The Replica Symmetric Approximation of the Analogical Neural Network
NASA Astrophysics Data System (ADS)
Barra, Adriano; Genovese, Giuseppe; Guerra, Francesco
2010-08-01
In this paper we continue our investigation of the analogical neural network, by introducing and studying its replica symmetric approximation in the absence of external fields. Bridging the neural network to a bipartite spin-glass, we introduce and apply a new interpolation scheme to its free energy, that naturally extends the interpolation via cavity fields or stochastic perturbations from the usual spin glass case to these models. While our methods allow the formulation of a fully broken replica symmetry scheme, in this paper we limit ourselves to the replica symmetric case, in order to give the basic essence of our interpolation method. The order parameters in this case are given by the assumed averages of the overlaps for the original spin variables, and for the new Gaussian variables. As a result, we obtain the free energy of the system as a sum rule, which, at least at the replica symmetric level, can be solved exactly, through a self-consistent mini-max variational principle. The so gained replica symmetric approximation turns out to be exactly correct in the ergodic region, where it coincides with the annealed expression for the free energy, and in the low density limit of stored patterns. Moreover, in the spin glass limit it gives the correct expression for the replica symmetric approximation in this case. We calculate also the entropy density in the low temperature region, where we find that it becomes negative, as expected for this kind of approximation. Interestingly, in contrast with the case where the stored patterns are digital, no phase transition is found in the low temperature limit, as a function of the density of stored patterns.
Replica symmetry breaking in cold atoms and spin glasses
NASA Astrophysics Data System (ADS)
Rotondo, P.; Tesio, E.; Caracciolo, S.
2015-01-01
We consider a system composed by N atoms trapped within a multimode cavity, whose theoretical description is captured by a disordered multimode Dicke model. We show that in the resonant, zero-field limit the system exactly realizes the Sherrington-Kirkpatrick model. Upon a redefinition of the temperature, the same dynamics is realized in the dispersive, strong-field limit. This regime also gives access to spin-glass observables which can be used to detect replica symmetry breaking.
On the p-spin interaction transverse Ising spin-glass model without replicas
NASA Astrophysics Data System (ADS)
De Cesare, L.; Lukierska-Walasek, K.; Rabuffo, I.; Walasek, K.
1995-02-01
The p-spin interaction Ising spin glass model in the presence of a transverse field is studied in the large p-limit by means of a convenient operator extension of the cavity fields method avoiding replicas and the Trotter-Suzuki transformation. The results appear quite consistent with those recently obtained for the same model using conventional treatments within the replica trick. This gives additional support to the cavity fields approach as a promising tool towards a general theory of classical and quantum spin glasses.
Replica symmetry breaking in a quantum spin glass-antiferromagnetic Kondo lattice
NASA Astrophysics Data System (ADS)
Magalhaes, S. G.; Zimmer, F. M.; Coqblin, B.
2008-04-01
The competition between the Kondo effect and the glassy magnetic order has been studied in a theoretical model of a Kondo lattice with an intrasite Kondo interaction. The spin glass (SG) and the antiferromagnetic (AF) orderings are described by two Kondo sublattices with infinite-range Ising SG interactions among localized spins and the disordered interactions can occur with spins of same sublattices and between spins of distinct sublattices. A transverse field Γ is introduced in the effective model as a quantum mechanism to produce spin flipping. The problem is formulated in a Grassmann path integral formalism. The disorder is treated within the replica trick in one-step replica symmetry breaking (1S-RSB). The static ansatz is adopted to get a mean-field expression for the free energy and order parameters. Results show a transition from the AF order to an RSB region with a finite staggered magnetization (mixed phase) when temperature T decreases for low values of the Kondo interaction. The SG phase is not observed below the mixed phase for 1S-RSB solution, in contrast with previous replica symmetry (RS) results. The Γ field suppresses the Neel temperature leading it to a quantum critical point.
Random SU(2)-symmetric spin-S chains
NASA Astrophysics Data System (ADS)
Quito, V. L.; Hoyos, José A.; Miranda, E.
2016-08-01
We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.
On one-step replica symmetry breaking in the Edwards–Anderson spin glass model
NASA Astrophysics Data System (ADS)
Del Ferraro, Gino; Wang, Chuang; Zhou, Hai-Jun; Aurell, Erik
2016-07-01
We consider a one-step replica symmetry breaking description of the Edwards–Anderson spin glass model in 2D. The ingredients of this description are a Kikuchi approximation to the free energy and a second-level statistical model built on the extremal points of the Kikuchi approximation, which are also fixed points of a generalized belief propagation (GBP) scheme. We show that a generalized free energy can be constructed where these extremal points are exponentially weighted by their Kikuchi free energy and a Parisi parameter y, and that the Kikuchi approximation of this generalized free energy leads to second-level, one-step replica symmetry breaking (1RSB), GBP equations. We then proceed analogously to the Bethe approximation case for tree-like graphs, where it has been shown that 1RSB belief propagation equations admit a survey propagation solution. We discuss when and how the one-step-replica symmetry breaking GBP equations that we obtain also allow a simpler class of solutions which can be interpreted as a class of generalized survey propagation equations for the single instance graph case.
Complex replica zeros of ±J Ising spin glass at zero temperature
NASA Astrophysics Data System (ADS)
Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Nishimori, Hidetoshi
2009-02-01
Zeros of the nth moment of the partition function [Zn] are investigated in a vanishing temperature limit β → ∞, n → 0 keeping y = βn ~ O(1). In this limit, the moment parameterized by y characterizes the distribution of the ground-state energy. We numerically investigate the zeros for ±J Ising spin-glass models with tree and several other systems, which can be carried out with a feasible computational cost by a symbolic operation based on the Bethe-Peierls method. For several tree systems we find that the zeros tend to approach the real axis of y in the thermodynamic limit implying that the moment cannot be described by a single analytic function of y as the system size tends to infinity, which may be associated with breaking of the replica symmetry. However, examination of the analytical properties of the moment function and assessment of the spin-glass susceptibility indicate that the breaking of analyticity is relevant to neither one-step nor full replica symmetry breaking.
Noise Suppression Using Symmetric Exchange Gates in Spin Qubits.
Martins, Frederico; Malinowski, Filip K; Nissen, Peter D; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand
2016-03-18
We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise. PMID:27035316
Noise Suppression Using Symmetric Exchange Gates in Spin Qubits
NASA Astrophysics Data System (ADS)
Martins, Frederico; Malinowski, Filip K.; Nissen, Peter D.; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand
2016-03-01
We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.
Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking
NASA Astrophysics Data System (ADS)
Read, N.
2014-09-01
Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order Wd -ζ. These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q (x), if q(0)≠∫01dxq(x ), then the
Phase Transition for Quenched Coupled Replicas in a Plaquette Spin Model of Glasses.
Jack, Robert L; Garrahan, Juan P
2016-02-01
We study a three-dimensional plaquette spin model whose low temperature dynamics is glassy, due to localized defects and effective kinetic constraints. The thermodynamics of this system is smooth at all temperatures. We show that coupling it to a second system with a fixed (quenched) configuration leads to a phase transition, at finite coupling. The order parameter is the overlap between the copies, and the transition is between phases of low and high overlap. We find critical points whose properties are consistent with random-field Ising universality. We analyze the interfacial free energy cost between the high- and low-overlap states that coexist at (and below) the critical point, and we use this cost as the basis for a finite-size scaling analysis. We discuss these results in the context of mean-field and dynamical facilitation theories of the glass transition. PMID:26894718
Time-Reversal Symmetric U (1 ) Quantum Spin Liquids
NASA Astrophysics Data System (ADS)
Wang, Chong; Senthil, T.
2016-01-01
We study possible quantum U (1 ) spin liquids in three dimensions with time-reversal symmetry. We find a total of seven families of such U (1 ) spin liquids, distinguished by the properties of their emergent electric or magnetic charges. We show how these spin liquids are related to each other. Two of these classes admit nontrivial protected surface states which we describe. We show how to access all of the seven spin liquids through slave particle (parton) constructions. We also provide intuitive loop gas descriptions of their ground-state wave functions. One of these phases is the "topological Mott insulator," conventionally described as a topological insulator of an emergent fermionic "spinon." We show that this phase admits a remarkable dual description as a topological insulator of emergent fermionic magnetic monopoles. This results in a new (possibly natural) surface phase for the topological Mott insulator and a new slave particle construction. We describe some of the continuous quantum phase transitions between the different U (1 ) spin liquids. Each of these seven families of states admits a finer distinction in terms of their surface properties, which we determine by combining these spin liquids with symmetry-protected topological phases. We discuss lessons for materials such as pyrochlore quantum spin ices which may harbor a U (1 ) spin liquid. We suggest the topological Mott insulator as a possible ground state in some range of parameters for the quantum spin ice Hamiltonian.
NASA Astrophysics Data System (ADS)
Aspelmeier, T.; Wang, Wenlong; Moore, M. A.; Katzgraber, Helmut G.
2016-08-01
The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.
Aspelmeier, T; Wang, Wenlong; Moore, M A; Katzgraber, Helmut G
2016-08-01
The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.
Aspelmeier, T; Wang, Wenlong; Moore, M A; Katzgraber, Helmut G
2016-08-01
The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems. PMID:27627255
Imaging of the Magnetization of a Symmetric Spin Valve
NASA Astrophysics Data System (ADS)
Nikitenko, V. I.; Gornakov, V. S.; Dedukh, L. M.; Kabanov, Yu. P.; Khapikov, A. F.; Bennett, L. H.; Egelhoff, W. F.; Chen, P. J.; McMichael, R. D.; Donahue, M. J.; Swartzendruber, L. J.; Shapiro, A. J.; Brown, H. J.
1996-03-01
The magnetization reversal processes in a 50nmNiO/2.5nmCo/2.3nmCu/6.1nmNiFe2.3nmCu2.5nmCo/50nmNiO spin valve were studied by a magneto-optical indicator film technique (MOIF), SQUID magnetometry, and giant magnetoresistance measurements. Stray magnetic fields from the sample edge and from domain walls were imaged using polarized light optical microscopy in reflective mode with a Bi-substituted YIG indicator film with in-plane anisotropy. The images indicate that magnetization reversal in the center NiFe layer of the spin valve occurs by a non-uniform process with a length scale on the order kof 10--50 μm. Magnetization reversal in the top and bottom Co layers proceeds by nucleation of domain walls at a much larger value of applied field. The ability of MOIF to observe the dynamics of the magnetization reversal processes suggests its use for fast nondestructive quality control in different stages of spin-valve manufacturing.
High quality exchange rotations in spin qubits using symmetric gating
NASA Astrophysics Data System (ADS)
Martins, F.; Malinowski, F. K.; Nissen, P. D.; Marcus, C. M.; Kuemmeth, F.; Barnes, E.; Gardner, G. C.; Fallahi, S.; Manfra, M. J.
We present results on a singlet-triplet qubit implemented in a GaAs/AlGaAs heterostructure and we show that exchange oscillations can be realized either by tilting the double well potential, the conventional method, or by symmetrically lowering the barrier, as originally suggested by Loss and DiVincenzo. The two methods are compared here. We find that lowering the barrier between dots has much less relative exchange noise compared to tilting the potential. Since exchange rotations are sensitive to electrical noise and relatively insensitive to nuclear noise, this yields significantly enhanced free induction decay times and quality factors. Our results are comparable to those reported recently in silicon quantum dot devices, obtained using similar techniques. Support through IARPA-MQCO, LPS-MPO-CMTC, Army Research Office, and the Danish National Research Foundation is acknowledged.
Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices
Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou
2016-01-01
Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation. PMID:26856379
Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices
NASA Astrophysics Data System (ADS)
Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou
2016-02-01
Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation.
Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices.
Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou
2016-01-01
Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation. PMID:26856379
Pair-Symmetric Background of the Spin Asymmetries of the Nucleon Experiment
NASA Astrophysics Data System (ADS)
Ndukum, Luwani
2013-10-01
The Spin Asymmetries of the Nucleon Experiment (SANE) at the Thomas Jefferson Lab National Accelerator Facility measured inclusive double spin asymmetries by scattering longitudinally polarized electrons on a longitudinally and transversely polarized NH3 target. The measurements were done at momentum transfer of 2.5 <= Q2 <= 6.5 GeV2 and Bjorken x of 0.3 <= x <= 0.8. Data were also taken at 0.2 < x < 0.3. Analysis of the pair-symmetric background used to extract asymmetries from this low x data will be discussed.
Spin blocking effect in symmetric double quantum well due to Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Souma, Satofumi; Ogawa, Matsuto; Sekine, Yoshiaki; Sawada, Atsushi; Koga, Takaaki
2013-03-01
We report a theoretical study of the spin-dependent electronic current flowing laterally through the In0.53Ga0.47As/In0.52Al0.48As double quantum well (DQW) structure, where the values of the Rashba spin-orbit parameter αR are opposite in sign but equal in magnitude between the constituent quantum wells. By tuning the channel length of DQW and the magnitude of the externally applied in-plane magnetic field, one can block the transmission of one spin (e.g., spin-up) component, enabling us to obtain a spin-polarized current. Our experimental progress toward realizing the proposed device is also reported. This work was supported by JSPS KAKENHI Grant Number 23360001 and 22104007
NASA Astrophysics Data System (ADS)
Janiš, Václav; Pokorný, Vladislav; Žonda, Martin
2016-09-01
Behavior of Andreev gap states in a quantum dot with Coulomb repulsion symmetrically attached to superconducting leads is studied via the perturbation expansion in the interaction strength. We find the exact asymptotic form of the spin-symmetric solution for the Andreev states continuously approaching the Fermi level. We thereby derive a critical interaction at which the Andreev states at zero temperature merge at the Fermi energy, being the upper bound for the 0-π transition. We show that the spin-symmetric solution becomes degenerate beyond this interaction, in the π phase, and the Andreev states do not split unless the degeneracy is lifted. We further demonstrate that the degeneracy of the spin-symmetric state extends also into the 0 phase in which the solutions with zero and non-zero frequencies of the Andreev states may coexist.
Quantum Measurement of Spin Correlations in a Symmetric Many-Body State ∖ f 1
NASA Astrophysics Data System (ADS)
Shojaee, Ezad; Kalev, Amir; Deutsch, Ivan; Cquic Team
2016-05-01
Continuous (nonprojective) measurement on a quantum system has been employed previously for fast, robust, and high-fidelity quantum state tomography (QST) on qudits. We expand this protocol to many-body systems in order to perform QST on the reduced one-body and two-body density matrices of a symmetric many-body state of multiple qubits. Such QST will characterize the spin correlations in the system. In this protocol, a continuous measurement is done collectively on many copies of the reduced state at the same time, and therefore, while it is weakly perturbative on each copy, yields high signal-to-noise. Simultaneously, we subject the system to an external collective control in order to generate an informationally complete measurement record. We characterize the information-gain measurement disturbance tradeoff in terms of parameters in the problem (number of qubits, control parameters, shot-noise bandwidth, and the measurement strength). Support from NSF is acknowledged.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Chill, Samuel T.; Henkelman, Graeme
2015-11-01
A distributed replica dynamics (DRD) method is proposed to calculate rare-event molecular dynamics using distributed computational resources. Similar to Voter's parallel replica dynamics (PRD) method, the dynamics of independent replicas of the system are calculated on different computational clients. In DRD, each replica runs molecular dynamics from an initial state for a fixed simulation time and then reports information about the trajectory back to the server. A simulation clock on the server accumulates the simulation time of each replica until one reports a transition to a new state. Subsequent calculations are initiated from within this new state and the process is repeated to follow the state-to-state evolution of the system. DRD is designed to work with asynchronous and distributed computing resources in which the clients may not be able to communicate with each other. Additionally, clients can be added or removed from the simulation at any point in the calculation. Even with heterogeneous computing clients, we prove that the DRD method reproduces the correct probability distribution of escape times. We also show this correspondence numerically; molecular dynamics simulations of Al(100) adatom diffusion using PRD and DRD give consistent exponential distributions of escape times. Finally, we discuss guidelines for choosing the optimal number of replicas and replica trajectory length for the DRD method.
Interpolating the Sherrington-Kirkpatrick replica trick
NASA Astrophysics Data System (ADS)
Barra, Adriano; Guerra, Francesco; Mingione, Emanuele
2012-01-01
Interpolation techniques have become, in the past decades, a powerful approach to describe several properties of spin glasses within a simple mathematical framework. Intrinsically, for their construction, these schemes were naturally implemented in the cavity field technique, or its variants such as stochastic stability and random overlap structures. However the first and most famous approach to mean field statistical mechanics with quenched disorder is the replica trick. Among the models where these methods have been used (namely, dealing with frustration and complexity), probably the best known is the Sherrington-Kirkpatrick spin glass. In this paper we apply the interpolation scheme to the original replica trick framework and test it directly on the cited paradigmatic model. Although the problem, at a mathematical level, has been deeply investigated by Talagrand, it is still rich in information from a theoretical physics perspective; in fact, by treating the number of replicas n ∈ (0, 1] as an interpolating parameter (far from its original interpretation) the proof of the attendant commutativity of the zero replica and the infinite volume limits can be easily obtained. Further, within this perspective, we can naturally think of n as a quenching temperature close to that introduced in off-equilibrium approaches to gain some new insight into our understanding of the off-equilibrium features encountered in equilibrium statistical mechanics of spin glasses.
Introduction to the Replica Theory of Disordered Statistical Systems
NASA Astrophysics Data System (ADS)
Dotsenko, Viktor
2005-10-01
Preface; 1. Introduction; Part I. Spin-Glass Systems: 2. Physics of the spin glass state; 2. The mean-field theory of spin glasses; 4. Physics of replica symmetry breaking; 5. Ultrametricity; 6. Experiments; Part II. Critical Phenomena and Quenched Disorder: 7. Scaling theory of the critical phenomena; 8. Critical behaviour in systems with disorder; 9. Spin glass effects in the critical phenomena; 10. Two dimensional Ising model with disorder; Part III. Other Types of Disordered Systems: 11. Ising systems with quenched random fields; 12. One dimensional directed polymers in random potentials; 13. Vector breaking of replica symmetry; 14. Conclusions; References.
Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A; Berne, B J
2007-02-15
Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method's greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home. For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM.
Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A.; Berne, B. J.
2009-01-01
Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method’s greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home.1 For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM. PMID:17249714
Spin-orbital interaction for face-sharing octahedra: Realization of a highly symmetric SU(4) model
NASA Astrophysics Data System (ADS)
Kugel, K. I.; Khomskii, D. I.; Sboychakov, A. O.; Streltsov, S. V.
2015-04-01
Specific features of orbital and spin structure of transition-metal compounds in the case of the face-sharing MO6 octahedra are analyzed. In this geometry, we consider the form of the spin-orbital Hamiltonian for transition-metal ions with double (egσ) or triple (t2 g) orbital degeneracy. Trigonal distortions typical of the structures with face-sharing octahedra lead to splitting of t2 g orbitals into an a1 g singlet and egπ doublet. For both doublets (egσ and egπ), in the case of one electron or hole per site, we arrive at a symmetric model with the orbital and spin interaction of the Heisenberg type and the Hamiltonian of unexpectedly high symmetry: SU(4). Thus, many real materials with this geometry can serve as a testing ground for checking the prediction of this interesting theoretical model. We also compare general trends in the spin-orbital ("Kugel-Khomskii") exchange interaction for three typical situations: those of MO6 octahedra with common corner, common edge, and the present case of common face, which has not been considered yet.
Integrability of zero-dimensional replica field theories at β=1.
Vidal, Pedro; Kanzieper, Eugene
2013-09-01
Building on insights from the theory of integrable lattices, the integrability is claimed for nonlinear replica σ models derived in the context of real symmetric random matrices. Specifically, the fermionic and the bosonic replica partition functions are proven to form a single (supersymmetric) Pfaff-KP hierarchy whose replica limit is shown to reproduce the celebrated nonperturbative formula for the density-density eigenvalue correlation function in the infinite-dimensional Gaussian orthogonal ensemble. Implications of the formalism outlined are briefly discussed.
Benedetti, G.A.
1990-11-01
When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.
NASA Astrophysics Data System (ADS)
Wang, Shiyu; Sun, Wenjia; Wang, Yaoyao
2016-08-01
This work addresses the free and parametric elastic vibrations of the spinning cyclically symmetric ring structures. The focus is on the instantaneous mode contamination, parametric combination instability and their connections. An analytical model is developed by using the Hamilton's principle for the in-plane bending deflection, the distinction of which is in the arbitrary distributions of the attached mass and stiffness. A special case with equally-spaced discrete mass particles and spinning springs is detailed. The uneven tangential force and the time-invariant deflection caused by the mass particles are formulated. The results imply that the order of such deflection is equal to the number of the mass particles. The instantaneous mode contamination and parametric combination instability are captured by the perturbation and superposition mode shapes of the stationary smooth ring by introducing complex coefficients. The contamination rule is similar to that of the stationary structure but the contamination strength is time-variant due to the spinning springs. New analytical results and quantitative explanations on the contamination and instability especially their connections are presented. As an application of the proposed method, the free and parametric vibrations of the planetary gear ring are formulated. Main results are demonstrated by means of the numerical simulations and compared with the existing studies.
Replica methods for loopy sparse random graphs
NASA Astrophysics Data System (ADS)
Coolen, ACC
2016-03-01
I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs, the emerging theory has an appealing and intuitive structure, suggests how message passing algorithms should be adapted, and what is the structure of theories describing spin systems on loopy architectures. However, the formalism is still largely untested, and may require further adjustment and refinement. This paper is dedicated to the memory of our colleague and friend Jun-Ichi Inoue, with whom the author has had the great pleasure and privilege of collaborating.
Tsunoda, N.; Shimizu, N.; Otsuka, T.; Suzuki, T.
2011-05-06
Anti-symmetric spin-orbit force (ALS) in the effective interaction for the shell model and its effect on nuclear structure is discussed. We investigate possible origins of the ALS and the effects on the level schemes of several nuclei.
Complex symmetric root square locus with an application to a spinning drag-free satellite
NASA Technical Reports Server (NTRS)
Tashker, M. G.; Debra, D. B.
1976-01-01
The parameters and relations associated with optimal systems are examined, taking into account a quadratic performance index and a root square locus plot, including the characteristic roots of the optimal system and its adjoint system as a function of the cost function weights. The calculation of the locus is described and the employment of the considered relations in studies of a drag-free satellite is discussed. Attention is given to weights regarding the initial states, questions of rotating integral control, approaches for experimental verification, and the performance of various methods for the reduction of fuel consumption due to center of spin offsets.
Thermal entanglement of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain.
Ananikian, N S; Ananikyan, L N; Chakhmakhchyan, L A; Rojas, Onofre
2012-06-27
The entanglement quantum properties of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain were analyzed. Due to the separable nature of the Ising-type exchange interactions between neighboring Heisenberg dimers, calculation of the entanglement can be performed exactly for each individual dimer. Pairwise thermal entanglement was studied in terms of the isotropic Ising-Heisenberg model and analytical expressions for the concurrence (as a measure of bipartite entanglement) were obtained. The effects of external magnetic field H and next-nearest neighbor interaction J(m) between nodal Ising sites were considered. The ground state structure and entanglement properties of the system were studied in a wide range of coupling constant values. Various regimes with different values of ground state entanglement were revealed, depending on the relation between competing interaction strengths. Finally, some novel effects, such as the two-peak behavior of concurrence versus temperature and coexistence of phases with different values of magnetic entanglement, were observed.
About a solvable mean field model of a Gaussian spin glass
NASA Astrophysics Data System (ADS)
Barra, Adriano; Genovese, Giuseppe; Guerra, Francesco; Tantari, Daniele
2014-04-01
In a series of papers, we have studied a modified Hopfield model of a neural network, with learned words characterized by a Gaussian distribution. The model can be represented as a bipartite spin glass, with one party described by dichotomic Ising spins, and the other party by continuous spin variables, with an a priori Gaussian distribution. By application of standard interpolation methods, we have found it useful to compare the neural network model (bipartite) from one side, with two spin glass models, each monopartite, from the other side. Of these, the first is the usual Sherrington-Kirkpatrick model, the second is a spin glass model, with continuous spins and inbuilt highly nonlinear smooth cut-off interactions. This model is an invaluable laboratory for testing all techniques which have been useful in the study of spin glasses. The purpose of this paper is to give a synthetic description of the most peculiar aspects, by stressing the necessary novelties in the treatment. In particular, it will be shown that the control of the infinite volume limit, according to the well-known Guerra-Toninelli strategy, requires in addition one to consider the involvement of the cut-off interaction in the interpolation procedure. Moreover, the control of the ergodic region, the annealed case, cannot be directly achieved through the standard application of the Borel-Cantelli lemma, but requires previous modification of the interaction. This remark could find useful application in other cases. The replica symmetric expression for the free energy can be easily reached through a suitable version of the doubly stochastic interpolation technique. However, this model shares the unique property that the fully broken replica symmetry ansatz can be explicitly calculated. A very simple sum rule connects the general expression of the fully broken free energy trial function with the replica symmetric one. The definite sign of the error term shows that the replica solution is optimal. Then
NASA Astrophysics Data System (ADS)
Milhorat, Jean-Louis
2015-04-01
It is shown that on a compact spin symmetric space with a Kähler or Quaternion-Kähler structure, the first eigenvalue of the Dirac operator is linked to a "lowest" action of the holonomy, given by the fiberwise action on spinors of the canonical forms characterized by this holonomy. The result is also verified for the symmetric space F4 /Spin9, proving that it is valid for all the "possible" holonomies in Berger's list occurring in that context. The proof is based on a characterization of the first eigenvalue of the Dirac operator given in Milhorat (2005) and Milhorat (2006). By the way, we review an incorrect statement in the proof of the first lemma in Milhorat (2005).
Replica trick for rare samples
NASA Astrophysics Data System (ADS)
Rizzo, Tommaso
2014-05-01
In the context of disordered systems with quenched Hamiltonians I address the problem of characterizing rare samples where the thermal average of a specific observable has a value different from the typical one. These rare samples can be selected through a variation of the replica trick which amounts to replicating the system and dividing the replicas intwo two groups containing, respectively, M and -M replicas. Replicas in the first (second) group experience a positive (negative) small field O (1/M) conjugate to the observable considered and the M →∞ limit is to be taken in the end. Applications to the random-field Ising model and to the Sherrington-Kirkpatrick model are discussed.
Replica-based Crack Inspection
NASA Technical Reports Server (NTRS)
Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.
2007-01-01
A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.
NASA Astrophysics Data System (ADS)
Canning, Andrew; Naef, Jean-Pierre
1992-09-01
The replica-symmetric order parameter equations derived in [2, 4] for the symmetrically diluted Hopfield neural network model [1] are solved for different degrees of dilution. The dilution is random but symmetric. Phase diagrams are presented for c=1, 0.1, 0.001 and cto 0, where c is the fractional connectivity. The line T_c where the memory states become global minima (having lower free energy than the spin glass states) is also found for different values of c. It is found that the effect of dilution is to destabilize the spin glass states and the line T_c is driven rapidly towards the line T_M; the phase transition line where the memory states first stabilize. All the results are derived in the context of replica symmetry so are expected to be incorrect in certain parts of the phase diagram (the error increasing the further below the replica symmetry breaking lines we are) but our results do suggest in a general way that dilution, even in small quantities, increases the stability of the memory states with respect to the spin glass states.
The phenomenon of spontaneous replica symmetry breaking in complex statistical mechanics systems
NASA Astrophysics Data System (ADS)
Guerra, Francesco
2013-06-01
We analyze the main aspects of the phenomenon of spontaneous replica symmetry breaking, introduced by Giorgio Parisi. We work in the frame of real replicas, by taking into account the simple case of the random energy model. In particular, we study the phase space diagram for systems of coupled replicas, and the connected phase transitions. Our considerations can be generalized to the more complicated models of mean field spin glasses and neural networks. We report also about a letter of Ettore Majorana, written in December 1937 to his uncle Dante, very interesting for its methodological content.
Replica-Based Crack Inspection
NASA Technical Reports Server (NTRS)
Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.
2008-01-01
Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.
A generalized parallel replica dynamics
Binder, Andrew; Lelièvre, Tony; Simpson, Gideon
2015-03-01
Metastability is a common obstacle to performing long molecular dynamics simulations. Many numerical methods have been proposed to overcome it. One method is parallel replica dynamics, which relies on the rapid convergence of the underlying stochastic process to a quasi-stationary distribution. Two requirements for applying parallel replica dynamics are knowledge of the time scale on which the process converges to the quasi-stationary distribution and a mechanism for generating samples from this distribution. By combining a Fleming–Viot particle system with convergence diagnostics to simultaneously identify when the process converges while also generating samples, we can address both points. This variation on the algorithm is illustrated with various numerical examples, including those with entropic barriers and the 2D Lennard-Jones cluster of seven atoms.
Spurious long-range entanglement and replica correlation length
NASA Astrophysics Data System (ADS)
Zou, Liujun; Haah, Jeongwan
2016-08-01
Topological entanglement entropy has been regarded as a smoking-gun signature of topological order in two dimensions, capturing the total quantum dimension of the topological particle content. An extrapolation method on cylinders has been used frequently to measure the topological entanglement entropy. Here, we show that a class of short-range entangled 2D states, when put on an infinite cylinder of circumference L , exhibits the entanglement Rényi entropy of any integer index α ≥2 that obeys Sα=a L -γ , where a ,γ >0 . Under the extrapolation method, the subleading term γ would be identified as the topological entanglement entropy, which is spurious. A nonzero γ is always present if the 2D state reduces to a certain symmetry-protected topological 1D state, upon disentangling spins that are far from the entanglement cut. The internal symmetry that stabilizes γ >0 is not necessarily a symmetry of the 2D state, but should be present after the disentangling reduction. If the symmetry is absent, γ decays exponentially in L with a characteristic length, termed as a replica correlation length, which can be arbitrarily large compared to the two-point correlation length of the 2D state. We propose a simple numerical procedure to measure the replica correlation length through replica correlation functions. We also calculate the replica correlation functions for representative wave functions of Abelian discrete gauge theories and the double semion theory in 2D, to show that they decay abruptly to zero. This supports a conjecture that the replica correlation length being small implies that the subleading term from the extrapolation method determines the total quantum dimension.
Replica field theory for composite media
NASA Astrophysics Data System (ADS)
Barthélémy, M.; Orland, H.
1993-11-01
In this paper, we use the replica trick in order to compute the effective permittivity of a medium where the local permittivity is a random binary variable. A Gaussian variational treatment leads us to self-consistent equations which are solved and yield a replica diagonal solution (no replica symmetry breaking). We obtain an effective-medium formula previously derived by a cumulant expansion. This formula is satisfactory from many points of views (Hashin and Shtrikman bounds, low density expansion, etc) showing that the replica method does not violate some basic principles.
Replica amplification of nucleic acid arrays
Church, George M.; Mitra, Robi D.
2010-08-31
Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
Generalized gravitational entropy without replica symmetry
NASA Astrophysics Data System (ADS)
Camps, Joan; Kelly, William R.
2015-03-01
We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.
Scalable replica-exchange framework for Wang-Landau sampling.
Vogel, Thomas; Li, Ying Wai; Wüst, Thomas; Landau, David P
2014-08-01
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang-Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Scalable replica-exchange framework for Wang Landau sampling
Vogel, Thomas; Li, Ying Wai; Wuest, Thomas; Landau, David P
2014-01-01
We investigate a generic, parallel replica-exchange framework for Monte Carlo simulations based on the Wang Landau method. To demonstrate its advantages and general applicability for massively parallel simulations of complex systems, we apply it to lattice spin models, the self-assembly process in amphiphilic solutions, and the adsorption of molecules on surfaces. While of general, current interest, the latter phenomena are challenging to study computationally because of multiple structural transitions occurring over a broad temperature range. We show how the parallel framework facilitates simulations of such processes and, without any loss of accuracy or precision, gives a significant speedup and allows for the study of much larger systems and much wider temperature ranges than possible with single-walker methods.
Effect of modularity on the Glauber dynamics of the dilute spin glass model
NASA Astrophysics Data System (ADS)
Park, Jeong-Man
2014-11-01
We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r < 1/2 and q = (-1+4 r 2)/(32 r 4) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ and q = (-1+8 r 2)/(128 r 4) which is stable for r > 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.
NASA Astrophysics Data System (ADS)
Arenzon, Jeferson J.
1999-03-01
An infinite range spin-glass-like model for granular systems is introduced and studied through the replica mean-field formalism. Equilibrium, density-dependent properties under vibration and gravity are obtained that qualitatively resemble the results from real and numerical experiments.
Shokhireva, Tatiana K; Shokhirev, Nikolai V; Berry, Robert E; Zhang, Hongjun; Walker, F Ann
2008-08-01
The four major nitrophorins (NPs) of the adult blood-sucking insect Rhodnius prolixus have been reconstituted with the "symmetrical hemin" 2,4-dimethyldeuterohemin, and their NMR spectra have been investigated as the high-spin (S=5/2) aqua and low-spin (S=1/2) N-methylimidazole (NMeIm) and cyanide complexes. The NMeIm complexes allow assignment of the high-spin hemin resonances by saturation transfer difference spectroscopy. The cyanide complexes were investigated as paramagnetic analogues of the NO complexes. It is shown that the hemin ring is highly distorted from planarity, much more so for NP2 than for NP1 and NP4 (with ruffling being the major distortion mode), for both high- and low-spin forms. For the cyanide complexes, the conformation of the distorted ring changes on the NMR timescale to yield chemical exchange (exchange spectroscopy, EXSY) cross peaks for NP1sym(CN), NP3sym(CN) and NP4sym(CN) but not for NP2sym(CN). These changes in nonplanar conformation are visualized as a "rolling" of the ruffled macrocycle ridges through some number of degrees, the lowest-energy ruffling mode. This probably occurs in response to slow protein dynamics that cause the I120 and L132 side chains in the distal heme pocket to move in opposite directions (up and away vs. down and toward the hemin ring). This in turn changes the out-of-plane displacements of the 2M and 3M of the symmetrical hemin on the NMR timescale. Two other types of dynamics, i.e., changes in heme seating and NMeIm rotation, are also observed. The highly distorted heme and the dynamics it causes are unique to the NPs and a few other heme proteins with highly distorted macrocycles. PMID:18458965
Anderson localization from the replica formalism.
Altland, Alexander; Kamenev, Alex; Tian, Chushun
2005-11-11
We study Anderson localization in quasi-one-dimensional disordered wires within the framework of the replica sigma model. Applying a semiclassical approach (geodesic action plus Gaussian fluctuations) recently introduced within the context of supersymmetry by Lamacraft, Simons, and Zirnbauer, we compute the exact density of transmission matrix eigenvalues of superconducting wires (of symmetry class CI.) For the unitary class of metallic systems (class A) we are able to obtain the density function, save for its large transmission tail.
RRS: Replica Registration Service for Data Grids
Shoshani, Arie; Sim, Alex; Stockinger, Kurt
2005-07-15
Over the last few years various scientific experiments and Grid projects have developed different catalogs for keeping track of their data files. Some projects use specialized file catalogs, others use distributed replica catalogs to reference files at different locations. Due to this diversity of catalogs, it is very hard to manage files across Grid projects, or to replace one catalog with another. In this paper we introduce a new Grid service called the Replica Registration Service (RRS). It can be thought of as an abstraction of the concepts for registering files and their replicas. In addition to traditional single file registration operations, the RRS supports collective file registration requests and keeps persistent registration queues. This approach is of particular importance for large-scale usage where thousands of files are copied and registered. Moreover, the RRS supports a set of error directives that are triggered in case of registration failures. Our goal is to provide a single uniform interface for various file catalogs to support the registration of files across multiple Grid projects, and to make Grid clients oblivious to the specific catalog used.
DIRAC File Replica and Metadata Catalog
NASA Astrophysics Data System (ADS)
Tsaregorodtsev, A.; Poss, S.
2012-12-01
File replica and metadata catalogs are essential parts of any distributed data management system, which are largely determining its functionality and performance. A new File Catalog (DFC) was developed in the framework of the DIRAC Project that combines both replica and metadata catalog functionality. The DFC design is based on the practical experience with the data management system of the LHCb Collaboration. It is optimized for the most common patterns of the catalog usage in order to achieve maximum performance from the user perspective. The DFC supports bulk operations for replica queries and allows quick analysis of the storage usage globally and for each Storage Element separately. It supports flexible ACL rules with plug-ins for various policies that can be adopted by a particular community. The DFC catalog allows to store various types of metadata associated with files and directories and to perform efficient queries for the data based on complex metadata combinations. Definition of file ancestor-descendent relation chains is also possible. The DFC catalog is implemented in the general DIRAC distributed computing framework following the standard grid security architecture. In this paper we describe the design of the DFC and its implementation details. The performance measurements are compared with other grid file catalog implementations. The experience of the DFC Catalog usage in the CLIC detector project are discussed.
The 3-SAT problem with large number of clauses in the ∞-replica symmetry breaking scheme
NASA Astrophysics Data System (ADS)
Crisanti, A.; Leuzzi, L.; Parisi, G.
2002-01-01
In this paper we analyse the structure of the UNSAT-phase of the over-constrained 3-SAT model by studying the low temperature phase of the associated disordered spin model. We derived the full replica symmetry breaking (RSB) equations for a general class of disordered spin models which includes the Sherrington-Kirkpatrick (SK) model, the Ising p-spin model as well as the over-constrained 3-SAT model as particular cases. We have numerically solved the ∞-RSB equations using a pseudo-spectral code down to and including zero temperature. We find that the UNSAT-phase of the over-constrained 3-SAT is of the ∞-RSB kind: in order to get a stable solution the replica symmetry has to be broken in a continuous way, similarly to the SK model in an external magnetic field.
A spin glass approach to the directed feedback vertex set problem
NASA Astrophysics Data System (ADS)
Zhou, Hai-Jun
2016-07-01
A directed graph (digraph) is formed by vertices and arcs (directed edges) from one vertex to another. A feedback vertex set (FVS) is a set of vertices that contains at least one vertex of every directed cycle in this digraph. The directed feedback vertex set problem aims at constructing a FVS of minimum cardinality. This is a fundamental cycle-constrained hard combinatorial optimization problem with wide practical applications. In this paper we construct a spin glass model for the directed FVS problem by converting the global cycle constraints into local arc constraints, and study this model through the replica-symmetric (RS) mean field theory of statistical physics. We then implement a belief propagation-guided decimation (BPD) algorithm for single digraph instances. The BPD algorithm slightly outperforms the simulated annealing algorithm on large random graph instances. The RS mean field results and algorithmic results can be further improved by working on a more restrictive (and more difficult) spin glass model.
A canonical replica exchange molecular dynamics implementation with normal pressure in each replica
NASA Astrophysics Data System (ADS)
Peter, Emanuel K.; Pivkin, Igor V.; Shea, Joan-Emma
2016-07-01
In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble.
A canonical replica exchange molecular dynamics implementation with normal pressure in each replica.
Peter, Emanuel K; Pivkin, Igor V; Shea, Joan-Emma
2016-07-28
In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble. PMID:27475393
Spin-glass phase transitions and minimum energy of the random feedback vertex set problem
NASA Astrophysics Data System (ADS)
Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun
2016-08-01
A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved by converting it into an appropriate spin-glass model [H.-J. Zhou, Eur. Phys. J. B 86, 455 (2013), 10.1140/epjb/e2013-40690-1]. In the present work we study the spin-glass phase transitions and the minimum energy density of the random FVS problem by the first-step replica-symmetry-breaking (1RSB) mean-field theory. For both regular random graphs and Erdös-Rényi graphs, we determine the inverse temperature βl at which the replica-symmetric mean-field theory loses its local stability, the inverse temperature βd of the dynamical (clustering) phase transition, and the inverse temperature βs of the static (condensation) phase transition. These critical inverse temperatures all change with the mean vertex degree in a nonmonotonic way, and βd is distinct from βs for regular random graphs of vertex degrees K >60 , while βd are identical to βs for Erdös-Rényi graphs at least up to mean vertex degree c =512 . We then derive the zero-temperature limit of the 1RSB theory and use it to compute the minimum FVS cardinality.
Spin-glass phase transitions and minimum energy of the random feedback vertex set problem.
Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun
2016-08-01
A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved by converting it into an appropriate spin-glass model [H.-J. Zhou, Eur. Phys. J. B 86, 455 (2013)EPJBFY1434-602810.1140/epjb/e2013-40690-1]. In the present work we study the spin-glass phase transitions and the minimum energy density of the random FVS problem by the first-step replica-symmetry-breaking (1RSB) mean-field theory. For both regular random graphs and Erdös-Rényi graphs, we determine the inverse temperature β_{l} at which the replica-symmetric mean-field theory loses its local stability, the inverse temperature β_{d} of the dynamical (clustering) phase transition, and the inverse temperature β_{s} of the static (condensation) phase transition. These critical inverse temperatures all change with the mean vertex degree in a nonmonotonic way, and β_{d} is distinct from β_{s} for regular random graphs of vertex degrees K>60, while β_{d} are identical to β_{s} for Erdös-Rényi graphs at least up to mean vertex degree c=512. We then derive the zero-temperature limit of the 1RSB theory and use it to compute the minimum FVS cardinality. PMID:27627285
Replica density functional theory: an overview
NASA Astrophysics Data System (ADS)
Schmidt, Matthias
2005-11-01
An account is given of density functional theory (DFT) for quenched-annealed fluid mixtures that are used to model fluids adsorbed in random porous matrices. The theory is based on the replica trick and allows the treatment of situations where the quenched random matrix as well as the annealed fluid are inhomogeneous on average. Applications of the framework include investigation of the adsorption properties of hard spheres and model colloid-polymer mixtures in bulk matrices and at matrix surfaces, and the influence of the quenched disorder on phase transitions like fluid demixing, isotropic-nematic ordering, and freezing. Particularly rich wetting behaviour was found for colloid-polymer mixtures adsorbed against a porous wall.
Asynchronous replica exchange software for grid and heterogeneous computing
NASA Astrophysics Data System (ADS)
Gallicchio, Emilio; Xia, Junchao; Flynn, William F.; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M.
2015-11-01
Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.
Subnanometer replica molding of molecular steps on ionic crystals.
Elhadj, Selim; Rioux, Robert M; Dickey, Michael D; DeYoreo, James J; Whitesides, George M
2010-10-13
Replica molding with elastomeric polymers has been used routinely to replicate features less than 10 nm in size. Because the theoretical limit of this technique is set by polymer-surface interactions, atomic radii, and accessible volumes, replication at subnanometer length scales should be possible. Using polydimethylsiloxane to create a mold and polyurethane to form the replica, we demonstrate replication of elementary steps 3-5 Å in height that define the minimum separation between molecular layers in the lattices of the ionic crystals potassium dihydrogen phosphate and calcite. This work establishes the operation of replica molding at the molecular scale.
Shuttle Replica On The Way To Space Center Houston
Atop a barge, the space shuttle full-scale replica nears the completion of its eight-day journey from the Kennedy Space Center destined for permanent retention at Space Center Houston, near the NAS...
Gamma-ray dosimetry measurements of the Little Boy replica
Plassmann, E.A.; Pederson, R.A.
1984-01-01
We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.
Measurements of tortuosity in stereolithographical bone replicas using audiofrequency pulses
NASA Astrophysics Data System (ADS)
Attenborough, Keith; Shin, Ho-Chul; Qin, Qin; Fagan, Michael J.; Langton, Christian M.
2005-11-01
The tortuosity of five air-filled stereolithographical cancellous bone replicas has been obtained from measurements using audiofrequency pulses in a rectangular waveguide. The data obtained from the replicas yields information about anisotropy with respect to orthogonal axes of the passages that would be marrow filled in vivo. A strong relationship has been found between the acoustically measured tortuosity and the independently measured porosity. Use of stereolithographical bone replicas has the potential to simulate perforation and thinning of cancellous bone and hence evaluate the dependence of acoustic properties on cancellous bone microstructure. As an ``extreme'' illustration of such use, ``inverses'' of the original replicas have been manufactured and acoustic measurements have been made on them. The data reveal significantly greater tortuosity of the passages that are geometrically equivalent to the original solid bone structures.
SRF Cavity Surface Topography Characterization Using Replica Techniques
C. Xu, M.J. Kelley, C.E. Reece
2012-07-01
To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations. PMID:26723635
Bayesian ensemble refinement by replica simulations and reweighting
NASA Astrophysics Data System (ADS)
Hummer, Gerhard; Köfinger, Jürgen
2015-12-01
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Bayesian ensemble refinement by replica simulations and reweighting.
Hummer, Gerhard; Köfinger, Jürgen
2015-12-28
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Accelerating ring-polymer molecular dynamics with parallel-replica dynamics
NASA Astrophysics Data System (ADS)
Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F.
2016-06-01
Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach.
Accelerating ring-polymer molecular dynamics with parallel-replica dynamics.
Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F
2016-06-28
Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach. PMID:27369499
Rigorous Results for Spin Glass Neural Network Associative Memories
NASA Astrophysics Data System (ADS)
Inchiosa, Mario Emil
1991-08-01
We use the methods of mathematical physics to carry out a rigorous calculation of the average free energy density and average magnetization of a spin glass type neural network associative memory which uses the pseudoinverse learning rule and has an infinite storage capacity (as the size of the network goes to infinity). We perform the calculation in the regime where the number of patterns can grow logarithmically with the size of the network. Rather than using the replica method, which relies on analytic continuation and is not mathematically rigorous, we use an exact sublattice representation. We also define and study a modified, symmetric version of the Gardner learning algorithm, which is capable of storing patterns with optimal stability. We show that in the logarithmic storage regime, this algorithm produces a network with the same average free energy density and magnetization as the pseudoinverse and Hebb rule networks. Finally, we show that previously derived results for the spurious states and speed of recall in the Hopfield model with Hebbian learning also apply to the pseudoinverse and modified symmetric Gardner rule networks.
Inverse transitions in a spin-glass model on a scale-free network.
Kim, Do-Hyun
2014-02-01
In this paper, we will investigate critical phenomena by considering a model spin glass on scale-free networks. For this purpose, we consider the Ghatak-Sherrington (GS) model, a spin-1 spin-glass model with a crystal field, instead of the usual Ising-type model. Scale-free networks on which the GS model is placed are constructed from the static model, in which the number of vertices is fixed from the beginning. On the basis of the replica-symmetric solution, we obtain the analytical solutions, i.e., free energy and order parameters, and we derive the various phase diagrams consisting of the paramagnetic, ferromagnetic, and spin-glass phases as functions of temperature T, the degree exponent λ, the mean degree K, and the fraction of the ferromagnetic interactions ρ. Since the present model is based on the GS model, which considers the three states (S = 0, ± 1), the S = 0 state plays a crucial role in the λ-dependent critical behavior: glass transition temperature T(g) has a finite value, even when 2 < λ < 3. In addition, when the crystal field becomes nonzero, the present model clearly exhibits three types of inverse transitions, which occur when an ordered phase is more entropic than a disordered one. PMID:25353530
Inverse transitions in a spin-glass model on a scale-free network
NASA Astrophysics Data System (ADS)
Kim, Do-Hyun
2014-02-01
In this paper, we will investigate critical phenomena by considering a model spin glass on scale-free networks. For this purpose, we consider the Ghatak-Sherrington (GS) model, a spin-1 spin-glass model with a crystal field, instead of the usual Ising-type model. Scale-free networks on which the GS model is placed are constructed from the static model, in which the number of vertices is fixed from the beginning. On the basis of the replica-symmetric solution, we obtain the analytical solutions, i.e., free energy and order parameters, and we derive the various phase diagrams consisting of the paramagnetic, ferromagnetic, and spin-glass phases as functions of temperature T, the degree exponent λ, the mean degree K, and the fraction of the ferromagnetic interactions ρ. Since the present model is based on the GS model, which considers the three states (S =0,±1), the S =0 state plays a crucial role in the λ-dependent critical behavior: glass transition temperature Tg has a finite value, even when 2<λ<3. In addition, when the crystal field becomes nonzero, the present model clearly exhibits three types of inverse transitions, which occur when an ordered phase is more entropic than a disordered one.
Spin transfer torques in the nonlocal lateral spin valve.
Xu, Yuan; Xia, Ke; Ma, Zhongshui
2008-06-11
We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with a non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, in contrast to that in a conventional sandwiched spin valve. PMID:21825793
Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.
Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon
2016-03-01
We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials. PMID:27455689
Replica exchange simulation method using temperature and solvent viscosity
NASA Astrophysics Data System (ADS)
Nguyen, Phuong H.
2010-04-01
We propose an efficient and simple method for fast conformational sampling by introducing the solvent viscosity as a parameter to the conventional temperature replica exchange molecular dynamics (T-REMD) simulation method. The method, named V-REMD (V stands for viscosity), uses both low solvent viscosity and high temperature to enhance sampling for each replica; therefore it requires fewer replicas than the T-REMD method. To reduce the solvent viscosity by a factor of λ in a molecular dynamics simulation, one can simply reduce the mass of solvent molecules by a factor of λ2. This makes the method as simple as the conventional method. Moreover, thermodynamic and conformational properties of structures in replicas are still useful as long as one has sufficiently sampled the Boltzmann ensemble. The advantage of the present method has been demonstrated with the simulations of the trialanine, deca-alanine, and a 16-residue β-hairpin peptides. It shows that the method could reduce the number of replicas by a factor of 1.5 to 2 as compared with the T-REMD method.
TIREX: Replica-exchange molecular dynamics using TINKER
NASA Astrophysics Data System (ADS)
Penev, Evgeni S.; Lampoudi, Sotiria; Shea, Joan-Emma
2009-10-01
We present a driver program for performing replica-exchange molecular dynamics simulations with the TINKER package. Parallelization is based on the Message Passing Interface, with every replica assigned to a separate process. The algorithm is not communication intensive, which makes the program suitable for running even on loosely coupled cluster systems. Particular attention is paid to the practical aspects of analyzing the program output. Program summaryProgram title: TiReX Catalogue identifier: AEEK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 43 385 No. of bytes in distributed program, including test data, etc.: 502 262 Distribution format: tar.gz Programming language: Fortran 90/95 Computer: Most UNIX machines Operating system: Linux Has the code been vectorized or parallelized?: parallelized with MPI Classification: 16.13 External routines: TINKER version 4.2 or 5.0, built as a library Nature of problem: Replica-exchange molecular dynamics. Solution method: Each replica is assigned to a separate process; temperatures are swapped between replicas at regular time intervals. Running time: The sample run may take up to a few minutes.
Fiber deposition pattern in two human respiratory tract replicas.
Su, Wei-Chung; Cheng, Yung Sung
2006-09-01
This study consisted of a series of experiments to investigate the factors that might affect the fiber deposition pattern in the human respiratory tract. Carbon fibers with uniform diameter and polydispersed length were chosen as the test material. Two geometry-defined human respiratory tract replicas encompassing the oral cavity, oropharynx, larynx, trachea, and first few bifurcations of the tracheobronchial airways were used in this research. Deposition studies were conducted by delivering aerosolized carbon fibers into the replicas at constant inspiratory flow rates of 15, 43.5, and 60 L/min. The results showed that impaction is the dominant deposition mechanism for both replicas. Most of the fibers with high momentum deposited in the oral airway (oral cavity to larynx), and fibers with low momentum were found to pass through the entire replica easily. When comparing the results between the two replicas, fiber length, inspiratory flow rate, and the geometry of the oral airway were found to be factors that might affect the fiber deposition pattern in the human respiratory tract. PMID:16774864
Protein structure refinement with adaptively restrained homologous replicas.
Della Corte, Dennis; Wildberg, André; Schröder, Gunnar F
2016-09-01
A novel protein refinement protocol is presented which utilizes molecular dynamics (MD) simulations of an ensemble of adaptively restrained homologous replicas. This approach adds evolutionary information to the force field and reduces random conformational fluctuations by coupling of several replicas. It is shown that this protocol refines the majority of models from the CASP11 refinement category and that larger conformational changes of the starting structure are possible than with current state of the art methods. The performance of this protocol in the CASP11 experiment is discussed. We found that the quality of the refined model is correlated with the structural variance of the coupled replicas, which therefore provides a good estimator of model quality. Furthermore, some remarkable refinement results are discussed in detail. Proteins 2016; 84(Suppl 1):302-313. © 2015 Wiley Periodicals, Inc. PMID:26441154
Chambler, A. F.; Chapman-Sheath, P. J.; Pearse, M. F.; Hollingdale, J.
1997-01-01
Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol. Images Figure 1 Figure 2 PMID:9497984
Chambler, A F; Chapman-Sheath, P J; Pearse, M F; Hollingdale, J
1997-10-01
Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol.
Fractographic ceramic failure analysis using the replica technique
Scherrer, Susanne S.; Quinn, Janet B.; Quinn, George D.; Anselm Wiskott, H. W.
2007-01-01
Objectives To demonstrate the effectiveness of in vivo replicas of fractured ceramic surfaces for descriptive fractography as applied to the analysis of clinical failures. Methods The fracture surface topography of partially failed veneering ceramic of a Procera Alumina molar and an In Ceram Zirconia premolar were examined utilizing gold-coated epoxy poured replicas viewed using scanning electron microscopy. The replicas were inspected for fractographic features such as hackle, wake hackle, twist hackle, compression curl and arrest lines for determination of the direction of crack propagation and location of the origin. Results For both veneering ceramics, replicas provided an excellent reproduction of the fractured surfaces. Fine details including all characteristic fracture features produced by the interaction of the advancing crack with the material's microstructure could be recognized. The observed features are indicators of the local direction of crack propagation and were used to trace the crack's progression back to its initial starting zone (the origin). Drawbacks of replicas such as artifacts (air bubbles) or imperfections resulting from inadequate epoxy pouring were noted but not critical for the overall analysis of the fractured surfaces. Significance The replica technique proved to be easy to use and allowed an excellent reproduction of failed ceramic surfaces. It should be applied before attempting to remove any failed part remaining in situ as the fracture surface may be damaged during this procedure. These two case studies are intended as an introduction for the clinical researcher in using qualitative (descriptive) fractography as a tool for understanding fracture processes in brittle restorative materials and, secondarily, to draw conclusions as to possible design inadequacies in failed restorations. PMID:17270267
Creating technical heritage object replicas in a virtual environment
NASA Astrophysics Data System (ADS)
Egorova, Olga; Shcherbinin, Dmitry
2016-03-01
The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.
Mutually connected component of networks of networks with replica nodes
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Dorogovtsev, Sergey N.; Mendes, José F. F.
2015-01-01
We describe the emergence of the giant mutually connected component in networks of networks in which each node has a single replica node in any layer and can be interdependent only on its replica nodes in the interdependent layers. We prove that if, in these networks, all the nodes of one network (layer) are interdependent on the nodes of the same other interconnected layer, then, remarkably, the mutually connected component does not depend on the topology of the network of networks. This component coincides with the mutual component of the fully connected network of networks constructed from the same set of layers, i.e., a multiplex network.
Patrol detection for replica attacks on wireless sensor networks.
Wang, Liang-Min; Shi, Yang
2011-01-01
Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods.
Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.
Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M
2016-08-25
Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.
Dynamic mean field theory of the SK-spin glass. II. Order parameters and gauge invariance
NASA Astrophysics Data System (ADS)
Horner, H.
1984-03-01
The probability distribution of overlaps proposed by Parisi as order parameter for the SK-spin glass is calculated via dynamics. It is deduced from dynamic response functions and also directly obtained from a treatment with replicas and dynamics. The replica trick is not required. The comparison of the two results shows in which sense fluctuation dissipation theorems hold. Overlaps between three or more states are found to agree with those obtained by Mézard et al. using the replica trick. The origin of the ultrametric topology of spin glass states is investigated within the dynamic mean field theory and a gauge invariance is explored.
Sparks and Shocks: Replicas of Historical Instruments in Museum Education
ERIC Educational Resources Information Center
Rhees, David J.
2015-01-01
This paper discusses the variety of ways in which The Bakken Museum has made use of replicas or simulations of historical instruments and experiments and demonstrations in education programs and exhibits for school children, families with children, and other museum audiences. Early efforts were stimulated in the mid-1980s by a collaboration with…
Infants' Symbolic Comprehension of Actions Modeled with Toy Replicas
ERIC Educational Resources Information Center
Johnson, Kathy E.; Younger, Barbara A.; Furrer, Stephanie D.
2005-01-01
While very young children's understanding of objects as symbols for other entities has been the focus of much investigation, very little is known concerning the emergence of comprehension for symbolic relations among actions modeled with toy replicas and their real counterparts. We used videotaped depictions of real actions in a preferential…
75 FR 282 - Restricting the Mailing of Replica or Inert Explosive Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... Service published a Federal Register proposed rule (73 FR 12321) on March 7, 2008 to prohibit replica and... 111 Restricting the Mailing of Replica or Inert Explosive Devices AGENCY: Postal Service TM . ACTION... the mailing of replica or inert explosive devices, such as grenades, be sent by Registered Mail...
75 FR 30300 - Restricting the Mailing of Replica or Inert Explosive Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
..., 2010 (75 FR 282-283), which added restrictions to the mailing of replica and inert explosive devices in... 111 Restricting the Mailing of Replica or Inert Explosive Devices AGENCY: Postal Service\\TM\\. ACTION... replica or inert explosive devices, such as simulated grenades that are not dangerous but bear a...
Chen, Changjun; Xiao, Yi; Huang, Yanzhao
2015-05-01
Replica-exchange molecular dynamics (REMD) is a popular sampling method in the molecular simulation. By frequently exchanging the replicas at different temperatures, the molecule can jump out of the minima and sample efficiently in the conformational space. Although REMD has been shown to be practical in a lot of applications, it does have a critical limitation. All the replicas at all the temperatures must be simulated for a period between the replica-exchange steps. This may be problematic for the reaction with high free energy barriers. In that case, too many replicas are required in the simulation. To reduce the calculation quantity and improve its performance, in this paper we propose a modified REMD method. During the simulation, each replica at each temperature can stay in either the active or inactive state and only switch between the states at the exchange step. In the active state, the replica moves freely in the canonical ensemble by the normal molecular dynamics, and in the inactive state, the replica is frozen temporarily until the next exchange step. The number of the replicas in the active states (active replicas) depends on the number of CPUs in the computer. Using the additional inactive replicas, one can perform an REMD simulation in a wider temperature space. The practical applications show that the modified REMD method is reliable. With the same number of active replicas, this REMD method can produce a more reasonable free energy surface around the free energy minima than the standard REMD method. PMID:26066200
10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...
10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...
10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...
10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...
10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...
10 CFR 1.53 - Use of NRC seal or replicas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...
10 CFR 1.53 - Use of NRC seal or replicas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...
10 CFR 1.53 - Use of NRC seal or replicas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...
10 CFR 1.53 - Use of NRC seal or replicas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...
10 CFR 1.53 - Use of NRC seal or replicas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...
Accuracy of three-dimensional printing for manufacturing replica teeth
Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol
2015-01-01
Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment. PMID:26445716
Rauscher, Sarah; Neale, Chris; Pomès, Régis
2009-10-13
Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.
PELDOR in rotationally symmetric homo-oligomers
NASA Astrophysics Data System (ADS)
Giannoulis, Angeliki; Ward, Richard; Branigan, Emma; Naismith, James H.; Bode, Bela E.
2013-10-01
Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.
Storing files in a parallel computing system using list-based index to identify replica files
Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Zhang, Zhenhua; Grider, Gary
2015-07-21
Improved techniques are provided for storing files in a parallel computing system using a list-based index to identify file replicas. A file and at least one replica of the file are stored in one or more storage nodes of the parallel computing system. An index for the file comprises at least one list comprising a pointer to a storage location of the file and a storage location of the at least one replica of the file. The file comprises one or more of a complete file and one or more sub-files. The index may also comprise a checksum value for one or more of the file and the replica(s) of the file. The checksum value can be evaluated to validate the file and/or the file replica(s). A query can be processed using the list.
Symmetric States on the Octonionic Bloch Ball
NASA Astrophysics Data System (ADS)
Graydon, Matthew
2012-02-01
Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.
Novel resist for replica preparation of mold for imprint lithography
NASA Astrophysics Data System (ADS)
Matsukawa, Daisaku; Wakayama, Hiroyuki; Mitsukura, Kazuyuki; Okamura, Haruyuki; Hirai, Yoshihiko; Shirai, Masamitsu
2009-03-01
Two types of dimethacrylate which have hemiacetal ester moiety in a molecule were synthesized from difunctional vinyl ethers and methacrylic acid. UV curing of the monomers and photo-induced degradation of the UV cured resins were investigated. On UV irradiation at 365 nm under N2 atmosphere, these dimethacrylates containing 2,2-dimethoxy-2-phenylacetophenone and triphenylsulfonium triflate became insoluble in methanol. The UV cured resins degraded if acids were generated in the system. Present resins were applied to make a plastic replica of mold for imprint lithography and the plastic replica was prepared in good form. The effect of imprint conditions on volume shrinkage of methacrylates was investigated. Dimethacrylate that has adamantyl unit showed a low-shrinkage property.
Augmentation of Cavity Optical Inspection by Replicas Without Performance Degradation
Ge, M.; Burk, D.; Hicks, D.; Wu, G.; Thompson, C.; Cooley, L.D.; /Fermilab
2009-01-01
Although cavity optical inspection systems provide a huge amount of qualitative information about surface features, the amount of quantitative topographic informa-tion is limited. Here, we report the use of silicone-based RTV for replicas and moldings that provide increased details of topographic data associated with the optical cavity images. Profilometry scans of the molds yield mi-crometer-scale details associated with equator weld struc-tures and weld pits. This confirms at least two different types of pits, one which is bowl-shaped, and one which has a small peak at the bottom. The contour information extracted from profilometry can be used to evaluate mechanisms by which pits and other features limit RF performance. We present calculations based on a con-formal transformation of the profiles above. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.
Image tube. [deriving electron beam replica of image
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Johnson, C. B. (Inventor)
1974-01-01
An optical image is projected onto a planar surface of a photocathode that derives an electron beam replica of the image. A target electrode displaced relative to the photocathode so that it does not obstruct the optical image includes a planar surface for receiving and deriving an accurate replica of the electron beam image. The two planar surfaces are parallel. The electron beam image is focused on the target electrode by providing throughout a region that extends between the planar surfaces of the photocathode and receiving electrode, constant homogeneous dc electric and magnetic fields. The electric field extends in a direction perpendicular to the planar surfaces while the magnetic field extends along a straight line that intersects the photocathode and target electrode at an acute angle.
Cumulative overlap distribution function in realistic spin glasses
NASA Astrophysics Data System (ADS)
Billoire, A.; Maiorano, A.; Marinari, E.; Martin-Mayor, V.; Yllanes, D.
2014-09-01
We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution of the Sherrington-Kirkpatrick and 3D Edwards-Anderson models of Ising spin glasses. We find that this approach is an effective tool to distinguish between replica symmetry breaking-like and droplet-like behavior of the spin-glass phase. Our results are in agreement with a replica symmetry breaking-like behavior for the 3D Edwards-Anderson model.
Replica mold for nanoimprint lithography from a novel hybrid resin.
Lee, Bong Kuk; Hong, Lan-Young; Lee, Hea Yeon; Kim, Dong-Pyo; Kawai, Tomoji
2009-10-01
The use of durable replica molds with high feature resolution has been proposed as an inexpensive and convenient route for manufacturing nanostructured materials. A simple and fast duplication method, involving the use of a master mold to create durable polymer replicas as imprinting molds, has been demonstrated using both UV- and thermal nanoimprinting lithography (NIL). To obtain a high-durability replicating material, a dual UV/thermal-curable, organic-inorganic hybrid resin was synthesized using a sol-gel-based combinatorial method. The cross-linked hybrid resin exhibited high transparency to UV light and resistance to organic solvents. Molds made of this material showed good mechanical properties (Young's modulus=1.76 GPa) and gas permeability. The low viscosity of the hybrid resin (approximately 29 cP) allowed it to be easily transferred to relief nanostructures on transparent glass substrates using UV-NIL at room temperature and low pressure (0.2 MPa) over a relatively short time (80 s). A low surface energy release agent was successfully coated onto the hybrid mold surface without destroying the imprinted nanostructures, even after O2 plasma treatment. Nanostructures with feature sizes down to 80 nm were successfully reproduced using these molds in both UV- and thermal-NIL processes. After repeating 10 imprinting cycles at relatively high temperature and pressure, no detectable collapse or contamination of the replica surface was observed. These results indicate that the hybrid molds could tolerate repeated UV- and thermal-NIL processes.
Greedy replica exchange algorithm for heterogeneous computing grids.
Lockhart, Christopher; O'Connor, James; Armentrout, Steven; Klimov, Dmitri K
2015-09-01
Replica exchange molecular dynamics (REMD) has become a valuable tool in studying complex biomolecular systems. However, its application on distributed computing grids is limited by the heterogeneity of this environment. In this study, we propose a REMD implementation referred to as greedy REMD (gREMD) suitable for computations on heterogeneous grids. To decentralize replica management, gREMD utilizes a precomputed schedule of exchange attempts between temperatures. Our comparison of gREMD against standard REMD suggests four main conclusions. First, gREMD accelerates grid REMD simulations by as much as 40 %. Second, gREMD increases CPU utilization rates in grid REMD by up to 60 %. Third, we argue that gREMD is expected to maintain approximately constant CPU utilization rates and simulation wall-clock times with the increase in the number of replicas. Finally, we show that gREMD correctly implements the REMD algorithm and reproduces the conformational ensemble of a short peptide sampled in our previous standard REMD simulations. We believe that gREMD can find its place in large-scale REMD simulations on heterogeneous computing grids. PMID:26311229
Greedy replica exchange algorithm for heterogeneous computing grids.
Lockhart, Christopher; O'Connor, James; Armentrout, Steven; Klimov, Dmitri K
2015-09-01
Replica exchange molecular dynamics (REMD) has become a valuable tool in studying complex biomolecular systems. However, its application on distributed computing grids is limited by the heterogeneity of this environment. In this study, we propose a REMD implementation referred to as greedy REMD (gREMD) suitable for computations on heterogeneous grids. To decentralize replica management, gREMD utilizes a precomputed schedule of exchange attempts between temperatures. Our comparison of gREMD against standard REMD suggests four main conclusions. First, gREMD accelerates grid REMD simulations by as much as 40 %. Second, gREMD increases CPU utilization rates in grid REMD by up to 60 %. Third, we argue that gREMD is expected to maintain approximately constant CPU utilization rates and simulation wall-clock times with the increase in the number of replicas. Finally, we show that gREMD correctly implements the REMD algorithm and reproduces the conformational ensemble of a short peptide sampled in our previous standard REMD simulations. We believe that gREMD can find its place in large-scale REMD simulations on heterogeneous computing grids.
Optimization of replica exchange molecular dynamics by fast mimicking.
Hritz, Jozef; Oostenbrink, Chris
2007-11-28
We present an approach to mimic replica exchange molecular dynamics simulations (REMD) on a microsecond time scale within a few minutes rather than the years, which would be required for real REMD. The speed of mimicked REMD makes it a useful tool for "testing" the efficiency of different settings for REMD and then to select those settings, that give the highest efficiency. We present an optimization approach with the example of Hamiltonian REMD using soft-core interactions on two model systems, GTP and 8-Br-GTP. The optimization process using REMD mimicking is very fast. Optimization of Hamiltonian-REMD settings of GTP in explicit water took us less than one week. In our study we focus not only on finding the optimal distances between neighboring replicas, but also on finding the proper placement of the highest level of softness. In addition we suggest different REMD simulation settings at this softness level. We allow several replicas to be simulated at the same Hamiltonian simultaneously and reduce the frequency of switching attempts between them. This approach allows for more efficient conversions from one stable conformation to the other.
Abdominal aortic aneurysm: from clinical imaging to realistic replicas.
de Galarreta, Sergio Ruiz; Aitor, Cazón; Antón, Raúl; Finol, Ender A
2014-01-01
The goal of this work is to develop a framework for manufacturing nonuniform wall thickness replicas of abdominal aortic aneurysms (AAAs). The methodology was based on the use of computed tomography (CT) images for virtual modeling, additive manufacturing for the initial physical replica, and a vacuum casting process and range of polyurethane resins for the final rubberlike phantom. The average wall thickness of the resulting AAA phantom was compared with the average thickness of the corresponding patient-specific virtual model, obtaining an average dimensional mismatch of 180 μm (11.14%). The material characterization of the artery was determined from uniaxial tensile tests as various combinations of polyurethane resins were chosen due to their similarity with ex vivo AAA mechanical behavior in the physiological stress configuration. The proposed methodology yields AAA phantoms with nonuniform wall thickness using a fast and low-cost process. These replicas may be used in benchtop experiments to validate deformations obtained with numerical simulations using finite element analysis, or to validate optical methods developed to image ex vivo arterial deformations during pressure-inflation testing.
Development of CFRP Mirrors for Space Telescopes Using Replica Technique
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2012-07-01
Ultra-lightweight and high-accuracy CFRP (Carbon Fiber Reinforced Plastics) mirrors for space telescopes have developed and their feasibility for ultrared applications was demonstrated. The CTE (Coefficient of Thermal Expansion) of the all-CFRP sandwich panels was tailored in ±1x10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) as fabricated and the surface smoothness was improved to 5 nm RMS. The surface of front face skins of sandwich panels was coated with epoxy resin and surface accuracy and smoothness were transcribed from an optically-polished glass tool of λ/20 accuracy by replica technique. Surface preciseness was measured before and after replica coating using a 3D optical profiler of white light interferometer. Observed patterns of the asperity of mirror surfaces were classified into four categories, overall warping and line patterns of fiber tows and core patterns and print-through of individual fibers. Replica improved all kinds of asperity.
NASA Astrophysics Data System (ADS)
Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo
2014-11-01
The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.
The decoupling of the glass transitions in the two-component p-spin spherical model
NASA Astrophysics Data System (ADS)
Ikeda, Harukuni; Ikeda, Atsushi
2016-07-01
Binary mixtures of large and small particles with a disparate size ratio exhibit a rich phenomenology at their glass transition points. In order to gain insights on such systems, we introduce and study a two-component version of the p-spin spherical spin glass model. We employ the replica method to calculate the free energy and the phase diagram. We show that when the strengths of the interactions of each component are not widely separated, the model has only one glass phase characterized by the conventional one-step replica symmetry breaking. However when the strengths of the interactions are well separated, the model has three glass phases depending on the temperature and component ratio. One is the ‘single’ glass phase in which only the spins of one component are frozen while the spins of the other component remain mobile. This phase is characterized by the one-step replica symmetry breaking. The second is the ‘double’ glass phase obtained by cooling the single glass phase further, in which the spins of the remaining mobile component are also frozen. This phase is characterized by the two-step replica symmetry breaking. The third is also the ‘double’ glass phase, which, however, is formed by the simultaneous freezing of the spins of both components at the same temperatures and is characterized by the one-step replica symmetry breaking. We discuss the implications of these results for the glass transitions of binary mixtures.
Zhang, Wang; Zhang, Di; Fan, Tongxiang; Ding, Jian; Gu, Jiajun; Guo, Qixin; Ogawa, Hiroshi
2006-09-01
Nano-structured colorful zinc oxide (ZnO) replicas were produced using the wings of the Ideopsis similis butterfly as templates. The ZnO replicas we obtained exhibit iridescence, which was clearly observed under an optical microscope (OM). Field emission scanning electron microscope analysis shows that all the microstructure details are maintained faithfully in the ZnO replica. A computer model was established to simulate the diffraction spectral results, which agreed well with the OM images.
Parallel replica method for dynamics of infrequent events
Voter, A.F.
1998-06-01
Although molecular-dynamics simulations can be parallelized effectively to treat large systems (10{sup 6}{endash}10{sup 8} atoms), to date the power of parallel computers has not been harnessed to make analogous gains in {ital time} scale. I present a simple approach for infrequent-event systems that extends the time scale with high parallel efficiency. Integrating a replica of the system independently on each processor until the first transition occurs gives the correct transition-time distribution, and hence the correct dynamics. I obtain {gt}90{percent} efficiency simulating Cu(100) surface vacancy diffusion on 15 processors. {copyright} {ital 1998} {ital The American Physical Society}
Collapse and hybridization of RNA: view from replica technique approach.
Mamasakhlisov, Y Sh; Bellucci, S; Hayryan, Shura; Caturyan, H; Grigoryan, Z; Hu, Chin-Kun
2015-09-01
The replica technique method is applied to investigate the kinetic behavior of the coarse-grained model for the RNA molecule. A non-equilibrium phase transition of second order between the glassy phase and the ensemble of freely fluctuating structures has been observed. The non-equilibrium steady state is investigated as well and the thermodynamic characteristics of the system have been evaluated. The non-equilibrium behavior of the specific heat is discussed. Based on our analysis, we point out the state in the kinetic pathway in which the RNA molecule is most prone to hybridization. PMID:26385736
Braids, shuffles and symmetrizers
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Ogievetsky, O. V.
2009-07-01
Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.
Replica study of plaque formation on human tooth surfaces.
Lie, T; Gusberti, F
1979-01-01
Plaque formation on buccal tooth surfaces was studied by replica technique, consisting of impressions using low viscosity silicone impression materials and positive models produced in epoxy resins. Bacterial accumulation occurred near the cemento-enamel junction in 6-hr specimens, and subsequently expanded in a coronal direction. This development took place partly by extensions of single layers of bacteria, and partly by a pattern where the colonization was mostly restricted to vertical enamel cracks. Plaque accumulations were also frequently located in abrasion grooves and surface pits in the enamel, and prolific plaque areas were consistently surrounded by a monolayer of bacterial cells. Globular and hemispheric structures which occurred, especially on root surfaces immediately after cleaning, were probably artefacts caused by air bubbles or remaining moisture. In separate series of experiments it was demonstrated that improved reproduction of details from the plaque could be achieved by repeating the replicating procedure. The findings indicate that plaque formation starts by adsorption and proliferation of individual bacteria on tooth surfaces, and not by adsorption of aggregates of cells. Special attention should be directed against the problem of artefacts and moisture in replica studies of dental plaque.
ATLAS Replica Management in Rucio: Replication Rules and Subscriptions
NASA Astrophysics Data System (ADS)
Barisits, M.; Serfon, C.; Garonne, V.; Lassnig, M.; Stewart, G.; Beermann, T.; Vigne, R.; Goossens, L.; Nairz, A.; Molfetas, A.; Atlas Collaboration
2014-06-01
The ATLAS Distributed Data Management system stores more than 150PB of physics data across 120 sites globally. To cope with the anticipated ATLAS workload of the coming decade, Rucio, the next-generation data management system has been developed. Replica management, as one of the key aspects of the system, has to satisfy critical performance requirements in order to keep pace with the experiment's high rate of continual data generation. The challenge lies in meeting these performance objectives while still giving the system users and applications a powerful toolkit to control their data workflows. In this work we present the concept, design and implementation of the replica management in Rucio. We will specifically introduce the workflows behind replication rules, their formal language definition, weighting and site selection. Furthermore we will present the subscription component, which offers functionality for users to proclaim interest in data that has not been created yet. This contribution describes the concept and the architecture behind those components and will show the benefits made by this system.
Spin rectification induced by spin Hall magnetoresistance at room temperature
NASA Astrophysics Data System (ADS)
Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.
2016-09-01
We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.
Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.
2007-06-15
Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
ERIC Educational Resources Information Center
Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.
2014-01-01
Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…
Replica grating study. [response to aerospace environment, thermal vacuum, and electron irradiation
NASA Technical Reports Server (NTRS)
Gunter, R. C., Jr.
1975-01-01
Methods are outlined which were used to test the response of replica diffraction gratings to a space environment, specifically the response of the replica gratings to thermal-vacuum and electron irradiation stress. It is concluded that there probably is some degradation to thermal stress, but that there is probably no significant degradation due to a vacuum environment. It is further concluded that the degradation of performance of replica gratings because of electron irradiation is due to the interaction of the electrons and the replica grating substrate and not to the replication material itself. Replica and original gratings on the same substrate material should thus respond to particle irradiation in the same manner. A study is presented on the variation of refraction index of a space-related material, Nd:CaF2, with wavelength, percent neodymium doping, and temperature.
In situ tooth replica custom implant: a 3-dimensional finite element stress and strain analysis.
Ghuneim, Wael Aly
2013-10-01
This study is a phase of a biomechanical study, a part of a research program concerned with the new concept of in situ tooth replication. The purpose of the study was to evaluate tooth replica under each of two possible circumstances: (1) attachment via periodontal ligament and (2) osseointegration. Replicas were made of Cortoss, a bioactive glass, bone substitute. Three-dimensional finite element analysis was used to assess the stresses and strains resulting from each of 2 types of loads: off-vertical pressure and vertical point force acting on natural mandibular second premolar and corresponding replicas. Natural tooth tolerated 19 MPa pressure or 85 N vertical force, periodontally attached replica tolerated 15 MPa pressure or 80 N force, and osseointegrated replica tolerated 23 MPa pressure or 217 N force.
Replica treatment of the effective elastic behavior of a composite
NASA Astrophysics Data System (ADS)
Parcollet, O.; Barthelémy, M.; Zérah, G.
1996-02-01
We use the replica trick and a variational method to determine the effective elastic coefficients of a disordered composite. We obtain for them a self-consistent formula, which is satisfactory from the points of view of low disorder and low dilution expansions. When the bulk moduli K and the shear moduli μ are such that K>~2μ, it satisfies Hashin-Shtrikman bounds and is close to the usual effective-medium approximation. In the case K>~2μ, we observe a deviation of Hashin-Shtrikman bounds which can be understood by analogy with an equivalent one-dimensional problem. Finally, this calculation allows us to derive the rigidity threshold pr for any dimension d.
Replica exchange Monte Carlo applied to hard spheres.
Odriozola, Gerardo
2009-10-14
In this work a replica exchange Monte Carlo scheme which considers an extended isobaric-isothermal ensemble with respect to pressure is applied to study hard spheres (HSs). The idea behind the proposal is expanding volume instead of increasing temperature to let crowded systems characterized by dominant repulsive interactions to unblock, and so, to produce sampling from disjoint configurations. The method produces, in a single parallel run, the complete HS equation of state. Thus, the first order fluid-solid transition is captured. The obtained results well agree with previous calculations. This approach seems particularly useful to treat purely entropy-driven systems such as hard body and nonadditive hard mixtures, where temperature plays a trivial role.
Gomes, Anderson S L; Raposo, Ernesto P; Moura, André L; Fewo, Serge I; Pincheira, Pablo I R; Jerez, Vladimir; Maia, Lauro J Q; de Araújo, Cid B
2016-01-01
Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research. PMID:27292095
Gomes, Anderson S. L.; Raposo, Ernesto P.; Moura, André L.; Fewo, Serge I.; Pincheira, Pablo I. R.; Jerez, Vladimir; Maia, Lauro J. Q.; de Araújo, Cid B.
2016-01-01
Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research. PMID:27292095
NASA Astrophysics Data System (ADS)
Gomes, Anderson S. L.; Raposo, Ernesto P.; Moura, André L.; Fewo, Serge I.; Pincheira, Pablo I. R.; Jerez, Vladimir; Maia, Lauro J. Q.; de Araújo, Cid B.
2016-06-01
Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research.
NASA Astrophysics Data System (ADS)
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
The symmetric orbifold of {N}=2 minimal models
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.; Kelm, Maximilian
2016-07-01
cThe large level limit of the {N}=2 minimal models that appear in the duality with the {N}=2 supersymmetric higher spin theory on AdS3 is shown to be a natural subsector of a certain symmetric orbifold theory. We study the relevant decompositions in both the untwisted and the twisted sector, and analyse the structure of the higher spin representations in the twisted sector in some detail. These results should help to identify the string background of which the higher spin theory is expected to describe the leading Regge trajectory in the tensionless limit.
Conversion of three-dimensional nanostructured biosilica templates into non-oxide replicas
NASA Astrophysics Data System (ADS)
Bao, Zhihao
Diatoms possess characteristics such as abundance, diversity, and high reproductivity, which make their nano-structured frustules (diatom frustules) attractive for a wide range of applications. To overcome the limitation of their silica based frustule composition, diatom frustules have been converted into a variety of materials including silicon, silicon carbide, silver, gold, palladium and carbon in the present study. The compositions and the extent of shape preservation of the replicas are examined and evaluated with different characterization methods such as X-ray diffraction, SEM, TEM and FTIR analyses. These replicas still retained the complex 3D structures and nano-scaled features of the starting diatom frustules. Some properties and possible applications of converted materials are explored and the kinetics and thermodynamics related to the successful replications (conversions) are also studied and discussed: (1) A low temperature (650°C) magnesiothermic reaction was used to convert three dimensional (3-D) nano-structured diatom frustules into microporous nanocrystalline silicon replicas. These silicon replicas possessed a very high surface area (>500 m2/g) and a large population of micropores (≤2 nm). The oxidized silicon frustule replicas exhibited photoluminescence under UV light. A microsensor fabricated from such a silicon frustule replica exhibited rapid (≤25 s) and sensitive nitric oxide gas detection (1 p.p.m.) with very low applied biased voltage (100 mV). This suggested a possible application in microscale gas sensing. The magnesium vapor partial pressure was the key parameter in controlling the products from the magnesiothermic reaction. Magnesium silicide is suggested as the source of magnesium gas to avoid the formation of a magnesium silicide product during the magnesiothermic reaction. (2) Metallic frustule replicas (e.g., Ag, Au, Pd) were obtained by immersing the microporous nanocrystalline silicon replicas in electroless plating
Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
Biasing Potential Replica Exchange Multi-Site λ-Dynamics for Efficient Free Energy Calculations
Armacost, Kira A.; Goh, Garrett B.; Brooks, Charles L.
2016-01-01
Traditional free energy calculation methods are well known for their drawbacks in scalability and speed in converging results particularly for calculations with large perturbations. In the present work, we report on the development of biasing potential replica exchange multi-site λ-dynamics (BP-REX MSλD), which is a free energy method that is capable of performing simultaneous alchemical free energy transformations, including perturbations between flexible moieties. BP-REX MSλD and the original MSλD are applied to a series of symmetrical 2,5-benzoquinone derivatives covering a diverse chemical space and range of conformational flexibility. Improved λ-space sampling is observed for the BP-REX MSλD simulations, yielding a 2–5-fold increase in the number of transitions between substituents compared to traditional MSλD. We also demonstrate the efficacy of varying the value of c, the parameter that controls the ruggedness of the landscape mediating the sampling of λ-states, based on the flexibility of the fragment. Finally, we developed a protocol for maximizing the transition frequency between fragments. This protocol reduces the “kinetic barrier” for alchemically transforming fragments by grouping and ordering based on volume. These findings are applied to a challenging test set involving a series of geldanamycin-based inhibitors of heat shock protein 90 (Hsp90). Even though the perturbations span volume changes by as large as 60 Å3, the values for the free energy change achieve an average unsigned error (AUE) of 1.5 kcal/mol relative to experimental Kd measurements with a reasonable correlation (R = 0.56). Our results suggest that the BP-REX MSλD algorithm is a highly efficient and scalable free energy method, which when utilized will enable routine calculations on the order of hundreds of compounds using only a few simulations. PMID:26579773
Internal structure analysis of particle-double network gels used in a gel organ replica
NASA Astrophysics Data System (ADS)
Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-11-01
The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.
Replica-exchange-with-tunneling for fast exploration of protein landscapes
NASA Astrophysics Data System (ADS)
Yaşar, Fatih; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.
2015-12-01
While the use of replica-exchange molecular dynamics in protein simulations has become ubiquitous, its utility is limited in many practical applications. We propose to overcome some shortcomings that hold back its use in settings such as multi-scale or explicit solvent simulations by integrating ideas of hybrid MC/MD into the replica-exchange protocol. This Replica-Exchange-with-Tunneling method is tested by simulating the Trp-cage protein, a system often used in molecular biophysics for testing sampling techniques.
Replica-exchange-with-tunneling for fast exploration of protein landscapes.
Yaşar, Fatih; Bernhardt, Nathan A; Hansmann, Ulrich H E
2015-12-14
While the use of replica-exchange molecular dynamics in protein simulations has become ubiquitous, its utility is limited in many practical applications. We propose to overcome some shortcomings that hold back its use in settings such as multi-scale or explicit solvent simulations by integrating ideas of hybrid MC/MD into the replica-exchange protocol. This Replica-Exchange-with-Tunneling method is tested by simulating the Trp-cage protein, a system often used in molecular biophysics for testing sampling techniques.
Itoh, Satoru G; Okumura, Hisashi; Okamoto, Yuko
2010-04-01
We present a new type of the Hamiltonian replica-exchange method, where the van der Waals radius parameter and not the temperature is exchanged. By decreasing the van der Waals radii, which control spatial sizes of atoms, this Hamiltonian replica-exchange method overcomes the steric restrictions and energy barriers. Furthermore, the simulation based on this method escapes from the local-minimum free-energy states and realizes effective sampling in the conformational space. We applied this method to an alanine dipeptide in aqueous solution and showed the effectiveness of the method by comparing the results with those obtained from the conventional canonical and replica-exchange methods.
One more discussion of the replica trick: the example of the exact solution
NASA Astrophysics Data System (ADS)
Dotsenko, Victor
2012-01-01
Systematic replica field theory calculations are analysed using the examples of two particular one-dimensional 'toy' random models with Gaussian disorder. Due to the simplicity of the models an integer n-th power of the partition function can be calculated here exactly. However, further analytic continuation for non-integer values of the replica parameter n inevitably involves the usual replica method of 'cheating', which nevertheless allows us to derive correct and rather non-trivial results for the entire free energy distribution functions both for a finite system size and in the thermodynamic limit.
Symmetrization for redundant channels
NASA Technical Reports Server (NTRS)
Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)
1988-01-01
A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.
Fabrication and gas-sensing properties of hierarchical ZnO replica using down as template
NASA Astrophysics Data System (ADS)
Bai, Zikui; Li, Songzhan; Xu, Jie; Zhou, Yingshan; Gu, Shaojin; Tao, Yongzhen; Liu, Li; Fang, Dong; Xu, Weilin
2016-06-01
Hierarchical ZnO replica using down as template fabricated by a combination of low-temperature plasma treatment and sonochemical method was used in gas sensor for the detection of ethanol and formaldehyde. The morphologies and crystal structures of the hierarchical ZnO replica were characterized by field-emission scanning electron microscopy and X-ray diffraction, respectively. Results showed that the hierarchical ZnO replica retained the initial down morphology and consisted of hexagonal wurtzite structure ZnO nanocrystals. The results of resistance-temperature characteristics and responses to ethanol and formaldehyde indicated that the hierarchical ZnO film had low activation energy (0.1118 eV) and a low optimum operating temperature and that the response time was longer than recovery time. These behaviors were well explained in relation to three-dimensional network structures and the high specific surface area of the hierarchical ZnO replica.
Vogel, Thomas; Perez, Danny
2015-08-28
We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The method is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.
Vogel, Thomas; Perez, Danny
2015-08-28
We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The methodmore » is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.« less
[Possibilities of energy augmentation of pellets shot from ASG replicas and gunshot wounds].
Golema, Wojciech; Jurek, Tomasz; Thannhäuser, Agata; Kawecki, Jerzy; Trnka, Jakub
2011-01-01
In this paper, the authors review the types of air soft gun replicas depending on the type of drive and ammunition, showing the possibilities of altering the M4A1 rifle replica's technical parameters and the effect of such modifications on initial energy of the projectile. A PJ4 CQB NAVY replica's inner barrel, spring, motor and cylinder kit were replaced. Subsequently, the muzzle velocity was determined and compared to the initial muzzle velocity. This example showed that amateur modifications can greatly increase the initial energy of the pellet. The authors suggest that especially in terms of determining the exposure to direct danger of death or grave detriment to health, the manufacturer's data about pellet energy should not be taken without question, but one should strive for an individual assessment of the ASG replica constituting the evidence.
Utility of replica techniques for x-ray microanalysis of second phase particles
Bentley, J.
1984-01-01
X-ray microanalysis of second phase particles in ion-milled or electropolished thin foils is often complicated by the presence of the matrix nearby. Extraction replica techniques provide a means to avoid many of the complications of thin-foil analyses. In this paper, three examples of the analysis of second phase particles are described and illustrate the improvement obtained by the use of extraction replicas for qualitative analysis, quantitative analysis, and analysis of radioactive specimens.
Gold replica of olive branch left on moons surface by Apollo 11
NASA Technical Reports Server (NTRS)
1969-01-01
A gold replica of an olive branch, the traditional symbol of peace, which was left on the Moon's surface by the Apollo 11 crew members. Astronaut Neil A. Armstrong, commander, was in charge of placing the replica (less than half a foot in length) on the Moon. The gesture represents a fresh wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.
NASA Astrophysics Data System (ADS)
Hnybida, Jeff
2016-10-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
Kamberaj, Hiqmet
2015-09-28
In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.
Lambrechts, P; Vanherle, G; Davidson, C
1981-09-01
One of the main concerns of dental research is the observation of the oral tissues and the materials applied to the dentition. The changes in composition and structure of the outer surfaces and the materials deposited on these surfaces are of special interest. In the literature, a variety of replica techniques for these purposes is described (Grundy in 1971 [12]; Saxton in 1973 [25]). The use of these techniques is limited because of artifacts in the samples, and a restricted resolution power resulting from useful magnifications in the order of 800x. An accurate and universal replica technique for the examination of specimens to be viewed under the SEM has been developed. The first impression is made by a light body silicone elastomer (President Coltene). The positive replica is made by electrodeposition of copper in an electro plating bath (Acru plat 5 electronic, Dr. Th. Wieland, D-7530 Pforzheim). The reliability and accuracy of this replica technique was verified by a scanning electron microscopic comparison of the replicas and the actual structures of etched enamel. To illustrate the applicability of the replica technique to structures with much lower hardness, also high resolution images of dental plaque were produced. The copper surface offers a perfect, original and proper electroconductive medium that withstands the bombardment of electrons and the relatively severe conditions in the scanning electron microscope. Reproducibility was accurate as judged by the duplication in position, size, and shape of the fine detail at magnifications of 7500x offering a resolution of 25 nm.
Path Integral Coarse-Graining Replica Exchange Method for Enhanced Sampling.
Peng, Yuxing; Cao, Zhen; Zhou, Ruhong; Voth, Gregory A
2014-09-01
An enhanced conformational space sampling method is developed that utilizes replica exchange molecular dynamics between a set of imaginary time Feynman path integral replicas, each having an increasing degree of contraction (or coarse-graining) of the quasi-particle or "polymer beads" in the evaluation of the isomorphic ring-polymer potential energy terms. However, there is no contraction of beads in the effectively harmonic kinetic energy terms. The final replica in this procedure is the fully contracted one in which the potential energy is evaluated only at the centroid of the beads-and hence it is the classical distribution in the centroid variable-while the initial replica has the full degree (or even a heightened degree, if desired) of quantum delocalization and tunneling in the physical potential by the polymer necklace beads. The exchange between the different ring-polymer ensembles is governed by the Metropolis criteria to guarantee detailed balance. The method is applied successfully to several model systems, ranging from one-dimensional prototype rough energy landscape models having analytical solutions to the more realistic alanine dipeptide. A detailed comparison with the classical temperature-based replica exchange method shows an improved efficiency of this new method in the classical conformational space sampling due to coupling with the fictitious path integral (quantum) replicas. PMID:26588508
NASA Astrophysics Data System (ADS)
Kamberaj, Hiqmet
2015-09-01
In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
Classical mutual information in mean-field spin glass models
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Inglis, Stephen; Pollet, Lode
2016-03-01
We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.
Ahcan, Uros; Bracun, Drago; Zivec, Katarina; Pavlic, Rok; Butala, Peter
2012-04-01
Aesthetically pleasing and symmetrical breasts are the goal of reconstructive breast surgery. Sometimes, however, multiple procedures are needed to improve a reconstructed breast's symmetry and appearance. In order to avoid additional corrective procedures, we have developed a new method that uses a reverse engineering technique to produce what we call a new breast replica cast (NBRC). The NBRC is a mould of the contralateral healthy breast, designed according to preoperative laser 3D images. During surgery, the mould is used to help shape the new breast. With this method, we are able to achieve breast symmetry in terms of volume, projection, contour, and position on the chest wall more accurately, more quickly, and more safely than before.
{PT}-symmetric optical superlattices
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2014-04-01
The spectral and localization properties of {PT}-symmetric optical superlattices, either infinitely extended or truncated at one side, are theoretically investigated, and the criteria that ensure a real energy spectrum are derived. The analysis is applied to the case of superlattices describing a complex ( {PT}-symmetric) extension of the Harper Hamiltonian in the rational case.
NASA Technical Reports Server (NTRS)
Bowman, James S., Jr.; White, William L.
1974-01-01
An investigation has been made in the Langley spin tunnel to determine the spin and spin-recovery characteristics of the F-111A airplane in the symmetric and asymmetric stores loading conditions. Tests were also made with the model in the clean condition to determine whether the spin-recovery characteristics could be improved by the use of supplementary devices.
Conformally symmetric traversable wormholes
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-10-15
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.
Constructing topological models by symmetrization: A projected entangled pair states study
NASA Astrophysics Data System (ADS)
Fernández-González, Carlos; Mong, Roger S. K.; Landon-Cardinal, Olivier; Pérez-García, David; Schuch, Norbert
2016-10-01
Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G ˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G ˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G ˜.
Multiqubit symmetric states with maximally mixed one-qubit reductions
NASA Astrophysics Data System (ADS)
Baguette, D.; Bastin, T.; Martin, J.
2014-09-01
We present a comprehensive study of maximally entangled symmetric states of arbitrary numbers of qubits in the sense of the maximal mixedness of the one-qubit reduced density operator. A general criterion is provided to easily identify whether given symmetric states are maximally entangled in that respect or not. We show that these maximally entangled symmetric (MES) states are the only symmetric states for which the expectation value of the associated collective spin of the system vanishes, as well as in corollary the dipole moment of the Husimi function. We establish the link between this kind of maximal entanglement, the anticoherence properties of spin states, and the degree of polarization of light fields. We analyze the relationship between the MES states and the classes of states equivalent through stochastic local operations with classical communication (SLOCC). We provide a nonexistence criterion of MES states within SLOCC classes of qubit states and show in particular that the symmetric Dicke state SLOCC classes never contain such MES states, with the only exception of the balanced Dicke state class for even numbers of qubits. The 4-qubit system is analyzed exhaustively and all MES states of this system are identified and characterized. Finally the entanglement content of MES states is analyzed with respect to the geometric and barycentric measures of entanglement, as well as to the generalized N-tangle. We show that the geometric entanglement of MES states is ensured to be larger than or equal to 1/2, but also that MES states are not in general the symmetric states that maximize the investigated entanglement measures.
A distance-aware replica adaptive data gathering protocol for Delay Tolerant Mobile Sensor Networks.
Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin
2011-01-01
In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node's limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes.
Assessment of hydro/oleophobicity for shark skin replica with riblets.
Kim, Tae Wan
2014-10-01
The shark skin has a unique skin structure which enables the shark to swim faster and more efficiently due to an intriguing three-dimensional rib pattern. Shark skin has also known as having functional performances such as self cleaning and anti-fouling as well as excellent drag reduction due to a hierarchical structure built up by micro grooves and nano-long chain mucus drag reduction interface around the shark body. In this study, the wetting properties for the biomimetic surfaces that replicate shark skin are assessed. First of all, the shark skin replicas are obtained using the micro molding technique directly from a shark skin template. The quantitative replication precision of the shark skin replicas is evaluated comparing with the geometry of shark skin template using 3D and 2D surface profiles are measured. Then contact angles in the conditions of solid-air-water, solid-air-oil and solid-water-oil interfaces are evaluated for shark skin replicas. The effect of Teflon coating on the wetting properties of shark skin replicas is also observed. The results show the shark skin replica by the micro molding technique gives better effect on the wetting performance, and the micro riblets on shark skin improve the wettability feature.
Coupling of replica exchange simulations to a non-Boltzmann structure reservoir.
Roitberg, Adrian E; Okur, Asim; Simmerling, Carlos
2007-03-15
Computing converged ensemble properties remains challenging for large biomolecules. Replica exchange molecular dynamics (REMD) can significantly increase the efficiency of conformational sampling by using high temperatures to escape kinetic traps. Several groups, including ours, introduced the idea of coupling replica exchange to a pre-converged, Boltzmann-populated reservoir, usually at a temperature higher than that of the highest temperature replica. This procedure reduces computational cost because the long simulation times needed for extensive sampling are only carried out for a single temperature. However, a weakness of the approach is that the Boltzmann-weighted reservoir can still be difficult to generate. We now present the idea of employing a non-Boltzmann reservoir, whose structures can be generated through more efficient conformational sampling methods. We demonstrate that the approach is rigorous and derive a correct statistical mechanical exchange criterion between the reservoir and the replicas that drives Boltzmann-weighted probabilities for the replicas. We test this approach on the trpzip2 peptide and demonstrate that the resulting thermal stability profile is essentially indistinguishable from that obtained using very long (>100 ns) standard REMD simulations. The convergence of this reservoir-aided REMD is significantly faster than for regular REMD. Furthermore, we demonstrate that modification of the exchange criterion is essential; REMD simulations using a standard exchange function with the non-Boltzmann reservoir produced incorrect results.
Some peculiarities in the behavior of non-Ising spin glasses
NASA Astrophysics Data System (ADS)
Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.
2015-03-01
This paper is a review. We outline the main directions in the modern theory of spin glasses. The main content is based on our recent papers, devoted to studying replica symmetry breaking in non-Ising spin glasses. Studying a series of generalized models showed a certain uniformity of the behavior of these generalized spin glasses. Essentially, we observe a significant difference between their behavior and the behavior of the known systems with random couplings of Ising spins—the Sherrington-Kirkpatrick model and the corresponding p-spin model. We find the bifurcation point for the solution with the first replica symmetry breaking, study the form and stability of the solution near the bifurcation point, and show in which cases the transition to the glass state occurs continuously and in which cases, with a jump of the order parameters.
Spin polarization of the split Kondo state.
von Bergmann, Kirsten; Ternes, Markus; Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J
2015-02-20
Spin-resolved scanning tunneling microscopy is employed to quantitatively determine the spin polarization of the magnetic field-split Kondo state. Tunneling conductance spectra of a Kondo-screened magnetic atom are evaluated within a simple model taking into account inelastic tunneling due to spin excitations and two Kondo peaks positioned symmetrically around the Fermi energy. We fit the spin state of the Kondo-screened atom with a spin Hamiltonian independent of the Kondo effect and account for Zeeman splitting of the Kondo peak in the magnetic field. We find that the width and the height of the Kondo peaks scales with the Zeeman energy. Our observations are consistent with full spin polarization of the Kondo peaks, i.e., a majority spin peak below the Fermi energy and a minority spin peak above. PMID:25763966
Symmetric Composite Laminate Stress Analysis
NASA Technical Reports Server (NTRS)
Wang, T.; Smolinski, K. F.; Gellin, S.
1985-01-01
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.
2015-01-01
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation. PMID:25328493
Yamamori, Yu; Kitao, Akio
2013-10-14
A new and efficient conformational sampling method, MuSTAR MD (Multi-scale Sampling using Temperature Accelerated and Replica exchange Molecular Dynamics), is proposed to calculate the free energy landscape on a space spanned by a set of collective variables. This method is an extension of temperature accelerated molecular dynamics and can also be considered as a variation of replica-exchange umbrella sampling. In the MuSTAR MD, each replica contains an all-atom fine-grained model, at least one coarse-grained model, and a model defined by the collective variables that interacts with the other models in the same replica through coupling energy terms. The coarse-grained model is introduced to drive efficient sampling of large conformational space and the fine-grained model can serve to conduct more accurate conformational sampling. The collective variable model serves not only to mediate the coarse- and fine-grained models, but also to enhance sampling efficiency by temperature acceleration. We have applied this method to Ala-dipeptide and examined the sampling efficiency of MuSTAR MD in the free energy landscape calculation compared to that for replica exchange molecular dynamics, replica exchange umbrella sampling, temperature accelerated molecular dynamics, and conventional MD. The results clearly indicate the advantage of sampling a relatively high energy conformational space, which is not sufficiently sampled with other methods. This feature is important in the investigation of transition pathways that go across energy barriers. MuSTAR MD was also applied to Met-enkephalin as a test case in which two Gō-like models were employed as the coarse-grained model.
NASA Astrophysics Data System (ADS)
Ito, Shingo; Irle, Stephan; Okamoto, Yuko
2016-07-01
The replica-exchange umbrella sampling (REUS) method combines replica-exchange and umbrella sampling methods and allows larger conformational sampling than conventional simulation methods. This method has been used in many studies to understand docking mechanisms and the functions of molecules. However, REUS has not been combined with quantum chemical codes. Therefore, we implemented the REUS simulation technique in the DFTB + quantum chemistry code utilizing approximate density functional theory. We performed REUS simulations of an intra-molecular proton transfer reaction of malonaldehyde and a formation of a phthalocyanine from four phthalonitriles and one iron atom to validate the reliability of our implemented REUS-DFTB + combination.
Optimal cloning of qubits from replicas of a qubit and its orthogonal states
Kato, Go
2010-09-15
We consider the situation where s replicas of a qubit with an unknown state and its orthogonal k replicas are given as an input, and we try to make c clones of the qubit with the unknown state. As a function of s, k, and c, we obtain the optimal fidelity between the qubit with an unknown state and the clone by explicitly giving a completely positive trace-preserving (CPTP) map that represents a cloning machine. We discuss dependency of the fidelity on the values of the parameters s, k, and c.
Pairwise Quantum Discord for a Symmetric Multi-Qubit System in Different Types of Noisy Channels
NASA Astrophysics Data System (ADS)
Guo, You-Neng; Zeng, Ke; Wang, Guo-You
2016-06-01
We study the pairwise quantum discord (QD) for a symmetric multi-qubit system in different types of noisy channels, such as phase-flip, amplitude damping, phase-damping, and depolarizing channels. Using the QD and geometric quantum discord (GMQD) to quantify quantum correlations, some analytical and numerical results are presented. The results show that, the QD dynamics is strongly related to the number of spin particles N as well as the initial parameter 𝜃 of the one-axis twisting collective state. With the number of spin particles N increasing, the amount of the QD increases. However, when the amount of the QD arrives at a stable maximal value, the QD is independence of the number of spin particles N increasing. The behavior of the QD is symmetrical during a period 0 ≤ 𝜃 ≤ 2 π. Moreover, we compare the QD dynamics with the GMQD for a symmetric multi-qubit system in different types of noisy channels.
Spin filter due to spin Hall effect with axially asymmetric potential
NASA Astrophysics Data System (ADS)
Yokoyama, Tomohiro; Eto, Mikio
2010-02-01
We examine a three-terminal spin filter including an artificial potential created by antidot, scanning tunnel microscope (STM) tip, etc., fabricated on semiconductor heterostructures with strong spin-orbit interaction. When the potential is attractive and its strength is properly tuned, the resonant scattering takes place, which enhances the extrinsic spin Hall effect. As a result, the efficiency of the spin filter can be more than 50% when the potential is axially symmetric. The efficiency becomes smaller when the symmetry is broken, but we still expect an efficient spin filter unless the degree of asymmetry is too large.
Sakuraba, Shun
2016-08-01
In "Replica-exchange-with-tunneling for fast exploration of protein landscapes" [F. Yaşar et al., J. Chem. Phys. 143, 224102 (2015)], a novel sampling algorithm called "Replica Exchange with Tunneling" was proposed. However, due to its violation of the detailed balance, the algorithm fails to sample from the correct canonical ensemble.
NASA Astrophysics Data System (ADS)
Sakuraba, Shun
2016-08-01
In "Replica-exchange-with-tunneling for fast exploration of protein landscapes" [F. Yaşar et al., J. Chem. Phys. 143, 224102 (2015)], a novel sampling algorithm called "Replica Exchange with Tunneling" was proposed. However, due to its violation of the detailed balance, the algorithm fails to sample from the correct canonical ensemble.
Sakuraba, Shun
2016-08-01
In "Replica-exchange-with-tunneling for fast exploration of protein landscapes" [F. Yaşar et al., J. Chem. Phys. 143, 224102 (2015)], a novel sampling algorithm called "Replica Exchange with Tunneling" was proposed. However, due to its violation of the detailed balance, the algorithm fails to sample from the correct canonical ensemble. PMID:27497579
The cumulative overlap distribution function in spin glasses: mean field vs. three dimensions
NASA Astrophysics Data System (ADS)
Yllanes, David; Billoire, Alain; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor
2015-03-01
We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution in spin glasses. Using analytical and numerical mean-field results for the Sherrington-Kirkpatrick model, as well as data from toy models, we show that this approach is an effective tool to distinguish the low-temperature behavior of replica symmmetry breaking systems from that expected in the droplet picture. An application of the method to the three-dimensional Edwards-Anderson models shows agreement with the replica symmetry breaking predictions. Supported by ERC Grant No. 247328 and from MINECO (Spain), Contract No. FIS2012-35719-C02.
Mode conversion by symmetry breaking of propagating spin waves.
Clausen, P.; Vogt, K.; Schultheiss, H.; Schafer, S.; Obry, B.; Wolf, G.; Pirro, P.; Leven, B.; Hillebrands, B.
2011-10-01
We study spin-wave transport in a microstructured Ni{sub 81}Fe{sub 19} waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n = 1, 3,... into a mixed set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripe's width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes.
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E; Landau, David P
2015-01-01
We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.
Polystyrene replicas of neuronal basal lamina act as excellent guides for regenerating neurites.
Karlsson, Martin; Johansson, Fredrik; Kanje, Martin
2011-07-01
Various scaffolds, natural or artificial, have been used for neural repair, including basal lamina scaffolds obtained through extraction of nerves. Here we tested whether plastic casts of such preparations could be used for neurite guidance. To this end, longitudinal micron thick sections of rat sciatic nerve were extracted with detergents and treated with Dnase, yielding an acellular basal lamina master. From the basal lamina master a polydimethylsiloxane (PDMS) mold was made. Then a polystyrene replica was made using the PDMS mold as the master. The polystyrene replica showed high similarity to the master within nanometer resolution as revealed by scanning electron microscopy. Organ cultured mouse dorsal root ganglia grown on the polystyrene replica and the master preparation exhibited guided outgrowth of neurites as assayed by two-dimensional fast Fourier transform analysis on preparations, where the neurites had been visualized by β-III-tubulin staining. The neurites aligned longitudally in the direction of the original basal lamina tubes. Thus, using inexpensive methods it is possible to make replicas of basal lamina which can be used for neurite guidance. This opens a new avenue for nerve reconstruction.
Maccani, J E
1979-12-01
An aerobically incubated, agar-based medium was developed for amino acid decarboxylase testing of Enterobacteriaceae family members by replica-plating methods. Results with the new medium agreed 97 to 99% with the reference broth method of Moeller, and no false-positive reactions were encountered.
Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature
NASA Astrophysics Data System (ADS)
Liu, Jia; Wang, Song; Du, Xiaohong
2016-09-01
Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.
Geometrical spin symmetry and spin
Pestov, I. B.
2011-07-15
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Interpolation via symmetric exponential functions
NASA Astrophysics Data System (ADS)
Bezubik, Agata; Pošta, Severin
2013-11-01
Complex valued functions on the Euclidean space Bbb Rn, symmetric or antisymmetric with respect to the permutation group Sn, are often dealt with in various branches of physics, such as quantum theory or theory of integrable systems. One often needs to approximate such functions with series consisting of various special functions which satisfy nice properties. Questions of uniform convergence of such approximations are crucial for applications. In this article a family of special functions called the symmetric exponential functions are used for such approximation and the uniform convergence of their sums is considered.
Spinning superconducting electrovacuum soliton
NASA Astrophysics Data System (ADS)
Dymnikova, Irina
2006-08-01
In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.
NASA Astrophysics Data System (ADS)
Kopeć, T. K.; Büttner, G.; Usadel, K. D.
1990-10-01
The infinite-range quantum Ising spin glass in a transverse field Γ is studied by means of the thermo-field dynamics as a substitute for the n-replica trick. A new estimate of the critical line Tc(Γ) is obtained by the improved treatment of the dynamic self-interaction - in considerable agreement with the Trotter-Suzuki method.
Prior Distributions on Symmetric Groups
ERIC Educational Resources Information Center
Gupta, Jayanti; Damien, Paul
2005-01-01
Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…
Emergent patterns in a spin-orbit-coupled spin-2 Bose-Einstein condensate
Xu, Z. F.; Lue, R.; You, L.
2011-05-15
The ground-state phases of a spin-orbit (SO)-coupled atomic spin-2 Bose-Einstein condensate are studied. Interesting density patterns forme spontaneously are widespread due to the competition between SO coupling and spin-dependent interactions as in an SO-coupled spin-1 condensate. Unlike the case of spin-1 condensates, which are characterized by either a ferromagnetic or a polar phase in the absence of SO, spin-2 condensates can take a cyclic phase, where we find that the patterns formed due to SO are square or triangular in their spin-component densities for axial symmetric SO interaction. Both patterns are found to evolve continuously into striped forms with increased asymmetry of the SO coupling.
Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting.
Zhou, Xinxing; Ling, Xiaohui
2016-02-01
The photonic spin Hall effect (SHE) manifests itself as the spin-dependent splitting of light beam. Usually, it shows a symmetric spin-dependent splitting, i.e., the left- and right-handed circularly polarized components are equally separated in position and intensity for linear polarization incidence. In this paper, we theoretically propose an asymmetric spin-dependent splitting at an air-glass interface under the illumination of elliptical polarization beam and experimentally demonstrate it with the weak measurement method. The left- and right-handed circularly polarized components show expectedly unequal intensity distributions and unexpectedly different spin-dependent shifts. Remarkably, the asymmetric spin-dependent splitting can be modulated by adjusting the handedness of incident polarization. The inherent physics behind this interesting phenomenon is attributed to the additional spatial Imbert-Fedorov shift. These findings offer us potential methods for developing new spin-based nanophotonic applications. PMID:26906868
High spin-filter efficiency and Seebeck effect through spin-crossover iron-benzene complex.
Yan, Qiang; Zhou, Liping; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng
2016-04-21
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz)2 using density functional theory combined with non-equilibrium Green's function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics. PMID:27389217
Conformally flat static spherically symmetric perfect-fluid distribution in Einstein-Cartan theory
NASA Astrophysics Data System (ADS)
Kalyanshetti, S. B.; Waghmode, B. B.
1983-06-01
We consider the static, conformally flat spherically symmetric perfect-fluid distribution in Einstein-Cartan theory and obtain the field equations. These field equations are solved by adopting Hehl's approach with the assumption that the spins of the particles composing the fluid are all aligned in the radial direction only and the reality conditions are discussed.
Spinning fluids in the Einstein-Cartan theory
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. L.
1983-01-01
An Eulerian variational principle for a spinning fluid in the Einstein-Cartan metric-torsion theory is presented. The variational principle yields the complete set of field equations for the system. The symmetric energy-momentum tensor is a sum of a perfect-fluid term and a spin term.
Neutron and gamma dose and spectra measurements on the Little Boy replica
Hoots, S.; Wadsworth, D.
1984-06-01
The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.
Neutron and gamma-ray dose-rates from the Little Boy replica
Plassmann, E.A.; Pederson, R.A.
1984-01-01
We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distance from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.
Recent advances in freeze-fracture electron microscopy: the replica immunolabeling technique
2008-01-01
Freeze-fracture electron microscopy is a technique for examining the ultrastructure of rapidly frozen biological samples by transmission electron microscopy. Of a range of approaches to freeze-fracture cytochemistry that have been developed and tried, the most successful is the technique termed freeze-fracture replica immunogold labeling (FRIL). In this technique, samples are frozen, fractured and replicated with platinum-carbon as in standard freeze fracture, and then carefully treated with sodium dodecylsulphate to remove all the biological material except a fine layer of molecules attached to the replica itself. Immunogold labeling of these molecules permits their distribution to be seen superimposed upon high resolution planar views of membrane structure. Examples of how this technique has contributed to our understanding of lipid droplet biogenesis and function are discussed. PMID:18385807
Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering.
Gil-Ley, Alejandro; Bussi, Giovanni
2015-03-10
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide.
Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering
2015-01-01
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide. PMID:25838811
On the use of marker loads and replicas for measuring growth rates for small cracks
NASA Technical Reports Server (NTRS)
Swain, M. H.; Newman, J. C., Jr.
1984-01-01
The initiation and growth of small cracks (5-500 microns) from edge notches in 2024-T3 aluminum alloy sheets were studied under constant-amplitude loading. Two methods were used to measure crack shape and size. In the first method, striation marker bands were periodically formed along the crack front by interrupting the constant-amplitude loading by either an elevated R-ratio load sequence, or by an overload sequence. In each case the marker loading was selected so as to have minimal influence on the growth rate under the primary loading. In the second method, the surface crack length was monitored by taking surface replicas at regular intervals. The marker band techniques did not provide reliable crack length and crack shape information for cracks smaller than 2 mm. The replica technique provided accurate information for surface crack length at all crack lengths, and fracture tests on specimens with small cracks provided crack-shape information.
Symmetric States Requiring System Asymmetry.
Nishikawa, Takashi; Motter, Adilson E
2016-09-01
Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can emerge from interactions in complex systems. When the interacting entities are identical and their coupling patterns are also identical, the complete synchronization of the entire network is the state inheriting the system symmetry. As in other systems subject to symmetry breaking, such symmetric states are not always stable. Here, we report on the discovery of the converse of symmetry breaking-the scenario in which complete synchronization is not stable for identically coupled identical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symmetry. Aside from demonstrating that diversity can facilitate and even be required for uniformity and consensus, this suggests a mechanism for convergent forms of pattern formation in which initially asymmetric patterns evolve into symmetric ones. PMID:27661690
Symmetric States Requiring System Asymmetry
NASA Astrophysics Data System (ADS)
Nishikawa, Takashi; Motter, Adilson E.
2016-09-01
Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can emerge from interactions in complex systems. When the interacting entities are identical and their coupling patterns are also identical, the complete synchronization of the entire network is the state inheriting the system symmetry. As in other systems subject to symmetry breaking, such symmetric states are not always stable. Here, we report on the discovery of the converse of symmetry breaking—the scenario in which complete synchronization is not stable for identically coupled identical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symmetry. Aside from demonstrating that diversity can facilitate and even be required for uniformity and consensus, this suggests a mechanism for convergent forms of pattern formation in which initially asymmetric patterns evolve into symmetric ones.
Electrical spin injection in 2D semiconductors and topological insulators
Golub, L. E.; Ivchenko, E. L.
2013-12-04
We have developed a theory of spin orientation by electric current in 2D semiconductors. It is shown that the spin depends on the relation between the energy and spin relaxation times and can vary by a factor of two for the limiting cases of fast and slow energy relaxation. For symmetrically-doped (110)-grown semiconductor quantum wells the effect of current-induced spin orientation is shown to exist due to random spatial variation of the Rashba spin-orbit splitting. We demonstrate that the spin depends strongly on the correlation length of this random spin-orbit field. We calculate the spin orientation degree in two-dimensional topological insulators. In high electric fields when the “streaming” regime is realized, the spin orientation degree weakly depends on the electric field and can reach values about 5%.
Extrinsic spin Nernst effect in two-dimensional electron systems
NASA Astrophysics Data System (ADS)
Akera, Hiroshi; Suzuura, Hidekatsu
2013-02-01
The spin accumulation due to the spin current induced by the perpendicular temperature gradient (the spin Nernst effect) is studied in a two-dimensional electron system (2DES) with spin-orbit interaction by employing the Boltzmann equation. The considered 2DES is confined within a symmetric quantum well with δ doping at the center of the well. A symmetry consideration leads to the spin-orbit interaction which is diagonal in the spin component perpendicular to the 2DES. As origins of the spin current, the skew scattering and the side jump are considered at each impurity on the center plane of the well. It is shown that, for repulsive impurity potentials, the spin-Nernst coefficient changes its sign at the impurity density where contributions from the skew scattering and the side jump cancel each other out. This is in contrast to the spin Hall effect in which the sign change of the coefficient occurs for attractive impurity potentials.
Dhesi, G S; Ausloos, M
2016-06-01
Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N×N matrices to order 1/N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression. PMID:27415216
Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices
NASA Astrophysics Data System (ADS)
Dhesi, G. S.; Ausloos, M.
2016-06-01
Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N ×N matrices to order 1 /N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression.
Plethystic algebras and vector symmetric functions.
Rota, G C; Stein, J A
1994-01-01
An isomorphism is established between the plethystic Hopf algebra Pleth(Super[L]) and the algebra of vector symmetric functions. The Hall inner product of symmetric function theory is extended to the Hopf algebra Pleth(Super[L]). PMID:11607504
Correlative super-resolution fluorescence and metal replica transmission electron microscopy
Sochacki, Kem A.; Shtengel, Gleb; van Engelenburg, Schuyler B.; Hess, Harald F.; Taraska, Justin W.
2014-01-01
Super-resolution localization microscopy is combined with a complementary imaging technique, transmission electron microscopy of metal replicas, to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. Robust correlation on the scale of 20 nm is validated by imaging endogenous clathrin (with 2D and 3D PALM/TEM) and the method is further used to find the previously unknown 3D position of epsin on clathrin coated structures. PMID:24464288
Replicas of Snoopy and Charlie Brown decorate top of console in MCC
NASA Technical Reports Server (NTRS)
1969-01-01
Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip 'Peanuts', decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules. The code words for the Command Module will be Charlie Brown.
A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang Landau sampling
Li, Ying Wai; Vogel, Thomas; Wuest, Thomas; Landau, David P
2014-01-01
We introduce a generic, parallel Wang Landau method that is naturally suited to implementation on massively parallel, petaflop supercomputers. The approach introduces a replica-exchange framework in which densities of states for overlapping sub-windows in energy space are determined iteratively by traditional Wang Landau sampling. The advantages and general applicability of the method are demonstrated for several distinct systems that possess discrete or continuous degrees of freedom, including those with complex free energy landscapes and topological constraints.
On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations.
Lin, Zhixiong; van Gunsteren, Wilfred F
2015-07-21
In a molecular dynamics (MD) simulation, various thermostat algorithms, including Langevin dynamics (LD), Nosé-Hoover (NH), and weak-coupling (WC) thermostats, can be used to keep the simulation temperature constant. A canonical ensemble is generated by the use of LD and NH, while the nature of the ensemble produced by WC has not yet been identified. A few years ago, it was shown that when using a WC thermostat with particular values of the temperature coupling time for liquid water at ambient temperature and pressure, the distribution of the potential energy is less wide than the canonical one. This led to an artifact in temperature replica-exchange molecular dynamics (T-REMD) simulations in which the potential energy distributions appear not to be equal to the ones of standard MD simulations. In this paper, we re-investigate this problem. We show that this artifact is probably due to the ensemble generated by WC being incompatible with the T-REMD replica-exchange criterion, which assumes a canonical configurational ensemble. We also show, however, that this artifact can be reduced or even eliminated by particular choices of the temperature coupling time of WC and the replica-exchange time period of T-REMD, i.e., when the temperature coupling time is chosen very close to the MD time step or when the exchange time period is chosen large enough. An attempt to develop a T-REMD replica-exchange criterion which is likely to be more compatible with the WC configurational ensemble is reported. Furthermore, an exchange criterion which is compatible with a microcanonical ensemble is used in total energy REMD simulations.
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins
NASA Astrophysics Data System (ADS)
Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou
2016-07-01
We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.
Novel grinding stone used for polishing 3D plastic replica with rapid prototyping technology
NASA Astrophysics Data System (ADS)
Feng, Wang; Niikura, Yoshihiro; Sato, Toshio; Kawashima, Norimichi
2006-01-01
Rapid prototyping (RP) apparatus accepts a specific format translated from CAD data (patient's CT) and "slices" it into two-dimensional cross sections for laser photo curing. Surgeon can conduct safer surgery by reappearing on an actual model using 3D plastic replica in the preoperative. Polishing has to be used to eliminate the marks after removal of supports and the build layer pitches. Complicated and narrow areas of the 3D replica are difficult to be polished with the conventional grinding stone. This study proposes a novel grinding stone and introduces its producing process and characteristics. The novel grinding stone has many advantages as follows; (1) Preparation is possible of grinding stone that follows the complicated shape. (2) Grinding stone with uniformly dispersed abrasive grains can be prepared using magnetic particles and magnetic field. (3) Reshaping of grinding stone by heating is possible since the binder is made of a thermoplastic resin. (4) Every process can easily be carried out. We could polish to eliminate the marks after removal of supports and the build layer pitches on 3D plastic replica surface with the grinding stone.
A new in vivo replica technique for scanning electron microscope study of dental plaque morphology.
Lambrechts, P; van Steenberghe, D; Vanherle, G
1982-05-01
For the micro-morphological investigation of soft oral tissues and deposits on the teeth in vivo, the use of an accurate replica technique is essential if the object under study cannot be examined directly. The conventional replica techniques based on resin or elastomer positive dies, have some limitations due to the instability of the sample die in the scanning electron microscope (S.E.M) conditions and artifacts induced at higher magnifications. Therefore, a new replica technique has been developed using a low viscosity impression material that is subsequently copperplated and poured with synthetic plaster. This offers a stable metal positive die suitable for direct examination in the S.E.M. without prior gold evaporation. Higher magnifications (greater than 7500) are easily obtained without the danger of artifacts. Reproduction of details is of a high order, and the reproduction ability depends only on the accuracy of the first impression. This technique offers new possibilities of discerning fine changes in surface detail in longitudinal clinical investigations.
Phase transitions in continuum ferromagnets with unbounded spins
Daletskii, Alexei; Kondratiev, Yuri; Kozitsky, Yuri
2015-11-15
States of thermal equilibrium of an infinite system of interacting particles in ℝ{sup d} are studied. The particles bear “unbounded” spins with a given symmetric a priori distribution. The interaction between the particles is pairwise and splits into position-position and spin-spin parts. The position-position part is described by a superstable potential, and the spin-spin part is attractive and of finite range. Thermodynamic states of the system are defined as tempered Gibbs measures on the space of marked configurations. It is proved that the set of such measures contains at least two elements if the activity is big enough.
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Jin, Biao; Ma, Hongyang
2015-12-01
We study the conductance of two-dimensional electron gas/spin-triplet superconductor junctions in the presence of Rashba spin-orbit coupling. The conductance shows anisotropic dependence on the orientation of the d-vector in the superconductor and is simultaneously symmetric about the vector reversal. The properties are distinct from those for ferromagnet/spin-triplet superconductor or/and two-dimensional electron gas/spin-singlet superconductor junctions. The effects of the strength of the spin-orbit coupling and the height of the interfacial barrier are also investigated.
Kinetic investigation of the extrinsic spin Hall effect induced by skew scattering
NASA Astrophysics Data System (ADS)
Cheng, J. L.; Wu, M. W.
2008-02-01
A study of the kinetics of the extrinsic spin Hall conductivity induced by skew scattering is performed using the fully microscopic kinetic spin Bloch equation approach to the (001) GaAs symmetric quantum well. In the steady state, the extrinsic spin Hall current/conductivity vanishes for the linear k dependent spin-orbit coupling and is very small for the cubic k dependent spin-orbit coupling. The spin precession induced by the Dresselhaus/Rashba spin-orbit coupling plays a very important role in the vanishing of the extrinsic spin Hall conductivity in the steady state. An in-plane spin polarization is induced by the skew scattering, with the help of the spin-orbit coupling. This spin polarization is very different from the current-induced spin polarization.
Symmetric spaces of exceptional groups
Boya, L. J.
2010-02-15
We address the problem of the reasons for the existence of 12 symmetric spaces with the exceptional Lie groups. The 1 + 2 cases for G{sub 2} and F{sub 4}, respectively, are easily explained from the octonionic nature of these groups. The 4 + 3 + 2 cases on the E{sub 6,7,8} series require the magic square of Freudenthal and, for the split case, an appeal to the supergravity chain in 5, 4, and 3 space-time dimensions.
Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin
2003-08-29
We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed.
Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.
Stuart, Yoel E; Dappen, Nathan; Losin, Neil
2012-01-01
Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined. PMID:23119039
Inferring Predator Behavior from Attack Rates on Prey-Replicas That Differ in Conspicuousness
2012-01-01
Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator’s ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators’ direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined. PMID:23119039
Koulgi, Shruti; Sonavane, Uddhavesh; Joshi, Rajendra
2010-11-01
Protein folding studies were carried out by performing microsecond time scale simulations on the ultrafast/fast folding protein Engrailed Homeodomain (EnHD) from Drosophila melanogaster. It is a three-helix bundle protein consisting of 54 residues (PDB ID: 1ENH). The positions of the helices are 8-20 (Helix I), 26-36 (Helix II) and 40-53 (Helix III). The second and third helices together form a Helix-Turn-Helix (HTH) motif which belongs to the family of DNA binding proteins. The molecular dynamics (MD) simulations were performed using replica exchange molecular dynamics (REMD). REMD is a method that involves simulating a protein at different temperatures and performing exchanges at regular time intervals. These exchanges were accepted or rejected based on the Metropolis criterion. REMD was performed using the AMBER FF03 force field with the generalised Born solvation model for the temperature range 286-373 K involving 30 replicas. The extended conformation of the protein was used as the starting structure. A simulation of 600 ns per replica was performed resulting in an overall simulation time of 18 μs. The protein was seen to fold close to the native state with backbone root mean square deviation (RMSD) of 3.16 Å. In this low RMSD structure, the Helix I was partially formed with a backbone RMSD of 3.37 Å while HTH motif had an RMSD of 1.81 Å. Analysis suggests that EnHD folds to its native structure via an intermediate in which the HTH motif is formed. The secondary structure development occurs first followed by tertiary packing. The results were in good agreement with the experimental findings.
Routine characterization of 3-D profiles of SRF cavity defects using replica techniques
Ge, M.; Wu, G.; Burk, D.; Ozelis, J.; Harms, E.; Sergatskov, D.; Hicks, D.; Cooley, L.D.; /Fermilab
2010-09-01
Recent coordination of thermometry with optical images has shown that obvious defects at specific locations produce heat or even quench superconducting radio frequency (SRF) cavities, imposing a significant limit on the overall accelerating gradient produced by the cavity. Characterization of the topography at such locations provides clues about how the defects originated, from which schemes for their prevention might be devised. Topographic analyses also provide understanding of the electromagnetic mechanism by which defects limit cavity performance, from which viability of repair techniques might be assessed. In this article we discuss how a variety of two-component silicone-based room-temperature vulcanizing agents can be routinely used to make replicas of the cavity surface and extract topographic details of cavity defects. Previously, this level of detail could only be obtained by cutting suspect regions from the cavity, thus destroying the cavity. We show 3-D profiles extracted from several different 1.3 GHz cavities. The defect locations, which were all near cavity welds, compelled us to develop extraction techniques for both equator and iris welds as well as from deep inside long 9-cell cavities. Profilometry scans of the replicas yield micrometer-scale information, and we describe various curious features, such as small peaks at the bottom of pits, which were not apparent in previous optical inspections. We also discuss contour information in terms of electromagnetic mechanisms proposed by others for local cavity heating. We show that production of the replica followed by high-pressure rinsing dose not adversely affect the cavity RF performance.
Polyurethane Foam-Filled Skull Replica of Craniosynostosis for Surgical Training.
Jeong, Yeon Jin; Lee, Jun Yong
2016-05-01
Craniosynostosis has a relatively low incidence in the general population and its treatment requires cautious approaches. For these reasons, patients are usually referred to several specialists or a medical center. Therefore, most trainees and young surgeons do not have any chances to experience patients of craniosynostosis, but learn about it only from textbooks. And for a surgeon who tries to operate on a craniosynostosis patient, it is hard to make a proper preoperative plan.The authors suggest a polyurethane foam-filled skull replica of craniosynostosis for trainees that can also be used in planning a craniosynostosis operation. PMID:27054421
Conformation transitions of a polyelectrolyte chain: a replica-exchange Monte-Carlo study.
Chi, Peng; Li, Baohui; Shi, An-Chang
2011-08-01
The thermodynamic behavior of a strongly charged polyelectrolyte chain immersed in a salt-free solution is studied using replica-exchange Monte-Carlo simulations. The results reveal that the chain can assume a variety of conformations, and it undergoes two phase transitions upon cooling. The first transition is identified as a continuous counterion condensation transition while the second one as a first-order coil-globule transition. In the globular state, the counterions and the charged chain segments are densely packed forming a three-dimensional Wigner crystal.
NASA Astrophysics Data System (ADS)
Copic, Davor
Addition of micro- and/or nanoscale textures to surfaces can enable engineering of a wide range of properties. Passive surfaces (using fixed microstructures) can manipulate cell adhesion, liquid drag, and thermal and electrical contact resistance. Active surfaces (using shape-changing microstructures) can enable modulation of liquid wetting, adhesion, and optical properties. Nevertheless, it remains a challenge to fabricate the mechanically and environmentally robust microstructures and microactuators in large arrays. This thesis presents new fabrication methods for microstructured polymer and nanocomposite surfaces. Two approaches are pursued: capillary driven infiltration of fabricated carbon nanotube (CNT) microstructures and replica molding (REM) of master templates in liquid crystal networks (LCNs). First, it is demonstrated that CNT-polymer microstructures can function as robust large-area master molds. The fabricated microstructures include pins, tubes, re-entrant microwells, bent pillars, and high-aspect-ratio honeycombs (thickness of 400nm, aspect ratio 50:1). All are used as master structures for replica molding. A 25-fold replication sequence is shown with no physical degradation of the master or the replicas. Further, the increased stiffness and toughness of CNT-SU-8 microstructures is quantified. Second, active surfaces were created by capillary infiltration of paraffin into CNT forests. Large stroke sheet actuators, exhibiting up to 20% thermal strain at 175°C are shown. Third, thermally and optically active LCN microstructure replicas were created. Their generated strains were measured to be 6% and 0.25%, respectively. In situ monitoring of the LCN phase and order was also performed. Although having low strains, optically active microstructures are attractive for future work because they can be actuated individually and remotely. These scalable methods of fabricating microstructured surfaces, both with robust mechanical properties and active
Performance and potential applications of replica technology up to the 1-m range
NASA Astrophysics Data System (ADS)
Assus, Pierre; Glentzlin, Andre; Schneider, Jean L.; Bresson, Yves; Dierickx, Philippe
1994-06-01
The principle of replication of optical surfaces developed at OCA is given and positive results obtained in the double replication of a 1-m diameter concave master onto a concave substrate by means of an intermediate convex replica is presented. The effect of thermal cycles and humidity is addressed as well. The technology has potential applications which are not limited to serial production of small optical components but may ease the production of large convex mirrors, processing of lightweight substrates and possible exotic materials. Possible use of this technique for the VLT secondaries and/or Coude train will conclude.
Communication: equation of state of hard oblate ellipsoids by replica exchange Monte Carlo.
Odriozola, G; Guevara-Rodríguez, F de J
2011-05-28
We implemented the replica exchange Monte Carlo technique to produce the equation of state of hard 1:5 aspect-ratio oblate ellipsoids for a wide density range. For this purpose, we considered the analytical approximation of the overlap distance given by Bern and Pechukas and the exact numerical solution given by Perram and Wertheim. For both cases we capture the expected isotropic-nematic transition at low densities and a nematic-crystal transition at larger densities. For the exact case, these transitions occur at the volume fraction 0.341, and in the interval 0.584-0.605, respectively.
Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus; Vogel, Thomas; Landau, David P
2015-01-01
We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.
Radak, Brian K; Romanus, Melissa; Lee, Tai-Sung; Chen, Haoyuan; Huang, Ming; Treikalis, Antons; Balasubramanian, Vivekanandan; Jha, Shantenu; York, Darrin M
2015-02-10
Replica exchange molecular dynamics has emerged as a powerful tool for efficiently sampling free energy landscapes for conformational and chemical transitions. However, daunting challenges remain in efficiently getting such simulations to scale to the very large number of replicas required to address problems in state spaces beyond two dimensions. The development of enabling technology to carry out such simulations is in its infancy, and thus it remains an open question as to which applications demand extension into higher dimensions. In the present work, we explore this problem space by applying asynchronous Hamiltonian replica exchange molecular dynamics with a combined quantum mechanical/molecular mechanical potential to explore the conformational space for a simple ribonucleoside. This is done using a newly developed software framework capable of executing >3,000 replicas with only enough resources to run 2,000 simultaneously. This may not be possible with traditional synchronous replica exchange approaches. Our results demonstrate 1.) the necessity of high dimensional sampling simulations for biological systems, even as simple as a single ribonucleoside, and 2.) the utility of asynchronous exchange protocols in managing simultaneous resource requirements expected in high dimensional sampling simulations. It is expected that more complicated systems will only increase in computational demand and complexity, and thus the reported asynchronous approach may be increasingly beneficial in order to make such applications available to a broad range of computational scientists. PMID:26580900
Dinchuk, J E; Johnson, T J; Rash, J E
1987-09-01
Conventional freeze-fracture techniques were combined with immunogold labeling and with plastic embedding and sectioning to analyze the distribution of membrane immunoglobulins (mIgs) and their associated intramembrane particles (IMPs) in E-face replicas of murine B-lymphocyte plasma membranes. Immunogold labels were applied to cells after the process of freeze-fracture and replication. Conventional stereoscopic transmission electron microscopic examination of sectioned, labeled replicas (SLRs) revealed that the gold-labeled mIgs were bound to and localized on the outer leaflets of split and replicated membranes. The gold labels were attached to the external determinants of the mIg molecules, which were retained beneath and contiguous with the replicated E-faces. The mIgs were also localized on the external surface of unreplicated microvilli. In addition, thick sections examined by high-voltage transmission electron microscopy (HVEM) revealed large expanses of replica with well-resolved IMPs. mIgs colocalized with small-diameter (less than 60 A) IMPs in E-face replicas of B-lymphocytes whose mIgs were patched by anti-immunoglobulin. Thus, postreplication E-surface labeling of split and replicated membranes is a high-resolution technique that is suitable for the study of membrane protein distribution in E-face replicas and contiguous nonreplicated tissue.
Probabilistic cloning of three symmetric states
Jimenez, O.; Bergou, J.; Delgado, A.
2010-12-15
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
Walking dynamics are symmetric (enough)
Ankaralı, M. Mert; Sefati, Shahin; Madhav, Manu S.; Long, Andrew; Bastian, Amy J.; Cowan, Noah J.
2015-01-01
Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model.
Symmetric blanket nuclear fuel assembly
Penkrot, J.A.
1986-08-19
This patent describes a fuel assembly having spaced-apart fuel rods, the combination comprising: (a) a first group of the fuel rods containing natural uranium only; and (b) a second group of the fuel rods constituting the remainder therof containing enriched uranium only; (c) the fuel rods of the first group being surrounded by the fuel rods of the second group in a predetermined symmetrical relationship; (d) the first group of the fuel rods forming an inner, centrally-located, generally squared pattern wherein the only fuel rods present in the inner squared pattern are the fuel rods of the first group; (e) the second group of the fuel rods forming an outer, peripherally-located, generally squared annular pattern which surrounds the first group wherein the only fuel rods present in the outer squared pattern are the fuel rods of the second group.
Computing symmetric colorings of the dihedral group
NASA Astrophysics Data System (ADS)
Zelenyuk, Yuliya
2016-06-01
A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.
Collective uncertainty in partially polarized and partially decohered spin-(1/2) systems
Baragiola, Ben Q.; Chase, Bradley A.; Geremia, JM
2010-03-15
It has become common practice to model large spin ensembles as an effective pseudospin with total angular momentum J=Nj, where j is the spin per particle. Such approaches (at least implicitly) restrict the quantum state of the ensemble to the so-called symmetric Hilbert space. Here, we argue that symmetric states are not generally well preserved under the type of decoherence typical of experiments involving large clouds of atoms or ions. In particular, symmetric states are rapidly degraded under models of decoherence that act identically but locally on the different members of the ensemble. Using an approach [Phys. Rev. A 78, 052101 (2008)] that is not limited to the symmetric Hilbert space, we explore potential pitfalls in the design and interpretation of experiments on spin-squeezing and collective atomic phenomena when the properties of the symmetric states are extended to systems where they do not apply.
Free-Energy Bounds for Hierarchical Spin Models
NASA Astrophysics Data System (ADS)
Castellana, Michele; Barra, Adriano; Guerra, Francesco
2014-04-01
In this paper we study two non-mean-field (NMF) spin models built on a hierarchical lattice: the hierarchical Edward-Anderson model (HEA) of a spin glass, and Dyson's hierarchical model (DHM) of a ferromagnet. For the HEA, we prove the existence of the thermodynamic limit of the free energy and the replica-symmetry-breaking (RSB) free-energy bounds previously derived for the Sherrington-Kirkpatrick model of a spin glass. These RSB mean-field bounds are exact only if the order-parameter fluctuations (OPF) vanish: given that such fluctuations are not negligible in NMF models, we develop a novel strategy to tackle part of OPF in hierarchical models. The method is based on absorbing part of OPF of a block of spins into an effective Hamiltonian of the underlying spin blocks. We illustrate this method for DHM and show that, compared to the mean-field bound for the free energy, it provides a tighter NMF bound, with a critical temperature closer to the exact one. To extend this method to the HEA model, a suitable generalization of Griffith's correlation inequalities for Ising ferromagnets is needed: since correlation inequalities for spin glasses are still an open topic, we leave the extension of this method to hierarchical spin glasses as a future perspective.
Spin-glass splitting in the quantum Ghatak-Sherrington model.
Kim, Do-Hyun
2013-04-01
We propose an expanded spin-glass model, called the quantum Ghatak-Sherrington model, which considers spin-1 quantum spin operators in a crystal field and in a transverse field. The analytic solutions and phase diagrams of this model are obtained by using the one-step replica symmetry-breaking ansatz under the static approximation. Our results represent the splitting within one spin-glass (SG) phase depending on the values of crystal and transverse fields. The two separated SG phases, characterized by a density of filled states, show certain differences in their shapes and phase boundaries. Such SG splitting becomes more distinctive when the degeneracy of the empty states of spins is larger than one of their filled states. PMID:23679392
Quantifying Fluctuation Effects on the Order-Disorder Transition of Symmetric Diblock Copolymers
NASA Astrophysics Data System (ADS)
Zong, Jing; Wang
2012-02-01
How fluctuations change the order-disorder transition (ODT) of symmetric diblock copolymers is a classic yet unsolved problem in polymer physics.ootnotetextL. Leibler, Macromolecules, 13, 1602 (1980); G. H. Fredrickson and E. Helfand, J. Chem. Phys., 87, 697 (1987). Here we unambiguously quantify the fluctuation effects by direct comparisons between fast off-lattice Monte Carlo (FOMC) simulationsootnotetextQ. Wang and Y. Yin, J. Chem. Phys., 130, 104903 (2009). and mean-field theory using exactly the same model system (Hamiltonian), thus without any parameter-fitting. The symmetric diblock copolymers are modeled as discrete Gaussian chains with soft, finite-range repulsions as commonly used in dissipative-particle dynamics simulations. The effects of chain discretization and finite-range interactions on ODT are properly accounted for in our mean-field theory.ootnotetextQ. Wang, J. Chem. Phys., 129, 054904 (2008); 131, 234903 (2009). Our FOMC simulations are performed in a canonical ensemble with variable box lengths to eliminate the adverse effects of fixed box sizes on ODT.ootnotetextQ. Wang et al., J. Chem. Phys., 112, 450 (2000). Furthermore, with a new order parameter for the lamellar phase, we use replica exchange and multiple histogram reweighting to accurately locate ODT in our simulations.
Persoff, P.; Pruess, K.; Petersen, L.P.
1995-01-01
Small sections (75 mm x 75 mm) of two natural rock fractures from outcrop boulders of Tiva Canyon tuff have been reproduced as transparent replicas. Aperture maps were drawn from images of the replicas filled with dye. Apertures were measured by the areas occupied by liquid drops of known volume. For both these fractures, the average aperture is about 350 {mu}m, while the hydraulic aperture is less (72 and 130 {mu}m). Two-phase (air-water) flow experiments have been conducted in these replicas to measure relative permeability and capillary pressures. The results obtained confirm the results of previous fracture experiments, and theoretical analysis, that the sum of relative permeabilities is much less than 1 at intermediate saturations. The welded tuffs in the vadose zone of Yucca Mountain, Nevada, are being investigated as the potential site of a geological repository for high-level nuclear wastes.
NASA Astrophysics Data System (ADS)
Lu, Qing; Kim, Jaegil; Farrell, James D.; Wales, David J.; Straub, John E.
2014-11-01
The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.
Nuclear research emulsion neutron spectrometry at the Little-Boy replica
Gold, R.; Roberts, J.H.; Preston, C.C.
1985-10-01
Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2 m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2 m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2-m, 0/sup 0/ and 2-m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. Neutron spectra obtained from these NRE proton-recoil spectra are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. NRE and liquid scintillator neutron spectra generally agree within experimental uncertainties at the 2-m, 90/sup 0/ location. However, at the 2-m, 0/sup 0/ location, the neutron spectra derived from these two independent experimental methods differ significantly. NRE spectra and Monte Carlo calculations exhibit general agreement with regard to both intensity as well as energy dependence. Better agreement is attained between theory and experiment at the 2-m, 90/sup 0/ location, where the neutron intensity is considerably higher. 14 refs., 18 figs., 11 tabs.
Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.
2014-11-14
The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.
Wang, Kai; Yang, Yanzhi; Chodera, John D.; Shirts, Michael R.
2014-01-01
We present a method to identify small molecule ligand binding sites and orientations to a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics simulations. The Hamiltonians used vary from the physical end state of protein interacting with the ligand to a unphysical end state where the ligand does not interact with the protein. As replicas explore the space of Hamiltonians interpolating between these states the ligand can rapidly escape local minima and explore potential binding sites. Geometric restraints keep the ligands within the protein volume, and a potential energy pathway designed to increase phase space overlap between intermediates ensures good mixing. Because of the rigorous statistical mechanical nature of the Hamiltonian exchange framework, we can also extract binding free energy estimates at all putative binding sites, which agree well with free energies computed from occupation probabilities. We present results of this methodology on the T4 lysozyme L99A model system with four ligands, including one non-binder as a control. We find that our methodology identifies the crystallographic binding sites consistently and accurately for the small number of ligands considered here and gives free energies consistent with experiment. We are also able to analyze the contribution of individual binding sites on the overall binding affinity. Our methodology points to near term potential applications in early-stage drug discovery. PMID:24297454
High-Fidelity Replica Molding of Glassy Liquid Crystalline Polymer Microstructures.
Zhao, Hangbo; Wie, Jeong Jae; Copic, Davor; Oliver, C Ryan; Orbaek White, Alvin; Kim, Sanha; Hart, A John
2016-03-01
Liquid crystalline polymers have recently been engineered to exhibit complex macroscopic shape adaptivity, including optically- and thermally driven bending, self-sustaining oscillation, torsional motion, and three-dimensional folding. Miniaturization of these novel materials is of great interest for both fundamental study of processing conditions and for the development of shape-changing microdevices. Here, we present a scalable method for high-fidelity replica molding of glassy liquid crystalline polymer networks (LCNs), by vacuum-assisted replica molding, along with magnetic field-induced control of the molecular alignment. We find that an oxygen-free environment is essential to establish high-fidelity molding with low surface roughness. Identical arrays of homeotropic and polydomain LCN microstructures are fabricated to assess the influence of molecular alignment on the elastic modulus (E = 1.48 GPa compared to E = 0.54 GPa), and side-view imaging is used to quantify the reversible thermal actuation of individual LCN micropillars by high-resolution tracking of edge motion. The methods and results from this study will be synergistic with future advances in liquid crystalline polymer chemistry, and could enable the scalable manufacturing of stimuli-responsive surfaces for applications including microfluidics, tunable optics, and surfaces with switchable wetting and adhesion. PMID:26943057
Replica plating and in situ enzymatic assay of animal cell colonies established on filter paper.
Esko, J D; Raetz, C R
1978-03-01
We have developed a simple technique for the replica plating of Chinese hamster ovary (CHO) cells. In this procedure cells are allowed to divide for 8-16 days between the plastic surface of a petri dish and a disc of Whatman no. 50 filter paper, weighted down with glass beads. The culture medium can be replaced when necessary without disturbing the growing colonies. Cells from each developing colony grow into the fibers of the paper, while others remain attached to the plate. The cell colonies transferred to the paper are viable and can be replica plated to a new petri dish with high resolution. In this way several inositol auxotrophs have been identified in a stock of mutagen-treated cells without prior enrichment. Alternatively, the cells on the paper can be rendered permeable in situ, which permits autoradiographic screening for specific biochemical defects, as reported previously for Escherichia coli [Raetz, C. R.H. (1975 Proc. Natl. Acad. Sci. USA 72, 2274-2278]. This technique is applicable to other common cell lines and is especially useful for the identification of single colonies defective in the synthesis of DNA, RNA, protein, and membrane lipids.
On the use of marker loads and replicas for measuring growth rates for small cracks
NASA Technical Reports Server (NTRS)
Swain, M. H.; Newman, J. C., Jr.
1984-01-01
The initiation and growth of small cracks (5-500 microns m) from edge notches in 2024-T3 aluminum alloy sheets were studied under constant amplitude loading. Two methods were used to measure crack shape and size. In the first method, striation marker bands were periodically formed along the crack front by interrupting the constant amplitude loading by either an elevated R-ratio load sequence, or by an overload sequence. In the second method, the surface crack length was monitored by taking surface replicas at regular intervals. The marker band techniques did not provide reliable crack length and crack shape information for cracks smaller than 2 mm. The replica technique provided accurate information for surface crack length at all crack lengths, and fracture tests on specimens with small cracks provided crack-shape information. Crack growth rates were plotted against the stress intensity factor ranges. The results exhibited the small crack effect, in that the small cracks grew faster than large cracks at the same stress-intensity factor range. A crack closure model was also used to analyze the growth of small cracks from small (inclusion) defects at the notch surface.
Individually Addressable Arrays of Replica Microbial Cultures Enabled by Splitting SlipChips
Ma, Liang; Datta, Sujit S.; Karymov, Mikhail A; Pan, Qichao; Begolo, Stefano; Ismagilov, Rustem F.
2014-01-01
Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1,000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization. PMID:24953827
Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics
NASA Astrophysics Data System (ADS)
Turner, Robert M.; Jack, Robert L.; Garrahan, Juan P.
2015-08-01
We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ɛ*(T ) , which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T ) ≳0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states.
Hu, Xuan; Chen, Xi; Ye, Lu; Fan, Ming-Wen; Huysmans, Marie-Charlotte; Frencken, Jo E
2014-06-01
To compare the levels of agreement and the survival rates of sealant retention for different sealing materials over a 2-year period assessed using the visual clinical examination and replica methods, sealant retention data were obtained by visual clinical examination and from replicas of the same sealed tooth at baseline and at 0.5-, 1- and 2-year evaluation points in 407 children and were compared for agreement using kappa coefficients. Survival curves of retained sealants on occlusal surfaces were created using modified categorisation (fully retained sealants and those having all pits and fissures partly covered with the sealant material versus completely lost sealants that included pit and fissure systems that had ≥1 pit re-exposed) according to the Kaplan-Meier method. The kappa coefficient for the agreement between both assessment methods over the three evaluation time points combined was 0.38 (95% confidence interval (CI): 0.35-0.41). More sealant retention was observed from replicas than through visual clinical examination. Cumulative survival curves at the three evaluation times were not statistically significantly higher when assessed from replicas (P=0.47). Using the replica method, more retained sealant material was observed than through visual clinical examination during the 2-year period. This finding did not result in a difference in the survival rates of sealants assessed by the two assessment methods. When replicas cast in die stone are used for assessing sealant retention, the level of reliability of the data is higher than that of data obtained through the commonly used visual clinical examination, particularly if such assessments are conducted over time.
Theory of the ac spin-valve effect.
Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav
2011-10-21
The spin-valve complex magnetoimpedance of symmetric ferromagnet-normal-metal-ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance-the real part difference of the impedances of the parallel and antiparallel magnetization configurations-exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size. PMID:22107552
Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn
2014-08-18
The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.
Continuity and Separation in Symmetric Topologies
ERIC Educational Resources Information Center
Harris, J.; Lynch, M.
2007-01-01
In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.
Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation
NASA Astrophysics Data System (ADS)
Inoue, H. Y.; Harii, K.; Ando, K.; Sasage, K.; Saitoh, E.
2007-10-01
Electric-field generation due to the inverse spin-Hall effect (ISHE) driven by spin pumping was detected and separated experimentally from the extrinsic magnetogalvanic effects in a Ni81Fe19/Pt film. By applying a sample-cavity configuration in which the extrinsic effects are suppressed, the spin pumping using ferromagnetic resonance gives rise to a symmetric spectral shape in the electromotive force spectrum, indicating that the motive force is due entirely to ISHE. This method allows the quantitative analysis of the ISHE and the spin-pumping effect. The microwave-power dependence of the ISHE amplitude is consistent with the prediction of a direct current-spin-pumping scenario.
Symmetrical thalamic lesions in infants.
Eicke, M; Briner, J; Willi, U; Uehlinger, J; Boltshauser, E
1992-01-01
Clinical observations and findings on imaging are reported in six newborns with symmetrical thalamic lesions (STL). In three cases the diagnosis was confirmed by postmortem examination. Characteristic observations in this series and 17 previously reported cases include no evidence of perinatal asphyxia, high incidence of polyhydramnios, absent suck and swallow, absent primitive reflexes, appreciable spasticity at or within days of birth, lack of psychomotor development, and death within days or months. Characteristic pathological findings include loss of neurons, astrogliosis, and 'incrusted' neurons particularly in the thalamus. In two thirds of cases the basal ganglia and brain stem are involved as well. A hypoxic-ischaemic event occurring two to four weeks before birth is most likely responsible for STL. Bilateral thalamic calcification can often, but not always, be demonstrated in the newborn period by computed tomography and/or cranial ultrasound. The presence of these calcifications and the observation of spasticity at birth imply that the responsible insult occurred at least two to four weeks earlier. The small number of published cases with STL suggest that it may be easily missed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1536580
Baryon symmetric big bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Parity-time-symmetric teleportation
NASA Astrophysics Data System (ADS)
Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.
2016-06-01
We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.
Gapless excitations of axially symmetric vortices in systems with tensorial order parameter
Peterson, Adam J.; Shifman, Mikhail
2014-09-15
We extend the results of previous work on vortices in systems with tensorial order parameters. Specifically, we focus our attention on systems with a Ginzburg–Landau free energy with a global U(1){sub P}×SO(3){sub S}×SO(3){sub L} symmetry in the phase, spin and orbital degrees of freedom. We consider axially symmetric vortices appearing on the spin–orbit locked SO(3){sub S+L} vacuum. We determine the conditions required on the Ginzburg–Landau parameters to allow for an axially symmetric vortex with off diagonal elements in the order parameter to appear. The collective coordinates of the axial symmetric vortices are determined. These collective coordinates are then quantized using the time dependent Ginzburg–Landau free energy to determine the number of gapless modes propagating along the vortex.
Tidal deformations of a spinning compact object
NASA Astrophysics Data System (ADS)
Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria
2015-07-01
The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.
Symmetric Monotone Venn Diagrams with Seven Curves
NASA Astrophysics Data System (ADS)
Cao, Tao; Mamakani, Khalegh; Ruskey, Frank
An n-Venn diagram consists of n curves drawn in the plane in such a way that each of the 2 n possible intersections of the interiors and exteriors of the curves forms a connected non-empty region. A k-region in a diagram is a region that is in the interior of precisely k curves. A n-Venn diagram is symmetric if it has a point of rotation about which rotations of the plane by 2π/n radians leaves the diagram fixed; it is polar symmetric if it is symmetric and its stereographic projection about the infinite outer face is isomorphic to the projection about the innermost face. A Venn diagram is monotone if every k-region is adjacent to both some (k - 1)-region (if k > 0) and also to some k + 1 region (if k < n). A Venn diagram is simple if at most two curves intersect at any point. We prove that the "Grünbaum" encoding uniquely identifies monotone simple symmetric n-Venn diagrams and describe an algorithm that produces an exhaustive list of all of the monotone simple symmetric n-Venn diagrams. There are exactly 23 simple monotone symmetric 7-Venn diagrams, of which 6 are polar symmetric.
The symmetric extendibility of quantum states
NASA Astrophysics Data System (ADS)
Nowakowski, Marcin L.
2016-09-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Hayami, Satoru
2016-02-01
Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. Such a description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axis spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the "spin" of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. The derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.
Optimal quantum cloning via spin networks
Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng
2006-09-15
In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.
Theoretical Study on Twofold and Fourfold Symmetric Anisotropic Magnetoresistance Effect
NASA Astrophysics Data System (ADS)
Kokado, Satoshi; Tsunoda, Masakiyo
We theoretically study the twofold and fourfold symmetric anisotropic magnetoresistance (AMR) effect [ 1 ] . We first extend our previous model [ 2 ] to a model including the crystal field effect [ 1 ] . Using the model, we next obtain an analytical expression of the AMR ratio, i.e., AMR (ϕ) =C0 +C2 cos (2 ϕ) +C4 cos (4 ϕ) , with C0=C2 -C4 [ 1 ] . Here, ϕ is the relative angle between the magnetization direction and the electric current direction and C2 (C4) is a coefficient of the twofold (fourfold) symmetric term. The coefficients C2 and C4 are expressed by a spin-orbit coupling constant, an exchange field, a crystal field, and s-s and s-d scattering resistivities. Using this expression, we analyze the experimental results for Fe4N [ 3 ] , in which | C2 | and | C4 | increase with decreasing temperature. The experimental results can be reproduced by assuming that the tetragonal distortion increases with decreasing temperature. [ 1 ] S. Kokado et al., J. Phys. Soc. Jpn. 84 (2015) 094710. [ 2 ] S. Kokado et al., J. Phys. Soc. Jpn. 81 (2012) 024705. [ 3 ] M. Tsunoda et al., Appl. Phys. Express 3 (2010) 113003.
Borojeni, Azadeh A T; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H
2015-07-16
This work describes in vitro measurement of the total pressure loss at varying flow rate through anatomically realistic conducting airway replicas of 10 children, 4 to 8 years old, and 5 adults. Experimental results were compared with analytical predictions made using published airway resistance models. For the adult replicas, the model proposed by van Ertbruggen et al. (2005. J. Appl. Physiol. 98, 970-980) most accurately predicted central conducting airway resistance for inspiratory flow rates ranging from 15 to 90 L/min. Models proposed by Pedley et al. (1970. J. Respir. Physiol. 9, 371-386) and by Katz et al. (2011. J. Biomech. 44, 1137-1143) also provided reasonable estimates, but with a tendency to over predict measured pressure loss for both models. For child replicas, the Pedley and Katz models both provided good estimation of measured pressure loss at flow rates representative of resting tidal breathing, but under predicted measured values at high inspiratory flow rate (60 L/min). The van Ertbruggen model, developed based on flow simulations performed in an adult airway model, tended to under predict measured pressure loss through the child replicas across the range of flow rates studied (2 to 60 L/min). These results are intended to provide guidance for selection of analytical pressure loss models for use in predicting airway resistance and ventilation distribution in adults and children.
Hu, Xuan; Fan, Mingwan; Rong, Wensheng; Lo, Edward C M; Bronkhorst, Ewald; Frencken, Jo E
2014-08-01
The aim of this study was to test the hypothesis that the colour photograph method has a higher level of validity for assessing sealant retention than the visual clinical examination and replica methods. Sealed molars were assessed by two evaluators. The scores for the three methods were compared against consensus scores derived through assessing retention from scanning electron microscopy images (reference standard). The presence/absence (survival) of retained sealants on occlusal surfaces was determined according to the traditional and modified categorizations of retention. Sensitivity, specificity, and Youden-index scores were calculated. Sealant retention assessment scores for visual clinical examinations and for colour photographs were compared with those of the reference standard on 95 surfaces, and sealant retention assessment scores for replicas were compared with those of the reference standard on 33 surfaces. The highest mean Youden-index score for the presence/absence of sealant material was observed for the colour photograph method, followed by that for the replica method; the visual clinical examination method scored lowest. The mean Youden-index score for the survival of retained sealants was highest for the colour photograph method for both the traditional (0.882) and the modified (0.768) categories of sealant retention, whilst the visual clinical examination method had the lowest Youden-index score for these categories (0.745 and 0.063, respectively). The colour photograph method had a higher validity than the replica and the visual examination methods for assessing sealant retention. PMID:24965565
Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1992-01-01
Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view is a closeup of the ships with KSC launch complex in the distant background. View provided by KSC with alternate number KSC-92PC-968.
Hu, Xuan; Fan, Mingwan; Rong, Wensheng; Lo, Edward C M; Bronkhorst, Ewald; Frencken, Jo E
2014-08-01
The aim of this study was to test the hypothesis that the colour photograph method has a higher level of validity for assessing sealant retention than the visual clinical examination and replica methods. Sealed molars were assessed by two evaluators. The scores for the three methods were compared against consensus scores derived through assessing retention from scanning electron microscopy images (reference standard). The presence/absence (survival) of retained sealants on occlusal surfaces was determined according to the traditional and modified categorizations of retention. Sensitivity, specificity, and Youden-index scores were calculated. Sealant retention assessment scores for visual clinical examinations and for colour photographs were compared with those of the reference standard on 95 surfaces, and sealant retention assessment scores for replicas were compared with those of the reference standard on 33 surfaces. The highest mean Youden-index score for the presence/absence of sealant material was observed for the colour photograph method, followed by that for the replica method; the visual clinical examination method scored lowest. The mean Youden-index score for the survival of retained sealants was highest for the colour photograph method for both the traditional (0.882) and the modified (0.768) categories of sealant retention, whilst the visual clinical examination method had the lowest Youden-index score for these categories (0.745 and 0.063, respectively). The colour photograph method had a higher validity than the replica and the visual examination methods for assessing sealant retention.
PLIF and PTV studies of solute transport in a single fracture replica
NASA Astrophysics Data System (ADS)
Gasimov, P.
2015-12-01
A Bentheimer sandstone core sample with a stress-induced fracture was scanned with a micro-CT scanner to obtain fracture topology map, which was then used to manufacture a transparent hard PDMS replica. A medium-fluid system combination with matched refractive indices was used to conduct successive Planar Laser-Induced Fluorescence (PLIF) and Particle Tracking Velocimetry (PTV) measurements of solute transport at steady-state conditions. We map velocity fields under single-phase flow conditions with and without trapped non-wetting phase globules being present. The raw PTV data was averaged and arranged in a uniform mesh (Eulerian framework). We then used the mesh to simulate the solute transport using Markovian Random Walk technique. Taylor dispersion as well as Gelhar macrodispersion analyses are also presented. The simulation results are compared with their experimental counterparts.
NASA Astrophysics Data System (ADS)
Kluber, Alexander; Hayre, Robert; Cox, Daniel
2012-02-01
Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.
NASA Astrophysics Data System (ADS)
Han, Ming; Hansmann, Ulrich H. E.
2011-08-01
The growth of amyloid fibrils is studied by replica exchange molecular dynamics in an implicit solvent. Our data indicate that extremely long simulation times (at least a few hundred ns) are necessary to study the thermodynamics of fibril elongation in detail. However some aspects of the aggregation process are already accessible on the time scales available in the present study. A peak in the specific heat indicates a docking temperature of Tdock ≈ 320 K. Irreversible locking requires lower temperatures with the locking temperature estimated as Tlock ≈ 280 K. In our simulation the fibril grows from both sides with the C-terminal of the incoming monomer attaching to the C-terminal of the peptides in the fibril forming a β-sheet on the fibril edge. Our simulation indicates that the C-terminal is crucial for aggregation.
A replica of the Olympic torch is recovered from STS-101 Atlantis
NASA Technical Reports Server (NTRS)
2000-01-01
A replica of the Olympic torch is recovered after its journey on Space Shuttle Atlantis on mission STS-101. The addition of the torch to the payload was coordinated by astronaut Andy Thomas, who is from Australia. The torch will travel to Australia for the 2000 Olympic games being held there in September. STS-101 was the third flight to the International Space Station and included repairs to the Station plus transfer of equipment and supplies to the Station for future missions. The landing of Atlantis completed a 9-day, 20-hour, 9-minute-long mission. It was the 98th flight in the Space Shuttle program and the 21st for Atlantis. The landing was the 51st at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.
A replica of the Olympic torch is recovered from STS-101 Atlantis
NASA Technical Reports Server (NTRS)
2000-01-01
Teri McKinney, with Shuttle Crew Escape, Johnson Space Center, holds a replica of the Olympic torch carried aboard Space Shuttle Atlantis on mission STS-101. The addition of the torch to the payload was coordinated by astronaut Andy Thomas, who is from Australia. The torch will travel to Australia for the 2000 Olympic games being held there in September. . STS-101 was the third flight to the International Space Station and included repairs to the Station plus transfer of equipment and supplies to the Station for future missions. The landing of Atlantis completed a 9-day, 20-hour, 9-minute-long mission. It was the 98th flight in the Space Shuttle program and the 21st for Atlantis. The landing was the 51st at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.
Neutron and gamma-ray dose measurements at various distances from the Little Boy replica
Huntzinger, C.J.; Hankins, D.E.
1984-08-01
We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore National Laboratory (LLNL). 12 references, 7 figures, 6 tables.
Replica-exchange Wang-Landau simulations of the H0P lattice protein model
NASA Astrophysics Data System (ADS)
Shi, Guangjie; Wüst, Thomas; Li, Ying Wai; Landau, David P.
The hydrophobic-polar (HP) lattice protein model has been the subject of intensive investigation in an effort to aid our understanding of protein folding. However, the high ground state degeneracies caused by its simplification stands in contrast to the generally unique native states of natural proteins. Here we proposed a simple modification, by introducing a new type of ``neutral'' monomer, 0, i.e. neither hydrophobic nor polar, thus rendering the model more realistic without increasing the difficulties of sampling significantly. With the replica exchange Wang-Landau (REWL) scheme we investigated several widely studied HP proteins and their H0P counterparts. Dramatic differences in both ground state and thermodynamic properties have been found. For example, the H0P version of Crambin shows more clear two-step folding and 3 order of magnitudes less ground state degeneracy than its HP counterpart. Supported by NSF.
Vitagliano, Luigi; Esposito, Luciana; Pedone, Carlo; De Simone, Alfonso
2008-12-26
Protein and peptide aggregation into amyloid plaques is associated with a large variety of neurodegenerative diseases. The definition of the molecular bases of these pathologies is hampered by the transient nature of pre-fibrillar small-oligomers that are considered the toxic species. The ability of the peptide GNNQQNY to form amyloid-like structures makes it a good model to investigate the complex processes involved into amyloid fiber formation. By employing full atomistic replica exchange molecular dynamics simulations, we constructed the free energy surface of small assemblies of GNNQQNY to gain novel insights into the fiber formation process. The calculations suggest that the peptide exhibits a remarkable tendency to form both parallel and antiparallel {beta}-sheets. The data show that GNNQQNY preference for parallel or antiparallel {beta}-sheets is governed by a subtle balance of factors including assemblies' size, sidechain-sidechain interactions and pH. The samplings analysis provides a rationale to the observed trends.
Khavrutskii, Ilja V.; Wallqvist, Anders
2010-01-01
This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13–15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns. PMID:21151738
Towards an optimal flow: Density-of-states-informed replica-exchange simulations
Vogel, Thomas; Perez, Danny
2015-11-05
Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.
The Law of Self-Acting Machines and Irreversible Processes with Reversible Replicas
NASA Astrophysics Data System (ADS)
Valev, Pentcho
2002-11-01
Clausius and Kelvin saved Carnot theorem and developed the second law by assuming that Carnot machines can work in the absence of an operator and that all the irreversible processes have reversible replicas. The former assumption restored Carnot theorem as an experience of mankind whereas the latter generated "the law of ever increasing entropy". Both assumptions are wrong so it makes sense to return to Carnot theorem (or some equivalent) and test it experimentally. Two testable paradigms - the system performing two types of reversible work and the system in dynamical equilibrium - suggest that perpetuum mobile of the second kind in the presence of an operator is possible. The deviation from the second law prediction, expressed as difference between partial derivatives in a Maxwell relation, measures the degree of structural-functional evolution for the respective system.
NASA Technical Reports Server (NTRS)
Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.
2003-01-01
As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.
Anisotropic remastering for reducing feature sizes on UV nanoimprint lithography replica molds.
Lausecker, E; Grydlik, M; Brehm, M; Bergmair, I; Mühlberger, M; Fromherz, T; Bauer, G
2012-04-27
We present an approach that uses existing nanoimprint molds and reduces the size of the resulting features significantly via a remastering process utilizing the anisotropic etchant tetramethylammonium hydroxide and a mold casting step. Inverted pyramidal structures and V-grooves were imprinted using these 2.5-dimensional (2.5D) replica molds. Pattern transfer into silicon (Si) substrates was established with an intermediate silicon nitride (SiN(x)) layer that can be etched with a much larger selectivity against the imprint resist than the Si substrate. The 2.5D resist profiles are thus transferred back into binary structures in the SiN(x) layer and subsequently into the Si substrate. A substantial size reduction of the diameter of pits from 91 to 33 nm and the width of lines from 600 to 142 nm was achieved.
Anisotropic remastering for reducing feature sizes on UV nanoimprint lithography replica molds
NASA Astrophysics Data System (ADS)
Lausecker, E.; Grydlik, M.; Brehm, M.; Bergmair, I.; Mühlberger, M.; Fromherz, T.; Bauer, G.
2012-04-01
We present an approach that uses existing nanoimprint molds and reduces the size of the resulting features significantly via a remastering process utilizing the anisotropic etchant tetramethylammonium hydroxide and a mold casting step. Inverted pyramidal structures and V-grooves were imprinted using these 2.5-dimensional (2.5D) replica molds. Pattern transfer into silicon (Si) substrates was established with an intermediate silicon nitride (SiNx) layer that can be etched with a much larger selectivity against the imprint resist than the Si substrate. The 2.5D resist profiles are thus transferred back into binary structures in the SiNx layer and subsequently into the Si substrate. A substantial size reduction of the diameter of pits from 91 to 33 nm and the width of lines from 600 to 142 nm was achieved.
Liu, Wenyuan; Wang, Chao; Li, Yanbin; Lao, Yuyang; Han, Yongjian; Guo, Guang-Can; Zhao, Yong-Hua; He, Lixin
2015-03-01
Tensor network states (TNS) methods combined with the Monte Carlo (MC) technique have been proven a powerful algorithm for simulating quantum many-body systems. However, because the ground state energy is a highly non-linear function of the tensors, it is easy to get stuck in local minima when optimizing the TNS of the simulated physical systems. To overcome this difficulty, we introduce a replica-exchange molecular dynamics optimization algorithm to obtain the TNS ground state, based on the MC sampling technique, by mapping the energy function of the TNS to that of a classical mechanical system. The method is expected to effectively avoid local minima. We make benchmark tests on a 1D Hubbard model based on matrix product states (MPS) and a Heisenberg J1-J2 model on square lattice based on string bond states (SBS). The results show that the optimization method is robust and efficient compared to the existing results.
Pion emission from the T2K replica target: Method, results and application
NASA Astrophysics Data System (ADS)
Abgrall, N.; Aduszkiewicz, A.; Anticic, T.; Antoniou, N.; Argyriades, J.; Baatar, B.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brooks, W.; Brzychczyk, J.; Bubak, A.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Chung, P.; Czopowicz, T.; Davis, N.; Debieux, S.; di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Esposito, L. S.; Feofilov, G. A.; Fodor, Z.; Ferrero, A.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grabez, B.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hakobyan, H.; Hasegawa, T.; Idczak, R.; Igolkin, S.; Ivanov, Y.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Katryńska, N.; Kiełczewska, D.; Kikola, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kochebina, O.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalski, S.; Krasnoperov, A.; Kuleshov, S.; Kurepin, A.; Lacey, R.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Marchionni, A.; Marcinek, A.; Maris, I.; Marin, V.; Marton, K.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadała, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Renfordt, R.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Sipos, M.; Skrzypczak, E.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Strabel, C.; Ströbele, H.; Susa, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.; Galymov, V.; Hartz, M.; Ichikawa, A. K.; Kubo, H.; Marino, A. D.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.; Yuan, T.; Zimmerman, E. D.; Na61/Shine Collaboration
2013-02-01
The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.
Thomas, Anthony
2008-07-01
doi: http://dx.doi.org/10.1016/j.ppnp.2007.12.039
The twenty years since the announcement of the proton spin crisis by the European Muon Collaboration has seen tremendous progress in our knowledge of the distribution of spin within the proton. The problem is reviewed, beginning with the original data and the suggestion that polarized gluons may play a crucial role in resolving the problem through the U(1) axial anomaly. The discussion continues to the present day where not only have strong limits have been placed on the amount of polarized glue in the proton but the experimental determination of the spin content has become much more precise. It is now clear that the origin of the discrepancy between experiment and the naive expectation of the fraction of spin carried by the quarks and anti-quarks in the proton lies in the non-perturabtive structure of the proton. We explain how the features expected in a modern, relativistic and chirally symmetric description of nucleon str
Andersen, John A.; Flanigan, John J.; Kindley, Robert J.
1978-01-01
The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.
Flattening mountains: micro-fabrication of planar replicas for bullet lateral striae analysis.
Cominato, Laura; Valle, Francesco; Pierini, Giovanni; Bonini, Paolo; Biscarini, Fabio; D'Elia, Marcello
2015-02-01
The application of replica molding has proven to be a valuable tool in the analysis of different forensic evidences in particular for its ability to extract the toolmarks from complex sample surfaces. A well known problem in the analysis of ballistic evidences is the accurate characterization of the lateral striae of real bullets seized on crime scenes after shots, due primarily to impact deformations and to unpredictable issues related to laboratory illumination setup. To overcome these problems a possible way is to confine over a flat surface all the features still preserving their three dimensionality. This can be achieved by a novel application of replica molding performed onto the relevant lateral portion of the bullet surface. A quasi-two-dimensional negative copy of the original tridimensional indented surface has been thus fabricated. It combines the real tridimensional topography of class characteristics (land and groove impressions) and of individual caracteristics (striae) impressed by rifled barrels on projectiles, moreover with the possibility of quantitative characterization of these features in a planar configuration, that will allow one-shot comparison of the "whole striae landscape" without the typical artifacts arising from the bullet shape and the illumination issue. A detailed analysis has been carried on at the morphological level by standard optical and scanning electron microscopy, while the 3D topography has been characterized by white light optical profilometry. A quantitative characterization of toolmarks of bullets derived from ammunitions shot by guns of large diffusion, as the Beretta 98 FS cal. 9×21 mm, has been performed and will be presented ranging between the whole landscape and the sub-μm resolution. To investigate the real potentiality of this technique, the experiment has been extended to highly impact-deformed projectiles.
Long-time atomistic simulations with the Parallel Replica Dynamics method
NASA Astrophysics Data System (ADS)
Perez, Danny
Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
Gamma-ray spectra and doses from the Little Boy replica
Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.
1984-01-01
Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germanium detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10/sup 13/ fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables.
Xia, Junchao; Flynn, William F; Gallicchio, Emilio; Zhang, Bin W; He, Peng; Tan, Zhiqiang; Levy, Ronald M
2015-09-01
We describe methods to perform replica exchange molecular dynamics (REMD) simulations asynchronously (ASyncRE). The methods are designed to facilitate large scale REMD simulations on grid computing networks consisting of heterogeneous and distributed computing environments as well as on homogeneous high-performance clusters. We have implemented these methods on NSF (National Science Foundation) XSEDE (Extreme Science and Engineering Discovery Environment) clusters and BOINC (Berkeley Open Infrastructure for Network Computing) distributed computing networks at Temple University and Brooklyn College at CUNY (the City University of New York). They are also being implemented on the IBM World Community Grid. To illustrate the methods, we have performed extensive (more than 60 ms in aggregate) simulations for the beta-cyclodextrin-heptanoate host-guest system in the context of one- and two-dimensional ASyncRE, and we used the results to estimate absolute binding free energies using the binding energy distribution analysis method. We propose ways to improve the efficiency of REMD simulations: these include increasing the number of exchanges attempted after a specified molecular dynamics (MD) period up to the fast exchange limit and/or adjusting the MD period to allow sufficient internal relaxation within each thermodynamic state. Although ASyncRE simulations generally require long MD periods (>picoseconds) per replica exchange cycle to minimize the overhead imposed by heterogeneous computing networks, we found that it is possible to reach an efficiency similar to conventional synchronous REMD, by optimizing the combination of the MD period and the number of exchanges attempted per cycle. PMID:26149645
Flattening mountains: micro-fabrication of planar replicas for bullet lateral striae analysis.
Cominato, Laura; Valle, Francesco; Pierini, Giovanni; Bonini, Paolo; Biscarini, Fabio; D'Elia, Marcello
2015-02-01
The application of replica molding has proven to be a valuable tool in the analysis of different forensic evidences in particular for its ability to extract the toolmarks from complex sample surfaces. A well known problem in the analysis of ballistic evidences is the accurate characterization of the lateral striae of real bullets seized on crime scenes after shots, due primarily to impact deformations and to unpredictable issues related to laboratory illumination setup. To overcome these problems a possible way is to confine over a flat surface all the features still preserving their three dimensionality. This can be achieved by a novel application of replica molding performed onto the relevant lateral portion of the bullet surface. A quasi-two-dimensional negative copy of the original tridimensional indented surface has been thus fabricated. It combines the real tridimensional topography of class characteristics (land and groove impressions) and of individual caracteristics (striae) impressed by rifled barrels on projectiles, moreover with the possibility of quantitative characterization of these features in a planar configuration, that will allow one-shot comparison of the "whole striae landscape" without the typical artifacts arising from the bullet shape and the illumination issue. A detailed analysis has been carried on at the morphological level by standard optical and scanning electron microscopy, while the 3D topography has been characterized by white light optical profilometry. A quantitative characterization of toolmarks of bullets derived from ammunitions shot by guns of large diffusion, as the Beretta 98 FS cal. 9×21 mm, has been performed and will be presented ranging between the whole landscape and the sub-μm resolution. To investigate the real potentiality of this technique, the experiment has been extended to highly impact-deformed projectiles. PMID:25555234
Martingale Rosenthal inequalities in symmetric spaces
Astashkin, S V
2014-12-31
We establish inequalities similar to the classical Rosenthal inequalities for sequences of martingale differences in general symmetric spaces; a central role is played here by the predictable quadratic characteristic of a martingale. Bibliography: 26 titles.
PT-Symmetric Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2011-09-01
In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.
Origin of symmetric PMNS and CKM matrices
NASA Astrophysics Data System (ADS)
Rodejohann, Werner; Xu, Xun-Jie
2015-03-01
The Pontecorvo-Maki-Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa matrices are phenomenologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric mixing matrices. Those properties are actually very common in discrete groups such as A4 , S4 , or Δ (96 ) . As an application of our theorem, we generate a symmetric lepton mixing scheme with θ12=θ23=36.21 ° ; θ13=12.20 ° , and δ =0 , realized with the group Δ (96 ) .
Low-temperature behavior of the statistics of the overlap distribution in Ising spin-glass models
NASA Astrophysics Data System (ADS)
Wittmann, Matthew; Yucesoy, B.; Katzgraber, Helmut G.; Machta, J.; Young, A. P.
2014-10-01
Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson models in three and four space dimensions, and one-dimensional long-range models with diluted power-law interactions. We study three long-range models with different powers as follows: The first is approximately equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish the "replica symmetry breaking" picture of the spin-glass phase from the "droplet picture," finding that larger system sizes would be needed to unambiguously determine which of these pictures describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model, which is unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap probability distribution and a typical overlap distribution, finding that these observables are not particularly helpful in distinguishing the replica symmetry breaking and the droplet pictures.
Symmetric states: Their nonlocality and entanglement
Wang, Zizhu; Markham, Damian
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
Quantum Spin Hall phase in multilayer graphene
NASA Astrophysics Data System (ADS)
Garcia, Noel; Lado, Jose Luis; Fernandez-Rossier, Joaquin; Theory of Nanostructures Team
2015-03-01
We address the question of whether multilayer graphene systems are Quantum Spin Hall (QSH) insulators. Since interlayer coupling coples pz orbitals to s orbitals of different layers and Spin-Orbit (SO) couples pz orbitals with px and py of opposite spins, new spins mixing channels appear in the multilayer scenario that were not present in the monolayer. These new spin-mixing channels cast a doubt on the validity of the spin-conserving Kane-Mele model for multilayers and motivates our choice of a four orbital tight-binding model in the Slater-Koster approximation with intrinsic Spin-Orbit interaction. To completely determine if the QSH phase is present we calculate for different number of layers both the Z2 invariant for different stackings (only for inversion symmetric systems), and the density of states at the edge of semi-infinite graphene ribbon with armchair termination. We find that systems with even number of layers are normal insulators while systems with odd number of layers are QSH insulators, regardless of the stacking. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.
Complexity in mean-field spin-glass models: Ising p-spin
Crisanti, A.; Leuzzi, L.; Rizzo, T.
2005-03-01
The complexity of the Thouless-Anderson-Palmer (TAP) solutions of the Ising p-spin is investigated in the temperature regime where the equilibrium phase is one-step replica symmetry breaking. Two solutions of the resulting saddle point equations are found. One is supersymmetric (SUSY) and includes the equilibrium value of the free energy while the other is non-SUSY. The two solutions cross exactly at a value of the free energy where the replicon eigenvalue is zero; at low free energy the complexity is described by the SUSY solution while at high free energy it is described by the non-SUSY solution, the latter accounting for the total number of solutions. The relevant TAP solutions counted by the non-SUSY complexity share the same features of the corresponding solutions in the Sherrington-Kirkpatrick model; in particular their Hessian has a vanishing isolated eigenvalue. The TAP solutions corresponding to the SUSY complexity, instead, are well separated minima.
NASA Astrophysics Data System (ADS)
Morawetz, K.
2015-12-01
The coupled kinetic equation for density and spin Wigner functions is derived including spin-orbit coupling, electric and magnetic fields, and self-consistent Hartree mean fields suited for SU(2) transport. The interactions are assumed to be with scalar and magnetic impurities as well as scalar and spin-flip potentials among the particles. The spin-orbit interaction is used in a form suitable for solid state physics with Rashba or Dresselhaus coupling, graphene, extrinsic spin-orbit coupling, and effective nuclear matter coupling. The deficiencies of the two-fluid model are worked out consisting of the appearance of an effective in-medium spin precession. The stationary solution of all these systems shows a band splitting controlled by an effective medium-dependent Zeeman field. The self-consistent precession direction is discussed and a cancellation of linear spin-orbit coupling at zero temperature is reported. The precession of spin around this effective direction caused by spin-orbit coupling leads to anomalous charge and spin currents in an electric field. Anomalous Hall conductivity is shown to consist of the known results obtained from the Kubo formula or Berry phases and a symmetric part interpreted as an inverse Hall effect. Analogously the spin-Hall and inverse spin-Hall effects of spin currents are discussed which are present even without magnetic fields showing a spin accumulation triggered by currents. The analytical dynamical expressions for zero temperature are derived and discussed in dependence on the magnetic field and effective magnetizations. The anomalous Hall and spin-Hall effect changes sign at higher than a critical frequency dependent on the relaxation time.
A group-theoretic approach to constructions of non-relativistic spin-statistics
NASA Astrophysics Data System (ADS)
Harrison, J. M.; Robbins, J. M.
2000-11-01
We give a group-theoretical generalization of Berry and Robbins' treatment of identical particles with spin. The original construction, which leads to the correct spin-statistics relation, is seen to arise from particular irreducible representations—the totally symmetric representations—of the group SU(4). Here we calculate the exchange signs and corresponding statistics for all irreducible representations of SU(4).
Zhai, Li-Xue; Wang, Yan; Liu, Jian-Jun
2014-11-28
Spin dependent transport in one-dimensional (1D) three-terminal rings is investigated in the presence of the Rashba spin-orbit coupling (RSOC). We focus on zero-conductance resonances and spin polarizations. For these purposes, the transmission functions are derived analytically. The total conductances are analyzed in the complex energy plane with a focus on the zero-pole structure characteristic of transmission (anti)resonances. The spin polarizations in symmetrically and asymmetrically coupled three-terminal rings are studied as a function of the incident electron energy. It is found that in the absence of the RSOC there are three kinds of conductance zeros. In the presence of the RSOC, the zeros of the first and the third kinds are lifted, while some of the second kind persist. The lifting of the conductance zeros is related to the breaking of the spin-reversal symmetry, and the lifted conductance zeros evolve into spin polarization zeros.
Collective Spin-Hall Effect for Electron-Hole Gratings
NASA Astrophysics Data System (ADS)
Vignale, Giovanni; Shen, Ka
2014-03-01
We study the coupled spin-density transport in a periodically modulated electron gas in a GaAs quantum well. We show that an electric field parallel to the wavefronts of an electron-hole grating generates, via the electronic spin Hall effect, a spin grating of the same wave vector. We refer to this phenomenon as ``collective spin Hall effect''. In our calculation, we include not only the intrinsic but also the extrinsic spin Hall mechanisms. In the extrinsic mechanism we include both skew scattering and side jump. A detailed study of the coupled-spin charge dynamics for quantum wells grown in different directions reveals rich features in the time evolution of the induced spin density. For example, in the symmetric (110) quantum well the amplitude of the induced spin density is controlled solely by skew scattering and can be as large as 1% of that of the initial density modulation.Similarly, the collective spin Hall effect in (001) QWs with identical Rashba and Dresselhaus SOC strengths is also entirely controlled by skew scattering. In this case, the skew scattering generates a spiral spin density wave when the wave vector of the initial grating matches the wave vector of the spin-orbit coupling. Ref: Ka Shen and G. Vignale, PRL 111, 136602 (2013). NSF Grant No. DMR-1104788.
Matrix isolation ESR spectroscopy and magnetic anisotropy of D{sub 3h} symmetric septet trinitrenes
Misochko, Eugenii Ya.; Akimov, Alexander V.; Masitov, Artem A.; Korchagin, Denis V.; Aldoshin, Sergei M.; Chapyshev, Sergei V.
2013-05-28
The fine-structure (FS) parameters D of a series of D{sub 3h} symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D{sub 3h} symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D=-0.0957 cm{sup -1} and E= 0 cm{sup -1} is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z{sub 1}-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968)] shows that this trinitrene has Double-Vertical-Line D Double-Vertical-Line = 0.092 cm{sup -1} and E= 0 cm{sup -1}. DFT calculations reveal that, unlike C{sub 2v} symmetric septet trinitrenes, D{sub 3h} symmetric trinitrenes have the same orientations of the spin-spin coupling tensor D-caret{sub SS} and the spin-orbit coupling tensor D-caret{sub SOC} and, as a result, have negative signs for both the D{sub SS} and D{sub SOC} values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the D{sub SOC} term.
Disorder-promoted C4-symmetric magnetic order in iron-based superconductors
NASA Astrophysics Data System (ADS)
Hoyer, Mareike; Fernandes, Rafael M.; Levchenko, Alex; Schmalian, Jörg
2016-04-01
In most iron-based superconductors, the transition to the magnetically ordered state is closely linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However, recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-based superconductors. This novel magnetic ground state can be understood as a double-Q spin density wave characterized by two order parameters M1 and M2 related to each of the two Q vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-energy itinerant models do support a transition from single-Q to double-Q magnetic order, but with nearly degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions of these low-energy models including additional electronic interactions tip the balance in favor of the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this paper we revisit the phase diagram of magnetic ground states of low-energy multiband models in the presence of weak disorder. We show that impurity scattering not only promotes the transition from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in the presence of disorder supports the experimental finding that the splitting between the structural and stripe-magnetic transition is enhanced by disorder.
Symmetric Galerkin boundary formulations employing curved elements
NASA Technical Reports Server (NTRS)
Kane, J. H.; Balakrishna, C.
1993-01-01
Accounts of the symmetric Galerkin approach to boundary element analysis (BEA) have recently been published. This paper attempts to add to the understanding of this method by addressing a series of fundamental issues associated with its potential computational efficiency. A new symmetric Galerkin theoretical formulation for both the (harmonic) heat conduction and the (biharmonic) elasticity problem that employs regularized singular and hypersingular boundary integral equations (BIEs) is presented. The novel use of regularized BIEs in the Galerkin context is shown to allow straightforward incorporation of curved, isoparametric elements. A symmetric reusable intrinsic sample point (RISP) numerical integration algorithm is shown to produce a Galerkin (i.e., double) integration strategy that is competitive with its counterpart (i.e., singular) integration procedure in the collocation BEA approach when the time saved in the symmetric equation solution phase is also taken into account. This new formulation is shown to be capable of employing hypersingular BIEs while obviating the requirement of C 1 continuity, a fact that allows the employment of the popular continuous element technology. The behavior of the symmetric Galerkin BEA method with regard to both direct and iterative equation solution operations is also addressed. A series of example problems are presented to quantify the performance of this symmetric approach, relative to the more conventional unsymmetric BEA, in terms of both accuracy and efficiency. It is concluded that appropriate implementations of the symmetric Galerkin approach to BEA indeed have the potential to be competitive with, if not superior to, collocation-based BEA, for large-scale problems.
NASA Astrophysics Data System (ADS)
Hamzavi, M.; Ikhdair, S. M.; Thylwe, K.-E.
2012-12-01
Approximate analytical solutions of the Dirac equation with the trigonometric Pöschl-Teller (tPT) potential are obtained for arbitrary spin-orbit quantum number κ using an approximation scheme to deal with the spin-orbit coupling terms κ(κ±1)r-2. In the presence of exact spin and pseudo-spin (p-spin) symmetric limitation, the bound state energy eigenvalues and the corresponding two-component wave functions of the Dirac particle moving in the field of attractive and repulsive tPT potential are obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. The case of nonrelativistic limit is studied too.
Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures
Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A. John
2012-01-01
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1, 2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT
spin pumping occurred under nonlinear spin precession
NASA Astrophysics Data System (ADS)
Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng
Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.
String theory as a higher spin theory
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.; Gopakumar, Rajesh
2016-09-01
The symmetries of string theory on {AdS}_3× {S}^3× T^4 at the dual of the symmetric product orbifold point are described by a so-called Higher Spin Square (HSS). We show that the massive string spectrum in this background organises itself in terms of representations of this HSS, just as the matter in a conventional higher spin theory does so in terms of representations of the higher spin algebra. In particular, the entire untwisted sector of the orbifold can be viewed as the Fock space built out of the multiparticle states of a single representation of the HSS, the so-called `minimal' representation. The states in the twisted sector can be described in terms of tensor products of a novel family of representations that are somewhat larger than the minimal one.
Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; Awad, Yasmine H.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan
2014-12-08
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further highmore » temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.« less
Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; Awad, Yasmine H.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan
2014-12-08
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.
Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; Awad, Yasmine H.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan
2014-01-01
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. The simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials. PMID:25482611
NASA Astrophysics Data System (ADS)
Kato, Hiroyuki; Okada, Masato; Miyoshi, Seiji
2013-07-01
We analyze the performance of the maximizer of the posterior marginals (MPM) detector for code division multiple access (CDMA) multiuser detection with M-ary phase shift keying (M-ary PSK) in the large system limit by the replica method. The obtained theory agrees with computer simulation reasonably well. We also derive the theory in the case of the large M limit and discuss the dependence of the properties of M-ary PSK CDMA communication on M. We show that the waterfall phenomenon occurs for both the finite and infinite values of M. We also show that a value of M for which the decoded phase information on the original user symbol becomes minimum exists. Furthermore, we discuss the relationship between the theory based on the replica method and that based on self-consistent signal-to-noise analysis (SCSNA).
Townson, Jason L; Lin, Yu-Shen; Chou, Stanley S; Awad, Yasmine H; Coker, Eric N; Brinker, C Jeffrey; Kaehr, Bryan
2014-01-01
Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. The simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials. PMID:25482611
NASA Astrophysics Data System (ADS)
Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim
2016-04-01
Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.
Ballistic spin-dependent transport of Rashba rings with multi-leads
Huang Guangyao; Liang Shidong
2011-05-15
Research Highlights: > Transmission coefficients of each outgoing lead in multi-lead mesoscopic Rashba rings. > Spin polarizations of each outgoing lead in multi-lead mesoscopic Rashba rings. > Resonant and antiresonant conditions of spin polarization in multi-lead Rashba rings. > Symmetries of conductance and spin polarization of symmetric multi-lead Rashba rings. - Abstract: Using the Landauer-Buettiker formula with the transfer matrix technique, we develop a formalism of the ballistic spin-dependent electron transport in the multi-lead Rashba rings. We give analytic formulas of the total conductance G{sub j}, spin-{sigma} conductance g{sub j}{sup {sigma}} and spin polarization P{sub j} of each outgoing lead j, and their resonant and antiresonant conditions. Analytic studying with numerical investigating Rashba rings with several symmetric and asymmetric leads, we find that G{sub j}, g{sub j}{sup {sigma}} and P{sub j} oscillate with the incoming electron energy and the spin-orbit interaction (SOI) strength, and their antiresonances depend on the incoming electron energy, the SOI strength and the outgoing-lead angle with the incoming lead. For the symmetric-lead rings, G{sub j}, g{sub j}{sup {sigma}} and P{sub j} have some symmetries, G{sub j}=G{sub N-j},g{sub j}{sup {sigma}}=g{sub N-j}{sup -{sigma}}, and P{sub j} = -P{sub N-j} for symmetric leads, j and N - j, where the angles between the symmetric outgoing leads j and N - j and the incoming lead are {gamma}{sub N-j} = 2{pi} - {gamma}{sub j}. The spin polarization of the outgoing lead with {gamma}{sub j} = {pi} is exactly zero for even-N-symmetric-lead rings. These symmetries originate from the lead symmetry and time reversal invariance. For asymmetry-lead rings these symmetries vanish.
On symmetric and upwind TVD schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1985-01-01
A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.
The Robust Assembly of Small Symmetric Nanoshells
Wagner, Jef; Zandi, Roya
2015-01-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253
Radiative corrections in symmetrized classical electrodynamics
Van Meter JR; Kerman; Chen; Hartemann
2000-12-01
The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.
Symmetric extension of two-qubit states
NASA Astrophysics Data System (ADS)
Chen, Jianxin; Ji, Zhengfeng; Kribs, David; Lütkenhaus, Norbert; Zeng, Bei
2014-09-01
A bipartite state ρAB is symmetric extendible if there exists a tripartite state ρABB' whose AB and AB' marginal states are both identical to ρAB. Symmetric extendibility of bipartite states is of vital importance in quantum information because of its central role in separability tests, one-way distillation of Einstein-Podolsky-Rosen pairs, one-way distillation of secure keys, quantum marginal problems, and antidegradable quantum channels. We establish a simple analytic characterization for symmetric extendibility of any two-qubit quantum state ρAB; specifically, tr(ρB2)≥tr(ρAB2)-4√ detρAB . As a special case we solve the bosonic three-representability problem for the two-body reduced density matrix.
CAST: Contraction Algorithm for Symmetric Tensors
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei; Stock, Kevin; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy
2014-09-22
Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL^{T}P^{T} where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTLTPT where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result,more » the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less
Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio
2014-11-07
Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a “soft-sphere” fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ε{sub 12}, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ε{sub 12} = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ε{sub 12}, two “glass” branches G{sub 1} and G{sub 2} are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ε{sub 12} → 0. Branch G{sub 2} is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical “ideal glass” phase. Branch G{sub 1} exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G{sub 2} branch. The free energies of the L and G{sub 2} branches are found to intersect at an alleged “random first-order transition” (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts.
Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio
2014-11-01
Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a "soft-sphere" fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ɛ12, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ɛ12 = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ɛ12, two "glass" branches G1 and G2 are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ɛ12 → 0. Branch G2 is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical "ideal glass" phase. Branch G1 exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G2 branch. The free energies of the L and G2 branches are found to intersect at an alleged "random first-order transition" (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts.
Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1992-01-01
Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. Taken from the water, the silhouettes of the three sailing ships appear in the foreground with OV-105 atop the mobile launcher platform barely visible in the distant background. View provided by KSC with alternate number KSC-92PC-976.
Pedersen, P; Thomsen, E; Stern, R M
1983-09-01
The replica plating method as developed by Lederberg has been used to differentiate between "true" and "false" histidine-requiring revertant bacterial colonies which develop on minimal agar plates in the Ames test. Strains of S. typhimurium LT2, TA 100, when exposed to either sodium dichromate or the fumes from the welding of stainless steel, develop colonies whose apparent numbers are directly in proportion to the Cr(VI) content per plate in both cases, over a wide dose range. Replica impressions of the resulting colonies were transferred to Vogel Bonner minimal agar plates and incubated for 48 hr at 37 degrees C. It was then observed that considerable numbers of "false" revertant colonies were obtained at those Cr(VI) doses which resulted in a pronounced toxic effect, albeit with an acceptable level of the bacterial background lawn. No morphological distinction between "true" and "false" revertant colonies could be made. Although it would appear that at low doses (i.e., low toxicity) the true mutagenicity of stainless steel welding fumes can be completely accounted for by the presence of Cr(VI), the dose range over which the mutagenicity assay is reliable cannot be estimated from examination of the background lawn or from an estimate of the degree of survival of the treated cultures. Thus there is raised a serious question concerning the reliability of quantitative data published in bacterial mutagenicity testing where replica testing of the histidine requirement of the resulting "revertant" colonies is not routinely made. It is suggested that the replica technique can easily be developed as a simple and useful tool for the control of histidine requirement and ampicillin resistance in routine mutagenicity testing.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Urano, Ryo; Kokubo, Hironori; Okamoto, Yuko
2015-08-01
We propose an improved prediction method of the tertiary structures of α-helical membrane proteins based on the replica-exchange method by taking into account helix deformations. Our method has wide applications because transmembrane helices of native membrane proteins are often distorted. In order to test the effectiveness of the present method, we applied it to the structure predictions of glycophorin A and phospholamban. The results were in good agreement with experiments.
Pedersen, P; Thomsen, E; Stern, R M
1983-01-01
The replica plating method as developed by Lederberg has been used to differentiate between "true" and "false" histidine-requiring revertant bacterial colonies which develop on minimal agar plates in the Ames test. Strains of S. typhimurium LT2, TA 100, when exposed to either sodium dichromate or the fumes from the welding of stainless steel, develop colonies whose apparent numbers are directly in proportion to the Cr(VI) content per plate in both cases, over a wide dose range. Replica impressions of the resulting colonies were transferred to Vogel Bonner minimal agar plates and incubated for 48 hr at 37 degrees C. It was then observed that considerable numbers of "false" revertant colonies were obtained at those Cr(VI) doses which resulted in a pronounced toxic effect, albeit with an acceptable level of the bacterial background lawn. No morphological distinction between "true" and "false" revertant colonies could be made. Although it would appear that at low doses (i.e., low toxicity) the true mutagenicity of stainless steel welding fumes can be completely accounted for by the presence of Cr(VI), the dose range over which the mutagenicity assay is reliable cannot be estimated from examination of the background lawn or from an estimate of the degree of survival of the treated cultures. Thus there is raised a serious question concerning the reliability of quantitative data published in bacterial mutagenicity testing where replica testing of the histidine requirement of the resulting "revertant" colonies is not routinely made. It is suggested that the replica technique can easily be developed as a simple and useful tool for the control of histidine requirement and ampicillin resistance in routine mutagenicity testing.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6357773
Symmetric extensions of normal discrete velocity models
NASA Astrophysics Data System (ADS)
Bobylev, A. V.; Vinerean, M. C.
2012-11-01
In this paper we discuss a general problem related to spurious conservation laws for discrete velocity models (DVMs) of the classical (elastic) Boltzmann equation. Models with spurious conservation laws appeared already at the early stage of the development of discrete kinetic theory. The well-known theorem of uniqueness of collision invariants for the continuous velocity space very often does not hold for a set of discrete velocities. In our previous works we considered the general problem of the construction of normal DVMs, we found a general algorithm for the construction of all such models and presented a complete classification of normal DVMs with small number n of velocities (n<11). Even if we have a general method to classify all normal discrete kinetic models (and in particular DVMs), the existing method is relatively slow and the amount of possible cases to check increases rapidly with n. We remarked that many of our normal DVMs appear to be axially symmetric. In this paper we consider a connection between symmetric transformations and normal DVMs. We first develop a new inductive method that, starting with a given normal DVM, leads by symmetric extensions to a new normal DVM. This method can produce very fast many new normal DVMs with larger number of velocities, showing that the class of normal DVMs contains a large subclass of symmetric models. We finally apply the method to several normal DVMs and construct new models that are not only normal, but also symmetric relatively to more and more axes. We hope that such symmetric velocity sets can be used for DSMC methods of solving Boltzmann equation.
Wille, Marie-Luise; Langton, Christian M
2016-02-01
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Arora, Jaspreet Singh; Cremaldi, Joseph C; Holleran, Mary Kathleen; Ponnusamy, Thiruselvam; He, Jibao; Pesika, Noshir S; John, Vijay T
2016-02-01
The wetting behavior of a surface depends on both its surface chemistry and the characteristics of surface morphology and topography. Adding structure to a flat hydrophobic or oleophobic surface increases the effective contact angle and thus the hydrophobicity or oleophobicity of the surface, as exemplified by the lotus leaf analogy. We describe a simple strategy to introduce micropatterned roughness on surfaces of soft materials, utilizing the template of hexagonally packed pores of breath figures as molds. The generated inverse replicas represent micron scale patterned beadlike protrusions on hydrogel surfaces. This added roughness imparts superoleophobic properties (contact angle of the order of 150° and greater) to an inherently oleophobic flat hydrogel surface, when submerged. The introduced pattern on the hydrogel surface changes morphology as it swells in water to resemble morphologies remarkably analogous to the compound eye. Analysis of the wetting behavior using the Cassie-Baxter approximation leads to estimation of the contact angle in the superoleophobic regime and in agreement with the experimental value. PMID:26752016
Multiresolution community detection for megascale networks by information-based replica correlations
NASA Astrophysics Data System (ADS)
Ronhovde, Peter; Nussinov, Zohar
2009-07-01
We use a Potts model community detection algorithm to accurately and quantitatively evaluate the hierarchical or multiresolution structure of a graph. Our multiresolution algorithm calculates correlations among multiple copies (“replicas”) of the same graph over a range of resolutions. Significant multiresolution structures are identified by strongly correlated replicas. The average normalized mutual information, the variation in information, and other measures, in principle, give a quantitative estimate of the “best” resolutions and indicate the relative strength of the structures in the graph. Because the method is based on information comparisons, it can, in principle, be used with any community detection model that can examine multiple resolutions. Our approach may be extended to other optimization problems. As a local measure, our Potts model avoids the “resolution limit” that affects other popular models. With this model, our community detection algorithm has an accuracy that ranks among the best of currently available methods. Using it, we can examine graphs over 40×106 nodes and more than 1×109 edges. We further report that the multiresolution variant of our algorithm can solve systems of at least 200000 nodes and 10×106 edges on a single processor with exceptionally high accuracy. For typical cases, we find a superlinear scaling O(L1.3) for community detection and O(L1.3logN) for the multiresolution algorithm, where L is the number of edges and N is the number of nodes in the system.
Wille, Marie-Luise; Langton, Christian M
2016-02-01
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment. PMID:26455950
Khavrutskii, Ilja V.; Wallqvist, Anders
2011-01-01
Reliable predictions of relative binding free energies are essential in drug discovery, where chemists modify promising compounds with the aim of increasing binding affinity. Conventional Thermodynamic Integration (TI) approaches can estimate corresponding changes in binding free energies, but suffer from inadequate sampling due to ruggedness of the molecular energy surfaces. Here, we present an improved TI strategy for computing relative binding free energies of congeneric ligands. This strategy employs a specific, unphysical single-reference (SR) state and Hamiltonian replica exchange (HREX) to locally enhance sampling. We then apply this strategy to compute relative binding free energies of twelve ligands in the L99A mutant of T4 Lysozyme. Besides the ligands, our approach enhances hindered rotations of the important V111, as well as V87 and L118 sidechains. Concurrently, we devise practical strategies to monitor and improve HREX-SRTI efficiency. Overall, the HREX-SRTI results agree well (R2 = 0.76, RMSE = 0.3 kcal/mol) with available experimental data. When optimized for efficiency, the HREX-SRTI precision matches that of experimental measurements. PMID:22046108
Enhancing dry adhesives and replica molding with ethyl cyano-acrylate
NASA Astrophysics Data System (ADS)
Bovero, E.; Menon, C.
2014-08-01
The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation.
Towards an optimal flow: Density-of-states-informed replica-exchange simulations
Vogel, Thomas; Perez, Danny
2015-11-05
Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less
Audio-visual integration of speech with time-varying sine wave speech replicas
NASA Astrophysics Data System (ADS)
Tuomainen, Jyrki; Andersen, Tobias; Tiippana, Kaisa; Sams, Mikko
2002-11-01
We tested whether listener's knowledge about the nature of the auditory stimuli had an effect on audio-visual (AV) integration of speech. First, subjects were taught to categorize two sine-wave (sw) replicas of the real speech tokens /omso/ and /onso/ into two arbitrary nonspeech categories without knowledge of the speech-like nature of the sounds. A test with congruent and incongruent AV-stimulus condition (together with auditory-only presentations of the sw stimuli) demonstrated no AV integration, but instead close to perfect categorization of stimuli in the two arbitrary categories according to the auditory presentation channel. Then, the same subjects (of which most were still under the impression that the sw-stimuli were nonspeech sounds) were taught to categorize the sw stimuli as /omso/ and /onso/, and again tested with the same AV stimuli as used in the nonspeech sw condition. This time, subjects showed highly reliable AV integration similar to integration obtained with real speech stimuli in a separate test. We suggest that AV integration only occurs when subject are in a so-called ''speech mode.''
Jo, Sunhwan; Chipot, Christophe; Roux, Benoît
2015-05-12
The performance and accuracy of different simulation schemes for estimating the entropy inferred from free energy calculations are tested. The results obtained from replica-exchange molecular dynamics (REMD) simulations based on a simplified toy model are compared to exact numerically derived ones to assess accuracy and convergence. It is observed that the error in entropy estimation decreases by at least an order of magnitude and the quantities of interest converge much faster when the simulations are coupled via a temperature REMD algorithm and the trajectories from different temperatures are combined. Simulations with the infinite-swapping method and its variants show some improvement over the traditional nearest-neighbor REMD algorithms, but they are more computationally expensive. To test the methodologies further, the free energy profile for the reversible association of two methane molecules in explicit water was calculated and decomposed into its entropic and enthalpic contributions. Finally, a strategy based on umbrella sampling computations carried out via simultaneous temperature and Hamiltonian REMD simulations is shown to yield the most accurate entropy estimation. The entropy profile between the two methane molecules displays the characteristic signature of a hydrophobic interaction.
Deposition of ultrafine aerosols and thoron progeny in replicas of nasal airways of children
Cheng, Y.S.; Smith, S.M.; Yeh, H.C.; Kim, D.B.; Cheng, K.H.; Swift, D.L.
1995-11-01
The deposition efficiencies of ultrafine aerosols and thoron progeny were measured in youth nasal replicas. Clear polyester-resin casts of the upper airways of 1.5-yr-old (Cast G), 2.5-yr-old (Cast H), and 4-yr-old (Cast I) children were used. These casts were constructed from series of coronal magnetic resonance images of healthy children. Total deposition was measured for monodisperse NaCl or Ag aerosols between 0.0046 and 0.20 {mu}m in diameter at inspiratory and expiratory flow rates of 3, 7, and 16 L min{sup -1} (covering a near normal range of breathing rates for children of different ages). Deposition efficiency decreased with increasing particle size and flow rate, indicating that diffusion was the main deposition mechanism. Deposition efficiency also decreased with increasing age at a given flow rate and particle size. Based on information obtained and information on minute volumes for different age groups, we predicted nasal deposition in age groups ranging from 1.5- to 20-yr-old at resting breathing rates. Our results showed that the nasal deposition increases with decreasing age for a given particle size between 0.001 to 0.2 {mu}m. This information will be useful in deriving future population-wide models of respiratory tract dosimetry. 24 refs., 12 figs., 3 tabs.
Replica exchange Monte Carlo simulation of human serum albumin-catechin complexes.
Li, Yunqi; An, Lijia; Huang, Qingrong
2014-09-01
Replica exchange Monte Carlo simulation equipped with an orientation-enhanced hydrophobic interaction was utilized to study the impacts of molar ratio and ionic strength on the complex formation of human serum albumin (HSA) and catechin. Only a small amount of catechins was found to act as bridges in the formation of HSA-catechin complexes. Selective binding behavior was observed at low catechin to HSA molar ratio (R). Increase of catechin amount can suppress HSA self-aggregation and diminish the selectivity of protein binding sites. Strong saturation binding with short-range interactions was found to level off at around 4.6 catechins per HSA on average, while this number slowly increased with R when long-range interactions were taken into account. Meanwhile, among the three rings of catechin, the 3,4-dihydroxyphenyl (B-ring) shows the strongest preference to bind HSA. Neither the aggregation nor the binding sites of the HSA-catechin complex was sensitive to ionic strength, suggesting that the electrostatic interaction is not a dominant force in such complexes. These results provide a further molecular level understanding of protein-polyphenol binding, and the strategy employed in this work shows a way to bridge phase behaviors at macroscale and the distribution of binding sites at residue level. PMID:25111890
Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity.
Zhang, Ying; Lo, Chi-Wei; Taylor, J Ashley; Yang, Shu
2006-09-26
Polymeric nanostructures with high aspect ratios, so-called nanopillars, are of interest for a wide range of applications. However, it remains a challenge to fabricate high-density, polymeric nanopillars using soft lithography when the feature size is decreased to hundreds of nanometers and the structures are close to each other. Here, we investigate the fidelity of replica molding technique to fabricate polymer nanopillar arrays with diameters ranging from 300 nm to 1 mum, and we compare the experimental results to the theoretical prediction to understand the nature of the instability of nanopillars. Nanopillars molded from soft materials, poly(dimethylsiloxane) (PDMS), mainly ground collapse due to the adhesive force when the aspect ratio is above 6, whereas those from stiffer materials, polyurethane and epoxy, collapse laterally at a much higher aspect ratio (>/=12), of which the critical value is dependent on the nanopillar's feature size, spacing, height, and shape. Further, we attempt to restore the collapsed high-aspect-ratio nanopillars using supercritical CO(2) drying.
Robenek, Horst; Buers, Insa; Robenek, Mirko J.; Hofnagel, Oliver; Ruebel, Anneke; Troyer, David; Severs, Nicholas J.
2011-01-01
Lipid droplets are not merely storage depots for superfluous intracellular lipids in times of hyperlipidemic stress, but metabolically active organelles involved in cellular homeostasis. Our concepts on the metabolic functions of lipid droplets have come from studies on lipid droplet-associated proteins. This realization has made the study of proteins, such as PAT family proteins, caveolins, and several others that are targeted to lipid droplets, an intriguing and rapidly developing area of intensive inquiry. Our existing understanding of the structure, protein organization, and biogenesis of the lipid droplet has relied heavily on microscopical techniques that lack resolution and the ability to preserve native cellular and protein composition. Freeze-fracture replica immunogold labeling overcomes these disadvantages and can be used to define at high resolution the precise location of lipid droplet-associated proteins. In this paper illustrative examples of how freeze-fracture immunocytochemistry has contributed to our understanding of the spatial organization in the membrane plane and function of PAT family proteins and caveolin-1 are presented. By revisiting the lipid droplet with freeze-fracture immunocytochemistry, new perspectives have emerged which challenge prevailing concepts of lipid droplet biology and may hopefully provide a timely impulse for many ongoing studies. PMID:21490801
Multiple Replicas of Block Copolymer Thin Films from a Brushless Organosilicate Substrate
NASA Astrophysics Data System (ADS)
Suh, Hyo Seon; Yoon, Hyunsik; Char, Kookheon
2011-03-01
The chain end-grafted polymer brushes or cross-linked polymer mats have typically been utilized as the surface modification layers to induce the perpendicular orientation of block copolymer (BCP) thin films. Instead of such polymer-based approaches, we have recently introduced a new concept to control the BCP orientation using the brushless organosilicate (OS) substrates, whose surface energy can be finely tuned with thermal treatment. In this brushless case, the BCP chains do not penetrate into the underlying hard OS substrates during thermal annealing of BCP films, therefore, the BCP chains at the interface have no entangled structure with fairly weak adhesion of BCP films against the substrate. Owing to such weak adhesion of BCP films against the OS substrate, the perpendicularly oriented BCP film on a neutral OS substrate could be easily peeled off and transferred to a UV-curable resin applied onto the BCP film. The OS substrate after the peel-off process of a BCP film could regenerate the perpendicularly oriented BCP films since the surface energy of the OS substrate remains intact during the peel-off process. Furthermore, the direct-assembled BCP films on chemically patterned OS substrates could also be peeled off and transferred on to a UV-curable resin, allowing us to produce multiple replicas of direct-assembled BCP thin films from a single chemically patterned OS substrate.
Replica exchange molecular dynamics simulations of an α/β-type small acid soluble protein (SASP).
Ojeda-May, P; Pu, Jingzhi
2013-12-31
Small acid soluble proteins (SASPs) of α/β-type play a major role in the resistance of spore DNAs to external assaults. It has been found that α/β-type SASP exhibits intrinsic disorder on isolation, but it acquires a defined native state upon binding to DNA. This disorder to order transition is not yet understood. Other questions related to the role of the thermodynamics and structure of the individual protein in the complex formation remain elusive. Characterization of the unbound state of α/β-type SASP in experiments could be a challenging problem because of the heterogeneous nature of the ensemble. Here, computer simulations can help gain more insights into the unbound state of α/β-type SASP. In the present work, by using replica exchange molecular dynamics (REMD), we simulated an α/β-type SASP on isolation with an implicit solvent. We found that α/β-type SASP undergoes a continuous phase transition with a small free energy barrier, a common feature of intrinsically disordered proteins (IDPs). Additionally, we detected the presence of residual α-helical structures at local level and a high degree of plasticity in the chain which can contribute to the fast disorder to order transition by reducing the fly-casting mechanism.
Arora, Jaspreet Singh; Cremaldi, Joseph C; Holleran, Mary Kathleen; Ponnusamy, Thiruselvam; He, Jibao; Pesika, Noshir S; John, Vijay T
2016-02-01
The wetting behavior of a surface depends on both its surface chemistry and the characteristics of surface morphology and topography. Adding structure to a flat hydrophobic or oleophobic surface increases the effective contact angle and thus the hydrophobicity or oleophobicity of the surface, as exemplified by the lotus leaf analogy. We describe a simple strategy to introduce micropatterned roughness on surfaces of soft materials, utilizing the template of hexagonally packed pores of breath figures as molds. The generated inverse replicas represent micron scale patterned beadlike protrusions on hydrogel surfaces. This added roughness imparts superoleophobic properties (contact angle of the order of 150° and greater) to an inherently oleophobic flat hydrogel surface, when submerged. The introduced pattern on the hydrogel surface changes morphology as it swells in water to resemble morphologies remarkably analogous to the compound eye. Analysis of the wetting behavior using the Cassie-Baxter approximation leads to estimation of the contact angle in the superoleophobic regime and in agreement with the experimental value.
Optimization of the replica molding process of PDMS using pennate diatoms
NASA Astrophysics Data System (ADS)
Hlúbiková, D.; Luís, A. T.; Vaché, V.; Ector, L.; Hoffmann, L.; Choquet, P.
2012-11-01
Biomimetic fabrication of nanostructured materials has recently attracted the attention of researchers as a cost-effective and easily applicable method of nanotexturing. Different techniques and materials have been used in order to replicate natural patterns, among which polydimethylsiloxane (PDMS Sylgard 184®) was recently used to replicate the micro- and nanoscale patterns from centric diatoms. In this paper, we test the reproducibility and precision of this approach using various morphologically different diatom species trying to optimize the molding parameters. The optimization process is focused on immobilization of diatoms on the glass support, which serves as a master for templating, as well as on the parameters of PDMS fabrication such as the ratio of the curing agent and elastomer, use of vacuum, curing time and temperature. The results indicate that higher ratios of curing agent and elastomer, longer curing time and lower temperature are the most favorable conditions to obtain negative diatom replicas of good quality with features of 50 nm. Although this method can give very precise results producing high-resolution molds with all micro- and nanostructures replicated, we revealed some limitations regarding the size and morphology of the species used. These results indicate that large round and flat diatom species seem to be more suitable for the cast molding.
Statics, metastable states, and barriers in protein folding: A replica variational approach
NASA Astrophysics Data System (ADS)
Takada, Shoji; Wolynes, Peter G.
1997-04-01
Protein folding is analyzed using a replica variational formalism to investigate some free energy landscape characteristics relevant for dynamics. A random contact interaction model that satisfies the minimum frustration principle is used to describe the coil-globule transition (characterized by TCG), glass transitions (by TA and TK), and folding transition (by TF). Trapping on the free energy landscape is characterized by two characteristic temperatures, one dynamic (TA) and the other static [TK (TA>TK)], which are similar to those found in mean field theories of the Potts glass. (i) Above TA, the free energy landscape is monotonous and the polymer is melted both dynamically and statically. (ii) Between TA and TK, the melted phase is still dominant thermodynamically, but frozen metastable states, exponentially large in number, appear. (iii) A few lowest minima become thermodynamically dominant below TK, where the polymer is totally frozen. In the temperature range between TA and TK, barriers between metastable states are shown to grow with decreasing temperature, suggesting super-Arrhenius behavior in a sufficiently large system. Due to evolutionary constraints on fast folding, the folding temperature TF is expected to be higher than TK, but may or may not be higher than TA. Diverse scenarios of the folding kinetics are discussed based on phase diagrams that take into account the dynamical transition, as well as the static ones.
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
Lin, Shi-Zeng; Hayami, Satoru
2016-02-01
Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. This description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axismore » spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. Finally, the derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.« less
On symmetric and upwind TVD schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1986-01-01
The performance of the upwind and symmetric total variation diminishing (TVD) schemes in viscous and inviscid airfoil steady-state calculations is considered, and the extension of the implicit second-order-accurate TVD scheme for hyperbolic systems of conservative laws in curvilinear coordinates is discussed. For two-dimensional steady-state applications, schemes are implemented in a conservative noniterative alternating direction implicit form, and results illustrate that the algorithm produces a fairly good solution for an RAE2822 airfoil calculation. The study demonstrates that the symmetric TVD scheme is as accurate as the upwind TVD scheme, while requiring less computational effort than it.
Observational tests of Baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.
All-optical symmetric ternary logic gate
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
The rhomboidal symmetric four-body problem
NASA Astrophysics Data System (ADS)
Waldvogel, Jörg
2012-05-01
We consider the planar symmetric four-body problem with two equal masses m 1 = m 3 > 0 at positions (± x 1( t), 0) and two equal masses m 2 = m 4 > 0 at positions (0, ± x 2( t)) at all times t, referred to as the rhomboidal symmetric four-body problem. Owing to the simplicity of the equations of motion this problem is well suited to study regularization of the binary collisions, periodic solutions, chaotic motion, as well as the four-body collision and escape manifolds. Furthermore, resonance phenomena between the two interacting rectilinear binaries play an important role.
Self-bending symmetric cusp beams
Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan
2015-12-07
A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.
Lu, Qing; Kim, Jaegil; Straub, John E
2013-03-14
The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.
Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A.
2009-01-01
The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster. PMID:20161452
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.
1976-01-01
A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.
Projective symmetry group classification of chiral spin liquids
NASA Astrophysics Data System (ADS)
Bieri, Samuel; Lhuillier, Claire; Messio, Laura
2016-03-01
We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.
Investigation of dominant spin wave modes by domain walls collision
Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S.
2014-06-28
Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.
Strain-modulation of spin-dependent transport in graphene
Cao, Zhen-Zhou Hou, Jin; Cheng, Yan-Fu; Li, Guan-Qiang
2014-10-27
We investigate strain modulation of the spin-dependent electron transport in a graphene junction using the transfer matrix method. As an analogy to optics, we define the modulation depth in the electron optics domain. Additionally, we discuss the transport properties and show that the modulation depth and the conductance depend on the spin-orbit coupling strength, the strain magnitude, the width of the strained area, and the energy of the incident electron. The conductances of the spin-down and spin-up electrons have opposite and symmetrical variations, which results in the analogous features of their modulation depths. The maximum conditions for both the modulation depth and the electron spin upset rate are also analyzed.
Three-dimensional stationary cyclic symmetric Einstein-Maxwell solutions; black holes
NASA Astrophysics Data System (ADS)
García, Alberto A.
2009-09-01
From a general metric for stationary cyclic symmetric gravitational fields coupled to Maxwell electromagnetic fields within the (2 + 1)-dimensional gravity the uniqueness of wide families of exact solutions is established. Among them, all uniform electromagnetic solutions possessing electromagnetic fields with vanishing covariant derivatives, all fields having constant electromagnetic invariants FF and TT, the whole classes of hybrid electromagnetic solutions, and also wide classes of stationary solutions are derived for a third-order nonlinear key equation. Certain of these families can be thought of as black hole solutions. For the most general set of Einstein-Maxwell equations, reducible to three nonlinear equations for the three unknown functions, two new classes of solutions - having anti-de Sitter spinning metric limit - are derived. The relationship of various families with those reported by different authors’ solutions has been established. Among the classes of solutions with cosmological constant a relevant place is occupied by the electrostatic and magnetostatic Peldan solutions, the stationary uniform and spinning Clement classes, the constant electromagnetic invariant branches with the particular Kamata-Koikawa solution, the hybrid cyclic symmetric stationary black hole fields, and the non-less important solutions generated via SL(2,R)-transformations where the Clement spinning charged solution, the Martinez-Teitelboim-Zanelli black hole solution, and Dias-Lemos metric merit mention.
Onthe static and spherically symmetric gravitational field
NASA Astrophysics Data System (ADS)
Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra
Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.
Super-symmetric informationally complete measurements
NASA Astrophysics Data System (ADS)
Zhu, Huangjun
2015-11-01
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg-Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg-Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Resonances for Symmetric Two-Barrier Potentials
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2011-01-01
We describe a method for the accurate calculation of bound-state and resonance energies for one-dimensional potentials. We calculate the shape resonances for symmetric two-barrier potentials and compare them with those coming from the Siegert approximation, the complex scaling method and the box-stabilization method. A comparison of the…
Matching a static cylindrically symmetric elastic spacetime
NASA Astrophysics Data System (ADS)
Brito, I.; Carot, J.; Mena, F. C.; Vaz, E. G. L. R.
2012-07-01
We consider a static cylindrically symmetric spacetime with elastic matter and study the matching problem of this spacetime with a suitable exterior. For the exterior, we take the Levi-Civita spacetime and its generalization including a cosmological constant, the Linet-Tian spacetime. We show that the matching is only possible with the Linet-Tian solution.
The deuterium puzzle in the symmetric universe
NASA Technical Reports Server (NTRS)
Leroy, B.; Nicolle, J. P.; Schatzman, E.
1973-01-01
An attempt was made to use deuterium abundance in the symmetric universe to prove that no nucleosynthesis takes place during annihilation and therefore neutrons were loss before nucleosynthesis. Data cover nucleosynthesis during the radiative era, cross section estimates, maximum abundance of He-4 at the end of nucleosynthesis area, and loss rate.
Coherent Spin Dynamics in Semiconductor Nanostructures
NASA Astrophysics Data System (ADS)
Flatté, Michael E.
2004-03-01
Manipulation of coherent spins in semiconductors without laboratory AC (or in some cases DC) magnetic fields can be driven with the electronic spin-orbit interaction. This relativistic effect produces ``pseudomagnetic'' fields surpassing plausible laboratory magnetic fields by orders of magnitude. The theory of two principal examples will be described here: the coupling between light fields and electron spin in quantum dots, and the use of DC electric fields to manipulate spin coherence times in quantum wells. We find that intense coherent optical illumination of quantum dots can generate ultrafast ˜ 1000 Tesla pseudomagnetic fields suitable for electron spin rotation. These effective fields are roughly spherically symmetric for colloidal quantum dots, but for structurally aspherical quantum dots (such as self-assembled dots during molecular beam epitaxy growth) these pseudomagnetic fields are highly anisotropic - large parallel to the growth direction and often a factor of five or ten smaller along perpendicular directions. The structural anisotropy also leads to very anisotropic selection rules for light emission in quantum dot spin-light-emitting-diodes. For the second principal example, manipulation of spin coherence times in quantum wells, the zero-field spin coherence times and the tuning ranges depend strongly on the crystalline orientation of the growth axis. Near room temperature in (110)-grown structures for applied electric fields of 10-100 kV/cm, the tuning range can exceed several orders of magnitude. This work was done in collaboration with W. H. Lau and C. E. Pryor and was supported by DARPA/ARO and an ARO MURI.
Dobson, R L; Straume, T; Carrano, A V; Minkler, J L; Deaven, L L; Littlefield, L G; Awa, A A
1991-11-01
The effectiveness of neutrons from a facsimile of the Hiroshima bomb was determined cytogenetically. The "Little-Boy" replica (LBR), assembled at Los Alamos as a controlled nuclear reactor for detailed physical dosimetry, was used. Of special interest, the neutron energy characteristics (including lineal energy) measured 0.74 m from the LBR were remarkably similar to those calculated for the 1945 Hiroshima bomb at 1 to 2 km from the hypocenter, as shown in a companion dosimetric paper (Straume, et al., Radiat. Res. 128, 133-142 (1991)). Thus we examine here the effectiveness of neutrons closely resembling those that the A-bomb survivors received at Hiroshima. Chromosome aberration frequencies were determined in human blood lymphocytes exposed in vitro to graded doses of LBR radiation (97% neutrons, 3% gamma rays). Vials of blood suspended in air at distances up to 2.10 m from the center of the LBR uranium core received doses ranging from 0.02 to 2.92 Gy. The LBR neutrons (E approximately 0.2 MeV) produced 1.18 dicentrics and rings per cell per Gy. They were more effective than the higher-energy fission neutrons (E approximately 1 MeV) commonly used in radiobiology. The maximum RBE (RBEM) of LBR neutrons at low doses is estimated to be 60 to 80 compared to 60Co gamma rays and 22 to 30 compared to 250-kVp X rays. These results provide a quantitative measurement of the biological effectiveness of Hiroshima-like neutrons.
FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas
NASA Astrophysics Data System (ADS)
Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia
2014-09-01
We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm-1 and an increase in bands in the region 1730-1680 cm-1 due to carbonyl stretching. We found a broad band around 1635 cm-1 likely due to Cdbnd O stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm-1 was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork (“Racconta storie”, 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable.
Varoni, Elena Maria; Altomare, Lina; Cochis, Andrea; GhalayaniEsfahani, Arash; Cigada, Alberto; Rimondini, Lia; De Nardo, Luigi
2016-04-21
Neo-vascularization is a key factor in tissue regeneration within porous scaffolds. Here, we tested the hypothesis that micro-patterned scaffolds, with precisely-designed, open micro-channels, might help endothelial cells to produce intra-scaffold vascular networks. Three series of micro-patterned scaffolds were produced via electrochemical replica-deposition of chitosan and cross-linking. All had regularly-oriented micro-channels (ϕ 500 μm), which differed for the inter-channel spacing, at 600, 700, or 900 μm, respectively. Random-pore scaffolds, using the same technique, were taken as controls. Physical-mechanical characterization revealed high water uptake and favorable elastic mechanical behavior for all scaffolds, slightly reduced in the presence of cross-linking and enhanced with the 700 μm-spaced micro-pattern. At MTT assay, mouse endothelial cell viability was >90% at day 1, 3 and 7, confirmed by visual examination with scanning electron microscopy (SEM). Intra-scaffold cell density, at fluorescence analysis, was higher for the 600 μm-spaced and the 700 μm-spaced micro-patterns over the others. The 700 μm-spaced scaffold was selected for the in vivo testing, to be compared to the random-pore one. Neither type produced an inflammatory reaction; both showed excellent tissue ingrowth. Micro-patterned scaffolds enhanced neo-vascularization, demonstrated by immunofluorescent, semi-quantitative analyses. These findings support the use of micro-patterned porous scaffolds, with adequately spaced micro-channels, to promote neo-vascularization.
Chamachi, Neharika G; Chakrabarty, Suman
2016-08-01
The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876
FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas.
Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia
2014-09-15
We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm(-1) and an increase in bands in the region 1730-1680 cm(-1) due to carbonyl stretching. We found a broad band around 1635 cm(-1) likely due to CO stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm(-1) was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork ("Racconta storie", 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable.
FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas.
Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia
2014-09-15
We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm(-1) and an increase in bands in the region 1730-1680 cm(-1) due to carbonyl stretching. We found a broad band around 1635 cm(-1) likely due to CO stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm(-1) was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork ("Racconta storie", 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable. PMID:24792194
Exact solution of the one-dimensional super-symmetric t-J model with unparallel boundary fields
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2014-04-01
The exact solution of the one-dimensional super-symmetric t-J model under generic integrable boundary conditions is obtained via the Bethe ansatz methods. With the coordinate Bethe ansatz, the corresponding R-matrix and K-matrices are derived for the second eigenvalue problem associated with spin degrees of freedom. It is found that the second eigenvalue problem can be transformed into that of the transfer matrix of the inhomogeneous XXX spin chain, which allows us to obtain the spectrum of the Hamiltonian and the associated Bethe ansatz equations by the off-diagonal Bethe ansatz method.
Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta
NASA Astrophysics Data System (ADS)
Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao
2016-06-01
Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
NASA Astrophysics Data System (ADS)
Li, Shiyou; Zhang, Shifeng; Cai, Hong; Yang, Huabo
2015-06-01
We present an in situ evidence of electron beam-associated symmetric bipolar electrostatic solitary waves (ESWs) on the current sheet-side of the separatrix of the magnetic reconnection in the near-Earth magnetotail by multi-spacecraft observation of Cluster. Within one spin period, 42 cases of symmetric ESWs are continuously observed during 2 s by SC2 while other spacecrafts do not "detect" them. And the Plasma Electron and Current Experiment (PEACE) spinPAD mode data exhibits unidirectional electron beam antiparallel to the ambient field, and no electron beam-like distribution is found by other spacecrafts without ESW observation. Though the electron beam is strongly associated with the ESWs in observation by multiple spacecraft differentiation, however, the relationship between the counter-directed electron beam and the simultaneously observed ESWs remains unclear and open to the next study.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses.
Arguin, L-P; Newman, C M; Stein, D L
2015-10-30
We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process. PMID:26565493
Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses
NASA Astrophysics Data System (ADS)
Arguin, L.-P.; Newman, C. M.; Stein, D. L.
2015-10-01
We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.
Chen, Jui-Yi; Yang, Ching-Yu; Chen, Po-Yu
2016-10-01
Intensive attention has been put in mimicking the morphologies in nature owing to their uniqueness, complexity, and diversity. One of the effective approaches to mimic bio-morphologies is through biotemplating - the technique of using biological structures as template to reproduce intricate structure in other forms of materials. This work presents a facile sol-gel technique that can be widely used to convert various carbon-rich bio-structures into different materials. Lotus root, a biomorphic template with high porosity at varying length scales, was selected as the example to demonstrate this approach. The experiment was conducted by infiltrating precursors - titanium (IV) n-butoxide (TnBT) and acetic acid calcium solution - into the lotus root template under vacuum system, followed by calcination. After the treatment, the replicas were calcite CaCO3 and anatase TiO2. In both CaCO3 and TiO2 replicas, the intact structure of the template was preserved. In spite of the overall similarity of the CaCO3 and TiO2 lotus root replicas, some respective differences were found. TiO2 replica was covered with nanowire bundles of 100-200nm in diameter, formed by preferable crystallization of particles, while CaCO3 replica presented the gradient-distributed pores of 10-100μm, which greatly resembled the microstructure of lotus root template. In the BET result, TiO2 replica was mesoporous structure with pores centralizing in 3-4nm. On the other hand, CaCO3 replica had pores in a wider distribution ranging from micro to macro scale. In addition, the surface area was greatly enhanced in both cases. The synthesized materials with hierarchical biomorphic structures may have great potential for purification applications due to their large specific surface area, photocatalytic property, and high adsorption rate.
Recurrence relation for the 6j-symbol of suq(2) as a symmetric eigenvalue problem
NASA Astrophysics Data System (ADS)
Khavkine, Igor
2015-08-01
A well-known recurrence relation for the 6j-symbol of the quantum group suq(2) is realized as a tridiagonal, symmetric eigenvalue problem. This formulation can be used to implement an efficient numerical evaluation algorithm, taking advantage of existing specialized numerical packages. For convenience, all formulas relevant for such an implementation are collected in Appendix A. This realization is a byproduct of an alternative proof of the recurrence relation, which generalizes a classical (q = 1) result of Schulten and Gordon and uses the diagrammatic spin network formalism of Temperley-Lieb recoupling theory to simplify intermediate calculations.
Spin Relaxation and Spin Transport in Graphene
NASA Astrophysics Data System (ADS)
Wu, M. W.
2012-02-01
In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).
Spin Liquid Condensate of Spinful Bosons
NASA Astrophysics Data System (ADS)
Lian, Biao; Zhang, Shoucheng
2015-03-01
We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S >= 2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond (RVB) state. The existence of SLC reveals the possible existence of a more general new class of superfluid phases in a lattice.
Spin-Liquid Condensate of Spinful Bosons
NASA Astrophysics Data System (ADS)
Lian, Biao; Zhang, Shoucheng
2014-08-01
We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S ≥2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond state.
Symmetric scalar constraint for loop quantum gravity
NASA Astrophysics Data System (ADS)
Lewandowski, Jerzy; Sahlmann, Hanno
2015-02-01
In the framework of loop quantum gravity, we define a new Hilbert space of states which are solutions of a large number of components of the diffeomorphism constraint. On this Hilbert space, using the methods of Thiemann, we obtain a family of gravitational scalar constraints. They preserve the Hilbert space for every choice of lapse function. Thus adjointness and commutator properties of the constraint can be investigated in a straightforward manner. We show how the space of solutions of the symmetrized constraint can be defined by spectral decomposition, and the Hilbert space of physical states by subsequently fully implementing the diffeomorphism constraint. The relationship of the solutions to those resulting from a proposal for a symmetric constraint operator by Thiemann remains to be elucidated.
Static spherically symmetric wormholes with isotropic pressure
NASA Astrophysics Data System (ADS)
Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo
2016-06-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Observational tests of baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1983-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of Pi(O)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the gamma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurements of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed. Previously announced in STAR as N83-10996
Braneworld gravity in a symmetric space bulk
NASA Astrophysics Data System (ADS)
Yilmaz, Nejat T.
2010-07-01
By considering the p-brane motion in a G/K symmetric space bulk we identify the G-invariant bulk metric in the solvable Lie algebra gauge of the brane action. After calculating the Levi-Civita connection of this bulk metric we use it in the Gauss equation to compute the braneworld curvature in terms of the bulk coordinates. Finally, by making use of the Gauss equation in the braneworld Einstein equation we present a geometrical method of implementing the first fundamental form in the gravitating brane dynamics for the specially chosen symmetric space bulk case leading to an Einstein equation expressed solely in terms of the bulk coordinates of the braneworld.
Integrability of PT-symmetric dimers
NASA Astrophysics Data System (ADS)
Pickton, J.; Susanto, H.
2013-12-01
The coupled discrete linear and Kerr nonlinear Schrödinger equations with gain and loss describing transport on dimers with parity-time (PT)-symmetric potentials are considered. The model is relevant among others to experiments in optical couplers and proposals on Bose-Einstein condensates in PT-symmetric double-well potentials. It is known that the models are integrable. Here, the integrability is exploited further to construct the phase portraits of the system. A pendulum equation with a linear potential and a constant force for the phase difference between the fields is obtained, which explains the presence of unbounded solutions above a critical threshold parameter. The behavior of all solutions of the system, including changes in the topological structure of the phase plane, is then discussed.
Symmetrical Peripheral Gangrene Following Snake Bite
Shastri, Minal; Parikh, Mital; Patel, Dwijal; Chudasma, Ketan
2014-01-01
SPG (Symmetrical peripheral gangrene) is defined as symmetrical distal ischemic damage at two or more sites in the absence of large vessels obstruction. It has been ascribed to a number of infectious and non infectious conditions including connective tissue, cardiovascular, neoplastic and iatrogenic causes. We report a unique case of SPG in a 35-year-old Indian female who developed spontaneous gangrene of the distal phalanges of the right and left index, middle, ring and little fingers and the distal phalanges of all toes of the right and left foot following a snake bite. There have been very few cases of peripheral gangrene and acute renal failure associated with snake bite in literature. PMID:25386476
Intensity-symmetric accelerating caustic beams.
Ren, Zhijun; Jin, Hongzhen; Peng, Baojin; Shi, Yile
2016-09-20
We construct and generate symmetric accelerating caustic beams (ACBs) by using 3/2-order phase-only masks with elliptical contour based on optical caustics and diffraction theory. The symmetric ACBs are a type of bimodal accelerating caustic beam with two quasi-constant intensity peaks, very similar to the combination of two face-to-face Airy-like beams judging by appearance. Their fundamental optical morphology and force properties of particles in ACBs are subsequently provided. The unique optical properties of ACBs can be exploited for practical uses, such as accelerating electrons and clearing micrometer-sized particles as a laser micrometer-sized "water pump" instead of a laser micrometer-sized "snowblower" of accelerating Airy beams. PMID:27661599
Frolov, S M; Lüscher, S; Yu, W; Ren, Y; Folk, J A; Wegscheider, W
2009-04-16
The phenomenon of spin resonance has had far-reaching influence since its discovery 70 years ago. Electron spin resonance driven by high-frequency magnetic fields has enhanced our understanding of quantum mechanics, and finds application in fields as diverse as medicine and quantum information. Spin resonance can also be induced by high-frequency electric fields in materials with a spin-orbit interaction; the oscillation of the electrons creates a momentum-dependent effective magnetic field acting on the electron spin. Here we report electron spin resonance due to a spin-orbit interaction that does not require external driving fields. The effect, which we term ballistic spin resonance, is driven by the free motion of electrons that bounce at frequencies of tens of gigahertz in micrometre-scale channels of a two-dimensional electron gas. This is a frequency range that is experimentally challenging to access in spin resonance, and especially difficult on a chip. The resonance is manifest in electrical measurements of pure spin currents-we see a strong suppression of spin relaxation length when the oscillating spin-orbit field is in resonance with spin precession in a static magnetic field. These findings illustrate how the spin-orbit interaction can be harnessed for spin manipulation in a spintronic circuit, and point the way to gate-tunable coherent spin rotations in ballistic nanostructures without external alternating current fields. PMID:19370029
Wave equation on spherically symmetric Lorentzian metrics
Bokhari, Ashfaque H.; Al-Dweik, Ahmad Y.; Zaman, F. D.; Kara, A. H.; Karim, M.
2011-06-15
Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of {theta} and {phi} are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.
Compensator configurations for load currents' symmetrization
NASA Astrophysics Data System (ADS)
Rusinaru, D.; Manescu, L. G.; Dinu, R. C.
2016-02-01
This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.
Solitons in PT-symmetric nonlinear lattices
Abdullaev, Fatkhulla Kh.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Kartashov, Yaroslav V.
2011-04-15
The existence of localized modes supported by the PT-symmetric nonlinear lattices is reported. The system considered reveals unusual properties: unlike other typical dissipative systems, it possesses families (branches) of solutions, which can be parametrized by the propagation constant; relatively narrow localized modes appear to be stable, even when the conservative nonlinear lattice potential is absent; and finally, the system supports stable multipole solutions.
The Wigner-Eckart Theorem for Reducible Symmetric Cartesian Tensor Operators
NASA Astrophysics Data System (ADS)
Bouzas, Antonio O.
2016-08-01
We explicitly establish a unitary correspondence between spherical irreducible tensor operators and Cartesian tensor operators of any rank. That unitary relation is implemented by means of a basis of integer-spin wave functions that constitute simultaneously a basis of the spaces of Cartesian and spherical irreducible tensors. As a consequence, we extend the Wigner-Eckart theorem to Cartesian irreducible tensor operators of any rank, and to totally symmetric reducible ones. We also discuss the tensorial structure of several standard spherical irreducible tensors such as ordinary, bipolar and tensor spherical harmonics, spin-polarization operators and multipole operators. As an application, we obtain an explicit expression for the derivatives of any order of spherical harmonics in terms of tensor spherical harmonics.
Symmetric scrolled packings of multilayered carbon nanoribbons
NASA Astrophysics Data System (ADS)
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Nonlinear waves in PT -symmetric systems
NASA Astrophysics Data System (ADS)
Konotop, Vladimir V.; Yang, Jianke; Zezyulin, Dmitry A.
2016-07-01
Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.
Chirally symmetric but confining dense, cold matter
NASA Astrophysics Data System (ADS)
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
Chirally symmetric but confining dense, cold matter
Glozman, L. Ya.; Wagenbrunn, R. F.
2008-03-01
The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.
BAI,M.; ROSER, T.
2007-06-25
This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.
Kara, Mahmut; Zacharias, Martin W.
2013-03-05
Chemical modification or radiation can cause DNA damage, which plays a crucial role for mutagenesis of DNA, carcinogenesis, and aging. DNA damage can also alter the fine structure of DNA that may serve as a recognition signal for DNA repair enzymes. A new, advanced sampling replica-exchange method has been developed to specifically enhance the sampling of conformational substates in duplex DNA during molecular dynamics (MD) simulations. The approach employs specific biasing potentials acting on pairs of pseudodihedral angles of the nucleic acid backbone that are added in the replica simulations to promote transitions of the most common substates of the DNA backbone. The sampled states can exchange with a reference simulation under the control of the original force field. The application to 7,8-dihydro-8oxo-guanosine, one of the most common oxidative damage in DNA indicated better convergence of sampled states during 10 ns simulations compared to 20 times longer standard MD simulations. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions, including explicit solvent and ions. The biasing potential-replica exchange MD simulations indicated significant differences in the population of nucleic acid backbone substates in the case of 7,8-dihydro-8oxo-guanosine compared to a regular guanosine in the same sequence context. This concerns both the ratio of the B-DNA substates BI and BII associated with the backbone dihedral angles ε and z but also coupled changes in the backbone dihedral angles a and g. Such differences may play a crucial role in the initial recognition of damaged DNA by repair enzymes.
Kara, Mahmut; Zacharias, Martin
2013-01-01
Chemical modification or radiation can cause DNA damage, which plays a crucial role for mutagenesis of DNA, carcinogenesis, and aging. DNA damage can also alter the fine structure of DNA that may serve as a recognition signal for DNA repair enzymes. A new, advanced sampling replica-exchange method has been developed to specifically enhance the sampling of conformational substates in duplex DNA during molecular dynamics (MD) simulations. The approach employs specific biasing potentials acting on pairs of pseudodihedral angles of the nucleic acid backbone that are added in the replica simulations to promote transitions of the most common substates of the DNA backbone. The sampled states can exchange with a reference simulation under the control of the original force field. The application to 7,8-dihydro-8oxo-guanosine, one of the most common oxidative damage in DNA indicated better convergence of sampled states during 10 ns simulations compared to 20 times longer standard MD simulations. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions, including explicit solvent and ions. The biasing potential-replica exchange MD simulations indicated significant differences in the population of nucleic acid backbone substates in the case of 7,8-dihydro-8oxo-guanosine compared to a regular guanosine in the same sequence context. This concerns both the ratio of the B-DNA substates BI and BII associated with the backbone dihedral angles ε and ζ but also coupled changes in the backbone dihedral angles α and γ. Such differences may play a crucial role in the initial recognition of damaged DNA by repair enzymes. PMID:23473492
NASA Astrophysics Data System (ADS)
Yarygin, V. I.; Mironov, V. S.; Solovyev, N. P.; Kolninov, O. V.; Kolesnikova, V. V.; Chernyavsky, A. I.; Smolyansky, A. S.
2001-12-01
This paper deals with the investigation of the possibility of using metal replicas, which were synthesized on the basis of chemically treated and heavy ion irradiated polyethylene terephtalate (PET) films, as collector rough surfaces in thermionic energy converters (TEC) with the low factor of the slow electron reflection from the collector surface. These collector surfaces decrease the voltage loss and, correspondingly, increase the efficiency. The procedures of the nickel- and copper-based replicas' fabrication were developed. The presence of the surface microrelief in the form of bulges with the height of 5-6 μm and diameter of 0.1 μm (the surface density is ˜2×10 9 cm-2) changes substantially the reflective properties of metal surfaces on exposure to light over the visible and infra-red range: in the case of copper the reflected light intensity decreases by more than an order of magnitude; for the nickel rough surfaces, which have acquired the black color, we determined the practically full absence of the light reflection in the range of wavelengths from 0.4 to 50 μm. The same was noted when studying the interaction of slow electrons with the synthesized microrough surfaces: 20% decrease of the electron reflection factor was detected. In this way, the nature of a metal has a determining effect on the nature of the light interaction with the metal replicas. The conclusion is made that the obtained rough surface hold much promise for the use as the collector surfaces in the new generation of TEC.
Bergslien, Elisa; Fountain, John
2006-12-15
By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.
Trapped Two-Dimensional Condensates with Synthetic Spin-Orbit Coupling
Sinha, Subhasis; Nath, Rejish; Santos, Luis
2011-12-30
We study trapped 2D atomic Bose-Einstein condensates with spin-independent interactions in the presence of an isotropic spin-orbit coupling, showing that a rich physics results from the nontrivial interplay between spin-orbit coupling, confinement and interatomic interactions. For low interactions two types of half-vortex solutions with different winding occur, whereas strong-enough repulsive interactions result in a stripe-phase similar to that predicted for homogeneous condensates. Intermediate interaction regimes are characterized for large enough spin-orbit coupling by an hexagonally-symmetric phase with a triangular lattice of density minima similar to that observed in rapidly rotating condensates.
14 CFR 23.331 - Symmetrical flight conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Symmetrical flight conditions. 23.331... Flight Loads § 23.331 Symmetrical flight conditions. (a) The appropriate balancing horizontal tail load... inertia loads corresponding to any of the symmetrical flight conditions specified in §§ 23.333 through...
da Silva, P P; Kachar, B; Torrisi, M R; Brown, C; Parkison, C
1981-07-10
Applications of the new fracture-labeling techniques for the observation of cytochemical labels on platinum-carbon replicas are described. Frozen cells, embedded in a cross-linked protein matrix, and frozen tissues are fractured with a scalpel under liquid nitrogen, thawed, labeled, dehydrated by the critical point drying method, and replicated. This method allows direct, high-resolution, two-dimensional chemical and immunological characterization of the cellular membranes in situ, as well as detection of sites within cross-fractured cytoplasm and extracellular matrix. PMID:7244630
Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1992-01-01
Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships silhouetted in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-970.
Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1992-01-01
Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view, taken from behind the fixed service structure (FSS) tower and retracted rotating service structure (RSS), shows the three ships as they sail by in the distance. OV-105 and its orange external tank (ET) are only partially visible. View provided by KSC with alternate KSC number KSC-92PC-977.
Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1992-01-01
Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships silhouetted in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-971.
Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B
NASA Technical Reports Server (NTRS)
1992-01-01
Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-967.
Malolepsza, Edyta; Secor, Maxim; Keyes, Tom
2015-09-23
A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.
Odriozola, Gerardo; Berthier, Ludovic
2011-02-01
We use replica exchange Monte Carlo simulations to measure the equilibrium equation of state of the disordered fluid state for a binary hard sphere mixture up to very large densities where standard Monte Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes we use (up to N = 100), we find no sign of a pressure discontinuity near the location of dynamic glass singularities extrapolated using either algebraic or simple exponential divergences, suggesting they do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed for the fate of the fluid state in the thermodynamic limit.
Performance of Replica-Exchange Wang-Landau Sampling for the 2D Ising Model: A Brief Survey
Zhao, Yiwei; Cheung, Siu Wun; Li, Ying Wai; Eisenbach, Markus
2014-01-01
We report a brief performance study of the replica-exchange Wang-Landau algorithm, a recently proposed parallel realization of Wang-Landau sampling, using the 2D Ising model as a test case. The simulation time is found to scale inversely with the square root of the number of subwindows (and thus number of processors) used to span the global parameter space. We also investigate the time profiles for random walkers in dierent subwindows to complete iterations, which will aid the development of and adaptive load-balancing scheme.
Małolepsza, Edyta; Secor, Maxim; Keyes, Tom
2015-10-22
A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed to simulate first-order phase transitions. The properties of the isobaric gREM ensemble are discussed, and a study is presented for the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. Phase diagrams, critical parameters, and a law of corresponding states are obtained. PMID:26398582
Klopper, A V; Svaneborg, Carsten; Everaers, Ralf
2009-01-01
We investigate the behaviour of randomly cross-linked (co)polymer blends using a combination of replica theory and large-scale molecular dynamics simulations. In particular, we derive the analogue of the random phase approximation for systems with quenched disorder and show how the required correlation functions can be calculated efficiently. By post-processing simulation data for homopolymer networks we are able to describe neutron scattering measurements in heterogeneous systems without resorting to microscopic detail and otherwise unphysical assumptions. We obtain structure function data which illustrate the expected microphase separation and contain system-specific information relating to the intrinsic length scales of our networks.
PREFACE: Viewing the World through Spin Glasses
NASA Astrophysics Data System (ADS)
Coolen, Ton; Nishimori, Hidetoshi; Sourlas, Nicolas; Wong, Michael
2008-08-01
This special issue of Journal of Physics A: Mathematical and Theoretical collects papers by speakers and participants of the conference `Viewing the World through Spin Glasses', held in Oxford (UK) on 31 August and 1 September 2007 in honour of Professor David Sherrington. It also includes contributions by many other active researchers in the field of spin glasses and related problems. The theory of spin glasses has a history of more than 30 years and continues to develop within itself as well as into an unexpectedly vast range of interdisciplinary subjects, including neural networks, error-correcting codes, optimization problems and social problems. Most of these amazing developments have their formal basis in the ground-breaking work of David Sherrington with Scott Kirkpatrick, centred on the SK model and the techniques devised to analyse it via the replica method. In this 'classic-of-classics' paper, a theoretical paradigm was suddenly established which became the common tool of analysis for thousands of papers in the following decades. It also led to deep developments in probability theory, through the efforts to understand the enigmatic Parisi solution of the SK model. The work of Professor Sherrington will continue to be an infinite source of our inspiration in many years to come. The purpose of the conference `Viewing the World through Spin Glasses' was to provide an overview of the present status of the fields which Professor Sherrington initiated, on the occasion of his 65th birthday, organized by John Cardy, Juan P Garrahan and the present Guest Editors. The first contribution in this special issue, by Professor Paul Goldbart, reflects his salute delivered at the conference dinner, and conveys its atmosphere very well. The papers that follow, ordered by the date of acceptance, represent the current activities of leading researchers in spin glasses and related fields, and we expect these to serve as milestones for future developments. We thank all the
NASA Astrophysics Data System (ADS)
Cukier, Robert I.
2011-01-01
Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] Hamiltonian temperature replica exchange method (HTREM), which scales the Hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the Hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer
ORDINOLA-ZAPATA, Ronald; BRAMANTE, Clovis Monteiro; DUARTE, Marco Antonio Húngaro; CAVENAGO, Bruno Cavalini; JARAMILLO, David; VERSIANI, Marco Aurélio
2014-01-01
Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas. PMID:24918662
Magnons, Spin Current and Spin Seebeck Effect
NASA Astrophysics Data System (ADS)
Maekawa, Sadamichi
2012-02-01
When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).
Spin effects in double photoionization of lithium
Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.
2010-02-15
We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.
Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects
NASA Astrophysics Data System (ADS)
Kidder, Lawrence E.
1995-07-01
We examine the effects of spin-orbit and spin-spin couplings on the inspiral of a coalescing binary system of spinning compact objects and on the gravitational radiation emitted therefrom. Using a formalism developed by Blanchet, Damour, and Iyer we calculate the contributions due to the spins of the bodies to the symmetric trace-free radiative multipole moments which are used to calculate the waveform, energy loss, and angular momentum loss from the inspiraling binary. Using equations of motion which include terms due to spin-orbit and spin-spin couplings we evolve the orbit of a coalescing binary and use the orbit to calculate the emitted gravitational waveform. We find the spins of the bodies affect the waveform in several ways: (1) the spin terms contribute to the orbital decay of the binary, and thus to the accumulated phase of the gravitational waveform; (2) the spins cause the orbital plane to precess, which changes the orientation of the orbital plane with respect to an observer, thus causing the shape of the waveform to be modulated; (3) the spins contribute directly to the amplitude of the waveform. We discuss the size and importance of spin effects for the case of two coalescing neutron stars, and for the case of a neutron star orbiting a rapidly rotating 10Msolar black hole.
Lee, Myoung-Jae; Jung, Young-Dae
2015-02-15
The nonthermal and geometric effects on the propagation of the surface dust acoustic waves are investigated in a Lorentzian dusty plasma slab. The symmetric and anti-symmetric dispersion modes of the dust acoustic waves are obtained by the plasma dielectric function with the spectral reflection conditions the slab geometry. The variation of the nonthermal and geometric effects on the symmetric and the anti-symmetric modes of the surface plasma waves is also discussed.
Stability of a dual-spin satellite with two dampers
NASA Technical Reports Server (NTRS)
Alfriend, K. T.; Hubert, C. H.
1974-01-01
The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.
Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice.
Aoyama, Kazushi; Kawamura, Hikaru
2016-06-24
Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2,1/2,1/2) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed. PMID:27391746
Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice
NASA Astrophysics Data System (ADS)
Aoyama, Kazushi; Kawamura, Hikaru
2016-06-01
Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.
Jungwirth, Tomas; Wunderlich, Jörg; Olejník, Kamil
2012-05-01
The spin Hall effect is a relativistic spin-orbit coupling phenomenon that can be used to electrically generate or detect spin currents in non-magnetic systems. Here we review the experimental results that, since the first experimental observation of the spin Hall effect less than 10 years ago, have established the basic physical understanding of the phenomenon, and the role that several of the spin Hall devices have had in the demonstration of spintronic functionalities and physical phenomena. We have attempted to organize the experiments in a chronological order, while simultaneously dividing the Review into sections on semiconductor or metal spin Hall devices, and on optical or electrical spin Hall experiments. The spin Hall device studies are placed in a broader context of the field of spin injection, manipulation, and detection in non-magnetic conductors.
Spin Rotation of Formalism for Spin Tracking
Luccio,A.
2008-02-01
The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.
Van Haver, Annemieke; De Roo, Karel; De Beule, Matthieu; Van Cauter, Sofie; Labey, Luc; De Baets, Patrick; Claessens, Tom; Verdonk, Peter
2014-08-01
To investigate the biomechanical effect of skeletal knee joint abnormalities, the authors propose to implant pathologically shaped rapid prototyped implants in cadaver knee specimens. This new method was validated by replacing the native trochlea by a replica implant on four cadaver knees with the aid of cadaver-specific guiding instruments. The accuracy of the guiding instruments was assessed by measuring the rotational errors of the cutting planes (on average 3.01° in extension and 1.18° in external/internal rotation). During a squat and open chain simulation, the patella showed small differences in its articulation with the native trochlea and the replica trochlea, which could partially be explained by the rotational errors of the implants. This study concludes that this method is valid to investigate the effect of knee joint abnormalities with a replica implant as a control condition to account for the influence of material properties and rotational errors of the implant.
Wibowo, J.; Amadei, B.; Sture, S.; Price, R.H.
1994-04-01
Assessing the shear behavior of intact rock & rock fractures is an important issue in the design of a potential nuclear waste repository at Yucca Mountain Nevada. Cyclic direct shear experiments were conducted on replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff. The tests were carried out under constant normal loads or constant normal stiffnesses with different initial normal load levels. Each test consisted of five cycles of forward and reverse shear motion. Based on the results of the shear tests conducted under constant normal load, the shear behavior of the joint replicas tested under constant normal stiffness was predicted by using the graphical analysis method of Saeb (1989), and Amadei and Saeb (1990). Comparison between the predictions and the actual constant stiffness direct shear experiment results can be found in a report by Wibowo et al. (1993b). Results of the constant normal load shear experiments are analyzed using several constitutive models proposed in the rock mechanics literature for joint shear strength, dilatancy, and joint surface damage. It is shown that some of the existing models have limitations. New constitutive models are proposed and are included in a mathematical analysis tool that can be used to predict joint behavior under various boundary conditions.
A 10-bit 250 MSPS charge-domain pipelined ADC with replica controlled PVT insensitive BCT circuit
NASA Astrophysics Data System (ADS)
Songren, Huang; Hong, Zhang; Zhenhai, Chen; Shuang, Zhu; Zongguang, Yu; Hongwen, Qian; Yue, Hao
2015-05-01
A low power 10-bit 250 MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) is introduced. The ADC is implemented in MOS bucket-brigade devices (BBDs) based CD pipelined architecture. A replica controlled boosted charge transfer (BCT) circuit is introduced to reject the influence of PVT variations on the charge transfer process. Based on replica controlled BCT, the CD pipelined ADC is designed and realized in a 1P6M 0.18 μm CMOS process. The ADC achieves an SFDR of 64.4 dB, an SNDR of 56.9 dB and an ENOB of 9.2 for a 9.9 MHz input; and an SFDR of 63.1 dB, an SNR of 55.2 dB, an SNDR of 54.5 dB and an ENOB of 8.7 for a 220.5 MHz input at full sampling rate. The DNL is +0.5/ -0.55 LSB and INL is +0.8/ -0.85 LSB. The power consumption of the prototype ADC is only 45 mW at 1.8 V supply and it occupies an active die area of 1.56 mm2. Project supported by the National Natural Science Foundation of China (No. 61106027).
NASA Astrophysics Data System (ADS)
Jo, Sunhwan; Jiang, Wei
2015-12-01
Replica Exchange with Solute Tempering (REST2) is a powerful sampling enhancement algorithm of molecular dynamics (MD) in that it needs significantly smaller number of replicas but achieves higher sampling efficiency relative to standard temperature exchange algorithm. In this paper, we extend the applicability of REST2 for quantitative biophysical simulations through a robust and generic implementation in greatly scalable MD software NAMD. The rescaling procedure of force field parameters controlling REST2 "hot region" is implemented into NAMD at the source code level. A user can conveniently select hot region through VMD and write the selection information into a PDB file. The rescaling keyword/parameter is written in NAMD Tcl script interface that enables an on-the-fly simulation parameter change. Our implementation of REST2 is within communication-enabled Tcl script built on top of Charm++, thus communication overhead of an exchange attempt is vanishingly small. Such a generic implementation facilitates seamless cooperation between REST2 and other modules of NAMD to provide enhanced sampling for complex biomolecular simulations. Three challenging applications including native REST2 simulation for peptide folding-unfolding transition, free energy perturbation/REST2 for absolute binding affinity of protein-ligand complex and umbrella sampling/REST2 Hamiltonian exchange for free energy landscape calculation were carried out on IBM Blue Gene/Q supercomputer to demonstrate efficacy of REST2 based on the present implementation.
Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M
2016-05-10
Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.
Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V
2016-05-14
In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules. PMID:27111190
2d PDE Linear Symmetric Matrix Solver
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Symmetrical band-pass loudspeaker systems
NASA Astrophysics Data System (ADS)
Matusiak, Grzegorz Piotr
2001-12-01
Loudspeaker systems are analyzed in a doctoral dissertation. The dissertation concerns loudspeaker systems, which are known as subwoofers or band-pass loudspeaker systems. Their advantages include: high- quality sound reproduction in the low-frequency range, small dimensions, small nonlinear distortions and the fact that they can be placed anywhere in a room or car. Band-pass loudspeaker systems are used widely in the so- called Home Theatre as well as to provide sound in cinema, theatre, concert, discotheque, opera, operetta, philharmonic and amphitheater halls, at open-air concerts, and so on. Various designs are mass-produced by a large number of manufacturers. The study covers an analysis of band-pass loudspeaker systems to which the frequency transformation, i.e. the reactance transformation, has been applied. Since this is a symmetrical transformation, amplitude frequency responses of the studied band-pass systems are also symmetrical (logarithmic scale of a frequency). As a result, the high-pass loudspeaker system design method, known as the Thiele-Small, Benson analysis, can be employed. The investigations include the formulation of band-pass system equations (fourth, sixth and eighth-order polynomials) and the subsequent derivation of relations for the calculation of system parameters. The obtained results enable the calculation of optimum designs for prescribed alignments, e.g. (Chebyshev) equal-ripple, (Butterworth) maximally flat, or quasi-maximally flat (QB). The analysis covers fourth, sixth and eighth-order symmetrical systems. Eighth-order systems have been divided into three kinds according to three ways of physical realization. The doctoral dissertation includes band-pass loudspeaker systems, which can be designed with active or passive filters or without the filter. Designed systems consist of a loudspeaker whose front of a diaphragm is loaded with a Helmholtz resonator, i.e. an enclosure with a vent, which radiates sound outwards. The back is
Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves
Wei, Pengjiang; Croënne, Charles; Tak Chu, Sai; Li, Jensen
2014-03-24
We investigate tunable acoustic absorption enabled by the coherent control of input waves. It relies on coherent perfect absorption originally proposed in optics. By designing appropriate acoustic metamaterial structures with resonating effective bulk modulus or density, we show that complete absorption of incident waves impinging on the metamaterial can be achieved for either symmetrical or anti-symmetrical inputs in the forward and backward directions. By adjusting the relative phase between the two incident beams, absorption can be tuned effectively from unity to zero, making coherent control useful in applications like acoustic modulators, noise controllers, transducers, and switches.
Cruz, Alejandro; Padilla-Martínez, Itzia I; García-Báez, Efrén V
2012-08-24
Symmetric and non-symmetric 2-(N-H, N-methyl, N-ethylenyl and N-aryl)guanidinebenzothiazoles were synthesized from the reaction of ammonia, methylamine, pyrrolidine and aniline with dimethyl benzo[d]thiazol-2-yl-carbonodithioimidate as intermediate. The products were characterized by ¹H-, ¹³C-NMR spectroscopy and three of them by X-ray diffraction analysis. HN-phenyl protons formed intramolecular hydrogen bonds that assist the stereochemistry of the second substituent, whereas the HN-alkyl protons were involved in intermolecular hydrogen bonding.
Expanding symmetric multiprocessor capability through gang scheduling
Jette, M.A.
1998-03-01
Symmetric Multiprocessor (SMP) systems normally provide both space- sharing and time-sharing to insure high system utilization and good responsiveness. However the prevailing lack of concurrent scheduling for parallel programs precludes SMP use in addressing many large-scale problems. Tightly synchronized communications are impractical and normal time-sharing reduces the benefit of cache memory. Evidence gathered at Lawrence Livermore National Laboratory (LLNL) indicates that gang scheduling can increase the capability of SMP systems and parallel program performance without adverse impact upon system utilization or responsiveness.
Design of spherical symmetric gradient index lenses
NASA Astrophysics Data System (ADS)
Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción
2012-10-01
Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.
Characterisation of an AGATA symmetric prototype detector
NASA Astrophysics Data System (ADS)
Nelson, L.; Dimmock, M. R.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nolan, P. J.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.
2007-04-01
The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at the University of Liverpool. A 137Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented.
Topological Hall conductivity of vortex and skyrmion spin textures
Jalil, M. B. A. Ghee Tan, Seng; Eason, Kwaku; Kong, Jian Feng
2014-05-07
We analyze the topological Hall conductivity experienced by conduction electrons whose spins are strongly coupled to axially symmetric spin textures, such as magnetic vortex and skyrmion of types I and II, theoretically by gauge theory, and numerically via micromagnetic simulations. The numerical results are in agreement with the theoretical predictions. Divergence between the two is seen when the vortex/skyrmion core radius is comparable or larger than the element size, and when the skyrmion configuration breaks down at high Dzyaloshinskii-Moriya interaction strength.
Rash, J E; Yasumura, T
1992-01-15
In conventional freeze-fracture replicas, precise complementarity of membrane faces is seldom achieved. In a model system frequently used to evaluate replica quality, vertebrate gap junctions are usually visualized as patches of 8-10 nm P-face intramembrane particles separated by 1-2 nm spaces, while E-face images are represented by 4-6 nm conical pits separated by 5-7 nm wide membrane ridges. However, that disparity in sizes of particles versus pits, as well as the disparity in the widths of the spaces separating particles versus pits, suggests that a significant reduction in complementarity of membrane faces has occurred. In this investigation, a JEOL JFD-9000 freeze-etch machine was modified so that fracturing and replication could be performed at temperatures much colder than commonly employed. With the addition of cryopumps to improve overall vacuum and the installation of optically tight LN2-cooled shrouds surrounding the specimen and the knife, water vapor contamination arising from all sources within the vacuum chamber was reduced substantially, allowing replicas to be made at temperatures down to -185 degrees C. With the specimen at these much colder temperatures, water vapor released by the heat of cleaving was also reduced significantly, providing additional improvement in replica quality. In addition, with higher shadowing angles (greater than 60 degrees) and with the specimen at a much lower temperature, the grain size of the platinum film was noticeably reduced, thereby improving resolution at the molecular level. Under these improved conditions, replicas of rat liver gap junctions revealed that many of the P-face IMPs were tubes 6-7 nm in diameter, but that other IMPs had been stretched and distorted by the fracturing process. More important, however, these high resolution replicas revealed that the replicas of the E-face pits represented three-dimensional molecular casts of the transmembrane proteins comprising the connexon hexamer. This means that
Cassiday, P K; Graves, L M; Swaminathan, B
1990-07-01
Bacterial colonies from Listeria-selective agars were replica plated to sheep blood agar to screen for beta-hemolysis. By using the replica plating method to test for the beta-hemolytic characteristic of all the colonies growing on Listeria-selective agars instead of picking 3 to 10 suspected colonies for further testing, we recovered Listeria monocytogenes from 59 of 142 Listeria-selective agar plates which contained colonies of hemolytic and nonhemolytic Listeria species and were negative when tested by conventional colony picks.
A replica exchange Monte Carlo algorithm for protein folding in the HP model
Thachuk, Chris; Shmygelska, Alena; Hoos, Holger H
2007-01-01
Background The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFneVtcqqGqbauaaa@3961@-hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC) method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP) lattice models. Results We demonstrate that REMC is highly effective for solving instances of the square (2D) and cubic (3D) HP protein folding problem. When using the pull move neighbourhood, REMC outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we show that this new algorithm provides a larger ensemble of ground-state structures than the existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds significantly better conformations on long biological sequences and sequences with a provably unique ground-state structure, which is believed to be a characteristic of real proteins. We also present evidence that our REMC algorithm can fold sequences which exhibit significant interaction between termini in the hydrophobic core relatively easily. Conclusion We demonstrate that REMC utilizing the pull move neighbourhood
Mediated entanglement and correlations in a star network of interacting spins
Hutton, A.; Bose, S.
2004-04-01
We investigate analytically a star network of spins, in which all spins interact exclusively and continuously with a central spin through Heisenberg XX couplings of equal strength. We find that the central spin correlates and entangles the other spins at zero temperature to a degree that depends on the total number of spins. We find that the entanglement mediating capability of the central spin depends on the evenness or oddness of this number. In the limit of an infinite collection of spins, the difference between entanglement and correlations in terms of divisibility among multiple parties is clearly demonstrated. We also show that with a significant probability one can maximally entangle any two noncentral spins by measuring all the other spins (a process related to the recently introduced notion of localizable entanglement). This probability depends on the evenness and oddness of the total number of spins and remains substantial even for an infinite collection of spins. We show how symmetric multiparty states for optimal sharing and splitting of entanglement can be obtained as ground states of this system using a magnetic field. These states can then be mapped on to flying qubits for transmission to distant parties. We discuss a number of advantages of this mode of generation and distribution of entanglement over other standard methods.
NASA Astrophysics Data System (ADS)
Levchenko, G.; Khristov, A.; Kuznetsova, V.; Shelest, V.
2014-08-01
The behavior under pressure of the high spin-low spin phase transition in the coordination compounds containing 3d ions is analyzed using thermodynamic and microscopic approaches. For thermodynamic approach the mean field model with interactions between spin-crossover molecules is considered. Microscopic model takes into account the interaction of d electrons of the transition metal ions with full symmetric distortions of the ligands. The relationship of the thermodynamic interaction parameters with microscopic ones is installed and shown how the quantum-mechanical interactions form the cooperativity of the system. Within the microscopic model the temperature and pressure dependences of the high spin fraction in 2-D compounds {Fe(3-Fpy)2[M(CN)4]} (M=Pd, Pt) are simulated and microscopic parameters are evaluated. It is concluded that different experimental behaviors of the temperature and pressure induced spin transitions are determined by different variations of the inelastic and elastic energies under pressure, and vibrational component of the free energy drives the ST equally with electronic part.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
Analysis of non-symmetrical flapping airfoils
NASA Astrophysics Data System (ADS)
Tay, W. B.; Lim, K. B.
2009-08-01
Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of non-symmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using non-symmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.61, respectively. The lift production is highly dependent on the airfoil’s shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interactions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better ornithopter’s wing.
Spherically Symmetric Solutions of Light Galileon
NASA Astrophysics Data System (ADS)
Momeni, D.; Houndjo, M. J. S.; Güdekli, E.; Rodrigues, M. E.; Alvarenga, F. G.; Myrzakulov, R.
2016-02-01
We have been studied the model of light Galileon with translational shift symmetry ϕ → ϕ + c. The matter Lagrangian is presented in the form {L}_{φ }= -η (partial φ )2+β G^{μ ν }partial _{μ }φ partial _{ν }φ . We have been addressed two issues: the first is that, we have been proven that, this type of Galileons belong to the modified matter-curvature models of gravity in type of f(R,R^{μ ν }T_{μ ν }m). Secondly, we have been investigated exact solution for spherically symmetric geometries in this model. We have been found an exact solution with singularity at r = 0 in null coordinates. We have been proven that the solution has also a non-divergence current vector norm. This solution can be considered as an special solution which has been investigated in literature before, in which the Galileon's field is non-static (time dependence). Our scalar-shift symmetrized Galileon has the simple form of ϕ = t, which it is remembered by us dilaton field.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
Spin Transport by Collective Spin Excitations
NASA Astrophysics Data System (ADS)
Hammel, P. Chris
We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.
Decay Structure for Symmetric Hyperbolic Systems with Non-Symmetric Relaxation and its Application
NASA Astrophysics Data System (ADS)
Ueda, Yoshihiro; Duan, Renjun; Kawashima, Shuichi
2012-07-01
This paper is concerned with the decay structure for linear symmetric hyperbolic systems with relaxation. When the relaxation matrix is symmetric, the dissipative structure of the systems is completely characterized by the Kawashima-Shizuta stability condition formulated in Umeda et al. (Jpn J Appl Math 1:435-457, 1984) and Shizuta and Kawashima (Hokkaido Math J 14:249-275, 1985) and we obtain the asymptotic stability result together with the explicit time-decay rate under that stability condition. However, some physical models which satisfy the stability condition have non-symmetric relaxation term (for example, the Timoshenko system and the Euler-Maxwell system). Moreover, it had been already known that the dissipative structure of such systems is weaker than the standard type and is of the regularity-loss type (see Duan in J Hyperbolic Differ Equ 8:375-413, 2011; Ide et al. in Math Models Meth Appl Sci 18:647-667, 2008; Ide and Kawashima in Math Models Meth Appl Sci 18:1001-1025, 2008; Ueda et al. in SIAM J Math Anal 2012; Ueda and Kawashima in Methods Appl Anal 2012). Therefore our purpose in this paper is to formulate a new structural condition which includes the Kawashima-Shizuta condition, and to analyze the weak dissipative structure for general systems with non-symmetric relaxation.
Jian-ping Chen, Alexandre Deur, Sebastian Kuhn, Zein-eddine Meziani
2011-06-01
Spin-dependent observables have been a powerful tool to probe the internal structure of the nucleon and to understand the dynamics of the strong interaction. Experiments involving spin degrees of freedom have often brought out surprises and puzzles. The so-called "spin crisis" in the 1980s revealed the limitation of naive quark-parton models and led to intensive worldwide efforts, both experimental and theoretical, to understand the nucleon spin structure. With high intensity and high polarization of both the electron beam and targets, Jefferson Lab has the world's highest polarized luminosity and the best figure-of-merit for precision spin structure measurements. It has made a strong impact in this subfield of research. This chapter will highlight Jefferson Lab's unique contributions in the measurements of valence quark spin distributions, in the moments of spin structure functions at low to intermediate Q2, and in the transverse spin structure.
Neutrino mean free paths in cold symmetric nuclear matter
Cowell, S.; Pandharipande, V.R.
2004-09-01
The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.
Spin-glass transition in geometrically frustrated antiferromagnets with weak disorder
NASA Astrophysics Data System (ADS)
Andreanov, A.; Chalker, J. T.; Saunders, T. E.; Sherrington, D.
2010-01-01
We study the effect in geometrically frustrated antiferromagnets of weak, random variations in the strength of exchange interactions. Without disorder the simplest classical models for these systems have macroscopically degenerate ground states, and this degeneracy may prevent ordering at any temperature. Weak exchange randomness favors a small subset of these ground states and induces a spin-glass transition at an ordering temperature determined by the amplitude of modulations in interaction strength. We use the replica approach to formulate a theory for this transition, showing that it falls into the same universality class as conventional spin-glass transitions. In addition, we show that a model with a low concentration of defect bonds can be mapped onto a system of randomly located pseudospins that have dipolar effective interactions. We also present detailed results from Monte Carlo simulations of the classical Heisenberg antiferromagnet on the pyrochlore lattice with weak randomness in nearest-neighbor exchange.
Some remarks on p-spin interaction models in a random field
NASA Astrophysics Data System (ADS)
Haddad, T. A. S.; Vieira, A. P.; Salinas, S. R.
2004-10-01
We present some calculations for the thermodynamic behavior of mean-field ferromagnetic p-spin interaction models in the presence of quenched random fields. For both Ising and spherical spin variables, we use the law of large numbers, without recourse to the replica trick, to obtain a free-energy functional in terms of the order parameter and an extra non-ordering density. In the spherical limit, we show that the transition is continuous for p=2, but turns into first order for p⩾3, regardless of the probability distribution of the random fields. In the Ising case, for p=2, we recover previously known results. The free-energy functional obtained in this treatment can be used as a starting point for a dynamical study of these models.
Many-Body Mobility Edge in a Mean-Field Quantum Spin Glass
NASA Astrophysics Data System (ADS)
Laumann, C. R.; Pal, A.; Scardicchio, A.
2014-11-01
The quantum random energy model provides a mean-field description of the equilibrium spin glass transition. We show that it further exhibits a many-body localization-delocalization (MBLD) transition when viewed as a closed quantum system. The mean-field structure of the model allows an analytically tractable description of the MBLD transition using the forward-scattering approximation and replica techniques. The predictions are in good agreement with the numerics. The MBLD transition lies at energy density significantly above the equilibrium spin glass transition, indicating that the closed system dynamics freezes well outside of the traditional glass phase. We also observe that the structure of the eigenstates at the MBLD critical point changes continuously with the energy density, raising the possibility of a family of critical theories for the MBLD transition.
ERIC Educational Resources Information Center
Cross, Rod
2013-01-01
Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…
Entanglement entropy in quantum spin chains with broken reflection symmetry
Kadar, Zoltan; Zimboras, Zoltan
2010-09-15
We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.
Azimuthally symmetric theory of gravitation - I. On the perihelion precession of planetary orbits
NASA Astrophysics Data System (ADS)
Nyambuya, G. G.
2010-04-01
From a purely non-general relativistic standpoint, we solve the empty space Poisson equation (∇2Φ = 0) for an azimuthally symmetric setting (i.e. for a spinning gravitational system like the Sun). We seek the general solution of the form Φ = Φ(r, θ). This general solution is constrained such that in the zeroth-order approximation it reduces to Newton's well-known inverse square law of gravitation. For this general solution, it is seen that it has implications on the orbits of test bodies in the gravitational field of this spinning body. We show that to second-order approximation, this azimuthally symmetric gravitational field is capable of explaining at least two things: (i) the observed perihelion shift of solar planets; (ii) the fact that the mean Earth-Sun distance must be increasing (this resonates with the observations of two independent groups of astronomers, who have measured that the mean Earth-Sun distance must be increasing at a rate between about 7.0 +/- 0.2 m century-1 and 15.0 +/- 0.3 m cy-1). In principle, we are able to explain this result as a consequence of the loss of orbital angular momentum; this loss of orbital angular momentum is a direct prediction of the theory. Further, we show that the theory is able to explain at a satisfactory level the observed secular increase in the Earth year (1.70 +/- 0.05 ms yr-1). Furthermore, we show that the theory makes a significant and testable prediction to the effect that the period of the solar spin must be decreasing at a rate of at least 8.00 +/- 2.00 s cy-1.
Symmetric operation and nuclear notch filtering in GaAs double quantum dots
NASA Astrophysics Data System (ADS)
Kuemmeth, Ferdinand
Spin qubits based on few-electron semiconducting quantum dots are promising candidates for quantum computation, due to their potential for miniaturization, scalability and fault tolerance. In this talk I will present recent results on how to mitigate electrical and nuclear noise in GaAs singlet-triplet qubits. The traditional way of implementing exchange rotations in singlet-triplet qubits involves detuning the qubit away from the symmetric (1,1) charge configuration, thereby temporarily hybridizing with the (0,2) charge state. Due to the large dipole coupling the resulting qubit oscillation suffers from detuning noise, motivating operation at sweet spots or in the multi-electron regime. Alternatively, exchange rotations can be implemented by symmetrically lowering the middle barrier. This method yields less relative exchange noise, significantly enhanced free induction decay times, and quality factors comparable to those reported in silicon quantum dot devices using similar techniques. In order to decouple the singlet-triplet qubit from nuclear spin fluctuations, we investigate Carr-Purcell-Meiboom-Gill (CPMG) sequences in more detail. At high magnetic fields we find that qubit dephasing is limited by narrow-band high-frequency noise arising from Larmor precession of 69Ga, 71Ga, 75As nuclear spins, similar to what has been observed at intermediate magnetic field. By aligning the notches of the CPMG filter function with differences of the discrete nuclear Larmor frequencies we demonstrate a qubit coherence time of 0.87 ms, i.e. more than five orders of magnitude longer than the duration of a π exchange gate in the same device. Support through IARPA-MQCO, Army Research Office, and the Danish National Research Foundation is acknowledged.
Research of transport and deposition of aerosol in human airway replica
NASA Astrophysics Data System (ADS)
Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav
2012-04-01
Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators.
Dou, Xu; Kotov, Valeri N; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators.
Dou, Xu; Kotov, Valeri N; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
NASA Astrophysics Data System (ADS)
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Symmetric instability in the Gulf Stream
NASA Astrophysics Data System (ADS)
Thomas, Leif N.; Taylor, John R.; Ferrari, Raffaele; Joyce, Terrence M.
2013-07-01
Analyses of wintertime surveys of the Gulf Stream (GS) conducted as part of the CLIvar MOde water Dynamic Experiment (CLIMODE) reveal that water with negative potential vorticity (PV) is commonly found within the surface boundary layer (SBL) of the current. The lowest values of PV are found within the North Wall of the GS on the isopycnal layer occupied by Eighteen Degree Water, suggesting that processes within the GS may contribute to the formation of this low-PV water mass. In spite of large heat loss, the generation of negative PV was primarily attributable to cross-front advection of dense water over light by Ekman flow driven by winds with a down-front component. Beneath a critical depth, the SBL was stably stratified yet the PV remained negative due to the strong baroclinicity of the current, suggesting that the flow was symmetrically unstable. A large eddy simulation configured with forcing and flow parameters based on the observations confirms that the observed structure of the SBL is consistent with the dynamics of symmetric instability (SI) forced by wind and surface cooling. The simulation shows that both strong turbulence and vertical gradients in density, momentum, and tracers coexist in the SBL of symmetrically unstable fronts. SI is a shear instability that draws its energy from geostrophic flows. A parameterization for the rate of kinetic energy (KE) extraction by SI applied to the observations suggests that SI could result in a net dissipation of 33 mW m-2 and 1 mW m-2 for surveys with strong and weak fronts, respectively. The surveys also showed signs of baroclinic instability (BCI) in the SBL, namely thermally direct vertical circulations that advect biomass and PV. The vertical circulation was inferred using the omega equation and used to estimate the rate of release of available potential energy (APE) by BCI. The rate of APE release was found to be comparable in magnitude to the net dissipation associated with SI. This result points to an
Operational multipartite entanglement classes for symmetric photonic qubit states
Kiesel, N.; Wieczorek, W.; Weinfurter, H.; Krins, S.; Bastin, T.; Solano, E.
2010-03-15
We present experimental schemes that allow us to study the entanglement classes of all symmetric states in multiqubit photonic systems. We compare the efficiency of the proposed schemes and highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
VACUUM calculation in azimuthally symmetric geometry
Chance, M.S.
1996-11-01
A robustly accurate and effective method is presented to solve Laplace`s equation in general azimuthally symmetric geometry for the magnetic scalar potential in the region surrounding a plasma discharge which may or may not contain external conducting shells. These shells can be topologically toroidal or spherical, and may have toroidal gaps in them. The solution is incorporated into the various MHD stability codes either through the volume integrated perturbed magnetic energy in the vacuum region or through the continuity requirements for the normal component of the perturbed magnetic field and the total perturbed pressure across the unperturbed plasma-vacuum boundary. The method is based upon using Green`s second identity and the method of collocation. As useful byproducts, the eddy currents and the simulation of Mirnov loop measurements are calculated.
Symmetrical Taylor impact of glass bars
NASA Astrophysics Data System (ADS)
Murray, N. H.; Bourne, N. K.; Field, J. E.; Rosenberg, Z.
1998-07-01
Brar and Bless pioneered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass but limited their studies to relatively modest stresses (1). We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test in which two rods impact one upon the other. Previous work in the laboratory has characterised the glass types (soda-lime and borosilicate)(2). These experiments identify the failure mechanisms from high-speed photography and the stress and particle velocity histories are interpreted in the light of these results. The differences in response of the glasses and the relation of the fracture to the failure wave in uniaxial strain are discussed.
Circularly symmetric light scattering from nanoplasmonic spirals.
Trevino, Jacob; Cao, Hui; Dal Negro, Luca
2011-05-11
In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors. PMID:21466155
Pseudo-Z symmetric space-times
Mantica, Carlo Alberto; Suh, Young Jin
2014-04-15
In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.
Minimal Left-Right Symmetric Dark Matter.
Heeck, Julian; Patra, Sudhanwa
2015-09-18
We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.
Implications of nonlinearity for spherically symmetric accretion
NASA Astrophysics Data System (ADS)
Sen, Sourav; Ray, Arnab K.
2014-03-01
We subject the steady solutions of a spherically symmetric accretion flow to a time-dependent radial perturbation. The equation of the perturbation includes nonlinearity up to any arbitrary order and bears a form that is very similar to the metric equation of an analogue acoustic black hole. Casting the perturbation as a standing wave on subsonic solutions, and maintaining nonlinearity in it up to the second order, we get the time dependence of the perturbation in the form of a Liénard system. A dynamical systems analysis of the Liénard system reveals a saddle point in real time, with the implication that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. The instability of initial subsonic states also adversely affects the temporal evolution of the flow toward a final and stable transonic state.
Symmetric Satellite Swarms and Choreographic Crystals
NASA Astrophysics Data System (ADS)
Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick
2016-01-01
In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems.
Hamiltonian theory of symmetric optical network transforms
NASA Astrophysics Data System (ADS)
Törmä, Päivi; Stenholm, Stig
1995-12-01
We discuss the theory of extracting an interaction Hamiltonian from a preassigned unitary transformation of quantum states. Such a procedure is of significance in quantum computations and other optical information processing tasks. We particularize the problem to the construction of totally symmetric 2N ports as introduced by Zeilinger and his collaborators [A. Zeilinger, M. Zukowski, M. A. Horne, H. J. Bernstein, and D. M. Greenberger, in Fundamental Aspects of Quantum Theory, edited by J. Anandan and J. J. Safko (World Scientific, Singapore, 1994)]. These are realized by the discrete Fourier transform, which simplifies the construction of the Hamiltonian by known methods of linear algebra. The Hamiltonians found are discussed and alternative realizations of the Zeilinger class transformations are presented. We briefly discuss the applicability of the method to more general devices.
Jamming anomaly in PT-symmetric systems
NASA Astrophysics Data System (ADS)
Barashenkov, I. V.; Zezyulin, D. A.; Konotop, V. V.
2016-07-01
The Schrödinger equation with a { P }{ T }-symmetric potential is used to model an optical structure consisting of an element with gain coupled to an element with loss. At low gain–loss amplitudes γ, raising the amplitude results in the energy flux from the active to the leaky element being boosted. We study the anomalous behaviour occurring for larger γ, where the increase of the amplitude produces a drop of the flux across the gain–loss interface. We show that this jamming anomaly is either a precursor of the exceptional point, where two real eigenvalues coalesce and acquire imaginary parts, or precedes the eigenvalue's immersion in the continuous spectrum.
NASA Technical Reports Server (NTRS)
Fuchs, Richard; Schmidt, Wilhelm
1931-01-01
With the object of further clarifying the problem of spinning, the equilibrium of the forces and moments acting on an airplane is discussed in light of the most recent test data. Convinced that in a spin the flight attitude by only small angles of yaw is more or less completely steady, the study is primarily devoted to an investigation of steady spin with no side slip. At small angles, wholly arbitrary and perfectly steady spins may be forced, depending on the type of control displacements. But at large angles only very steep and only "approaching steady" spins are possible, no matter what the control displacements.
NASA Astrophysics Data System (ADS)
Kovalenko, Andriy; Hirata, Fumio
2001-11-01
We develop a replica generalization of the reference interaction site model (replica RISM) integral equation theory to describe the structure and thermodynamics of quenched-annealed systems comprising polar molecular species. It provides a successful approach to realistic models of molecular liquids, and properly allows for the effect of a quenched disordered matrix on the sorbed liquid. The description can be extended to an electrolyte solution in a disordered material containing charged chemical functionalities that determine its adsorption character. The replica reference interaction site model (RISM) equations are complemented with the hypernetted chain (HNC) closure and its partial linearization (PLHNC), adequate to ionic and polar molecular liquids. In these approximations, the excess chemical potentials are derived in a closed analytical form. We extend the description to a quenched-annealed system with soft-core interaction potentials between all species, in which the liquid and matrix equilibrium distributions are characterized in general by two different temperatures. The replica RISM/PLHNC-HNC theory is applied to water sorbed in a quenched disordered microporous network of atoms associated into interconnected branched chains, with activating polar groups grafted to matrix chains. The results are in qualitative agreement with experiment for water confined in disordered materials.
NASA Technical Reports Server (NTRS)
Back, L. H.; Radbill, J. R.; Cho, Y. I.; Crawford, D. W.
1986-01-01
Pressure distributions were measured along a hollow vascular axisymmetric replica of a segment of the left circumflex coronary artery of man with mildly atherosclerotic diffuse disease. A large range of physiological Reynolds numbers from about 60 to 500, including hyperemic response, was spanned in the flows investigation using a fluid simulating blood kinematic viscosity. Predicted pressure distributions from the numerical solution of the Navier-Stokes equations were similar in trend and magnitude to the measurements. Large variations in the predicted velocity profiles occurred along the lumen. The influence of the smaller scale multiple flow obstacles along the wall (lesion variations) led to sharp spikes in the predicted wall shear stresses. Reynolds number similarity was discussed, and estimates of what time averaged in vivo pressure drop and shear stress might be were given for a vessel segment.
NASA Astrophysics Data System (ADS)
Swenson, David W. H.; Bolhuis, Peter G.
2014-07-01
The multiple state transition interface sampling (TIS) framework in principle allows the simulation of a large network of complex rare event transitions, but in practice suffers from convergence problems. To improve convergence, we combine multiple state TIS [J. Rogal and P. G. Bolhuis, J. Chem. Phys. 129, 224107 (2008)] with replica exchange TIS [T. S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)]. In addition, we introduce multiple interface sets, which allow more than one order parameter to be defined for each state. We illustrate the methodology on a model system of multiple independent dimers, each with two states. For reaction networks with up to 64 microstates, we determine the kinetics in the microcanonical ensemble, and discuss the convergence properties of the sampling scheme. For this model, we find that the kinetics depend on the instantaneous composition of the system. We explain this dependence in terms of the system's potential and kinetic energy.
Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks
Jung, Mi; Mho, Sun-il; Park, Hong Lee
2006-03-27
Long-range-ordered CdTe nanodot arrays with controlled size and density were grown on GaAs substrates by using molecular-beam epitaxy with ultrathin nanoporous alumina masks. The CdTe/GaAs nanodot arrays were grown as replicas of the self-assembled porous alumina masks in spite of the large lattice mismatch between GaAs and CdTe. Using ultrathin alumina masks (ca. 200 nm in thickness), we fabricated CdTe nanodot arrays with uniform dot sizes in the ranges of 35 nm (with a density of {approx}2.5x10{sup 10} cm{sup -2}) and 80 nm (with a density of {approx}8.1x10{sup 9} cm{sup -2}). This is the report on controlling both the size and the density of II-VI/III-V heterostructure semiconductor nanodots.
A Trip to Rome: Physical Replicas of Historical Objects Created in a Fully Automated Way from Photos
NASA Astrophysics Data System (ADS)
Barazzetti, Luigi
It is normal for tourists to take photos during their holidays, which are then printed, loaded into digital frames or shared on the Internet. This paper describes a new methodology to obtain accurate 3D digital models and material replicas of real objects, starting from digital images acquired with consumer and professional cameras. The implemented software is completely automatic and provides detailed reconstructions. It stands out from other existing approaches for the high metric accuracy of the final product, the level of detail obtainable, the speed of the algorithms and its adaptability under different viewing conditions. Several examples relating to an actual trip to Rome are reported and discussed, showing what a tourist can obtain with this package. Obviously, the method can be used for many other applications in which accurate models are needed.
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.