas from Hessian parton distributions

    NASA Astrophysics Data System (ADS)

    Hou, Tie-Jiun; Gao, Jun; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Stump, Daniel; Wang, Bo-Ting; Xie, Ke Ping; Dulat, Sayipjamal; Pumplin, Jon; Yuan, C. P.

    2017-03-01

    We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.

  7. Adaptive single replica multiple state transition interface sampling

    NASA Astrophysics Data System (ADS)

    Du, Wei-Na; Bolhuis, Peter G.

    2013-07-01

    The multiple state transition path sampling method allows sampling of rare transitions between many metastable states, but has the drawback that switching between qualitatively different pathways is difficult. Combination with replica exchange transition interface sampling can in principle alleviate this problem, but requires a large number of simultaneous replicas. Here we remove these drawbacks by introducing a single replica sampling algorithm that samples only one interface at a time, while efficiently walking through the entire path space using a Wang-Landau approach or, alternatively, a fixed bias. We illustrate the method on several model systems: a particle diffusing in a simple 2D potential, isomerization in a small Lennard Jones cluster, and isomerization of the alanine dipeptide in explicit water.

  8. A Replica-Coupling Approach to Disordered Pinning Models

    NASA Astrophysics Data System (ADS)

    Toninelli, Fabio Lucio

    2008-06-01

    We consider a renewal process τ = { τ 0, τ 1,...} on the integers, where the law of τ i - τ i-1 has a power-like tail P( τ i - τ i-1 = n) = n -(α+1) L( n) with α ≥ 0 and L(·) slowly varying. We then assign a random, n-dependent reward/penalty to the occurrence of the event that the site n belongs to τ. In such generality this class of problems includes, among others, (1 + d)-dimensional models of pinning of directed polymers on a one-dimensional random defect, (1 + 1)-dimensional models of wetting of disordered substrates, and the Poland-Scheraga model of DNA denaturation. By varying the average of the reward, the system undergoes a transition from a localized phase, where τ occupies a finite fraction of {mathbb{N}} to a delocalized phase, where the density of τ vanishes. In absence of disorder (i.e., if the reward is independent of n), the transition is of first order for α > 1 and of higher order for α < 1. Moreover, for α ranging from 1 to 0, the transition ranges from first to infinite order. Presence of even an arbitrarily small (but extensive) amount of disorder is known to modify the order of transition as soon as α > 1/2 [11]. In physical terms, disorder is relevant in this situation, in agreement with the heuristic Harris criterion. On the other hand, for 0 < α < 1/2 it has been proven recently by K. Alexander [2] that, if disorder is sufficiently weak, critical exponents are not modified by randomness: disorder is irrelevant. In this work, generalizing techniques which in the framework of spin glasses are known as replica coupling and interpolation, we give a new, simpler proof of the main results of [2]. Moreover, we (partially) justify a small-disorder expansion worked out in [9] for α < 1/2, showing that it provides a free energy upper bound which improves the annealed one.

  9. Fractographic ceramic failure analysis using the replica technique

    PubMed Central

    Scherrer, Susanne S.; Quinn, Janet B.; Quinn, George D.; Anselm Wiskott, H. W.

    2007-01-01

    Objectives To demonstrate the effectiveness of in vivo replicas of fractured ceramic surfaces for descriptive fractography as applied to the analysis of clinical failures. Methods The fracture surface topography of partially failed veneering ceramic of a Procera Alumina molar and an In Ceram Zirconia premolar were examined utilizing gold-coated epoxy poured replicas viewed using scanning electron microscopy. The replicas were inspected for fractographic features such as hackle, wake hackle, twist hackle, compression curl and arrest lines for determination of the direction of crack propagation and location of the origin. Results For both veneering ceramics, replicas provided an excellent reproduction of the fractured surfaces. Fine details including all characteristic fracture features produced by the interaction of the advancing crack with the material's microstructure could be recognized. The observed features are indicators of the local direction of crack propagation and were used to trace the crack's progression back to its initial starting zone (the origin). Drawbacks of replicas such as artifacts (air bubbles) or imperfections resulting from inadequate epoxy pouring were noted but not critical for the overall analysis of the fractured surfaces. Significance The replica technique proved to be easy to use and allowed an excellent reproduction of failed ceramic surfaces. It should be applied before attempting to remove any failed part remaining in situ as the fracture surface may be damaged during this procedure. These two case studies are intended as an introduction for the clinical researcher in using qualitative (descriptive) fractography as a tool for understanding fracture processes in brittle restorative materials and, secondarily, to draw conclusions as to possible design inadequacies in failed restorations. PMID:17270267

  10. Nonmagnetic semiconductor spin transistor

    NASA Astrophysics Data System (ADS)

    Hall, K. C.; Lau, Wayne H.; Gündoǧdu, K.; Flatté, Michael E.; Boggess, Thomas F.

    2003-10-01

    We propose a spin transistor using only nonmagnetic materials that exploits the characteristics of bulk inversion asymmetry (BIA) in (110) symmetric quantum wells. We show that extremely large spin splittings due to BIA are possible in (110) InAs/GaSb/AlSb heterostructures, which together with the enhanced spin decay times in (110) quantum wells demonstrates the potential for exploitation of BIA effects in semiconductor spintronics devices. Spin injection and detection is achieved using spin-dependent resonant interband tunneling and spin transistor action is realized through control of the electron spin lifetime in an InAs lateral transport channel using an applied electric field (Rashba effect). This device may also be used as a spin valve, or a magnetic field sensor.

  11. Interface energies in ising spin glasses.

    PubMed

    Aspelmeier, T; Moore, M A; Young, A P

    2003-03-28

    The replica method has been used to calculate the interface free energy associated with the change from periodic to antiperiodic boundary conditions in finite-dimensional spin glasses. At mean-field level the interface free energy vanishes, but after allowing for fluctuation effects, a nonzero interface free energy is obtained which is significantly different from numerical expectations.

  12. Patrol Detection for Replica Attacks on Wireless Sensor Networks

    PubMed Central

    Wang, Liang-Min; Shi, Yang

    2011-01-01

    Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods. PMID:22163752

  13. Creating technical heritage object replicas in a virtual environment

    NASA Astrophysics Data System (ADS)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  14. Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.

    PubMed

    Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M

    2016-08-25

    Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.

  15. The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra

    PubMed Central

    Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca

    2015-01-01

    The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194

  16. Evidence of a one-step replica symmetry breaking in a three-dimensional Potts glass model.

    PubMed

    Takahashi, Takashi; Hukushima, Koji

    2015-02-01

    We study a seven-state Potts glass model in three dimensions with first-, second-, and third-nearest-neighbor interactions with a bimodal distribution of couplings by Monte Carlo simulations. Our results show the existence of a spin-glass transition at a finite temperature T(c), a discontinuous jump of an order parameter at T(c) without latent heat, and a nontrivial structure in the order parameter distribution below T(c). They are compatible with one-step replica symmetry breaking.

  17. Sparks and Shocks: Replicas of Historical Instruments in Museum Education

    ERIC Educational Resources Information Center

    Rhees, David J.

    2015-01-01

    This paper discusses the variety of ways in which The Bakken Museum has made use of replicas or simulations of historical instruments and experiments and demonstrations in education programs and exhibits for school children, families with children, and other museum audiences. Early efforts were stimulated in the mid-1980s by a collaboration with…

  18. Sparks and Shocks: Replicas of Historical Instruments in Museum Education

    ERIC Educational Resources Information Center

    Rhees, David J.

    2015-01-01

    This paper discusses the variety of ways in which The Bakken Museum has made use of replicas or simulations of historical instruments and experiments and demonstrations in education programs and exhibits for school children, families with children, and other museum audiences. Early efforts were stimulated in the mid-1980s by a collaboration with…

  19. Infants' Symbolic Comprehension of Actions Modeled with Toy Replicas

    ERIC Educational Resources Information Center

    Johnson, Kathy E.; Younger, Barbara A.; Furrer, Stephanie D.

    2005-01-01

    While very young children's understanding of objects as symbols for other entities has been the focus of much investigation, very little is known concerning the emergence of comprehension for symbolic relations among actions modeled with toy replicas and their real counterparts. We used videotaped depictions of real actions in a preferential…

  20. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  1. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  2. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  3. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  4. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  5. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  6. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  7. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  8. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  9. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  10. PELDOR in rotationally symmetric homo-oligomers

    NASA Astrophysics Data System (ADS)

    Giannoulis, Angeliki; Ward, Richard; Branigan, Emma; Naismith, James H.; Bode, Bela E.

    2013-10-01

    Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.

  11. Accuracy of three-dimensional printing for manufacturing replica teeth

    PubMed Central

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol

    2015-01-01

    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment. PMID:26445716

  12. Symmetric missile dynamic instabilities: A review

    NASA Astrophysics Data System (ADS)

    Murphy, C. H.

    1980-03-01

    Dynamic instabilities observed for symmetric missiles and projectiles arise from a large variety of causes. These include unstable linear damping moments, and different nonlinear in-plane and out-of-plane damping moments for nonspinning re-entry vehicles, nonlinear Magnus moments for spinning missiles, and internal resonance with moving payload components. If aerodynamic trim is present, linear spin-yaw resonance can occur as well as nonlinear subharmonic motions and a number of other limit motions. This report gives a complete survey of these possibilities with a number of actual case histories.

  13. Symmetric States on the Octonionic Bloch Ball

    NASA Astrophysics Data System (ADS)

    Graydon, Matthew

    2012-02-01

    Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.

  14. PT-Symmetric Quantum Liouvillean Dynamics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2012-08-01

    We discuss a combination of unitary and antiunitary symmetry of quantum Liouvillean dynamics, in the context of open quantum systems, which implies a D2 symmetry of the complex Liouvillean spectrum. For sufficiently weak system-bath coupling, it implies a uniform decay rate for all coherences, i.e., off-diagonal elements of the system’s density matrix taken in the eigenbasis of the Hamiltonian. As an example, we discuss symmetrically boundary driven open XXZ spin 1/2 chains.

  15. Cumulative overlap distribution function in realistic spin glasses

    NASA Astrophysics Data System (ADS)

    Billoire, A.; Maiorano, A.; Marinari, E.; Martin-Mayor, V.; Yllanes, D.

    2014-09-01

    We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution of the Sherrington-Kirkpatrick and 3D Edwards-Anderson models of Ising spin glasses. We find that this approach is an effective tool to distinguish between replica symmetry breaking-like and droplet-like behavior of the spin-glass phase. Our results are in agreement with a replica symmetry breaking-like behavior for the 3D Edwards-Anderson model.

  16. Walking freely in the energy and temperature space by the modified replica exchange molecular dynamics method.

    PubMed

    Chen, Changjun; Huang, Yanzhao

    2016-06-30

    Replica Exchange Molecular Dynamics (REMD) method is a powerful sampling tool in molecular simulations. Recently, we made a modification to the standard REMD method. It places some inactive replicas at different temperatures as well as the active replicas. The method completely decouples the number of the active replicas and the number of the temperature levels. In this article, we make a further modification to our previous method. It uses the inactive replicas in a different way. The inactive replicas first sample in their own knowledge-based energy databases and then participate in the replica exchange operations in the REMD simulation. In fact, this method is a hybrid between the standard REMD method and the simulated tempering method. Using different active replicas, one can freely control the calculation quantity and the convergence speed of the simulation. To illustrate the performance of the method, we apply it to some small models. The distribution functions of the replicas in the energy space and temperature space show that the modified REMD method in this work can let the replicas walk freely in both of the two spaces. With the same number of the active replicas, the free energy surface in the simulation converges faster than the standard REMD. © 2016 Wiley Periodicals, Inc.

  17. Storing files in a parallel computing system using list-based index to identify replica files

    DOEpatents

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Zhang, Zhenhua; Grider, Gary

    2015-07-21

    Improved techniques are provided for storing files in a parallel computing system using a list-based index to identify file replicas. A file and at least one replica of the file are stored in one or more storage nodes of the parallel computing system. An index for the file comprises at least one list comprising a pointer to a storage location of the file and a storage location of the at least one replica of the file. The file comprises one or more of a complete file and one or more sub-files. The index may also comprise a checksum value for one or more of the file and the replica(s) of the file. The checksum value can be evaluated to validate the file and/or the file replica(s). A query can be processed using the list.

  18. Image tube. [deriving electron beam replica of image

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Johnson, C. B. (Inventor)

    1974-01-01

    An optical image is projected onto a planar surface of a photocathode that derives an electron beam replica of the image. A target electrode displaced relative to the photocathode so that it does not obstruct the optical image includes a planar surface for receiving and deriving an accurate replica of the electron beam image. The two planar surfaces are parallel. The electron beam image is focused on the target electrode by providing throughout a region that extends between the planar surfaces of the photocathode and receiving electrode, constant homogeneous dc electric and magnetic fields. The electric field extends in a direction perpendicular to the planar surfaces while the magnetic field extends along a straight line that intersects the photocathode and target electrode at an acute angle.

  19. Augmentation of Cavity Optical Inspection by Replicas Without Performance Degradation

    SciTech Connect

    Ge, M.; Burk, D.; Hicks, D.; Wu, G.; Thompson, C.; Cooley, L.D.; /Fermilab

    2009-01-01

    Although cavity optical inspection systems provide a huge amount of qualitative information about surface features, the amount of quantitative topographic informa-tion is limited. Here, we report the use of silicone-based RTV for replicas and moldings that provide increased details of topographic data associated with the optical cavity images. Profilometry scans of the molds yield mi-crometer-scale details associated with equator weld struc-tures and weld pits. This confirms at least two different types of pits, one which is bowl-shaped, and one which has a small peak at the bottom. The contour information extracted from profilometry can be used to evaluate mechanisms by which pits and other features limit RF performance. We present calculations based on a con-formal transformation of the profiles above. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  20. Geometric multiaxial representation of N -qubit mixed symmetric separable states

    NASA Astrophysics Data System (ADS)

    SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik

    2017-08-01

    The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.

  1. Zebrafish response to a robotic replica in three dimensions

    PubMed Central

    Ruberto, Tommaso; Mwaffo, Violet; Singh, Sukhgewanpreet; Neri, Daniele

    2016-01-01

    As zebrafish emerge as a species of choice for the investigation of biological processes, a number of experimental protocols are being developed to study their social behaviour. While live stimuli may elicit varying response in focal subjects owing to idiosyncrasies, tiredness and circadian rhythms, video stimuli suffer from the absence of physical input and rely only on two-dimensional projections. Robotics has been recently proposed as an alternative approach to generate physical, customizable, effective and consistent stimuli for behavioural phenotyping. Here, we contribute to this field of investigation through a novel four-degree-of-freedom robotics-based platform to manoeuvre a biologically inspired three-dimensionally printed replica. The platform enables three-dimensional motions as well as body oscillations to mimic zebrafish locomotion. In a series of experiments, we demonstrate the differential role of the visual stimuli associated with the biologically inspired replica and its three-dimensional motion. Three-dimensional tracking and information-theoretic tools are complemented to quantify the interaction between zebrafish and the robotic stimulus. Live subjects displayed a robust attraction towards the moving replica, and such attraction was lost when controlling for its visual appearance or motion. This effort is expected to aid zebrafish behavioural phenotyping, by offering a novel approach to generate physical stimuli moving in three dimensions. PMID:27853566

  2. Replica mold for nanoimprint lithography from a novel hybrid resin.

    PubMed

    Lee, Bong Kuk; Hong, Lan-Young; Lee, Hea Yeon; Kim, Dong-Pyo; Kawai, Tomoji

    2009-10-06

    The use of durable replica molds with high feature resolution has been proposed as an inexpensive and convenient route for manufacturing nanostructured materials. A simple and fast duplication method, involving the use of a master mold to create durable polymer replicas as imprinting molds, has been demonstrated using both UV- and thermal nanoimprinting lithography (NIL). To obtain a high-durability replicating material, a dual UV/thermal-curable, organic-inorganic hybrid resin was synthesized using a sol-gel-based combinatorial method. The cross-linked hybrid resin exhibited high transparency to UV light and resistance to organic solvents. Molds made of this material showed good mechanical properties (Young's modulus=1.76 GPa) and gas permeability. The low viscosity of the hybrid resin (approximately 29 cP) allowed it to be easily transferred to relief nanostructures on transparent glass substrates using UV-NIL at room temperature and low pressure (0.2 MPa) over a relatively short time (80 s). A low surface energy release agent was successfully coated onto the hybrid mold surface without destroying the imprinted nanostructures, even after O2 plasma treatment. Nanostructures with feature sizes down to 80 nm were successfully reproduced using these molds in both UV- and thermal-NIL processes. After repeating 10 imprinting cycles at relatively high temperature and pressure, no detectable collapse or contamination of the replica surface was observed. These results indicate that the hybrid molds could tolerate repeated UV- and thermal-NIL processes.

  3. Replica inference approach to unsupervised multiscale image segmentation.

    PubMed

    Hu, Dandan; Ronhovde, Peter; Nussinov, Zohar

    2012-01-01

    We apply a replica-inference-based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent." Within our multiresolution approach, we compute information-theory-based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations manifest by information theory overlaps. We further employ such information theory measures (such as normalized mutual information and variation of information), thermodynamic quantities such as the system entropy and energy, and dynamic measures monitoring the convergence time to viable solutions as metrics for transitions between various solvable and unsolvable phases. Within the solvable phase, transitions between contending solutions (such as those corresponding to segmentations on different scales) may also appear. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed at both zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentations appear within the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.

  4. Symmetrical gait descriptions

    NASA Astrophysics Data System (ADS)

    Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo

    2014-11-01

    The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.

  5. Symmetric continued fractions

    SciTech Connect

    Panprasitwech, Oranit; Laohakosol, Vichian; Chaichana, Tuangrat

    2010-11-11

    Explicit formulae for continued fractions with symmetric patterns in their partial quotients are constructed in the field of formal power series. Similar to the work of Cohn in 1996, which generalized the so-called folding lemma to {kappa}-fold symmetry, the notion of {kappa}-duplicating symmetric continued fractions is investigated using a modification of the 1995 technique due to Clemens, Merrill and Roeder.

  6. A Symmetrized Basis for Transitions in the Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Haydock, Roger; Nex, C. M. M.

    2013-03-01

    The spin-S Heisenberg model has 2S+1 states on each site, for which there are (2S+1)2 possible transitions between these states. For N sites there are (2S+1)N states and (2S+1)2N transitions between states. This rapid increase in the number of transitions with sites appears to limit calculations to just a few sites. However for transitions induced by spin-spin interactions, we construct a symmetrized basis which only grows as 2N-3, making possible computations for much larger systems. Supported by the Richmond F. Snyder Fund.

  7. Stochastic thermodynamics for Ising chain and symmetric exclusion process.

    PubMed

    Toral, R; Van den Broeck, C; Escaff, D; Lindenberg, Katja

    2017-03-01

    We verify the finite-time fluctuation theorem for a linear Ising chain in contact with heat reservoirs at its ends. Analytic results are derived for a chain consisting of two spins. The system can be mapped onto a model for particle transport, namely, the symmetric exclusion process in contact with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a thermal engine and reproduce universal features of the efficiency at maximum power.

  8. Stochastic thermodynamics for Ising chain and symmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Toral, R.; Van den Broeck, C.; Escaff, D.; Lindenberg, Katja

    2017-03-01

    We verify the finite-time fluctuation theorem for a linear Ising chain in contact with heat reservoirs at its ends. Analytic results are derived for a chain consisting of two spins. The system can be mapped onto a model for particle transport, namely, the symmetric exclusion process in contact with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a thermal engine and reproduce universal features of the efficiency at maximum power.

  9. Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.

    PubMed

    Pellicane, G; Caccamo, C; Wilson, D S; Lee, L L

    2004-06-01

    We present a self-consistent integral equation theory for a binary liquid in equilibrium with a disordered medium, based on the formalism of the replica Ornstein-Zernike (ROZ) equations. Specifically, we derive direct formulas for the chemical potentials and the zero-separation theorems (the latter provide a connection between the chemical potentials and the fluid cavity distribution functions). Next we solve a modified-Verlet closure to ROZ equations, which has built-in parameters that can be adjusted to satisfy the zero-separation theorems. The degree of thermodynamic consistency of the theory is also kept under control. We model the binary fluid in random pores as a symmetrical binary mixture of nonadditive hard spheres in a disordered hard-sphere matrix and consider two different values of the nonadditivity parameter and of the quenched matrix packing fraction, at different mixture concentrations. We compare the theoretical structural properties as obtained through the present approach with Percus-Yevick and Martinov-Sarkisov integral equation theories, and assess both structural and thermodynamic properties by performing canonical standard and biased grand canonical Monte Carlo simulations. Our theory appears superior to the other integral equation schemes here examined and provides reliable estimates of the chemical potentials. This feature should be useful in studying the fluid phase behavior of model adsorbates in random pores in general.

  10. Replica state exchange metadynamics for improving the convergence of free energy estimates.

    PubMed

    Galvelis, Raimondas; Sugita, Yuji

    2015-07-15

    Metadynamics (MTD) is a powerful enhanced sampling method for systems with rugged energy landscapes. It constructs a bias potential in a predefined collective variable (CV) space to overcome barriers between metastable states. In bias-exchange MTD (BE-MTD), multiple replicas approximate the CV space by exchanging bias potentials (replica conditions) with the Metropolis-Hastings (MH) algorithm. We demonstrate that the replica-exchange rates and the convergence of free energy estimates of BE-MTD are improved by introducing the infinite swapping (IS) or the Suwa-Todo (ST) algorithms. Conceptually, IS and ST perform transitions in a replica state space rather than exchanges in a replica condition space. To emphasize this, the proposed scheme is called the replica state exchange MTD (RSE-MTD). Benchmarks were performed with alanine polypeptides in vacuum and water. For the systems tested in this work, there is no significant performance difference between IS and ST.

  11. Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates.

    PubMed

    Zhang, Wang; Zhang, Di; Fan, Tongxiang; Ding, Jian; Gu, Jiajun; Guo, Qixin; Ogawa, Hiroshi

    2006-09-01

    Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microstructure details are maintained faithfully in the ZnO replica. A computer model was established to simulate the diffraction spectral results, which agreed well with the OM images.

  12. Braids, shuffles and symmetrizers

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Ogievetsky, O. V.

    2009-07-01

    Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.

  13. Replica Analysis for Portfolio Optimization with Single-Factor Model

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2017-06-01

    In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.

  14. Manifest Rotation Symmetric Expressions for Angular Momentum Eigenfunctions

    NASA Astrophysics Data System (ADS)

    Eeg, J. O.; Wroldsen, J.

    1983-12-01

    We give manifest rotation symmetric expressions for eigenfunctions for spin s, orbital angular momentum l and total angular momentum j = l + s,...,|l - s| in terms of (2j + 1) × (2s + 1) multipole transition matrices (MTM). These matrices, which are irreducible tensor matrices, have an algebra together with ordinary spin matrices for spin s and spin j. Explicit expressions for MTM's and their algebra are given for angular momenta <= 3. By means of some examples we show that within this formalism angular integrations in central field problems will be simplified considerably. Thus the formalism turns out to be very useful for instance for calculations within the MIT-bag and also within spin-spin interactions in atomic physics.

  15. Operator spin foam models

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Hellmann, Frank; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-05-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  16. PT-symmetric kinks

    SciTech Connect

    Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.

    2007-06-15

    Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.

  17. PT-symmetric strings

    SciTech Connect

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German

    2014-04-15

    We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.

  18. Replica approach to mean-variance portfolio optimization

    NASA Astrophysics Data System (ADS)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  <  1, where N is the dimension of the portfolio and T the length of the time series used to estimate the covariance matrix. At the critical point r  =  1 a phase transition is taking place. The out of sample estimation error blows up at this point as 1/(1  -  r), independently of the covariance matrix or the expected return, displaying the universality not only of the critical exponent, but also the critical point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  19. Higher spin currents in Wolf space for generic N

    NASA Astrophysics Data System (ADS)

    Ahn, Changhyun; Kim, Hyunsu

    2014-12-01

    We obtain the 16 higher spin currents with spins , , and in the superconformal Wolf space coset . The antisymmetric second rank tensor occurs in the quadratic spin- Kac-Moody currents of the higher spin-1 current. Each higher spin- current contains the above antisymmetric second rank tensor and three symmetric (and traceless) second rank tensors (i.e. three antisymmetric almost complex structures contracted by the above antisymmetric tensor) in the product of spin- and spin-1 Kac-Moody currents respectively. Moreover, the remaining higher spin currents of spins contain the combinations of the (symmetric) metric, the three almost complex structures, the antisymmetric tensor or the three symmetric tensors in the multiple product of the above Kac-Moody currents as well as the composite currents from the large nonlinear superconformal algebra.

  20. Chaos in Temperature in Generic 2 p-Spin Models

    NASA Astrophysics Data System (ADS)

    Panchenko, Dmitry

    2016-09-01

    We prove chaos in temperature for even p-spin models which include sufficiently many p-spin interaction terms. Our approach is based on a new invariance property for coupled asymptotic Gibbs measures, similar in spirit to the invariance property that appeared in the proof of ultrametricity in Panchenko (Ann Math (2) 177(1):383-393, 2013), used in combination with Talagrand's analogue of Guerra's replica symmetry breaking bound for coupled systems.

  1. Anisotropic symmetric exchange as a new mechanism for multiferroicity

    NASA Astrophysics Data System (ADS)

    Feng, J. S.; Xiang, H. J.

    2016-05-01

    Discovering new magnetoelectric multiferroics is an exciting research area. Very recently, a collinear antiferromagnetic spin order was found to induce a ferroelectric polarization in a highly symmetric cubic perovskite LaMn3Cr4O12 . This spin-driven ferroelectricity could not be explained by any of the existing multiferroic models. Here, we put forward a new model, i.e., anisotropic symmetric exchange, to understand this phenomenon, which was confirmed by density functional calculations and tight-binding simulations. Furthermore, our perturbation analysis shows that the anisotropic symmetric exchange term can be even stronger than the conventional contributions in some 5 d systems. Our multiferroic model can not only explain the experimental results, but also may open a new avenue for exploring exotic magnetoelectric coupling effects.

  2. Finite size corrections in the random energy model and the replica approach

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Mottishaw, Peter

    2015-01-01

    We present a systematic and exact way of computing finite size corrections for the random energy model, in its low temperature phase. We obtain explicit (though complicated) expressions for the finite size corrections of the overlap functions. In its low temperature phase, the random energy model is known to exhibit Parisi's broken symmetry of replicas. The finite size corrections given by our exact calculation can be reproduced using replicas if we make specific assumptions about the fluctuations (with negative variances!) of the number and sizes of the blocks when replica symmetry is broken. As an alternative we show that the exact expression for the non-integer moments of the partition function can be written in terms of coupled contour integrals over what can be thought of as ‘complex replica numbers’. Parisi's one step replica symmetry breaking arises naturally from the saddle point of these integrals without making any ansatz or using the replica method. The fluctuations of the ‘complex replica numbers’ near the saddle point in the imaginary direction correspond to the negative variances we observed in the replica calculation. Finally our approach allows one to see why some apparently diverging series or integrals are harmless.

  3. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  4. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  5. Partial transpose criteria for symmetric states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Braun, D.; Giraud, O.

    2016-10-01

    We express the positive-partial-transpose (PPT) separability criterion for symmetric states of multiqubit systems in terms of matrix inequalities based on the recently introduced tensor representation for spin states. We construct a matrix from the tensor representation of the state and show that it is similar to the partial transpose of the density matrix written in the computational basis. Furthermore, the positivity of this matrix is equivalent to the positivity of a correlation matrix constructed from tensor products of Pauli operators. This allows for a more transparent experimental interpretation of the PPT criteria for an arbitrary spin-j state. The unitary matrices connecting our matrix to the partial transpose of the state generalize the so-called magic basis that plays a central role in Wootters' explicit formula for the concurrence of a two-qubit system and the Bell bases used for the teleportation of a one- or two-qubit state.

  6. Tensor eigenvalues and entanglement of symmetric states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, F.; Braun, D.; Giraud, O.

    2016-10-01

    Tensor eigenvalues and eigenvectors have been introduced in the recent mathematical literature as a generalization of the usual matrix eigenvalues and eigenvectors. We apply this formalism to a tensor that describes a multipartite symmetric state or a spin state, and we investigate to what extent the corresponding tensor eigenvalues contain information about the multipartite entanglement (or, equivalently, the quantumness) of the state. This extends previous results connecting entanglement to spectral properties related to the state. We show that if the smallest tensor eigenvalue is negative, the state is detected as entangled. While for spin-1 states the positivity of the smallest tensor eigenvalue is equivalent to separability, we show that for higher values of the angular momentum there is a correlation between entanglement and the value of the smallest tensor eigenvalue.

  7. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  8. Symmetric waterbomb origami

    PubMed Central

    Feng, Huijuan; Ma, Jiayao; Peng, Rui

    2016-01-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels. PMID:27436963

  9. Symmetric waterbomb origami

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  10. Symmetric waterbomb origami.

    PubMed

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  11. Tunable all electric spin polarizer

    NASA Astrophysics Data System (ADS)

    Charles, J.; Bhandari, N.; Wan, J.; Cahay, M.; Newrock, R. S.

    2013-02-01

    We propose a tunable all-electric spin polarizer made of a quantum point contact (QPC) with four gates—two in-plane side gates in series. The pair of gates near the source is asymmetrically biased to create spin polarization in the QPC channel, the second pair near the drain is symmetrically biased and this bias is varied to maximize the QPC spin polarization. The range of common mode bias on the first set of gates over which maximum spin polarization is achieved is much broader for the four gate structure compared to a QPC with a single pair of gates.

  12. Replica grating study. [response to aerospace environment, thermal vacuum, and electron irradiation

    NASA Technical Reports Server (NTRS)

    Gunter, R. C., Jr.

    1975-01-01

    Methods are outlined which were used to test the response of replica diffraction gratings to a space environment, specifically the response of the replica gratings to thermal-vacuum and electron irradiation stress. It is concluded that there probably is some degradation to thermal stress, but that there is probably no significant degradation due to a vacuum environment. It is further concluded that the degradation of performance of replica gratings because of electron irradiation is due to the interaction of the electrons and the replica grating substrate and not to the replication material itself. Replica and original gratings on the same substrate material should thus respond to particle irradiation in the same manner. A study is presented on the variation of refraction index of a space-related material, Nd:CaF2, with wavelength, percent neodymium doping, and temperature.

  13. Static cylindrically symmetric spacetimes

    NASA Astrophysics Data System (ADS)

    Fjällborg, Mikael

    2007-05-01

    We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.

  14. N≥ 𝟐 symmetric superpolynomials

    NASA Astrophysics Data System (ADS)

    Alarie-Vézina, L.; Lapointe, L.; Mathieu, P.

    2017-03-01

    The theory of symmetric functions has been extended to the case where each variable is paired with an anticommuting one. The resulting expressions, dubbed superpolynomials, provide the natural N =1 supersymmetric version of the classical bases of symmetric functions. Here we consider the case where more than one independent anticommuting variable is attached to each ordinary variable. First, the N =2 super-version of the monomial, elementary, homogeneous symmetric functions, as well as the power sums, is constructed systematically (using an exterior-differential formalism for the multiplicative bases), these functions being now indexed by a novel type of superpartitions. Moreover, the scalar product of power sums turns out to have a natural N =2 generalization which preserves the duality between the monomial and homogeneous bases. All these results are then generalized to an arbitrary value of N . Finally, for N =2 , the scalar product and the homogeneous functions are shown to have a one-parameter deformation, a result that prepares the ground for the yet-to-be-defined N =2 Jack superpolynomials.

  15. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements

    NASA Astrophysics Data System (ADS)

    Gomes, Anderson S. L.; Raposo, Ernesto P.; Moura, André L.; Fewo, Serge I.; Pincheira, Pablo I. R.; Jerez, Vladimir; Maia, Lauro J. Q.; de Araújo, Cid B.

    2016-06-01

    Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research.

  16. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements.

    PubMed

    Gomes, Anderson S L; Raposo, Ernesto P; Moura, André L; Fewo, Serge I; Pincheira, Pablo I R; Jerez, Vladimir; Maia, Lauro J Q; de Araújo, Cid B

    2016-06-13

    Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research.

  17. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements

    PubMed Central

    Gomes, Anderson S. L.; Raposo, Ernesto P.; Moura, André L.; Fewo, Serge I.; Pincheira, Pablo I. R.; Jerez, Vladimir; Maia, Lauro J. Q.; de Araújo, Cid B.

    2016-01-01

    Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research. PMID:27292095

  18. Replica analysis for the duality of the portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  19. Replica exchange Monte Carlo applied to hard spheres.

    PubMed

    Odriozola, Gerardo

    2009-10-14

    In this work a replica exchange Monte Carlo scheme which considers an extended isobaric-isothermal ensemble with respect to pressure is applied to study hard spheres (HSs). The idea behind the proposal is expanding volume instead of increasing temperature to let crowded systems characterized by dominant repulsive interactions to unblock, and so, to produce sampling from disjoint configurations. The method produces, in a single parallel run, the complete HS equation of state. Thus, the first order fluid-solid transition is captured. The obtained results well agree with previous calculations. This approach seems particularly useful to treat purely entropy-driven systems such as hard body and nonadditive hard mixtures, where temperature plays a trivial role.

  20. Replica analysis for the duality of the portfolio optimization problem.

    PubMed

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  1. Searching near-replicas of images via clustering

    NASA Astrophysics Data System (ADS)

    Chang, Edward Y.; Li, Chen; Wang, James Z.; Mork, Peter; Wiederhold, Gio

    1999-08-01

    Internet piracy has been one of the major concerns for Web publishing. In this study we present a system, RIME, that we have prototyped for detecting unauthorized image copying on the WWW. To speed up the copy detection, RIME uses a new clustering/hashing approach that first clusters similar images on adjacent disk cylinders and then builds indexes to access the clusters made in this way. Searching for the replicas of an image often takes just one IO to loop up the location of the cluster containing similar objects and one sequential file IO to read in this cluster. Our experimental results show that RIME can detect images copies both more efficiently and effectively than the traditional content- based image retrieval systems that use tree-like structures to index images. In addition, RIME copes well with image format conversion, resampling, requantization and geometric transformation.

  2. Conversion of three-dimensional nanostructured biosilica templates into non-oxide replicas

    NASA Astrophysics Data System (ADS)

    Bao, Zhihao

    Diatoms possess characteristics such as abundance, diversity, and high reproductivity, which make their nano-structured frustules (diatom frustules) attractive for a wide range of applications. To overcome the limitation of their silica based frustule composition, diatom frustules have been converted into a variety of materials including silicon, silicon carbide, silver, gold, palladium and carbon in the present study. The compositions and the extent of shape preservation of the replicas are examined and evaluated with different characterization methods such as X-ray diffraction, SEM, TEM and FTIR analyses. These replicas still retained the complex 3D structures and nano-scaled features of the starting diatom frustules. Some properties and possible applications of converted materials are explored and the kinetics and thermodynamics related to the successful replications (conversions) are also studied and discussed: (1) A low temperature (650°C) magnesiothermic reaction was used to convert three dimensional (3-D) nano-structured diatom frustules into microporous nanocrystalline silicon replicas. These silicon replicas possessed a very high surface area (>500 m2/g) and a large population of micropores (≤2 nm). The oxidized silicon frustule replicas exhibited photoluminescence under UV light. A microsensor fabricated from such a silicon frustule replica exhibited rapid (≤25 s) and sensitive nitric oxide gas detection (1 p.p.m.) with very low applied biased voltage (100 mV). This suggested a possible application in microscale gas sensing. The magnesium vapor partial pressure was the key parameter in controlling the products from the magnesiothermic reaction. Magnesium silicide is suggested as the source of magnesium gas to avoid the formation of a magnesium silicide product during the magnesiothermic reaction. (2) Metallic frustule replicas (e.g., Ag, Au, Pd) were obtained by immersing the microporous nanocrystalline silicon replicas in electroless plating

  3. Quantum interference effects in molecular spin hybrids

    NASA Astrophysics Data System (ADS)

    Esat, Taner; Friedrich, Rico; Matthes, Frank; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan; Bürgler, Daniel E.; Tautz, F. Stefan; Schneider, Claus M.

    2017-03-01

    We have studied by means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) single molecular spin hybrids formed upon chemisorbing a polycyclic aromatic, threefold symmetric hydrocarbon molecule on Co(111) nanoislands. The spin-dependent hybridization between the Co d states and the π orbitals of the molecule leads to a spin-imbalanced electronic structure of the chemisorbed organic molecule. Spin-sensitive measurements reveal that the spin polarization shows intramolecular variations among the different aromatic rings in spite of the highly symmetric adsorption geometry promoted by symmetry matching of the threefold symmetric molecule and the sixfold symmetric Co(111) lattice. Hence the varying degree of spin polarization on the organic molecule does not stem from a different hybridization of the aromatic rings with the Co atoms, but is proposed to be a consequence of the superposition of the spin polarization of the molecule and the spatially modulated spin polarization of the spin-dependent quantum interference pattern of the Co(111) surface state.

  4. Spinning Witten diagrams

    NASA Astrophysics Data System (ADS)

    Sleight, Charlotte; Taronna, Massimo

    2017-06-01

    We develop a systematic framework to compute the conformal partial wave expansions (CPWEs) of tree-level four-point Witten diagrams with totally symmetric external fields of arbitrary mass and integer spin in AdS d+1. As an intermediate step, we identify convenient bases of three-point bulk and boundary structures to invert linear map between spinning three-point conformal structures and spinning cubic couplings in AdS. Given a CFT d , this provides the complete holographic reconstruction of all cubic couplings involving totally symmetric fields in the putative dual theory on AdS d+1. Employing this framework, we determine the CPWE of a generic four-point exchange Witten diagram with spinning exchanged field. As a concrete application, we compute all four-point exchange Witten diagrams in the type A higher-spin gauge theory on AdS d+1, which is conjectured to be dual to the free scalar O ( N ) model.

  5. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  6. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  7. Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock

    PubMed Central

    Zhang, Zhe; Lange, Oliver F.

    2013-01-01

    Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied. PMID:24009670

  8. Holographic Spherically Symmetric Metrics

    NASA Astrophysics Data System (ADS)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  9. Sub-nanometer Replica Molding of Molecular Steps on Ionic Crystals

    PubMed Central

    Elhadj, Selim; Rioux, Robert M.; Dickey, Michael D.; DeYoreo, James J.; Whitesides, George M.

    2010-01-01

    Replica molding with elastomeric polymers has been used routinely to replicate features less than 10 nm in size. Because the theoretical limit of this technique is set by polymer-surface interactions, atomic radii and accessible volumes, replication at sub-nm length scales should be possible. Using PDMS to create a mold and polyurethane to form the replica, we demonstrate replication of elementary steps 3-5 Å in height that define the minimum separation between molecular layers in the lattices of the ionic crystals potassium dihydrogen phosphate (KDP) and calcite (CaCO3). This work establishes the operation of replica molding at the molecular scale. PMID:20843061

  10. One more discussion of the replica trick: the example of the exact solution

    NASA Astrophysics Data System (ADS)

    Dotsenko, Victor

    2012-01-01

    Systematic replica field theory calculations are analysed using the examples of two particular one-dimensional 'toy' random models with Gaussian disorder. Due to the simplicity of the models an integer n-th power of the partition function can be calculated here exactly. However, further analytic continuation for non-integer values of the replica parameter n inevitably involves the usual replica method of 'cheating', which nevertheless allows us to derive correct and rather non-trivial results for the entire free energy distribution functions both for a finite system size and in the thermodynamic limit.

  11. Spin foams without spins

    NASA Astrophysics Data System (ADS)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  12. Detecting internally symmetric protein structures.

    PubMed

    Kim, Changhoon; Basner, Jodi; Lee, Byungkook

    2010-06-03

    Many functional proteins have a symmetric structure. Most of these are multimeric complexes, which are made of non-symmetric monomers arranged in a symmetric manner. However, there are also a large number of proteins that have a symmetric structure in the monomeric state. These internally symmetric proteins are interesting objects from the point of view of their folding, function, and evolution. Most algorithms that detect the internally symmetric proteins depend on finding repeating units of similar structure and do not use the symmetry information. We describe a new method, called SymD, for detecting symmetric protein structures. The SymD procedure works by comparing the structure to its own copy after the copy is circularly permuted by all possible number of residues. The procedure is relatively insensitive to symmetry-breaking insertions and deletions and amplifies positive signals from symmetry. It finds 70% to 80% of the TIM barrel fold domains in the ASTRAL 40 domain database and 100% of the beta-propellers as symmetric. More globally, 10% to 15% of the proteins in the ASTRAL 40 domain database may be considered symmetric according to this procedure depending on the precise cutoff value used to measure the degree of perfection of the symmetry. Symmetrical proteins occur in all structural classes and can have a closed, circular structure, a cylindrical barrel-like structure, or an open, helical structure. SymD is a sensitive procedure for detecting internally symmetric protein structures. Using this procedure, we estimate that 10% to 15% of the known protein domains may be considered symmetric. We also report an initial, overall view of the types of symmetries and symmetric folds that occur in the protein domain structure universe.

  13. Detecting internally symmetric protein structures

    PubMed Central

    2010-01-01

    Background Many functional proteins have a symmetric structure. Most of these are multimeric complexes, which are made of non-symmetric monomers arranged in a symmetric manner. However, there are also a large number of proteins that have a symmetric structure in the monomeric state. These internally symmetric proteins are interesting objects from the point of view of their folding, function, and evolution. Most algorithms that detect the internally symmetric proteins depend on finding repeating units of similar structure and do not use the symmetry information. Results We describe a new method, called SymD, for detecting symmetric protein structures. The SymD procedure works by comparing the structure to its own copy after the copy is circularly permuted by all possible number of residues. The procedure is relatively insensitive to symmetry-breaking insertions and deletions and amplifies positive signals from symmetry. It finds 70% to 80% of the TIM barrel fold domains in the ASTRAL 40 domain database and 100% of the beta-propellers as symmetric. More globally, 10% to 15% of the proteins in the ASTRAL 40 domain database may be considered symmetric according to this procedure depending on the precise cutoff value used to measure the degree of perfection of the symmetry. Symmetrical proteins occur in all structural classes and can have a closed, circular structure, a cylindrical barrel-like structure, or an open, helical structure. Conclusions SymD is a sensitive procedure for detecting internally symmetric protein structures. Using this procedure, we estimate that 10% to 15% of the known protein domains may be considered symmetric. We also report an initial, overall view of the types of symmetries and symmetric folds that occur in the protein domain structure universe. PMID:20525292

  14. Symmetric Waveguide Orthomode Junctions

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Grammer, W.

    2003-01-01

    Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-fold symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.

  15. Symmetric Waveguide Orthomode Junctions

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Grammer, W.

    2003-01-01

    Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-old symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.

  16. Minimally symmetric Higgs boson

    SciTech Connect

    Low, Ian

    2015-06-17

    Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)(L) x U(1)(Y) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective Lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal among all models where the Higgs arises as a pseudo-Nambu-Goldstone boson. Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.

  17. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  18. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    SciTech Connect

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. Furthermore, the method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.

  19. Application of Replica Technique and SEM in Accuracy Measurement of Ceramic Crowns

    NASA Astrophysics Data System (ADS)

    Trifkovic, B.; Budak, I.; Todorovic, A.; Hodolic, J.; Puskar, T.; Jevremovic, D.; Vukelic, D.

    2012-01-01

    The paper presents a comparative study of the measuring values of the marginal gap related to the ceramic crowns made by dental CAD/CAM system using the replica technique and SEM. The study was conducted using three experimental groups, which consisted of ceramic crowns manufactured by the Cerec CAD/CAM system. The scanning procedure was carried out using three specialized dental 3D digitization systems from the Cerec family - two types of extraoral optical scanning systems and an intraoral optical scanner. Measurements of the marginal gap were carried out using the replica technique and SEM. The comparison of aggregate values of the marginal gap using the replica technique showed a statistically significant difference between the systems. The measured values of marginal gaps of ceramic crowns using the replica technique were significantly lower compared to those measured by SEM. The results indicate that the choice of technique for measuring the accuracy of ceramic crowns influences the final results of investigation.

  20. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    DOE PAGES

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. Furthermore, themore » method is particularly useful for the fast and reliable estimation of the microcanonical temperature T(U) or, equivalently, of the density of states g(U) over a wide range of energies.« less

  1. [Possibilities of energy augmentation of pellets shot from ASG replicas and gunshot wounds].

    PubMed

    Golema, Wojciech; Jurek, Tomasz; Thannhäuser, Agata; Kawecki, Jerzy; Trnka, Jakub

    2011-01-01

    In this paper, the authors review the types of air soft gun replicas depending on the type of drive and ammunition, showing the possibilities of altering the M4A1 rifle replica's technical parameters and the effect of such modifications on initial energy of the projectile. A PJ4 CQB NAVY replica's inner barrel, spring, motor and cylinder kit were replaced. Subsequently, the muzzle velocity was determined and compared to the initial muzzle velocity. This example showed that amateur modifications can greatly increase the initial energy of the pellet. The authors suggest that especially in terms of determining the exposure to direct danger of death or grave detriment to health, the manufacturer's data about pellet energy should not be taken without question, but one should strive for an individual assessment of the ASG replica constituting the evidence.

  2. From replica to instruments: animal models in biomedical research.

    PubMed

    Germain, Pierre-Luc

    2014-08-01

    The ways in which other animal species can be informative about human biology are not exhausted by the traditional picture of the animal model. In this paper, I propose to distinguish two roles which laboratory organisms can have in biomedical research. In the more traditional case, organisms act as surrogates for human beings, and as such are expected to be more manageable replicas of humans. However, animal models can inform us about human biology in a much less straightforward way, by being used as measuring devices-what I call their instrumental role. I first characterize this role and provide criteria for it, before illustrating it with some examples from biomedical research, especially cancer research. In such an instrumental role, phenotypes are not expected to phenocopy human phenomena, but instead have the purely instrumental value of detecting or measuring differences. I argue that the instrumental role is more prevalent than might first be suspected, and that some characteristics of contemporary biomedical research are increasingly shifting the use of laboratory organisms to the instrumental role. Finally, in light of the distinction proposed, I discuss the meaning of the expression "animal model".

  3. Replica Exchange Simulations of the Thermodynamics of Aβ Fibril Growth

    PubMed Central

    Takeda, Takako; Klimov, Dmitri K.

    2009-01-01

    Abstract Replica exchange molecular dynamics and an all-atom implicit solvent model are used to probe the thermodynamics of deposition of Alzheimer's Aβ monomers on preformed amyloid fibrils. Consistent with the experiments, two deposition stages have been identified. The docking stage occurs over a wide temperature range, starting with the formation of the first peptide-fibril interactions at 500 K. Docking is completed when a peptide fully adsorbs on the fibril edge at the temperature of 380 K. The docking transition appears to be continuous, and occurs without free energy barriers or intermediates. During docking, incoming Aβ monomer adopts a disordered structure on the fibril edge. The locking stage occurs at the temperature of ≈360 K and is characterized by the rugged free energy landscape. Locking takes place when incoming Aβ peptide forms a parallel β-sheet structure on the fibril edge. Because the β-sheets formed by locked Aβ peptides are typically off-registry, the structure of the locked phase differs from the structure of the fibril interior. The study also reports that binding affinities of two distinct fibril edges with respect to incoming Aβ peptides are different. The peptides bound to the concave edge have significantly lower free energy compared to those bound on the convex edge. Comparison with the available experimental data is discussed. PMID:19167295

  4. Preserving the Boltzmann ensemble in replica-exchange molecular dynamics.

    PubMed

    Cooke, Ben; Schmidler, Scott C

    2008-10-28

    We consider the convergence behavior of replica-exchange molecular dynamics (REMD) [Sugita and Okamoto, Chem. Phys. Lett. 314, 141 (1999)] based on properties of the numerical integrators in the underlying isothermal molecular dynamics (MD) simulations. We show that a variety of deterministic algorithms favored by molecular dynamics practitioners for constant-temperature simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the entire configuration space may not be explored even in an infinitely long simulation, and the simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our analysis shows that for initial configurations with unfavorable energy, it may be impossible for the system to reach a region surrounding the minimum energy configuration. We demonstrate these failures of REMD algorithms for three small systems: a Gaussian distribution (simple harmonic oscillator dynamics), a bimodal mixture of Gaussians distribution, and the alanine dipeptide. Examination of the resulting phase plots and equilibrium configuration densities indicates significant errors in the ensemble generated by REMD simulation. We describe a simple modification to address these failures based on a stochastic hybrid Monte Carlo correction, and prove that this is ergodic.

  5. Parisi Formula, Disorder Chaos and Fluctuation for the Ground State Energy in the Spherical Mixed p-Spin Models

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Kuo; Sen, Arnab

    2016-12-01

    We show that the limiting ground state energy of the spherical mixed p-spin model can be identified as the infimum of certain variational problem. This complements the well-known Parisi formula for the limiting free energy in the spherical model. As an application, we obtain explicit formulas for the limiting ground state energy in the replica symmetry, one level of replica symmetry breaking and full replica symmetry breaking phases at zero temperature. In addition, our approach leads to new results on disorder chaos in spherical mixed even p-spin models. In particular, we prove that when there is no external field, the location of the ground state energy is chaotic under small perturbations of the disorder. We also establish that in the spherical mixed even p-spin model, the ground state energy superconcentrates in the absence of external field, while it obeys a central limit theorem if the external field is present.

  6. Gold replica of olive branch left on moons surface by Apollo 11

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A gold replica of an olive branch, the traditional symbol of peace, which was left on the Moon's surface by the Apollo 11 crew members. Astronaut Neil A. Armstrong, commander, was in charge of placing the replica (less than half a foot in length) on the Moon. The gesture represents a fresh wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  7. Classical mutual information in mean-field spin glass models

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Inglis, Stephen; Pollet, Lode

    2016-03-01

    We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.

  8. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    SciTech Connect

    Kamberaj, Hiqmet

    2015-09-28

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  9. Design of replica bit line control circuit to optimize power for SRAM

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Keji, Zhou; Huihong, Zhang; Daohui, Gong

    2016-12-01

    A design of a replica bit line control circuit to optimize power for SRAM is proposed. The proposed design overcomes the limitations of the traditional replica bit line control circuit, which cannot shut off the word line in time. In the novel design, the delay of word line enable and disable paths are balanced. Thus, the word line can be opened and shut off in time. Moreover, the chip select signal is decomposed, which prevents feedback oscillations caused by the replica bit line and the replica word line. As a result, the switch power caused by unnecessary discharging of the bit line is reduced. A 2-kb SRAM is fully custom designed in an SMIC 65-nm CMOS process. The traditional replica bit line control circuit and the new replica bit line control circuit are used in the designed SRAM, and their performances are compared with each other. The experimental results show that at a supply voltage of 1.2 V, the switch power consumption of the memory array can be reduced by 53.7%. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the National Natural Science Foundation of China (Nos. 61274132, 61234002, 61474068), and the K. C. Wong Magna Fund in Ningbo University.

  10. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    NASA Astrophysics Data System (ADS)

    Kamberaj, Hiqmet

    2015-09-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  11. Enhanced Conformational Sampling of N-glycans in Solution with Replica State Exchange Metadynamics.

    PubMed

    Galvelis, Raimondas; Re, Suyong; Sugita, Yuji

    2017-04-11

    Molecular dynamics (MD) simulation of a N-glycan in solution is challenging due to high- energy barriers of the glycosidic linkages, functional group rotational barriers, and numerous intra- and inter-molecular hydrogen bonds. In this study, we apply different enhanced conformational sampling approaches, namely, metadynamics (MTD), the replica-exchange MD (REMD), and the recently proposed replica state exchange MTD (RSE-MTD), to a N-glycan in solution and compare their conformational sampling efficiencies. MTD helps to cross the high- energy barrier along the ω angle by utilizing a bias potential, but it cannot enhance sampling of the other degrees of freedom. REMD ensures moderate-energy barrier crossings by exchanging temperatures between replicas, while it hardly crosses the barriers along ω. In contrast, RSE- MTD succeeds to cross the high-energy barrier along ω as well as to enhance sampling of the other degrees of freedom. We tested two RSE-MTD schemes: in one scheme, 64 replicas were simulated with the bias potential along ω at different temperatures, while simulations of 4 replicas were performed with the bias potentials for different CVs at 300 K. In both schemes, one unbiased replica at 300 K was included to compute conformational properties of the glycan. The conformational sampling of the former is better than the other enhanced sampling methods, while the latter shows reasonable performance without spending large computational resources. The latter scheme is likely to be useful when a N-glycan-attached protein is simulated.

  12. Representation of Fuzzy Symmetric Relations

    DTIC Science & Technology

    1986-03-19

    Std Z39-18 REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. Valverde Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda...REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. "Valverde* Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda. Diagonal, 649

  13. {PT}-symmetric optical superlattices

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2014-04-01

    The spectral and localization properties of {PT}-symmetric optical superlattices, either infinitely extended or truncated at one side, are theoretically investigated, and the criteria that ensure a real energy spectrum are derived. The analysis is applied to the case of superlattices describing a complex ( {PT}-symmetric) extension of the Harper Hamiltonian in the rational case.

  14. Tensor species and symmetric functions.

    PubMed Central

    Méndez, M

    1991-01-01

    An equivariant representation of the symmetric group Sn (equivariant representation from here on) is defined as a particular type of tensor species. For any tensor species R the characteristic generating function of R is defined in a way that generalizes the Frobenius characters of representations of the symmetric groups. If R is an equivariant representation, then the characteristic is a homogeneous symmetric function. The combinatorial operations on equivariant representations correspond to formal operations on the respective characteristic functions. In particular, substitution of equivariant representations corresponds to plethysm of symmetric functions. Equivariant representations are constructed that have as characteristic the elementary, complete, and Schur functions. Bijective proofs are given for the formulas that connect them with the monomial symmetric functions. PMID:11607233

  15. Spin-tunnel investigation of a 1/25-scale model of the General Dynamics F-16XL airplane

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.; White, W. L.

    1984-01-01

    A spin-tunnel investigation of the spin and recovery characteristics of a 1/25-scale model to the General Dynamics F-16XL aircraft was conducted in the Langley Spin Tunnel. Tests included erect and inverted spins at various symmetric and asymmetric loading conditions. The required size of an emergency spin-recovery parachute was determined.

  16. The use of 3D laser imaging and a new breast replica cast as a method to optimize autologous breast reconstruction after mastectomy.

    PubMed

    Ahcan, Uros; Bracun, Drago; Zivec, Katarina; Pavlic, Rok; Butala, Peter

    2012-04-01

    Aesthetically pleasing and symmetrical breasts are the goal of reconstructive breast surgery. Sometimes, however, multiple procedures are needed to improve a reconstructed breast's symmetry and appearance. In order to avoid additional corrective procedures, we have developed a new method that uses a reverse engineering technique to produce what we call a new breast replica cast (NBRC). The NBRC is a mould of the contralateral healthy breast, designed according to preoperative laser 3D images. During surgery, the mould is used to help shape the new breast. With this method, we are able to achieve breast symmetry in terms of volume, projection, contour, and position on the chest wall more accurately, more quickly, and more safely than before. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Conformally symmetric traversable wormholes

    SciTech Connect

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.

  18. An ingenious replica templated from the light trapping structure in butterfly wing scales

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Niu, Shichao; Yang, Meng; Zhang, Junqiu; Yin, Wei; Ren, Luquan

    2013-08-01

    Although the physical mechanism of light trapping property of butterfly wings is well understood, it remains a challenge to create artificial replicas of these natural functional structures. Here, we synthesized a SiO2 inverse replica of a light trapping structure in butterfly wing scales using a method combining a sol-gel process and subsequent selective etching. First, the reflectance spectrum was taken to measure the reflectivity. Then, FESEM and TEM were used to observe the coupling structure of scales and the replicas. Afterwards, assisted by SEM and TEM data, 3D optimized models of the structures and fabrication process were generated by software. Finally, the parametric comparisons of the morphologies and structures between the original template and the inverse SiO2 replica were carefully conducted, and it was found that the original structures of bio-templates were well inherited by the structures of the inverse replica. This work would open up possibilities for an extensive study of mimicking novel bio-inspired functional materials, and the reported biomimetic technique confirms the feasibility of extending the functional structures in butterfly wings to particular optical devices in the field of space exploration, space equipment, photoelectrical devices and photo-induced sensors.Although the physical mechanism of light trapping property of butterfly wings is well understood, it remains a challenge to create artificial replicas of these natural functional structures. Here, we synthesized a SiO2 inverse replica of a light trapping structure in butterfly wing scales using a method combining a sol-gel process and subsequent selective etching. First, the reflectance spectrum was taken to measure the reflectivity. Then, FESEM and TEM were used to observe the coupling structure of scales and the replicas. Afterwards, assisted by SEM and TEM data, 3D optimized models of the structures and fabrication process were generated by software. Finally, the parametric

  19. Laziness of Symmetric and Separable States

    NASA Astrophysics Data System (ADS)

    S P, Suma; Sirsi, Swarnamala

    2017-07-01

    An N-partite state is considered lazy, if the entropy rate of one subsystem with respect to time is zero under any coupling to the other subsystems. In this paper, we show that all biaxial or purely second rank tensor polarized systems are lazy. Such a system can be produced in the laboratory by the interaction of a spin-1 nuclei with non-zero quadrupole moment like H 2, N 14 with an external quadrupole field found in suitable crystal lattice. We then investigate the 'laziness'(property of the system to be lazy) of N-qubit mixed symmetric separable states and enumerate the conditions for them to be lazy. Further, we study the laziness of direct product states on application of a global and local noisy channels.

  20. Multiqubit symmetric states with maximally mixed one-qubit reductions

    NASA Astrophysics Data System (ADS)

    Baguette, D.; Bastin, T.; Martin, J.

    2014-09-01

    We present a comprehensive study of maximally entangled symmetric states of arbitrary numbers of qubits in the sense of the maximal mixedness of the one-qubit reduced density operator. A general criterion is provided to easily identify whether given symmetric states are maximally entangled in that respect or not. We show that these maximally entangled symmetric (MES) states are the only symmetric states for which the expectation value of the associated collective spin of the system vanishes, as well as in corollary the dipole moment of the Husimi function. We establish the link between this kind of maximal entanglement, the anticoherence properties of spin states, and the degree of polarization of light fields. We analyze the relationship between the MES states and the classes of states equivalent through stochastic local operations with classical communication (SLOCC). We provide a nonexistence criterion of MES states within SLOCC classes of qubit states and show in particular that the symmetric Dicke state SLOCC classes never contain such MES states, with the only exception of the balanced Dicke state class for even numbers of qubits. The 4-qubit system is analyzed exhaustively and all MES states of this system are identified and characterized. Finally the entanglement content of MES states is analyzed with respect to the geometric and barycentric measures of entanglement, as well as to the generalized N-tangle. We show that the geometric entanglement of MES states is ensured to be larger than or equal to 1/2, but also that MES states are not in general the symmetric states that maximize the investigated entanglement measures.

  1. Spin polarization of the split Kondo state.

    PubMed

    von Bergmann, Kirsten; Ternes, Markus; Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2015-02-20

    Spin-resolved scanning tunneling microscopy is employed to quantitatively determine the spin polarization of the magnetic field-split Kondo state. Tunneling conductance spectra of a Kondo-screened magnetic atom are evaluated within a simple model taking into account inelastic tunneling due to spin excitations and two Kondo peaks positioned symmetrically around the Fermi energy. We fit the spin state of the Kondo-screened atom with a spin Hamiltonian independent of the Kondo effect and account for Zeeman splitting of the Kondo peak in the magnetic field. We find that the width and the height of the Kondo peaks scales with the Zeeman energy. Our observations are consistent with full spin polarization of the Kondo peaks, i.e., a majority spin peak below the Fermi energy and a minority spin peak above.

  2. Symmetric Topological Phases and Tensor Network States

    NASA Astrophysics Data System (ADS)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  3. Spin-orbit coupling and spin relaxation in phosphorene: Intrinsic versus extrinsic effects

    NASA Astrophysics Data System (ADS)

    Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav

    2016-10-01

    First-principles calculations of the essential spin-orbit and spin relaxation properties of phosphorene are performed. Intrinsic spin-orbit coupling induces spin mixing with the probability of b2≈10-4 , exhibiting a large anisotropy, following the anisotropic crystalline structure of phosphorene. For realistic values of the momentum relaxation times, the intrinsic (Elliott-Yafet) spin relaxation times are hundreds of picoseconds to nanoseconds. Applying a transverse electric field (simulating gating and substrates) generates extrinsic C2 v symmetric spin-orbit fields in phosphorene, which activate the D'yakonov-Perel' mechanism for spin relaxation. It is shown that this extrinsic spin relaxation also has a strong anisotropy and can dominate over the Elliott-Yafet one for strong enough electric fields. Phosphorene on substrates can thus exhibit an interesting interplay of both spin-relaxation mechanisms, whose individual roles could be deciphered using our results.

  4. Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas.

    PubMed

    Chen, John Z; Katz, Ira M; Pichelin, Marine; Zhu, Kaixian; Caillibotte, Georges; Noga, Michelle L; Finlay, Warren H; Martin, Andrew R

    2017-01-01

    Portable oxygen concentrators (POCs) typically include pulse flow (PF) modes to conserve oxygen. The primary aims of this study were to develop a predictive in vitro model for inhaled oxygen delivery using a set of realistic airway replicas, and to compare PF for a commercial POC with steady flow (SF) from a compressed oxygen cylinder. Experiments were carried out using a stationary compressed oxygen cylinder, a POC, and 15 adult nasal airway replicas based on airway geometries derived from medical images. Oxygen delivery via nasal cannula was tested at PF settings of 2.0 and 6.0, and SF rates of 2.0 and 6.0 L/min. A test lung simulated three breathing patterns representative of a chronic obstructive pulmonary disease patient at rest, during exercise, and while asleep. Volume-averaged fraction of inhaled oxygen (FiO2) was calculated by analyzing oxygen concentrations sampled at the exit of each replica and inhalation flow rates over time. POC pulse volumes were also measured using a commercial O2 conserver test system to attempt to predict FiO2 for PF. Relative volume-averaged FiO2 using PF ranged from 68% to 94% of SF values, increasing with breathing frequency and tidal volume. Three of 15 replicas failed to trigger the POC when used with the sleep breathing pattern at the 2.0 setting, and four of 15 replicas failed to trigger at the 6.0 setting. FiO2 values estimated from POC pulse characteristics followed similar trends but were lower than those derived from airway replica experiments. For the POC tested, PF delivered similar, though consistently lower, volume-averaged FiO2 than SF rates equivalent to nominal PF settings. Assessment of PF oxygen delivery using POC pulse characteristics alone may be insufficient; testing using airway replicas is useful in identifying possible cases of failure and may provide a better assessment of FiO2.

  5. A Spin Glass Model with Vibrations of Crystal Lattices

    NASA Astrophysics Data System (ADS)

    Shang, Yu-Min; Cheng, Li-Min; Yao, Kai-Lun

    2005-01-01

    With the help of the replica method and imaginary-time functional-integrate technique, the spin glass model with the vibrations of crystal lattices is investigated. In the limit of the replica symmetry and the imaginary-time static approximation, the magnetic and thermodynamic quantities have been obtained. By the numerical calculations, we found that the magnetization of the system has the typical spin-glass behaviour. A peak is found in the susceptibility-temperature curve and is shifted to lower temperature with increasing applied field. Due to the lattice contribution, the specific heat increases strongly at high temperature. Due to the magnetic contribution, the anomaly in the specific heat-temperature curve forms a λ-type peak, which agrees with the observation of Rojo et al. [Phys. Rev. B 66 (2002) 094406].

  6. Some peculiarities in the behavior of non-Ising spin glasses

    NASA Astrophysics Data System (ADS)

    Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2015-03-01

    This paper is a review. We outline the main directions in the modern theory of spin glasses. The main content is based on our recent papers, devoted to studying replica symmetry breaking in non-Ising spin glasses. Studying a series of generalized models showed a certain uniformity of the behavior of these generalized spin glasses. Essentially, we observe a significant difference between their behavior and the behavior of the known systems with random couplings of Ising spins—the Sherrington-Kirkpatrick model and the corresponding p-spin model. We find the bifurcation point for the solution with the first replica symmetry breaking, study the form and stability of the solution near the bifurcation point, and show in which cases the transition to the glass state occurs continuously and in which cases, with a jump of the order parameters.

  7. DNA unzipping phase diagram calculated via replica theory

    NASA Astrophysics Data System (ADS)

    Roland, C. Brian; Hatch, Kristi Adamson; Prentiss, Mara; Shakhnovich, Eugene I.

    2009-05-01

    We show how single-molecule unzipping experiments can provide strong evidence that the zero-force melting transition of long molecules of natural dsDNA should be classified as a phase transition of the higher-order type (continuous). Toward this end, we study a statistical-mechanics model for the fluctuating structure of a long molecule of dsDNA, and compute the equilibrium phase diagram for the experiment in which the molecule is unzipped under applied force. We consider a perfect-matching dsDNA model, in which the loops are volume-excluding chains with arbitrary loop exponent c . We include stacking interactions, hydrogen bonds, and main-chain entropy. We include sequence heterogeneity at the level of random sequences; in particular, there is no correlation in the base-pairing (bp) energy from one sequence position to the next. We present heuristic arguments to demonstrate that the low-temperature macrostate does not exhibit degenerate ergodicity breaking. We use this claim to understand the results of our replica-theoretic calculation of the equilibrium properties of the system. As a function of temperature, we obtain the minimal force at which the molecule separates completely. This critical-force curve is a line in the temperature-force phase diagram that marks the regions where the molecule exists primarily as a double helix versus the region where the molecule exists as two separate strands. We compare our random-sequence model to magnetic tweezer experiments performed on the 48502 bp genome of bacteriophage λ . We find good agreement with the experimental data, which is restricted to temperatures between 24 and 50°C . At higher temperatures, the critical-force curve of our random-sequence model is very different for that of the homogeneous-sequence version of our model. For both sequence models, the critical force falls to zero at the melting temperature Tc like |T-Tc|α . For the homogeneous-sequence model, α=1/2 almost exactly, while for the random

  8. Effects of replica running shoes upon external forces and muscle activity during running.

    PubMed

    Azevedo, Ana Paula Da Silva; Brandina, Kátia; Bianco, Roberto; Oliveira, Vitor Henrique De; Souza, Juliana Roque De; Mezencio, Bruno; Amadio, Alberto Carlos; Serrão, Júlio Cerca

    2012-05-01

    Twelve participants ran (9 km · h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P ≤ 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P ≤ 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P ≤ 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P ≤ 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.

  9. A Distance-Aware Replica Adaptive Data Gathering Protocol for Delay Tolerant Mobile Sensor Networks

    PubMed Central

    Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin

    2011-01-01

    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node’s limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes. PMID:22163839

  10. Assessment of hydro/oleophobicity for shark skin replica with riblets.

    PubMed

    Kim, Tae Wan

    2014-10-01

    The shark skin has a unique skin structure which enables the shark to swim faster and more efficiently due to an intriguing three-dimensional rib pattern. Shark skin has also known as having functional performances such as self cleaning and anti-fouling as well as excellent drag reduction due to a hierarchical structure built up by micro grooves and nano-long chain mucus drag reduction interface around the shark body. In this study, the wetting properties for the biomimetic surfaces that replicate shark skin are assessed. First of all, the shark skin replicas are obtained using the micro molding technique directly from a shark skin template. The quantitative replication precision of the shark skin replicas is evaluated comparing with the geometry of shark skin template using 3D and 2D surface profiles are measured. Then contact angles in the conditions of solid-air-water, solid-air-oil and solid-water-oil interfaces are evaluated for shark skin replicas. The effect of Teflon coating on the wetting properties of shark skin replicas is also observed. The results show the shark skin replica by the micro molding technique gives better effect on the wetting performance, and the micro riblets on shark skin improve the wettability feature.

  11. Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica).

    PubMed

    Mazali, Italo O; Alves, Oswaldo L

    2005-03-01

    High fidelity calcium carbonate and hydroxyapatite (bio) inorganic replicas of the fibrous network of the dried fruit of Luffa cylindrica are described, utilizing a facile synthetic route. The loofa sponge is a highly complex macroscopic architectural template, an inexpensive and sustainable resource. In the context of the morphosynthesis, the capability of replication of the loofa sponge opens the possibility of the use of biodiversity in obtaining new materials. We would like to emphasize that the template proposed in this paper, makes possible the preparation of inorganic replicas with a very desirable size, on the centimeter scale. This fact is innovative with respect to inorganic replicas described in the literature, which predominate at the micrometric scale, limited to the original size of the template.

  12. Immunolocalization of multiple membrane proteins on a carbon replica with STEM and EDX.

    PubMed

    Loukanov, Alexandre; Kamasawa, Naomi; Danev, Radostin; Shigemoto, Ryuichi; Nagayama, Kuniaki

    2010-03-01

    We present a method for immunolabeling of multiple species of membrane proteins with high spatial resolution. It allows differentiation of equally sized very small markers with different chemical compositions, which leads to high labeling efficiency and reduces steric hindrance of closely spaced immunolabeled biomolecules. Markers such as CdSe/ZnS semiconductor quantum dots and colloidal gold particles are distinguished by differential contrast in high-angle annular detector dark-field STEM mode or by EDX microanalysis of their elemental contents. This method was tested by observation of labeled AMPA- and NMDA-type glutamate receptors on sodium-dodecyl-sulfate-digested replica prepared from rat hippocampus. To improve particle visibility and detectability, the replica films were made exclusively with carbon to avoid the high background of conventional platinum/carbon replica. Extension of the method is suggested by detection of 1.4 nm nanogold particles and its potential application in the biological imaging research.

  13. Microlens fabrication by replica molding of frozen laser-printed droplets

    NASA Astrophysics Data System (ADS)

    Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí

    2017-10-01

    In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.

  14. Designed-walk replica-exchange method for simulations of complex systems

    NASA Astrophysics Data System (ADS)

    Urano, Ryo; Okamoto, Yuko

    2015-11-01

    We propose a new implementation of the replica-exchange method (REM) in which replicas follow a pre-planned route in temperature space instead of a random walk. Our method satisfies the detailed balance condition in the proposed route. The method forces tunneling events between the highest and lowest temperatures to happen with an almost constant period. The number of tunneling counts is proportional to that of the random-walk REM multiplied by the square root of moving distance in temperature space. We applied this new implementation to two kinds of REM and compared the results with those of the conventional random-walk REM. The test system was a two-dimensional Ising model, and our new method reproduced the results of the conventional random-walk REM and could adjust the tunneling counts by two times or more than that of the random-walk REM by replica-exchange attempt frequency.

  15. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology

    PubMed Central

    Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark

    2014-01-01

    The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739

  16. Three-dimensional replica of corrected transposition of the great arteries for successful heart transplantation.

    PubMed

    Fujita, Tomoyuki; Fukushima, Satsuki; Fukushima, Norihide; Shiraishi, Isao; Kobayashi, Junjiro

    2017-03-30

    A 59-year-old man who had been previously diagnosed with congenitally corrected transposition of the great arteries at the age of 35 years became a candidate for heart transplantation. At the age of 57 years, he was referred to our hospital and underwent implantation of a left ventricular assist device (EVAHEART; Sun Medical Technology Research Corp., Suwa City, Japan) because of worsening ventricular function and was listed as a heart transplant candidate. A donor appeared when the patient was 59 years. A three-dimensional replica was made using data from computed tomography angiography. The three-dimensional replica was made of soft rubber (crossMedical, Inc., Kyoto, Japan), which enabled the surgeons to understand the relationship between the great arteries and chambers. After repeated dry laboratories using this replica, the patient underwent successful heart transplantation.

  17. Screening for antimicrobial resistance in normal bacterial flora of the skin using the replica plating method.

    PubMed

    Paavilainen, T; Osterblad, M; Leistevuo, T; Huovinen, P; Kotilainen, P

    2000-12-01

    The replica plating method was evaluated for detection of the antimicrobial resistance of normal bacterial flora of the skin and was compared with the results of a ten-colony method. If > or = 10% of the colonies from the master plate grew on a plate containing an antibiotic, the sensitivity of replica plating was comparable to that of a ten-colony method for samples containing resistant bacteria. However, this method classified significantly more samples as resistant to all eight antibiotics tested if the detection breakpoint was lowered to > or = 1% of the original colonies. Replica plating is an effective and practical tool for screening skin flora for resistance, also in samples with a low proportion of resistant strains.

  18. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering.

    PubMed

    Huang, Kun; García, Angel E

    2014-10-14

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.

  19. MuSTAR MD: multi-scale sampling using temperature accelerated and replica exchange molecular dynamics.

    PubMed

    Yamamori, Yu; Kitao, Akio

    2013-10-14

    A new and efficient conformational sampling method, MuSTAR MD (Multi-scale Sampling using Temperature Accelerated and Replica exchange Molecular Dynamics), is proposed to calculate the free energy landscape on a space spanned by a set of collective variables. This method is an extension of temperature accelerated molecular dynamics and can also be considered as a variation of replica-exchange umbrella sampling. In the MuSTAR MD, each replica contains an all-atom fine-grained model, at least one coarse-grained model, and a model defined by the collective variables that interacts with the other models in the same replica through coupling energy terms. The coarse-grained model is introduced to drive efficient sampling of large conformational space and the fine-grained model can serve to conduct more accurate conformational sampling. The collective variable model serves not only to mediate the coarse- and fine-grained models, but also to enhance sampling efficiency by temperature acceleration. We have applied this method to Ala-dipeptide and examined the sampling efficiency of MuSTAR MD in the free energy landscape calculation compared to that for replica exchange molecular dynamics, replica exchange umbrella sampling, temperature accelerated molecular dynamics, and conventional MD. The results clearly indicate the advantage of sampling a relatively high energy conformational space, which is not sufficiently sampled with other methods. This feature is important in the investigation of transition pathways that go across energy barriers. MuSTAR MD was also applied to Met-enkephalin as a test case in which two Gō-like models were employed as the coarse-grained model.

  20. The cumulative overlap distribution function in spin glasses: mean field vs. three dimensions

    NASA Astrophysics Data System (ADS)

    Yllanes, David; Billoire, Alain; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor

    2015-03-01

    We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution in spin glasses. Using analytical and numerical mean-field results for the Sherrington-Kirkpatrick model, as well as data from toy models, we show that this approach is an effective tool to distinguish the low-temperature behavior of replica symmmetry breaking systems from that expected in the droplet picture. An application of the method to the three-dimensional Edwards-Anderson models shows agreement with the replica symmetry breaking predictions. Supported by ERC Grant No. 247328 and from MINECO (Spain), Contract No. FIS2012-35719-C02.

  1. Optimal cloning of qubits from replicas of a qubit and its orthogonal states

    SciTech Connect

    Kato, Go

    2010-09-15

    We consider the situation where s replicas of a qubit with an unknown state and its orthogonal k replicas are given as an input, and we try to make c clones of the qubit with the unknown state. As a function of s, k, and c, we obtain the optimal fidelity between the qubit with an unknown state and the clone by explicitly giving a completely positive trace-preserving (CPTP) map that represents a cloning machine. We discuss dependency of the fidelity on the values of the parameters s, k, and c.

  2. Quantum Spin Liquids and Fractionalization

    NASA Astrophysics Data System (ADS)

    Misguich, Grégoire

    This chapter discusses quantum antiferromagnets which do not break any symmetries at zero temperature - also called "spin liquids" - and focuses on lattice spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in dimensions larger than one. We begin by discussing the Lieb-Schultz-Mattis theorem and its recent extension to D > 1 by Hastings (2004), which establishes an important distinction between spin liquids with an integer and with a half-integer spin per unit cell. Spin liquids of the first kind, "band insulators", can often be understood by elementary means, whereas the latter, "Mott insulators", are more complex (featuring "topological order") and support spin-1/2 excitations (spinons). The fermionic formalism (Affleck and Marston, 1988) is described and the effect of fluctuations about mean-field solutions, such as the possible creation of instabilities, is discussed in a qualitative way. In particular, we explain the emergence of gauge modes and their relation to fractionalization. The concept of the projective symmetry group (X.-G. Wen, 2002) is introduced, with the aid of some examples. Finally, we present the phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and make contact with the fermionic approach by discussing their description in terms of a fluctuating Z 2 gauge field. Some recent references are given to other types of spin liquid, including gapless ones.

  3. Quantumness of spin-1 states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, Fabian; Braun, D.; Giraud, O.

    2016-01-01

    We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry of symmetric entangled states.

  4. Symmetric autocompensating quantum key distribution

    NASA Astrophysics Data System (ADS)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  5. Photographic replica of plaque Apollo 15 astronauts will leave on Moon

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A photographic replica of the plaque which Apollo 15 astronauts will leave behind on the Moon during their lunar landing mission. The seven by nine-inch stainless steel plaque will be attached to the ladder on the landing gear strut on the Lunar Module's descent stage.

  6. Photographic replica of the plaque Apollo 13 astronauts will leave on moon

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A photographic replica of the plaque which the Apollo 13 astronauts will leave behind on the Moon during their lunar landing mission. The plaque will be attached to the ladder on the landing gear strut on the Lunar Module's descent stage.

  7. View of replica of plaque Apollo 12 astronauts will leave on the Moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Close-up view of a replica of the plaque which the Apollo 12 astronauts will leave on the Moon in commemoration of their flight. The plaque will be attached to the ladder on the landing gear strut on the descent stage of the Apollo 12 Lunar Module.

  8. Accelerated flexible protein-ligand docking using Hamiltonian replica exchange with a repulsive biasing potential

    PubMed Central

    Ostermeir, Katja; Zacharias, Martin

    2017-01-01

    A molecular dynamics replica exchange based method has been developed that allows rapid identification of putative ligand binding sites on the surface of biomolecules. The approach employs a set of ambiguity restraints in replica simulations between receptor and ligand that allow close contacts in the reference replica but promotes transient dissociation in higher replicas. This avoids long-lived trapping of the ligand or partner proteins at nonspecific, sticky, sites on the receptor molecule and results in accelerated exploration of the possible binding regions. In contrast to common docking methods that require knowledge of the binding site, exclude solvent and often keep parts of receptor and ligand rigid the approach allows for full flexibility of binding partners. Application to peptide-protein, protein-protein and a drug-receptor system indicate rapid sampling of near-native binding regions even in case of starting far away from the native binding site outperforming continuous MD simulations. An application on a DNA minor groove binding ligand in complex with DNA demonstrates that it can also be used in explicit solvent simulations. PMID:28207811

  9. Deterministic replica-exchange method without pseudo random numbers for simulations of complex systems

    NASA Astrophysics Data System (ADS)

    Urano, Ryo; Okamoto, Yuko

    2015-12-01

    We propose a replica-exchange method (REM) which does not use pseudo random numbers. For this purpose, we first give a conditional probability for Gibbs sampling replica-exchange method (GSREM) based on the heat bath method. In GSREM, replica exchange is performed by conditional probability based on the weight of states using pseudo random numbers. From the conditional probability, we propose a new method called deterministic replica-exchange method (DETREM) that produces thermal equilibrium distribution based on a differential equation instead of using pseudo random numbers. This method satisfies the detailed balance condition using a conditional probability of Gibbs heat bath method and thus results can reproduce the Boltzmann distribution within the condition of the probability. We confirmed that the equivalent results were obtained by REM and DETREM with two-dimensional Ising model. DETREM can avoid problems of choice of seeds in pseudo random numbers for parallel computing of REM and gives analytic method for REM using a differential equation.

  10. Conformational sampling of metastable states: Tq-REM as a novel replica exchange method.

    PubMed

    Lee, MinJun; Yoon, Jeseong; Jang, Soonmin; Shin, Seokmin

    2017-02-15

    Although the replica exchange methods (REMs) were developed as efficient conformational sampling methods for bio-molecular simulations, their application to very large bio-systems is somewhat limited. We propose a new replica exchange scheme (Tq-REM) created by combining the conventional temperature-REM (T-REM) and one of the Hamiltonian-REMs, q-REM, using the effective potential with reduced barriers. In the proposed Tq-REM scheme, high temperature replicas in T-REM are substituted with q-replicas. This combined scheme is expected to exploit advantages of the T-REM and q-REM resulting in improved sampling efficiency while minimizing the drawbacks of both approaches. We investigated the performance of Tq-REM compared with T-REM by performing all-atom MD simulations on Met-enkephalin, (AAQAA)3, and Trpzip2. It was found that convergence of the free energy surfaces was improved by Tq-REM over the conventional T-REM. In particular, the trajectories of Tq-REM were able to sample the relevant conformations for all of the metastable folding intermediates, while some of the local minimum structures are poorly represented by T-REM. The results of the present study suggest that Tq-REM can provide useful tools to investigate systems where metastable states play important roles.

  11. Replica plating method for estimating phenanthrene-utilizing and phenanthrene-cometabolizing microorganisms

    SciTech Connect

    Shiaris, M.P.; Cooney, J.J.

    1983-02-01

    A replica plating method was developed for detecting and enumerating phenanthrene-degrading microorganisms. The method is designed to discriminate between aquatic organisms that utilize phenanthrene as the sole carbon and energy source and organisms that cometabolize phenanthrene. The method was used to demonstrate that phenanthrene utilizers and phenanthrene cometabolizers coexist in estuarine sediments.

  12. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    NASA Astrophysics Data System (ADS)

    Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E.; Landau, David P.

    2015-09-01

    We considered a higher-dimensional extension for the replica-exchange Wang- Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this difficulty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.

  13. Expanded ensemble and replica exchange methods for simulation of protein-like systems

    NASA Astrophysics Data System (ADS)

    Fenwick, Michael K.; Escobedo, Fernando A.

    2003-12-01

    Extended state methods are powerful tools for studying the conformational equilibria of proteins. This study focuses on three aspects of their implementation. First, existing approaches for determining importance weights (namely, recursion, random walk, and transition probability schemes) are compared in the context of their use with the method of expanded ensembles (EXE). Second, a combined scheme (REXE) involving EXE and replica exchange (REX) updates is developed for simulating a small number of replicas within a much larger macrostate space. Finally, variants of the extended state methods are considered for accelerating folding, either through special-purpose ensembles which target specific force-field parameters, or through biased sampling of extended macrostates that favor structural fluctuations. All methods are applied to a three-dimensional lattice protein model. Overall, it is found that transition probability approaches employing multiple system replicas perform naturally better than methods that intrinsically require macrostate equilibration by a single replica; the transition probability approaches need about an order of magnitude fewer steps to reach the same degree of convergence in the importance weights. The specific REXE protocol implemented is observed to have an efficiency intermediate to that of EXE and REX schemes at high temperatures, but to outperform them at more glassy conditions. Finally, special-purpose and locally enhanced tempering ensembles are shown to promote faster folding than conventional tempering.

  14. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    SciTech Connect

    Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E; Landau, David P

    2015-01-01

    We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.

  15. Comparison of Replica-Permutation Molecular Dynamics Simulations with and without Detailed Balance Condition

    NASA Astrophysics Data System (ADS)

    Nishizawa, Hiroaki; Okumura, Hisashi

    2015-07-01

    In the replica-permutation method (RPM), temperatures are not only exchanged between two replicas but also permutated among more than two replicas using the Suwa-Todo algorithm, which minimizes the rejection ratio in Monte Carlo trials. We verify the sampling efficiency of RPM that adopts Suwa-Todo algorithms with and without a detailed balance condition (DBC). To compare these techniques, molecular dynamics simulations of RPM with and without the DBC and the replica-exchange method (REM) were carried out for a chignolin molecule in explicit water. Although no difference in the numbers of folding and unfolding events was observed, the numbers of tunneling events of the two RPM simulations were larger than that of REM. This indicates that the minimization of the rejection ratio by the Suwa-Todo algorithm in RPM realizes efficient sampling. Furthermore, the sampling efficiency was slightly higher in the RPM without the DBC than in that with the DBC. The reason for this difference is also discussed.

  16. Thermophoresis of Axially Symmetric Bodies

    DTIC Science & Technology

    2007-11-02

    Sweden Abstract. Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit...derived. Asymptotic solutions are studied. INTRODUCTION Thermophoresis as a phenomenon has been known for a long time, and several authors have approached

  17. Particle-vortex symmetric liquid

    NASA Astrophysics Data System (ADS)

    Mulligan, Michael

    2017-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  18. Prior Distributions on Symmetric Groups

    ERIC Educational Resources Information Center

    Gupta, Jayanti; Damien, Paul

    2005-01-01

    Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…

  19. Supercritical Flow Past Symmetrical Airfoils.

    DTIC Science & Technology

    1980-12-01

    about quasi-elliptic airfoil sections. The method was later extended by Boerstoel [1967] to present a catalog of solutions for certain body shapes. Bauer...Lecture Notes in Economics and Mathematical Systems, Springer- Verlag, New York, 1972. Boerstoel , J. W., "A Survey of Symmetrical Transonic Potential

  20. Synthesis of a symmetrical dithiirane

    SciTech Connect

    Allakverdiev, M.A.; Farzaliev, V.M.; Mamedov, C.I.

    1986-04-01

    The reaction of p-xylene with epichlorohydrin in the presence of aluminum chloride gave 1,4-dimethyl-2,5-bis(1-chloro-2-hydroxypropyl) benzene, which serves as the starting compound for the synthesis of the corresponding symmetrical dithiirane.

  1. Prior Distributions on Symmetric Groups

    ERIC Educational Resources Information Center

    Gupta, Jayanti; Damien, Paul

    2005-01-01

    Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…

  2. Intensity-symmetric Airy beams.

    PubMed

    Vaveliuk, P; Lencina, Alberto; Rodrigo, Jose A; Martnez-Matos, Ó

    2015-03-01

    Theoretical, numerical, and experimental research on a novel family of Airy beams in rectangular coordinates having a symmetric transverse pattern of light intensity is presented. The intensity-symmetric Airy beams include both the symmetric Airy beam whose field amplitude is an even function of the transverse coordinates and the antisymmetric Airy beam whose field amplitude is an odd function of such coordinates. The theoretical foundations are based on the relationship of the symmetries of the spectral phase with the cosine and sine Fourier transforms. These beams are analyzed in a propagation range also including the region preceding the Fourier plane. These beams exhibit autofocusing, collapse, self-bending, and reversal propagation. Moreover, the intensity distribution is strongly asymmetric with respect to the Fourier plane. All these peculiar features were not reported for other classes of paraxial beams in a rectangular frame. The experimental generation of intensity-symmetric Airy beams is demonstrated supporting the theoretical predictions. Possible applications in planar waveguide writing and optical trapping are also discussed.

  3. High spin-filter efficiency and Seebeck effect through spin-crossover iron-benzene complex

    NASA Astrophysics Data System (ADS)

    Yan, Qiang; Zhou, Liping; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng

    2016-04-01

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz)2 using density functional theory combined with non-equilibrium Green's function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  4. High spin-filter efficiency and Seebeck effect through spin-crossover iron-benzene complex.

    PubMed

    Yan, Qiang; Zhou, Liping; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz)2 using density functional theory combined with non-equilibrium Green's function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  5. Nonresonant photon dressing in spin one quadrupolar systems

    SciTech Connect

    Zhuang, Y.L.

    1992-01-01

    This thesis mainly studied the effects of nonresonant photon dressing on spin 1 pure quadrupolar system with symmetric EFG. Energy levels of spin 1 nuclei dressed by linearly or circularly polarized photons were theoretically derived and numerically analyzed. The degeneracy of m[sub [Zeta

  6. Schwarz Methods: To Symmetrize or not to Symmetrize

    NASA Technical Reports Server (NTRS)

    Holst, Michael; Vandewalle, Stefan

    1996-01-01

    A preconditioning theory for Schwarz methods is presented. The theory establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of non-variational and non-convergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. This paper illustrates why symmetrizing may be a bad idea for linear methods. Numerical examples are presented for a test problem.

  7. Symmetric construction of reference-frame-free qudits

    NASA Astrophysics Data System (ADS)

    Suzuki, Jun; Tabia, Gelo Noel Macuja; Englert, Berthold-Georg

    2008-11-01

    By exploiting a symmetric scheme for coupling N spin- 1/2 constituents (the physical qubits) to states with total angular momentum N/2-1 , we construct rotationally invariant logical qudits of dimension d=N-1 . One can encode all qudit states, and realize all qudit measurements, by this construction. The rotational invariance of all relevant objects enables one to transmit quantum information without having aligned reference frames between the parties that exchange the qudits. We illustrate the method by explicit constructions of reference-frame-free qubits and qutrits and, for the qubit case, comment on possible experimental implementations.

  8. Bulk matters on symmetric and asymmetric de Sitter thick branes

    SciTech Connect

    Liu, Yu-Xiao; Zhao, Zhen-Hua; Wei, Shao-Wen; Duan, Yi-Shi E-mail: zhaozhenhua@impcas.ac.cn E-mail: ysduan@lzu.edu.cn

    2009-02-15

    An asymmetric thick domain wall solution with de Sitter (dS) expansion in five dimensions can be constructed from a symmetric one by using a same scalar (kink) with different potentials. In this paper, by presenting the mass-independent potentials of Kaluza-Klein (KK) modes in the corresponding Schroedinger equations, we investigate the localization and mass spectra of various bulk matter fields on the symmetric and asymmetric dS thick branes. For spin 0 scalars and spin 1 vectors, the potentials of KK modes in the corresponding Schroedinger equations are the modified Poeschl-Teller potentials, and there exist a mass gap and a series of continuous spectrum. It is shown that the spectrum of scalar KK modes on the symmetric dS brane contains only one bound mode (the massless mode). However, for the asymmetric dS brane with a large asymmetric factor, there are two bound scalar KK modes: a zero mode and a massive mode. For spin 1 vectors, the spectra of KK modes on both dS branes consist of a bound massless mode and a set of continuous ones, i.e., the asymmetric factor does not change the number of the bound vector KK modes. For spin 1/2 fermions, two types of kink-fermion couplings are investigated in detail. For the usual Yukawa coupling {eta}barPsi{phi}{Psi}, there exists no mass gap but a continuous gapless spectrum of KK states. For the scalar-fermion coupling {eta}barPsisin({phi}/{phi}{sub 0})cos{sup -{delta}}({phi}/{phi}{sub 0}){Psi} with a positive coupling constant {eta}, there exist some discrete bound KK modes and a series of continuous ones. The total number of bound states increases with the coupling constant {eta}. For the case of the symmetric dS brane and positive {eta}, there are N{sub L}(N{sub L} {>=} 1) left chiral fermion bound states (including zero mode and massive KK modes) and N{sub L}-1 right chiral fermion bound states (including only massive KK modes). For the asymmetric dS brane scenario, the asymmetric factor a reduces the number of the

  9. Collective magnetic excitations of C4-symmetric magnetic states in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Scherer, Daniel D.; Eremin, Ilya; Andersen, Brian M.

    2016-11-01

    We study the collective magnetic excitations of the recently discovered C4-symmetric spin-density-wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4-symmetric spin-density-wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modify the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4-symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.

  10. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    NASA Astrophysics Data System (ADS)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  11. Symmetric States Requiring System Asymmetry

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2016-09-01

    Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can emerge from interactions in complex systems. When the interacting entities are identical and their coupling patterns are also identical, the complete synchronization of the entire network is the state inheriting the system symmetry. As in other systems subject to symmetry breaking, such symmetric states are not always stable. Here, we report on the discovery of the converse of symmetry breaking—the scenario in which complete synchronization is not stable for identically coupled identical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symmetry. Aside from demonstrating that diversity can facilitate and even be required for uniformity and consensus, this suggests a mechanism for convergent forms of pattern formation in which initially asymmetric patterns evolve into symmetric ones.

  12. Phase transitions in continuum ferromagnets with unbounded spins

    SciTech Connect

    Daletskii, Alexei; Kondratiev, Yuri; Kozitsky, Yuri

    2015-11-15

    States of thermal equilibrium of an infinite system of interacting particles in ℝ{sup d} are studied. The particles bear “unbounded” spins with a given symmetric a priori distribution. The interaction between the particles is pairwise and splits into position-position and spin-spin parts. The position-position part is described by a superstable potential, and the spin-spin part is attractive and of finite range. Thermodynamic states of the system are defined as tempered Gibbs measures on the space of marked configurations. It is proved that the set of such measures contains at least two elements if the activity is big enough.

  13. Rotationally symmetric viscous gas flows

    NASA Astrophysics Data System (ADS)

    Weigant, W.; Plotnikov, P. I.

    2017-03-01

    The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.

  14. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices

    NASA Astrophysics Data System (ADS)

    Dhesi, G. S.; Ausloos, M.

    2016-06-01

    Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N ×N matrices to order 1 /N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression.

  15. Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles

    NASA Astrophysics Data System (ADS)

    Binder, Moritz; Barthel, Thomas

    2017-05-01

    Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1 /2 X X Z chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.

  16. Formation of replica of root canal morphology of maxillary first premolars. A technique.

    PubMed

    Sreekrishnan, B; Ajithkumar, K; Sadashivshetty, K

    1995-01-01

    Various methods have been used to study the root canal morphology of human teeth. The purpose of this study was to develop a technique for the formation of a resin replica of the root canal morphology of maxillary first premolars. 30 recently extracted maxillary first premolars were used for the study. An occlusal access cavity was prepared and the teeth placed in 5% sodium hypochlorite solution to dissolve the pulp remnants. The teeth were then rinsed in water. A two-part resin system was then introduced into the root canal through the access cavity opening. Subsequent to curing the resin using a specific curing cycle the specimens were put in 20% hydrochloric acid. This facilitated the dissolution of the tooth and the retrieval of the resin replica of the root canal. The different types of root canal morphology observed are discussed. The relevance and utility of the resin models and further possibilities in this field are discussed.

  17. Numerical simulation of a binary communication channel: Comparison between a replica calculation and an exact solution

    NASA Astrophysics Data System (ADS)

    Dominguez, D. R. C.; Maravall, M.; Turiel, A.; Ciria, J. C.; Parga, N.

    1999-03-01

    The mutual information of a single-layer perceptron with N Gaussian inputs and P deterministic binary outputs is studied by numerical simulations. The relevant parameters of the problem are the ratio between the number of output and input units, α = P/N, and those describing the two-point correlations between inputs. The main motivation of this work refers to the comparison between the replica computation of the mutual information and an analytical solution valid up to α ~ O(1). The most relevant results are: 1) the simulation supports the validity of the analytical prediction, and 2) it also verifies a previously proposed conjecture that the replica solution interpolates well between large and small values of α.

  18. Neutron and gamma dose and spectra measurements on the Little Boy replica

    SciTech Connect

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.

  19. Instability of one-step replica-symmetry-broken phase in satisfiability problems

    NASA Astrophysics Data System (ADS)

    Montanari, Andrea; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2004-02-01

    We reconsider the one-step replica-symmetry-breaking (1RSB) solutions of two random combinatorial problems: k-XORSAT and k-SAT. We present a general method for establishing the stability of these solutions with respect to further steps of replica-symmetry breaking. Our approach extends the ideas of Montanari and Ricci-Tersenghi (2003 Eur. Phys. J. B 33 339) to more general combinatorial problems. It turns out that 1RSB is always unstable at sufficiently small clause density agr or high energy. In particular, the recent 1RSB solution to 3-SAT is unstable at zero energy for agr < agrm, with agrm ap 4.153. On the other hand, the SAT-UNSAT phase transition seems to be correctly described within 1RSB.

  20. Sampling of Protein Folding Transitions: Multicanonical Versus Replica Exchange Molecular Dynamics

    PubMed Central

    2013-01-01

    We compare the efficiency of multicanonical and replica exchange molecular dynamics for the sampling of folding/unfolding events in simulations of proteins with end-to-end β-sheet. In Go-model simulations of the 75-residue MNK6, we observe improvement factors of 30 in the number of folding/unfolding events of multicanonical molecular dynamics over replica exchange molecular dynamics. As an application, we use this enhanced sampling to study the folding landscape of the 36-residue DS119 with an all-atom physical force field and implicit solvent. Here, we find that the rate-limiting step is the formation of the central helix that then provides a scaffold for the parallel β-sheet formed by the two chain ends. PMID:24198735

  1. Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering

    PubMed Central

    2015-01-01

    The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide. PMID:25838811

  2. A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang Landau sampling

    SciTech Connect

    Li, Ying Wai; Vogel, Thomas; Wuest, Thomas; Landau, David P

    2014-01-01

    We introduce a generic, parallel Wang Landau method that is naturally suited to implementation on massively parallel, petaflop supercomputers. The approach introduces a replica-exchange framework in which densities of states for overlapping sub-windows in energy space are determined iteratively by traditional Wang Landau sampling. The advantages and general applicability of the method are demonstrated for several distinct systems that possess discrete or continuous degrees of freedom, including those with complex free energy landscapes and topological constraints.

  3. Factorization of correlation functions and the replica limit of the Toda lattice equation

    NASA Astrophysics Data System (ADS)

    Splittorff, K.; Verbaarschot, J. J. M.

    2004-04-01

    Exact microscopic spectral correlation functions are derived by means of the replica limit of the Toda lattice equation. We consider both Hermitian and non-Hermitian theories in the Wigner-Dyson universality class (class A) and in the chiral universality class (class AIII). In the Hermitian case we rederive two-point correlation functions for class A and class AIII as well as several one-point correlation functions in class AIII. In the non-Hermitian case the average spectral density of non-Hermitian complex random matrices in the weak non-Hermiticity limit is obtained directly from the replica limit of the Toda lattice equation. In the case of class A, this result describes the spectral density of a disordered system in a constant imaginary vector potential (the Hatano-Nelson model) which is known from earlier work. New results are obtained for the average spectral density in the weak non-Hermiticity limit of a quenched chiral random matrix model at non-zero chemical potential. These results apply to the ergodic or ɛ domain of the quenched QCD partition function at non-zero chemical potential. Our results have been checked against numerical results obtained from a large ensemble of random matrices. The spectral density obtained is different from the result derived by Akemann for a closely related model, which is given by the leading order asymptotic expansion of our result. In all cases, the replica limit of the Toda lattice equation explains the factorization of spectral one- and two-point functions into a product of a bosonic (non-compact integral) and a fermionic (compact integral) partition function. We conclude that the fermionic partition functions, the bosonic partition functions and the supersymmetric partition function are all part of a single integrable hierarchy. This is the reason that it is possible to obtain the supersymmetric partition function, and its derivatives, from the replica limit of the Toda lattice equation.

  4. A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang-Landau sampling

    NASA Astrophysics Data System (ADS)

    Li, Ying Wai; Vogel, Thomas; Wüst, Thomas; Landau, David P.

    2014-05-01

    We introduce a generic, parallel Wang-Landau method that is naturally suited to implementation on massively parallel, petaflop supercomputers. The approach introduces a replica-exchange framework in which densities of states for overlapping sub-windows in energy space are determined iteratively by traditional Wang-Landau sampling. The advantages and general applicability of the method are demonstrated for several distinct systems that possess discrete or continuous degrees of freedom, including those with complex free energy landscapes and topological constraints.

  5. Replicas of Snoopy and Charlie Brown decorate top of console in MCC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip 'Peanuts', decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules. The code words for the Command Module will be Charlie Brown.

  6. Correlative super-resolution fluorescence and metal replica transmission electron microscopy

    PubMed Central

    Sochacki, Kem A.; Shtengel, Gleb; van Engelenburg, Schuyler B.; Hess, Harald F.; Taraska, Justin W.

    2014-01-01

    Super-resolution localization microscopy is combined with a complementary imaging technique, transmission electron microscopy of metal replicas, to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. Robust correlation on the scale of 20 nm is validated by imaging endogenous clathrin (with 2D and 3D PALM/TEM) and the method is further used to find the previously unknown 3D position of epsin on clathrin coated structures. PMID:24464288

  7. Replicas of Snoopy and Charlie Brown decorate top of console in MCC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip 'Peanuts', decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules. The code words for the Command Module will be Charlie Brown.

  8. Deposition of Particles in Human Mouth-Throat Replicas and a USP Induction Port.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Su, Wei-Chung

    2015-06-01

    Oral inhalation is the common route of drug delivery to pulmonary airways. In general, deposition in the oropharyngeal airways from a drug-delivery device makes up a substantial portion of the emitted dose, which affects the dose delivered to the lung. Studies with airway replicas made from cadaver or magnetic resonance imaging scans show that for micrometer-sized particles, impaction is the dominant deposition mechanism. Several deposition studies in oropharyngeal replicas found that the deposition efficiency can be correlated with the mouth inlet velocity and inlet mouthpiece diameter. Other studies show that the deposition efficiency is best correlated with the mean diameter of internal geometry and the mean velocity based on the mean diameter. We investigated the mouth inlet diameter, as well as internal airway dimensions and their influence on oropharyngeal deposition based on experimental data from this study. Several human oropharyngeal replicas with different mouth inlet diameters and the USP induction port were used. We found that the aerosol deposition increased with decreasing mouth inlet diameter. Several mathematical expressions were tried to correlate the deposition efficiency with the Stokes number calculated based on (1) mouth inlet diameter and inlet velocity, (2) mean diameter of internal geometry and mean velocity, (3) mouth inlet velocity and mean diameter, and (4) mouth inlet velocity and minimum diameter in the oropharyngeal replica. The best correlation was obtained in case 4. This correlation could explain the intra-subject variation when deposition was found to vary with mouth inlet diameter, such as in some aerosol drug-delivery devices. It could also explain the intersubject variability in oropharyngeal deposition when human volunteers with different airway geometries and mouth openings were studied.

  9. Spin thermopower in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Rejec, Tomaž; Žitko, Rok; Mravlje, Jernej; Ramšak, Anton

    2012-02-01

    Using analytical arguments and the numerical renormalization group method, we investigate the spin thermopower of a quantum dot in a magnetic field. In the particle-hole-symmetric situation, the temperature difference applied across the dot drives a pure spin current without accompanying charge current. For temperatures and fields at or above the Kondo temperature, but of the same order of magnitude, the spin-Seebeck coefficient is large, of the order of kB/|e|. Via a mapping, we relate the spin-Seebeck coefficient to the charge-Seebeck coefficient of a negative-U quantum dot where the corresponding result was recently reported by Andergassen [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.241107 84, 241107 (2011)]. For several regimes, we provide simplified analytical expressions. In the Kondo regime, the dependence of the spin-Seebeck coefficient on the temperature and the magnetic field is explained in terms of the shift of the Kondo resonance due to the field and its broadening with the temperature and the field. We also consider the influence of breaking the particle-hole symmetry and show that a pure spin current can still be realized, provided a suitable electric voltage is applied across the dot. Then, except for large asymmetries, the behavior of the spin-Seebeck coefficient remains similar to that found in the particle-hole-symmetric point.

  10. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  11. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    NASA Astrophysics Data System (ADS)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  12. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas.

    PubMed

    Bao, Zhihao; Weatherspoon, Michael R; Shian, Samuel; Cai, Ye; Graham, Phillip D; Allan, Shawn M; Ahmad, Gul; Dickerson, Matthew B; Church, Benjamin C; Kang, Zhitao; Abernathy, Harry W; Summers, Christopher J; Liu, Meilin; Sandhage, Kenneth H

    2007-03-08

    The carbothermal reduction of silica into silicon requires the use of temperatures well above the silicon melting point (> or =2,000 degrees C). Solid silicon has recently been generated directly from silica at much lower temperatures (< or =850 degrees C) via electrochemical reduction in molten salts. However, the silicon products of such electrochemical reduction did not retain the microscale morphology of the starting silica reactants. Here we demonstrate a low-temperature (650 degrees C) magnesiothermic reduction process for converting three-dimensional nanostructured silica micro-assemblies into microporous nanocrystalline silicon replicas. The intricate nanostructured silica microshells (frustules) of diatoms (unicellular algae) were converted into co-continuous, nanocrystalline mixtures of silicon and magnesia by reaction with magnesium gas. Selective magnesia dissolution then yielded an interconnected network of silicon nanocrystals that retained the starting three-dimensional frustule morphology. The silicon replicas possessed a high specific surface area (>500 m(2) g(-1)), and contained a significant population of micropores (< or =20 A). The silicon replicas were photoluminescent, and exhibited rapid changes in impedance upon exposure to gaseous nitric oxide (suggesting a possible application in microscale gas sensing). This process enables the syntheses of microporous nanocrystalline silicon micro-assemblies with multifarious three-dimensional shapes inherited from biological or synthetic silica templates for sensor, electronic, optical or biomedical applications.

  13. Novel grinding stone used for polishing 3D plastic replica with rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Niikura, Yoshihiro; Sato, Toshio; Kawashima, Norimichi

    2006-01-01

    Rapid prototyping (RP) apparatus accepts a specific format translated from CAD data (patient's CT) and "slices" it into two-dimensional cross sections for laser photo curing. Surgeon can conduct safer surgery by reappearing on an actual model using 3D plastic replica in the preoperative. Polishing has to be used to eliminate the marks after removal of supports and the build layer pitches. Complicated and narrow areas of the 3D replica are difficult to be polished with the conventional grinding stone. This study proposes a novel grinding stone and introduces its producing process and characteristics. The novel grinding stone has many advantages as follows; (1) Preparation is possible of grinding stone that follows the complicated shape. (2) Grinding stone with uniformly dispersed abrasive grains can be prepared using magnetic particles and magnetic field. (3) Reshaping of grinding stone by heating is possible since the binder is made of a thermoplastic resin. (4) Every process can easily be carried out. We could polish to eliminate the marks after removal of supports and the build layer pitches on 3D plastic replica surface with the grinding stone.

  14. Preparation of thin, fine-grained, tantalum metal replicas for freeze-fracture electron microscopy.

    PubMed

    Costello, M J; Escaig, J

    1989-01-01

    Two critical factors in the preparation of metal films on biological specimens are the type of metal used and the potentially damaging effects of radiant energy from the hot metal source. The excessive heating of surfaces is a major limitation to the replication of heat-sensitive aqueous specimens with refractory metals such as tungsten and tantalum, although these metals are known to form smaller grains and thinner films than the more commonly used platinum/carbon deposited under similar conditions. We describe here an electron gun designed for the evaporation of pure tantalum; surface heating is reduced through intermittent deposition controlled by varying the open/closed intervals of a fast shutter that operates in ultra-high vacuum. The effectiveness of the shutter was evaluated with a thin thermocouple in place of the specimen. The composition of the replicas was determined by x-ray microanalysis and by direct observation of the initial melting and subsequent evaporation of the tantalum bead supported on a tungsten rod that remained unchanged during the evaporation. The quality of the tantalum replicas was demonstrated with freeze-fracture replicas of reconstituted proteoliposomes and native membrane vesicles. With shutter intervals of 0.5 sec open and 1.0 sec closed, the surface heating was reduced enough to prevent unintentional etching and to preserve small pits complementary to protein particles in hydrophobic membrane surfaces and in ice.

  15. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices

    NASA Astrophysics Data System (ADS)

    Yu, G. L.; Gorbachev, R. V.; Tu, J. S.; Kretinin, A. V.; Cao, Y.; Jalil, R.; Withers, F.; Ponomarenko, L. A.; Piot, B. A.; Potemski, M.; Elias, D. C.; Chen, X.; Watanabe, K.; Taniguchi, T.; Grigorieva, I. V.; Novoselov, K. S.; Fal'Ko, V. I.; Geim, A. K.; Mishchenko, A.

    2014-07-01

    Self-similarity and fractals have fascinated researchers across various disciplines. In graphene placed on boron nitride and subjected to a magnetic field, self-similarity appears in the form of numerous replicas of the original Dirac spectrum, and their quantization gives rise to a fractal pattern of Landau levels, referred to as the Hofstadter butterfly. Here we employ capacitance spectroscopy to probe directly the density of states (DoS) and energy gaps in this spectrum. Without a magnetic field, replica spectra are seen as pronounced DoS minima surrounded by van Hove singularities. The Hofstadter butterfly shows up as recurring Landau fan diagrams in high fields. Electron-electron interactions add another twist to the self-similar behaviour. We observe suppression of quantum Hall ferromagnetism, a reverse Stoner transition at commensurable fluxes and additional ferromagnetism within replica spectra. The strength and variety of the interaction effects indicate a large playground to study many-body physics in fractal Dirac systems.

  16. Automatic Tool Mark Identification and Comparison with Known Bronze Age Hand Tool Replicas

    NASA Astrophysics Data System (ADS)

    Kovács, K.; Hanke, K.

    2013-07-01

    The acquisition of high-resolution surface information by advanced documentation methods as short-range laser scanning or closerange photogrammetry can provide novel tool mark research perspectives in the field of archaeological sciences. For this reason, altogether eight different Bronze Age hand tool replicas and their tool marks were surveyed and analysed in this study. The automatic identification of sliding tool marks was carried out in a GIS environment. Based on hydrological and aspect parameters, the various hand tool impressions as watershed boundaries of the surface model could be determined in the developed workflow. After the segmentation of the single tool marks, slope and width values of the patterns were compared with the cutting edges of their replicas and the most used regions of the hand tool heads could be defined by these tool mark characteristics. The variation of midline parameters along the sliding tool marks resulted in significant conclusions about the mounting techniques of the hand tool heads on the handles. A smaller angular value between the replica and the handle produced different hand tool impressions which had a major influence on the woodworking efficiency as well. Furthermore, in this paper presented methods should also help to understand other ancient wood manufacture processes.

  17. A digital approach to fabricating an abutment replica to control cement volume in a cement-retained implant prosthesis.

    PubMed

    Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok

    2016-07-01

    If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology.

  18. Fractal Dimension of Interfaces in Edwards-Anderson and Long-range Ising Spin Glasses: Determining the Applicability of Different Theoretical Descriptions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Moore, M. A.; Katzgraber, Helmut G.

    2017-09-01

    The fractal dimension of excitations in glassy systems gives information on the critical dimension at which the droplet picture of spin glasses changes to a description based on replica symmetry breaking where the interfaces are space filling. Here, the fractal dimension of domain-wall interfaces is studied using the strong-disorder renormalization group method pioneered by Monthus [Fractals 23, 1550042 (2015), 10.1142/S0218348X15500425] both for the Edwards-Anderson spin-glass model in up to 8 space dimensions, as well as for the one-dimensional long-ranged Ising spin-glass with power-law interactions. Analyzing the fractal dimension of domain walls, we find that replica symmetry is broken in high-enough space dimensions. Because our results for high-dimensional hypercubic lattices are limited by their small size, we have also studied the behavior of the one-dimensional long-range Ising spin-glass with power-law interactions. For the regime where the power of the decay of the spin-spin interactions with their separation distance corresponds to 6 and higher effective space dimensions, we find again the broken replica symmetry result of space filling excitations. This is not the case for smaller effective space dimensions. These results show that the dimensionality of the spin glass determines which theoretical description is appropriate. Our results will also be of relevance to the Gardner transition of structural glasses.

  19. Spin squeezing, negative correlations, and concurrence in the quantum kicked top model.

    PubMed

    Wang, Xiaoqian; Ma, Jian; Song, Lijun; Zhang, Xihe; Wang, Xiaoguang

    2010-11-01

    We study spin squeezing, negative correlations, and concurrence in the quantum kicked top model. We prove that the spin squeezing and negative correlations are equivalent for spin systems with only symmetric Dicke states populated. We numerically analyze spin squeezing parameters and concurrence in this model and find that the maximal spin squeezing direction, which refers to the minimal pairwise correlation direction, is strongly influenced by quantum chaos. Entanglement (spin squeezing) sudden death and sudden birth occur alternatively for the periodic and quasiperiodic cases, while only entanglement (spin squeezing) sudden death is found for the chaotic case.

  20. Modeling Symmetric Macromolecular Structures in Rosetta3

    PubMed Central

    DiMaio, Frank; Leaver-Fay, Andrew; Bradley, Phil; Baker, David; André, Ingemar

    2011-01-01

    Symmetric protein assemblies play important roles in many biochemical processes. However, the large size of such systems is challenging for traditional structure modeling methods. This paper describes the implementation of a general framework for modeling arbitrary symmetric systems in Rosetta3. We describe the various types of symmetries relevant to the study of protein structure that may be modeled using Rosetta's symmetric framework. We then describe how this symmetric framework is efficiently implemented within Rosetta, which restricts the conformational search space by sampling only symmetric degrees of freedom, and explicitly simulates only a subset of the interacting monomers. Finally, we describe structure prediction and design applications that utilize the Rosetta3 symmetric modeling capabilities, and provide a guide to running simulations on symmetric systems. PMID:21731614

  1. Symmetric Teleparallel Gravity: Some Exact Solutions and Spinor Couplings

    NASA Astrophysics Data System (ADS)

    Adak, Muzaffer; Sert, Özcan; Kalay, Mestan; Sari, Murat

    2013-12-01

    In this paper, we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian space-time with nonzero nonmetricity, but zero torsion and zero curvature. First, we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then, we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry, the autoparallel curves coincide with those of the Riemannian space-times. Subsequently, we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving Lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our Lagrangian is equivalent to the Einstein-Hilbert Lagrangian for certain values of coupling coefficients. Thus, we arrive at calculating the field equations via independent variations. Then, we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally, we discuss a minimal coupling of a spin-1/2 field to STPG.

  2. Spherically symmetric canonical quantum gravity

    NASA Astrophysics Data System (ADS)

    Brahma, Suddhasattwa

    2015-06-01

    Canonical quantization of spherically symmetric space-times is carried out, using real-valued densitized triads and extrinsic curvature components, with specific factor-ordering choices ensuring in an anomaly free quantum constraint algebra. Comparison with previous work [Nucl. Phys. B399, 211 (1993)] reveals that the resulting physical Hilbert space has the same form, although the basic canonical variables are different in the two approaches. As an extension, holonomy modifications from loop quantum gravity are shown to deform the Dirac space-time algebra, while going beyond "effective" calculations.

  3. Postural stability in symmetrical gaits.

    PubMed

    Zielińska, Teresa; Trojnacki, Maciej

    2009-01-01

    In this paper the method of stability analysis of dynamic symmetrical gaits is discussed. The problem of dynamic postural equilibrium, taking into account the role of compliant feet, is solved. The equilibrium conditions are split between the foot attachment points and the points within the foot-end area. The present method is useful for motion synthesis, taking into account robot parameters. It also helps in the robot foot design. As an illustrative example a four-legged diagonal gait is considered. The theoretical results were verified by implementing and observing the diagonal gait in four-legged machine with and without feet.

  4. Phase transitions in the three-state Ising spin-glass model with finite connectivity.

    PubMed

    Erichsen, R; Theumann, W K

    2011-06-01

    The statistical mechanics of a two-state Ising spin-glass model with finite random connectivity, in which each site is connected to a finite number of other sites, is extended in this work within the replica technique to study the phase transitions in the three-state Ghatak-Sherrington (or random Blume-Capel) model of a spin glass with a crystal-field term. The replica symmetry ansatz for the order function is expressed in terms of a two-dimensional effective-field distribution, which is determined numerically by means of a population dynamics procedure. Phase diagrams are obtained exhibiting phase boundaries that have a reentrance with both a continuous and a genuine first-order transition with a discontinuity in the entropy. This may be seen as "inverse freezing," which has been studied extensively lately, as a process either with or without exchange of latent heat.

  5. Spin caloritronics, origin and outlook

    NASA Astrophysics Data System (ADS)

    Yu, Haiming; Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2017-03-01

    Spin caloritronics refers to research efforts in spintronics when a heat current plays a role. In this review, we start out by reviewing the predictions that can be drawn from the thermodynamics of irreversible processes. This serves as a conceptual framework in which to analyze the interplay of charge, spin and heat transport. This formalism predicts tensorial relations between vectorial quantities such as currents and gradients of chemical potentials or of temperature. Transverse effects such as the Nernst or Hall effects are predicted on the basis that these tensors can include an anti-symmetric contribution, which can be written with a vectorial cross-product. The local symmetry of the system may determine the direction of the vector defining such transverse effects, such as the surface of an isotropic medium. By including magnetization as state field in the thermodynamic description, spin currents appear naturally from the continuity equation for the magnetization, and dissipative spin torques are derived, which are charge-driven or heat-driven. Thermodynamics does not give the strength of these effects, but may provide relationships between them. Based on this framework, the review proceeds by showing how these effects have been observed in various systems. Spintronics has become a vast field of research, and the experiments highlighted in this review pertain only to heat effects on transport and magnetization dynamics, such as magneto-thermoelectric power, or the spin-dependence of the Seebeck effect, the spin-dependence of the Peltier effect, the spin Seebeck effect, the magnetic Seebeck effect, or the Nernst effect. The review concludes by pointing out predicted effects that are yet to be verified experimentally, and in what novel materials the standard thermal spin effects could be investigated.

  6. Special symmetric quark mass matrices

    NASA Astrophysics Data System (ADS)

    Silva-Marcos, J. I.

    1998-12-01

    We give a procedure to construct a special class of symmetric quark mass matrices near the democratic limit of equal Yukawa couplings for each sector. It is shown that within appropriate weak-bases, the requirements of symmetry and arg[det(M)]=0 are very strong conditions, that necessarily lead to a Cabibbo angle given by Vus=sqrt(md/ms), and to Vcb~ms/mb, in first order. In addition, we prove that the recently classified ansätze, which also reproduce these mixing matrix relations, and which were based on the hypothesis of the Universal Strength for Yukawa couplings, where all Yukawa couplings have equal moduli while the flavour dependence is only in their phases, are, in fact, particular cases of the generalized symmetric quark mass matrix ansätze we construct here. In an excellent numerical example, the experimental values on all quark mixings and masses are accommodated, and the CP violation phase parameter is shown to be crucially dependent on the values of mu and Vus.

  7. Duality symmetric quantization of superstrings

    SciTech Connect

    Kallosh, R.

    1995-11-15

    A general covariant quantization of a superparticle, Green-Schwarz superstring, and a supermembrane with manifest supersymmetry and duality symmetry is proposed. This quantization provides a natural quantum-mechanical description of curved BPS-type backgrounds related to the ultrashort supersymmetry multiplets. Half-size commuting and anticommuting Killing spinors admitted by such backgrounds in quantum theory become truncated {kappa}-symmetry ghosts. The symmetry of Killing spinors under dualities transfers to the symmetry of the spectrum of states. A GS superstring in the generalized semi-light-cone gauge can be quantized consistently in the background of ten-dimensional supersymmetric gravitational waves. Upon compactification they become supersymmetric electrically charged black holes, either massive or massless. However, the generalized light-cone gauge breaks {ital S} duality. We propose a new family of gauges, which we call black hole gauges. These gauges are suitable for quantization both in flat Minkowski space and in the black hole background, and they are duality symmetric. As an example, a manifestly {ital S}-duality symmetric black hole gauge is constructed in terms of the axion-dilaton-electric-magnetic black hole hair. We also suggest the {ital U}-duality covariant class of gauges for type II superstrings.

  8. Clustering of Nonergodic Eigenstates in Quantum Spin Glasses.

    PubMed

    Baldwin, C L; Laumann, C R; Pal, A; Scardicchio, A

    2017-03-24

    The two primary categories for eigenstate phases of matter at a finite temperature are many-body localization (MBL) and the eigenstate thermalization hypothesis (ETH). We show that, in the paradigmatic quantum p-spin models of the spin-glass theory, eigenstates violate the ETH yet are not MBL either. A mobility edge, which we locate using the forward-scattering approximation and replica techniques, separates the nonergodic phase at a small transverse field from an ergodic phase at a large transverse field. The nonergodic phase is also bounded from above in temperature, by a transition in configuration-space statistics reminiscent of the clustering transition in the spin-glass theory. We show that the nonergodic eigenstates are organized in clusters which exhibit distinct magnetization patterns, as characterized by an eigenstate variant of the Edwards-Anderson order parameter.

  9. The connection between statics and dynamics of spin glasses

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew; Young, A. P.

    2016-01-01

    We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the mean-field regime). The system is quenched to a temperature well below the transition temperature {{T}\\text{c}} and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length ξ (t) agrees quantitatively with the predictions of a static theory, the ‘metastate’, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent z (T ) defined by ξ (t)\\propto {{t}1/z(T)} and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.

  10. Clustering of Nonergodic Eigenstates in Quantum Spin Glasses

    NASA Astrophysics Data System (ADS)

    Baldwin, C. L.; Laumann, C. R.; Pal, A.; Scardicchio, A.

    2017-03-01

    The two primary categories for eigenstate phases of matter at a finite temperature are many-body localization (MBL) and the eigenstate thermalization hypothesis (ETH). We show that, in the paradigmatic quantum p -spin models of the spin-glass theory, eigenstates violate the ETH yet are not MBL either. A mobility edge, which we locate using the forward-scattering approximation and replica techniques, separates the nonergodic phase at a small transverse field from an ergodic phase at a large transverse field. The nonergodic phase is also bounded from above in temperature, by a transition in configuration-space statistics reminiscent of the clustering transition in the spin-glass theory. We show that the nonergodic eigenstates are organized in clusters which exhibit distinct magnetization patterns, as characterized by an eigenstate variant of the Edwards-Anderson order parameter.

  11. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    SciTech Connect

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-08-29

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed.

  12. ADM canonical formalism for gravitating spinning objects

    SciTech Connect

    Steinhoff, Jan; Schaefer, Gerhard; Hergt, Steven

    2008-05-15

    In general relativity, systems of spinning classical particles are implemented into the canonical formalism of Arnowitt, Deser, and Misner [R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962), p. 227; arXiv:gr-qc/0405109]. The implementation is made with the aid of a symmetric stress-energy tensor and not a 4-dimensional covariant action functional. The formalism is valid to terms linear in the single spin variables and up to and including the next-to-leading order approximation in the gravitational spin-interaction part. The field-source terms for the spinning particles occurring in the Hamiltonian are obtained from their expressions in Minkowski space with canonical variables through 3-dimensional covariant generalizations as well as from a suitable shift of projections of the curved spacetime stress-energy tensor originally given within covariant spin supplementary conditions. The applied coordinate conditions are the generalized isotropic ones introduced by Arnowitt, Deser, and Misner. As applications, the Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, recently obtained by Damour, Jaranowski, and Schaefer [Phys. Rev. D 77, 064032 (2008)], is rederived and the derivation of the next-to-leading order gravitational spin(1)-spin(2) Hamiltonian, shown for the first time in [J. Steinhoff, S. Hergt, and G. Schaefer, Phys. Rev. D 77, 081501(R) (2008)], is presented.

  13. Higher spin black holes with soft hair

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo

    2016-10-01

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  14. Kahler structures on the tangent bundles of rank-one symmetric spaces

    SciTech Connect

    Mykytyuk, I V

    2001-12-31

    For rank-one Riemannian symmetric spaces G/K, dimG/K{>=}3, with semisimple Lie groups G all G-invariant Kahler structures F on subdomains of the symplectic manifolds T(G/K) are constructed. It is shown that this class {l_brace}F{r_brace} of Kahler structures is stable under the reduction procedure. A Lie algebraic method of description of G-invariant Kahler structures on the tangent bundles of symmetric spaces G/K is presented. Related questions of the description of the Lie triple system of the space F{sub 4}/Spin(9) in terms of its spinor structure are also discussed.

  15. Kahler structures on the tangent bundles of rank-one symmetric spaces

    NASA Astrophysics Data System (ADS)

    Mykytyuk, I. V.

    2001-12-01

    For rank-one Riemannian symmetric spaces G/K, \\operatorname{dim}G/K\\geqslant3, with semisimple Lie groups G all G-invariant Kahler structures F on subdomains of the symplectic manifolds T(G/K) are constructed. It is shown that this class \\{F\\} of Kahler structures is stable under the reduction procedure. A Lie algebraic method of description of G-invariant Kahler structures on the tangent bundles of symmetric spaces G/K is presented. Related questions of the description of the Lie triple system of the space F_4/\\operatorname{Spin}(9) in terms of its spinor structure are also discussed.

  16. Collective uncertainty in partially polarized and partially decohered spin-(1)/(2) systems

    NASA Astrophysics Data System (ADS)

    Baragiola, Ben Q.; Chase, Bradley A.; Geremia, Jm

    2010-03-01

    It has become common practice to model large spin ensembles as an effective pseudospin with total angular momentum J=Nj, where j is the spin per particle. Such approaches (at least implicitly) restrict the quantum state of the ensemble to the so-called symmetric Hilbert space. Here, we argue that symmetric states are not generally well preserved under the type of decoherence typical of experiments involving large clouds of atoms or ions. In particular, symmetric states are rapidly degraded under models of decoherence that act identically but locally on the different members of the ensemble. Using an approach [Phys. Rev. A 78, 052101 (2008)] that is not limited to the symmetric Hilbert space, we explore potential pitfalls in the design and interpretation of experiments on spin-squeezing and collective atomic phenomena when the properties of the symmetric states are extended to systems where they do not apply.

  17. Probabilistic cloning of three symmetric states

    SciTech Connect

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-12-15

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  18. Symmetric Gain Optoelectronic Mixers for LADAR

    DTIC Science & Technology

    2008-12-01

    on a symmetric heterojunction phototransistor . The base layer is In0.53Ga0.47As (InGaAs), and the emitter/ collector layer is In0.48Al0.52As (InAlAs...heterojunction phototransistor (HPT) or the modulated barrier diode (MBD), also known as a Camel diode. The basic heterojunction photo transistor is a...SimWindows (copyright: David W. Winston). Both symmetric heterojunction phototransistors and symmetric modulated barrier diodes were investigated as

  19. Free-Energy Bounds for Hierarchical Spin Models

    NASA Astrophysics Data System (ADS)

    Castellana, Michele; Barra, Adriano; Guerra, Francesco

    2014-04-01

    In this paper we study two non-mean-field (NMF) spin models built on a hierarchical lattice: the hierarchical Edward-Anderson model (HEA) of a spin glass, and Dyson's hierarchical model (DHM) of a ferromagnet. For the HEA, we prove the existence of the thermodynamic limit of the free energy and the replica-symmetry-breaking (RSB) free-energy bounds previously derived for the Sherrington-Kirkpatrick model of a spin glass. These RSB mean-field bounds are exact only if the order-parameter fluctuations (OPF) vanish: given that such fluctuations are not negligible in NMF models, we develop a novel strategy to tackle part of OPF in hierarchical models. The method is based on absorbing part of OPF of a block of spins into an effective Hamiltonian of the underlying spin blocks. We illustrate this method for DHM and show that, compared to the mean-field bound for the free energy, it provides a tighter NMF bound, with a critical temperature closer to the exact one. To extend this method to the HEA model, a suitable generalization of Griffith's correlation inequalities for Ising ferromagnets is needed: since correlation inequalities for spin glasses are still an open topic, we leave the extension of this method to hierarchical spin glasses as a future perspective.

  20. Symmetrical double input coupler development

    SciTech Connect

    Deruyter, H.; Hoag, H.; Ko, K.; Ng, C.K.

    1992-08-01

    RF power is usually transmitted into an accelerator section from a rectangular waveguide through a single coupling iris. This arrangement introduces phase and amplitude asymmetries into the coupler fields with which the beam interacts. Field distortion can be reduced by machining an offset into the cavity wall opposite the iris. However, the compensation is imperfect. In this paper we describe the development and testing of a double input coupler which is completely symmetric about a vertical plane through the beam axis. Two identical irises are used on opposite sides of the coupler cavity. These are fed in-phase by signals from a Magic Tee power divider. Each iris transmits one half of the total power flow. Coupler dimensions for an X-Band model have been optimized using MAFIA and conventional low-power matching techniques. The coupler has been built into a 30-cavity test accelerator section and operated up to 85 MV/m with no evidence of breakdown.

  1. Walking dynamics are symmetric (enough)

    PubMed Central

    Ankaralı, M. Mert; Sefati, Shahin; Madhav, Manu S.; Long, Andrew; Bastian, Amy J.; Cowan, Noah J.

    2015-01-01

    Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model. PMID:26236826

  2. Open String on Symmetric Product

    NASA Astrophysics Data System (ADS)

    Fuji, Hiroyuki; Matsuo, Yutaka

    We discuss some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete light-cone quantization (DLCQ). We first derive the consistent twisted boundary conditions for Annulus/Möbius/Klein Bottle diagrams and give the explicit form of the corresponding amplitude. They have the interpretation as the long open (or closed) string amplitude but the world sheet topology viewed from the short string and from the long string is in general different. Boundary (cross-cap) states of the short string are classified into three categories, the boundary (cross-cap) states of the long string and the "joint" state which connects two strings. The partition function has the typical structure of the string field theory in DLCQ. Tadpole condition is also analyzed and gives a reasonable gauge group SO(213).

  3. PT-symmetric slowing down of decoherence

    DOE PAGES

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    2016-10-27

    Here, we invesmore » tigate PT-symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT-symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT-symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT-symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  4. Computing symmetric colorings of the dihedral group

    NASA Astrophysics Data System (ADS)

    Zelenyuk, Yuliya

    2016-06-01

    A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.

  5. PT -symmetric slowing down of decoherence

    NASA Astrophysics Data System (ADS)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-10-01

    We investigate P T -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under P T -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why P T -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a P T -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.

  6. Anticoherence of spin states with point-group symmetries

    NASA Astrophysics Data System (ADS)

    Baguette, D.; Damanet, F.; Giraud, O.; Martin, J.

    2015-11-01

    We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group-symmetric sets of points. We provide three different characterizations of anticoherence and establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic local operations with classical communication. We then investigate in detail the case of small numbers of qubits and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.

  7. Inferring Predator Behavior from Attack Rates on Prey-Replicas That Differ in Conspicuousness

    PubMed Central

    2012-01-01

    Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator’s ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators’ direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined. PMID:23119039

  8. Evaluation of internal adaptation in ceramic and composite resin inlays by silicon replica technique.

    PubMed

    Karakaya, S; Sengun, A; Ozer, F

    2005-06-01

    This study was aimed at investigating the internal adaptation of a ceramic (Ceramco II) and two composite resin inlay materials (SureFil and 3M Filtek Z 250) using silicon replica technique as an indicator. Forty-five standard mesial-occlusal-distal (MOD) cavities were prepared into brass moulds by using computer numerically controlled system. Inlays were prepared according to manufacturers' instructions with indirect methods. Replicas of the prepared cavities and inlays were produced with a polyvinyl siloxane material (Elite H-D). The spaces between inlays and cavities were filled by different coloured light-body polyvinyl siloxane material. Two parallel slices (mesio-distally) were obtained from the replicas with a sharp blade. Different coloured polyvinyl siloxane material thickness between cavity and inlay was measured at seven points (mesial, occlusal and distal). The data were evaluated with anova and Tukey's honestly significantly different (HSD) statistical tests. In the SureFil and Ceramco II groups, the sizes of the contraction gaps at mesial and distal gingival floors were greater than that of the occlusal marginal walls. In comparison of gap formation at occlusal regions, while the 3M composite group showed highest gap values (204.33 +/- 75.45 microm), the Ceramco II group revealed the lowest (141.17 +/- 23.66 microm) (P < 0.05). At the gingival floors, gap formation of Ceramco II group was the highest (227.08 +/- 51.95 microm). Neither the 3M Filtek Z250 nor SureFil group showed any statistical difference between gap values of their self-occlusal and gingival floors (P > 0.05). In conclusion, our results showed that ceramic inlays did not confer any big advantage for internal adaptation over the composite inlays.

  9. Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.

    PubMed

    Stuart, Yoel E; Dappen, Nathan; Losin, Neil

    2012-01-01

    Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.

  10. Routine characterization of 3-D profiles of SRF cavity defects using replica techniques

    SciTech Connect

    Ge, M.; Wu, G.; Burk, D.; Ozelis, J.; Harms, E.; Sergatskov, D.; Hicks, D.; Cooley, L.D.; /Fermilab

    2010-09-01

    Recent coordination of thermometry with optical images has shown that obvious defects at specific locations produce heat or even quench superconducting radio frequency (SRF) cavities, imposing a significant limit on the overall accelerating gradient produced by the cavity. Characterization of the topography at such locations provides clues about how the defects originated, from which schemes for their prevention might be devised. Topographic analyses also provide understanding of the electromagnetic mechanism by which defects limit cavity performance, from which viability of repair techniques might be assessed. In this article we discuss how a variety of two-component silicone-based room-temperature vulcanizing agents can be routinely used to make replicas of the cavity surface and extract topographic details of cavity defects. Previously, this level of detail could only be obtained by cutting suspect regions from the cavity, thus destroying the cavity. We show 3-D profiles extracted from several different 1.3 GHz cavities. The defect locations, which were all near cavity welds, compelled us to develop extraction techniques for both equator and iris welds as well as from deep inside long 9-cell cavities. Profilometry scans of the replicas yield micrometer-scale information, and we describe various curious features, such as small peaks at the bottom of pits, which were not apparent in previous optical inspections. We also discuss contour information in terms of electromagnetic mechanisms proposed by others for local cavity heating. We show that production of the replica followed by high-pressure rinsing dose not adversely affect the cavity RF performance.

  11. Multiple replica repulsion technique for efficient conformational sampling of biological systems.

    PubMed

    Malevanets, Anatoly; Wodak, Shoshana J

    2011-08-17

    Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed "multiple replica repulsion" (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Multiple Replica Repulsion Technique for Efficient Conformational Sampling of Biological Systems

    PubMed Central

    Malevanets, Anatoly; Wodak, Shoshana J.

    2011-01-01

    Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed “multiple replica repulsion” (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. PMID:21843487

  13. Reversal-field memory in the hysteresis of spin glasses.

    PubMed

    Katzgraber, H G; Pázmándi, F; Pike, C R; Liu, Kai; Scalettar, R T; Verosub, K L; Zimányi, G T

    2002-12-16

    We report a novel singularity in the hysteresis of spin glasses, the reversal-field memory effect, which creates a nonanalyticity in the magnetization curves at a particular point related to the history of the sample. The origin of the effect is due to the existence of a macroscopic number of "symmetric clusters" of spins associated with a local spin-reversal symmetry of the Hamiltonian. We use first order reversal curve (FORC) diagrams to characterize the effect and compare to experimental results on thin magnetic films. We contrast our results on spin glasses to random magnets and show that the FORC technique is an effective "magnetic fingerprinting" tool.

  14. Continuous spin gauge field in (A)dS space

    NASA Astrophysics Data System (ADS)

    Metsaev, R. R.

    2017-04-01

    Totally symmetric continuous spin field propagating in (A)dS is studied. Lagrangian gauge invariant formulation for such field is developed. Lagrangian of continuous spin field is constructed in terms of double traceless tensor fields, while gauge transformations are constructed in terms of traceless gauge transformation parameters. de Donder like gauge condition that leads to simple gauge fixed Lagrangian is found. Gauge-fixed Lagrangian invariant under global BRST transformations is presented. The BRST Lagrangian is used for computation of a partition function. It is demonstrated that the partition function of the continuous spin field is equal to one. Various decoupling limits of the continuous spin field are also studied.

  15. Symmetry fractionalization of visons in Z2 spin liquids

    NASA Astrophysics Data System (ADS)

    Qi, Yang; Cheng, Meng; Fang, Chen

    In this work we study symmetry fractionalization of vison excitations in topological Z2 spin liquids. We show that in the presence of the full SO (3) spin-rotational symmetry and if there is an odd number of spin-1/2 per unit cell, the symmetry fractionalization of visons is completely fixed. On the other hand, visons can have different classes of symmetry fractionalization if the spin-rotational symmetry is reduced. As a concrete example, we show that visons in the Balents-Fisher-Girvin Z2 spin liquid have crystal symmetry fractionalization classes which are not allowed in SO (3) symmetric spin liquids, due to the reduced spin-rotational symmetry.

  16. Photographic replica of the plaque Apollo 13 astronauts will leave on moon

    NASA Image and Video Library

    1970-04-13

    S70-34685 (April 1970) --- A photographic replica of the plaque which the Apollo 13 astronauts will leave behind on the moon during their lunar landing mission. Astronauts James A. Lovell Jr., commander; and Fred W. Haise Jr., lunar module pilot, will descend to the lunar surface in the Lunar Module (LM) "Aquarius". Astronaut John L. Swigert Jr., command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. The plaque will be attached to the ladder of the landing gear strut on the LM?s descent stage. Commemorative plaques were also left on the moon by the Apollo 11 and Apollo 12 astronauts.

  17. Replica exchange molecular simulation of Lennard-Jones particles in a two-dimensional confined system

    NASA Astrophysics Data System (ADS)

    Doi, Hideo; Yasuoka, Kenji

    2017-05-01

    Confined systems exhibit interesting properties that are applied to the fields of lubrication, adhesion and nanotechnology. The replica exchange molecular simulation method was applied to calculate the phase equilibrium points of Lennard-Jones particles in a two-dimensional confined system. The liquid-solid phase equilibrium points and the solid structure with a dependency of the slit width were determined and the order parameter of the solid structure was analyzed. Such confined systems are shown to be favorable for manipulation of the phase equilibrium points.

  18. Rapid fabrication of microdevices using laser direct writing and replica moulding technique

    NASA Astrophysics Data System (ADS)

    Antończak, A. J.; Stepak, B. D.; Abramski, K. M.

    2016-03-01

    This paper presents a method that enables fast and low-cost fabrication of microchannels with oval cross-section. The procedure is based on formation of a concave meniscus at the interface between an initially cured PDMS and a polymeric mould fabricated using excimer laser. The replica is formed by expanding gas trapped within the structures of the mould during thermal curing. A second shaping factor is connected with surface phenomena at the interface between the mould, gas and partially cured PDMS. The final shape of the meniscus is determined when the PDMS reaches the high cure extent.

  19. Fabrication of polymer and nanocomposite microstructures and microactuators by capillary infiltration and replica molding

    NASA Astrophysics Data System (ADS)

    Copic, Davor

    Addition of micro- and/or nanoscale textures to surfaces can enable engineering of a wide range of properties. Passive surfaces (using fixed microstructures) can manipulate cell adhesion, liquid drag, and thermal and electrical contact resistance. Active surfaces (using shape-changing microstructures) can enable modulation of liquid wetting, adhesion, and optical properties. Nevertheless, it remains a challenge to fabricate the mechanically and environmentally robust microstructures and microactuators in large arrays. This thesis presents new fabrication methods for microstructured polymer and nanocomposite surfaces. Two approaches are pursued: capillary driven infiltration of fabricated carbon nanotube (CNT) microstructures and replica molding (REM) of master templates in liquid crystal networks (LCNs). First, it is demonstrated that CNT-polymer microstructures can function as robust large-area master molds. The fabricated microstructures include pins, tubes, re-entrant microwells, bent pillars, and high-aspect-ratio honeycombs (thickness of 400nm, aspect ratio 50:1). All are used as master structures for replica molding. A 25-fold replication sequence is shown with no physical degradation of the master or the replicas. Further, the increased stiffness and toughness of CNT-SU-8 microstructures is quantified. Second, active surfaces were created by capillary infiltration of paraffin into CNT forests. Large stroke sheet actuators, exhibiting up to 20% thermal strain at 175°C are shown. Third, thermally and optically active LCN microstructure replicas were created. Their generated strains were measured to be 6% and 0.25%, respectively. In situ monitoring of the LCN phase and order was also performed. Although having low strains, optically active microstructures are attractive for future work because they can be actuated individually and remotely. These scalable methods of fabricating microstructured surfaces, both with robust mechanical properties and active

  20. Communication: equation of state of hard oblate ellipsoids by replica exchange Monte Carlo.

    PubMed

    Odriozola, G; Guevara-Rodríguez, F de J

    2011-05-28

    We implemented the replica exchange Monte Carlo technique to produce the equation of state of hard 1:5 aspect-ratio oblate ellipsoids for a wide density range. For this purpose, we considered the analytical approximation of the overlap distance given by Bern and Pechukas and the exact numerical solution given by Perram and Wertheim. For both cases we capture the expected isotropic-nematic transition at low densities and a nematic-crystal transition at larger densities. For the exact case, these transitions occur at the volume fraction 0.341, and in the interval 0.584-0.605, respectively.

  1. Infinite swapping replica exchange molecular dynamics leads to a simple simulation patch using mixture potentials.

    PubMed

    Lu, Jianfeng; Vanden-Eijnden, Eric

    2013-02-28

    Replica exchange molecular dynamics (REMD) becomes more efficient as the frequency of swap between the temperatures is increased. Recently Plattner et al. [J. Chem. Phys. 135, 134111 (2011)] proposed a method to implement infinite swapping REMD in practice. Here we introduce a natural modification of this method that involves molecular dynamics simulations over a mixture potential. This modification is both simple to implement in practice and provides a better, energy based understanding of how to choose the temperatures in REMD to optimize efficiency. It also has implications for generalizations of REMD in which the swaps involve other parameters than the temperature.

  2. Replica-exchange Wang Landau sampling: pushing the limits of Monte Carlo simulations in materials sciences

    SciTech Connect

    Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus; Vogel, Thomas; Landau, David P

    2015-01-01

    We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.

  3. Replicas of Snoopy and Charlie Brown decorate top of console in MCC

    NASA Image and Video Library

    1969-05-18

    S69-34314 (18 May 1969) --- Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip, "Peanuts," decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, Building 30, on the first day of the Apollo 10 lunar orbit mission. During lunar orbit operations, the Lunar Module will be called ?Snoopy? when it is separated from the Command and Service Modules. The code words for the Command Module will be ?Charlie Brown?.

  4. Non-ergodicity and fluctuations in mesoscopic insulators: The replica cooperon and diffuson

    NASA Astrophysics Data System (ADS)

    Medina, E.; Roman, E.; Rangel, R.

    2001-06-01

    We explore the mesoscopic conductance fluctuations in the insulating regime within the Nguyen, Spivak, and Shklovskii model. We find that fluctuations of the log-conductance are persistent above the decorrelation field Bc in the insulating regime. Using the replica approach, we derive the field coupling and fluctuations in terms of "cooperon"and "diffuson"analogs and determine new corrections to temperature dependencies for small ΔB. We also analyze the ergodicity of fluctuations in the log-conductance and its scaling properties, and discuss the asymptotic validity of the usual criterion involving the commutability of disorder and field fluctuation averages.

  5. Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Ping; Zhang, Yu-Ying; Wang, Qiang; Nie, Yi-Hang

    2016-11-01

    We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spin-orbital interaction (RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green’s function method in the linear response regime. Under the appropriate configuration of magnetic flux phase and RSOI phase, the spin figure of merit can be enhanced and is even larger than the charge figure of merit. In particular, the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs. For some specific configuration of the two phases, the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero, which is useful in realizing the thermal spin battery and inducing a pure spin current in the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274208 and 11447170).

  6. Lifetime amelioration of release-agent-free antireflection-structured replica molds by partial-filling ultraviolet nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Abu Talip[a]Yusof, Nurhafizah Binti; Hayashi, Tatsuya; Taniguchi, Jun; Hiwasa, Shin

    2015-06-01

    In ultraviolet nanoimprint lithography (UV-NIL), the presence of fluorinated components in a release-agent-free antireflection-structured (RAF-ARS) replica mold is an important factor preventing the adhesion of resin on its surface. Nevertheless, a strong release force (RF), which results from the complete filling of resin in a high-aspect-ratio RAF-ARS replica mold during UV-NIL, degrades its fluorinated components and consequently shortens its lifetime. In this paper, we propose a technique for the lifetime amelioration of RAF-ARS replica molds by partial-filling UV-NIL. Complete-filling UV-NIL was also executed for comparison. We also examined the effects of the filling ratio on an RAF-ARS replica mold. Using the partial-filling UV-NIL technique, we successfully prolonged the lifetime of an RAF-ARS replica mold up to the 100th imprint, compared with the 75th imprint in the case of complete-filling UV-NIL.

  7. Quantifying Fluctuation Effects on the Order-Disorder Transition of Symmetric Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Zong, Jing; Wang

    2012-02-01

    How fluctuations change the order-disorder transition (ODT) of symmetric diblock copolymers is a classic yet unsolved problem in polymer physics.ootnotetextL. Leibler, Macromolecules, 13, 1602 (1980); G. H. Fredrickson and E. Helfand, J. Chem. Phys., 87, 697 (1987). Here we unambiguously quantify the fluctuation effects by direct comparisons between fast off-lattice Monte Carlo (FOMC) simulationsootnotetextQ. Wang and Y. Yin, J. Chem. Phys., 130, 104903 (2009). and mean-field theory using exactly the same model system (Hamiltonian), thus without any parameter-fitting. The symmetric diblock copolymers are modeled as discrete Gaussian chains with soft, finite-range repulsions as commonly used in dissipative-particle dynamics simulations. The effects of chain discretization and finite-range interactions on ODT are properly accounted for in our mean-field theory.ootnotetextQ. Wang, J. Chem. Phys., 129, 054904 (2008); 131, 234903 (2009). Our FOMC simulations are performed in a canonical ensemble with variable box lengths to eliminate the adverse effects of fixed box sizes on ODT.ootnotetextQ. Wang et al., J. Chem. Phys., 112, 450 (2000). Furthermore, with a new order parameter for the lamellar phase, we use replica exchange and multiple histogram reweighting to accurately locate ODT in our simulations.

  8. The form of spin orbitals for open-shell restricted Hartree-Fock reference functions

    NASA Technical Reports Server (NTRS)

    Jayatilaka, Dylan; Lee, Timothy J.

    1992-01-01

    A new set of spin orbitals is proposed for single-reference correlation procedures based on an open-shell restricted Hartree-Fock (RHF) reference function. The spatial parts of the new spin orbitals are from an open-shell RHF calculation. These spin orbitals form a complete, orthonormal set. The RHF single determinant based on these spin orbitals is an S sub 2 eigenfunction, but a linear combination of S sub z eigenfunctions. The advantage of these spin orbitals is that equations for perturbation theory or coupled-cluster theory are symmetric in the spin indices and hence the number of independent parameters to be determined is dramatically reduced.

  9. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  10. Correlations between the dynamics of parallel tempering and the free-energy landscape in spin glasses

    NASA Astrophysics Data System (ADS)

    Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.

    2013-01-01

    We present the results of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson Ising spin glass with Gaussian disorder. Using parallel tempering (replica exchange) Monte Carlo we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the parallel tempering Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations and up to 1000 spins down to temperatures at 20% of the critical temperature is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free-energy landscape.

  11. Carbon-13 and tin-119 relaxation studies of some axially symmetrical organotin compounds

    NASA Astrophysics Data System (ADS)

    Chapelle, S.; Granger, P.

    We have studied a variety of axially symmetrical tin compounds by 119Sn and 13C NMR. Tin was observed at two field strengths and, except for Ph 3SnCl, T1 is field independent and governed mainly by spin-rotation. A chemical-shift anisotropy of 136 ppm is observed for 119Sn in Ph 3SnCl. Deverell's relationship provides a good estimate of the values of the spin-rotational constants and the theory of Woessner, Snowden, and Huntress leads to the values of the rotational diffusion constants.

  12. Continuity and Separation in Symmetric Topologies

    ERIC Educational Resources Information Center

    Harris, J.; Lynch, M.

    2007-01-01

    In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.

  13. Inversion-symmetric topological insulators

    NASA Astrophysics Data System (ADS)

    Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei

    2011-06-01

    We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion

  14. Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips.

    PubMed

    Ma, Liang; Datta, Sujit S; Karymov, Mikhail A; Pan, Qichao; Begolo, Stefano; Ismagilov, Rustem F

    2014-08-01

    Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization.

  15. Nuclear research emulsion neutron spectrometry at the Little-Boy replica

    SciTech Connect

    Gold, R.; Roberts, J.H.; Preston, C.C.

    1985-10-01

    Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2 m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2 m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2-m, 0/sup 0/ and 2-m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. Neutron spectra obtained from these NRE proton-recoil spectra are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. NRE and liquid scintillator neutron spectra generally agree within experimental uncertainties at the 2-m, 90/sup 0/ location. However, at the 2-m, 0/sup 0/ location, the neutron spectra derived from these two independent experimental methods differ significantly. NRE spectra and Monte Carlo calculations exhibit general agreement with regard to both intensity as well as energy dependence. Better agreement is attained between theory and experiment at the 2-m, 90/sup 0/ location, where the neutron intensity is considerably higher. 14 refs., 18 figs., 11 tabs.

  16. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method.

    PubMed

    Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke

    2016-12-15

    Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.

  17. Large-scale asynchronous and distributed multidimensional replica exchange molecular simulations and efficiency analysis.

    PubMed

    Xia, Junchao; Flynn, William F; Gallicchio, Emilio; Zhang, Bin W; He, Peng; Tan, Zhiqiang; Levy, Ronald M

    2015-09-05

    We describe methods to perform replica exchange molecular dynamics (REMD) simulations asynchronously (ASyncRE). The methods are designed to facilitate large scale REMD simulations on grid computing networks consisting of heterogeneous and distributed computing environments as well as on homogeneous high-performance clusters. We have implemented these methods on NSF (National Science Foundation) XSEDE (Extreme Science and Engineering Discovery Environment) clusters and BOINC (Berkeley Open Infrastructure for Network Computing) distributed computing networks at Temple University and Brooklyn College at CUNY (the City University of New York). They are also being implemented on the IBM World Community Grid. To illustrate the methods, we have performed extensive (more than 60 ms in aggregate) simulations for the beta-cyclodextrin-heptanoate host-guest system in the context of one- and two-dimensional ASyncRE, and we used the results to estimate absolute binding free energies using the binding energy distribution analysis method. We propose ways to improve the efficiency of REMD simulations: these include increasing the number of exchanges attempted after a specified molecular dynamics (MD) period up to the fast exchange limit and/or adjusting the MD period to allow sufficient internal relaxation within each thermodynamic state. Although ASyncRE simulations generally require long MD periods (>picoseconds) per replica exchange cycle to minimize the overhead imposed by heterogeneous computing networks, we found that it is possible to reach an efficiency similar to conventional synchronous REMD, by optimizing the combination of the MD period and the number of exchanges attempted per cycle.

  18. Large Scale Asynchronous and Distributed Multi-Dimensional Replica Exchange Molecular Simulations and Efficiency Analysis

    PubMed Central

    Xia, Junchao; Flynn, William F.; Gallicchio, Emilio; Zhang, Bin W.; He, Peng; Tan, Zhiqiang; Levy, Ronald M.

    2015-01-01

    We describe methods to perform replica exchange molecular dynamics (REMD) simulations asynchronously (ASyncRE). The methods are designed to facilitate large scale REMD simulations on grid computing networks consisting of heterogeneous and distributed computing environments as well as on homogeneous high performance clusters. We have implemented these methods on NSF XSEDE clusters and BOINC distributed computing networks at Temple University, and Brooklyn College at CUNY. They are also being implemented on the IBM World Community Grid. To illustrate the methods we have performed extensive (more than 60 microseconds in aggregate) simulations for the beta-cyclodextrin-heptanoate host-guest system in the context of one and two dimensional ASyncRE and we used the results to estimate absolute binding free energies using the Binding Energy Distribution Analysis Method (BEDAM). We propose ways to improve the efficiency of REMD simulations: these include increasing the number of exchanges attempted after a specified MD period up to the fast exchange limit, and/or adjusting the MD period to allow sufficient internal relaxation within each thermodynamic state. Although ASyncRE simulations generally require long MD periods (> picoseconds) per replica exchange cycle to minimize the overhead imposed by heterogeneous computing networks, we found that it is possible to reach an efficiency similar to conventional synchronous REMD, by optimizing the combination of the MD period and the number of exchanges attempted per cycle. PMID:26149645

  19. Computing Alchemical Free Energy Differences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations.

    PubMed

    Meng, Yilin; Dashti, Danial Sabri; Roitberg, Adrian E

    2011-09-13

    Alchemical free energy calculations play a very important role in the field of molecular modeling. Efforts have been made to improve the accuracy and precision of those calculations. One of the efforts is to employ a Hamiltonian replica exchange molecular dynamics (H-REMD) method to enhance conformational sampling. In this paper, we demonstrated that HREMD method not only improves convergence in alchemical free energy calculations but also can be used to compute free energy differences directly via the Free Energy Perturbation (FEP)algorithm. We show a direct mapping between the H-REMD and the usual FEP equations, which are then used directly to compute free energies. The H-REMD alchemical free energy calculation (Replica exchange Free Energy Perturbation, REFEP) was tested on predicting the pK(a) value of the buried Asp26 in thioredoxin. We compare the results of REFEP with TI and regular FEP simulations. REFEP calculations converged faster than those from TI and regular FEP simulations. The final predicted pK(a) value from the H-REMD simulation was also very accurate, only 0.4 pK(a) unit above the experimental value. Utilizing the REFEP algorithm significantly improves conformational sampling, and this in turn improves the convergence of alchemical free energy simulations.

  20. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Kim, Jaegil; Farrell, James D.; Wales, David J.; Straub, John E.

    2014-11-01

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  1. Towards T2K neutrino flux predictions using the replica target measurements by NA61/SHINE

    NASA Astrophysics Data System (ADS)

    Zambelli, L.; Fiorentini, A.; Vladisavljevic, T.; ">T2K, replica of the T2K target to account for the re-interactions. The recently released differential multiplicity distributions of π ± along the replica target measured in NA61/SHINE will be presented. This dataset is now in the process of being used by T2K to further tune the flux prediction as 90% of the neutrinos will be directly constrained.

  2. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method

    NASA Astrophysics Data System (ADS)

    Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke

    2016-12-01

    Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.

  3. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method

    PubMed Central

    Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke

    2016-01-01

    Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research. PMID:27976687

  4. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).

    PubMed

    Berg, Emily J; Weisman, Jessica L; Oldham, Michael J; Robinson, Risa J

    2010-04-19

    Inhaled particles reaching the alveolar walls have the potential to cross the blood-gas barrier and enter the blood stream. Experimental evidence of pulmonary dosimetry, however, cannot be explained by current whole lung dosimetry models. Numerical and experimental studies shed some light on the mechanisms of particle transport, but realistic geometries have not been investigated. In this study, a three dimensional expanding model including two generations of respiratory bronchioles and five terminal alveolar sacs was created from a replica human lung cast. Flow visualization techniques were employed to quantify the fluid flow while utilizing streamlines to evaluate recirculation. Pathlines were plotted to track the fluid motion and estimate penetration depth of inhaled air. This study provides evidence that the two generations immediately proximal to the terminal alveolar sacs do not have recirculating eddies, even for intense breathing. Results of Peclet number calculations indicate that substantial convective motion is present in vivo for the case of deep breathing, which significantly increases particle penetration into the alveoli. However, particle diffusion remains the dominant mechanism of particle transport over convection, even for intense breathing because inhaled particles do not reach the alveolar wall in a single breath by convection alone. Examination of the velocity fields revealed significant uneven ventilation of the alveoli during a single breath, likely due to variations in size and location. This flow field data, obtained from replica model geometry with realistic breathing conditions, provides information to better understand fluid and particle behavior in the acinus region of the lung.

  5. Individually Addressable Arrays of Replica Microbial Cultures Enabled by Splitting SlipChips

    PubMed Central

    Ma, Liang; Datta, Sujit S.; Karymov, Mikhail A; Pan, Qichao; Begolo, Stefano; Ismagilov, Rustem F.

    2014-01-01

    Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1,000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization. PMID:24953827

  6. Efficacy of independence sampling in replica exchange simulations of ordered and disordered proteins.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-08-25

    Recasting temperature replica exchange (T-RE) as a special case of Gibbs sampling has led to a simple and efficient scheme for enhanced mixing (Chodera and Shirts, J. Chem. Phys., 2011, 135, 194110). To critically examine if T-RE with independence sampling (T-REis) improves conformational sampling, we performed T-RE and T-REis simulations of ordered and disordered proteins using coarse-grained and atomistic models. The results demonstrate that T-REis effectively increase the replica mobility in temperatures space with minimal computational overhead, especially for folded proteins. However, enhanced mixing does not translate well into improved conformational sampling. The convergences of thermodynamic properties interested are similar, with slight improvements for T-REis of ordered systems. The study re-affirms the efficiency of T-RE does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational re-arrangements. Due to its simplicity and efficacy of enhanced mixing, T-REis is expected to be more effective when incorporated with various Hamiltonian-RE protocols. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Computing Alchemical Free Energy Differences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations

    PubMed Central

    Meng, Yilin; Dashti, Danial Sabri; Roitberg, Adrian E.

    2011-01-01

    Alchemical free energy calculations play a very important role in the field of molecular modeling. Efforts have been made to improve the accuracy and precision of those calculations. One of the efforts is to employ a Hamiltonian replica exchange molecular dynamics (H-REMD) method to enhance conformational sampling. In this paper, we demonstrated that HREMD method not only improves convergence in alchemical free energy calculations but also can be used to compute free energy differences directly via the Free Energy Perturbation (FEP)algorithm. We show a direct mapping between the H-REMD and the usual FEP equations, which are then used directly to compute free energies. The H-REMD alchemical free energy calculation (Replica exchange Free Energy Perturbation, REFEP) was tested on predicting the pKa value of the buried Asp26 in thioredoxin. We compare the results of REFEP with TI and regular FEP simulations. REFEP calculations converged faster than those from TI and regular FEP simulations. The final predicted pKa value from the H-REMD simulation was also very accurate, only 0.4 pKa unit above the experimental value. Utilizing the REFEP algorithm significantly improves conformational sampling, and this in turn improves the convergence of alchemical free energy simulations. PMID:22125475

  8. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  9. Rare events via multiple reaction channels sampled by path replica exchange

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter G.

    2008-09-01

    Transition path sampling (TPS) was developed for studying activated processes in complex systems with unknown reaction coordinate. Transition interface sampling (TIS) allows efficient evaluation of the rate constants. However, when the transition can occur via more than one reaction channel separated by a high barrier, TPS and TIS are ineffective in sampling both channels. The combination of replica exchange with TIS can overcome this problem. This work shows how, by including both the backward and forward reactions, the corresponding rate constants, as well as the free energy barrier can be computed in a single simulation. The method is illustrated on a two dimensional potential using the Langevin dynamics. In addition, a simpler algorithm based on only forward shooting from the interfaces is shown to give equally accurate results, and forms a bridge between the transition interface and the forward flux sampling methods. The diffusive behavior of the replicas can be used to assess the quality of the choice of the order parameter used for the interfaces.

  10. Parity-time-symmetric teleportation

    NASA Astrophysics Data System (ADS)

    Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.

    2016-06-01

    We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.

  11. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  12. Computational power of symmetric Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kay, Alastair

    2008-07-01

    The presence of symmetries, be they discrete or continuous, in a physical system typically leads to a reduction in the problem to be solved. Here we report that neither translational invariance nor rotational invariance reduce the computational complexity of simulating Hamiltonian dynamics; the problem is still bounded error, quantum polynomial time complete, and is believed to be hard on a classical computer. This is achieved by designing a system to implement a universal quantum interface, a device which enables control of an arbitrary computation through the control of a fixed number of spins, and using it as a building block to entirely remove the need for control, except in the system initialization. Finally, it is shown that cooling such Hamiltonians to their ground states in the presence of random magnetic fields solves a Quantum-Merlin-Arthur-complete problem.

  13. Comparison between visual clinical examination and the replica method for assessments of sealant retention over a 2-year period.

    PubMed

    Hu, Xuan; Chen, Xi; Ye, Lu; Fan, Ming-Wen; Huysmans, Marie-Charlotte; Frencken, Jo E

    2014-06-01

    To compare the levels of agreement and the survival rates of sealant retention for different sealing materials over a 2-year period assessed using the visual clinical examination and replica methods, sealant retention data were obtained by visual clinical examination and from replicas of the same sealed tooth at baseline and at 0.5-, 1- and 2-year evaluation points in 407 children and were compared for agreement using kappa coefficients. Survival curves of retained sealants on occlusal surfaces were created using modified categorisation (fully retained sealants and those having all pits and fissures partly covered with the sealant material versus completely lost sealants that included pit and fissure systems that had ≥1 pit re-exposed) according to the Kaplan-Meier method. The kappa coefficient for the agreement between both assessment methods over the three evaluation time points combined was 0.38 (95% confidence interval (CI): 0.35-0.41). More sealant retention was observed from replicas than through visual clinical examination. Cumulative survival curves at the three evaluation times were not statistically significantly higher when assessed from replicas (P=0.47). Using the replica method, more retained sealant material was observed than through visual clinical examination during the 2-year period. This finding did not result in a difference in the survival rates of sealants assessed by the two assessment methods. When replicas cast in die stone are used for assessing sealant retention, the level of reliability of the data is higher than that of data obtained through the commonly used visual clinical examination, particularly if such assessments are conducted over time.

  14. Optimal quantum cloning via spin networks

    SciTech Connect

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-09-15

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  15. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    SciTech Connect

    Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  16. Gapped symmetric edges of symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming; Lee, Dung-Hai

    2014-05-01

    Symmetry-protected topological (SPT) phases are gapped quantum phases which host symmetry-protected gapless edge excitations. On the other hand, the edge states can be gapped by spontaneously breaking symmetry. We show that topological defects on the symmetry-broken edge cannot proliferate due to their fractional statistics. A gapped symmetric boundary, however, can be achieved between an SPT phase and certain fractionalized phases by condensing the bound state of a topological defect and an anyon. We demonstrate this by two examples in two dimensions: an exactly solvable model for the boundary between a topological Ising paramagnet and the double-semion model, and a fermionic example about the quantum spin Hall edge. Such a hybrid structure containing both SPT phase and fractionalized phase generally support ground-state degeneracy on a torus.

  17. The Spin of the Proton

    SciTech Connect

    Thomas, Anthony

    2008-07-01

    doi: http://dx.doi.org/10.1016/j.ppnp.2007.12.039
    The twenty years since the announcement of the proton spin crisis by the European Muon Collaboration has seen tremendous progress in our knowledge of the distribution of spin within the proton. The problem is reviewed, beginning with the original data and the suggestion that polarized gluons may play a crucial role in resolving the problem through the U(1) axial anomaly. The discussion continues to the present day where not only have strong limits have been placed on the amount of polarized glue in the proton but the experimental determination of the spin content has become much more precise. It is now clear that the origin of the discrepancy between experiment and the naive expectation of the fraction of spin carried by the quarks and anti-quarks in the proton lies in the non-perturabtive structure of the proton. We explain how the features expected in a modern, relativistic and chirally symmetric description of nucleon str

  18. Spin ejector

    DOEpatents

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  19. Spin Electronics

    DTIC Science & Technology

    2003-08-01

    is now well established in scientific and engineering communities that Moore’s Law, having been an excellent predictor of integrated circuit density...for semiconductor electronics, spin-electronic devices have the potential to achieve much higher integration densities. Conventional electronics is...devices would include non-volatility permitting data retention in non-powered conditions, increased integration densities, higher data processing

  20. Nonlinear symmetric stability of planetary atmospheres

    SciTech Connect

    Bowman, J.C.; Shepherd, T.G.

    1994-11-01

    The energy-Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Linear stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Nonlinear stability conditions are also obtained that, in addition to implying linear stability, provide an upper bound on a certain positive-definite measure of disturbance amplitude.

  1. Recent Numerical Studies of the Spin Glass State

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo

    2001-03-01

    The nature of the low temperature phase of spin glasses remains a controversial issue, which has recently received considerable renewed interest. Two theories have been extensively discussed: the droplet model and the replica symmetry breaking theory. In this talk, I will discuss some recent investigations of the low temperature phase of Ising spin glasses with short range interactions in three and four dimensions. I will present the results of a new approach [1] based on studying changes in the ground state when an external perturbation is applied, using efficient optimization algorithms, as well as the results of Monte Carlo simulations at very low temperatures [2]. I will compare these results with several theoretical scenarios: the droplet model, the replica symmetry breaking theory, and a new intermediate scenario in which there are large scale excitations which cost a finite energy in the thermodynamic limit, but whose surface has a vanishing density. [1] M.Palassini and A.P. Young, Phys. Rev. Lett. 85, 3017 (2000); Phys. Rev. Lett. 83, 5126 (1999); and unpublished. [2] H.G. Katzgraber, M.Palassini and A.P. Young, cond-mat/0007113; M.Palassini and A.P.Young, unpublished.

  2. Spin diffusion from an inhomogeneous quench in an integrable system

    NASA Astrophysics Data System (ADS)

    Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž

    2017-07-01

    Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.

  3. Higher-spin charges in Hamiltonian form. II. Fermi fields

    NASA Astrophysics Data System (ADS)

    Campoleoni, A.; Henneaux, M.; Hörtner, S.; Leonard, A.

    2017-02-01

    We build the asymptotic higher-spin charges associated with "improper" gauge transformations for fermionic higher-spin gauge fields on Anti de Sitter backgrounds of arbitrary dimension. This is achieved within the canonical formalism. We consider massless fields of spin s+1/2, described by a symmetric spinor-tensor of rank s in the Fang-Fronsdal approach. We begin from a detailed analysis of the spin 5/2 example, for which we cast the Fang-Fronsdal action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary half-integer spin. Our construction generalises to higher-spin fermionic gauge fields the known Hamiltonian derivation of supercharges in AdS supergravity.

  4. Higher spins on AdS3 from the worldsheet

    NASA Astrophysics Data System (ADS)

    Ferreira, Kevin; Gaberdiel, Matthias R.; Jottar, Juan I.

    2017-07-01

    It was recently shown that the CFT dual of string theory on AdS3 × S3 × T 4, the symmetric orbifold of T 4, contains a closed higher spin subsector. Via holography, this makes precise the sense in which tensionless string theory on this background contains a Vasiliev higher spin theory. In this paper we study this phenomenon directly from the worldsheet. Using the WZW description of the background with pure NS-NS flux, we identify the states that make up the leading Regge trajectory and show that they fit into the even spin N=4 Vasiliev higher spin theory. We also show that these higher spin states do not become massless, except for the somewhat singular case of level k = 1 where the theory contains a stringy tower of massless higher spin fields coming from the long string sector.

  5. Kinetic theory of spin-polarized systems in electric and magnetic fields with spin-orbit coupling. I. Kinetic equation and anomalous Hall and spin-Hall effects

    NASA Astrophysics Data System (ADS)

    Morawetz, K.

    2015-12-01

    The coupled kinetic equation for density and spin Wigner functions is derived including spin-orbit coupling, electric and magnetic fields, and self-consistent Hartree mean fields suited for SU(2) transport. The interactions are assumed to be with scalar and magnetic impurities as well as scalar and spin-flip potentials among the particles. The spin-orbit interaction is used in a form suitable for solid state physics with Rashba or Dresselhaus coupling, graphene, extrinsic spin-orbit coupling, and effective nuclear matter coupling. The deficiencies of the two-fluid model are worked out consisting of the appearance of an effective in-medium spin precession. The stationary solution of all these systems shows a band splitting controlled by an effective medium-dependent Zeeman field. The self-consistent precession direction is discussed and a cancellation of linear spin-orbit coupling at zero temperature is reported. The precession of spin around this effective direction caused by spin-orbit coupling leads to anomalous charge and spin currents in an electric field. Anomalous Hall conductivity is shown to consist of the known results obtained from the Kubo formula or Berry phases and a symmetric part interpreted as an inverse Hall effect. Analogously the spin-Hall and inverse spin-Hall effects of spin currents are discussed which are present even without magnetic fields showing a spin accumulation triggered by currents. The analytical dynamical expressions for zero temperature are derived and discussed in dependence on the magnetic field and effective magnetizations. The anomalous Hall and spin-Hall effect changes sign at higher than a critical frequency dependent on the relaxation time.

  6. Parallel tempering and 3D spin glass models

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, T.; Malakis, A.

    2014-03-01

    We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.

  7. Spin glass in a field: a new zero-temperature fixed point in finite dimensions.

    PubMed

    Angelini, Maria Chiara; Biroli, Giulio

    2015-03-06

    By using real-space renormalization group (RG) methods, we show that spin glasses in a field display a new kind of transition in high dimensions. The corresponding critical properties and the spin-glass phase are governed by two nonperturbative zero-temperature fixed points of the RG flow. We compute the critical exponents and discuss the RG flow and its relevance for three-dimensional systems. The new spin-glass phase we discovered has unusual properties, which are intermediate between the ones conjectured by droplet and full replica symmetry-breaking theories. These results provide a new perspective on the long-standing debate about the behavior of spin glasses in a field.

  8. A group-theoretic approach to constructions of non-relativistic spin-statistics

    NASA Astrophysics Data System (ADS)

    Harrison, J. M.; Robbins, J. M.

    2000-11-01

    We give a group-theoretical generalization of Berry and Robbins' treatment of identical particles with spin. The original construction, which leads to the correct spin-statistics relation, is seen to arise from particular irreducible representations—the totally symmetric representations—of the group SU(4). Here we calculate the exchange signs and corresponding statistics for all irreducible representations of SU(4).

  9. Analytical polarization transfer functions for four coupled spins 12 under isotropic mixing conditions

    PubMed

    Luy; Schedletzky; Glaser

    1999-05-01

    Analytical polarization transfer functions are presented for spin systems consisting of four spins 12 with arbitrary coupling constants under isotropic mixing conditions. In addition, simplified transfer functions were derived for symmetric coupling topologies. Based on these transfer functions optimal durations for the mixing period can be determined for correlations of interest. Copyright 1999 Academic Press.

  10. Spin pumping and spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Saitoh, Eiji

    2012-02-01

    Utilization of a spin current, a flow of electrons' spins in a solid, is the key technology in spintronics that will allow the achievement of efficient magnetic memories and computing devices. In this technology, generation and detection of spin currents are necessary. Here, we review inverse spin-Hall effect and spin-current-generation phenomena recently discovered both in metals and insulators: inverse spin-Hall effect, spin pumping, and spin Seebeck effect. (1)Spin pumping and spin torque in a Mott insulator system We found that spin pumping and spin torque effects appear also at an interface between Pt and an insulator YIG.. This means that we can connect a spin current carried by conduction electrons and a spin-wave spin current flowing in insulators. We demonstrate electric signal transmission by using these effects and interconversion of the spin currents [1]. (2) Spin Seebeck effect We have observed, by using the inverse spin-Hall effect [2], spin voltage generation from a heat current in a NiFe, named the spin-Seebeck effect [3]. Surprisingly, spin-Seebeck effect was found to appear even in insulators [4], a situation completely different from conventional charge Seebeck effect. The result implies an important role of elementary excitation in solids beside charge in the spin Seebeck effect. In the talk, we review the recent progress of the research on this effect. This research is collaboration with K. Ando, K. Uchida, Y. Kajiwara, S. Maekawa, G. E. W. Bauer, S. Takahashi, and J. Ieda. [4pt] [1] Y. Kajiwara and E. Saitoh et al. Nature 464 (2010) 262. [0pt] [2] E. Saitoh et al., Appl. Phys. Lett. 88 (2006) 182509. [0pt] [3] K. Uchida and E. Saitoh et al., Nature 455 (2008)778. [0pt] [4] K. Uchida and E. Saitoh et al.,Nature materials 9 (2010) 894 - 897.

  11. Zero-conductance resonances and spin polarizations in three-terminal rings in the presence of spin-orbit coupling

    SciTech Connect

    Zhai, Li-Xue; Wang, Yan; Liu, Jian-Jun

    2014-11-28

    Spin dependent transport in one-dimensional (1D) three-terminal rings is investigated in the presence of the Rashba spin-orbit coupling (RSOC). We focus on zero-conductance resonances and spin polarizations. For these purposes, the transmission functions are derived analytically. The total conductances are analyzed in the complex energy plane with a focus on the zero-pole structure characteristic of transmission (anti)resonances. The spin polarizations in symmetrically and asymmetrically coupled three-terminal rings are studied as a function of the incident electron energy. It is found that in the absence of the RSOC there are three kinds of conductance zeros. In the presence of the RSOC, the zeros of the first and the third kinds are lifted, while some of the second kind persist. The lifting of the conductance zeros is related to the breaking of the spin-reversal symmetry, and the lifted conductance zeros evolve into spin polarization zeros.

  12. Compact antenna has symmetrical radiation pattern

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.; Mckee, E. D.

    1979-01-01

    Compact quadrifilar-helix antenna has exceptionally uniform and axially symmetric radiation pattern. It resists shock and vibration and gives excellent radiation characteristics which make it potentially useful for mobile citizenband radios and other terrestrial communications sytems.

  13. Martingale Rosenthal inequalities in symmetric spaces

    SciTech Connect

    Astashkin, S V

    2014-12-31

    We establish inequalities similar to the classical Rosenthal inequalities for sequences of martingale differences in general symmetric spaces; a central role is played here by the predictable quadratic characteristic of a martingale. Bibliography: 26 titles.

  14. Sealant retention is better assessed through colour photographs than through the replica and the visual examination methods.

    PubMed

    Hu, Xuan; Fan, Mingwan; Rong, Wensheng; Lo, Edward C M; Bronkhorst, Ewald; Frencken, Jo E

    2014-08-01

    The aim of this study was to test the hypothesis that the colour photograph method has a higher level of validity for assessing sealant retention than the visual clinical examination and replica methods. Sealed molars were assessed by two evaluators. The scores for the three methods were compared against consensus scores derived through assessing retention from scanning electron microscopy images (reference standard). The presence/absence (survival) of retained sealants on occlusal surfaces was determined according to the traditional and modified categorizations of retention. Sensitivity, specificity, and Youden-index scores were calculated. Sealant retention assessment scores for visual clinical examinations and for colour photographs were compared with those of the reference standard on 95 surfaces, and sealant retention assessment scores for replicas were compared with those of the reference standard on 33 surfaces. The highest mean Youden-index score for the presence/absence of sealant material was observed for the colour photograph method, followed by that for the replica method; the visual clinical examination method scored lowest. The mean Youden-index score for the survival of retained sealants was highest for the colour photograph method for both the traditional (0.882) and the modified (0.768) categories of sealant retention, whilst the visual clinical examination method had the lowest Youden-index score for these categories (0.745 and 0.063, respectively). The colour photograph method had a higher validity than the replica and the visual examination methods for assessing sealant retention. © 2014 Eur J Oral Sci.

  15. Localization-Free Detection of Replica Node Attacks in Wireless Sensor Networks Using Similarity Estimation with Group Deployment Knowledge.

    PubMed

    Ding, Chao; Yang, Lijun; Wu, Meng

    2017-01-15

    Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies.

  16. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view is a closeup of the ships with KSC launch complex in the distant background. View provided by KSC with alternate number KSC-92PC-968.

  17. Validation of airway resistance models for predicting pressure loss through anatomically realistic conducting airway replicas of adults and children.

    PubMed

    Borojeni, Azadeh A T; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2015-07-16

    This work describes in vitro measurement of the total pressure loss at varying flow rate through anatomically realistic conducting airway replicas of 10 children, 4 to 8 years old, and 5 adults. Experimental results were compared with analytical predictions made using published airway resistance models. For the adult replicas, the model proposed by van Ertbruggen et al. (2005. J. Appl. Physiol. 98, 970-980) most accurately predicted central conducting airway resistance for inspiratory flow rates ranging from 15 to 90 L/min. Models proposed by Pedley et al. (1970. J. Respir. Physiol. 9, 371-386) and by Katz et al. (2011. J. Biomech. 44, 1137-1143) also provided reasonable estimates, but with a tendency to over predict measured pressure loss for both models. For child replicas, the Pedley and Katz models both provided good estimation of measured pressure loss at flow rates representative of resting tidal breathing, but under predicted measured values at high inspiratory flow rate (60 L/min). The van Ertbruggen model, developed based on flow simulations performed in an adult airway model, tended to under predict measured pressure loss through the child replicas across the range of flow rates studied (2 to 60 L/min). These results are intended to provide guidance for selection of analytical pressure loss models for use in predicting airway resistance and ventilation distribution in adults and children.

  18. Localization-Free Detection of Replica Node Attacks in Wireless Sensor Networks Using Similarity Estimation with Group Deployment Knowledge

    PubMed Central

    Ding, Chao; Yang, Lijun; Wu, Meng

    2017-01-01

    Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies. PMID:28098846

  19. Tunable all electric spin polarizer

    NASA Astrophysics Data System (ADS)

    Bhandari, Nikhil K.

    symmetrically biased and that bias is varied to maximize the amount of spin polarization in the channel. We have fabricated several InAs based QPCs with four SGs and have shown that the experimental results were in qualitative agreement with our NEGF simulations. Our main finding is that the range of common mode bias on the first set of gates over which maximum spin polarization can be achieved is much broader for the four gate structure compared to the case of a single pair of in-plane SGs. In addition, we have observed both hysteresis and negative differential regions in the conductance for specific biasing conditions. We believe these are evidence of Coulomb and Spin Blockade effects on the conductance of these devices and cannot be explained within the context of a NEGF approach and require a many-body approach to the description of carrier transport. Our studies suggest that the study of spin valve structures composed of a quantum dot or wire coupled to the source and drain via asymmetrically biased QPCs should open a new area in the field of spintronics.

  20. Neutron and gamma-ray dose measurements at various distances from the Little Boy replica

    SciTech Connect

    Huntzinger, C.J.; Hankins, D.E.

    1984-08-01

    We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore National Laboratory (LLNL). 12 references, 7 figures, 6 tables.

  1. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  2. Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation.

    PubMed

    Xue, Xu; Yongjun, Wang; Zhihong, Li

    2015-01-21

    Riboswitches are cis-acting RNA fragments that function via a conformational transition mechanism when a specific target molecule binds to its binding pocket, representing an inviting new class of biomolecular target for the development of antibiotics. To understand the folding mechanism of SAM-II riboswitch, occurring predominantly in proteobacteria, a 100ns replica-exchange molecular dynamics simulation in explicit solvent is performed. Our results show that this RNA pseudoknot has multiple folding pathways, and various intermediate structures. The resultant riboswitch conformational transition map is well consistent with the recent fluorescence measurement, which confirms the dynamical properties of this pseudoknot. Moreover, a novel transition pathway is predicted. The global folding dynamics is mainly coupled with the helix rather than the loop region. The potential folding pathways of the riboswitch presented here should lead to a deeper understanding of the folding mechanism of the riboswitch, as well as the conformational change of RNA pseudoknot.

  3. Behavioural responses of dogs to asymmetrical tail wagging of a robotic dog replica.

    PubMed

    Artelle, K A; Dumoulin, L K; Reimchen, T E

    2011-03-01

    Recent evidence suggests that bilateral asymmetry in the amplitude of tail wagging of domestic dogs (Canis familiaris) is associated with approach (right wag) versus withdrawal (left wag) motivation and may be the by-product of hemispheric dominance. We consider whether such asymmetry in motion of the tail, a crucial appendage in intra-specific communication in all canids, provides visual information to a conspecific leading to differential behaviour. To evaluate this, we experimentally investigated the approach behaviour of free-ranging dogs to the asymmetric tail wagging of a life-size robotic dog replica. Our data, involving 452 separate interactions, showed a significantly greater proportion of dogs approaching the model continuously without stopping when the tail wagged to the left, compared with a right wag, which was more likely to yield stops. While the results indicate that laterality of a wagging tail provides behavioural information to conspecifics, the responses are not readily integrated into the predicted behaviour based on hemispheric dominance.

  4. Visualization of in vivo septin ultrastructures by platinum replica electron microscopy

    PubMed Central

    Ong, K.; Svitkina, T.; Bi, E.

    2017-01-01

    Septins are cytoskeletal proteins involved in diverse biological processes including cytokinesis, cell morphogenesis, motility, and ciliogenesis. Septins form various filamentous structures in vitro and in vivo, but the higher-order architecture of septin structures in vivo remains poorly defined. The best understood system in this respect is the budding yeast Saccharomyces cerevisiae, where septins form a ring structure that undergoes multiple stages of remodeling during the cell cycle. In this chapter, we describe a method for visualizing supramolecular septin structures in yeast at high spatial resolution using platinum replica electron microscopy. This approach can be applied to further understand the regulation of assembly and remodeling of septin higher-order structures, as well as the relationship between septin architecture and function. PMID:27473904

  5. Coexistence of Replica Bands and Superconductivity in FeSe Monolayer Films

    NASA Astrophysics Data System (ADS)

    Rebec, S. N.; Jia, T.; Zhang, C.; Hashimoto, M.; Lu, D.-H.; Moore, R. G.; Shen, Z.-X.

    2017-02-01

    To elucidate the mechanisms behind the enhanced Tc in monolayer (1 ML) FeSe on SrTiO3 (STO), we grew highly strained 1 ML FeSe on the rectangular (100) face of rutile TiO2 , and observed the coexistence of replica bands and superconductivity with a Tc of 63 K. From the similar Tc between this system and 1ML FeSe on STO (001), we conclude that strain and dielectric constant are likely unimportant to the enhanced Tc in these systems. A systematic comparison of 1 ML FeSe on TiO2 with other systems in the FeSe family shows that while charge transfer alone can enhance Tc, it is only with the addition of interfacial electron-phonon coupling that Tc can be increased to the level seen in 1 ML FeSe on STO.

  6. Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics.

    PubMed

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-05-10

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  7. Clusters of solutions and replica symmetry breaking in random k-satisfiability

    NASA Astrophysics Data System (ADS)

    Montanari, Andrea; Ricci-Tersenghi, Federico; Semerjian, Guilhem

    2008-04-01

    We study the set of solutions of random k-satisfiability formulas through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substantially this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second 'condensation' phase transition in the structure of the solution set for k>=4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m = 1 via a correspondence with the tree reconstruction problem) and new large-k expansions.

  8. A replica of the Olympic torch is recovered from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A replica of the Olympic torch is recovered after its journey on Space Shuttle Atlantis on mission STS-101. The addition of the torch to the payload was coordinated by astronaut Andy Thomas, who is from Australia. The torch will travel to Australia for the 2000 Olympic games being held there in September. STS-101 was the third flight to the International Space Station and included repairs to the Station plus transfer of equipment and supplies to the Station for future missions. The landing of Atlantis completed a 9-day, 20-hour, 9-minute-long mission. It was the 98th flight in the Space Shuttle program and the 21st for Atlantis. The landing was the 51st at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.

  9. A replica of the Olympic torch is recovered from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Teri McKinney, with Shuttle Crew Escape, Johnson Space Center, holds a replica of the Olympic torch carried aboard Space Shuttle Atlantis on mission STS-101. The addition of the torch to the payload was coordinated by astronaut Andy Thomas, who is from Australia. The torch will travel to Australia for the 2000 Olympic games being held there in September. . STS-101 was the third flight to the International Space Station and included repairs to the Station plus transfer of equipment and supplies to the Station for future missions. The landing of Atlantis completed a 9-day, 20-hour, 9-minute-long mission. It was the 98th flight in the Space Shuttle program and the 21st for Atlantis. The landing was the 51st at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.

  10. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    NASA Technical Reports Server (NTRS)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  11. Replica-Exchange Molecular Dynamics Simulations of Amyloid Precursor Protein Dimer in Membrane

    NASA Astrophysics Data System (ADS)

    Miyashita, Naoyuki; Sugita, Yuji

    2010-01-01

    Aggregation of amyloid β peptide (Aβ) in the brain is the primary element in the pathogenesis of Alzheimer's disease. Aβ is derived from amyloid precursor protein (APP) in the membrane due to the cleavages by β- and γ-secretases. Here, we predict the transmembrane structures of the wild-type and mutant APP in the biological membrane by replica-exchange molecular dynamics simulations. The simulations illustrate large conformational differences between the wild type and mutant APP fragments in the membrane. Dimerization of the wild type occurs due to the Cα-H⋯O hydrogen bonds at the Gly-XXX-Gly motifs between two APP fragments, whereas the mutant dimer is stabilized by the interactions between hydrophobic side chains. We also observe the downward shift of γ-cleavage site in the mutant APP, which may cause the prohibition of Aβ production.

  12. Towards an Optimal Flow: Density-of-States-Informed Replica-Exchange Simulations.

    PubMed

    Vogel, Thomas; Perez, Danny

    2015-11-06

    Replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  13. Replica extraction method on nanostructured gold coatings and orientation determination combining SEM and TEM techniques.

    PubMed

    Bocker, Christian; Kracker, Michael; Rüssel, Christian

    2014-12-01

    In the field of electron microscopy the replica technique is known as an indirect method and also as an extraction method that is usually applied on metallurgical samples. This contribution describes a fast and simple transmission electron microscopic (TEM) sample preparation by complete removal of nanoparticles from a substrate surface that allows the study of growth mechanisms of nanostructured coatings. The comparison and combination of advanced diffraction techniques in the TEM and scanning electron microscopy (SEM) provide possibilities for operators with access to both facilities. The analysis of TEM-derived diffraction patterns (convergent beam electron diffraction) in the SEM/electron backscatter diffraction software simplifies the application, especially when the patterns are not aligned along a distinct zone axis. The study of the TEM sample directly by SEM and transmission Kikuchi diffraction allows cross-correlation with the TEM results.

  14. Towards an Optimal Flow: Density-of-States-Informed Replica-Exchange Simulations

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Perez, Danny

    2015-11-01

    Replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  15. Characterizing folding funnels with replica exchange Wang-Landau simulation of lattice proteins.

    PubMed

    Shi, Guangjie; Wüst, Thomas; Landau, David P

    2016-11-01

    We have studied the folding of ribonuclease A by mapping it onto coarse-grained lattice protein models. With replica exchange Wang-Landau sampling, we calculated the free energy vs end-to-end distance as a function of temperature. A mapping to the famous hydrophobic-polar (HP) model shows a relatively shallow folding funnel and flat free energy minimum, reflecting the high degeneracy of the ground state. In contrast, extending the HP model with an additional "neutral" monomer type (i.e., a mapping to the three-letter H0P model) has a well developed, rough free energy funnel with a low degeneracy ground state. In both cases, folding funnels are asymmetric with temperature dependent shape.

  16. Replica-exchange Wang-Landau simulations of the H0P lattice protein model

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Wüst, Thomas; Li, Ying Wai; Landau, David P.

    The hydrophobic-polar (HP) lattice protein model has been the subject of intensive investigation in an effort to aid our understanding of protein folding. However, the high ground state degeneracies caused by its simplification stands in contrast to the generally unique native states of natural proteins. Here we proposed a simple modification, by introducing a new type of ``neutral'' monomer, 0, i.e. neither hydrophobic nor polar, thus rendering the model more realistic without increasing the difficulties of sampling significantly. With the replica exchange Wang-Landau (REWL) scheme we investigated several widely studied HP proteins and their H0P counterparts. Dramatic differences in both ground state and thermodynamic properties have been found. For example, the H0P version of Crambin shows more clear two-step folding and 3 order of magnitudes less ground state degeneracy than its HP counterpart. Supported by NSF.

  17. Characterizing folding funnels with replica exchange Wang-Landau simulation of lattice proteins

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Wüst, Thomas; Landau, David P.

    2016-11-01

    We have studied the folding of ribonuclease A by mapping it onto coarse-grained lattice protein models. With replica exchange Wang-Landau sampling, we calculated the free energy vs end-to-end distance as a function of temperature. A mapping to the famous hydrophobic-polar (HP) model shows a relatively shallow folding funnel and flat free energy minimum, reflecting the high degeneracy of the ground state. In contrast, extending the HP model with an additional "neutral" monomer type (i.e., a mapping to the three-letter H0P model) has a well developed, rough free energy funnel with a low degeneracy ground state. In both cases, folding funnels are asymmetric with temperature dependent shape.

  18. Shear modulus of glasses: results from the full replica-symmetry-breaking solution.

    PubMed

    Yoshino, Hajime; Zamponi, Francesco

    2014-08-01

    We compute the shear modulus of amorphous hard and soft spheres, using the exact solution in infinite spatial dimensions that has been developed recently. We characterize the behavior of this observable in the whole phase diagram, and in particular around the glass and jamming transitions. Our results are consistent with other theoretical approaches, which are unified within this general picture, and they are also consistent with numerical and experimental results. Furthermore, we discuss some properties of the out-of-equilibrium dynamics after a deep quench close to the jamming transition, and we show that a combined measure of the shear modulus and of the mean square displacement allows one to probe experimentally the complex structure of phase space predicted by the full replica-symmetry-breaking solution.

  19. Coexistence of Replica Bands and Superconductivity in FeSe Monolayer Films

    DOE PAGES

    Rebec, S. N.; Jia, T.; Zhang, C.; ...

    2017-02-01

    To elucidate the mechanisms behind the enhanced Tc in monolayer (1 ML) FeSe on SrTiO3 (STO), we grew highly strained 1 ML FeSe on the rectangular (100) face of rutile TiO2, and observed the coexistence of replica bands and superconductivity with a Tc of 63 K. From the similar Tc between this system and 1ML FeSe on STO (001), we conclude that strain and dielectric constant are likely unimportant to the enhanced Tc in these systems. Here, a systematic comparison of 1 ML FeSe on TiO2 with other systems in the FeSe family shows that while charge transfer alone canmore » enhance Tc, it is only with the addition of interfacial electron-phonon coupling that Tc can be increased to the level seen in 1 ML FeSe on STO.« less

  20. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    SciTech Connect

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  1. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    NASA Technical Reports Server (NTRS)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  2. Low-temperature behavior of the statistics of the overlap distribution in Ising spin-glass models

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew; Yucesoy, B.; Katzgraber, Helmut G.; Machta, J.; Young, A. P.

    2014-10-01

    Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson models in three and four space dimensions, and one-dimensional long-range models with diluted power-law interactions. We study three long-range models with different powers as follows: The first is approximately equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish the "replica symmetry breaking" picture of the spin-glass phase from the "droplet picture," finding that larger system sizes would be needed to unambiguously determine which of these pictures describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model, which is unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap probability distribution and a typical overlap distribution, finding that these observables are not particularly helpful in distinguishing the replica symmetry breaking and the droplet pictures.

  3. Symmetric states: Their nonlocality and entanglement

    SciTech Connect

    Wang, Zizhu; Markham, Damian

    2014-12-04

    The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.

  4. Lax Operator for Macdonald Symmetric Functions

    NASA Astrophysics Data System (ADS)

    Nazarov, Maxim; Sklyanin, Evgeny

    2015-07-01

    Using the Lax operator formalism, we construct a family of pairwise commuting operators such that the Macdonald symmetric functions of infinitely many variables and of two parameters q, t are their eigenfunctions. We express our operators in terms of the Hall-Littlewood symmetric functions of the variables and of the parameter t corresponding to the partitions with one part only. Our expression is based on the notion of Baker-Akhiezer function.

  5. Reversibility of a Symmetric Linear Cellular Automata

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    The characterization of the size of the cellular space of a particular type of reversible symmetric linear cellular automata is introduced in this paper. Specifically, it is shown that those symmetric linear cellular with 2k + 1 cells, and whose transition matrix is a k-diagonal square band matrix with nonzero entries equal to 1 are reversible. Furthermore, in this case the inverse cellular automata are explicitly computed. Moreover, the reversibility condition is also studied for a general number of cells.

  6. Block Lanczos tridiagonalization of complex symmetric matrices

    NASA Astrophysics Data System (ADS)

    Qiao, Sanzheng; Liu, Guohong; Xu, Wei

    2005-08-01

    The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block algorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise technique for detecting the loss of orthogonality to stablize the block Lanczos algorithm. Our experiments have shown our componentwise technique can reduce the number of orthogonalizations.

  7. Gate-dependent spin Hall induced nonlocal resistance and the symmetry of spin-orbit scattering in Au-clustered graphene

    NASA Astrophysics Data System (ADS)

    Park, Jungmin; Yun, Hyung Duk; Jin, Mi-Jin; Jo, Junhyeon; Oh, Inseon; Modepalli, Vijayakumar; Kwon, Soon-Yong; Yoo, Jung-Woo

    2017-06-01

    Engineering the electron dispersion of graphene to be spin-dependent is crucial for the realization of spin-based logic devices. Enhancing spin-orbit coupling in graphene can induce spin Hall effect, which can be adapted to generate or detect a spin current without a ferromagnet. Recently, both chemically and physically decorated graphenes have shown to exhibit large nonlocal resistance via the spin Hall and its inverse effects. However, these nonlocal transport results have raised critical debates due to the absence of field dependent Hanle curve in subsequent studies. Here, we introduce Au clusters on graphene to enhance spin-orbit coupling and employ a nonlocal geometry to study the spin Hall induced nonlocal resistance. Our results show that the nonlocal resistance highly depends on the applied gate voltage due to various current channels. However, the spin Hall induced nonlocal resistance becomes dominant at a particular carrier concentration, which is further confirmed through Hanle curves. The obtained spin Hall angle is as high as ˜0.09 at 2 K. Temperature dependence of spin relaxation time is governed by the symmetry of spin-orbit coupling, which also depends on the gate voltage: asymmetric near the charge neutral point and symmetric at high carrier concentration. These results inspire an effective method for generating spin currents in graphene and provide important insights for the spin Hall effect as well as the symmetry of spin scattering in physically decorated graphene.

  8. Gamma-ray spectra and doses from the Little Boy replica

    SciTech Connect

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germanium detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10/sup 13/ fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables.

  9. Flattening mountains: micro-fabrication of planar replicas for bullet lateral striae analysis.

    PubMed

    Cominato, Laura; Valle, Francesco; Pierini, Giovanni; Bonini, Paolo; Biscarini, Fabio; D'Elia, Marcello

    2015-02-01

    The application of replica molding has proven to be a valuable tool in the analysis of different forensic evidences in particular for its ability to extract the toolmarks from complex sample surfaces. A well known problem in the analysis of ballistic evidences is the accurate characterization of the lateral striae of real bullets seized on crime scenes after shots, due primarily to impact deformations and to unpredictable issues related to laboratory illumination setup. To overcome these problems a possible way is to confine over a flat surface all the features still preserving their three dimensionality. This can be achieved by a novel application of replica molding performed onto the relevant lateral portion of the bullet surface. A quasi-two-dimensional negative copy of the original tridimensional indented surface has been thus fabricated. It combines the real tridimensional topography of class characteristics (land and groove impressions) and of individual caracteristics (striae) impressed by rifled barrels on projectiles, moreover with the possibility of quantitative characterization of these features in a planar configuration, that will allow one-shot comparison of the "whole striae landscape" without the typical artifacts arising from the bullet shape and the illumination issue. A detailed analysis has been carried on at the morphological level by standard optical and scanning electron microscopy, while the 3D topography has been characterized by white light optical profilometry. A quantitative characterization of toolmarks of bullets derived from ammunitions shot by guns of large diffusion, as the Beretta 98 FS cal. 9×21 mm, has been performed and will be presented ranging between the whole landscape and the sub-μm resolution. To investigate the real potentiality of this technique, the experiment has been extended to highly impact-deformed projectiles.

  10. Long-time atomistic simulations with the Parallel Replica Dynamics method

    NASA Astrophysics Data System (ADS)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  11. Simple continuous and discrete models for simulating replica exchange simulations of protein folding.

    PubMed

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M

    2008-05-15

    The efficiency of temperature replica exchange (RE) simulations hinge on their ability to enhance conformational sampling at physiological temperatures by taking advantage of more rapid conformational interconversions at higher temperatures. While temperature RE is a parallel simulation technique that is relatively straightforward to implement, kinetics in the RE ensemble is complicated, and there is much to learn about how best to employ RE simulations in computational biophysics. Protein folding rates often slow down above a certain temperature due to entropic bottlenecks. This "anti-Arrhenius" behavior represents a challenge for RE. However, it is far from straightforward to systematically explore the impact of this on RE by brute force molecular simulations, since RE simulations of protein folding are very difficult to converge. To understand some of the basic mechanisms that determine the efficiency of RE, it is useful to study simplified low dimensionality systems that share some of the key characteristics of molecular systems. Results are presented concerning the efficiency of temperature RE on a continuous two-dimensional potential that contains an entropic bottleneck. Optimal efficiency was obtained when the temperatures of the replicas did not exceed the temperature at which the harmonic mean of the folding and unfolding rates is maximized. This confirms a result we previously obtained using a discrete network model of RE. Comparison of the efficiencies obtained using the continuous and discrete models makes it possible to identify non-Markovian effects, which slow down equilibration of the RE ensemble on the more complex continuous potential. In particular, the rate of temperature diffusion and also the efficiency of RE is limited by the time scale of conformational rearrangements within free energy basins.

  12. Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas

    PubMed Central

    1979-01-01

    The tight junctions of the choroid plexus epithelium of rats were studied by freeze-fracture. In glutaraldehyde-fixed material, the junctions exhibited rows of aligned particles and short bars on P- faces, the E-faces showing grooves bearing relatively many particles. A particulate nature of the junctional strands could be established by using unfixed material. The mean values of junctional strands from the lateral, third, and fourth ventricles of Lewis rats were 7.5 +/- 2.6, 7.4 +/- 2.2, and 7.5 +/- 2.4; and of Sprague-Dawley rats 7.7 +/- 3.4, 7.4 +/- 2.3, and 7.3 +/- 1.6. Examination of complementary replicas (of fixed tissue) showed that discomtinuities are present in the junctional strands: 42.2 +/- 4.6% of the length of measured P-face ridges were discontinuities, and the total amount of complementary particles in E- face grooves constituted 17.8 +/- 4.4% of the total length of the grooves, thus approximately 25% of the junctional strands can be considered to be discontinuous. The average width of the discontinuities, when corrected for complementary particles in E-face grooves, was 7.7 +/- 4.5 nm. In control experiments with a "tighter" tight junction (small intestine), complementary replicas revealed that the junctional fibrils are rather continuous and that the very few particles in E-face grooves mostly filled out discontinuities in the P- face ridges. Approximately 5% of the strands were found to be discontinuous. These data support the notion that the presence of pores in the junctional strands of the choroid plexus epithelium may explain the high transepithelial conductance in a "leaky" epithelium having a high number of junctional strands. However, loss of junctional material during fracturing is also considered as an alternative explanation of the present results. PMID:457764

  13. Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent.

    PubMed

    Periole, Xavier; Mark, Alan E

    2007-01-07

    Replica exchange methods (REMs) are increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. However, despite having been shown to be very effective on model systems, the application of REM in complex systems such as for the simulation of protein and peptide folding in explicit solvent has not been objectively tested in detail. Here we present a comparison of conventional MD and temperature replica exchange MD (T-REMD) simulations of a beta-heptapeptide in explicit solvent. This system has previously been shown to undergo reversible folding on the time scales accessible to MD simulation and thus allows a direct one-to-one comparison of efficiency. The primary properties compared are the free energy of folding and the relative populations of different conformers as a function of temperature. It is found that to achieve a similar degree of precision T-REMD simulations starting from a random set of initial configurations were approximately an order of magnitude more computationally efficient than a single 800 ns conventional MD simulation for this system at the lowest temperature investigated (275 K). However, whereas it was found that T-REMD simulations are more than four times more efficient than multiple independent MD simulations at one temperature (300 K) the actual increase in conformation sampling was only twofold. The overall gain in efficiency using REMD resulted primarily from the ordering of different conformational states over temperature, as opposed to a large increase of conformational sampling. It is also shown that in this system exchanges are accepted primarily based on (random) fluctuations within the solvent and are not strongly correlated with the instantaneous peptide conformation raising questions in regard to the efficiency of T-REMD in larger systems.

  14. Spinning Moons

    NASA Image and Video Library

    2015-11-10

    Most inner moons in the solar system keep one face pointed toward their central planet; this frame from an animation by NASA New Horizons shows that certainly isnt the case with the small moons of Pluto, which behave like spinning tops. Pluto is shown at center with, in order, from smaller to wider orbit: Charon, Styx, Nix, Kerberos, Hydra. http://photojournal.jpl.nasa.gov/catalog/PIA20152

  15. Phase flow of an axially symmetrical gyrostat with one constant rotor

    NASA Astrophysics Data System (ADS)

    Elipe, A.; Lanchares, V.

    1997-07-01

    We analyze the attitude dynamics of an axially symmetric gyrostat under no external forces and one constant internal spin. We introduce coordinates to represent the orbits of constant angular momentum as a flow on a sphere. With these coordinates, we realize that the problem belongs to a general class of Hamiltonian systems, namely the problem here considered is the one parameter Hamiltonian that is a polynomial of at most degree two in a base of the Lie algebra so (3). The parametric bifurcations are found for both cases, when the rotor is spinning about the axis of symmetry of the gyrostat, and when it is spinning about another axis of inertia. The general solution for the global general flow is expressed in terms of the Jacobian elliptic functions.

  16. Spin-Circuit Representation of Spin Pumping

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2017-07-01

    Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.

  17. Disorder-promoted C4-symmetric magnetic order in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Hoyer, Mareike; Fernandes, Rafael M.; Levchenko, Alex; Schmalian, Jörg

    2016-04-01

    In most iron-based superconductors, the transition to the magnetically ordered state is closely linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However, recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-based superconductors. This novel magnetic ground state can be understood as a double-Q spin density wave characterized by two order parameters M1 and M2 related to each of the two Q vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-energy itinerant models do support a transition from single-Q to double-Q magnetic order, but with nearly degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions of these low-energy models including additional electronic interactions tip the balance in favor of the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this paper we revisit the phase diagram of magnetic ground states of low-energy multiband models in the presence of weak disorder. We show that impurity scattering not only promotes the transition from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in the presence of disorder supports the experimental finding that the splitting between the structural and stripe-magnetic transition is enhanced by disorder.

  18. Matrix isolation ESR spectroscopy and magnetic anisotropy of D3h symmetric septet trinitrenes

    NASA Astrophysics Data System (ADS)

    Misochko, Eugenii Ya.; Akimov, Alexander V.; Masitov, Artem A.; Korchagin, Denis V.; Aldoshin, Sergei M.; Chapyshev, Sergei V.

    2013-05-01

    The fine-structure (FS) parameters D of a series of D3h symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D3h symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D = -0.0957 cm-1 and E = 0 cm-1 is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z1-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968), 10.1016/0009-2614(68)85019-5] shows that this trinitrene has |D| = 0.092 cm-1 and E = 0 cm-1. DFT calculations reveal that, unlike C2v symmetric septet trinitrenes, D3h symmetric trinitrenes have the same orientations of the spin-spin coupling tensor hat D_{SS} and the spin-orbit coupling tensor hat D_{SOC} and, as a result, have negative signs for both the DSS and DSOC values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the DSOC term.

  19. Matrix isolation ESR spectroscopy and magnetic anisotropy of D{sub 3h} symmetric septet trinitrenes

    SciTech Connect

    Misochko, Eugenii Ya.; Akimov, Alexander V.; Masitov, Artem A.; Korchagin, Denis V.; Aldoshin, Sergei M.; Chapyshev, Sergei V.

    2013-05-28

    The fine-structure (FS) parameters D of a series of D{sub 3h} symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D{sub 3h} symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D=-0.0957 cm{sup -1} and E= 0 cm{sup -1} is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z{sub 1}-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968)] shows that this trinitrene has Double-Vertical-Line D Double-Vertical-Line = 0.092 cm{sup -1} and E= 0 cm{sup -1}. DFT calculations reveal that, unlike C{sub 2v} symmetric septet trinitrenes, D{sub 3h} symmetric trinitrenes have the same orientations of the spin-spin coupling tensor D-caret{sub SS} and the spin-orbit coupling tensor D-caret{sub SOC} and, as a result, have negative signs for both the D{sub SS} and D{sub SOC} values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the D{sub SOC} term.

  20. Spin and Pseudospin Symmetries in Relativistic Trigonometric PÖSCHL-TELLER Potential with Centrifugal Barrier

    NASA Astrophysics Data System (ADS)

    Hamzavi, M.; Ikhdair, S. M.; Thylwe, K.-E.

    2012-12-01

    Approximate analytical solutions of the Dirac equation with the trigonometric Pöschl-Teller (tPT) potential are obtained for arbitrary spin-orbit quantum number κ using an approximation scheme to deal with the spin-orbit coupling terms κ(κ±1)r-2. In the presence of exact spin and pseudo-spin (p-spin) symmetric limitation, the bound state energy eigenvalues and the corresponding two-component wave functions of the Dirac particle moving in the field of attractive and repulsive tPT potential are obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. The case of nonrelativistic limit is studied too.

  1. Gate-controlled switching between persistent and inverse persistent spin helix states

    SciTech Connect

    Yoshizumi, K.; Sasaki, A.; Kohda, M.; Nitta, J.

    2016-03-28

    We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.

  2. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    NASA Astrophysics Data System (ADS)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  3. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  4. Spin-one matter fields

    NASA Astrophysics Data System (ADS)

    Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim

    2016-04-01

    Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.

  5. Spin currents, spin torques, and the concept of spin superfluidity

    NASA Astrophysics Data System (ADS)

    Rückriegel, Andreas; Kopietz, Peter

    2017-03-01

    In magnets with noncollinear spin configuration the expectation value of the conventionally defined spin current operator contains a contribution which renormalizes an external magnetic field and hence affects only the precessional motion of the spin polarization. This term, which has been named angular spin current by Sun and Xie [Phys. Rev. B 72, 245305 (2005)], 10.1103/PhysRevB.72.245305, does not describe the translational motion of magnetic moments. We give a prescription for how to separate these two types of spin transport and show that the translational movement of the spin is always polarized along the direction of the local magnetization. We also show that at vanishing temperature the classical magnetic order parameter in magnetic insulators cannot carry a translational spin current and elucidate how this affects the interpretation of spin supercurrents.

  6. A theoretical study of the spin glass-Kondo-magnetic disordered alloys in the presence of a random field

    NASA Astrophysics Data System (ADS)

    Magalhaes, S. G.; Zimmer, F. M.; Coqblin, B.

    2012-12-01

    We study here the influence of a random applied magnetic field on the competition between the Kondo effect, the spin glass phase and a ferromagnetic order in disordered cerium systems such as CeNi1-xCux. The model used here takes an intrasite Kondo coupling and an intersite random coupling; both the intersite random coupling and the random magnetic field are described within the Sherrington-Kirkpatrick model and the one-step replica symmetry breaking procedure is also used here. We present phase diagrams giving Temperature versus the Kondo exchange parameter and the random magnetic field makes decrease particularly the importance of the spin glass and ferromagnetic phases.

  7. Image domain propeller fast spin echo.

    PubMed

    Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland

    2013-04-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE.

  8. Theory of spin blockade in a triple quantum dots

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Hawrylak, Pawel

    2011-03-01

    We present a theory of electronic properties and spin blockade in a linear triple quantum dots. We use micoroscopic LCHO-CI and double-band Hubbard model to analyze the electronic and spin properties of a triple quantum dots near a symmetrical quadruple point involving the (1,1,1) configuration which is essential for implementing quantum information processing with electron spin. We calculate spectral functions and relate them via the rate equation, including coupling with a phonon bath, to current as a function of applied bias. We show that the spin blockade in a triple quantum dots can serve as a spectroscopic tool to distinguish spin polarized states from spin depolarized states. We also show that a spin blockade is developed only at high bias when an onsite triplet state on the edge quantum dot connected to the source lead becomes accessible in the transport window. In contradiction to the case of double quantum dot molecule, the onsite triplet is not only essential for lifting spin blockade but also important for building up spin polarisation and spin blockade in the system. The authors would like to acknowledge financial support from NSERC, OGS, and QuantumWorks.

  9. Polypyrrole-based nitrogen-doped carbon replicas of SBA-15 and SBA-16 containing magnetic nanoparticles

    SciTech Connect

    Dai, Sheng; Fulvio, Pasquale F; Jaroniec, Mietek; Liang, Chengdu

    2008-01-01

    Polypyrrole-based ordered mesoporous carbons (OMCs) were synthesized via chemical vapor infiltration of pyrrole into pores of the SBA-15 and SBA-16 silica templates containing iron(III) chloride catalyst (FeCl{sub 3}). After carbonization of polypyrrole at 800 C and etching of the silica templates with hydrofluoric acid solution, nitrogen-doped and graphitic OMCs with incorporated magnetic nanoparticles were obtained. These materials were analyzed by CHNS elemental analysis, thermogravimetry (TG), nitrogen adsorption, small and wide angle powder X-ray diffraction (XRD), Raman spectroscopy, scanning, and transmission electron microscopy (TEM). The resulting carbon replicas retained the crystallographic symmetry of the silica templates: namely, P6mm in the case of the SBA-15 template, and Im3m in the case of the SBA-16 template. The uniformity, size, and volume of ordered mesopores in the carbon replicas were affected by structural properties of the templates used as shown by analysis of nitrogen adsorption isotherms and pore size distributions. A better infiltration of carbon precursor was achieved for the templates with larger pores, which resulted in the carbon replicas of improved adsorption and structural properties. Elemental analysis revealed the presence of nitrogen in the carbon replicas studied in the range of 3-8 wt %, whereas TG analysis of the replica samples in air gave about 2-5% residue, which was identified as hematite (Fe{sub 2}O{sub 3}). The presence of graphitic domains was confirmed by characteristic TG oxidation profile above 400 C, the D and G bands on the Raman spectra, and the intense reflections on the wide angle XRD patterns. Powder XRD also showed the presence of extra-framework magnetic iron ({alpha}-Fe) and iron carbide (Fe{sub 3}C) nanoparticles having crystallite size in the ranges of 40-80 and 20-40 nm, respectively. TEM images also revealed that these nanoparticles were larger than the carbon rods and pore widths of the SBA-15 carbon

  10. Symmetry Analysis of Spin-Dependent Electric Dipole and Its Application to Magnetoelectric Effects

    NASA Astrophysics Data System (ADS)

    Matsumoto, Masashige; Chimata, Kosuke; Koga, Mikito

    2017-03-01

    Spin-dependent electric dipole operators are investigated group-theoretically for the emergence of an electric dipole induced by a single spin or by two spins, where the spin dependences are completely classified up to the quadratic order. For a single spin, a product of spin operators behaves as an even-parity electric quadrupole operator, which differs from an odd-parity electric dipole. The lack of the inversion symmetry allows the even- and odd-parity mixing, which leads to the electric dipole described by the electric quadruple operators. Point-group tables are given for classification of the possible spin-dependent electric dipoles and for the qualitative analysis of multiferroic properties, such as an emergent electric dipole moment coexisting with a magnetic moment, electromagnon excitation, and directional dichroism. The results can be applied to a magnetic ion in crystals or embedded in molecules at a site without the inversion symmetry. In the presence of an inversion symmetry, the electric dipole does not appear for a single spin. This is not the case for the electric dipole induced by two spins with antisymmetric spin dependence, which is known as vector spin chirality, in the presence of the inversion center between the two spins. In the absence of the inversion center, symmetric spin-dependent electric dipoles are also relevant. The detailed analysis of various symmetries of two-spin states is applied to spin dimer systems and the related multiferroic properties.

  11. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions

    DOE PAGES

    Lin, Shi-Zeng; Hayami, Satoru

    2016-02-01

    Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. This description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axismore » spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. Finally, the derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.« less

  12. Emergent quantum criticality from fractionalizing one-dimensional SO(5) symmetric valence-bond solid states

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Cai, Kang; Wan, Xin; Zhang, Guang-Ming

    2015-12-01

    A common feature of topological phases of matter is the fractionalization of the quantum number in their low-energy excitations. Such information is encoded in their ground state wave functions, but emerges in the bipartite entanglement spectra. The symmetric extensive bipartition is an effective novel method to create deconfined fractionalized edge particles in the reduced subsystem, which lead to quantum critical behavior associated with the transition from the topological phase to its adjacent trivial phase. Here we report the interesting results revealed by applying this method to the one-dimensional SO(5) symmetric valence-bond solid state being a spin-2 symmetry protected topological phase. From the finite-size entanglement spectrum, we find the lowest level to be an SO(5) singlet with a logarithmic entanglement entropy. Surprisingly, the first excited level is also an SO(5) singlet and the spectral gap scales with the subsystem size as LA-ν with ν ≃1.978 . In the thermodynamic limit, a novel quantum criticality emerges with SO(5) spinons and their four-body singlet bound states as elementary excitations, hence ruling out the possibility of being described by a conformal field theory. Moreover, the entanglement Hamiltonian can be determined as an SO(5) symmetric nearest neighbor spin-3/2 quadruple-quadruple interaction with a negative coupling. Our work thus demonstrates the power of this new method in the study of quantum criticality encoded in the topological ground states.

  13. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions

    SciTech Connect

    Lin, Shi-Zeng; Hayami, Satoru

    2016-02-01

    Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. This description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axis spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. Finally, the derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.

  14. Quantum spin Hall phase and surface spin current in Bi and Sb

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    2007-03-01

    In the quantum spin Hall (QSH) phase, the bulk is gapped while edge states are gapless and carry spin currents. Experimental studies for the QSH phase are called for. To search for candidates of the 2D QSH phase, we relate the spin Hall conductivity in insulators with magnetic response of the orbital magnetization to the Zeeman field. In this respect, bismuth is promising since it is a strong diamagnet enhanced by spin-orbit coupling. For a 2D (111)-bilayer bismuth, we calculate the Z2 topological number, the band structure for the strip geometry, the spin Chern number, and the parity at the time-reversal symmetric wavenumbers. We predict that the (111)-bilayer bismuth will be a QSH phase [1]. On the other hand, it was proposed recently that 3D bismuth is a simple insulator, and not the QSH phase, by parity consideration [2]. Transition from the 2D QSH topological phase to the 3D simple insulator phase is described by gradually increasing inter-bilayer hopping, thereby band-touching occurs at high- symmetry points and parities of the wavefunctions are exchanged. Similar discussion applies for Sb, where 2D bilayer is a simple insulator and 3D bulk is the QSH phase. Finally, we compare the theory with the ARPES data showing surface spin-splitting (spin current) for various surfaces of Bi and Sb. [1] S. Murakami, cond-mat/0607001 (to appear in Phys. Rev. Lett.). [2] L. Fu, C. L. Kane, cond-mat/0611341.

  15. CAST: Contraction Algorithm for Symmetric Tensors

    SciTech Connect

    Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei; Stock, Kevin; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy

    2014-09-22

    Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.

  16. The Robust Assembly of Small Symmetric Nanoshells

    PubMed Central

    Wagner, Jef; Zandi, Roya

    2015-01-01

    Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253

  17. The Robust Assembly of Small Symmetric Nanoshells.

    PubMed

    Wagner, Jef; Zandi, Roya

    2015-09-01

    Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine.

  18. Communication-avoiding symmetric-indefinite factorization

    SciTech Connect

    Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro

    2014-11-13

    We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTLTPT where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.

  19. Communication-avoiding symmetric-indefinite factorization

    DOE PAGES

    Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; ...

    2014-11-13

    We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTLTPT where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result,more » the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less

  20. G-Strands on symmetric spaces

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; Holm, Darryl D.; Ivanov, Rossen I.

    2017-03-01

    We study the G-strand equations that are extensions of the classical chiral model of particle physics in the particular setting of broken symmetries described by symmetric spaces. These equations are simple field theory models whose configuration space is a Lie group, or in this case a symmetric space. In this class of systems, we derive several models that are completely integrable on finite dimensional Lie group G, and we treat in more detail examples with symmetric space SU(2)/S1 and SO(4)/SO(3). The latter model simplifies to an apparently new integrable nine-dimensional system. We also study the G-strands on the infinite dimensional group of diffeomorphisms, which gives, together with the Sobolev norm, systems of 1+2 Camassa-Holm equations. The solutions of these equations on the complementary space related to the Witt algebra decomposition are the odd function solutions.

  1. PT symmetric interpretation of effective potentials

    NASA Astrophysics Data System (ADS)

    Sarkar, Sarben

    2017-07-01

    Conventional systems in equilibrium should have convex effective potentials. PT symmetry applies to systems which are in between open and closed systems. A PT symmetric interpretation can allow some non-convex effective potentials to be entirely physical. The oneloop effective potentials of the Higgs field in the Standard Model and the gravitino condensate in dynamically broken supergravity are conventionally unstable at large field values. In the specially simple case of space-independent and time-independent fields, the effective potentials are governed by PT-symmetric quantum mechanics. The PT-symmetric reinterpretation of these models at a quantum-mechanical level eliminates these instabilities and involves unusual semi-classical analysis involving many Riemann sheets. This interpretation is based on a combination of numerical analysis and semi-classical asymptotics.

  2. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.

  3. Changes in the unoccupied electronic structure of the spin crossover molecule [Co(dpzca)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Xin; Enders, Axel; Dowben, Peter; Luo, Jian; Zhang, Jian; N'diaye, Alpha

    We have investigated the changes in the unoccupied electronic structure of the spin crossover molecule - [Co(dpzca)2] using X-ray absorption spectroscopy (XAS) and have compared the results with magnetometry (SQUID) measurements. The studies of the variable temperature of the electronic structure of this cobalt complex with symmetric pyrazine imide ligands, -(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, i.e. [Co(dpzca)2], are consistent with density functional theory (DFT). The temperature dependence of the occupancy of the high-spin state and low-spin state molecular orbital states, the unoccupied eg/t2g ratio from XAS and high spin state to low spin state ratio from molecular magnetic susceptibility χMT indicates that the low spin state is not a zero spin state, but simply a lower moment state that would occur below the spin crossover transition of [Co(dpzca)2].

  4. Projective symmetry group classification of chiral spin liquids

    NASA Astrophysics Data System (ADS)

    Bieri, Samuel; Lhuillier, Claire; Messio, Laura

    2016-03-01

    We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.

  5. Spin Hall conductance in Y-shaped junction devices

    NASA Astrophysics Data System (ADS)

    Ganguly, Sudin; Basu, Saurabh

    2017-04-01

    We study the spin Hall effect in Y-shaped junction devices in presence of Rashba spin orbit coupling (RSOC). The voltage and the net spin current registered at one of the arms of the Y-junction are seen to increases although the spin Hall conductance (SHC) diminishes as the strength of the RSOC is increased. This implies the voltage increases further than that of the current, thereby causing a loss of the RSOC. Various other characteristic features obtained from our study include, a perfectly antisymmetric behaviour of the spin current and the SHC with respect to the zero bias, while the voltage shows a symmetric character. Finally a large RSOC completely destroys the SHC, owing to a complete disappearance of the local density of states, thereby reinforcing our earlier claim that RSOC emulates the effect of disorder on the quantum conductance of junction device.

  6. Spin torque ferromagnetic resonance in Heusler based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Phung, Timothy; Pushp, Aakash; Jeong, Jaewoo; Ferrante, Yari; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Parkin, Stuart S. P.

    Heusler compounds are of interest as electrode materials for use in magnetic tunnel junctions (MTJs) due to their half metallic character, which leads to high spin polarization and high tunneling magnetoresistance. Whilst much work has focused on the influence of the half metallic character of the Heusler compounds on the magnetoresistance of MTJs, there is much less work investigating the influence of this electronic structure on the spin transfer torque. Here, we investigate the bias dependence of the anti-damping like and field-like spin transfer torque components as a function of the bias voltage in symmetric (CoMnSi/MgO/CoMnSi) and asymmetric (CoMnSi/MgO/CoFe) structure magnetic tunnel junctions using spin transfer torque ferromagnetic resonance. Lastly, we report on the effect of asymmetric bias dependence of the differential conductance on the spin transfer torque.

  7. Consistent spin-two coupling and quadratic gravitation

    SciTech Connect

    Hindawi, A.; Ovrut, B.A.; Waldram, D.

    1996-05-01

    A discussion of the field content of quadratic higher-derivative gravitation is presented, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field, and gravity. The conditions showing that the tensor field describes only spin-two degrees of freedom are derived. A limit of the second-order theory provides a new example of a massless spin-two field consistently coupled to gravity. A restricted set of vacua of the second-order theory is also discussed. It is shown that flat space is the only stable vacuum of this type, and that the spin-two field around flat space is unfortunately always ghostlike. {copyright} {ital 1996 The American Physical Society.}

  8. Investigation of dominant spin wave modes by domain walls collision

    SciTech Connect

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S.

    2014-06-28

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.

  9. Investigation of dominant spin wave modes by domain walls collision

    NASA Astrophysics Data System (ADS)

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S.

    2014-06-01

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.

  10. Strain-modulation of spin-dependent transport in graphene

    SciTech Connect

    Cao, Zhen-Zhou Hou, Jin; Cheng, Yan-Fu; Li, Guan-Qiang

    2014-10-27

    We investigate strain modulation of the spin-dependent electron transport in a graphene junction using the transfer matrix method. As an analogy to optics, we define the modulation depth in the electron optics domain. Additionally, we discuss the transport properties and show that the modulation depth and the conductance depend on the spin-orbit coupling strength, the strain magnitude, the width of the strained area, and the energy of the incident electron. The conductances of the spin-down and spin-up electrons have opposite and symmetrical variations, which results in the analogous features of their modulation depths. The maximum conditions for both the modulation depth and the electron spin upset rate are also analyzed.

  11. Spin superfluidity and coherent spin precession

    NASA Astrophysics Data System (ADS)

    Bunkov, Yuriy M.

    2009-04-01

    The spontaneous phase coherent precession of the magnetization in superfluid 3He-B was discovered experimentally in 1984 at the Institute for Physical Problems, Moscow by Borovik-Romanov, Bunkov, Dmitriev and Mukharsky and simultaneously explained theoretically by Fomin (Institut Landau, Moscow). Its formation is a direct manifestation of spin superfluidity. The latter is the magnetic counterpart of mass superfluidity and superconductivity. It is also an example of the Bose-Einstein condensation of spin-wave excitations (magnons). The coherent spin precession opened the way for investigations of spin supercurrent magnetization transport and other related phenomena, such as spin-current Josephson effect, process of phase slippage at a critical value of spin supercurrent, spin-current vortices, non-topological solitons (analogous to Q-balls in high energy physics) etc. New measuring techniques based on coherent spin precession made the investigation of mass counterflow and mass vortices possible owing to the spin-mass interaction. New phenomena were observed: mass-spin vortices, the Goldstone mode of the mass vortex with non-axisymmetric core, superfluid density anisotropy etc. Different types of coherent spin precession were later found in superfluid 3He-A and 3He-B confined in anisotropic aerogel, in the states with counterflow and in 3He with reduced magnetization. Finally, spin superfluidity investigations developed the basis for a modern investigation of electron spin supercurrent and spintronics.

  12. Entangled spins and ghost-spins

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Narayan, K.

    2017-09-01

    We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  13. The rhomboidal symmetric four-body problem

    NASA Astrophysics Data System (ADS)

    Waldvogel, Jörg

    2012-05-01

    We consider the planar symmetric four-body problem with two equal masses m 1 = m 3 > 0 at positions (± x 1( t), 0) and two equal masses m 2 = m 4 > 0 at positions (0, ± x 2( t)) at all times t, referred to as the rhomboidal symmetric four-body problem. Owing to the simplicity of the equations of motion this problem is well suited to study regularization of the binary collisions, periodic solutions, chaotic motion, as well as the four-body collision and escape manifolds. Furthermore, resonance phenomena between the two interacting rectilinear binaries play an important role.

  14. Properties of a symmetric RHIC insertion

    SciTech Connect

    Lee, S.Y.

    1991-07-01

    This report evaluates the lattice functions of the symmetric insertion proposed by A.G. Ruggiero for the RHIC insertion. The crossing geometry, Inner and Outer matching sections, and chromatic properties are studied in detail. Some properties of the missing dipole dispersion correction scheme are also discussed. We found that the chromatic properties of the symmetric insertion is not better than the antisymmetric insertion. The problem is that the four family sextupole correction scheme seems not able to improve the chromatic distortion. Analytic understanding of the failure of the four family sextupole correction scheme will be very useful. 9 figs., 1 tab.

  15. A new kind of symmetric matrix

    NASA Astrophysics Data System (ADS)

    Babarinsa, O.; Kamarulhaili, H.

    2017-09-01

    In this paper, we investigate a new category of symmetric matrix, denoted as Bn×n , which can be considered as obtained from an improper integral {Bn × n} =\\displaystyle \\mathop {\\lim }\\limitsb \\to - ∞ \\displaystyle \\int\\limits_b1 {c{x - 1}dx} ; where c = ij ‑ (i + j). The elements of the matrix are integers and are in sequence. Thus the matrix is singular (except for B 2×2) but nonsingular in its 2 × 2 connected minors. We give some deductions on its properties that other symmetric matrices do not possess.

  16. Quantization of compact Riemannian symmetric spaces

    NASA Astrophysics Data System (ADS)

    Szőke, Róbert

    2017-09-01

    The phase space of a compact, irreducible, simply connected, Riemannian symmetric space admits a natural family of Kähler polarizations parametrized by the upper half plane S. Using this family, geometric quantization, including the half-form correction, produces the field Hcorr → S of quantum Hilbert spaces. We show that projective flatness of Hcorr implies, that the symmetric space must be isometric to a compact Lie group equipped with a biinvariant metric. In the latter case the flatness of Hcorr was previously established.

  17. Quantum fidelity of symmetric multipartite states

    NASA Astrophysics Data System (ADS)

    Neven, A.; Mathonet, P.; Gühne, O.; Bastin, T.

    2016-11-01

    For two symmetric quantum states one may be interested in maximizing the overlap under local operations applied to one of them. The question arises whether the maximal overlap can be obtained by applying the same local operation to each party. We show that for two symmetric multiqubit states and local unitary transformations this is the case; the maximal overlap can be reached by applying the same unitary matrix everywhere. For local invertible operations (stochastic local operations assisted by classical communication equivalence), however, we present counterexamples, demonstrating that considering the same operation everywhere is not enough.

  18. Self-bending symmetric cusp beams

    SciTech Connect

    Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan

    2015-12-07

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  19. Inflation in spherically symmetric inhomogeneous models

    SciTech Connect

    Stein-Schabes, J.A.

    1986-11-01

    Exact analytical solutions of Einstein's equations are found for a spherically symmetric inhomogeneous metric in the presence of a massless scalar field with a flat potential. The process of isotropization and homogenization is studied in detail. It is found that the time dependence of the metric becomes de Sitter for large times. Two cases are studied. The first deals with a homogeneous scalar field, while the second with a spherically symmetric inhomogeneous scalar field. In the former case the metric is of the Robertson-Walker form, while the latter is intrinsically inhomogeneous. 16 refs.

  20. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.