Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao
2012-01-01
Background Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as “replication domains”, and recent findings indicate that replication timing is under developmental and cell type-specific regulation. Methodology/Principal Findings We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Conclusions Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome. PMID:22879953
Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao
2012-01-01
Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as "replication domains", and recent findings indicate that replication timing is under developmental and cell type-specific regulation. We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome.
Replication profile of Saccharomyces cerevisiae chromosome VI.
Friedman, K L; Brewer, B J; Fangman, W L
1997-11-01
An understanding of the replication programme at the genome level will require the identification and characterization of origins of replication through large, contiguous regions of DNA. As a step toward this goal, origin efficiencies and replication times were determined for 10 ARSs spanning most of the 270 kilobase (kb) chromosome VI of Saccharomyces cerevisiae. Chromosome VI shows a wide variation in the percentage of cell cycles in which different replication origins are utilized. Most of the origins are activated in only a fraction of cells, suggesting that the pattern of origin usage on chromosome VI varies greatly within the cell population. The replication times of fragments containing chromosome VI origins show a temporal pattern that has been recognized on other chromosomes--the telomeres replicate late in S phase, while the central region of the chromosome replicates early. As demonstrated here for chromosome VI, analysis of the direction of replication fork movement along a chromosome and determination of replication time by measuring a period of hemimethylation may provide an efficient means of surveying origin activity over large regions of the genome.
Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program
Foti, Rossana; Gnan, Stefano; Cornacchia, Daniela; Dileep, Vishnu; Bulut-Karslioglu, Aydan; Diehl, Sarah; Buness, Andreas; Klein, Felix A.; Huber, Wolfgang; Johnstone, Ewan; Loos, Remco; Bertone, Paul; Gilbert, David M.; Manke, Thomas; Jenuwein, Thomas; Buonomo, Sara C.B.
2016-01-01
Summary DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals. PMID:26725008
Multiple determinants controlling activation of yeast replication origins late in S phase.
Friedman, K L; Diller, J D; Ferguson, B M; Nyland, S V; Brewer, B J; Fangman, W L
1996-07-01
Analysis of a 131-kb segment of the left arm of yeast chromosome XIV beginning 157 kb from the telomere reveals four highly active origins of replication that initiate replication late in S phase. Previous work has shown that telomeres act as determinants for late origin activation. However, at least two of the chromosome XIV origins maintain their late activation time when located on large circular plasmids, indicating that late replication is independent of telomeres. Analysis of the replication time of plasmid derivatives containing varying amounts of chromosome XIV DNA show that a minimum of three chromosomal elements, distinct from each tested origin, contribute to late activation time. These late determinants are functionally equivalent, because duplication of one set of contributing sequences can compensate for the removal of another set. Furthermore, insertion of an origin that is normally early activated into this domain results in a shift to late activation, suggesting that the chromosome XIV origins are not unique in their ability to respond to the late determinants.
Replication dynamics of the yeast genome.
Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L
2001-10-05
Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.
Smith, Owen K.; Aladjem, Mirit I.
2014-01-01
The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010
Goncharov, Fedor P.; Zhimulev, Igor F.
2018-01-01
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila. PMID:29659604
White, Eric J; Emanuelsson, Olof; Scalzo, David; Royce, Thomas; Kosak, Steven; Oakeley, Edward J; Weissman, Sherman; Gerstein, Mark; Groudine, Mark; Snyder, Michael; Schübeler, Dirk
2004-12-21
Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.
Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.
Koren, Amnon; Tsai, Hung-Ji; Tirosh, Itay; Burrack, Laura S; Barkai, Naama; Berman, Judith
2010-08-19
Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres) was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC) components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.
How and why multiple MCMs are loaded at origins of DNA replication.
Das, Shankar P; Rhind, Nicholas
2016-07-01
Recent work suggests that DNA replication origins are regulated by the number of multiple mini-chromosome maintenance (MCM) complexes loaded. Origins are defined by the loading of MCM - the replicative helicase which initiates DNA replication and replication kinetics determined by origin's location and firing times. However, activation of MCM is heterogeneous; different origins firing at different times in different cells. Also, more MCMs are loaded in G1 than are used in S phase. These aspects of MCM biology are explained by the observation that multiple MCMs are loaded at origins. Having more MCMs at early origins makes them more likely to fire, effecting differences in origin efficiency that define replication timing. Nonetheless, multiple MCM loading raises new questions, such as how they are loaded, where these MCMs reside at origins, and how their presence affects replication timing. In this review, we address these questions and discuss future avenues of research. © 2016 WILEY Periodicals, Inc.
Histone acetylation regulates the time of replication origin firing.
Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael
2002-11-01
The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.
Pohl, Thomas J; Brewer, Bonita J; Raghuraman, M K
2012-01-01
The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.
Pohl, Thomas J.; Brewer, Bonita J.; Raghuraman, M. K.
2012-01-01
The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation. PMID:22589733
The dynamics of genome replication using deep sequencing
Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.
2014-01-01
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142
Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe.
Pratihar, Aditya S; Tripathi, Vishnu P; Yadav, Mukesh P; Dubey, Dharani D
2015-12-01
Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2004, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2004 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727- associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2004 or ars727 remains unaltered by the extended chromosomal context.
Analysis of the temporal program of replication initiation in yeast chromosomes.
Friedman, K L; Raghuraman, M K; Fangman, W L; Brewer, B J
1995-01-01
The multiple origins of eukaryotic chromosomes vary in the time of their initiation during S phase. In the chromosomes of Saccharomyces cerevisiae the presence of a functional telomere causes nearby origins to delay initiation until the second half of S phase. The key feature of telomeres that causes the replication delay is the telomeric sequence (C(1-3)A/G(1-3)T) itself and not the proximity of the origin to a DNA end. A second group of late replicating origins has been found at an internal position on chromosome XIV. Four origins, spanning approximately 140 kb, initiate replication in the second half of S phase. At least two of these internal origins maintain their late replication time on circular plasmids. Each of these origins can be separated into two functional elements: those sequences that provide origin function and those that impose late activation. Because the assay for determining replication time is costly and laborious, it has not been possible to analyze in detail these 'late' elements. We report here the development of two new assays for determining replication time. The first exploits the expression of the Escherichia coli dam methylase in yeast and the characteristic period of hemimethylation that transiently follows the passage of a replication fork. The second uses quantitative hybridization to detect two-fold differences in the amount of specific restriction fragments as a function of progress through S phase. The novel aspect of this assay is the creation in vivo of a non-replicating DNA sequence by site-specific pop-out recombination. This non-replicating fragment acts as an internal control for copy number within and between samples. Both of these techniques are rapid and much less costly than the more conventional density transfer experiments that require CsCl gradients to detect replicated DNA. With these techniques it should be possible to identify the sequences responsible for late initiation, to search for other late replicating regions in the genome, and to begin to analyze the effect that altering the temporal program has on chromosome function.
Rif1 is a global regulator of timing of replication origin firing in fission yeast
Hayano, Motoshi; Kanoh, Yutaka; Matsumoto, Seiji; Renard-Guillet, Claire; Shirahige, Katsuhiko; Masai, Hisao
2012-01-01
One of the long-standing questions in eukaryotic DNA replication is the mechanisms that determine where and when a particular segment of the genome is replicated. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication and may affect the site selection and timing of origin firing. We identified rif1Δ, a null mutant of rif1+, a conserved telomere-binding factor, as an efficient bypass mutant of fission yeast hsk1. Extensive deregulation of dormant origins over a wide range of the chromosomes occurs in rif1Δ in the presence or absence of hydroxyurea (HU). At the same time, many early-firing, efficient origins are suppressed or delayed in firing timing in rif1Δ. Rif1 binds not only to telomeres, but also to many specific locations on the arm segments that only partially overlap with the prereplicative complex assembly sites, although Rif1 tends to bind in the vicinity of the late/dormant origins activated in rif1Δ. The binding to the arm segments occurs through M to G1 phase in a manner independent of Taz1 and appears to be essential for the replication timing program during the normal cell cycle. Our data demonstrate that Rif1 is a critical determinant of the origin activation program on the fission yeast chromosomes. PMID:22279046
Choreography of the Mycobacterium Replication Machinery during the Cell Cycle
Trojanowski, Damian; Ginda, Katarzyna; Pióro, Monika; Hołówka, Joanna; Skut, Partycja; Jakimowicz, Dagmara
2015-01-01
ABSTRACT It has recently been demonstrated that bacterial chromosomes are highly organized, with specific positioning of the replication initiation region. Moreover, the positioning of the replication machinery (replisome) has been shown to be variable and dependent on species-specific cell cycle features. Here, we analyzed replisome positions in Mycobacterium smegmatis, a slow-growing bacterium that exhibits characteristic asymmetric polar cell extension. Time-lapse fluorescence microscopy analyses revealed that the replisome is slightly off-center in mycobacterial cells, a feature that is likely correlated with the asymmetric growth of Mycobacterium cell poles. Estimates of the timing of chromosome replication in relation to the cell cycle, as well as cell division and chromosome segregation events, revealed that chromosomal origin-of-replication (oriC) regions segregate soon after the start of replication. Moreover, our data demonstrate that organization of the chromosome by ParB determines the replisome choreography. PMID:25691599
Replication licensing and the DNA damage checkpoint
Cook, Jeanette Gowen
2011-01-01
Accurate and timely duplication of chromosomal DNA requires that replication be coordinated with processes that ensure genome integrity. Significant advances in determining how the earliest steps in DNA replication are affected by DNA damage have highlighted some of the mechanisms to establish that coordination. Recent insights have expanded the relationship between the ATM and ATR-dependent checkpoint pathways and the proteins that bind and function at replication origins. These findings suggest that checkpoints and replication are more intimately associated than previously appreciated, even in the absence of exogenous DNA damage. This review summarizes some of these developments. PMID:19482602
Polten, Andreas; Hezroni, Hadas; Eldar, Yonina C.; Meshorer, Eran; Yakhini, Zohar; Simon, Itamar
2012-01-01
DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR). Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs) in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs) in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR). Our algorithm, ARTO (Analysis of Replication Timing and Organization), uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10–25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are associated with compact chromatin and are located significantly closer to the nuclear envelope. Supplementary material is available. Raw and processed data were deposited in Geo (GSE17236). PMID:23145042
Initiation preference at a yeast origin of replication.
Brewer, B J; Fangman, W L
1994-04-12
Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.
High-throughput analysis of yeast replicative aging using a microfluidic system
Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong
2015-01-01
Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317
Karamese, Murat; Aydogdu, Sabiha; Karamese, Selina Aksak; Altoparlak, Ulku; Gundogdu, Cemal
2015-01-01
Hepatitis B virus infection is one of the major world health problems. Epigallocatechin-3 gallate is the major component of the polyphenolic fraction of green tea and it has an anti-viral, anti-mutagenic, anti- tumorigenic, anti-angiogenic, anti-proliferative, and/or pro-apoptotic effects on mammalian cells. In this study, our aim was to investigate the inhibition of HBV replication by epigallocatechin-3 gallate in the Hep3B2.1-7 hepatocellular carcinoma cell line. HBV-replicating Hep3B2.1-7 cells were used to investigate the preventive effects of epigallocatechin-3 gallate on HBV DNA replication. The expression levels of HBsAg and HBeAg were determined using ELISA. Quantitative real-time-PCR was applied for the determination of the expression level of HBV DNA. Cytotoxicity of epigallocathechin-3-gallate was not observed in the hepatic carcinoma cell line when the dose was lower than 100 μM. The ELISA method demonstrated that epigallocatechin-3 gallate have strong effects on HBsAg and HBeAg levels. Also it was detected by real-time PCR that epigallocatechin-3 gallate could prevent HBV DNA replication. The obtained data pointed out that although the exact mechanism of HBV DNA replication and related diseases remains unclear, epigallocatechin-3 gallate has a potential as an effective anti-HBV agent with low toxicity.
Replication-associated mutational asymmetry in the human genome.
Chen, Chun-Long; Duquenne, Lauranne; Audit, Benjamin; Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Huvet, Maxime; d'Aubenton-Carafa, Yves; Hyrien, Olivier; Arneodo, Alain; Thermes, Claude
2011-08-01
During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results demonstrate that DNA replication is one of the major processes that shape human genome composition.
The ubiquitin-proteasome system is required for African swine fever replication.
Barrado-Gil, Lucía; Galindo, Inmaculada; Martínez-Alonso, Diego; Viedma, Sergio; Alonso, Covadonga
2017-01-01
Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host's ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.
Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization
NASA Astrophysics Data System (ADS)
Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin
2007-12-01
High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.
ERIC Educational Resources Information Center
Kliegl, Reinhold; And Others
1994-01-01
Tests with 2 pairs of tasks differing in cognitive complexity performed by 20 young and 20 old adults support a model for the determination of time-accuracy functions (TAFs) for individual participants. Findings replicate the established interactions between age and task complexity in the context of TAFs. (SLD)
Radial chromatin positioning is shaped by local gene density, not by gene expression
2009-01-01
G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional activity. We demonstrate a polarized distribution of gene-dense vs gene-poor chromatin within CTs with respect to the nuclear border. Whereas we confirm previous reports that a particular gene-dense and transcriptionally highly active region of about 2 Mb on 11p15.5 often loops out from the territory surface, gene-dense and highly expressed sequences were not generally found preferentially at the CT surface as previously suggested. PMID:17333233
Prereplicative events involving simian virus 40 DNA in permissive cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldy, A.; Feunteun, J.; Rosenberg, B.H.
1982-01-01
Simian virus 40 DNA molecules were found to be unable to replicate for 9 h after infection, even in cells that were already replicating the DNA of preinfecting simian virus 40; after 9 h, the ability of the DNA to replicate began to rise sharply. The kinetics of activation indicated that each DNA molecule undergoes a series of slow consecutive reactions, not involving T-antigen, before it can replicate. These pre-replicative molecular transformations probably involve configurational changes; their nature and their relation to the initiation of viral DNA synthesis is discussed. Observation of the replicative behavior of one viral DNA inmore » the presence of another was made possible by the use of two different mutants with distinguishable DNAs: a viable deletion mutant containing DNA insensitive to TaqI restriction enzyme was used to provide viral functions required for replication, and is a tsA mutant with TaqI-sensitive DNA was introduced at various times as a probe to determine the ability of the DNA to replicate under different conditions.« less
Topologically associating domains are stable units of replication-timing regulation.
Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L; Wang, Yanli; Hansen, R Scott; Canfield, Theresa K; Thurman, Robert E; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H; Snyder, Michael P; Stamatoyannopoulos, John A; Taylor, James; Hardison, Ross C; Kahveci, Tamer; Ren, Bing; Gilbert, David M
2014-11-20
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Soriano, Ignacio; Morafraile, Esther C; Vázquez, Enrique; Antequera, Francisco; Segurado, Mónica
2014-09-13
Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast.
Population control of self-replicating systems
NASA Technical Reports Server (NTRS)
Mccord, R. L.
1982-01-01
The literature concerning fibonacci sequence and the mathematics of self replication are reviewed. One option allows each primary to generate n-replicas, one in each sequential time frame after its own generation with no restrictions on the number of ancestors per replica. The state vector of the replicas in an efficient manner is determined. Option-B has a fixed number of replicas per primary and no restrictions on the number of ancestors for a replica. Any element fij represents the number of elements of type-j in time frame k+1 generated from type-i in time frame k. Option-D is a diagonal matrix whose eigenvalues are precisely those of f.
Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication.
Brustel, Julien; Kirstein, Nina; Izard, Fanny; Grimaud, Charlotte; Prorok, Paulina; Cayrou, Christelle; Schotta, Gunnar; Abdelsamie, Alhassan F; Déjardin, Jérôme; Méchali, Marcel; Baldacci, Giuseppe; Sardet, Claude; Cadoret, Jean-Charles; Schepers, Aloys; Julien, Eric
2017-09-15
Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila , partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se , but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes. © 2017 The Authors.
A Time Series Design Study of Neurologically Impaired Children.
ERIC Educational Resources Information Center
St. John, Patricia
1992-01-01
Used time series design, Change-over-Time, study to determine usefulness of four tasks in distinguishing maturational factors and neurological characteristics of eight boys diagnosed as neurologically impaired. Results indicated that tasks were characterized by use of regular art materials, interest to subjects, ability to be replicated, and…
Lian, Hui-Yong; Robertson, E Douglas; Hiraga, Shin-ichiro; Alvino, Gina M; Collingwood, David; McCune, Heather J; Sridhar, Akila; Brewer, Bonita J; Raghuraman, M K; Donaldson, Anne D
2011-05-15
DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.
Park, Bokri; Kim, Yonggyun
2011-06-01
Polydnaviruses are a group of double-stranded DNA viruses and are symbiotically associated with some ichneumonoid wasps. As proviruses, the replication of polydnaviruses occurs in the female reproductive organ at the pupal stage. This study analyzed the effects of two developmental hormones, juvenile hormone (JH) and ecdysteroid, on the viral replication of Cotesia plutellae bracovirus (CpBV). All 23 CpBV segments identified contained a conserved excision/rejoining site ('AGCTTT') from their proviral segments. Using quantitative real-time PCR based on this excision/rejoining site marker, initiation of CpBV replication was determined to have occurred on day 4 on the pupal stage. Pyriproxyfen, a JH agonist, significantly inhibited adult emergence of C. plutellae, whereas RH5992, an ecdysteroid agonist, had no inhibitory effect. Although RH5992 had no effect dose on adult development, it significantly accelerated viral replication. The results of immunoblotting assays against viral coat proteins support the effects of the hormone agonists on viral replication.
Real-Time Detection of Telomerase in a Microelectromechanical Systems Platform
2005-05-01
contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 147 19a...Telomerase accomplishes this by alleviating the “end-replication problem” (6,10,14,23,33,43). First described by Hayflick in 1965, the end-replication...were produced to determine the minimum detection limit of the ABI Prism 7000 as an optical fluorescent detection device. In addition, I wanted to
Replication timing and nuclear structure.
Fu, Haiqing; Baris, Adrian; Aladjem, Mirit I
2018-06-01
DNA replication proceeds along spatially and temporally coordinated patterns within the nucleus, thus protecting the genome during the synthesis of new genetic material. While we have been able to visualize replication patterns on DNA fibers for 50 years, recent developments and discoveries have provided a greater insight into how DNA replication is controlled. In this review, we highlight many of these discoveries. Of great interest are the physiological role of the replication timing program, cis and trans-acting factors that modulate replication timing and the effects of chromatin structure on the replication timing program. We also discuss future directions in the study of replication timing. Published by Elsevier Ltd.
Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J
2009-12-01
Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.
Verghese, Priya S.; Schmeling, David O.; Knight, Jennifer A.; Matas, Arthur J.; Balfour, Henry H.
2014-01-01
Background Organ donors are often implicated as the source of posttransplant recipient infection. We prospectively studied kidney and liver donor-recipient pairs to determine if donor viral replication of cytomegalovirus (CMV), Epstein-Barr virus (EBV), and BK polyomavirus (BKV) at transplant was a risk factor for posttransplant recipient infection and disease. Methods Donors and recipients were studied for antibodies against CMV and EBV and for quantitative viral replication of CMV, EBV and BKV in oral washes, urine, and whole blood pretransplant. Recipient testing continued every 3 months posttransplant. Demographic and clinical data on infections and graft and subject outcomes were obtained. Results The 98 donor-recipient pairs included 15 liver and 83 kidney transplants (18 of whom were children). No donor had detectable CMV replication; therefore its impact on recipient CMV replication could not be analyzed. Donor EBV replication occurred in 22%, mostly in the oral wash and had no impact on posttransplant recipient EBV replication (p 0.9) or EBV viremia (p 0.6) in kidney or liver recipients. Donor BKV replication occurred in 17%, mostly in the urine and although not associated with posttransplant recipient urinary BKV replication in recipients, it was associated with BKV viremia (p 0.02), and a significantly shorter time to BKV viremia (p 0.01) in kidney recipients. Conclusion Donor replication of CMV or EBV did not impact posttransplant recipient viral replication in kidney/liver transplants. Donor urinary BKV replication is associated with recipient BKV viremia in kidney transplants. PMID:25148381
Links between genome replication and chromatin landscapes.
Sequeira-Mendes, Joana; Gutierrez, Crisanto
2015-07-01
Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Genome-Wide Analysis of the Arabidopsis Replication Timing Program1[OPEN
Brooks, Ashley M.; Wheeler, Emily; LeBlanc, Chantal; Lee, Tae-Jin; Martienssen, Robert A.; Thompson, William F.
2018-01-01
Eukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure. We used the thymidine analog, 5-ethynyl-2′-deoxyuridine, in combination with flow sorting and Repli-Seq to describe, at high-resolution, the genome-wide replication timing program for Arabidopsis (Arabidopsis thaliana) Col-0 suspension cells. We identified genomic regions that replicate predominantly during early, mid, and late S phase, and correlated these regions with genomic features and with data for chromatin state, accessibility, and long-distance interaction. Arabidopsis chromosome arms tend to replicate early while pericentromeric regions replicate late. Early and mid-replicating regions are gene-rich and predominantly euchromatic, while late regions are rich in transposable elements and primarily heterochromatic. However, the distribution of chromatin states across the different times is complex, with each replication time corresponding to a mixture of states. Early and mid-replicating sequences interact with each other and not with late sequences, but early regions are more accessible than mid regions. The replication timing program in Arabidopsis reflects a bipartite genomic organization with early/mid-replicating regions and late regions forming separate, noninteracting compartments. The temporal order of DNA replication within the early/mid compartment may be modulated largely by chromatin accessibility. PMID:29301956
Radtke, Andrea L.; Lay, Margarita K.; Hjelm, Brooke E.; Bolick, Alice N.; Sarker, Shameema S.; Atmar, Robert L.; Kingsley, David H.; Arntzen, Charles J.; Estes, Mary K.; Nickerson, Cheryl A.
2013-01-01
Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication. PMID:23622517
Alternative methods to determine infectivity of Tulane virus: a surrogate for human norovirus
USDA-ARS?s Scientific Manuscript database
Culturable animal caliciviruses are widely-used as surrogates for human norovirus (HuNoV), which can not replicate in cells. The infectivity of a culturable virus was traditionally determined by plaque assay and/or 50% tissue culture infectious dose (TCID50) assay, both of which are time-consuming ...
Li, D; Wu, N; Yao, H; Bader, A; Brockmeyer, Norbert H; Altmeyer, P
2005-03-29
Severe acute respiratory syndrome (SARS) is a novel infectious disease which is characterized by an overaggressive immune response. Chemokines are important inflammatory mediators and regulate disease due to viral infection. In previous study, we found that SARS-CoV has the ability to replicate in mononuclear cells. In present work, we sought to characterize the replication of SARS-CoV at the presence of RANTES in THP-1 cells. To determine whether RANTES play an role in the process of SARS, THP-1 cells were incubated with heat-inactivated SARS-CoV and ELISA was used to test RANTES levels in the supernatants; Then the effect of dexamethasone on the induced secretion was evaluated. Real-time PCR was used to investigate the effort of RANTES on the replication of SARS-CoV in vitro. Macrophages, induced by THP-1 cells, were used as cell model. Inactive SARS-CoV could induce THP-1 cells secret RANTES and this increase effect could not be suppressed by DXM. RANTES itself could inhibit the replication of SARS-CoV in THP-1 cells when it was added into the culture before or at the same time with the virus; No inhibition effect was shown when RANTES were added into the culture after SARS-CoV infected the cells.
Amplified Self-replication of DNA Origami Nanostructures through Multi-cycle Fast-annealing Process
NASA Astrophysics Data System (ADS)
Zhou, Feng; Zhuo, Rebecca; He, Xiaojin; Sha, Ruojie; Seeman, Nadrian; Chaikin, Paul
We have developed a non-biological self-replication process using templated reversible association of components and irreversible linking with annealing and UV cycles. The current method requires a long annealing time, up to several days, to achieve the specific self-assembly of DNA nanostructures. In this work, we accomplished the self-replication with a shorter time and smaller replication rate per cycle. By decreasing the ramping time, we obtained the comparable replication yield within 90 min. Systematic studies show that the temperature and annealing time play essential roles in the self-replication process. In this manner, we can amplify the self-replication process to a factor of 20 by increasing the number of cycles within the same amount of time.
When can the cause of a population decline be determined?
Hefley, Trevor J; Hooten, Mevin B; Drake, John M; Russell, Robin E; Walsh, Daniel P
2016-11-01
Inferring the factors responsible for declines in abundance is a prerequisite to preventing the extinction of wild populations. Many of the policies and programmes intended to prevent extinctions operate on the assumption that the factors driving the decline of a population can be determined. Exogenous factors that cause declines in abundance can be statistically confounded with endogenous factors such as density dependence. To demonstrate the potential for confounding, we used an experiment where replicated populations were driven to extinction by gradually manipulating habitat quality. In many of the replicated populations, habitat quality and density dependence were confounded, which obscured causal inference. Our results show that confounding is likely to occur when the exogenous factors that are driving the decline change gradually over time. Our study has direct implications for wild populations, because many factors that could drive a population to extinction change gradually through time. © 2016 John Wiley & Sons Ltd/CNRS.
When can the cause of a population decline be determined?
Hefley, Trevor J.; Hooten, Mevin B.; Drake, John M.; Russell, Robin E.; Walsh, Daniel P.
2016-01-01
Inferring the factors responsible for declines in abundance is a prerequisite to preventing the extinction of wild populations. Many of the policies and programmes intended to prevent extinctions operate on the assumption that the factors driving the decline of a population can be determined. Exogenous factors that cause declines in abundance can be statistically confounded with endogenous factors such as density dependence. To demonstrate the potential for confounding, we used an experiment where replicated populations were driven to extinction by gradually manipulating habitat quality. In many of the replicated populations, habitat quality and density dependence were confounded, which obscured causal inference. Our results show that confounding is likely to occur when the exogenous factors that are driving the decline change gradually over time. Our study has direct implications for wild populations, because many factors that could drive a population to extinction change gradually through time.
NASA Astrophysics Data System (ADS)
Alves, S. G.; Martins, M. L.
2010-09-01
Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.
Topologically-associating domains are stable units of replication-timing regulation
Pope, Benjamin D.; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L.; Wang, Yanli; Hansen, R. Scott; Canfield, Theresa K.; Thurman, Robert E.; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H.; Snyder, Michael P.; Stamatoyannopoulos, John A.; Taylor, James; Hardison, Ross C.; Kahveci, Tamer; Ren, Bing; Gilbert, David M.
2014-01-01
Summary Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program1. During mammalian development, at least half the genome changes replication timing, primarily in units of 400–800 kb (“replication domains”; RDs), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements2–7. Early and late replication correlate strongly with open and closed chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, lamina-associated domains (LADs)4,5,8,9. Recent Hi-C mapping has unveiled a substructure of topologically-associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to RDs8,10. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale11,12. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure8,9,13. Here, we localize boundaries of RDs to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, RD boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure RD boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell type specific sub-nuclear compartmentalization with developmentally stable chromosome domains and offer a unified model for large-scale chromosome structure and function. PMID:25409831
LeBlanc, Chantal; Lee, Tae-Jin; Mulvaney, Patrick; Allen, George C.; Martienssen, Robert A.; Thompson, William F.
2017-01-01
All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the “Repli-seq” assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase. PMID:28842533
Developmental regulation of DNA replication timing at the human beta globin locus.
Simon, I; Tenzen, T; Mostoslavsky, R; Fibach, E; Lande, L; Milot, E; Gribnau, J; Grosveld, F; Fraser, P; Cedar, H
2001-11-01
The human beta globin locus replicates late in most cell types, but becomes early replicating in erythroid cells. Using FISH to map DNA replication timing around the endogenous beta globin locus and by applying a genetic approach in transgenic mice, we have demonstrated that both the late and early replication states are controlled by regulatory elements within the locus control region. These results also show that the pattern of replication timing is set up by mechanisms that work independently of gene transcription.
Warning times for species extinctions due to climate change.
Stanton, Jessica C; Shoemaker, Kevin T; Pearson, Richard G; Akçakaya, H Resit
2015-03-01
Climate change is likely to become an increasingly major obstacle to slowing the rate of species extinctions. Several new assessment approaches have been proposed for identifying climate-vulnerable species, based on the assumption that established systems such as the IUCN Red List need revising or replacing because they were not developed to explicitly consider climate change. However, no assessment approach has been tested to determine its ability to provide advanced warning time for conservation action for species that might go extinct due to climate change. To test the performance of the Red List system in this capacity, we used linked niche-demographic models with habitat dynamics driven by a 'business-as-usual' climate change scenario. We generated replicate 100-year trajectories for range-restricted reptiles and amphibians endemic to the United States. For each replicate, we categorized the simulated species according to IUCN Red List criteria at annual, 5-year, and 10-year intervals (the latter representing current practice). For replicates that went extinct, we calculated warning time as the number of years the simulated species was continuously listed in a threatened category prior to extinction. To simulate data limitations, we repeated the analysis using a single criterion at a time (disregarding other listing criteria). Results show that when all criteria can be used, the Red List system would provide several decades of warning time (median = 62 years; >20 years for 99% of replicates), but suggest that conservation actions should begin as soon as a species is listed as Vulnerable, because 50% of replicates went extinct within 20 years of becoming uplisted to Critically Endangered. When only one criterion was used, warning times were substantially shorter, but more frequent assessments increased the warning time by about a decade. Overall, we found that the Red List criteria reliably provide a sensitive and precautionary way to assess extinction risk under climate change. © 2014 John Wiley & Sons Ltd.
ColE1-Plasmid Production in Escherichia coli: Mathematical Simulation and Experimental Validation.
Freudenau, Inga; Lutter, Petra; Baier, Ruth; Schleef, Martin; Bednarz, Hanna; Lara, Alvaro R; Niehaus, Karsten
2015-01-01
Plasmids have become very important as pharmaceutical gene vectors in the fields of gene therapy and genetic vaccination in the past years. In this study, we present a dynamic model to simulate the ColE1-like plasmid replication control, once for a DH5α-strain carrying a low copy plasmid (DH5α-pSUP 201-3) and once for a DH5α-strain carrying a high copy plasmid (DH5α-pCMV-lacZ) by using ordinary differential equations and the MATLAB software. The model includes the plasmid replication control by two regulatory RNA molecules (RNAI and RNAII) as well as the replication control by uncharged tRNA molecules. To validate the model, experimental data like RNAI- and RNAII concentration, plasmid copy number (PCN), and growth rate for three different time points in the exponential phase were determined. Depending on the sampled time point, the measured RNAI- and RNAII concentrations for DH5α-pSUP 201-3 reside between 6 ± 0.7 and 34 ± 7 RNAI molecules per cell and 0.44 ± 0.1 and 3 ± 0.9 RNAII molecules per cell. The determined PCNs averaged between 46 ± 26 and 48 ± 30 plasmids per cell. The experimentally determined data for DH5α-pCMV-lacZ reside between 345 ± 203 and 1086 ± 298 RNAI molecules per cell and 22 ± 2 and 75 ± 10 RNAII molecules per cell with an averaged PCN of 1514 ± 1301 and 5806 ± 4828 depending on the measured time point. As the model was shown to be consistent with the experimentally determined data, measured at three different time points within the growth of the same strain, we performed predictive simulations concerning the effect of uncharged tRNA molecules on the ColE1-like plasmid replication control. The hypothesis is that these tRNA molecules would have an enhancing effect on the plasmid production. The in silico analysis predicts that uncharged tRNA molecules would indeed increase the plasmid DNA production.
Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier
2011-01-01
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. PMID:22219720
Dengue virus replicates and accumulates in Aedes aegypti salivary glands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raquin, Vincent, E-mail: vincent.raquin@univ-lyon1
Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidencemore » that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.« less
Lo, Michael K; Bird, Brian H; Chattopadhyay, Anasuya; Drew, Clifton P; Martin, Brock E; Coleman, Joann D; Rose, John K; Nichol, Stuart T; Spiropoulou, Christina F
2014-01-01
Nipah virus (NiV) continues to cause outbreaks of fatal human encephalitis due to spillover from its bat reservoir. We determined that a single dose of replication-defective vesicular stomatitis virus (VSV)-based vaccine vectors expressing either the NiV fusion (F) or attachment (G) glycoproteins protected hamsters from over 1000 times LD50 NiV challenge. This highly effective single-dose protection coupled with an enhanced safety profile makes these candidates ideal for potential use in livestock and humans. Published by Elsevier B.V.
Bombyx mori nucleopolyhedrovirus (BmNPV) Bm64 is required for BV production and per os infection.
Chen, Lin; Shen, Yunwang; Yang, Rui; Wu, Xiaofeng; Hu, Wenjun; Shen, Guoxin
2015-10-24
Bombyx mori nucleopolyhedrovirus (BmNPV) orf64 (Bm64, a homologue of ac78) is a core baculovirus gene. Recently, Li et al. reported that Ac78 was not essential for budded viruses (BVs) production and occlusion-derived viruses (ODVs) formation (Virus Res 191:70-82, 2014). Conversely, Tao et al. demonstrated that Ac78 was localized to the BV and ODV envelopes and was required for BV production and ODV formation (J Virol 87:8441-50, 2013). In this study, the function of Bm64 was characterized to determine the role of Bm64 in the BmNPV infection cycle. The temporal expression of Bm64 was examined using total RNA extracted from BmNPV-infected BmN cells at different time points by reverse-transcription PCR (RT-PCR) and 5' RACE analysis. To determine the functions of Bm64 in viral replication and the viral phenotype throughout the viral life cycle, a deletion virus (vBm(64KO)) was generated via homologous recombination in Escherichia coli. Viral replication and BV production were determined by real-time PCR. Electron microscopy was used to detect virion morphogenesis. The subcellular localization of Bm64 was determined by microscopy, and per os infectivity was used to determine its role in the baculovirus oral infection cycle. Viral plaque and titer assay results showed that a few infectious BVs were produced by vBm(64KO), suggesting that deletion of Bm64 affected BV production. Viral DNA replication was detected and polyhedra were observed in vBm(64KO)-transfected cells. Microscopy analysis revealed that Bm64 was predominantly localized to the ring zone of the nuclei during the infection cycle. Electron microscopy showed that Bm64 was not essential for the formation of ODVs or the subsequent occlusion of ODV into polyhedra. The per os infectivity results showed that the polyhedra of vBm(64KO) were unable to infect silkworm larvae. In conclusion, our results suggest that Bm64 plays an important role in BV production and per os infection, but is not required for viral DNA replication or ODV maturation.
Cellular microRNA-miR-548g-3p modulates the replication of dengue virus.
Wen, Weitao; He, Zhenjian; Jing, Qinlong; Hu, Yiwen; Lin, Cuiji; Zhou, Rui; Wang, Xiaoqun; Su, Yangfan; Yuan, Jiehao; Chen, Zhenxin; Yuan, Jie; Wu, Jueheng; Li, Jun; Zhu, Xun; Li, Mengfeng
2015-06-01
It has been well recognized that microRNA plays a role in the host-pathogen interaction network. The significance of microRNA in the regulation of dengue virus (DENV) replication, however, remains unknown. The objective of our study was to determine the biological function of miR-548g-3p in modulating the replication of dengue virus. Here we report that employment of a microRNA target search algorithm to analyze the 5' untranslated region (5'UTR) consensus sequences of DENV (DENV serotypes 1-4) led to a discovery that miR-548g-3p directly targets the stem loop A promoter element within the 5'UTR, a region essential for DENV replication. Real-time PCR was used to measure the expression levels of miR-548g-3p under DENV infection. We performed overexpression and inhibition assays to test the role of miR-548g-3p on DENV replication. The protein and mRNA levels of interferon were measured by ELISA and real-time PCR respectively. We found that overexpression of miR-548g-3p suppressed multiplication of DENV 1, 2, 3 and 4, and that miR-548g-3p was also found to interfere with DENV translation, thereby suppressing the expression of viral proteins. Our results suggest that miR-548g-3p directly regulates DENV replication and warrant further study to investigate the feasibility of microRNA-based anti-DENV approaches. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
2013-01-01
Background The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution. Results Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community. Conclusion The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system. PMID:24053177
A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages
Mott, Kevin R; UnderHill, David; Wechsler, Steven L; Town, Terrence; Ghiasi, Homayon
2009-01-01
Background Macrophages and dendritic cells (DCs) play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1), both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s) that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/-) mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages. PMID:19439086
Langley, Alexander R.; Gräf, Stefan; Smith, James C.; Krude, Torsten
2016-01-01
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. PMID:27587586
Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten
2016-12-01
Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bieler, Alexa; Mantwill, Klaus; Holzmüller, Regina; Jürchott, Karsten; Kaszubiak, Alexander; Stärk, Sybille; Glockzin, Gabriel; Lage, Hermann; Grosu, Anca-Ligia; Gansbacher, Bernd; Holm, Per Sonne
2008-03-01
Viral oncolytic therapy is emerging as a new form of anticancer therapy and has shown promising preclinical results, especially in combination with radio- and chemotherapy. We recently reported that nuclear localization of the human transcription factor YB-1 in multidrug-resistant cells facilitates E1-independent adenoviral replication. The aim of this study was to evaluate the combined treatment of the conditionally-replicating adenovirus dl520 and radiotherapy in glioma cell lines in vitro and in human tumor xenografts. Furthermore, the dependency of YB-1 on dl520 replication was verified by shRNA directed down regulation of YB-1. Localization of YB-1 was determined by immunostaining. Glioma cell lines LN-18, U373 and U87 were infected with dl520. Induction of cytopathic effect (CPE), viral replication, viral yield and viral release were determined after viral infection, radiation therapy and the combination of both treatment modalities. The capacity of treatments alone or combined to induce tumor growth inhibition of subcutaneous U373 tumors was tested also in nude mice. Quantitative real-time PCR demonstrated that the shRNA-mediated down regulation of YB-1 is leading to a dramatic decrease in adenoviral replication of dl520. Immunostaining analysis showed that the YB-1 protein was predominantly located in the cytoplasm in the perinuclear space and less abundant in the nucleus. After irradiation we found an increase of nuclear YB-1. The addition of radiotherapy increased the oncolytic effect of dl520 with enhanced viral replication, viral yield and viral release. The oncolytic activity of dl520 plus radiation inhibited the growth of subcutaneous U373 tumors in a xenograft mouse model. Radiation mediated increase of nuclear YB-1 in glioma cells enhanced the oncolytic potential of adenovirus dl520.
Naarding, Marloes A.; Fernandez-Fernandez, Natalia; Kappes, John C.; Hayes, Peter; Ahmed, Tina; Icyuz, Mert; Edmonds, Tara G.; Bergin, Philip; Anzala, Omu; Hanke, Tomas; Clark, Lorna; Cox, Josephine H.; Cormier, Emmanuel; Ochsenbauer, Christina; Gilmour, Jill
2014-01-01
Emergence of SIV and HIV specific CD8 T cells has been shown to correlate with control of in vivo replication. Poor correlation between IFN-γ ELISPOT responses and in vivo control of the virus has triggered the development of more relevant assays to assess functional HIV-1 specific CD8 T-cell responses for the evaluation and prioritization of new HIV-1 vaccine candidates. We previously established a viral inhibition assay (VIA) that measures the ability of vaccine-induced CD8 T-cell responses to inhibit viral replication in autologous CD4 T cells. In this assay, viral replication is determined by measuring p24 in the culture supernatant. Here we describe the development of a novel VIA, referred to as IMC LucR VIA that exploits replication-competent HIV-1 infectious molecular clones (IMCs) in which the complete proviral genome is strain-specific and which express the Renilla luciferase (LucR) gene to determine viral growth and inhibition. The introduction of the luciferase readout does provide significant improvement of the read out time. In addition to switching to the LucR read out, changes made to the overall protocol resulted in the miniaturization of the assay from a 48 to a 96-well plate format, which preserved sample and allowed for the introduction of replicates. The overall assay time was reduced from 13 to 8 days. The assay has a high degree of specificity, and the previously observed non-specific background inhibition in cells from HIV-1 negative volunteers has been reduced dramatically. Importantly, we observed an increase in positive responses, indicating an improvement in sensitivity compared to the original VIA. Currently, only a limited number of “whole-genome” IMC-LucR viruses are available and our efforts will focus on expanding the panel to better evaluate anti-viral breadth. Overall, we believe the IMC LucR VIA provides a platform to assess functional CD8 T-cell responses in large-scale clinical trial testing, which will enhance the ability to select the most promising HIV-1 vaccine candidates capable of controlling HIV-1 replication in vivo. PMID:24291126
The etiology and determinants of hospital closure.
Longo, D R; Sohn, M W; Shortell, S M
1996-01-01
This article examines the etiology of hospital closure and the correlates of hospital closure and the extent of similarity in this organizational outcome between pre- and post-Prospective Payment System (PPS) implementation. It also replicates a study from an earlier time period. Findings support the study's main hypotheses: in more stringent and turbulent markets, institutional and strategic variables are more important determinants of hospital closure. Merger acquisitions are found to be similar to both system acquisitions and autonomous hospitals. Standard Metropolitan Statistical Area (SMSA) status and regulation show an effect on hospital closure and merger acquisition. While many similarities exist when compared to the replicated study and findings prior to PPS implementation, it appears that sufficient differences exist to support the hypothesis that the PPS has an impact upon hospital organizational outcome.
Faithful replication of grating patterns in polymer through electrohydrodynamic instabilities
NASA Astrophysics Data System (ADS)
Li, H.; Yu, W.; Wang, T.; Zhang, H.; Cao, Y.; Abraham, E.; Desmulliez, M. P. Y.
2014-07-01
Electrohydrodynamic instability patterning (EHDIP) as an alternative patterning method has attracted a great deal of attention over the past decade. This article demonstrates the faithful transfer of patterns with a high aspect ratio onto a polymer film via electrohydrodynamic instabilities for a given patterned grating mask. We perform a simple mathematical analysis to determine the influence of process parameters on the pressure difference ▵P. Through numerical simulation, it is demonstrated that thick films subject to large electric fields are essential to realize this faithful replication. In particular, the influence of the material properties of the polymer on pattern replication is discussed in detail. It is found that, to achieve the smaller periodic patterns with a higher resolution, film with a larger value of the dielectric constant and smaller value of the surface tension should be chosen. In addition, an ideal replication of the mask pattern with a short evolution time is possible by reducing the viscosity of the polymer liquid. Finally, the experiments of the pattern replication with and without defects are demonstrated to compare with the numerical simulation results. It is found that experiments are in good agreement with the simulation results and prove that the numerical simulation method provides an effective way to predict faithful replication.
Population Control of Self-Replicating Systems: Option C
NASA Technical Reports Server (NTRS)
Mccord, R. L.
1983-01-01
From the conception and development of the theory of self-replicating automata by John von Neumann, others have expanded on his theories. In 1980, Georg von Tiesenhausen and Wesley A. Darbro developed a report which is a "first' in presenting the theories in a conceptualized engineering setting. In that report several options involving self-replicating systems are presented. One of the options allows each primary to generate n replicas, one in each sequential time frame after its own generation. Each replica is limited to a maximum of m ancestors. This study involves determining the state vector of the replicas in an efficient manner. The problem is cast in matrix notation, where F = fij is a non-diagonalizable matrix. Any element fij represents the number of elements of type j = (c,d) in time frame k+1 generated from type i = (a,b) in time frame k. It is then shown that the state vector is: bar F(k)=bar F (non-zero) X F sub K = bar F (non-zero) xmx J sub kx m sub-1 where J is a matrix in Jordan form having the same eigenvalues as F. M is a matrix composed of the eigenvectors and the generalized eigenvectors of F.
Bozhkov, A I; Kovaleva, M K; Menzianova, N G
2011-01-01
The characteristics of the cells epigenotypes Dunaliella viridis Teod. in the process of chronological and replicative aging were investigated. By 40th day of accumulative cultivation (which coincided with the stationary growth phase) DNA content in the cells of Dunaliella viridis increased 2 times, triacylglycerides 3 times, beta-carotene and carbonyl proteins 2 times, RNA content decreased in comparison with cells in exponential growth phase, i. e., the 40th day of growth of culture forms the age-related epigenotype. 4 received subcultures were being transplanted during 2 years in mid-logarithmic growth phase (subculture-10), early stationary phase of growth (subculture-20), in the mid-stationary growth phase (subculture-30), and late stationary growth phase (subculture-40). It is shown that epigenotype of subculture-10 remained unchanged over 2 years of cultivation, i. e., it does not manifest replicative aging. At the same time, the subculture-20, although long enough (at least 40 passages), maintained epigenotype characteristic of young cultures, and showed age-related changes. Pronounced age-dependent changes of epigenotype in the course of cultivation were identified for subculture-30, and subculture-40 was characterized by unstable epigenotype. Thus, cultivation conditions determine the intensity of replicative aging in Dunaliella viridis.
Heinz, Kathrin S; Casas-Delucchi, Corella S; Török, Timea; Cmarko, Dusan; Rapp, Alexander; Raska, Ivan; Cardoso, M Cristina
2018-05-10
The replication of the genome is a highly organized process, both spatially and temporally. Although a lot is known on the composition of the basic replication machinery, how its activity is regulated is mostly unknown. Several chromatin properties have been proposed as regulators, but a potential role of the nuclear DNA position remains unclear. We made use of the prominent structure and well-defined heterochromatic landscape of mouse pericentric chromosome domains as a well-studied example of late replicating constitutive heterochromatin. We established a method to manipulate its nuclear position and evaluated the effect on replication timing, DNA compaction and epigenetic composition. Using time-lapse microscopy, we observed that constitutive heterochromatin, known to replicate during late S-phase, was replicated in mid S-phase when repositioned to the nuclear periphery. Out-of-schedule replication resulted in deficient post-replicative maintenance of chromatin modifications, namely silencing marks. We propose that repositioned constitutive heterochromatin was activated in trans according to the domino model of origin firing by nearby (mid S) firing origins. In summary, our data provide, on the one hand, a novel approach to manipulate nuclear DNA position and, on the other hand, establish nuclear DNA position as a novel mechanism regulating DNA replication timing and epigenetic maintenance.
The yeast replicative aging model.
He, Chong; Zhou, Chuankai; Kennedy, Brian K
2018-03-08
It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.
Mobile and replicated alignment of arrays in data-parallel programs
NASA Technical Reports Server (NTRS)
Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert
1993-01-01
When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.
NASA Technical Reports Server (NTRS)
Wilson, Larry
1991-01-01
There are many software reliability models which try to predict future performance of software based on data generated by the debugging process. Unfortunately, the models appear to be unable to account for the random nature of the data. If the same code is debugged multiple times and one of the models is used to make predictions, intolerable variance is observed in the resulting reliability predictions. It is believed that data replication can remove this variance in lab type situations and that it is less than scientific to talk about validating a software reliability model without considering replication. It is also believed that data replication may prove to be cost effective in the real world, thus the research centered on verification of the need for replication and on methodologies for generating replicated data in a cost effective manner. The context of the debugging graph was pursued by simulation and experimentation. Simulation was done for the Basic model and the Log-Poisson model. Reasonable values of the parameters were assigned and used to generate simulated data which is then processed by the models in order to determine limitations on their accuracy. These experiments exploit the existing software and program specimens which are in AIR-LAB to measure the performance of reliability models.
Estimating replicate time shifts using Gaussian process regression
Liu, Qiang; Andersen, Bogi; Smyth, Padhraic; Ihler, Alexander
2010-01-01
Motivation: Time-course gene expression datasets provide important insights into dynamic aspects of biological processes, such as circadian rhythms, cell cycle and organ development. In a typical microarray time-course experiment, measurements are obtained at each time point from multiple replicate samples. Accurately recovering the gene expression patterns from experimental observations is made challenging by both measurement noise and variation among replicates' rates of development. Prior work on this topic has focused on inference of expression patterns assuming that the replicate times are synchronized. We develop a statistical approach that simultaneously infers both (i) the underlying (hidden) expression profile for each gene, as well as (ii) the biological time for each individual replicate. Our approach is based on Gaussian process regression (GPR) combined with a probabilistic model that accounts for uncertainty about the biological development time of each replicate. Results: We apply GPR with uncertain measurement times to a microarray dataset of mRNA expression for the hair-growth cycle in mouse back skin, predicting both profile shapes and biological times for each replicate. The predicted time shifts show high consistency with independently obtained morphological estimates of relative development. We also show that the method systematically reduces prediction error on out-of-sample data, significantly reducing the mean squared error in a cross-validation study. Availability: Matlab code for GPR with uncertain time shifts is available at http://sli.ics.uci.edu/Code/GPRTimeshift/ Contact: ihler@ics.uci.edu PMID:20147305
Quantifying Limits on Replication, Death, and Quiescence of Mycobacterium tuberculosis in Mice
McDaniel, Margaret M.; Krishna, Nitin; Handagama, Winode G.; Eda, Shigetoshi; Ganusov, Vitaly V.
2016-01-01
When an individual is exposed to Mycobacterium tuberculosis (Mtb) three outcomes are possible: bacterial clearance, active disease, or latent infection. It is generally believed that most individuals exposed to Mtb become latently infected and carry the mycobacteria for life. How Mtb is maintained during this latent infection remains largely unknown. During an Mtb infection in mice, there is a phase of rapid increase in bacterial numbers in the murine lungs within the first 3 weeks, and then bacterial numbers either stabilize or increase slowly over the period of many months. It has been debated whether the relatively constant numbers of bacteria in the chronic infection result from latent (dormant, quiescent), non-replicating bacteria, or whether the observed Mtb cell numbers are due to balance between rapid replication and death. A recent study of mice, infected with a Mtb strain carrying an unstable plasmid, showed that during the chronic phase, Mtb was replicating at significant rates. Using experimental data from this study and mathematical modeling we investigated the limits of the rates of bacterial replication, death, and quiescence during Mtb infection of mice. First, we found that to explain the data the rates of bacterial replication and death could not be constant and had to decrease with time since infection unless there were large changes in plasmid segregation probability over time. While a decrease in the rate of Mtb replication with time since infection was expected due to depletion of host's resources, a decrease in the Mtb death rate was counterintuitive since Mtb-specific immune response, appearing in the lungs 3–4 weeks after infection, should increase removal of bacteria. Interestingly, we found no significant correlation between estimated rates of Mtb replication and death suggesting the decline in these rates was driven by independent mechanisms. Second, we found that the data could not be explained by assuming that bacteria do not die, suggesting that some removal of bacteria from lungs of these mice had to occur even though the total bacterial counts in these mice always increased over time. Third and finally, we showed that to explain the data the majority of bacterial cells (at least ~60%) must be replicating in the chronic phase of infection further challenging widespread belief of nonreplicating Mtb in latency. Our predictions were robust to some changes in the structure of the model, for example, when the loss of plasmid-bearing cells was mainly due to high fitness cost of the plasmid. Further studies should determine if more mechanistic models for Mtb dynamics are also able to accurately explain these data. PMID:27379030
Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞
Thiriet, Christophe; Hayes, Jeffrey J.
2009-01-01
Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270
Naidoo, Vanessa L.; Mann, Jaclyn K.; Noble, Christie; Adland, Emily; Carlson, Jonathan M.; Thomas, Jake; Brumme, Chanson J.; Thobakgale-Tshabalala, Christina F.; Brumme, Zabrina L.; Goulder, Philip J. R.
2017-01-01
ABSTRACT In the large majority of cases, HIV infection is established by a single variant, and understanding the characteristics of successfully transmitted variants is relevant to prevention strategies. Few studies have investigated the viral determinants of mother-to-child transmission. To determine the impact of Gag-protease-driven viral replication capacity on mother-to-child transmission, the replication capacities of 148 recombinant viruses encoding plasma-derived Gag-protease from 53 nontransmitter mothers, 48 transmitter mothers, and 47 infected infants were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. All study participants were infected with HIV-1 subtype C. There was no significant difference in replication capacities between the nontransmitter (n = 53) and transmitter (n = 44) mothers (P = 0.48). Infant-derived Gag-protease NL4-3 recombinant viruses (n = 41) were found to have a significantly lower Gag-protease-driven replication capacity than that of viruses derived from the mothers (P < 0.0001 by a paired t test). High percent similarities to consensus subtype C Gag, p17, p24, and protease sequences were also found in the infants (n = 28) in comparison to their mothers (P = 0.07, P = 0.002, P = 0.03, and P = 0.02, respectively, as determined by a paired t test). These data suggest that of the viral quasispecies found in mothers, the HIV mother-to-child transmission bottleneck favors the transmission of consensus-like viruses with lower viral replication capacities. IMPORTANCE Understanding the characteristics of successfully transmitted HIV variants has important implications for preventative interventions. Little is known about the viral determinants of HIV mother-to-child transmission (MTCT). We addressed the role of viral replication capacity driven by Gag, a major structural protein that is a significant determinant of overall viral replicative ability and an important target of the host immune response, in the MTCT bottleneck. This study advances our understanding of the genetic bottleneck in MTCT by revealing that viruses transmitted to infants have a lower replicative ability as well as a higher similarity to the population consensus (in this case HIV subtype C) than those of their mothers. Furthermore, the observation that “consensus-like” virus sequences correspond to lower in vitro replication abilities yet appear to be preferentially transmitted suggests that viral characteristics favoring transmission are decoupled from those that enhance replicative capacity. PMID:28637761
In silico ribozyme evolution in a metabolically coupled RNA population.
Könnyű, Balázs; Szilágyi, András; Czárán, Tamás
2015-05-27
The RNA World hypothesis offers a plausible bridge from no-life to life on prebiotic Earth, by assuming that RNA, the only known molecule type capable of playing genetic and catalytic roles at the same time, could have been the first evolvable entity on the evolutionary path to the first living cell. We have developed the Metabolically Coupled Replicator System (MCRS), a spatially explicit simulation modelling approach to prebiotic RNA-World evolution on mineral surfaces, in which we incorporate the most important experimental facts and theoretical considerations to comply with recent knowledge on RNA and prebiotic evolution. In this paper the MCRS model framework has been extended in order to investigate the dynamical and evolutionary consequences of adding an important physico-chemical detail, namely explicit replicator structure - nucleotide sequence and 2D folding calculated from thermodynamical criteria - and their possible mutational changes, to the assumptions of a previously less detailed toy model. For each mutable nucleotide sequence the corresponding 2D folded structure with minimum free energy is calculated, which in turn is used to determine the fitness components (degradation rate, replicability and metabolic enzyme activity) of the replicator. We show that the community of such replicators providing the monomer supply for their own replication by evolving metabolic enzyme activities features an improved propensity for stable coexistence and structural adaptation. These evolutionary advantages are due to the emergent uniformity of metabolic replicator fitnesses imposed on the community by local group selection and attained through replicator trait convergence, i.e., the tendency of replicator lengths, ribozyme activities and population sizes to become similar between the coevolving replicator species that are otherwise both structurally and functionally different. In the most general terms it is the surprisingly high extra viability of the metabolic replicator system that the present model adds to the MCRS concept of the origin of life. Surface-bound, metabolically coupled RNA replicators tend to evolve different, enzymatically active sites within thermodynamically stable secondary structures, and the system as a whole evolves towards the robust coexistence of a complete set of such ribozymes driving the metabolism producing monomers for their own replication.
Passos-Castilho, Ana Maria; Marchand, Claude; Archambault, Denis
2018-02-01
The bovine immunodeficiency virus (BIV) Rev shuttling protein contains nuclear/nucleolar localization signals and nuclear import/export mechanisms that are novel among lentivirus Rev proteins. Several viral proteins localize to the nucleolus, which may play a role in processes that are essential to the outcome of viral replication. Although BIV Rev localizes to the nucleoli of transfected/infected cells and colocalizes with one of its major proteins, nucleophosmin (NPM1, also known as B23), the role of the nucleolus and B23 in BIV replication remains to be determined. Here, we demonstrate for the first time that BIV Rev interacts with nucleolar phosphoprotein B23 in cells. Using small interfering RNA (siRNA) technology, we show that depletion of B23 expression inhibits virus production by BIV-infected cells, indicating that B23 plays an important role in BIV replication. The interaction between Rev and B23 may represent a potential new target for the development of antiviral drugs against lentiviruses. Copyright © 2017 Elsevier Inc. All rights reserved.
Replication domains are self-interacting structural chromatin units of human chromosomes
NASA Astrophysics Data System (ADS)
Arneodo, Alain
2011-03-01
In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into self-interacting structural and functional units is a general feature of mammalian organisms.
Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?
Barberis, Matteo; Spiesser, Thomas W.; Klipp, Edda
2010-01-01
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857
Replication in Practice: Lessons from Five Lead Agencies
ERIC Educational Resources Information Center
McGonigel, Mary
2005-01-01
This article describes the replication efforts of five programs funded by the Pritzker Early Childhood Foundation and determines what methods are key to replication success. Before replication can take place, the lead agency must have substantial evidence of its effectiveness and know its core elements. It must also think carefully about how its…
1993-01-01
Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. PMID:8253833
Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo
2016-12-01
SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.
Maximizing Teaching through Brain Research
ERIC Educational Resources Information Center
Pattridge, Gregory C.
2009-01-01
Teachers and parents who read about the brain on the Internet should do so critically to determine fact from opinion. Are the assertions real about certain methods/strategies that claim to be based on brain research? Will they make a difference in their teaching and in achievement levels? Turning theory into fact take time and replication of solid…
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) GUIDELINES ESTABLISHING TEST PROCEDURES... to a wide variety of sample types ranging from reagent (blank) water containing analyte to wastewater... times the standard deviation of replicate instrumental measurements of the analyte in reagent water. (c...
Physical quality of Simental Ongole crossbred silverside meat at various boiling times
NASA Astrophysics Data System (ADS)
Riyanto, J.; Cahyadi, M.; Guntari, W. S.
2018-03-01
This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.
McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K
2008-12-01
Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.
2004-01-01
With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs TH (5-methyl-2-pyrimidinone)/HS (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3′→5′ exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3′→5′ exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3′→5′ exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3′→5′ exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair TH/HS was 0.1 times that of A/T for TH in the template and 0.01 times that of A/T for HS in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or TH opposite a template hypoxanthine, 2×10−6; HS opposite a template cytosine, <3×10−4. The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template TH, showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication. PMID:15078225
Evaluation of peak picking quality in LC-MS metabolomics data.
Brodsky, Leonid; Moussaieff, Arieh; Shahaf, Nir; Aharoni, Asaph; Rogachev, Ilana
2010-11-15
The output of LC-MS metabolomics experiments consists of mass-peak intensities identified through a peak-picking/alignment procedure. Besides imperfections in biological samples and instrumentation, data accuracy is highly dependent on the applied algorithms and their parameters. Consequently, quality control (QC) is essential for further data analysis. Here, we present a QC approach that is based on discrepancies between replicate samples. First, the quantile normalization of per-sample log-signal distributions is applied to each group of biologically homogeneous samples. Next, the overall quality of each replicate group is characterized by the Z-transformed correlation coefficients between samples. This general QC allows a tuning of the procedure's parameters which minimizes the inter-replicate discrepancies in the generated output. Subsequently, an in-depth QC measure detects local neighborhoods on a template of aligned chromatograms that are enriched by divergences between intensity profiles of replicate samples. These neighborhoods are determined through a segmentation algorithm. The retention time (RT)-m/z positions of the neighborhoods with local divergences are indicative of either: incorrect alignment of chromatographic features, technical problems in the chromatograms, or to a true biological discrepancy between replicates for particular metabolites. We expect this method to aid in the accurate analysis of metabolomics data and in the development of new peak-picking/alignment procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torchia, B.S.; Call, L.M.; Migeon, B.R.
The relationship between the transcriptional state of a locus and the time when it replicates during DNA synthesis is increasingly apparent. Active autosomal genes tend to replicate early, whereas inactive ones are more permissive and frequently replicate later. Although the inactive X chromosome replicates later than its active homologue, little is known about the replication of X-linked genes. The authors have used FISH to examine the replication of loci on the active X chromosome that are not transcribed, either because the tissue analyzed was not the expressing tissue (F8C), because the locus is silent on all active X chromosomes (XIST),more » or because it has been mutated by expansion and methylation of a CpG island (FMR1). In this assay, an unreplicated locus is characterized by a single hybridization signal, and a replicated locus is characterized by a doublet hybridization signal. The percentage of doublets is used as a measure of relative time of replication in S phase. The results show that the FMR1 gene replicates relatively later in fragile X(fraX) males with the full mutation than in normal males, irrespective of the probe used. The F8C locus is late replicating in both normal and fraX males and replicates at nearly the same time on active and inactive X in females. The XIST locus replicates late in all the males studied and asynchronously in female cells. From the late replication of the locus on the active X in males, the authors deduce that the locus on the active X is the later replicating locus in female cells. They conclude that (1) the expansion of the FMR1 locus leads to late replication, (2) silence of the XIST gene in males is associated with late replication of the locus, and (3) this assay will be useful for further studies of the relationship between transcription and replication. 32 refs., 2 figs., 5 tabs.« less
Matundan, Harry H.; Mott, Kevin R.; Allen, Sariah J.; Wang, Shaohui; Bresee, Catherine J.; Ghiasi, Yasamin N.; Town, Terrence
2016-01-01
ABSTRACT We sought to determine the possibility of an interrelationship between primary virus replication in the eye, the level of viral DNA in the trigeminal ganglia (TG) during latency, and the amount of virus reactivation following ocular herpes simplex virus type 1 (HSV-1) infection. Mice were infected with virulent (McKrae) or avirulent (KOS and RE) strains of HSV-1, and virus titers in the eyes and TG during primary infection, level of viral gB DNA in TG on day 28 postinfection (p.i.), and virus reactivation on day 28 p.i. as measured by explant reactivation were calculated. Our results suggest that the avirulent strains of HSV-1, even after corneal scarification, had lower virus titers in the eye, had less latency in the TG, and took a longer time to reactivate than virulent strains of HSV-1. The time to explant reactivation of avirulent strains of HSV-1 was similar to that of the virulent LAT(−) McKrae-derived mutant. The viral dose with the McKrae strain of HSV-1 affected the level of viral DNA and time to explant reactivation. Overall, our results suggest that there is no absolute correlation between primary virus titer in the eye and TG and the level of viral DNA in latent TG and time to reactivation. IMPORTANCE Very little is known regarding the interrelationship between primary virus replication in the eye, the level of latency in TG, and the time to reactivate in the mouse model. This study was designed to answer these questions. Our results point to the absence of any correlation between the level of primary virus replication and the level of viral DNA during latency, and neither was an indicator of how rapidly the virus reactivated following explant TG-induced reactivation. PMID:27512072
Arbona, Jean-Michel; Goldar, Arach; Hyrien, Olivier; Arneodo, Alain; Audit, Benjamin
2018-06-01
The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris . We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics. © 2018, Arbona et al.
Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression.
Wang, Huiqiang; Zhang, Dajun; Ge, Miao; Li, Zhuorong; Jiang, Jiandong; Li, Yuhuan
2015-03-01
The activation of ERK, p38 and JNK signal cascade in host cells has been demonstrated to up-regulate of enterovirus 71 (EV71)-induced cyclooxygenase-2 (COX-2)/ prostaglandins E2 (PGE₂) expression which is essential for viral replication. So, we want to know whether a compound can inhibit EV71 infection by suppressing COX-2/PGE₂ expression. The antiviral effect of formononetin was determined by cytopathic effect (CPE) assay and the time course assays. The influence of formononetin for EV71 replication was determined by immunofluorescence assay, western blotting assay and qRT-PCR assay. The mechanism of the antiviral activity of formononetin was determined by western blotting assay and ELISA assay. Formononetin could reduce EV71 RNA and protein synthesis in a dose-dependent manner. The time course assays showed that formononetin displayed significant antiviral activity both before (24 or 12 h) and after (0-6 h) EV71 inoculation in SK-N-SH cells. Formononetin was also able to prevent EV71-induced cytopathic effect (CPE) and suppress the activation of ERK, p38 and JNK signal pathways. Furthermore, formononetin could suppress the EV71-induced COX-2/PGE₂ expression. Also, formononetin exhibited similar antiviral activities against other members of Picornaviridae including coxsackievirus B2 (CVB2), coxsackievirus B3 (CVB3) and coxsackievirus B6 (CVB6). Formononetin could inhibit EV71-induced COX-2 expression and PGE₂ production via MAPKs pathway including ERK, p38 and JNK. Formononetin exhibited antiviral activities against some members of Picornaviridae. These findings suggest that formononetin could be a potential lead or supplement for the development of new anti-EV71 agents in the future.
Correlation between Marek's disease virus pathotype and replication.
Dunn, John R; Auten, Kiva; Heidari, Mohammad; Buscaglia, Celina
2014-06-01
Marek's disease (MD) virus (MDV) is an alphaherpesvirus that causes MD, a lymphoproliferative disease in chickens. Pathotyping has become an increasingly important assay for monitoring shifts in virulence of field strains; however, it is time-consuming and expensive, and alternatives are needed to provide fast answers in the face of current outbreaks. The purpose of this study was to determine whether differences in virus replication between pathotypes that have been reported using a small number of virulent (v) and very virulent plus (vv+) MDV strains could be confirmed with a large collection of MD viruses. Based on pilot study data, bursa, brain, and lung samples were collected at 9 and 11 days postinoculation (dpi) from birds challenged with 1 of 15 MDV strains. The correlation between virus replication and virulence was confirmed between vMDV strains and higher virulent strains, but in most cases, there was no significant difference between very virulent (vv) and vv+MDV groups. At both 9 and 11 dpi, chickens infected with vv and vv+MDV had significantly lower body weights and relative thymus and bursa weights compared with chickens challenged with vMDV. However, similar to virus quantity, there was no significant difference between weights in birds challenged with vv or vv+MDV. The significant differences observed in maternal antibody negative (ab-) chickens were not significant in maternal antibody positive (ab+) chickens, demonstrating the requirement of ab- birds for this type of comparison. These data do not support the use of virus replication or organ weights as an alternative to pathotyping for discrimination between all three virulent MDV pathotypes but may be useful for determining a virus replication threshold to choose which field strains meet a minimum virulence to be pathotyped by traditional methods.
Páez-Vega, Aurora; Poyato, Antonio; Rodriguez-Benot, Alberto; Guirado, Lluis; Fortún, Jesús; Len, Oscar; Abdala, Edson; Fariñas, María C; Cordero, Elisa; de Gracia, Carmen; Hernández, Domingo; González, Rafael; Torre-Cisneros, Julián; Cantisán, Sara
2018-05-18
This prospective study evaluates whether CMV-seropositive (R+) transplant patients with pretransplant CD8+IFNG+ T-cell response to cytomegalovirus (CMV) (CD8+IFNG+ response) can spontaneously clear the CMV viral load without requiring treatment. A total of 104 transplant patients (kidney/liver) with pretransplant CD8+IFNG+ response were evaluable. This response was determined using QuantiFERON-CMV assay. The incidence of CMV replication and disease was 45.2% (47/104) and 6.7% (7/104), respectively. Of the total patients, 77.9% (81/104) did not require antiviral treatment, either because they did not have CMV replication (n = 57) or because they had asymptomatic CMV replication that could be spontaneously cleared (n = 24). Both situations are likely related to the presence of CD8+IFNG+ response to CMV, which has a key role in controlling CMV infection. However, 22.1% of the patients (23/104) received antiviral treatment, although only 7 of them did so because they had symptomatic CMV replication. These patients developed symptoms in spite of having pretransplant CD8+IFNG+ response, thus suggesting that other immunological parameters might be involved, such as a dysfunctional CD4 + response or that they might have become QFNon-reactive due to the immunosuppression. In conclusion, around 80% of R+ patients with pretransplant CD8+IFNG+ response to CMV did not require antiviral treatment, although this percentage might be underestimated. Nevertheless, other strategies such as performing an additional CD8+IFNG+ response determination at posttransplant time might provide more reliable information regarding the patients who will be able to spontaneously clear the viremia. Copyright © 2018 Elsevier B.V. All rights reserved.
Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.
1995-08-31
cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast
Anis, Eman A; Dhar, Madhu; Legendre, Alfred M; Wilkes, Rebecca P
2017-06-01
Objectives The goals of the study were: (1) to develop and evaluate non-replicating lentivirus vectors coding for feline coronavirus (FCoV)-specific micro (mi)RNA as a potential antiviral therapy for feline infectious peritonitis (FIP); (2) to assess the feasibility of transducing hematopoietic stem cells (HSCs) with ex vivo introduction of the miRNA-expressing lentivirus vector; and (3) to assess the ability of the expressed miRNA to inhibit FCoV replication in HSCs in vitro. Methods HSCs were obtained from feline bone marrow and replicated in vitro. Three lentiviruses were constructed, each expressing a different anti-FCoV miRNA. HSCs were stably transduced with the miRNA-expressing lentivirus vector that produced the most effective viral inhibition in a feline cell line. The effectiveness of the transduction and the expression of anti-FCoV miRNA were tested by infecting the HSCs with two different strains of FCoV. The inhibition of coronavirus replication was determined by relative quantification of the inhibition of intracellular viral genomic RNA synthesis using real-time, reverse-transcription PCR. The assessment of virus replication inhibition was determined via titration of extracellular virus using the TCID 50 assay. Results Inhibition of FCoV was most significant in feline cells expressing miRNA-L2 that targeted the viral leader sequence, 48 h postinfection. miRNA-L2 expression in stably transduced HSCs resulted in 90% and 92% reductions in FIPV WSU 79-1146 genomic RNA synthesis and extracellular virus production, respectively, as well as 74% and 80% reduction in FECV WSU 79-1683 genomic RNA synthesis and extracellular virus production, respectively, as compared with an infected negative control sample producing non-targeting miRNA. Conclusions and relevance These preliminary results show that genetic modification of HSCs for constitutive production of anti-coronavirus miRNA will reduce FCoV replication.
A Novel Method for Determining the Level of Viable Disseminated Prostate Cancer Cells
2012-10-01
Metridia luciferase, for use in a real-time viability assay for mammalian cells. The coding region of the marine copepod gene has been codon optimized for...need for multiple replicates of plates in time course studies. Recently a naturally secreted luciferase was identified and cloned from the marine ...well solid white flat bottom polystyrene microplates (Corning, Cat#3917, Lowell, MA). After 24 hours, conditioned media was harvested and remaining
Identification of HIV-1 determinants for replication in vivo.
Su, L; Kaneshima, H; Bonyhadi, M L; Lee, R; Auten, J; Wolf, A; Du, B; Rabin, L; Hahn, B H; Terwilliger, E; Mccune, J M
1997-01-06
Pathogenic organisms are frequently attenuated after long-term culture in vitro. The mechanisms of the attenuation process are not clear, but probably involve mutations of functions required for replication and pathogenicity in vivo. To identify these functions, a direct comparison must be made between attenuated genomes and those that remain pathogenic in vivo. In this study, we used the heterochimeric SCID-hu Thy/Liv mouse as an in vivo model to define human immunodeficiency virus type 1 (HIV-1) determinants which are uniquely required for replication in vivo. The Lai/IIIB isolate and its associated infectious molecular clones (e.g., HXB2) were found to infect T cell lines but failed to replicate in the SCID-hu Thy/Liv model. When a lab worker was accidentally infected by Lai/IIIB, however, HIV-1 was isolated only from infection of primary PBMC, and not from infection of T cell lines. We hypothesized that the lab worker was exposed to a heterogeneous viral stock which had been attenuated by passage in immortalized T cell lines. Either a rare family member from this stock was selected for in vivo replication or, alternatively, an attenuated genotype dominant in vitro may have reverted to become more infectious in vivo. To address this hypothesis, we have used the SCID-hu Thy/Liv model to study the replication of HXB2 and of HXB2 recombinant viruses with HIV-1 fragments isolated from the infected lab worker. HXB2 showed no or very low levels of replication in the Thy/Liv organ. Replacement of its subgenomic fragment encoding the envelope gene with a corresponding fragment from the lab worker isolate generated a recombinant virus (HXB2/LW) which replicated actively in SCID-hu mice. The NEF mutation in the HXB2 genome is still present in HXB2/LW. Thus, the LW sequences encode HIV-1 determinants which enhance HIV replication in vivo in a NEF-independent mechanism. The specific determinants have been mapped to the V1-V3 regions of the HIV-1 genome. Six unique mutations in the V3 loop region of HXB2/LW have been identified which contribute to the increased replication in vivo.
Sangster, Janice; Furber, Susan; Phongsavan, Philayrath; Redfern, Julie; Mark, Andrew; Bauman, Adrian
2017-04-01
This study aimed to determine the replicability of a pedometer-based telephone coaching intervention by comparing the outcomes of a study conducted in rural and urban settings to a study that previously found the same intervention effective in a semi-rural setting. Replication studies are conducted to assess whether an efficacious intervention is effective in multiple different settings. This study compared the outcomes of a pedometer-based coaching intervention implemented in urban and rural settings (replication study) with the same intervention implemented in a semi-rural setting (reference study) on physical activity levels. Improvements in total weekly physical activity time in the replication study were significant from baseline to six weeks (p<0.001 urban, p=0.006 rural) and remained significant at six months (p=0.029 urban, p=0.005 rural). These increases were comparable to those achieved in the original efficacy trial conducted in a semi-rural setting. The pedometer-based telephone coaching intervention increases physical activity levels of people with cardiac disease referred to a CR program in diverse settings. This replication study indicates the suitability of this minimal contact, low-cost intervention for further scaling-up to address unmet need in community-dwelling cardiac patients. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.
USDA-ARS?s Scientific Manuscript database
The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...
Sensitivity Analysis of Empirical Results on Civil War Onset
ERIC Educational Resources Information Center
Hegre, Havard; Sambanis, Nicholas
2006-01-01
In the literature on civil war onset, several empirical results are not robust or replicable across studies. Studies use different definitions of civil war and analyze different time periods, so readers cannot easily determine if differences in empirical results are due to those factors or if most empirical results are just not robust. The authors…
Ribosome biogenesis in replicating cells: Integration of experiment and theory.
Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida
2016-10-01
Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016. © 2016 Wiley Periodicals, Inc.
Tada, Tatsuya; Suzuki, Koutaro; Sakurai, Yu; Kubo, Masanori; Okada, Hironao; Itoh, Toshihiro; Tsukamoto, Kenji
2011-01-01
To explore the genetic basis of the pathogenesis and adaptation of avian influenza viruses (AIVs) to chickens, the A/duck/Yokohama/aq10/2003 (H5N1) (DkYK10) virus was passaged five times in the brains of chickens. The brain-passaged DkYK10-B5 caused quick death of chickens through rapid and efficient replication in tissues, accompanied by severe apoptosis. Genome sequence comparison of two viruses identified a single amino acid substitution at position 109 in NP from isoleucine to threonine (NP I109T). By analyzing viruses constructed by the reverse-genetic method, we established that the NP I109T substitution also contributed to increased viral replication and polymerase activity in chicken embryo fibroblasts, but not in duck embryo fibroblasts. Real-time RT-PCR analysis demonstrated that the NP I109T substitution enhances mRNA synthesis quickly and then cRNA and viral RNA (vRNA) synthesis slowly. Next, to determine the mechanism underlying the appearance of the NP I109T substitution during passages, four H5N1 highly pathogenic AIVs (HPAIVs) were passaged in the lungs and brains of chicken embryos. Single-nucleotide polymorphism analysis, together with a database search, suggests that the NP I109T mutation would be induced frequently during replication of HPAIVs in brains, but not in lungs. These results demonstrate that the amino acid at position 109 in NP enhances viral RNA synthesis and the pathogenicity of highly pathogenic avian influenza viruses in chickens and that the NP mutation emerges quickly during replication of the viruses in chicken brains. PMID:21795332
One-year prospective replication study of an untreated sample of community dysthymia subjects.
McCullough, J P; McCune, K J; Kaye, A L; Braith, J A; Friend, R; Roberts, W C; Belyea-Caldwell, S; Norris, S L; Hampton, C
1994-07-01
This study replicates an earlier naturalistic-prospective investigation of nontreatment, community DSM-III-R dysthymia subjects. Major goals were to determine spontaneous remission rates and monitor the stability of psychosocial functioning levels over time. Twenty-four dysthymia subjects were followed for 1 year. Three remissions (13%) were diagnosed at the final interview. At a 4-year diagnostic follow-up contact with the remitters only, one remitter had relapsed and two remained in remission. Subjects were monitored for depressive symptom intensity, personality functioning, general medical distress, cognitive functioning, coping stylistics, interpersonal functioning, quality of their social support resources, and general family functioning. Stable levels of psychosocial functioning were maintained across all measures over the 1-year period. Current psychometric findings confirm the conclusions of the earlier nontreatment prospective study that dysthymia is a chronic mood disorder with stable psychosocial features and is unlikely to remit spontaneously over time.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing Same; Commission Determination Not To Review an... States after importation of certain electronic devices having placeshifting or display replication...
Zabihollahi, Rezvan; Namazi, Rahele; Aghasadeghi, Mohammad Reze; Esfahani, Azar Farhang; Sadat, Seyed Mehdi; Modarressi, Mohammad Hossein
2012-01-01
Objectives: Setarud (IMOD™) is a herbal medicine with beneficial effect for patients suffering Human immunodeficiency virus (HIV) infection and has been approved for IV (intra venues) injection. The beneficial effect of IMOD administration for acquired immune deficiency syndrome (AIDS) patient has been proved in previous clinical trials. Here the in vitro inhibitory effect of IMOD against HIV-1, Herpes simplex virus (HSV) and murine leukemia viruses (MLV) was evaluated. Materials and Methods: HIV single cycle replication and HSV plaque reduction assays were used to evaluate the anti-viral effect. The level of HIV replication was monitored by p24 capture Enzyme-linked immunosorbent assay (ELISA). The single round infection [with green fluorescent protein (GFP) reporter MLV and HIV], virucidal and time-of-additions (HSV) assays were utilized to determine the mode of anti-viral activity. The toxicity of IMOD for cells was monitored by XTT (sodium 3_-[1 (phenylaminocarbonyl)- 3,4-tetrazolium]-bis (4-methoxy-6-nitro)benzene sulfonic acid) cell proliferation assay kit. Results: IMOD inhibited 50% of HIV-1 and HSV replication (IC50) at 6.5 × 10-4 and 4.3 × 10-3V/V concentrations, respectively. The IC50 value against HIV-1 and MLV infection were 6 × 10-4V/V and 4.9 × 10-4V/V. Virucidal assay showed that IMOD reduces the potency of HIV and HSV particles to 41 and 54% of control, respectively. Time-of-addition study revealed that IMOD inhibits the replication of HSV at a stage after penetration of virions to the target cells. Conclusions: Data from this study indicate that IMOD has significant anti-viral activity against HIV, HSV and MLV. Setarud could be subjected to further investigation after isolation of the constituents and determination of the toxic components. PMID:23087503
Fu, Haiqing; Martin, Melvenia M.; Regairaz, Marie; Huang, Liang; You, Yang; Lin, Chi-Mei; Ryan, Michael; Kim, RyangGuk; Shimura, Tsutomu; Pommier, Yves; Aladjem, Mirit I.
2015-01-01
The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81 deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81 deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins. PMID:25879486
Jiang, Wei; Yu, Weichuan
2017-01-01
In genome-wide association studies, we normally discover associations between genetic variants and diseases/traits in primary studies, and validate the findings in replication studies. We consider the associations identified in both primary and replication studies as true findings. An important question under this two-stage setting is how to determine significance levels in both studies. In traditional methods, significance levels of the primary and replication studies are determined separately. We argue that the separate determination strategy reduces the power in the overall two-stage study. Therefore, we propose a novel method to determine significance levels jointly. Our method is a reanalysis method that needs summary statistics from both studies. We find the most powerful significance levels when controlling the false discovery rate in the two-stage study. To enjoy the power improvement from the joint determination method, we need to select single nucleotide polymorphisms for replication at a less stringent significance level. This is a common practice in studies designed for discovery purpose. We suggest this practice is also suitable in studies with validation purpose in order to identify more true findings. Simulation experiments show that our method can provide more power than traditional methods and that the false discovery rate is well-controlled. Empirical experiments on datasets of five diseases/traits demonstrate that our method can help identify more associations. The R-package is available at: http://bioinformatics.ust.hk/RFdr.html .
Ehrenhofer-Murray, A E; Kamakaka, R T; Rine, J
1999-01-01
Transcriptional silencing in the budding yeast Saccharomyces cerevisiae may be linked to DNA replication and cell cycle progression. In this study, we have surveyed the effect of 41 mutations in genes with a role in replication, the cell cycle, and DNA repair on silencing at HMR. Mutations in PCNA (POL30), RF-C (CDC44), polymerase epsilon (POL2, DPB2, DPB11), and CDC45 were found to restore silencing at a mutant HMR silencer allele that was still a chromosomal origin of replication. Replication timing experiments indicated that the mutant HMR locus was replicated late in S-phase, at the same time as wild-type HMR. Restoration of silencing by PCNA and CDC45 mutations required the origin recognition complex binding site of the HMR-E silencer. Several models for the precise role of these replication proteins in silencing are discussed. PMID:10545450
Trajectory of Externalizing Child Behaviors in a KEEP Replication
ERIC Educational Resources Information Center
Uretsky, Mathew C.; Lee, Bethany R.; Greeno, Elizabeth J.; Barth, Richard P.
2017-01-01
Objective: The purpose of this study is to examine the correlates of child behavior change over time in a replication of the KEEP intervention. Method: The study sample was drawn from the treatment group of the Maryland replication of KEEP (n=65). Change over time was analyzed using multilevel linear mixed modeling. Results: Parents' use of…
Peterson, G Greg; Zurovac, Jelena; Brown, Randall S; Coburn, Kenneth D; Markovich, Patricia A; Marcantonio, Sherry A; Clark, William D; Mutti, Anne; Stepanczuk, Cara
2016-12-01
To test whether a care management program could replicate its success in an earlier trial and determine likely explanations for why it did not. Medicare claims and nurse contact data for Medicare fee-for-service beneficiaries with chronic illnesses enrolled in the trial in eastern Pennsylvania (N = 483). A randomized trial with half of enrollees receiving intensive care management services and half receiving usual care. We developed and tested hypotheses for why impacts declined. All outcomes and covariates were derived from claims and the nurse contact data. From 2010 to 2014, the program did not reduce hospitalizations or generate Medicare savings to offset program fees that averaged $260 per beneficiary per month. These estimates are statistically different (p < .05) from the large reductions in hospitalizations and spending in the first trial (2002-2010). The treatment-control differences in the second trial disappeared because the control group's risk-adjusted hospitalization rate improved, not because the treatment group's outcomes worsened. Even if demonstrated in a randomized trial, successful results from one test may not replicate in other settings or time periods. Assessing whether gaps in care that the original program filled exist in other settings can help identify where earlier success is likely to replicate. © Health Research and Educational Trust.
Gold, Ben; Roberts, Julia; Ling, Yan; Lopez Quezada, Landys; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Nathan, Carl
2016-12-14
There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.
Martin, Colin R; Redshaw, Maggie
2018-06-01
The 10-item Edinburgh Postnatal Depression Scale (EPDS) is an established screening tool for postnatal depression. Inconsistent findings in factor structure and replication difficulties have limited the scope of development of the measure as a multi-dimensional tool. The current investigation sought to robustly determine the underlying factor structure of the EPDS and the replicability and stability of the most plausible model identified. A between-subjects design was used. EPDS data were collected postpartum from two independent cohorts using identical data capture methods. Datasets were examined with confirmatory factor analysis, model invariance testing and systematic evaluation of relational and internal aspects of the measure. Participants were two samples of postpartum women in England assessed at three months (n = 245) and six months (n = 217). The findings showed a three-factor seven-item model of the EPDS offered an excellent fit to the data, and was observed to be replicable in both datasets and invariant as a function of time point of assessment. Some EPDS sub-scale scores were significantly higher at six months. The EPDS is multi-dimensional and a robust measurement model comprises three factors that are replicable. The potential utility of the sub-scale components identified requires further research to identify a role in contemporary screening practice. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation.
Sansam, Courtney G; Goins, Duane; Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L
2015-03-01
S-phase cyclin-dependent kinases (CDKs) stimulate replication initiation and accelerate progression through the replication timing program, but it is unknown which CDK substrates are responsible for these effects. CDK phosphorylation of the replication factor TICRR (TopBP1-interacting checkpoint and replication regulator)/TRESLIN is required for DNA replication. We show here that phosphorylated TICRR is limiting for S-phase progression. Overexpression of a TICRR mutant with phosphomimetic mutations at two key CDK-phosphorylated residues (TICRR(TESE)) stimulates DNA synthesis and shortens S phase by increasing replication initiation. This effect requires the TICRR region that is necessary for its interaction with MDM two-binding protein. Expression of TICRR(TESE) does not grossly alter the spatial organization of replication forks in the nucleus but does increase replication clusters and the number of replication forks within each cluster. In contrast to CDK hyperactivation, the acceleration of S-phase progression by TICRR(TESE) does not induce DNA damage. These results show that CDK can stimulate initiation and compress the replication timing program by phosphorylating a single protein, suggesting a simple mechanism by which S-phase length is controlled. © 2015 Sansam et al.; Published by Cold Spring Harbor Laboratory Press.
The Replication Stress Response in Pancreatic Cancer
2013-10-01
network that recognizes challenges to DNA replication and mobilizes diverse activities to maintain genome integrity. The RSR is critical for the...pancreatic cancer cells. We further validated positive hits be deconvolution of individual siRNAs and began work on determining their activities in DNA replication and DNA damage responses.
Repliscan: a tool for classifying replication timing regions.
Zynda, Gregory J; Song, Jawon; Concia, Lorenzo; Wear, Emily E; Hanley-Bowdoin, Linda; Thompson, William F; Vaughn, Matthew W
2017-08-07
Replication timing experiments that use label incorporation and high throughput sequencing produce peaked data similar to ChIP-Seq experiments. However, the differences in experimental design, coverage density, and possible results make traditional ChIP-Seq analysis methods inappropriate for use with replication timing. To accurately detect and classify regions of replication across the genome, we present Repliscan. Repliscan robustly normalizes, automatically removes outlying and uninformative data points, and classifies Repli-seq signals into discrete combinations of replication signatures. The quality control steps and self-fitting methods make Repliscan generally applicable and more robust than previous methods that classify regions based on thresholds. Repliscan is simple and effective to use on organisms with different genome sizes. Even with analysis window sizes as small as 1 kilobase, reliable profiles can be generated with as little as 2.4x coverage.
Mapping replication origins in yeast chromosomes.
Brewer, B J; Fangman, W L
1991-07-01
The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.
Automation of the anthrone assay for carbohydrate concentration determinations.
Turula, Vincent E; Gore, Thomas; Singh, Suddham; Arumugham, Rasappa G
2010-03-01
Reported is the adaptation of a manual polysaccharide assay applicable for glycoconjugate vaccines such as Prevenar to an automated liquid handling system (LHS) for improved performance. The anthrone assay is used for carbohydrate concentration determinations and was scaled to the microtiter plate format with appropriate mixing, dispensing, and measuring operations. Adaptation and development of the LHS platform was performed with both dextran polysaccharides of various sizes and pneumococcal serotype 6A polysaccharide (PnPs 6A). A standard plate configuration was programmed such that the LHS diluted both calibration standards and a test sample multiple times with six replicate preparations per dilution. This extent of replication minimized the effect of any single deviation or delivery error that might have occurred. Analysis of the dextran polymers ranging in size from 214 kDa to 3.755 MDa showed that regardless of polymer chain length the hydrolysis was complete, as evident by uniform concentration measurements. No plate positional absorbance bias was observed; of 12 plates analyzed to examine positional bias the largest deviation observed was 0.02% percent relative standard deviation (%RSD). The high purity dextran also afforded the opportunity to assess LHS accuracy; nine replicate analyses of dextran yielded a mean accuracy of 101% recovery. As for precision, a total of 22 unique analyses were performed on a single lot of PnPs 6A, and the resulting variability was 2.5% RSD. This work demonstrated the capability of a LHS to perform the anthrone assay consistently and a reduced assay cycle time for greater laboratory capacity.
A Two-Year Follow-Up of a Staff Development Program Designed to Change Teacher Behavior
ERIC Educational Resources Information Center
Schaffer, Eugene; Stringfield, Samuel; Devlin-Scherer, Roberta
2017-01-01
Two years after participating in a replication of the Stallings Effective Use of Time (EUOT) Program, ten teachers were re-observed and interviewed to determine the extent to which they had maintained the measured changes in their behavior patterns. Subjects were selected for the follow-up from a 27 EUOT teacher sample based on having exhibited…
Mucosal immunity in HIV controllers: the right place at the right time.
Shacklett, Barbara L; Ferre, April L
2011-05-01
The phenomenon of long-term nonprogression in HIV infection has been recognized for some time, and the ability of rare individuals, designated 'elite controllers', to control HIV in the absence of therapy is the focus of numerous ongoing studies. This review focuses on studies of HIV-specific immune responses in mucosal tissues as a potential correlate of immune control, with an emphasis on recently published work. Genetic studies have implicated a role for elements localized to the major histocompatibility complex (MHC) on chromosome 6 in the immune control of HIV infection. In parallel, functional studies have strongly implicated MHC class I-restricted, CD8+ T-cell responses as a major contributor to elite control. In addition, the localization of HIV-specific CD8+ and CD4+ T cells with respect to the major sites of virus replication in the body may be critical in determining clinical outcome. Recent findings suggest that MHC class I-restricted, CD8+ T cells are a major component of immune control in 'elite controllers'. In addition, the presence of these effector cells at or near critical viral reservoirs, such as mucosal tissues, may be critical in determining their effectiveness at limiting viral replication and dissemination.
The Mechanism of Viral Replication. Structure of Replication Complexes of Encephalomyocarditis Virus
Thach, Sigrid S.; Dobbertin, Darrell; Lawrence, Charles; Golini, Fred; Thach, Robert E.
1974-01-01
The structure of the purified replicative intermediate of encephalomyocarditis virus was determined by electron microscopy. Approximately 80% of the replicative intermediate complexes were characterized by a filament of double-stranded RNA of widely variable length, which had a “bush” of single-stranded RNA at one end. In many examples one or more additional single-stranded bushes were appended internally to the double-stranded RNA filament. These results support the view that before deproteinization, replicative intermediate contains little if any double-stranded RNA. Images PMID:4366773
Genome-wide alterations of the DNA replication program during tumor progression
NASA Astrophysics Data System (ADS)
Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.
2016-08-01
Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.
De novo identification of replication-timing domains in the human genome by deep learning.
Liu, Feng; Ren, Chao; Li, Hao; Zhou, Pingkun; Bo, Xiaochen; Shu, Wenjie
2016-03-01
The de novo identification of the initiation and termination zones-regions that replicate earlier or later than their upstream and downstream neighbours, respectively-remains a key challenge in DNA replication. Building on advances in deep learning, we developed a novel hybrid architecture combining a pre-trained, deep neural network and a hidden Markov model (DNN-HMM) for the de novo identification of replication domains using replication timing profiles. Our results demonstrate that DNN-HMM can significantly outperform strong, discriminatively trained Gaussian mixture model-HMM (GMM-HMM) systems and other six reported methods that can be applied to this challenge. We applied our trained DNN-HMM to identify distinct replication domain types, namely the early replication domain (ERD), the down transition zone (DTZ), the late replication domain (LRD) and the up transition zone (UTZ), using newly replicated DNA sequencing (Repli-Seq) data across 15 human cells. A subsequent integrative analysis revealed that these replication domains harbour unique genomic and epigenetic patterns, transcriptional activity and higher-order chromosomal structure. Our findings support the 'replication-domain' model, which states (1) that ERDs and LRDs, connected by UTZs and DTZs, are spatially compartmentalized structural and functional units of higher-order chromosomal structure, (2) that the adjacent DTZ-UTZ pairs form chromatin loops and (3) that intra-interactions within ERDs and LRDs tend to be short-range and long-range, respectively. Our model reveals an important chromatin organizational principle of the human genome and represents a critical step towards understanding the mechanisms regulating replication timing. Our DNN-HMM method and three additional algorithms can be freely accessed at https://github.com/wenjiegroup/DNN-HMM The replication domain regions identified in this study are available in GEO under the accession ID GSE53984. shuwj@bmi.ac.cn or boxc@bmi.ac.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Yeshaya, J; Shalgi, R; Shohat, M; Avivi, L
1999-01-01
X-chromosome inactivation and the size of the CGG repeat number are assumed to play a role in the clinical, physical, and behavioral phenotype of female carriers of a mutated FMR1 allele. In view of the tight relationship between replication timing and the expression of a given DNA sequence, we have examined the replication timing of FMR1 alleles on active and inactive X-chromosomes in cell samples (lymphocytes or amniocytes) of 25 females: 17 heterozygous for a mutated FMR1 allele with a trinucleotide repeat number varying from 58 to a few hundred, and eight homozygous for a wild-type allele. We have applied two-color fluorescence in situ hybridization (FISH) with FMR1 and X-chromosome alpha-satellite probes to interphase cells of the various genotypes: the alpha-satellite probe was used to distinguish between early replicating (active) and late replicating (inactive) X-chromosomes, and the FMR1 probe revealed the replication pattern of this locus. All samples, except one with a large trinucleotide expansion, showed an early replicating FMR1 allele on the active X-chromosome and a late replicating allele on the inactive X-chromosome. In samples of mutation carriers, both the early and the late alleles showed delayed replication compared with normal alleles, regardless of repeat size. We conclude therefore that: (1) the FMR1 locus is subjected to X-inactivation; (2) mutated FMR1 alleles, regardless of repeat size, replicate later than wild-type alleles on both the active and inactive X-chromosomes; and (3) the delaying effect of the trinucleotide expansion, even with a low repeat size, is superimposed on the delay in replication associated with X-inactivation.
A study of an adaptive replication framework for orchestrated composite web services.
Mohamed, Marwa F; Elyamany, Hany F; Nassar, Hamed M
2013-01-01
Replication is considered one of the most important techniques to improve the Quality of Services (QoS) of published Web Services. It has achieved impressive success in managing resource sharing and usage in order to moderate the energy consumed in IT environments. For a robust and successful replication process, attention should be paid to suitable time as well as the constraints and capabilities in which the process runs. The replication process is time-consuming since outsourcing some new replicas into other hosts is lengthy. Furthermore, nowadays, most of the business processes that might be implemented over the Web are composed of multiple Web services working together in two main styles: Orchestration and Choreography. Accomplishing a replication over such business processes is another challenge due to the complexity and flexibility involved. In this paper, we present an adaptive replication framework for regular and orchestrated composite Web services. The suggested framework includes a number of components for detecting unexpected and unhappy events that might occur when consuming the original published web services including failure or overloading. It also includes a specific replication controller to manage the replication process and select the best host that would encapsulate a new replica. In addition, it includes a component for predicting the incoming load in order to decrease the time needed for outsourcing new replicas, enhancing the performance greatly. A simulation environment has been created to measure the performance of the suggested framework. The results indicate that adaptive replication with prediction scenario is the best option for enhancing the performance of the replication process in an online business environment.
Cleary, John D; Tomé, Stéphanie; López Castel, Arturo; Panigrahi, Gagan B; Foiry, Laurent; Hagerman, Katharine A; Sroka, Hana; Chitayat, David; Gourdon, Geneviève; Pearson, Christopher E
2010-09-01
Myotonic dystrophy, caused by DM1 CTG/CAG repeat expansions, shows varying instability levels between tissues and across ages within patients. We determined DNA replication profiles at the DM1 locus in patient fibroblasts and tissues from DM1 transgenic mice of various ages showing different instability. In patient cells, the repeat is flanked by two replication origins demarcated by CTCF sites, with replication diminished at the expansion. In mice, the expansion replicated from only the downstream origin (CAG as lagging template). In testes from mice of three different ages, replication toward the repeat paused at the earliest age and was relieved at later ages-coinciding with increased instability. Brain, pancreas and thymus replication varied with CpG methylation at DM1 CTCF sites. CTCF sites between progressing forks and repeats reduced replication depending on chromatin. Thus, varying replication progression may affect tissue- and age-specific repeat instability.
Derived Basic Ability Factors: A Factor Analysis Replication Study.
ERIC Educational Resources Information Center
Lee, Mickey, M.; Lee, Lynda Newby
The purpose of this study was to replicate the study conducted by Potter, Sagraves, and McDonald to determine whether their recommended analysis could separate criterion variables into similar factors that were stable from year to year and from school to school. The replication samples consisted of all students attending Louisiana State University…
USDA-ARS?s Scientific Manuscript database
The roles of two porcine circovirus replication initiator proteins, Rep and Rep', in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replica...
A method for the inline measurement of milk gel firmness using an optical sensor.
Arango, O; Castillo, M
2018-05-01
At present, selection of cutting time during cheesemaking is made based on subjective methods, which has effects on product homogeneity and has prevented complete automation of cheesemaking. In this work, a new method for inline monitoring of curd firmness is presented. The method consisted of developing a model that correlates the backscatter ratio of near infrared light during milk coagulation with the rheological storage modulus. The model was developed through a factorial design with 2 factors: protein concentration (3.4 and 5.1%) and coagulation temperature (30 and 40°C). Each treatment was replicated 3 times; the model was calibrated with the first replicate and validated using the remaining 2 replicates. The coagulation process was simultaneously monitored using an optical sensor and small-amplitude oscillatory rheology. The model was calibrated and successfully validated at the different protein concentrations and coagulation temperatures studied, predicting the evolution of storage modulus during milk coagulation with coefficient of determination values >0.998 and standard error of prediction values <3.4 Pa. The results demonstrated that the proposed method allows inline monitoring of curd firming in cheesemaking and cutting the curd at a proper firmness to each type of cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.
2016-01-01
ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885
van der Sanden, Sabine M G; Sachs, Norman; Koekkoek, Sylvie M; Koen, Gerrit; Pajkrt, Dasja; Clevers, Hans; Wolthers, Katja C
2018-05-09
Human enteroviruses frequently cause severe diseases in children. Human enteroviruses are transmitted via the fecal-oral route and respiratory droplets, and primary replication occurs in the gastro-intestinal and respiratory tracts; however, how enteroviruses infect these sites is largely unknown. Human intestinal organoids have recently proven to be valuable tools for studying enterovirus-host interactions in the intestinal tract. In this study, we demonstrated the susceptibility of a newly developed human airway organoid model for enterovirus 71 (EV71) infection. We showed for the first time in a human physiological model that EV71 replication kinetics are strain-dependent. A glutamine at position 145 of the VP1 capsid protein was identified as a key determinant of infectivity, and residues VP1-98K and VP1-104D were identified as potential infectivity markers. The results from this study provide new insights into EV71 infectivity in the human airway epithelia and demonstrate the value of organoid technology for virus research.
Zhu, Yao-Jun; Li, Xi-Yin; Zhang, Jun; Li, Zhi; Ding, Miao; Zhang, Xiao-Juan; Zhou, Li; Gui, Jian-Fang
2018-06-05
Coexistence and transition of diverse sex determination strategies have been revealed in some ectothermic species, but the variation between males caused by different sex determination strategies and the underlying mechanism remain unclear. Here, we used the gynogenetic gibel carp (Carassius gibelio) with both genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) strategies to illustrate this issue. We found out that males of GSD and TSD in gibel carp had similar morphology, testicular histology, sperm structure and sperm vitality. However, when maternal individuals were mated with males of GSD, sperm nucleus swelling and fusing with the female pronucleus were observed in the fertilized eggs. On the contrary, when maternal individuals were mated with males of TSD, sperm nucleus remained in the condensed status throughout the whole process. Subsequently, semen proteomics analysis unveiled that DNA replication and gene expression-related pathways were inhibited in the sperm from males of TSD compared to males of GSD, and most differentially expressed proteins associated with DNA replication, transcription and translation were down-regulated. Moreover, via BrdU incorporation and immunofluorescence detection, male nucleus replication was revealed to be present in the fertilized eggs by the sperm from males of GSD, but absent in the fertilized eggs by the sperm from males of TSD. These findings indicate that DNA replication and gene expression-related pathways are associated with the distinct sperm nucleus development behaviors in fertilized eggs in response to the sperm from males of GSD and TSD. And this study is the first attempt to screen the differences between males determined via GSD and TSD in gynogenetic species, which might give a hint for understanding evolutionary adaption of diverse sex determination mechanisms in unisexual vertebrates.
NASA Astrophysics Data System (ADS)
Lees, Angela M.; Lees, J. C.; Sejian, V.; Wallage, A. L.; Gaughan, J. B.
2018-01-01
Thirty-six Black Angus steers were used in a replicated study; three replicates of 12 steers/replicate. Steers had an initial non-fasted BW of 392.3 ± 5.1, 427.5 ± 6.3, and 392.7 ± 3.7 kg for each replicate, respectively. Steers were housed outside in individual animal pens (10 m × 3.4 m). Each replicate was conducted over a 6-day period where infrared thermography (IRT) images were collected at 3-h intervals, commencing at 0600 h on day 1 and concluding at 0600 h on day 6. Rumen temperatures ( T RUM) were measured at 10-min intervals for the duration of each replicate using a radio-frequency identification (RFID) rumen bolus. These data were used to determine the relationship with surface temperature of the cattle, which was determined using IRT. Individual T RUM were converted to an hourly average. The relationship between T RUM and surface temperature was determined using Pearson's correlation coefficient. There were no linear trends between mean hourly T RUM and mean surface temperature. Pearson's correlation coefficient indicated that there were weak associations ( r ≤ 0.1; P < 0.003) between T RUM and body surface temperature. These data suggest that there was little relationship between the surface temperature and T RUM.
Kiguoya, Marion W; Mann, Jaclyn K; Chopera, Denis; Gounder, Kamini; Lee, Guinevere Q; Hunt, Peter W; Martin, Jeffrey N; Ball, T Blake; Kimani, Joshua; Brumme, Zabrina L; Brockman, Mark A; Ndung'u, Thumbi
2017-07-01
There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates ( r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases ( P < 0.0001); this observation remained consistent when representative Gag-protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C < D < intersubtype recombinants ( P < 0.0029), which is consistent with reported intersubtype differences in disease progression. We thus hypothesize that the lower Gag-protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes. IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1 Gag-protease-driven replication capacity correlates with the replication capacity of whole virus isolates. We further show that subtype B displays a significantly higher Gag-protease-mediated replication capacity than does subtype C, and we identify a major genetic determinant of these differences. Moreover, in two independent East African cohorts we demonstrate a reproducible hierarchy of Gag-protease-driven replicative capacity, whereby recombinants exhibit the greatest replication, followed by subtype D, followed by subtypes A and C. Our data identify Gag-protease as a major determinant of subtype differences in disease progression among HIV-1 subtypes; furthermore, we propose that the poorer viral replicative capacity of subtypes A and C may paradoxically contribute to their more efficient spread in sub-Saharan Africa. Copyright © 2017 American Society for Microbiology.
Single molecule analysis of Trypanosoma brucei DNA replication dynamics
Calderano, Simone Guedes; Drosopoulos, William C.; Quaresma, Marina Mônaco; Marques, Catarina A.; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L.; Elias, Maria Carolina
2015-01-01
Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894
Single molecule analysis of Trypanosoma brucei DNA replication dynamics.
Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina
2015-03-11
Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics
Israelashvili, Michal
2015-01-01
Striatal disinhibition leads to the formation of motor tics resembling those expressed during Tourette syndrome and other tic disorders. The spatial properties of these tics are dependent on the location of the focal disinhibition within the striatum; however, the factors affecting the temporal properties of tic expression are still unknown. Here, we used microstimulation within the motor cortex of freely behaving rats before and after striatal disinhibition to explore the factors underlying the timing of individual tics. Cortical activation determined the timing of individual tics via an accumulation process of inputs that was dependent on the frequency and amplitude of the inputs. The resulting tics and their neuronal representation within the striatum were highly stereotypic and independent of the cortical activity properties. The generation of tics was limited by absolute and relative tic refractory periods that were derived from an internal striatal state. Thus, the precise time of the tic expression depends on the interaction between the summation of incoming excitatory inputs to the striatum and the timing of the previous tic. A data-driven computational model of corticostriatal function closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. These converging experimental and computational findings suggest a clear functional dichotomy within the corticostriatal network, pointing to disparate temporal (cortical) versus spatial (striatal) encoding. Thus, the abnormal striatal inhibition typical of Tourette syndrome and other tic disorders results in tics due to cortical activation of the abnormal striatal network. SIGNIFICANCE STATEMENT The factors underlying the temporal properties of tics expressed in Tourette syndrome and other tic disorders have eluded clinicians and scientists for decades. In this study, we highlight the key role of corticostriatal activity in determining the timing of individual tics. We found that cortical activation determined the timing of tics but did not determine their form. A data-driven computational model of the corticostriatal network closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. This study thus shows that, although tics originate in the striatum, their timing depends on the interplay between incoming excitatory corticostriatal inputs and the internal striatal state. PMID:26674861
Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics.
Israelashvili, Michal; Bar-Gad, Izhar
2015-12-16
Striatal disinhibition leads to the formation of motor tics resembling those expressed during Tourette syndrome and other tic disorders. The spatial properties of these tics are dependent on the location of the focal disinhibition within the striatum; however, the factors affecting the temporal properties of tic expression are still unknown. Here, we used microstimulation within the motor cortex of freely behaving rats before and after striatal disinhibition to explore the factors underlying the timing of individual tics. Cortical activation determined the timing of individual tics via an accumulation process of inputs that was dependent on the frequency and amplitude of the inputs. The resulting tics and their neuronal representation within the striatum were highly stereotypic and independent of the cortical activity properties. The generation of tics was limited by absolute and relative tic refractory periods that were derived from an internal striatal state. Thus, the precise time of the tic expression depends on the interaction between the summation of incoming excitatory inputs to the striatum and the timing of the previous tic. A data-driven computational model of corticostriatal function closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. These converging experimental and computational findings suggest a clear functional dichotomy within the corticostriatal network, pointing to disparate temporal (cortical) versus spatial (striatal) encoding. Thus, the abnormal striatal inhibition typical of Tourette syndrome and other tic disorders results in tics due to cortical activation of the abnormal striatal network. The factors underlying the temporal properties of tics expressed in Tourette syndrome and other tic disorders have eluded clinicians and scientists for decades. In this study, we highlight the key role of corticostriatal activity in determining the timing of individual tics. We found that cortical activation determined the timing of tics but did not determine their form. A data-driven computational model of the corticostriatal network closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. This study thus shows that, although tics originate in the striatum, their timing depends on the interplay between incoming excitatory corticostriatal inputs and the internal striatal state. Copyright © 2015 the authors 0270-6474/15/3516340-12$15.00/0.
Low cost management of replicated data in fault-tolerant distributed systems
NASA Technical Reports Server (NTRS)
Joseph, Thomas A.; Birman, Kenneth P.
1990-01-01
Many distributed systems replicate data for fault tolerance or availability. In such systems, a logical update on a data item results in a physical update on a number of copies. The synchronization and communication required to keep the copies of replicated data consistent introduce a delay when operations are performed. A technique is described that relaxes the usual degree of synchronization, permitting replicated data items to be updated concurrently with other operations, while at the same time ensuring that correctness is not violated. The additional concurrency thus obtained results in better response time when performing operations on replicated data. How this technique performs in conjunction with a roll-back and a roll-forward failure recovery mechanism is also discussed.
USDA-ARS?s Scientific Manuscript database
Eight Boer (75%) x Spanish (BS) and 8 Spanish (S) wethers (155 +/- 8 d of age and 19.2 +/- 2.3 kg BW, initial) were used in a replicated crossover design with a 2 x 2 factorial arrangement of treatments to determine effects of genotype, diet quality, and time of the day on energy expenditure (EE), r...
Tsai, Hung-Ji; Baller, Joshua A.; Liachko, Ivan; Koren, Amnon; Burrack, Laura S.; Hickman, Meleah A.; Thevandavakkam, Mathuravani A.; Rusche, Laura N.
2014-01-01
ABSTRACT Origins of DNA replication are key genetic elements, yet their identification remains elusive in most organisms. In previous work, we found that centromeres contain origins of replication (ORIs) that are determined epigenetically in the pathogenic yeast Candida albicans. In this study, we used origin recognition complex (ORC) binding and nucleosome occupancy patterns in Saccharomyces cerevisiae and Kluyveromyces lactis to train a machine learning algorithm to predict the position of active arm (noncentromeric) origins in the C. albicans genome. The model identified bona fide active origins as determined by the presence of replication intermediates on nondenaturing two-dimensional (2D) gels. Importantly, these origins function at their native chromosomal loci and also as autonomously replicating sequences (ARSs) on a linear plasmid. A “mini-ARS screen” identified at least one and often two ARS regions of ≥100 bp within each bona fide origin. Furthermore, a 15-bp AC-rich consensus motif was associated with the predicted origins and conferred autonomous replicating activity to the mini-ARSs. Thus, while centromeres and the origins associated with them are epigenetic, arm origins are dependent upon critical DNA features, such as a binding site for ORC and a propensity for nucleosome exclusion. PMID:25182328
Vanwonterghem, Inka; Jensen, Paul D; Dennis, Paul G; Hugenholtz, Philip; Rabaey, Korneel; Tyson, Gene W
2014-01-01
A replicate long-term experiment was conducted using anaerobic digestion (AD) as a model process to determine the relative role of niche and neutral theory on microbial community assembly, and to link community dynamics to system performance. AD is performed by a complex network of microorganisms and process stability relies entirely on the synergistic interactions between populations belonging to different functional guilds. In this study, three independent replicate anaerobic digesters were seeded with the same diverse inoculum, supplied with a model substrate, α-cellulose, and operated for 362 days at a 10-day hydraulic residence time under mesophilic conditions. Selective pressure imposed by the operational conditions and model substrate caused large reproducible changes in community composition including an overall decrease in richness in the first month of operation, followed by synchronised population dynamics that correlated with changes in reactor performance. This included the synchronised emergence and decline of distinct Ruminococcus phylotypes at day 148, and emergence of a Clostridium and Methanosaeta phylotype at day 178, when performance became stable in all reactors. These data suggest that many dynamic functional niches are predictably filled by phylogenetically coherent populations over long time scales. Neutral theory would predict that a complex community with a high degree of recognised functional redundancy would lead to stochastic changes in populations and community divergence over time. We conclude that deterministic processes may play a larger role in microbial community dynamics than currently appreciated, and under controlled conditions it may be possible to reliably predict community structural and functional changes over time. PMID:24739627
Determinants of Parental Guidance of Children's Television Viewing: A Dutch Replication Study.
ERIC Educational Resources Information Center
van der Voort, Tom H. A.; And Others
1992-01-01
Dutch replication of Bybee, Robinson and Turow's 1982 study of parental influence on television viewing by children between 3 and 18 years old found 3 distinct parental models: restrictive, evaluative, and unfocused guidance. Parental attitudes toward television and its effects on children were found to be important determinants in the type of…
van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J
1998-06-01
DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.
Recent Progress in Understanding Coxsackievirus Replication, Dissemination, and Pathogenesis
Sin, Jon; Mangale, Vrushali; Thienphrapa, Wdee; Gottlieb, Roberta A.; Feuer, Ralph
2015-01-01
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses – although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis. PMID:26142496
Kemter, Franziska S.; Messerschmidt, Sonja J.; Schallopp, Nadine; Sobetzko, Patrick; Bunk, Boyke; Spröer, Cathrin; Teschler, Jennifer K.; Yildiz, Fitnat H.
2018-01-01
Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation. PMID:29505558
CDK activity provides temporal and quantitative cues for organizing genome duplication
Perrot, Anthony; Millington, Christopher Lee; Gómez-Escoda, Blanca; Schausi-Tiffoche, Diane
2018-01-01
In eukaryotes, the spatial and temporal organization of genome duplication gives rise to distinctive profiles of replication origin usage along the chromosomes. While it has become increasingly clear that these programs are important for cellular physiology, the mechanisms by which they are determined and modulated remain elusive. Replication initiation requires the function of cyclin-dependent kinases (CDKs), which associate with various cyclin partners to drive cell proliferation. Surprisingly, although we possess detailed knowledge of the CDK regulators and targets that are crucial for origin activation, little is known about whether CDKs play a critical role in establishing the genome-wide pattern of origin selection. We have addressed this question in the fission yeast, taking advantage of a simplified cell cycle network in which cell proliferation is driven by a single cyclin-CDK module. This system allows us to precisely control CDK activity in vivo using chemical genetics. First, in contrast to previous reports, our results clearly show that distinct cyclin-CDK pairs are not essential for regulating specific subsets of origins and for establishing a normal replication program. Importantly, we then demonstrate that the timing at which CDK activity reaches the S phase threshold is critical for the organization of replication in distinct efficiency domains, while the level of CDK activity at the onset of S phase is a dose-dependent modulator of overall origin efficiencies. Our study therefore implicates these different aspects of CDK regulation as versatile mechanisms for shaping the architecture of DNA replication across the genome. PMID:29466359
Moss, Brian G; Yeaton, William H
2013-10-01
Annually, American colleges and universities provide developmental education (DE) to millions of underprepared students; however, evaluation estimates of DE benefits have been mixed. Using a prototypic exemplar of DE, our primary objective was to investigate the utility of a replicative evaluative framework for assessing program effectiveness. Within the context of the regression discontinuity (RD) design, this research examined the effectiveness of a DE program for five, sequential cohorts of first-time college students. Discontinuity estimates were generated for individual terms and cumulatively, across terms. Participants were 3,589 first-time community college students. DE program effects were measured by contrasting both college-level English grades and a dichotomous measure of pass/fail, for DE and non-DE students. Parametric and nonparametric estimates of overall effect were positive for continuous and dichotomous measures of achievement (grade and pass/fail). The variability of program effects over time was determined by tracking results within individual terms and cumulatively, across terms. Applying this replication strategy, DE's overall impact was modest (an effect size of approximately .20) but quite consistent, based on parametric and nonparametric estimation approaches. A meta-analysis of five RD results yielded virtually the same estimate as the overall, parametric findings. Subset analysis, though tentative, suggested that males benefited more than females, while academic gains were comparable for different ethnicities. The cumulative, within-study comparison, replication approach offers considerable potential for the evaluation of new and existing policies, particularly when effects are relatively small, as is often the case in applied settings.
Spatial-pattern-induced evolution of a self-replicating loop network.
Suzuki, Keisuke; Ikegami, Takashi
2006-01-01
We study a system of self-replicating loops in which interaction rules between individuals allow competition that leads to the formation of a hypercycle-like network. The main feature of the model is the multiple layers of interaction between loops, which lead to both global spatial patterns and local replication. The network of loops manifests itself as a spiral structure from which new kinds of self-replicating loops emerge at the boundaries between different species. In these regions, larger and more complex self-replicating loops live for longer periods of time, managing to self-replicate in spite of their slower replication. Of particular interest is how micro-scale interactions between replicators lead to macro-scale spatial pattern formation, and how these macro-scale patterns in turn perturb the micro-scale replication dynamics.
Cathepsin B & L are not required for ebola virus replication.
Marzi, Andrea; Reinheckel, Thomas; Feldmann, Heinz
2012-01-01
Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.
An epigenetic state associated with areas of gene duplication
Gimelbrant, Alexander A.; Chess, Andrew
2006-01-01
Asynchronous DNA replication is an epigenetically determined feature found in all cases of monoallelic expression, including genomic imprinting, X-inactivation, and random monoallelic expression of autosomal genes such as immunoglobulins and olfactory receptor genes. Most genes of the latter class were identified in experiments focused on genes functioning in the chemosensory and immune systems. We performed an unbiased survey of asynchronous replication in the mouse genome, excluding known asynchronously replicated genes. Fully 10% (eight of 80) of the genes tested exhibited asynchronous replication. A common feature of the newly identified asynchronously replicated areas is their proximity to areas of tandem gene duplication. Testing of other clustered areas supported the idea that such regions are enriched with asynchronously replicated genes. PMID:16687731
Chromatin Constrains the Initiation and Elongation of DNA Replication.
Devbhandari, Sujan; Jiang, Jieqing; Kumar, Charanya; Whitehouse, Iestyn; Remus, Dirk
2017-01-05
Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication. Copyright © 2017 Elsevier Inc. All rights reserved.
Lo, Andy; Weiner, Joel H; Li, Liang
2013-09-17
Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Stepankiw, Nicholas; Kaidow, Akihiro; Boye, Erik; Bates, David
2010-01-01
Summary Replication initiation is a key event in the cell cycle of all organisms and oriC, the replication origin in Escherichia coli, serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriCs for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication. PMID:19737351
Interferon lambda inhibits dengue virus replication in epithelial cells.
Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo
2015-09-28
In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.
Support, shape and number of replicate samples for tree foliage analysis.
Luyssaert, Sebastiaan; Mertens, Jan; Raitio, Hannu
2003-06-01
Many fundamental features of a sampling program are determined by the heterogeneity of the object under study and the settings for the error (alpha), the power (beta), the effect size (ES), the number of replicate samples, and sample support, which is a feature that is often overlooked. The number of replicates, alpha, beta, ES, and sample support are interconnected. The effect of the sample support and its shape on the required number of replicate samples was investigated by means of a resampling method. The method was applied to a simulated distribution of Cd in the crown of a Salix fragilis L. tree. Increasing the dimensions of the sample support results in a decrease in the variance of the element concentration under study. Analysis of the variance is often the foundation of statistical tests, therefore, valid statistical testing requires the use of a fixed sample support during the experiment. This requirement might be difficult to meet in time-series analyses and long-term monitoring programs. Sample supports have their largest dimension in the direction with the largest heterogeneity, i.e. the direction representing the crown height, and this will give more accurate results than supports with other shapes. Taking the relationships between the sample support and the variance of the element concentrations in tree crowns into account provides guidelines for sampling efficiency in terms of precision and costs. In terms of time, the optimal support to test whether the average Cd concentration of the crown exceeds a threshold value is 0.405 m3 (alpha = 0.05, beta = 0.20, ES = 1.0 mg kg(-1) dry mass). The average weight of this support is 23 g dry mass, and 11 replicate samples need to be taken. It should be noted that in this case the optimal support applies to Cd under conditions similar to those of the simulation, but not necessarily all the examinations for this tree species, element, and hypothesis test.
Plant, Richard R
2016-03-01
There is an ongoing 'replication crisis' across the field of psychology in which researchers, funders, and members of the public are questioning the results of some scientific studies and the validity of the data they are based upon. However, few have considered that a growing proportion of research in modern psychology is conducted using a computer. Could it simply be that the hardware and software, or experiment generator, being used to run the experiment itself be a cause of millisecond timing error and subsequent replication failure? This article serves as a reminder that millisecond timing accuracy in psychology studies remains an important issue and that care needs to be taken to ensure that studies can be replicated on current computer hardware and software.
Dunn, Cory D
2011-10-01
Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan. Copyright © 2011 WILEY Periodicals, Inc.
Analysis of re-replication from deregulated origin licensing by DNA fiber spreading
Dorn, Elizabeth S.; Chastain, Paul D.; Hall, Jonathan R.; Cook, Jeanette Gowen
2009-01-01
A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability. PMID:19010964
Le Chatelier's principle in replicator dynamics
NASA Astrophysics Data System (ADS)
Allahverdyan, Armen E.; Galstyan, Aram
2011-10-01
The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.
Le Chatelier's principle in replicator dynamics.
Allahverdyan, Armen E; Galstyan, Aram
2011-10-01
The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.
Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A.; Greene, Eric C.; Dockendorff, Chris
2017-01-01
Abstract An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. PMID:28934470
Fidelity of DNA Replication in Normal and Malignant Human Breast Cells
1998-07-01
synthesome has been extensively demonstrated to carry out full length DNA replication in vitro, and to accurately depict the DNA replication process as it...occurs in the intact cell. By examining the fidelity of the DNA replication process carried out by the DNA synthesome from a number of breast cell types...we have demonstrated for the first time, that the cellular DNA replication machinery of malignant human breast cells is significantly more error-prone than that of non- malignant human breast cells.
Birgani, Nasrin Taghipour; Elhami, Shahla
2017-01-01
A simple and sensitive method was proposed for the preconcentration of trace levels of Al(III) prior to its determination by spectrophotometry, based on dispersive liquid-liquid microextraction. The complexation of the Al(III) was performed by chelation with Eriochrome Cyanine R (ECR). In this method, cetyltrimethyl ammonium bromide (CTAB) as a dispersant was dissolved in chloroform as an extractant solvent, and then the solution was rapidly injected by a syringe into the samples containing Al(III), which had already been complexed by ECR at optimized pH. Various parameters were studied and optimized for a 10 mL sample volume. Under the optimum conditions, the LOD (3 times the SD of 10 replicate readings of the reagent blank) and the dynamic range of the calibration obtained were 0.2 ng mL-1 (7 nM) and 1.0-80.0 ng mL-1, respectively. The RSDs for eight replicate determinations of 10 and 60 ng mL-1 of Al(III) were 3.3 and 1.8%, respectively. This strategy was successfully applied to determine the Al concentration in water, wastewater, yogurt, apple, carrot, celery, bread, potato, urine, and Al-Mg syrup samples.
Xie, Hai-Yang; Xia, Wei-Liang; Zhang, Chun-Chao; Wu, Li-Ming; Ji, Hao-Feng; Cheng, Yu; Zheng, Shu-Sen
2007-07-01
The effect of cyclosporine A (CsA) on hepatitis B virus (HBV) replication was investigated, and proteomics expression differentiation after CsA treatment was studied in order to provide clues to explore the effect of CsA on HBV replication. Methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the cytotoxicity of CsA. The HBV replication level in the HBV genomic DNA transfected HepG2.2.15 cell line was determined by an ELISA analysis of hepatitis B surface antigens (HBsAg) and Hepatitis B e antigens (HBeAg) in culture supernatant, while the intracellular HBV DNA replication level was analyzed by slot blot hybridization. Two-dimensional electrophoresis was used to investigate the alteration of protein expression in HepG2.2.15 after CsA treatment in vitro. The differentially-expressed proteins were identified by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with an online database search. CsA was able to inhibit the expression of HBsAg, HBeAg, and HBV DNA replication in vitro in a dose-dependent manner. A proteomics analysis indicated that the expression of 17 proteins changed significantly in the CsA treatment group compared to the control group. Eleven of the 17 proteins were identified, including the overexpression of eukaryotic translation initiation factors (eIF) 3k, otubain 1, 14.3.3 protein, eIF2-1 alpha, eIF5A, and the tyrosine 3/tryptophan 5-mono-oxygenase activation protein in CsA-treated HepG2.2.15 cells. The downregulation of the ferritin light subunit, erythrocyte cytosolic protein of 51 kDa (ECP-51), stathmin 1/oncoprotein, adenine phosphoribosyl-transferase, and the position of a tumor protein, translationally controlled 1, was shifted, suggesting it had undergone posttranslational modifications. Our study identified the inhibitory effect of CsA on HBV replication, and found that a group of proteins may be responsible for this inhibitory effect.
ERIC Educational Resources Information Center
Leicher, Veronika; Mulder, Regina H.
2016-01-01
Purpose: The purpose of this replication study is to identify relevant individual and contextual factors influencing learning from errors at work and to determine if the predictors for learning activities are the same for the domains of nursing and retail banking. Design/methodology/approach: A cross-sectional replication study was carried out in…
Active RNA replication of hepatitis C virus downregulates CD81 expression.
Ke, Po-Yuan; Chen, Steve S-L
2013-01-01
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.
Active RNA Replication of Hepatitis C Virus Downregulates CD81 Expression
Ke, Po-Yuan; Chen, Steve S.-L.
2013-01-01
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81. PMID:23349980
Form and function of topologically associating genomic domains in budding yeast.
Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat; Straight, Aaron F; Duan, Zhijun; Noble, William Stafford; Skotheim, Jan M
2017-04-11
The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.
G4 motifs affect origin positioning and efficiency in two vertebrate replicators
Valton, Anne-Laure; Hassan-Zadeh, Vahideh; Lema, Ingrid; Boggetto, Nicole; Alberti, Patrizia; Saintomé, Carole; Riou, Jean-François; Prioleau, Marie-Noëlle
2014-01-01
DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome-wide studies in vertebrates have recently identified a consensus G-rich motif potentially able to form G-quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200-bp cis-regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation. PMID:24521668
Snoeck, R; Sakuma, T; De Clercq, E; Rosenberg, I; Holy, A
1988-01-01
From a series of phosphonylmethoxyalkylpurine and -pyrimidine derivatives, (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] emerged as a particularly potent and selective inhibitor of the replication of human cytomegalovirus (CMV). Its potency against CMV was similar to that of the structurally related adenine derivative (S)-HPMPA but higher than that of the reference compounds phosphonoformate and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG). The minimum concentrations of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC required to inhibit CMV plaque formation by 50% were 15, 0.7, 0.1, and 0.07 microgram/ml, respectively. The selectivity indices of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC, as determined by the ratio of the 50% inhibitory concentration for cell growth to the 50% inhibitory concentration for plaque formation for CMV (AD-169 strain), were 14, 150, 200 and 1,500, respectively. Corresponding values for the CMV Davis strain were 20, 200, 100, and 1,000, respectively. (S)-HPMPC was inhibitory to CMV plaque formation even when added to the cells at 24 or 48 h postinfection. When (S)-HPMPC was added immediately postinfection, a 24- or 48-h incubation time sufficed to obtain a marked inhibitory effect on CMV replication. Such limited incubation time was insufficient for DHPG to achieve any protection against CMV. PMID:2854454
Freel, Stephanie A.; Picking, Ralph A.; Ferrari, Guido; Ding, Haitao; Ochsenbauer, Christina; Kappes, John C.; Kirchherr, Jennifer L.; Soderberg, Kelly A.; Weinhold, Kent J.; Cunningham, Coleen K.; Denny, Thomas N.; Crump, John A.; Cohen, Myron S.; McMichael, Andrew J.; Haynes, Barton F.
2012-01-01
CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8+ T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8+ responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8+ T cells during AHI. Autologous and heterologous CD8+ T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8+ T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8+ antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8+-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8+ T cell-mediated inhibition of virus replication. CD8+ T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies. PMID:22514337
Viral Interference and Persistence in Mosquito-Borne Flaviviruses.
Salas-Benito, Juan Santiago; De Nova-Ocampo, Mónica
2015-01-01
Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.
Statistical physics of self-replication.
England, Jeremy L
2013-09-28
Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.
NASA Astrophysics Data System (ADS)
Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.
2016-03-01
We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.
Management of fluorescent lamps in controlled environment chambers
NASA Technical Reports Server (NTRS)
Romer, Mark
1994-01-01
Management of fluorescent lights is recommended to (1) maintain uniformity of light intensity over time and (2) permit reproducibility of lighting conditions during experimental replications. At the McGill Phytotron, the lighting intensity can be controlled to desired level because any individual pair of the 40 lamps in each chamber can be set to be 'on' at any particular time. A lamp canopy service history is maintained for each experiment permitting accurate replication of lighting conditions for subsequent replicate trials.
A distinct first replication cycle of DNA introduced in mammalian cells
Chandok, Gurangad S.; Kapoor, Kalvin K.; Brick, Rachel M.; Sidorova, Julia M.; Krasilnikova, Maria M.
2011-01-01
Many mutation events in microsatellite DNA sequences were traced to the first embryonic divisions. It was not known what makes the first replication cycles of embryonic DNA different from subsequent replication cycles. Here we demonstrate that an unusual replication mode is involved in the first cycle of replication of DNA introduced in mammalian cells. This alternative replication starts at random positions, and occurs before the chromatin is fully assembled. It is detected in various cell lines and primary cells. The presence of single-stranded regions increases the efficiency of this alternative replication mode. The alternative replication cannot progress through the A/T-rich FRA16B fragile site, while the regular replication mode is not affected by it. A/T-rich microsatellites are associated with the majority of chromosomal breakpoints in cancer. We suggest that the alternative replication mode may be initiated at the regions with immature chromatin structure in embryonic and cancer cells resulting in increased genomic instability. This work demonstrates, for the first time, differences in the replication progression during the first and subsequent replication cycles in mammalian cells. PMID:21062817
Evaluation of multispectral optoacoustic tomography (MSOT) performance in phantoms and in vivo
NASA Astrophysics Data System (ADS)
Joseph, James; Tomaszewski, Michal; Morgan, Fiona J. E.; Bohndiek, Sarah E.
2015-03-01
MultiSpectral optoacoustic tomography (MSOT) is an emerging modality that combines the high contrast of optical imaging with the spatial resolution and penetration depth of ultrasound, to provide detailed images of hemoglobin concentration and oxygenation. To facilitate accurate determination of changes in the vascularity and oxygenation of a biological tissue over time, a tumor in response to cancer therapy for example, an extensive study of stability and reproducibility of a small animal MSOT system has been performed. Investigations were first made with a stable phantom imaged repeatedly over time scales of hours, days and months to evaluate the reproducibility of the system over time. We found that the small animal MSOT system exhibited excellent reproducibility with a coefficient of variation (COV) in the measured MSOT signals of less than 8% over the course of 30 days and within 1.5% over a single day. Experiments performed in vivo demonstrated the potential for measurement of oxyhemoglobin over time in a realistic experimental setting. The effect of breathing medical air or oxygen under conditions of fixed respiration rate and body temperature within normal organs, including the spleen and kidneys, were investigated. The COV for oxyhemoglobin signals retrieved from spectral unmixing was assessed within both biological (different mouse) and imaging (different scan) replicates. As expected, biological replicates produced a large COV (up to 40% within the spleen) compared to imaging replicates within a single mouse (up to 10% within the spleen). Furthermore, no significant difference was found between data acquired by different operators. The data presented here suggest that MSOT is highly reproducible for both phantom and in vivo imaging, hence could reliably detect changes in oxygenation occurring in living subjects.
The Temporal Regulation of S Phase Proteins During G1
Grant, Gavin D.; Cook, Jeanette G.
2018-01-01
Successful DNA replication requires intimate coordination with cell cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and the assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell cycle entry and cell cycle progression. PMID:29357066
Molecular analysis of the replication program in unicellular model organisms.
Raghuraman, M K; Brewer, Bonita J
2010-01-01
Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program of replication in particular. But what exactly is a temporal program of replication, and how might it arise? In this article, we explore this question, drawing again on the wealth of experimental information in unicellular model organisms.
Testing the Efficacy of a Tier 2 Mathematics Intervention: A Conceptual Replication Study
ERIC Educational Resources Information Center
Doabler, Christian T.; Clarke, Ben; Kosty, Derek B.; Kurtz-Nelson, Evangeline; Fien, Hank; Smolkowski, Keith; Baker, Scott K.
2016-01-01
The purpose of this closely aligned conceptual replication study was to investigate the efficacy of a Tier 2 kindergarten mathematics intervention. The replication study differed from the initial randomized controlled trial on three important elements: geographical region, timing of the intervention, and instructional context of the…
Capmany, Anahí; Damiani, María Teresa
2010-01-01
Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation. PMID:21124879
Capmany, Anahí; Damiani, María Teresa
2010-11-22
Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation.
Yamamoto, T.; Batts, W.N.; Winton, J.R.
1992-01-01
The ability of two rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV), to infect fish skin was investigated by in vitro infection of excised tissues. Virus replication was determined by plaque assay of homogenized tissue extracts, and the virus antigen was detected by immunohistology of tissue sections. Gill, fin, and ventral abdominal skin tissues of rainbow trout Oncorhynchus mykiss that had been infected in vitro with a virulent strain of IHNV (193–110) produced substantial increases in virus titer within 24 h. Titers continued to increase up until day 3 of incubation; by this time, virus had increased 1,000-fold or more. This increase in IHNV titer occurred in epidermal tissues of fingerlings and of older fish. In another experiment, IHNV replicated in excised rainbow trout tissues whether the fish had been subject to prior infection with a virulent strain of IHNV (Western Regional Aquaculture Consortium isolate) or whether the fish had been infected previously with an attenuated strain of the virus (Nan Scott Lake, with 100 passes in culture). A virulent strain of VHSV (23/75) replicated effectively in excised gill tissues and epidermal tissues of rainbow trout and chinook salmon O. tshawytscha; however, the avirulent North American strain of VHSV (Makah) replicated poorly or not at all.
Uncertainty Analysis of Instrument Calibration and Application
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.
Excellent amino acid racemization results from Holocene sand dollars
NASA Astrophysics Data System (ADS)
Kosnik, M.; Kaufman, D. S.; Kowalewski, M.; Whitacre, K.
2015-12-01
Amino acid racemization (AAR) is widely used as a cost-effective method to date molluscs in time-averaging and taphonomic studies, but it has not been attempted for echinoderms despite their paleobiological importance. Here we demonstrate the feasibility of AAR geochronology in Holocene aged Peronella peronii (Echinodermata: Echinoidea) collected from Sydney Harbour (Australia). Using standard HPLC methods we determined the extent of AAR in 74 Peronella tests and performed replicate analyses on 18 tests. We sampled multiple areas of two individuals and identified the outer edge as a good sampling location. Multiple replicate analyses from the outer edge of 18 tests spanning the observed range of D/Ls yielded median coefficients of variation < 4% for Asp, Phe, Ala, and Glu D/L values, which overlaps with the analytical precision. Correlations between D/L values across 155 HPLC injections sampled from 74 individuals are also very high (pearson r2 > 0.95) for these four amino acids. The ages of 11 individuals spanning the observed range of D/L values were determined using 14C analyses, and Bayesian model averaging was used to determine the best AAR age model. The averaged age model was mainly composed of time-dependent reaction kinetics models (TDK, 71%) based on phenylalanine (Phe, 94%). Modelled ages ranged from 14 to 5539 yrs, and the median 95% confidence interval for the 74 analysed individuals is ±28% of the modelled age. In comparison, the median 95% confidence interval for the 11 calibrated 14C ages was ±9% of the median age estimate. Overall Peronella yields exceptionally high-quality AAR D/L values and appears to be an excellent substrate for AAR geochronology. This work opens the way for time-averaging and taphonomic studies of echinoderms similar to those in molluscs.
Esser-Nobis, Katharina; Harak, Christian; Schult, Philipp; Kusov, Yuri; Lohmann, Volker
2015-08-01
Hepatitis A virus (HAV) and hepatitis C virus (HCV) are two positive-strand RNA viruses sharing a similar biology, but causing opposing infection outcomes, with HAV always being cleared and HCV establishing persistence in the majority of infections. To gain deeper insight into determinants of replication, persistence, and treatment, we established a homogenous cell-culture model allowing a thorough comparison of RNA replication of both viruses. By screening different human liver-derived cell lines with subgenomic reporter replicons of HAV as well as of different HCV genotypes, we found that Huh7-Lunet cells supported HAV- and HCV-RNA replication with similar efficiency and limited interference between both replicases. HAV and HCV replicons were similarly sensitive to interferon (IFN), but differed in their ability to establish persistent replication in cell culture. In contrast to HCV, HAV replicated independently from microRNA-122 and phosphatidylinositol 4-kinase IIIα and β (PI4KIII). Both viruses were efficiently inhibited by cyclosporin A and NIM811, a nonimmunosuppressive analog thereof, suggesting an overlapping dependency on cyclophilins for replication. However, analysis of a broader set of inhibitors revealed that, in contrast to HCV, HAV does not depend on cyclophilin A, but rather on adenosine-triphosphate-binding cassette transporters and FK506-binding proteins. Finally, silibinin, but not its modified intravenous formulation, efficiently inhibited HAV genome replication in vitro, suggesting oral silibinin as a potential therapeutic option for HAV infections. We established a cell-culture model enabling comparative studies on RNA replication of HAV and HCV in a homogenous cellular background with comparable replication efficiency. We thereby identified new host cell targets and potential treatment options for HAV and set the ground for future studies to unravel determinants of clearance and persistence. © 2015 by the American Association for the Study of Liver Diseases.
O'Hoy, Kim; Krishnapillai, Viji
1987-01-01
High-frequency-of-recombination donors of P. aeruginosa strain PAO were generated using a temperature-sensitive, replication mutant of the IncP-1 plasmid R68, loaded with the transposon Tn2521. Fourteen donors so isolated mobilized the chromosome in a polarized manner from a number of different transfer origins. The donors were used to construct a time of entry map of the entire chromosome and this was achieved by determining the time of entry of 32 randomly dispersed markers in crosses using nalidixic acid to interrupt chromosome transfer. Analysis of the time of entry data enabled the recalibration of the chromosome map to 75 min. PMID:3108071
Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu
2011-01-01
The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.
2011-01-01
Background The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. Results We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. Conclusions The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa. PMID:22784572
Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R
2014-09-01
A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.
Buying time-the immune system determinants of the incubation period to respiratory viruses.
Hermesh, Tamar; Moltedo, Bruno; López, Carolina B; Moran, Thomas M
2010-11-01
Respiratory viruses cause disease in humans characterized by an abrupt onset of symptoms. Studies in humans and animal models have shown that symptoms are not immediate and appear days or even weeks after infection. Since the initial symptoms are a manifestation of virus recognition by elements of the innate immune response, early virus replication must go largely undetected. The interval between infection and the emergence of symptoms is called the incubation period and is widely used as a clinical score. While incubation periods have been described for many virus infections the underlying mechanism for this asymptomatic phase has not been comprehensively documented. Here we review studies of the interaction between human pathogenic respiratory RNA viruses and the host with a particular emphasis on the mechanisms used by viruses to inhibit immunity. We discuss the concept of the "stealth phase", defined as the time between infection and the earliest detectable inflammatory response. We propose that the "stealth phase" phenomenon is primarily responsible for the suppression of symptoms during the incubation period and results from viral antagonism that inhibits major pathways of the innate immune system allowing an extended time of unhindered virus replication.
Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity
2012-01-01
Background Lentinula edodes, known as shiitake, has been utilized as food, as well as, in popular medicine, moreover, compounds isolated from its mycelium and fruiting body have shown several therapeutic properties. The aim of this study was to determine the antiviral activity of aqueous (AqE) and ethanol (EtOHE) extracts and polysaccharide (LeP) from Lentinula edodes in the replication of poliovirus type 1 (PV-1) and bovine herpes virus type 1 (BoHV-1). Methods The time-of-addition assay was performed at the times -2, -1, 0, 1 and 2 h of the infection. The virucidal activity and the inhibition of viral adsorption were also evaluated. Plaque assay was used to monitor antiviral activity throughout. Results The AqE and LeP were more effective when added at 0 h of infection, however, EtOHE was more effective at the times 1 h and 2 h of the infection. AqE, EtOHE and LeP showed low virucidal activity, and the inhibition of viral adsorption was not significant. Conclusions The results allowed us to conclude that AqE, EtOHE and LeP act on the initial processes of the replication of both strains of virus. PMID:22336004
NASA Astrophysics Data System (ADS)
Braun, Dieter; Möller, Friederike M.; Krammer, Hubert
2013-03-01
Central to the understanding of living systems is the interplay between DNA/RNA and proteins. Known as Eigen paradox, proteins require genetic information while proteins are needed for the replication of genes. RNA world scenarios focus on a base by base replication disconnected from translation. Here we used strategies from DNA machines to demonstrate a tight connection between a basic replication mechanism and translation. A pool of hairpin molecules replicate a two-letter code. The replication is thermally driven: the energy and negative entropy to drive replication is initially stored in metastable hairpins by kinetic cooling. Both are released by a highly specific and exponential replication reaction that is solely implemented by base hybridization. The duplication time is 30s. The reaction is monitored by fluorescence and described by a detailed kinetic model. The RNA hairpins usetransfer RNA sequences and the replication is driven by the simple disequilibrium setting of a thermal gradient The experiments propose a physical rather than a chemical scenario for the autonomous replication of protein encoding information. Supported by the NanoSystems Initiative Munich and ERC.
A Replication of Failure, Not a Failure to Replicate
ERIC Educational Resources Information Center
Holden, Gary; Barker, Kathleen; Kuppens, Sofie; Rosenberg, Gary; LeBreton, Jonathan
2015-01-01
Purpose: The increasing role of systematic reviews in knowledge production demands greater rigor in the literature search process. The performance of the Social Work Abstracts (SWA) database has been examined multiple times over the past three decades. The current study is a replication within this line of research. Method: Issue-level coverage…
A combined solar and geomagnetic index for thermospheric climate
Mlynczak, Martin G; Hunt, Linda A; Marshall, B Thomas; Russell, James M; Mertens, Christopher J; Thompson, R Earl; Gordley, Larry L
2015-01-01
Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time series of globally integrated infrared power (watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F10.7, Ap, and Dst indices. This allows reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to vary significantly over the solar cycle. The NO power is a fundamental integral constraint on the thermospheric climate, and the time series presented here can be used to test upper atmosphere models over seven different solar cycles. Key Points F10.7, Ap, and Dst replicate time series of radiative cooling by nitric oxide Quantified relative roles of solar irradiance, geomagnetism in radiative cooling Establish a new index and extend record of thermospheric cooling back 70 years PMID:26709319
A combined solar and geomagnetic index for thermospheric climate.
Mlynczak, Martin G; Hunt, Linda A; Marshall, B Thomas; Russell, James M; Mertens, Christopher J; Thompson, R Earl; Gordley, Larry L
2015-05-28
Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time series of globally integrated infrared power (watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F 10.7 , Ap , and Dst indices. This allows reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to vary significantly over the solar cycle. The NO power is a fundamental integral constraint on the thermospheric climate, and the time series presented here can be used to test upper atmosphere models over seven different solar cycles. F 10.7 , Ap , and Dst replicate time series of radiative cooling by nitric oxide Quantified relative roles of solar irradiance, geomagnetism in radiative cooling Establish a new index and extend record of thermospheric cooling back 70 years.
Tissue-specific profile of DNA replication in the swimming larvae of Ciona intestinalis.
Nakayama, Akie; Satoh, Nori; Sasakura, Yasunori
2005-03-01
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.
Purcell, M.K.; LaPatra, S.E.; Woodson, J.C.; Kurath, G.; Winton, J.R.
2010-01-01
The main objective of this study was to assess correlates of innate resistance in rainbow trout full-sibling families that differ in susceptibility to Infectious hematopoietic necrosis virus (IHNV). As part of a commercial breeding program, full-sibling families were challenged with IHNV by waterborne exposure at the 1 g size to determine susceptibility to IHNV. Progeny from select families (N = 7 families) that varied in susceptibility (ranging from 32 to 90% cumulative percent mortality (CPM)) were challenged again at the 10 g size by intra-peritoneal injection and overall mortality, early viral replication and immune responses were evaluated. Mortality challenges included 20–40 fish per family while viral replication and immune response studies included 6 fish per family at each time point (24, 48 and 72 h post-infection (hpi)). CPM at the 1 g size was significantly correlated with CPM at the 10 g size, indicating that inherent resistance was a stable trait irrespective of size. In the larger fish, viral load was measured by quantitative reverse-transcriptase PCR in the anterior kidney and was a significant predictor of family disease outcome at 48 hpi. Type I interferon (IFN) transcript levels were significantly correlated with an individual's viral load at 48 and 72 hpi, while type II IFN gene expression was significantly correlated with an individual's viral load at 24 and 48 hpi. Mean family type I but not type II IFN gene expression was weakly associated with susceptibility at 72 hpi. There was no association between mean family susceptibility and the constitutive expression of a range of innate immune genes (e.g. type I and II IFN pathway genes, cytokine and viral recognition receptor genes). The majority of survivors from the challenge had detectable serum neutralizing antibody titers but no trend was observed among families. This result suggests that even the most resistant families experienced sufficient levels of viral replication to trigger specific immunity. In summary, disease outcome for each family was determined very early in the infection process and resistance was associated with lower early viral replication.
Zessin, Patrick J M; Sporbert, Anje; Heilemann, Mike
2016-01-13
DNA replication is a fundamental cellular process that precedes cell division. Proliferating cell nuclear antigen (PCNA) is a central scaffold protein that orchestrates DNA replication by recruiting many factors essential for the replication machinery. We studied the mobility of PCNA in live mammalian cells using single-particle tracking in combination with photoactivated-localization microscopy (sptPALM) and found two populations. The first population which is only present in cells with active DNA replication, showed slow diffusion and was found to be located in replication foci. The second population showed fast diffusion, and represents the nucleoplasmic pool of unbound PCNA not involved in DNA replication. The ratio of these two populations remained constant throughout different stages of S-phase. A fraction of molecules in both populations showed spatially constrained mobility. We determined an exploration radius of ~100 nm for 13% of the slow-diffusing PCNA molecules, and of ~600 nm for 46% of the fast-diffusing PCNA molecules.
Hidalgo, Paloma; Anzures, Lourdes; Hernández-Mendoza, Armando; Guerrero, Adán; Wood, Christopher D.; Valdés, Margarita; Dobner, Thomas
2016-01-01
ABSTRACT Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle. PMID:26764008
Evidence of Ebola Virus Replication and High Concentration in Semen of a Patient During Recovery.
Barnes, Kayla G; Kindrachuk, Jason; Lin, Aaron E; Wohl, Shirlee; Qu, James; Tostenson, Samantha D; Dorman, William R; Busby, Michele; Siddle, Katherine J; Luo, Cynthia Y; Matranga, Christian B; Davey, Richard T; Sabeti, Pardis C; Chertow, Daniel S
2017-10-15
In one patient over time, we found that concentration of Ebola virus RNA in semen during recovery is remarkably higher than blood at peak illness. Virus in semen is replication-competent with no change in viral genome over time. Presence of sense RNA suggests replication in cells present in semen. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Multiprocessor Real-Time Locking Protocols for Replicated Resources
2016-07-01
circular buffer of slots, each representing a discrete segment of time . For example, if the maintenance of a timing wheel occurs af- ter an interrupt ...Experimental Evaluation To evaluate Algs. 2, 3, and 4, we conducted a series of ex- periments in which we measured relevant overheads and blocking times . We...Multiprocessor Real- Time Locking Protocols for Replicated Resources ∗ Catherine E. Jarrett1, Kecheng Yang1, Ming Yang1, Pontus Ekberg2, and James H
Slingshot dynamics for self-replicating probes and the effect on exploration timescales
NASA Astrophysics Data System (ADS)
Nicholson, Arwen; Forgan, Duncan
2013-10-01
Interstellar probes can carry out slingshot manoeuvres around the stars they visit, gaining a boost in velocity by extracting energy from the star's motion around the Galactic Centre. These manoeuvres carry little to no extra energy cost, and in previous work it has been shown that a single Voyager-like probe exploring the Galaxy does so 100 times faster when carrying out these slingshots than when navigating purely by powered flight (Forgan et al. 2012). We expand on these results by repeating the experiment with self-replicating probes. The probes explore a box of stars representative of the local Solar neighbourhood, to investigate how self-replication affects exploration timescales when compared with a single non-replicating probe. We explore three different scenarios of probe behaviour: (i) standard powered flight to the nearest unvisited star (no slingshot techniques used), (ii) flight to the nearest unvisited star using slingshot techniques and (iii) flight to the next unvisited star that will give the maximum velocity boost under a slingshot trajectory. In all three scenarios, we find that as expected, using self-replicating probes greatly reduces the exploration time, by up to three orders of magnitude for scenarios (i) and (iii) and two orders of magnitude for (ii). The second case (i.e. nearest-star slingshots) remains the most time effective way to explore a population of stars. As the decision-making algorithms for the fleet are simple, unanticipated `race conditions' among probes are set up, causing the exploration time of the final stars to become much longer than necessary. From the scaling of the probes' performance with star number, we conclude that a fleet of self-replicating probes can indeed explore the Galaxy in a sufficiently short time to warrant the existence of the Fermi Paradox.
Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J
2006-02-01
During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.
Wang, Huiqiang; Li, Ke; Ma, Linlin; Wu, Shuo; Hu, Jin; Yan, Haiyan; Jiang, Jiandong; Li, Yuhuan
2017-01-11
The MEK-ERK signaling pathway and autophagy play an important role for enterovirus71(EV71) replication. Inhibition of MEK-ERK signaling pathway and autophagy is shown to impair EV71 replication. Berberine (BBR), an isoquinoline alkaloid isolated from Berberis vulgaris L., has been reported to have ability to regulate this signaling pathway and autophagy. Herein, we want to determine whether berberine can inhibit EV71 infection by downregulating the MEK/ERK signaling pathway and autophagy. The antiviral effect of berberine was determined by cytopathic effect (CPE) assay, western blotting assay and qRT-PCR assay. The mechanism of BBR anti-virus was determined by western blotting assay and immunofluorescence assay. We showed that berberine does-dependently reduced EV71 RNA and protein synthesis, which was, at least in part, the result of inhibition of activation of MEK/ERK signaling pathway. Furthermore, we found that berberine suppressed the EV71-induced autophagy by activating AKT protein and inhibiting the phosphorylation of JNK and PI3KIII. BBR inhibited EV71 replication by downregulating autophagy and MEK/ERK signaling pathway. These findings suggest that BBR may be a potential agent or supplement against EV71 infection.
Initiation of DNA replication requires actin dynamics and formin activity.
Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel
2017-11-02
Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.
The Genetic Program of Pancreatic β-Cell Replication In Vivo
Klochendler, Agnes; Caspi, Inbal; Corem, Noa; Moran, Maya; Friedlich, Oriel; Elgavish, Sharona; Nevo, Yuval; Helman, Aharon; Glaser, Benjamin; Eden, Amir; Itzkovitz, Shalev
2016-01-01
The molecular program underlying infrequent replication of pancreatic β-cells remains largely inaccessible. Using transgenic mice expressing green fluorescent protein in cycling cells, we sorted live, replicating β-cells and determined their transcriptome. Replicating β-cells upregulate hundreds of proliferation-related genes, along with many novel putative cell cycle components. Strikingly, genes involved in β-cell functions, namely, glucose sensing and insulin secretion, were repressed. Further studies using single-molecule RNA in situ hybridization revealed that in fact, replicating β-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in β-cell function. These data suggest that the quiescence-proliferation transition involves global amplification of gene expression, except for a subset of tissue-specific genes, which are “left behind” and whose relative mRNA amount decreases. Our work provides a unique resource for the study of replicating β-cells in vivo. PMID:26993067
O'Sullivan, Patricia S; Mkony, Charles; Beard, Jessica; Irby, David M
2016-09-01
Previous studies on the identity development and motivation of faculty developers have occurred with seasoned developers in a research-rich environment. We sought to determine if the findings of those studies could be replicated with novice faculty developers in a resource-constrained environment. We interviewed 15 novice faculty developers from Muhimbili University of Health and Allied Sciences (MUHAS) who, at the time, had led faculty development activities for no more than two years. We conducted a qualitative analysis sensitized by the previous findings. Results were very similar to the previous work. The developers described compartmentalized, hierarchical, and merged identities. The impact was on their teaching as well as on others at MUHAS and on the institution itself. The motivations related to mastery, purpose, duty, satisfaction, and relatedness. This replication led us to conclude that identity development as a faculty developer occurs even in novice developers who do faculty development as only part of their work and despite constrained resources and a different culture. These developers find the work richly rewarding and their motivations benefit the institution. This body of research highlights how faculty development provides benefits to the institution as well as engaging career opportunities.
Spatial evolutionary games with weak selection.
Nanda, Mridu; Durrett, Richard
2017-06-06
Recently, a rigorous mathematical theory has been developed for spatial games with weak selection, i.e., when the payoff differences between strategies are small. The key to the analysis is that when space and time are suitably rescaled, the spatial model converges to the solution of a partial differential equation (PDE). This approach can be used to analyze all [Formula: see text] games, but there are a number of [Formula: see text] games for which the behavior of the limiting PDE is not known. In this paper, we give rules for determining the behavior of a large class of [Formula: see text] games and check their validity using simulation. In words, the effect of space is equivalent to making changes in the payoff matrix, and once this is done, the behavior of the spatial game can be predicted from the behavior of the replicator equation for the modified game. We say predicted here because in some cases the behavior of the spatial game is different from that of the replicator equation for the modified game. For example, if a rock-paper-scissors game has a replicator equation that spirals out to the boundary, space stabilizes the system and produces an equilibrium.
Spatial evolutionary games with weak selection
Nanda, Mridu; Durrett, Richard
2017-01-01
Recently, a rigorous mathematical theory has been developed for spatial games with weak selection, i.e., when the payoff differences between strategies are small. The key to the analysis is that when space and time are suitably rescaled, the spatial model converges to the solution of a partial differential equation (PDE). This approach can be used to analyze all 2×2 games, but there are a number of 3×3 games for which the behavior of the limiting PDE is not known. In this paper, we give rules for determining the behavior of a large class of 3×3 games and check their validity using simulation. In words, the effect of space is equivalent to making changes in the payoff matrix, and once this is done, the behavior of the spatial game can be predicted from the behavior of the replicator equation for the modified game. We say predicted here because in some cases the behavior of the spatial game is different from that of the replicator equation for the modified game. For example, if a rock–paper–scissors game has a replicator equation that spirals out to the boundary, space stabilizes the system and produces an equilibrium. PMID:28533405
Trexler, Lance E; Parrott, Devan R; Malec, James F
2016-02-01
To determine the extent to which previous findings on the effectiveness of resource facilitation to impact return to work and school could be replicated. Randomized controlled trial. Outpatient rehabilitation clinic. Outpatients with acquired brain injury (N=44). Fifteen months of resource facilitation services. A revised version of the Vocational Independence Scale and the Mayo-Portland Adaptability Inventory-4 Participation Index. Participants randomized to the resource facilitation group demonstrated a significant advantage in terms of rate and timing of return to productive community-based work relative to control participants. When examining only return to competitive work (and not return to school), 69% of the resource facilitation group was able to return compared with 50% of the control participants. Analyses of measures of participation in household and community activities revealed that both groups improved significantly over the 15-month study period, but no significant advantage for either group was demonstrated. This study replicates the positive impact of resource facilitation in improving productive community-based activity, including competitive employment and volunteering in the community. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.C.; Maher, V.M.; McCormich, J.J.
1991-09-01
Xeroderma pigmentosum (XP) variant patients show the clinical characteristics of the disease, with increased frequencies of skin cancer, but their cells have a normal, or nearly normal, rate of nucleotide excision repair of UV-induced DNA damage and are only slightly more sensitive than normal cells to the cytotoxic effect of UV radiation. However, they are significantly more sensitive to its mutagenic effect. To examine the mechanisms responsible for this hypermutability, the authors transfected an XP variant cell line with a UV-irradiated (at 254 nm) shuttle vector carrying the {sup F} gene as a target for mutations, allowed replication of themore » plasmid, determined the frequency and spectrum of mutations induced, and compared the results with those obtained previously when irradiated plasmids carrying the same target gene replicated in a normal cell line. The frequency of mutants increased linearly with dose, but with a slope 5 times steeper than that seen with normal cells. Sequence analysis of the {sup F} gene showed that 52 of 53 independent mutants generated in the XP variant cells contained base substitutions, with 62 of 64 of the substitutions involving a dipyrimidine.« less
In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus.
Carvalho, Otávio V; Saraiva, Giuliana L; Ferreira, Caroline G T; Felix, Daniele M; Fietto, Juliana L R; Bressan, Gustavo C; Almeida, Márcia R; Silva Júnior, Abelardo
2014-10-01
Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection.
In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus
Carvalho, Otávio V.; Saraiva, Giuliana L.; Ferreira, Caroline G.T.; Felix, Daniele M.; Fietto, Juliana L.R.; Bressan, Gustavo C.; Almeida, Márcia R.; Silva Júnior, Abelardo
2014-01-01
Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection. PMID:25355997
Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A; Greene, Eric C; Dockendorff, Chris; Antony, Edwin
2017-09-19
An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2013-01-01
Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed. PMID:23714207
Problem solving during artificial selection of self-replicating loops
NASA Astrophysics Data System (ADS)
Chou, Hui-Hsien; Reggia, James A.
1998-05-01
Past cellular automata models of self-replication have generally done only one thing: replicate themselves. However, it has recently been demonstrated that such self-replicating structures can be programmed to also carry out a task during the replication process. Past models of this sort have been limited in that the “program” involved is copied unchanged from parent to child, so that each generation of replicants is executing exactly the same program on exactly the same data. Here we take a different approach in which each replicant receives a distinct partial solution that is modified during replication. Under artificial selection, replicants with promising solutions proliferate while those with failed solutions are lost. We show that this approach can be applied successfully to solve an NP-complete problem, the satisfiability problem. Bounds are given on the cellular space size and time needed to solve a given problem, and simulations demonstrate that this approach works effectively. These and other recent results raise the possibility of evolving self-replicating structures that have a simulated metabolism or that carry out useful tasks.
Franzoso, Francesca D.; Seyffert, Michael; Vogel, Rebecca; Yakimovich, Artur; de Andrade Pereira, Bruna; Meier, Anita F.; Sutter, Sereina O.; Tobler, Kurt; Vogt, Bernd; Greber, Urs F.; Büning, Hildegard; Ackermann, Mathias
2017-01-01
ABSTRACT Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G2-phase cells, while HSV-1 DNA replication is restricted to G1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G2-phase cells, suggesting that the preference for S/G2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G2-phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate. IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time-controlled windows for HSV-1 replication. High Rep protein levels in S/G2 phase support AAV2 replication and inhibit HSV-1 replication. Conversely, low Rep protein levels in G1 phase permit HSV-1 replication but are insufficient for AAV2 replication. This allows both viruses to productively replicate in distinct sets of dividing cells. PMID:28515305
A New Replicator: A theoretical framework for analysing replication
2010-01-01
Background Replicators are the crucial entities in evolution. The notion of a replicator, however, is far less exact than the weight of its importance. Without identifying and classifying multiplying entities exactly, their dynamics cannot be determined appropriately. Therefore, it is importance to decide the nature and characteristics of any multiplying entity, in a detailed and formal way. Results Replication is basically an autocatalytic process which enables us to rest on the notions of formal chemistry. This statement has major implications. Simple autocatalytic cycle intermediates are considered as non-informational replicators. A consequence of which is that any autocatalytically multiplying entity is a replicator, be it simple or overly complex (even nests). A stricter definition refers to entities which can inherit acquired changes (informational replicators). Simple autocatalytic molecules (and nests) are excluded from this group. However, in turn, any entity possessing copiable information is to be named a replicator, even multicellular organisms. In order to deal with the situation, an abstract, formal framework is presented, which allows the proper identification of various types of replicators. This sheds light on the old problem of the units and levels of selection and evolution. A hierarchical classification for the partition of the replicator-continuum is provided where specific replicators are nested within more general ones. The classification should be able to be successfully applied to known replicators and also to future candidates. Conclusion This paper redefines the concept of the replicator from a bottom-up theoretical approach. The formal definition and the abstract models presented can distinguish between among all possible replicator types, based on their quantity of variable and heritable information. This allows for the exact identification of various replicator types and their underlying dynamics. The most important claim is that replication, in general, is basically autocatalysis, with a specific defined environment and selective force. A replicator is not valid unless its working environment, and the selective force to which it is subject, is specified. PMID:20219099
Kuempel, Peter L.
1972-01-01
Alkaline sucrose gradients were used to study the molecular weight of deoxyribonucleic acid (DNA) synthesized during the initiation of chromosome replication in Escherichia coli 15 TAU-bar. The experiments were conducted to determine whether newly synthesized, replication origin DNA is attached to higher-molecular-weight parental DNA. Little of the DNA synthesized after readdition of required amino acids to cells previously deprived of the amino acids was present in DNA with a molecular weight comparable to that of the parental DNA. The newly synthesized, low-molecular-weight DNA rapidly appeared in higher-molecular-weight material, but there was an upper limit to the size of this intermediate-molecular-weight DNA. This limit was not observed when exponentially growing cells converted newly synthesized DNA to higher-molecular-weight material. The size of the intermediate-molecular-weight DNA was related to the age of the replication forks, and the size increased as the replication forks moved further from the replication origin. The results indicate that the newly synthesized replication origin DNA is not attached to parental DNA, but it is rapidly attached to the growing strands that extend from the replication fork to the replication origin, or to the other replication fork if replication is bidirectional. Experiments are reported which demonstrate that the DNA investigated was from the vicinity of the replication origin and was not plasmid DNA or DNA from random positions on the chromosome. PMID:4562387
NASA Technical Reports Server (NTRS)
Kerr, J. R.; Haskins, J. F.
1980-01-01
Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.
Mink parvoviruses and interferons: in vitro studies.
Wiedbrauk, D L; Bloom, M E; Lodmell, D L
1986-01-01
Although interferons can inhibit the replication of a number of viruses, little is known about their ability to inhibit parvovirus replication. Therefore, in vitro experiments were done to determine if Aleutian disease virus and mink enteritis virus, two autonomously replicating mink parvoviruses, induced interferon, were sensitive to the effects of interferon, or inhibited the production of interferon. The results indicated that these parvoviruses neither induced nor were sensitive to the effects of interferon. Furthermore, preexisting parvovirus infections did not inhibit poly(I).poly(C)-induced interferon production. This independence from the interferon system may, therefore, be a general property of the autonomously replicating parvoviruses. PMID:2431162
Simple systems that exhibit self-directed replication
NASA Technical Reports Server (NTRS)
Reggia, James A.; Armentrout, Steven L.; Chou, Hui-Hsien; Peng, Yun
1993-01-01
Biological experience and intuition suggest that self-replication is an inherently complex phenomenon, and early cellular automata models support that conception. More recently, simpler computational models of self-directed replication called sheathed loops have been developed. It is shown here that 'unsheathing' these structures and altering certain assumptions about the symmetry of their components leads to a family of nontrivial self-replicating structures some substantially smaller and simpler than those previously reported. The dependence of replication time and transition function complexity on initial structure size, cell state symmetry, and neighborhood are examined. These results support the view that self-replication is not an inherently complex phenomenon but rather an emergent property arising from local interactions in systems that can be much simpler than is generally believed.
Dissociating Stimulus-Set and Response-Set in the Context of Task-Set Switching
Kieffaber, Paul D.; Kruschke, John K.; Cho, Raymond Y.; Walker, Philip M.; Hetrick, William P.
2014-01-01
The primary aim of the present research was to determine how stimulus-set and response-set components of task-set contribute to switch costs and conflict processing. Three experiments are described wherein participants completed an explicitly cued task-switching procedure. Experiment 1 established that task switches requiring a reconfiguration of both stimulus- and response-set incurred larger residual switch costs than task switches requiring the reconfiguration of stimulus-set alone. Between-task interference was also drastically reduced for response-set conflict compared with stimulus-set conflict. A second experiment replicated these findings and demonstrated that stimulus- and response-conflict have dissociable effects on the “decision time” and “motor time” components of total response time. Finally, a third experiment replicated Experiment 2 and demonstrated that the stimulus- and response- components of task switching and conflict processing elicit dissociable neural activity as evidence by event-related brain potentials. PMID:22984990
Stice, Eric; Orjada, Kendra; Tristan, Jennifer
2006-04-01
We conducted a controlled trial of a psychoeducational eating disturbance intervention to replicate the positive findings observed in the preliminary evaluation of this intervention and to determine whether the effects persist for a longer follow-up period. College women who took the psychoeducational class and a matched control sample of students (N = 95) completed pretest, posttest, and 6-month follow-up surveys. Intervention participants showed significantly greater reductions in thin-ideal internalization, body dissatisfaction, dieting, and eating disorder symptoms, as well as significantly less weight gain, relative to matched controls over the study period. Intervention effects tended to be larger at 6-month follow-up than at posttest. These findings suggest that the intervention effects for eating disorder risk factors and eating disorder symptoms, as well as the weight gain prevention effects, are reproducible and persist over time. This intervention has both mental health and public health significance. 2006 by Wiley Periodicals, Inc.
Raad, Jennifer M; Bellinger, Skylar; McCormick, Erica; Roberts, Michael C; Steele, Ric G
2008-08-01
To replicate Sifers, Puddy, Warren, and Roberts (2002) examining reporting rates of demographic, methodological, and ethical information in articles published during 1997, and to compare these rates to those found in articles published during 2005, in order to determine whether and how reporting practices of these variables have changed over time. We examined reporting demographic, methodological, and ethical information in articles in four journals: Journal of Pediatric Psychology, Journal of Clinical Child and Adolescent Psychology, Journal of Abnormal Child Psychology, and Child Development. Reporting rates during 2005 were compared to articles published during 1997. These four journals improved on many of the 23 variables compared to Sifers et al. including increases in the reporting of ethnicity, attrition, child assent procedures, socioeconomic status, reliability, and reward/incentive offered to participants. Improvements in descriptive information have implications for interpretation, replication, and generalizability of research findings.
Sanjuán, Rafael; Domingo-Calap, Pilar
2016-12-01
The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.
G0-G1 Transition and the Restriction Point in Pancreatic β-Cells In Vivo
Hija, Ayat; Salpeter, Seth; Klochendler, Agnes; Grimsby, Joseph; Brandeis, Michael; Glaser, Benjamin; Dor, Yuval
2014-01-01
Most of our knowledge on cell kinetics stems from in vitro studies of continuously dividing cells. In this study, we determine in vivo cell-cycle parameters of pancreatic β-cells, a largely quiescent population, using drugs that mimic or prevent glucose-induced replication of β-cells in mice. Quiescent β-cells exposed to a mitogenic glucose stimulation require 8 h to enter the G1 phase of the cell cycle, and this time is prolonged in older age. The duration of G1, S, and G2/M is ∼5, 8, and 6 h, respectively. We further provide the first in vivo demonstration of the restriction point at the G0-G1 transition, discovered by Arthur Pardee 40 years ago. The findings may have pharmacodynamic implications in the design of regenerative therapies aimed at increasing β-cell replication and mass in patients with diabetes. PMID:24130333
Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.
Hansen, M T
1978-01-01
The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572
A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae
Val, Marie-Eve; Marbouty, Martial; de Lemos Martins, Francisco; Kennedy, Sean P.; Kemble, Harry; Bland, Michael J.; Possoz, Christophe; Koszul, Romain; Skovgaard, Ole; Mazel, Didier
2016-01-01
Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication–mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria. PMID:27152358
NASA Technical Reports Server (NTRS)
Divito, Ben L.; Butler, Ricky W.; Caldwell, James L.
1990-01-01
A high-level design is presented for a reliable computing platform for real-time control applications. Design tradeoffs and analyses related to the development of the fault-tolerant computing platform are discussed. The architecture is formalized and shown to satisfy a key correctness property. The reliable computing platform uses replicated processors and majority voting to achieve fault tolerance. Under the assumption of a majority of processors working in each frame, it is shown that the replicated system computes the same results as a single processor system not subject to failures. Sufficient conditions are obtained to establish that the replicated system recovers from transient faults within a bounded amount of time. Three different voting schemes are examined and proved to satisfy the bounded recovery time conditions.
Ustav, M; Stenlund, A
1991-02-01
Bovine papillomavirus (BPV) DNA is maintained as an episome with a constant copy number in transformed cells and is stably inherited. To study BPV replication we have developed a transient replication assay based on a highly efficient electroporation procedure. Using this assay we have determined that in the context of the viral genome two of the viral open reading frames, E1 and E2, are required for replication. Furthermore we show that when produced from expression vectors in the absence of other viral gene products, the full length E2 transactivator polypeptide and a 72 kd polypeptide encoded by the E1 open reading frame in its entirety, are both necessary and sufficient for replication BPV in C127 cells.
Symmetry of interactions rules in incompletely connected random replicator ecosystems.
Kärenlampi, Petri P
2014-06-01
The evolution of an incompletely connected system of species with speciation and extinction is investigated in terms of random replicators. It is found that evolving random replicator systems with speciation do become large and complex, depending on speciation parameters. Antisymmetric interactions result in large systems, whereas systems with symmetric interactions remain small. A co-dominating feature is within-species interaction pressure: large within-species interaction increases species diversity. Average fitness evolves in all systems, however symmetry and connectivity evolve in small systems only. Newcomers get extinct almost immediately in symmetric systems. The distribution in species lifetimes is determined for antisymmetric systems. The replicator systems investigated do not show any sign of self-organized criticality. The generalized Lotka-Volterra system is shown to be a tedious way of implementing the replicator system.
Babenko, Vladimir N; Makunin, Igor V; Brusentsova, Irina V; Belyaeva, Elena S; Maksimov, Daniil A; Belyakin, Stepan N; Maroy, Peter; Vasil'eva, Lyubov A; Zhimulev, Igor F
2010-05-21
Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster. Here we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elements and piggyBacs in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles. Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.
Li, Na; Yan, Yunhuan; Zhang, Angke; Gao, Jiming; Zhang, Chong; Wang, Xue; Hou, Gaopeng; Zhang, Gaiping; Jia, Jinbu; Zhou, En-Min; Xiao, Shuqi
2016-12-13
Many viruses encode microRNAs (miRNAs) that are small non-coding single-stranded RNAs which play critical roles in virus-host interactions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically impactful viruses in the swine industry. The present study sought to determine whether PRRSV encodes miRNAs that could regulate PRRSV replication. Four viral small RNAs (vsRNAs) were mapped to the stem-loop structures in the ORF1a, ORF1b and GP2a regions of the PRRSV genome by bioinformatics prediction and experimental verification. Of these, the structures with the lowest minimum free energy (MFE) values predicted for PRRSV-vsRNA1 corresponded to typical stem-loop, hairpin structures. Inhibition of PRRSV-vsRNA1 function led to significant increases in viral replication. Transfection with PRRSV-vsRNA1 mimics significantly inhibited PRRSV replication in primary porcine alveolar macrophages (PAMs). The time-dependent increase in the abundance of PRRSV-vsRNA1 mirrored the gradual upregulation of PRRSV RNA expression. Knockdown of proteins associated with cellular miRNA biogenesis demonstrated that Drosha and Argonaute (Ago2) are involved in PRRSV-vsRNA1 biogenesis. Moreover, PRRSV-vsRNA1 bound specifically to the nonstructural protein 2 (NSP2)-coding sequence of PRRSV genome RNA. Collectively, the results reveal that PRRSV encodes a functional PRRSV-vsRNA1 which auto-regulates PRRSV replication by directly targeting and suppressing viral NSP2 gene expression. These findings not only provide new insights into the mechanism of the pathogenesis of PRRSV, but also explore a potential avenue for controlling PRRSV infection using viral small RNAs.
Burstyn, J N; Heiger-Bernays, W J; Cohen, S M; Lippard, S J
2000-11-01
Mapping of cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) DNA adducts over >3000 nucleotides was carried out using a replication blockage assay. The sites of inhibition of modified T4 DNA polymerase, also referred to as stop sites, were analyzed to determine the effects of local sequence context on the distribution of intrastrand cisplatin cross-links. In a 3120 base fragment from replicative form M13mp18 DNA containing 24.6% guanine, 25.5% thymine, 26.9% adenine and 23.0% cytosine, 166 individual stop sites were observed at a bound platinum/nucleotide ratio of 1-2 per thousand. The majority of stop sites (90%) occurred at G(n>2) sequences and the remainder were located at sites containing an AG dinucleotide. For all of the GG sites present in the mapped sequences, including those with Gn(>)2, 89% blocked replication, whereas for the AG sites only 17% blocked replication. These blockage sites were independent of flanking nucleotides in a sequence of N(1)G*G*N(2) where N(1), N(2) = A, C, G, T and G*G* indicates a 1,2-intrastrand platinum cross-link. The absence of long-range sequence dependence was confirmed by monitoring the reaction of cisplatin with a plasmid containing an 800 bp insert of the human telomere repeat sequence (TTAGGG)(n). Platination reactions monitored at several formal platinum/nucleotide ratios or as a function of time reveal that the telomere insert was not preferentially damaged by cisplatin. Both replication blockage and telomere-insert plasmid platination experiments indicate that cisplatin 1,2-intrastrand adducts do not form preferentially at G-rich sequences in vitro.
Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity*
Manzoor, Rashid; Kuroda, Kazumichi; Yoshida, Reiko; Tsuda, Yoshimi; Fujikura, Daisuke; Miyamoto, Hiroko; Kajihara, Masahiro; Kida, Hiroshi; Takada, Ayato
2014-01-01
The role of heat shock protein 70 (Hsp70) in virus replication has been discussed for many viruses. The known suppressive role of Hsp70 in influenza virus replication is based on studies conducted in cells with various Hsp70 expression levels. In this study, we determined the role of Hsp70 in influenza virus replication in HeLa and HEK293T cells, which express Hsp70 constitutively. Co-immunoprecipitation and immunofluorescence studies revealed that Hsp70 interacted with PB2 or PB1 monomers and PB2/PB1 heterodimer but not with the PB1/PA heterodimer or PB2/PB1/PA heterotrimer and translocated into the nucleus with PB2 monomers or PB2/PB1 heterodimers. Knocking down Hsp70 resulted in reduced virus transcription and replication activities. Reporter gene assay, immunofluorescence assay, and Western blot analysis of nuclear and cytoplasmic fractions from infected cells demonstrated that the increase in viral polymerase activity during the heat shock phase was accompanied with an increase in Hsp70 and viral polymerases levels in the nuclei, where influenza virus replication takes place, whereas a reduction in viral polymerase activity was accompanied with an increase in cytoplasmic relocation of Hsp70 along with viral polymerases. Moreover, significantly higher levels of viral genomic RNA (vRNA) were observed during the heat shock phase than during the recovery phase. Overall, for the first time, these findings suggest that Hsp70 may act as a chaperone for influenza virus polymerase, and the modulatory effect of Hsp70 appears to be a sequel of shuttling of Hsp70 between nuclear and cytoplasmic compartments. PMID:24474693
A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial
NASA Astrophysics Data System (ADS)
Shao, C.-W.; Chiu, H.-L.; Chang, S.-K.
2015-08-01
Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the "colour change" of the human skeletal remains from wet to dry condition. Then, the "colure change" is used to evaluate the "real" surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The"Lingdao man No.1", is a well preserved burial of early Neolithic period (8300 B.P.) excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by step for ensuring the surface texture and colour of the replica matches the real human skeletal remains when discovered. The "colour change" of the skeleton documented and quantified in this study could be the reference for the future study and educational exhibition of human skeletal remain reproduction.
Mullerad, Michael; Bochner, Bernard H.; Adusumilli, Prasad S.; Bhargava, Amit; Kikuchi, Eiji; Hui-Ni, Chen; Kattan, Michael W.; Chou, Ting-Chao; Fong, Yuman
2005-01-01
Purpose Oncolytic replication-competent herpes simplex virus type-1 (HSV) mutants have the ability to replicate in and kill malignant cells. We have previously demonstrated the ability of replication-competent HSV to control bladder cancer growth in an orthotopic murine model. We hypothesized that a combination of a chemotherapeutic agent used for intravesical treatment - mitomycin-C (MMC) - and oncolytic HSV would exert a synergistic effect in the treatment of human transitional cell carcinoma (TCC). Materials and Methods We used the mutant HSV NV1066, which is deleted for viral genes ICP0 and ICP4 and selectively infects cancer cells, to treat TCC lines, KU19-19 and SKUB. Cell survival was determined by lactate dehydrogenase (LDH) assay for each agent as well as for drug-viral combinations from days 1 to 5. The isobologram method and the combination index method of Chou-Talalay were used to assess for synergistic effect. Results NV1066 enhanced MMC mediated cytotoxicity at all combinations tested for both KU19-19 and SKUB. Combination of both agents demonstrated a synergistic effect and allowed dose reduction by 12 and 10.4 times (NV1066) and by 3 and 156 times (MMC) in the treatment of KU19-19 and SKUB respectively, while achieving an estimated 90% cell kill. Conclusion These data provide the cellular basis for the clinical investigation of combined mitomycin-C and oncolytic HSV therapy in the treatment of bladder cancer. PMID:16006968
A quantitative and high-throughput assay of human papillomavirus DNA replication.
Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques
2015-01-01
Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.
Extinction rates in tumour public goods games.
Gerlee, Philip; Altrock, Philipp M
2017-09-01
Cancer evolution and progression are shaped by cellular interactions and Darwinian selection. Evolutionary game theory incorporates both of these principles, and has been proposed as a framework to understand tumour cell population dynamics. A cornerstone of evolutionary dynamics is the replicator equation, which describes changes in the relative abundance of different cell types, and is able to predict evolutionary equilibria. Typically, the replicator equation focuses on differences in relative fitness. We here show that this framework might not be sufficient under all circumstances, as it neglects important aspects of population growth. Standard replicator dynamics might miss critical differences in the time it takes to reach an equilibrium, as this time also depends on cellular turnover in growing but bounded populations. As the system reaches a stable manifold, the time to reach equilibrium depends on cellular death and birth rates. These rates shape the time scales, in particular, in coevolutionary dynamics of growth factor producers and free-riders. Replicator dynamics might be an appropriate framework only when birth and death rates are of similar magnitude. Otherwise, population growth effects cannot be neglected when predicting the time to reach an equilibrium, and cell-type-specific rates have to be accounted for explicitly. © 2017 The Authors.
Devlin, Rebecca; Marques, Catarina A; Paape, Daniel; Prorocic, Marko; Zurita-Leal, Andrea C; Campbell, Samantha J; Lapsley, Craig; Dickens, Nicholas; McCulloch, Richard
2016-01-01
Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility. DOI: http://dx.doi.org/10.7554/eLife.12765.001 PMID:27228154
Interpreting the Dependence of Mutation Rates on Age and Time
Gao, Ziyue; Wyman, Minyoung J.; Sella, Guy; Przeworski, Molly
2016-01-01
Mutations can originate from the chance misincorporation of nucleotides during DNA replication or from DNA lesions that arise between replication cycles and are not repaired correctly. We introduce a model that relates the source of mutations to their accumulation with cell divisions, providing a framework for understanding how mutation rates depend on sex, age, and cell division rate. We show that the accrual of mutations should track cell divisions not only when mutations are replicative in origin but also when they are non-replicative and repaired efficiently. One implication is that observations from diverse fields that to date have been interpreted as pointing to a replicative origin of most mutations could instead reflect the accumulation of mutations arising from endogenous reactions or exogenous mutagens. We further find that only mutations that arise from inefficiently repaired lesions will accrue according to absolute time; thus, unless life history traits co-vary, the phylogenetic “molecular clock” should not be expected to run steadily across species. PMID:26761240
Antiviral activity and synthesis of quaternized promazine derivatives against HSV-1.
Purohit, Akasha K; Balish, Matthew D; Leichty, Jacob J; Roe, Ashley; Ward, Lori M; Mitchell, Miguel O; Hsia, Shao-chung
2012-08-15
N-(4-chlorobenzyl)triflupromazinium chloride, a known antitubercular agent, has been found to also be active against HSV-1. A preliminary structure-activity relation has been explored to determine which groups are crucial to viral inhibition. Antiviral assessments such as GFP reduction, plaque reduction, treatment timing and wash-out studies have also been probed to determine a mode of action for QPD-1. Based on this preliminary data, it appears that QPD-1 is a reversible inhibitor, suspected to inhibit early stages of viral replication of HSV-1 at 50 μM, equipotent to acyclovir. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S
2018-05-16
Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the Reoviridae family assort and replicate their genomes. Copyright © 2018 American Society for Microbiology.
A Self-Replication Model for Long Channelized Lava Flows on the Mars Plains
NASA Technical Reports Server (NTRS)
Baloga, S. M.; Glaze, L. S.
2008-01-01
A model is presented for channelized lava flows emplaced by a self-replicating, levee-building process over long distances on the plains of Mars. Such flows may exhibit morphologic evidence of stagnation, overspills, and upstream breakouts. However, these processes do not inhibit the formation and persistence of a prominent central channel that can often be traced for more than 100 km. The two central assumptions of the self-replication model are (1) the flow advances at the average upstream velocity of the molten core and (2) the fraction of the lava that travels faster than the average upstream velocity forms stationary margins in the advancing distal zone to preserve the self-replication process. For an exemplary 300 km long flow north of Pavonis Mons, the model indicates that 8 m of crust must have formed during emplacement, as determined from the channel and levee dimensions. When combined with independent thermal dynamic estimates for the crustal growth rate, relatively narrow constraints are obtained for the flow rate (2250 m3 s 1), emplacement duration (600 d), and the lava viscosity of the molten interior (106 Pa s). Minor, transient overspills and breakouts increase the emplacement time by only a factor of 2. The primary difference between the prodigious channelized Martian flows and their smaller terrestrial counterparts is that high volumetric flow rates must have persisted for many hundreds of days on Mars, in contrast to a few hours or days on Earth.
Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR.
Jahn, Michael; Vorpahl, Carsten; Hübschmann, Thomas; Harms, Hauke; Müller, Susann
2016-12-19
Plasmids are widely used for molecular cloning or production of proteins in laboratory and industrial settings. Constant modification has brought forth countless plasmid vectors whose characteristics in terms of average plasmid copy number (PCN) and stability are rarely known. The crucial factor determining the PCN is the replication system; most replication systems in use today belong to a small number of different classes and are available through repositories like the Standard European Vector Architecture (SEVA). In this study, the PCN was determined in a set of seven SEVA-based expression plasmids only differing in the replication system. The average PCN for all constructs was determined by Droplet Digital PCR and ranged between 2 and 40 per chromosome in the host organism Escherichia coli. Furthermore, a plasmid-encoded EGFP reporter protein served as a means to assess variability in reporter gene expression on the single cell level. Only cells with one type of plasmid (RSF1010 replication system) showed a high degree of heterogeneity with a clear bimodal distribution of EGFP intensity while the others showed a normal distribution. The heterogeneous RSF1010-carrying cell population and one normally distributed population (ColE1 replication system) were further analyzed by sorting cells of sub-populations selected according to EGFP intensity. For both plasmids, low and highly fluorescent sub-populations showed a remarkable difference in PCN, ranging from 9.2 to 123.4 for ColE1 and from 0.5 to 11.8 for RSF1010, respectively. The average PCN determined here for a set of standardized plasmids was generally at the lower end of previously reported ranges and not related to the degree of heterogeneity. Further characterization of a heterogeneous and a homogeneous population demonstrated considerable differences in the PCN of sub-populations. We therefore present direct molecular evidence that the average PCN does not represent the true number of plasmid molecules in individual cells.
Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli
Jameson, Katie H.; Wilkinson, Anthony J.
2017-01-01
Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis. PMID:28075389
Maintaining replication origins in the face of genomic change.
Di Rienzi, Sara C; Lindstrom, Kimberly C; Mann, Tobias; Noble, William S; Raghuraman, M K; Brewer, Bonita J
2012-10-01
Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved.
Maintaining replication origins in the face of genomic change
Di Rienzi, Sara C.; Lindstrom, Kimberly C.; Mann, Tobias; Noble, William S.; Raghuraman, M.K.; Brewer, Bonita J.
2012-01-01
Origins of replication present a paradox to evolutionary biologists. As a collection, they are absolutely essential genomic features, but individually are highly redundant and nonessential. It is therefore difficult to predict to what extent and in what regard origins are conserved over evolutionary time. Here, through a comparative genomic analysis of replication origins and chromosomal replication patterns in the budding yeasts Saccharomyces cerevisiae and Lachancea waltii, we assess to what extent replication origins survived genomic change produced from 150 million years of evolution. We find that L. waltii origins exhibit a core consensus sequence and nucleosome occupancy pattern highly similar to those of S. cerevisiae origins. We further observe that the overall progression of chromosomal replication is similar between L. waltii and S. cerevisiae. Nevertheless, few origins show evidence of being conserved in location between the two species. Among the conserved origins are those surrounding centromeres and adjacent to histone genes, suggesting that proximity to an origin may be important for their regulation. We conclude that, over evolutionary time, origins maintain sequence, structure, and regulation, but are continually being created and destroyed, with the result that their locations are generally not conserved. PMID:22665441
Replication landscape of the human genome
Petryk, Nataliya; Kahli, Malik; d'Aubenton-Carafa, Yves; Jaszczyszyn, Yan; Shen, Yimin; Silvain, Maud; Thermes, Claude; Chen, Chun-Long; Hyrien, Olivier
2016-01-01
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. PMID:26751768
The Inherent Asymmetry of DNA Replication.
Snedeker, Jonathan; Wooten, Matthew; Chen, Xin
2017-10-06
Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.
The Alleged Crisis and the Illusion of Exact Replication.
Stroebe, Wolfgang; Strack, Fritz
2014-01-01
There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a "replication crisis" in psychology. Psychologists are encouraged to conduct more "exact" replications of published studies to assess the reproducibility of psychological research. This article argues that the alleged "crisis of replicability" is primarily due to an epistemological misunderstanding that emphasizes the phenomenon instead of its underlying mechanisms. As a consequence, a replicated phenomenon may not serve as a rigorous test of a theoretical hypothesis because identical operationalizations of variables in studies conducted at different times and with different subject populations might test different theoretical constructs. Therefore, we propose that for meaningful replications, attempts at reinstating the original circumstances are not sufficient. Instead, replicators must ascertain that conditions are realized that reflect the theoretical variable(s) manipulated (and/or measured) in the original study. © The Author(s) 2013.
ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication.
Koo, Seong Joo; Fernández-Montalván, Amaury E; Badock, Volker; Ott, Christopher J; Holton, Simon J; von Ahsen, Oliver; Toedling, Joern; Vittori, Sarah; Bradner, James E; Gorjánácz, Mátyás
2016-10-25
ATAD2 (ATPase family AAA domain-containing protein 2) is a chromatin regulator harboring an AAA+ ATPase domain and a bromodomain, previously proposed to function as an oncogenic transcription co-factor. Here we suggest that ATAD2 is also required for DNA replication. ATAD2 is co-expressed with genes involved in DNA replication in various cancer types and predominantly expressed in S phase cells where it localized on nascent chromatin (replication sites). Our extensive biochemical and cellular analyses revealed that ATAD2 is recruited to replication sites through a direct interaction with di-acetylated histone H4 at K5 and K12, indicative of newly synthesized histones during replication-coupled chromatin reassembly. Similar to ATAD2-depletion, ectopic expression of ATAD2 mutants that are deficient in binding to these di-acetylation marks resulted in reduced DNA replication and impaired loading of PCNA onto chromatin, suggesting relevance of ATAD2 in DNA replication. Taken together, our data show a novel function of ATAD2 in cancer and for the first time identify a reader of newly synthesized histone di-acetylation-marks during replication.
Replicating an Intervention: The Tension between Fidelity and Adaptation
ERIC Educational Resources Information Center
Morrison, Diane M.; Hoppe, Marilyn J.; Gillmore, Mary Rogers; Kluver, Carisa; Higa, Darrel; Wells, Elizabeth A.
2009-01-01
Increased awareness of the importance of tailoring interventions to participants' cultures has focused attention on the limited generalizability of a single test of an intervention to determine efficacy. Adaptation is often necessary to replicate interventions across cultures. This produces a tension between fidelity to the original intervention…
Das, Dipon; Smith, Nathan W; Wang, Xu; Richardson, Stacie L; Hartman, Matthew C T; Morgan, Iain M
2017-08-01
Human papillomaviruses are causative agents in several human diseases ranging from genital warts to ano-genital and oropharyngeal cancers. Currently only symptoms of HPV induced disease are treated; there are no antivirals available that directly target the viral life cycle. Previously, we determined that the cellular protein TopBP1 interacts with the HPV16 replication/transcription factor E2. This E2-TopBP1 interaction is essential for optimal E1-E2 DNA replication and for the viral life cycle. The drug calcein disrupts the interaction of TopBP1 with itself and other host proteins to promote cell death. Here we demonstrate that calcein blocks HPV16 E1-E2 DNA replication via blocking the viral replication complex forming at the origin of replication. This occurs at non-toxic levels of calcein and demonstrates specificity as it does not block the ability of E2 to regulate transcription. We propose that calcein or derivatives could be developed as an anti-HPV therapeutic. Copyright © 2017 Elsevier Inc. All rights reserved.
Liachko, Ivan; Youngblood, Rachel A.; Keich, Uri; Dunham, Maitreya J.
2013-01-01
DNA replication origins are necessary for the duplication of genomes. In addition, plasmid-based expression systems require DNA replication origins to maintain plasmids efficiently. The yeast autonomously replicating sequence (ARS) assay has been a valuable tool in dissecting replication origin structure and function. However, the dearth of information on origins in diverse yeasts limits the availability of efficient replication origin modules to only a handful of species and restricts our understanding of origin function and evolution. To enable rapid study of origins, we have developed a sequencing-based suite of methods for comprehensively mapping and characterizing ARSs within a yeast genome. Our approach finely maps genomic inserts capable of supporting plasmid replication and uses massively parallel deep mutational scanning to define molecular determinants of ARS function with single-nucleotide resolution. In addition to providing unprecedented detail into origin structure, our data have allowed us to design short, synthetic DNA sequences that retain maximal ARS function. These methods can be readily applied to understand and modulate ARS function in diverse systems. PMID:23241746
Recolin, Bénédicte; Van Der Laan, Siem; Maiorano, Domenico
2012-01-01
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation. PMID:22187152
The Spatiotemporal Program of Replication in the Genome of Lachancea kluyveri
Agier, Nicolas; Romano, Orso Maria; Touzain, Fabrice; Cosentino Lagomarsino, Marco; Fischer, Gilles
2013-01-01
We generated a genome-wide replication profile in the genome of Lachancea kluyveri and assessed the relationship between replication and base composition. This species diverged from Saccharomyces cerevisiae before the ancestral whole genome duplication. The genome comprises eight chromosomes among which a chromosomal arm of 1 Mb has a G + C-content much higher than the rest of the genome. We identified 252 active replication origins in L. kluyveri and found considerable divergence in origin location with S. cerevisiae and with Lachancea waltii. Although some global features of S. cerevisiae replication are conserved: Centromeres replicate early, whereas telomeres replicate late, we found that replication origins both in L. kluyveri and L. waltii do not behave as evolutionary fragile sites. In L. kluyveri, replication timing along chromosomes alternates between regions of early and late activating origins, except for the 1 Mb GC-rich chromosomal arm. This chromosomal arm contains an origin consensus motif different from other chromosomes and is replicated early during S-phase. We showed that precocious replication results from the specific absence of late firing origins in this chromosomal arm. In addition, we found a correlation between GC-content and distance from replication origins as well as a lack of replication-associated compositional skew between leading and lagging strands specifically in this GC-rich chromosomal arm. These findings suggest that the unusual base composition in the genome of L. kluyveri could be linked to replication. PMID:23355306
Grant, Sarah Schmidt; Kawate, Tomohiko; Nag, Partha P.; Silvis, Melanie R.; Gordon, Katherine; Stanley, Sarah A.; Kazyanskaya, Ed; Nietupski, Ray; Golas, Aaron; Fitzgerald, Michael; Cho, Sanghyun; Franzblau, Scott G.; Hung, Deborah T.
2013-01-01
During Mycobacterium tuberculosis infection, a population of bacteria is thought to exist in a non-replicating state, refractory to antibiotics, which may contribute to the need for prolonged antibiotic therapy. The identification of inhibitors of the non-replicating state provides tools that can be used to probe this hypothesis and the physiology of this state. The development of such inhibitors also has the potential to shorten the duration of antibiotic therapy required. Here we describe the development of a novel non-replicating assay amenable to high-throughput chemical screening coupled with secondary assays that use carbon starvation as the in vitro model. Together these assays identify compounds with activity against replicating and non-replicating M. tuberculosis as well as compounds that inhibit the transition from non-replicating to replicating stages of growth. Using these assays we successfully screened over 300,000 compounds and identified 786 inhibitors of non-replicating M. tuberculosis. In order to understand the relationship among different non-replicating models, we teste 52 of these molecules in a hypoxia model and four different chemical scaffolds in a stochastic persist model and a streptomycin dependent model. We found that compounds display varying levels of activity in different models for the non-replicating state, suggesting important differences in bacterial physiology between models. Therefore, chemical tools identified in this assay may be useful for determining the relevance of different non-replicating in vitro models to in vivo M. tuberculosis infection. Given our current limited understanding, molecules that are active across multiple models may represent more promising candidates for further development. PMID:23898841
Effects of RNA interference therapy against herpes simplex virus type 1 encephalitis.
da Silva, Alexandre S; Raposo, Jéssica V; Pereira, Tiago C; Pinto, Marcelo A; de Paula, Vanessa S
2016-01-01
Herpetic encephalitis (HSE) is caused mainly by herpes simplex virus type 1 (HSV-1) with an annual incidence of 1-4 cases/million inhabitants. Currently, HSE treatment faces difficulties such as the use of antivirals with elevated toxicity, metabolic side effects and HSV-1 resistance. An alternative to antivirals is the use of small interfering RNA (siRNA) as a viral replication inhibitor. In this work, siRNA targeting the UL-39 region was evaluated for HSE treatment in vivo. BALB/c mice were inoculated with HSV-1 and treated with siRNA. The treatment was evaluated through kinetics of HSV-1 replication inhibition, number of siRNA doses administered and treatment with siRNA plus acyclovir. All groups were evaluated for signs of HSE, mortality and HSV-1 replication inhibition. The treated group of the kinetic experiment demonstrated a reduction of HSE signs and an HSV-1 replication inhibition of 43.6-99.9% in the brain and 53-98% in trigeminal ganglia (TG). Animals treated with one or two doses of siRNA had a prolonged survival time, reduced clinical signs of HSE and HSV-1 replication inhibition of 67.7% in brains and 85.7% in TG of animals treated with two doses of siRNA. Also, animals treated with siRNA plus acyclovir demonstrated reduced signs of HSE and mortality, as well as HSV-1 replication inhibition in the brain (83.2%) and TG (74.5%). These findings demonstrated that siRNA was capable of reducing HSE clinical signs, prolonging survival time and inhibiting HSV-1 replication in mice. Thus, siRNA can be a potential alternative to the standard HSE treatment especially to reduce clinical signs and extend survival time in vivo.
Ustav, M; Stenlund, A
1991-01-01
Bovine papillomavirus (BPV) DNA is maintained as an episome with a constant copy number in transformed cells and is stably inherited. To study BPV replication we have developed a transient replication assay based on a highly efficient electroporation procedure. Using this assay we have determined that in the context of the viral genome two of the viral open reading frames, E1 and E2, are required for replication. Furthermore we show that when produced from expression vectors in the absence of other viral gene products, the full length E2 transactivator polypeptide and a 72 kd polypeptide encoded by the E1 open reading frame in its entirety, are both necessary and sufficient for replication BPV in C127 cells. Images PMID:1846806
The detection and correction of outlying determinations that may occur during geochemical analysis
Harvey, P.K.
1974-01-01
'Wild', 'rogue' or outlying determinations occur periodically during geochemical analysis. Existing tests in the literature for the detection of such determinations within a set of replicate measurements are often misleading. This account describes the chances of detecting outliers and the extent to which correction may be made for their presence in sample sizes of three to seven replicate measurements. A systematic procedure for monitoring data for outliers is outlined. The problem of outliers becomes more important as instrumental methods of analysis become faster and more highly automated; a state in which it becomes increasingly difficult for the analyst to examine every determination. The recommended procedure is easily adapted to such analytical systems. ?? 1974.
Kedziora, Sylwia; Gali, Vamsi K; Wilson, Rosemary H C; Clark, Kate R M; Nieduszynski, Conrad A; Hiraga, Shin-Ichiro; Donaldson, Anne D
2018-05-04
The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.
Replication cycle of duck hepatitis A virus type 1 in duck embryonic hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Fangke; Chen, Yun; Shi, Jintong
Duck hepatitis A virus type 1 (DHAV-1) is an important agent of duck viral hepatitis. Until recently, the replication cycle of DHAV-1 is still unknown. Here duck embryonic hepatocytes infected with DHAV-1 were collected at different time points, and dynamic changes of the relative DHAV-1 gene expression during replication were detected by real-time PCR. And the morphology of hepatocytes infected with DHAV was evaluated by electron microscope. The result suggested that the adsorption of DHAV-1 saturated at 90 min post-infection, and the virus particles with size of about 50 nm including more than 20 nm of vacuum drying gold weremore » observed on the infected cells surface. What's more, the replication lasted around 13 h after the early protein synthesis for about 5 h, and the release of DHAV-1 was in steady state after 32 h. The replication cycle will enrich the data for DVH control and provide the foundation for future studies. - Highlights: • This is the first description of the replication cycle of DHAV-1. • Firstly find that DHAV-1 adsorption saturated at 90 min post-infection. • The replication lasted around 13 h after early protein synthesis for about 5 h. • The release of DHAV-1 was in steady state after 32 h.« less
Nucleosome occupancy as a novel chromatin parameter for replication origin functions
Rodriguez, Jairo; Lee, Laura; Lynch, Bryony; Tsukiyama, Toshio
2017-01-01
Eukaryotic DNA replication initiates from multiple discrete sites in the genome, termed origins of replication (origins). Prior to S phase, multiple origins are poised to initiate replication by recruitment of the pre-replicative complex (pre-RC). For proper replication to occur, origin activation must be tightly regulated. At the population level, each origin has a distinct firing time and frequency of activation within S phase. Many studies have shown that chromatin can strongly influence initiation of DNA replication. However, the chromatin parameters that affect properties of origins have not been thoroughly established. We found that nucleosome occupancy in G1 varies greatly around origins across the S. cerevisiae genome, and nucleosome occupancy around origins significantly correlates with the activation time and efficiency of origins, as well as pre-RC formation. We further demonstrate that nucleosome occupancy around origins in G1 is established during transition from G2/M to G1 in a pre-RC-dependent manner. Importantly, the diminished cell-cycle changes in nucleosome occupancy around origins in the orc1-161 mutant are associated with an abnormal global origin usage profile, suggesting that proper establishment of nucleosome occupancy around origins is a critical step for regulation of global origin activities. Our work thus establishes nucleosome occupancy as a novel and key chromatin parameter for proper origin regulation. PMID:27895110
Spacetime Replication of Quantum Information Using (2 , 3) Quantum Secret Sharing and Teleportation
NASA Astrophysics Data System (ADS)
Wu, Yadong; Khalid, Abdullah; Davijani, Masoud; Sanders, Barry
The aim of this work is to construct a protocol to replicate quantum information in any valid configuration of causal diamonds and assess resources required to physically realize spacetime replication. We present a set of codes to replicate quantum information along with a scheme to realize these codes using continuous-variable quantum optics. We use our proposed experimental realizations to determine upper bounds on the quantum and classical resources required to simulate spacetime replication. For four causal diamonds, our implementation scheme is more efficient than the one proposed previously. Our codes are designed using a decomposition algorithm for complete directed graphs, (2 , 3) quantum secret sharing, quantum teleportation and entanglement swapping. These results show the simulation of spacetime replication of quantum information is feasible with existing experimental methods. Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-2644).
Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkinson, Mertyn; Winocour, Ernest
The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM.more » AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhrymuk, Ivan; Frolov, Ilya; Frolova, Elena I., E-mail: evfrolova@UAB.edu
Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus–host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellularmore » pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5. - Highlights: • Both RIG-I and MDA5 detect alphavirus replication. • Alphavirus-induced transcriptional shutoff affects type I IFN induction. • Sensing of alphavirus replication by RIG-I and MDA5 depends on their concentrations. • High basal level of RIG-I and MDA5 allows IFN induction by pathogenic alphaviruses. • This dependence determines the discrepancy between the in vivo and in vitro data.« less
Performance analysis of static locking in replicated distributed database systems
NASA Technical Reports Server (NTRS)
Kuang, Yinghong; Mukkamala, Ravi
1991-01-01
Data replication and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. A technique is used that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed database with both shared and exclusive locks.
Massanella, Marta; Richman, Douglas D.; Little, Susan J.; Spina, Celsa A.; Vargas, Milenka V.; Lada, Steven M.; Daar, Eric S.; Dube, Michael P.; Haubrich, Richard H.; Morris, Sheldon R.; Smith, Davey M.
2014-01-01
ABSTRACT Asymptomatic cytomegalovirus (CMV) replication occurs frequently in the genital tract in untreated HIV-infected men and is associated with increased immune activation and HIV disease progression. To determine the connections between CMV-associated immune activation and the size of the viral reservoir, we evaluated the interactions between (i) asymptomatic seminal CMV replication, (ii) levels of T cell activation and proliferation in blood, and (iii) the size and transcriptional activity of the HIV DNA reservoir in blood from 53 HIV-infected men on long-term antiretroviral therapy (ART) with suppressed HIV RNA in blood plasma. We found that asymptomatic CMV shedding in semen was associated with significantly higher levels of proliferating and activated CD4+ T cells in blood (P < 0.01). Subjects with detectable CMV in semen had approximately five times higher average levels of HIV DNA in blood CD4+ T cells than subjects with no CMV. There was also a trend for CMV shedders to have increased cellular (multiply spliced) HIV RNA transcription (P = 0.068) compared to participants without CMV, but it is unclear if this transcription pattern is associated with residual HIV replication. In multivariate analysis, the presence of seminal plasma CMV (P = 0.04), detectable 2-long terminal repeat (2-LTR), and lower nadir CD4+ (P < 0.01) were independent predictors of higher levels of proviral HIV DNA in blood. Interventions aimed at reducing seminal CMV and associated immune activation may be important for HIV curative strategies. Future studies of anti-CMV therapeutics will help to establish causality and determine the mechanisms underlying these described associations. IMPORTANCE Almost all individuals infected with HIV are also infected with cytomegalovirus (CMV), and the replication dynamics of the two viruses likely influence each other. This study investigated interactions between asymptomatic CMV replication within the male genital tract, levels of inflammation in blood, and the size of the HIV DNA reservoir in 53 HIV-infected men on long-term antiretroviral therapy (ART) with suppressed HIV RNA in blood plasma. In support of our primary hypothesis, shedding of CMV DNA in semen was associated with increased activation and proliferation of T cells in blood and also significantly higher levels of HIV DNA in blood cells. These results suggest that CMV reactivation might play a role in the maintenance of the HIV DNA reservoir during suppressive ART and that it could be a target of pharmacologic intervention in future studies. PMID:24789781
Adamson, Amy L; Le, Brandi T; Siedenburg, Brian D
2014-06-11
Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt's lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents.
Moriceau, Lucille; Jomat, Lucile; Bressanelli, Stéphane; Alcaide-Loridan, Catherine; Jupin, Isabelle
2017-01-01
Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain—a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices—a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins—a universal feature of positive-strand RNA viruses. PMID:29312393
Host genetic determinants of HIV pathogenesis: an immunologic perspective.
Hunt, Peter W; Carrington, Mary
2008-05-01
The purpose of this review is to highlight recent advances in our understanding of host genetic determinants of HIV pathogenesis and to provide a theoretical framework for interpreting these studies in the context of our evolving understanding of HIV immunopathogenesis. The first genome-wide association analysis of host determinants of HIV pathogenesis and other recent studies evaluating the interaction between killer cell immunoglobulin-like receptors and human leukocyte antigen alleles have implicated both adaptive and innate immune responses in the control of HIV replication. Furthermore, genetic variation associated with the expression of CCR5 and its ligand have been strongly associated with both decreased susceptibility to HIV infection and delayed clinical progression, independent of their effects on viral replication, suggesting a potential role for CCR5 inhibitors as immune-based therapies in HIV disease. Host factors associated with the control of HIV replication may help identify important targets for vaccine design, while those associated with delayed clinical progression provide targets for future immune-based therapies against HIV infection.
Laish, Ido; Mannasse-Green, Batya; Hadary, Ruth; Konikoff, Fred M; Amiel, Aliza; Kitay-Cohen, Yona
2016-11-15
Non-alcoholic fatty liver disease (NAFLD) and cryptogenic cirrhosis (CC), which is largely a late sequela of NAFLD, are considered pre-neoplastic conditions that might progress to hepatocellular carcinoma. Aneuploidy, telomere aggregates and synchronization of replication were evaluated as markers of genetic instability in these patients. Peripheral blood lymphocytes from 22 patients with NAFLD, 20 patients with CC and 20 age-matched healthy controls were analyzed. To determine random aneuploidy, we used the fluorescence in situ hybridization (FISH) with probes for chromosomes 9 and 18. The rate of aneuploidy was inferred from the fraction of cells revealing one, three or more hybridization signals per cell. Aggregate size was divided into three fusion groups of 2-5, 6-10 and 11-15 telomeres, relative to the size of a single telomere. The replication pattern was determined by FISH in two pairs of alleles, 15qter and 13qter. Asynchrony was determined by the presence of one single and one set of double dots in the same cell. Significantly higher random aneuploidy rate was found in the CC patients than in the control group, and to a lesser degree in NAFLD patients. Telomere aggregates were insignificantly higher in both groups. Only patients with CC showed significantly higher rate of asynchronous replication with proportionately more cells with two single dots among the normal cells (p<0.001). These results likely reflect changes in gene replication and cell cycle progression in these conditions, possibly correlating with their malignant potential. Copyright © 2016 Elsevier B.V. All rights reserved.
Interrogating the Escherichia coli cell cycle by cell dimension perturbations
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E.; Amir, Ariel; Liu, Chenli
2016-01-01
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter’s growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ. We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed “adder-per-origin” model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation. PMID:27956612
Interrogating the Escherichia coli cell cycle by cell dimension perturbations.
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E; Amir, Ariel; Liu, Chenli
2016-12-27
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.
Fa, Yun; Yang, Haiyan; Ji, Chengshuai; Cui, He; Zhu, Xinshu; Du, Juan; Gao, Jun
2013-10-10
An improved method for the simultaneous determination of 20 amino acids and 7 carbohydrates using one-valve switching after injection, ion chromatography, and integrated pulsed amperometric detection is proposed. The resolution of the amino acids and carbohydrates in the cation trap column was investigated. In addition, parameters including flow liquid type, flow rate, concentration, and valve-switch timing were optimized. The method is time-saving, effective, and accurate for the simultaneous separation of amino acids and carbohydrates, with a mean correlation coefficient of >0.99 and repeatability of 0.5-4.6% for eight replicates. The method was successfully applied in the analysis of amino acids and carbohydrates in aseptic media and in extracellular culture media of three phenotypes of Clostridium thermocellum. Copyright © 2013 Elsevier B.V. All rights reserved.
Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells.
Szemiel, Agnieszka M; Failloux, Anna-Bella; Elliott, Richard M
2012-01-01
Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line. To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus. Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.
Colacino, J M; Lopez, C
1985-01-01
2'-Deoxy-2'-fluoro-beta-D-arabinofuranosyl-5-iodocytosine (FIAC) was shown to be a selective anti-human cytomegalovirus agent in vitro with a 50% antiviral effective dose of 0.6 microM (J. M. Colacino and C. Lopez, Antimicrob. Agents Chemother. 26:505-508, 1983) and a 50% cell growth inhibitory dose of 8 microM. Antiviral activity was more readily reversed with 10-fold excess thymidine, whereby the 50% effective dose was increased to 11.3 microM. FIAC-induced cytotoxicity was more readily reversed with 10-fold excess of deoxycytidine, whereby the 50% inhibitory dose was increased to greater than 100 microM. Thymidine was unable to reverse completely the antiviral activity of FIAC. Although, the extent of phosphorylation of thymidine, deoxycytidine, and deoxyuridine was 6-, 4-, and 4-fold greater, respectively, in human cytomegalovirus-infected cell lysates than in uninfected cell lysates, the extent of phosphorylation of FIAC was only 1.3-fold greater in human cytomegalovirus-infected cell lysates than in uninfected cell lysates. By comparison, the extent of FIAC phosphorylation was 500 times greater in herpes simplex virus type 1-infected cells than in uninfected cell lysates. Methotrexate was 400 times more effective against human cytomegalovirus replication than it was against herpes simplex virus type 1 replication, indicating that thymidylate synthetase may be important for human cytomegalovirus replication. However, 10 microM FIAC did not inhibit thymidylate synthetase activity in uninfected or virus-infected cells as determined by their metabolism of [6-3H]deoxyuridine in the presence or absence of drug. FIAC at 1 microM suppresses and FIAC at 10 microM completely inhibits human cytomegalovirus DNA replication as indicated by Southern blot analysis. This inhibition was reversible. FIAC incorporation into the DNA of human cytomegalovirus strain AD169-infected cells was stimulated relative to that in nondividing, uninfected cells. Images PMID:3010842
NASA Astrophysics Data System (ADS)
Maia, Guilherme D. N.; Day V, George B.; Gates, Richard S.; Taraba, Joseph L.
2012-01-01
Gas-Phase Biofiltration technology is widely utilized for treating ammonia gas (NH 3) with one of its potential detrimental by-products being nitrous oxide (N 2O), a potent greenhouse gas (100-y radiative forcing 298 times greater than carbon dioxide). The present work was conducted to investigate the relation between NH 3 removal during biofiltration and N 2O generation as a product of incomplete denitrification during the start-up of gas-phase compost biofilters. Four laboratory scale tubular biofilters in up flow mode (20 s residence-time) were studied for 21 days: 3 replicates were subjected to 16 ppm v (0.78 g m -2 h -1) of NH 3 and a statistical control not subjected to NH 3. Ammonia concentration differences between biofilter inlet (Bottom = 16 ppm v) and outlet (Top) and N 2O concentration differences between biofilter outlet (Top) and biofilter inlet (background concentrations at the bottom) were used to determine the extent of the correlation between NH 3 removal and N 2O generation. Correlations with CH 4 and CO 2 were also reported. The high Spearman correlation coefficients for the three replicates ( ρ = -0.845, -0.820, and -0.841, with P ≤ 0.0001 for replications A, B and C, respectively) suggested that availability of nitrate/nitrite owing to NH 3 nitrification favored conditions for N 2O generation as a sub-product of denitrification. The statistical control received no NH 3 inputs and did not generate N 2O. Therefore, the results indicated that the process of NH 3 removal was a trigger for N 2O production. Carbon dioxide and N 2O were moderately correlated. Methane and N 2O were weakly correlated and only for replicate C. No significant correlation was found for the Statistical Control between N 2O and CH 4.
miR-370 mimic inhibits replication of Japanese encephalitis virus in glioblastoma cells.
Li, Wenjuan; Cheng, Peng; Nie, Shangdan; Cui, Wen
2016-01-01
Japanese encephalitis (JE) is one of the most severe viral infections of the central nervous system. No effective treatment for JE currently exists, because its pathogenesis remains largely unknown. The present study was designed to screen the potential microRNAs (miRNAs) involved in JE. Glioblastoma cells were collected, after being infected with the Japanese encephalitis virus (JEV). Total miRNAs were extracted and analyzed using an miRNA chip. One of the most severely affected miRNAs was selected, and the role of miR-370 in JEV infection was investigated. Cell viability and apoptosis of the host cells were evaluated. JEV replication was detected via analysis of gene E expression. Real-time polymerase chain reaction was used to determine the levels of endogenous miR-370 and expression of innate immunity-related genes. Following JEV infection, 114 miRNAs were affected, as evidenced by the miRNA chip. Among them, 30 miRNAs were upregulated and 84 were downregulated. The changes observed in five miRNAs were confirmed by real-time polymerase chain reaction. One of the significantly downregulated miRNAs was miR-370. Therefore, miR-370 mimic was transfected into the cells, following which the levels of endogenous miR-370 were significantly elevated. Concurrently, JEV replication was significantly reduced 24 hours after transfection of miR-370 mimic. Functionally, miR-370 mimic mitigated both JEV-induced apoptosis and the inhibition of host cell proliferation. Following JEV infection, interferon-β and nuclear factor-kappa B were upregulated, whereas miR-370 mimic prevented the upregulation of the genes induced by JEV infection. The present study demonstrated that miR-370 expression in host cells is downregulated following JEV infection, which further mediates innate immunity-related gene expression. Taken together, miR-370 mimic might be useful to prevent viral replication and infection-induced host cell injury.
ERIC Educational Resources Information Center
Smith, Justin D.; Handler, Leonard; Nash, Michael R.
2010-01-01
The Therapeutic Assessment (TA) model is a relatively new treatment approach that fuses assessment and psychotherapy. The study examines the efficacy of this model with preadolescent boys with oppositional defiant disorder and their families. A replicated single-case time-series design with daily measures is used to assess the effects of TA and to…
Gazes, Yunglin; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza R; Steffener, Jason; Stern, Yaakov
2015-01-01
Introduction A functional activation (i.e., ordinal trend) pattern was previously identified in both young and older adults during task-switching performance, the expression of which correlated with reaction time. The current study aimed to (1) replicate this functional activation pattern in a new group of fMRI activation data, and (2) extend the previous study by specifically examining whether the effect of aging on reaction time can be explained by differences in the activation of the functional activation pattern. Method A total of 47 young and 50 older participants were included in the extension analysis. Participants performed task-switching as the activation task and were cued by the color of the stimulus for the task to be performed in each block. To test for replication, two approaches were implemented. The first approach tested the replicability of the predictive power of the previously identified functional activation pattern by forward applying the pattern to the Study II data and the second approach was rederivation of the activation pattern in the Study II data. Results Both approaches showed successful replication in the new data set. Using mediation analysis, expression of the pattern from the first approach was found to partially mediate age-related effects on reaction time such that older age was associated with greater activation of the brain pattern and longer reaction time, suggesting that brain activation efficiency (defined as “the rate of activation increase with increasing task difficulty” in Neuropsychologia 47, 2009, 2015) of the regions in the Ordinal trend pattern directly accounts for age-related differences in task performance. Discussion The successful replication of the functional activation pattern demonstrates the versatility of the Ordinal Trend Canonical Variates Analysis, and the ability to summarize each participant's brain activation map into one number provides a useful metric in multimodal analysis as well as cross-study comparisons. PMID:25874162
NASA Technical Reports Server (NTRS)
Oeffinger, Thomas R. (Inventor); Tocci, Leonard R. (Inventor)
1977-01-01
There is described a passive replicator device to be used in magnetic bubble domain systems. The replicator is passive, i.e., does not require an active element such as a current source or the like, and both propagates and replicates bubble domains. In a preferred embodiment, the replicator uses chevron type elements arranged in an appropriate pattern so as to interact with a pair of propagation paths wherein bubble domains are propagated. A bubble in one propagation path is routinely transferred therealong and, concurrently, replicated by the instant device into another propagation path. A plurality of elements arranged in juxtaposition to the chevrons assists in controlling the propagation of the bubbles through the respective propagation paths and, at the appropriate time, provides a cutting action wherein a bubble which is elongated between the chevrons of the two propagation paths is split into two separate bubbles.
Using Model Replication to Improve the Reliability of Agent-Based Models
NASA Astrophysics Data System (ADS)
Zhong, Wei; Kim, Yushim
The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.
NASA Astrophysics Data System (ADS)
Lammers, Craig; McGraw, Robert M.; Steinman, Jeffrey S.
2005-05-01
Technological advances and emerging threats reduce the time between target detection and action to an order of a few minutes. To effectively assist with the decision-making process, C4I decision support tools must quickly and dynamically predict and assess alternative Courses Of Action (COAs) to assist Commanders in anticipating potential outcomes. These capabilities can be provided through the faster-than-real-time predictive simulation of plans that are continuously re-calibrating with the real-time picture. This capability allows decision-makers to assess the effects of re-tasking opportunities, providing the decision-maker with tremendous freedom to make time-critical, mid-course decisions. This paper presents an overview and demonstrates the use of a software infrastructure that supports DSAP capabilities. These DSAP capabilities are demonstrated through the use of a Multi-Replication Framework that supports (1) predictivie simulations using JSAF (Joint Semi-Automated Forces); (2) real-time simulation, also using JSAF, as a state estimation mechanism; and, (3) real-time C4I data updates through TBMCS (Theater Battle Management Core Systems). This infrastructure allows multiple replications of a simulation to be executed simultaneously over a grid faster-than-real-time, calibrated with live data feeds. A cost evaluator mechanism analyzes potential outcomes and prunes simulations that diverge from the real-time picture. In particular, this paper primarily serves to walk a user through the process for using the Multi-Replication Framework providing an enhanced decision aid.
A Replication Study on the Multi-Dimensionality of Online Social Presence
ERIC Educational Resources Information Center
Mykota, David B.
2015-01-01
The purpose of the present study is to conduct an external replication into the multi-dimensionality of social presence as measured by the Computer-Mediated Communication Questionnaire (Tu, 2005). Online social presence is one of the more important constructs for determining the level of interaction and effectiveness of learning in an online…
Lack of reliability in the disruption of cognitive performance following exposure to protons
USDA-ARS?s Scientific Manuscript database
A series of three replications were run to determine the reliability with which exposure to protons produces a disruption of cognitive performance, using a novel object recognition task and operant responding on an ascending fixed-ratio task. For the first two replications, rats were exposed to hea...
40 CFR 796.2750 - Sediment and soil adsorption isotherm.
Code of Federal Regulations, 2011 CFR
2011-07-01
... size analysis” is the determination of the various amounts of the different particle sizes in a sample... °C. (iii) Replications. Three replications of the experimental treatments shall be used. (iv) Soil...) Decrease the water content, air or oven-dry soils at or below 50 °C. (B) Reduce aggregate size before and...
40 CFR 796.2750 - Sediment and soil adsorption isotherm.
Code of Federal Regulations, 2010 CFR
2010-07-01
... size analysis” is the determination of the various amounts of the different particle sizes in a sample... °C. (iii) Replications. Three replications of the experimental treatments shall be used. (iv) Soil...) Decrease the water content, air or oven-dry soils at or below 50 °C. (B) Reduce aggregate size before and...
Collaborative Strategic Reading: Replications with Consideration of the Role of Fidelity
ERIC Educational Resources Information Center
Vaughn, Sharon; Roberts, Greg; Reutebuch, Colleen
2013-01-01
Collaborative Strategic Reading (CSR) is a multicomponent reading intervention aimed at improving students' text comprehension. Two 1-year randomized controlled trials were conducted to determine the efficacy of CSR with seventh and eighth grade students. The Year 2 replication study was identical to the original Year 1 study except that the…
NASA Astrophysics Data System (ADS)
Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin
2016-08-01
This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.
Sanchez, Joseph C.; Kwan, Elizabeth X.; Raghuraman, M. K.; Brewer, Bonita J.
2017-01-01
A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways—DNA replication and ribosome biogenesis. PMID:29036220
Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J
2017-10-01
A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.
[Determination of plasma EBV DNA in 91 children with EBV-associated diseases].
Duan, Hong-Mei; Yao, Yao; Xie, Zheng-De; Yan, Jing; Hu, Ying-Hui; Yao, Yuan; Zhou, Ling; Shen, Kun-Ling
2009-11-01
To determine the plasma level of Epstein Barr virus (EBV) DNA in children with EBV associated diseases, and to investigate the dynamic changes of EBV DNA level after initial infection as well as the relationship between EBV DNA level and the diseases severity. The subjects consisted of 73 children with primary EBV infection (infectious mononucleosis, pneumonia,etc.) and 18 children with severe EBV-associated diseases (chronic active EBV infection, hemophagocytic lymphohistiocytosis, etc.). The plasma EBV DNA level was detected by a real-time PCR assay. The plasma EBV DNA level decreased with the infection time in children with primary EBV infection. Two weeks after infection, plasma EBV DNA was almost undetectable. The positive rate of plasma EBV DNA in children with severe EBV associated diseases increased significantly when compared with that in children with primary EBV infection (89% vs 16%; p<0.05). The level of EBV replication may be reduced with the infection time. Dynamic determination of blood EBV DNA is useful for the evaluation of disease severity in children with EBV infection.
Checkpoints: it takes more than time to heal some wounds.
Rhind, N; Russell, P
The S-phase DNA damage checkpoint seems to provide a twist on the checkpoint theme. Instead of delaying replication and allowing repair as a consequence, it may activate repair and delay replication as a consequence.
Aramaki, Takahiko; Abe, Yoshito; Katayama, Tsutomu; Ueda, Tadashi
2013-01-01
In eubacterial organisms, the oriC-independent primosome plays an essential role in replication restart after the dissociation of the replication DNA-protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N-terminal and a C-terminal domain. In the present study, we determined the solution structure of the N-terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC-ssDNA complex, which is important for the replication restart primosome. PMID:23868391
Cheung, Andrew K
2015-07-01
The roles of two porcine circovirus replication initiator proteins, Rep and Rep׳, in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replication) and generates the single-stranded circular (ssc) genome from the displaced DNA strand. In the process, a minus-genome primer (MGP) necessary for complementary-strand synthesis, from ssc to ccc, is synthesized. Rep׳ cleaves the growing nascent-strand to regenerate the parent ccc molecule. In the process, a Rep׳-DNA hybrid containing the right palindromic sequence (at the origin of DNA replication) is generated. Analysis of the virus particle showed that it is composed of four components: ssc, MGP, capsid protein and a novel Rep-related protein (designated Protein-3). Copyright © 2015. Published by Elsevier Inc.
Evaluation of porcine reproductive and respiratory syndrome virus replication in laboratory rodents
Rosenfeld, Paul; Turner, Patricia V.; MacInnes, Janet I.; Nagy, Éva; Yoo, Dongwan
2009-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major cause of economic losses in the swine industry. The disease is widespread worldwide, and so PRRSV-negative pigs are often difficult to find for the study of PRRSV in vivo. To determine if a small animal model could be developed for PRRSV, 3 strains of laboratory rodent were examined for their susceptibility to the virus. No virus replication was detected in BALB/c or SCID (severe combined immunodeficiency) mice after intraperitoneal inoculation. Moderate replication of PRRSV was detected in primary cotton rat lung cell cultures, but no viral replication was detected following intranasal or intraperitoneal inoculation. Following intratracheal inoculation, viral transcripts were detected in the lungs of cotton rats, but only for 1 day. This study indicates that PRRSV replication in common laboratory rodent species is inefficient, and suggests that a rodent model for this virus is not appropriate. PMID:20046635
Performance analysis of static locking in replicated distributed database systems
NASA Technical Reports Server (NTRS)
Kuang, Yinghong; Mukkamala, Ravi
1991-01-01
Data replications and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. Here, a technique is discussed that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed databases with both shared and exclusive locks.
Saisho, Yoshifumi; Manesso, Erica; Gurlo, Tatyana; Huang, Chang-jiang; Toffolo, Gianna M.; Cobelli, Claudio; Butler, Peter C.
2009-01-01
An obstacle to development of methods to quantify β-cell turnover from pancreas tissue is the lack of conversion factors for the frequency of β-cell replication or apoptosis detected by immunohistochemistry to rates of replication or apoptosis. We addressed this obstacle in islets from 1-mo-old rats by quantifying the relationship between the rate of β-cell replication observed directly by time-lapse video microscopy (TLVM) and the frequency of β-cell replication in the same islets detected by immunohistochemistry using antibodies against Ki67 and insulin in the same islets fixed immediately after TLVM. Similarly, we quantified the rate of β-cell apoptosis by TLVM and then the frequency of apoptosis in the same islets using TdT-mediated dUTP nick-end labeling and insulin. Conversion factors were developed by regression analysis. The conversion factor from Ki67 labeling frequency (%) to actual replication rate (%events/h) is 0.025 ± 0.003 h−1. The conversion factor from TdT-mediated dUTP nick-end labeling frequency (%) to actual apoptosis rate (%events/h) is 0.41 ± 0.05 h−1. These conversion factors will permit development of models to evaluate β-cell turnover in fixed pancreas tissue. PMID:18940937
The activities of eukaryotic replication origins in chromatin.
Weinreich, Michael; Palacios DeBeer, Madeleine A; Fox, Catherine A
2004-03-15
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.
Questing for an optimal, universal viral agent for oncolytic virotherapy
NASA Astrophysics Data System (ADS)
Paiva, L. R.; Martins, M. L.; Ferreira, S. C.
2011-10-01
One of the most promising strategies to treat cancer is attacking it with viruses designed to exploit specific altered pathways. Here, the effects of oncolytic virotherapy on tumors having compact, papillary, and disconnected morphologies are investigated through computer simulations of a multiscale model coupling macroscopic reaction-diffusion equations for the nutrients with microscopic stochastic rules for the actions of individual cells and viruses. The interaction among viruses and tumor cells involves cell infection, intracellular virus replication, and the release of new viruses in the tissue after cell lysis. The evolution over time of both the viral load and cancer cell population, as well as the probabilities for tumor eradication, were evaluated for a range of multiplicities of infection, viral entries, and burst sizes. It was found that in immunosuppressed hosts, the antitumor efficacy of a virus is primarily determined by its entry efficiency, its replicative capacity within the tumor, and its ability to spread over the tissue. However, the optimal traits for oncolytic viruses depend critically on the tumor growth dynamics and do not necessarily include rapid replication, cytolysis, or spreading, currently assumed as necessary conditions for a successful therapeutic outcome. Our findings have potential implications on the design of new vectors for the viral therapy of cancer.
Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.
2013-08-30
We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less
Structural Insights into the Coupling of Virion Assembly and Rotavirus Replication
Trask, Shane D.; McDonald, Sarah M.; Patton, John T.
2013-01-01
Preface Viral replication is rapid and robust, but it is far from a chaotic process. Instead, successful production of infectious progeny requires that events occur in the correct place and at the correct time. Rotavirus, a segmented double-stranded RNA virus of the Reoviridae family, seems to govern its replication through ordered disassembly and assembly of a triple-layered icosahedral capsid. In recent years, high-resolution structural data have provided unprecedented insight into these events. In this Review, we explore the current understanding of rotavirus replication and how it compares to other Reoviridae family members. PMID:22266782
NASA Astrophysics Data System (ADS)
Ayala, Christopher; Borawski, Steven; Miller, Jonathon
2008-05-01
Wilhelm Wundt (1832 1920) believed that consciousness was represented by the interconnection of psychical processes comprised of temporal elements and compounds. To explore these processes, Wundt used a metronome to measure the amount of information that passed into consciousness across time. The current project replicated some of his procedures, to better understand the role of introspection and the complexity of the metronome task for experimenters and observers. The results of the replication were mixed, but the replication helped provide insights into Wundt’s procedures and their relationship to his theories.
The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae
Chen, Zhiqiang; Speck, Christian; Wendel, Patricia; Tang, Chunyan; Stillman, Bruce; Li, Huilin
2008-01-01
The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resolution, 3D structure of S. cerevisiae ORC and the ORC–Cdc6 complex. In this article, the spatial arrangement of the ORC subunits within the ORC structure is described. In one approach, a maltose binding protein (MBP) was systematically fused to the N or the C termini of the five largest ORC subunits, one subunit at a time, generating 10 MBP-fused ORCs, and the MBP density was localized in the averaged, 2D EM images of the MBP-fused ORC particles. Determining the Orc1–5 structure and comparing it with the native ORC structure localized the Orc6 subunit near Orc2 and Orc3. Finally, subunit–subunit interactions were determined by immunoprecipitation of ORC subunits synthesized in vitro. Based on the derived ORC architecture and existing structures of archaeal Orc1–DNA structures, we propose a model for ORC and suggest how ORC interacts with origin DNA and Cdc6. The studies provide a basis for understanding the overall structure of the pre-RC. PMID:18647841
Nucleosomes influence multiple steps during replication initiation
Azmi, Ishara F; Watanabe, Shinya; Maloney, Michael F; Kang, Sukhyun; Belsky, Jason A; MacAlpine, David M; Peterson, Craig L; Bell, Stephen P
2017-01-01
Eukaryotic replication origin licensing, activation and timing are influenced by chromatin but a mechanistic understanding is lacking. Using reconstituted nucleosomal DNA replication assays, we assessed the impact of nucleosomes on replication initiation. To generate distinct nucleosomal landscapes, different chromatin-remodeling enzymes (CREs) were used to remodel nucleosomes on origin-DNA templates. Nucleosomal organization influenced two steps of replication initiation: origin licensing and helicase activation. Origin licensing assays showed that local nucleosome positioning enhanced origin specificity and modulated helicase loading by influencing ORC DNA binding. Interestingly, SWI/SNF- and RSC-remodeled nucleosomes were permissive for origin licensing but showed reduced helicase activation. Specific CREs rescued replication of these templates if added prior to helicase activation, indicating a permissive chromatin state must be established during origin licensing to allow efficient origin activation. Our studies show nucleosomes directly modulate origin licensing and activation through distinct mechanisms and provide insights into the regulation of replication initiation by chromatin. DOI: http://dx.doi.org/10.7554/eLife.22512.001 PMID:28322723
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Mark; Aubrey, Doug; Coyle, David, R.
2005-11-01
There has been recent interest in use of non-replicated regression experimental designs in forestry, as the need for replication in experimental design is burdensome on limited research budgets. We wanted to determine the interacting effects of soil moisture and nutrient availability on the production of various southeastern forest trees (two clones of Populus deltoides, open pollinated Platanus occidentalis, Liquidambar styraciflua and Pinus taeda). Additionally, we required an understanding of the fertilizer response curve. To accomplish both objectives we developed a composite design that includes a core ANOVA approach to consider treatment interactions, with the addition of non-replicated regression plots receivingmore » a range of fertilizer levels for the primary irrigation treatment.« less
Moravej, Hoseein; Alahyari-Shahrasb, Majid; Kiani, Ali; Bagherirad, Mona; Shivazad, Mahmood
2013-01-01
The present study was carried out to examine the effects of a vitamin premix (VP) reduction or withdrawal from finisher diet (29-43 days) on performance, immuno-competence, and characteristics of leg bones and meat lipid oxidation of chickens fed on corn-soybean meal based diet. A total of 900 male broiler chickens (Ross 308) were allocated to five treatment groups (0, 33%, 66%, 100% and 133% VP), with nine replicates per treatment group. At 29 and 36 days of ages, four birds from each replicate were injected with sheep red blood cells (SRBC). The cell-mediated immunity was determined via phytohemagglutinin (PHA) and 1-chloro 2-4-dinitrobenzen (DNCB) at 34 and 42 days of ages. At 33, 38 and 43 days of age, 42 days of ages, and two birds of each replicate were slaughtered and bone parameters measured. The oxidative stability was evaluated by thiobarbituric acid reactive substances (TBARS) on the thigh samples that were stored for 90 day at -80 ˚C. The results showed that reduction or withdrawal of VP from diets at different time points of the finisher period did not affect performance, immunocompetence and characteristics of leg bones. Results of TBARS showed that lipid peroxidation of the treatment without VP was significantly higher than of the other treatments when slaughtered at 43 days of age. Finally, the results of this study demonstrated that it is not possible to reduce the VP in finisher broilers' diets without negative effects on meat quality during the time of freezing.
Nucleosomes in the neighborhood
Dorn, Elizabeth Suzanne
2011-01-01
The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control. PMID:21364325
Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.
Kim, Nora Chung; Andrews, Peter C; Asselbergs, Folkert W; Frost, H Robert; Williams, Scott M; Harris, Brent T; Read, Cynthia; Askland, Kathleen D; Moore, Jason H
2012-07-28
It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO). We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs). Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA) method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, 'Regulation of Cellular Component Organization and Biogenesis', a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, 'Actin Cytoskeleton', a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Pathway analysis of pairwise genetic associations in two GWAS of sporadic ALS revealed a set of genes involved in cellular component organization and actin cytoskeleton, more specifically, that were not reported by prior GWAS. However, prior biological studies have implicated actin cytoskeleton in ALS and other motor neuron diseases. This study supports the idea that pathway-level analysis of GWAS data may discover important associations not revealed using conventional one-SNP-at-a-time approaches.
Fluid management in roll-to-roll nanoimprint lithography
NASA Astrophysics Data System (ADS)
Jain, A.; Bonnecaze, R. T.
2013-06-01
The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.
Checkpoints: It takes more than time to heal some wounds
Rhind, Nicholas; Russell, Paul
2010-01-01
The S-phase DNA damage checkpoint seems to provide a twist on the checkpoint theme. Instead of delaying replication and allowing repair as a consequence, it may activate repair and delay replication as a consequence. PMID:11137027
Comparative study on novel test systems to determine disintegration time of orodispersible films.
Preis, Maren; Gronkowsky, Dorothee; Grytzan, Dominik; Breitkreutz, Jörg
2014-08-01
Orodispersible films (ODFs) are a promising innovative dosage form enabling drug administration without the need for water and minimizing danger of aspiration due to their fast disintegration in small amounts of liquid. This study focuses on the development of a disintegration test system for ODFs. Two systems were developed and investigated: one provides an electronic end-point, and the other shows a transferable setup of the existing disintegration tester for orodispersible tablets. Different ODF preparations were investigated to determine the suitability of the disintegration test systems. The use of different test media and the impact of different storage conditions of ODFs on their disintegration time were additionally investigated. The experiments showed acceptable reproducibility (low deviations within sample replicates due to a clear determination of the measurement end-point). High temperatures and high humidity affected some of the investigated ODFs, resulting in higher disintegration time or even no disintegration within the tested time period. The methods provided clear end-point detection and were applicable for different types of ODFs. By the modification of a conventional test system to enable application for films, a standard method could be presented to ensure uniformity in current quality control settings. © 2014 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Jacobson, Erik; Simpson, Amber
2018-04-01
Replication studies play a critical role in scientific accumulation of knowledge, yet replication studies in mathematics education are rare. In this study, the authors replicated Thanheiser's (Educational Studies in Mathematics 75:241-251, 2010) study of prospective elementary teachers' conceptions of multidigit number and examined the main claim that most elementary pre-service teachers think about digits incorrectly at least some of the time. Results indicated no statistically significant difference in the distribution of conceptions between the original and replication samples and, moreover, no statistically significant differences in the distribution of sub-conceptions among prospective teachers with the most common conception. These results suggest confidence is warranted both in the generality of the main claim and in the utility of the conceptions framework for describing prospective elementary teachers' conceptions of multidigit number. The report further contributes a framework for replication of mathematics education research adapted from the field of psychology.
Autophagy Facilitates Salmonella Replication in HeLa Cells
Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett
2014-01-01
ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251
Deepe, Raymond N; Kistner-Griffin, Emily; Martin, Jeffrey N; Deeks, Steven G; Pandey, Janardan P
2012-03-01
Host genetic factors are thought to contribute to the interindividual differences in the control of human immunodeficiency virus (HIV) replication. The aim of the present investigation was to determine whether genes encoding GM and KM allotypes-genetic markers of immunoglobulin γ and κ chains, respectively-and those encoding Fcγ receptor (FcγR) IIa and IIIa are associated with the host control of HIV replication. A case-control design was employed among HIV-infected subjects, with a group that spontaneously controlled HIV replication ("controllers") as cases (n = 73) and those who did not control replication as controls (n = 100). Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism, direct DNA sequencing, and TaqMan genotyping assays. In Caucasian Americans, certain combinations of FcγR and GM genotypes were differentially distributed between controllers and noncontrollers. Among the noncarriers of the FcγRIIa arginine allele, GM21 noncarriers had over 7-fold greater odds of being controllers than the carriers of this allele (odds ratio [OR] = 7.47). These GM determinants also interacted with FcγRIIIa alleles. Among the carriers of the FcγRIIIa valine allele, GM21 noncarriers had over 3-fold greater odds of being controllers than the carriers of this allele (OR = 3.26). These results demonstrate epistatic interactions of genes on chromosomes 14 (GM) and 1 (FcγR) in influencing the control of HIV replication. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Patmanidi, Alexandra L; Champeris Tsaniras, Spyridon; Karamitros, Dimitris; Kyrousi, Christina; Lygerou, Zoi; Taraviras, Stavros
2017-02-01
Molecular mechanisms governing maintenance, commitment, and differentiation of stem cells are largely unexploited. Molecules involved in the regulation of multiple cellular processes are of particular importance for stem cell physiology, as they integrate different signals and coordinate cellular decisions related with self-renewal and fate determination. Geminin has emerged as a critical factor in DNA replication and stem cell differentiation in different stem cell populations. Its inhibitory interaction with Cdt1, a member of the prereplicative complex, ensures the controlled timing of DNA replication and, consequently, genomic stability in actively proliferating cells. In embryonic as well as somatic stem cells, Geminin has been shown to interact with transcription factors and epigenetic regulators to drive gene expression programs and ultimately guide cell fate decisions. An ever-growing number of studies suggests that these interactions of Geminin and proteins regulating transcription are conserved among metazoans. Interactions between Geminin and proteins modifying the epigenome, such as members of the repressive Polycomb group and the SWI/SNF proteins of the permissive Trithorax, have long been established. The complexity of these interactions, however, is only just beginning to unravel, revealing key roles on maintaining stem cell self-renewal and fate specification. In this review, we summarize current knowledge and give new perspectives for the role of Geminin on transcriptional and epigenetic regulation, alongside with its regulatory activity in DNA replication and their implication in the regulation of stem and progenitor cell biology. Stem Cells 2017;35:299-310. © 2016 AlphaMed Press.
Involvement of p63 in the herpes simplex virus-1-induced demise of corneal cells.
Orosz, László; Gallyas, Eva; Kemény, Lajos; Mándi, Yvette; Facskó, Andrea; Megyeri, Klára
2010-06-07
The transcription factor p63 plays a pivotal role in the development and maintenance of epithelial tissues, including the ocular surface. In an effort to gain insight into the pathogenesis of keratitis caused by HSV-1, we determined the expression patterns of the p63 and Bax proteins in the Staatens Seruminstitute Rabbit Cornea cell line (SIRC). SIRC cells were infected with HSV-1 at various multiplicities and maintained for different periods of time. Virus replication was measured by indirect immunofluorescence assay and Western blot analysis. Cell viability was determined by MTT assay. The apoptotic response of the infected cells was quantified by ELISA detecting the enrichment of nucleosomes in the cytoplasm. Western blot analysis was used to determine the levels of p63 and Bax proteins. Indirect immunofluorescence assays and Western blot analyses demonstrated the presence of HSV-1 glycoprotein D (gD) in the infected SIRC cell line, and the pattern of gD expression was consistent with efficient viral replication. The results of MTT and ELISA assays showed that HSV-1 elicited a strong cytopathic effect, and apoptosis played an important role in the demise of the infected cells. Mock-infected SIRC cells displayed the constitutive expression of DeltaNp63alpha. The expressions of the Bax-beta and TAp63gamma isoforms were considerably increased, whereas the level of DeltaNp63alpha was decreased in the HSV-1-infected SIRC cells. Experiments involving the use of acyclovir showed that viral DNA replication was necessary for the accumulation of TAp63gamma. These data suggest that a direct, virus-mediated cytopathic effect may play an important role in the pathogenic mechanism of herpetic keratitis. By disturbing the delicate balance between the pro-survival DeltaN and the pro-apoptotic TA isoforms, HSV-1 may cause profound alterations in the viability of the ocular cells and in the tissue homeostasis of the ocular surface.
Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis.
Mandl, Christian W
2005-08-01
Tick-borne encephalitis virus (TBEV) is an important human pathogen that causes severe neurological illness in large areas of Europe and Asia. The neuropathogenesis of this disease agent is determined by its capacity to enter the central nervous system (CNS) after peripheral inoculation ("neuroinvasiveness") and its ability to replicate and cause damage within the CNS ("neurovirulence"). TBEV is a small, enveloped flavivirus with an unsegmented, positive-stranded RNA genome. Mutations affecting various steps of its natural replication cycle were shown to influence its neuropathogenic properties. This review describes experimental approaches and summarizes results on molecular determinants of neurovirulence and neuroinvasiveness that have been identified for this virus. It focuses on molecular mechanisms of three particular steps of the viral life cycle that have been studied in some detail for TBEV and two closely related tick-borne flaviviruses (Louping ill virus (LIV) and Langat virus (LGTV)), namely (i) the envelope protein E and its role in viral attachment to the cell surface, (ii) the 3'-noncoding region of the genome and its importance for viral RNA replication, and (iii) the capsid protein C and its role in the assembly process of infectious virus particles. Mutations affecting each of these three molecular targets significantly influence neuropathogenesis of TBEV, particularly its neuroinvasiveness. The understanding of molecular determinants of TBEV neuropathogenesis is relevant for vaccine development, also against other flaviviruses.
Uncovering the genetic signature of quantitative trait evolution with replicated time series data.
Franssen, S U; Kofler, R; Schlötterer, C
2017-01-01
The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.
Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing
Lang, Gregory I.; Murray, Andrew W.
2011-01-01
Previous experimental studies suggest that the mutation rate is nonuniform across the yeast genome. To characterize this variation across the genome more precisely, we measured the mutation rate of the URA3 gene integrated at 43 different locations tiled across Chromosome VI. We show that mutation rate varies 6-fold across a single chromosome, that this variation is correlated with replication timing, and we propose a model to explain this variation that relies on the temporal separation of two processes for replicating past damaged DNA: error-free DNA damage tolerance and translesion synthesis. This model is supported by the observation that eliminating translesion synthesis decreases this variation. PMID:21666225
Kubota, Naoko; Nomoto, Masataka; Hwang, Gi-Wook; Watanabe, Toshihiko; Kohara, Michinori; Wakita, Takaji; Naganuma, Akira; Kuge, Shusuke
2016-01-01
AIM: To address the effect of heat-shock protein 90 (HSP90) inhibitors on the release of the hepatitis C virus (HCV), a cell culture-derived HCV (JFH1/HCVcc) from Huh-7 cells was examined. METHODS: We quantified both the intracellular and extracellular (culture medium) levels of the components (RNA and core) of JFH-1/HCVcc. The intracellular HCV RNA and core levels were determined after the JFH1/HCVcc-infected Huh-7 cells were treated with radicicol for 36 h. The extracellular HCV RNA and core protein levels were determined from the medium of the last 24 h of radicicol treatment. To determine the possible role of the HSP90 inhibitor in HCV release, we examined the effect of a combined application of low doses of the HSP90 inhibitor radicicol and the RNA replication inhibitors cyclosporin A (CsA) or interferon. Finally, we statistically examined the combined effect of radicicol and CsA using the combination index (CI) and graphical representation proposed by Chou and Talalay. RESULTS: We found that the HSP90 inhibitors had greater inhibitory effects on the HCV RNA and core protein levels measured in the medium than inside the cells. This inhibitory effect was observed in the presence of a low level of a known RNA replication inhibitor (CsA or interferon-α). Treating the cells with a combination of radicicol and cyclosporin A for 24 h resulted in significant synergy (CI < 1) that affected the release of both the viral RNA and the core protein. CONCLUSION: In addition to having an inhibitory effect on RNA replication, HSP90 inhibitors may interfere with an HCV replication step that occurs after the synthesis of viral RNA, such as assembly and release. PMID:26925202
Can cancer researchers accurately judge whether preclinical reports will reproduce?
Mandel, David R.; Kimmelman, Jonathan
2017-01-01
There is vigorous debate about the reproducibility of research findings in cancer biology. Whether scientists can accurately assess which experiments will reproduce original findings is important to determining the pace at which science self-corrects. We collected forecasts from basic and preclinical cancer researchers on the first 6 replication studies conducted by the Reproducibility Project: Cancer Biology (RP:CB) to assess the accuracy of expert judgments on specific replication outcomes. On average, researchers forecasted a 75% probability of replicating the statistical significance and a 50% probability of replicating the effect size, yet none of these studies successfully replicated on either criterion (for the 5 studies with results reported). Accuracy was related to expertise: experts with higher h-indices were more accurate, whereas experts with more topic-specific expertise were less accurate. Our findings suggest that experts, especially those with specialized knowledge, were overconfident about the RP:CB replicating individual experiments within published reports; researcher optimism likely reflects a combination of overestimating the validity of original studies and underestimating the difficulties of repeating their methodologies. PMID:28662052
Brefeldin A Inhibits Cell-Free, De Novo Synthesis of Poliovirus
Cuconati, Andrea; Molla, Akhteruzzaman; Wimmer, Eckard
1998-01-01
Brefeldin A (BFA), an inhibitor of intracellular vesicle-dependent secretory transport, is a potent inhibitor of poliovirus RNA replication in infected cells. We have determined that the unknown mechanism of BFA inhibition of replication is reproduced in the cell-free poliovirus translation, replication, and encapsidation system. Furthermore, we provide evidence suggesting that the cellular mechanism targeted by BFA, the GTP-dependent synthesis of secretory transport vesicles, may be involved in viral RNA replication in the system via a soluble cellular GTP-binding and -hydrolyzing activity. This activity is related to the ARF (ADP-ribosylation factor) family of GTP-binding proteins. ARFs are required for the formation of several classes of secretory vesicles, and some family members are indirectly inactivated by BFA. Peptides that function as competitive inhibitors of ARF activity in cell-free transport systems also inhibit poliovirus RNA replication, and this inhibitory effect can be countered by the addition of exogenous ARF. We suggest that BFA inhibition of replication is diagnostic of a requirement for ARF activity in the cell-free system. PMID:9658088
MicroRNA regulation of human protease genes essential for influenza virus replication.
Meliopoulos, Victoria A; Andersen, Lauren E; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J Keegan; Tompkins, S Mark; Tripp, Ralph A
2012-01-01
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.
The Genetic Program of Pancreatic β-Cell Replication In Vivo.
Klochendler, Agnes; Caspi, Inbal; Corem, Noa; Moran, Maya; Friedlich, Oriel; Elgavish, Sharona; Nevo, Yuval; Helman, Aharon; Glaser, Benjamin; Eden, Amir; Itzkovitz, Shalev; Dor, Yuval
2016-07-01
The molecular program underlying infrequent replication of pancreatic β-cells remains largely inaccessible. Using transgenic mice expressing green fluorescent protein in cycling cells, we sorted live, replicating β-cells and determined their transcriptome. Replicating β-cells upregulate hundreds of proliferation-related genes, along with many novel putative cell cycle components. Strikingly, genes involved in β-cell functions, namely, glucose sensing and insulin secretion, were repressed. Further studies using single-molecule RNA in situ hybridization revealed that in fact, replicating β-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in β-cell function. These data suggest that the quiescence-proliferation transition involves global amplification of gene expression, except for a subset of tissue-specific genes, which are "left behind" and whose relative mRNA amount decreases. Our work provides a unique resource for the study of replicating β-cells in vivo. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
BLM helicase facilitates telomere replication during leading strand synthesis of telomeres
Kosiyatrakul, Settapong T.
2015-01-01
Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis. PMID:26195664
Scribner, Elizabeth; Fathallah-Shaykh, Hassan M
2017-01-01
Glioblastoma (GBM) is a malignant brain tumor that continues to be associated with neurological morbidity and poor survival times. Brain invasion is a fundamental property of malignant glioma cells. The Go-or-Grow (GoG) phenotype proposes that cancer cell motility and proliferation are mutually exclusive. Here, we construct and apply a single glioma cell mathematical model that includes motility and angiogenesis and lacks the GoG phenotype. Simulations replicate key features of GBM including its multilayer structure (i.e.edema, enhancement, and necrosis), its progression patterns associated with bevacizumab treatment, and replicate the survival times of GBM treated or untreated with bevacizumab. These results suggest that the GoG phenotype is not a necessary property for the formation of the multilayer structure, recurrence patterns, and the poor survival times of patients diagnosed with GBM.
Conserved Sequences at the Origin of Adenovirus DNA Replication
Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.
1982-01-01
The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575
Failure to Replicate a Genetic Association May Provide Important Clues About Genetic Architecture
Greene, Casey S.; Penrod, Nadia M.; Williams, Scott M.; Moore, Jason H.
2009-01-01
Replication has become the gold standard for assessing statistical results from genome-wide association studies. Unfortunately this replication requirement may cause real genetic effects to be missed. A real result can fail to replicate for numerous reasons including inadequate sample size or variability in phenotype definitions across independent samples. In genome-wide association studies the allele frequencies of polymorphisms may differ due to sampling error or population differences. We hypothesize that some statistically significant independent genetic effects may fail to replicate in an independent dataset when allele frequencies differ and the functional polymorphism interacts with one or more other functional polymorphisms. To test this hypothesis, we designed a simulation study in which case-control status was determined by two interacting polymorphisms with heritabilities ranging from 0.025 to 0.4 with replication sample sizes ranging from 400 to 1600 individuals. We show that the power to replicate the statistically significant independent main effect of one polymorphism can drop dramatically with a change of allele frequency of less than 0.1 at a second interacting polymorphism. We also show that differences in allele frequency can result in a reversal of allelic effects where a protective allele becomes a risk factor in replication studies. These results suggest that failure to replicate an independent genetic effect may provide important clues about the complexity of the underlying genetic architecture. We recommend that polymorphisms that fail to replicate be checked for interactions with other polymorphisms, particularly when samples are collected from groups with distinct ethnic backgrounds or different geographic regions. PMID:19503614
Verma, Subhash C.; Lu, Jie; Cai, Qiliang; Kosiyatrakul, Settapong; McDowell, Maria E.; Schildkraut, Carl L.; Robertson, Erle S.
2011-01-01
Kaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD). Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR) plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA sequences. PMID:22072974
Human Th17 Cells Lack HIV-Inhibitory RNases and Are Highly Permissive to Productive HIV Infection
Christensen-Quick, Aaron; Lafferty, Mark; Sun, Lingling; Marchionni, Luigi; DeVico, Anthony
2016-01-01
ABSTRACT Human immunodeficiency virus (HIV) infects and depletes CD4+ T cells, but subsets of CD4+ T cells vary in their susceptibility and permissiveness to infection. For example, HIV preferentially depletes interleukin-17 (IL-17)-producing T helper 17 (Th17) cells and T follicular helper (Tfh) cells. The preferential loss of Th17 cells during the acute phase of infection impairs the integrity of the gut mucosal barrier, which drives chronic immune activation—a key determinant of disease progression. The preferential loss of Th17 cells has been attributed to high CD4, CCR5, and CXCR4 expression. Here, we show that Th17 cells also exhibit heightened permissiveness to productive HIV infection. Primary human CD4+ T cells were sorted, activated under Th17- or Th0-polarizing conditions and infected, and then analyzed by flow cytometry. Th17-polarizing cytokines increased HIV infection, and HIV infection was disproportionately higher among Th17 cells than among IL-17− or gamma interferon-positive (IFN-γ+) cells, even upon infection with a replication-defective HIV vector with a pseudotype envelope. Further, Th17-polarized cells produced more viral capsid protein. Our data also reveal that Th17-polarized cells have diminished expression of RNase A superfamily proteins, and we report for the first time that RNase 6 inhibits HIV. Thus, our findings link Th17 polarization to increased HIV replication. IMPORTANCE Our study compares the intracellular replicative capacities of several different HIV isolates among different T cell subsets, providing a link between the differentiation of Th17 cells and HIV replication. Th17 cells are of key importance in mucosal integrity and in the immune response to certain pathogens. Based on our findings and the work of others, we propose a model in which HIV replication is favored by the intracellular environment of two CD4+ T cell subsets that share several requirements for their differentiation: Th17 and Tfh cells. Characterizing cells that support high levels of viral replication (rather than becoming latently infected or undergoing cell death) informs the search for new therapeutics aimed at manipulating intracellular signaling pathways and/or transcriptional factors that affect HIV replication. PMID:27334595
Mühlberger, Elke; Lötfering, Beate; Klenk, Hans-Dieter; Becker, Stephan
1998-01-01
This paper describes the first reconstituted replication system established for a member of the Filoviridae, Marburg virus (MBGV). MBGV minigenomes containing the leader and trailer regions of the MBGV genome and the chloramphenicol acetyltransferase (CAT) gene were constructed. In MBGV-infected cells, these minigenomes were replicated and encapsidated and could be passaged. Unlike most other members of the order Mononegavirales, filoviruses possess four proteins presumed to be components of the nucleocapsid (NP, VP35, VP30, and L). To determine the protein requirements for replication and transcription, a reverse genetic system was established for MBGV based on the vaccinia virus T7 expression system. Northern blot analysis of viral RNA revealed that three nucleocapsid proteins (NP, VP35, and L) were essential and sufficient for transcription as well as replication and encapsidation. These data indicate that VP35, rather than VP30, is the functional homologue of rhabdo- and paramyxovirus P proteins. The reconstituted replication system was profoundly affected by the NP-to-VP35 expression ratio. To investigate whether CAT gene expression was achieved entirely by mRNA or in part by full-length plus-strand minigenomes, a copy-back minireplicon containing the CAT gene but lacking MBGV-specific transcriptional start sites was employed in the artificial replication system. This construct was replicated without accompanying CAT activity. It was concluded that the CAT activity reflected MBGV-specific transcription and not replication. PMID:9765419
Structure of the replication fork in ultraviolet light-irradiated human cells.
Cordeiro-Stone, M; Schumacher, R I; Meneghini, R
1979-01-01
The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork. PMID:233582
Structure of the replication fork in ultraviolet light-irradiated human cells.
Cordeiro-Stone, M; Schumacher, R I; Meneghini, R
1979-08-01
The DNA extracted from xeroderma pigmentosum human fibroblasts previously irradiated with 12.5 J/m2 of UV light and pulse-labeled for 45 min with radioactive and (or) heavy precursors, was used to determine the structural characteristics of the replication fork. Density equilibrium centrifugation experiments showed that a fork moved 6 micrometer in 45 min and bypassed 3 pyrimidine dimers in both strands. The same length was covered in 15-20 min in control cells. The delay in irradiated cells was apparently due to pyrimidine dimers acting as temporary blocks to the fork movement. Evidence for this interpretation comes from kinetics of incorporation of [3H]thymidine into DNA, which show that the time necessary to attain a new stable level of DNA synthesis in irradiated cells is equivalent to that required for the replication fork to cover the interdimer distance in one strand. On the other hand, the action of S1 nuclease on DNA synthesized soon after irradiation gives rise to a bimodal distribution in neutral sucrose gradients, one peak corresponding to 43 X 10(6) daltons and the other to 3 X 10(6) daltons. These two DNA species are generated by the attack of the S1 nuclease on single-stranded regions associated with the replication fork. A possible explanation for these results is given by a model according to which there is a delayed bypass of the dimer in the leading strand and the appearance of gaps opposite pyrimidine dimers in the lagging strand, as a direct consequence of the discontinuous mode of DNA replication. In terms of the model, the DNA of 43 X 10(6) daltons corresponds to the leading strand, linked to the unreplicated branch of the forks, whereas the piece of 3 X 10(6) daltons is the intergap DNA coming from the lagging strand. Pulse and chase experiments reveal that the low molecular weight DNA grows in a pattern that suggests that more than one gap may be formed per replication fork.
Li, Biao; Zhao, Hong; Rybak, Paulina; Dobrucki, Jurek W; Darzynkiewicz, Zbigniew; Kimmel, Marek
2014-09-01
Mathematical modeling allows relating molecular events to single-cell characteristics assessed by multiparameter cytometry. In the present study we labeled newly synthesized DNA in A549 human lung carcinoma cells with 15-120 min pulses of EdU. All DNA was stained with DAPI and cellular fluorescence was measured by laser scanning cytometry. The frequency of cells in the ascending (left) side of the "horseshoe"-shaped EdU/DAPI bivariate distributions reports the rate of DNA replication at the time of entrance to S phase while their frequency in the descending (right) side is a marker of DNA replication rate at the time of transition from S to G2 phase. To understand the connection between molecular-scale events and scatterplot asymmetry, we developed a multiscale stochastic model, which simulates DNA replication and cell cycle progression of individual cells and produces in silico EdU/DAPI scatterplots. For each S-phase cell the time points at which replication origins are fired are modeled by a non-homogeneous Poisson Process (NHPP). Shifted gamma distributions are assumed for durations of cell cycle phases (G1, S and G2 M), Depending on the rate of DNA synthesis being an increasing or decreasing function, simulated EdU/DAPI bivariate graphs show predominance of cells in left (early-S) or right (late-S) side of the horseshoe distribution. Assuming NHPP rate estimated from independent experiments, simulated EdU/DAPI graphs are nearly indistinguishable from those experimentally observed. This finding proves consistency between the S-phase DNA-replication rate based on molecular-scale analyses, and cell population kinetics ascertained from EdU/DAPI scatterplots and demonstrates that DNA replication rate at entrance to S is relatively slow compared with its rather abrupt termination during S to G2 transition. Our approach opens a possibility of similar modeling to study the effect of anticancer drugs on DNA replication/cell cycle progression and also to quantify other kinetic events that can be measured during S-phase. © 2014 International Society for Advancement of Cytometry.
In-line characterization of nanostructured mass-produced polymer components using scatterometry
NASA Astrophysics Data System (ADS)
Skovlund Madsen, Jonas; Højlund Thamdrup, Lasse; Czolkos, Ilja; Hansen, Poul Erik; Johansson, Alicia; Garnaes, Jørgen; Nygård, Jesper; Hannibal Madsen, Morten
2017-08-01
Scatterometry is used as an in-line metrology solution for injection molded nanostructures to evaluate the pattern replication fidelity. The method is used to give direct feedback to an operator when testing new molding parameters and for continuous quality control. A compact scatterometer has been built and tested at a fabrication facility. The scatterometry measurements, including data analysis and handling of the samples, are much faster than the injection molding cycle time, and thus, characterization does not slow down the production rate. Fabrication and characterization of 160 plastic parts with line gratings are presented here, and the optimal molding temperatures for replication of nanostructures are found for two polymers. Scatterometry results are compared to state of the art metrology solutions: atomic force and scanning electron microscopy. It is demonstrated that the scatterometer can determine the structural parameters of the samples with an accuracy of a few nanometers in less than a second, thereby enabling in-line characterization.
Mitzel, Dana N.; Wolfinbarger, James B.; Daniel Long, R.; Masnick, Max; Best, Sonja M.; Bloom, Marshall E.
2007-01-01
Following a bite from an infected tick, tick-borne flaviviruses cause encephalitis, meningitis and hemorrhagic fever in humans. Although these viruses spend most of their time in the tick, little is known regarding the virus-vector interactions. We developed a simple method for synchronously infecting Ixodes scapularis larvae with Langat virus (LGTV) by immersion in media containing the virus. This technique resulted in approximately 96% of ticks becoming infected. LGTV infection and replication were demonstrated by both viral antigen expression and the accumulation of viral RNA. Furthermore, ticks transmitted LGTV to 100% of the mice and maintained the virus through molting into the next life stage. This technique circumvents limitations present in the current methods by mimicking the natural route of infection and by using attenuated virus strains to infect ticks; thereby, making this technique a powerful tool to study both virus and tick determinants of replication, pathogenesis and transmission. PMID:17490700
Ying, B; Toth, K; Spencer, J F; Meyer, J; Tollefson, A E; Patra, D; Dhar, D; Shashkova, E V; Kuppuswamy, M; Doronin, K; Thomas, M A; Zumstein, L A; Wold, W S M; Lichtenstein, D L
2009-08-01
Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors.
Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth
2017-01-01
ABSTRACT Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. PMID:28978704
Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth; Dutch, Rebecca Ellis
2017-12-15
Human metapneumovirus (HMPV) causes significant upper and lower respiratory disease in all age groups worldwide. The virus possesses a negative-sense single-stranded RNA genome of approximately 13.3 kb encapsidated by multiple copies of the nucleoprotein (N), giving rise to helical nucleocapsids. In addition, copies of the phosphoprotein (P) and the large RNA polymerase (L) decorate the viral nucleocapsids. After viral attachment, endocytosis, and fusion mediated by the viral glycoproteins, HMPV nucleocapsids are released into the cell cytoplasm. To visualize the subsequent steps of genome transcription and replication, a fluorescence in situ hybridization (FISH) protocol was established to detect different viral RNA subpopulations in infected cells. The FISH probes were specific for detection of HMPV positive-sense RNA (+RNA) and viral genomic RNA (vRNA). Time course analysis of human bronchial epithelial BEAS-2B cells infected with HMPV revealed the formation of inclusion bodies (IBs) from early times postinfection. HMPV IBs were shown to be cytoplasmic sites of active transcription and replication, with the translation of viral proteins being closely associated. Inclusion body formation was consistent with an actin-dependent coalescence of multiple early replicative sites. Time course quantitative reverse transcription-PCR analysis suggested that the coalescence of inclusion bodies is a strategy to efficiently replicate and transcribe the viral genome. These results provide a better understanding of the steps following HMPV entry and have important clinical implications. IMPORTANCE Human metapneumovirus (HMPV) is a recently discovered pathogen that affects human populations of all ages worldwide. Reinfections are common throughout life, but no vaccines or antiviral treatments are currently available. In this work, a spatiotemporal analysis of HMPV replication and transcription in bronchial epithelial cell-derived immortal cells was performed. HMPV was shown to induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. Copyright © 2017 American Society for Microbiology.
Banerjee, Soumya; Perelson, Alan S; Moses, Melanie
2017-11-01
Understanding how quickly pathogens replicate and how quickly the immune system responds is important for predicting the epidemic spread of emerging pathogens. Host body size, through its correlation with metabolic rates, is theoretically predicted to impact pathogen replication rates and immune system response rates. Here, we use mathematical models of viral time courses from multiple species of birds infected by a generalist pathogen (West Nile Virus; WNV) to test more thoroughly how disease progression and immune response depend on mass and host phylogeny. We use hierarchical Bayesian models coupled with nonlinear dynamical models of disease dynamics to incorporate the hierarchical nature of host phylogeny. Our analysis suggests an important role for both host phylogeny and species mass in determining factors important for viral spread such as the basic reproductive number, WNV production rate, peak viraemia in blood and competency of a host to infect mosquitoes. Our model is based on a principled analysis and gives a quantitative prediction for key epidemiological determinants and how they vary with species mass and phylogeny. This leads to new hypotheses about the mechanisms that cause certain taxonomic groups to have higher viraemia. For example, our models suggest that higher viral burst sizes cause corvids to have higher levels of viraemia and that the cellular rate of virus production is lower in larger species. We derive a metric of competency of a host to infect disease vectors and thereby sustain the disease between hosts. This suggests that smaller passerine species are highly competent at spreading the disease compared with larger non-passerine species. Our models lend mechanistic insight into why some species (smaller passerine species) are pathogen reservoirs and some (larger non-passerine species) are potentially dead-end hosts for WNV. Our techniques give insights into the role of body mass and host phylogeny in the spread of WNV and potentially other zoonotic diseases. The major contribution of this work is a computational framework for infectious disease modelling at the within-host level that leverages data from multiple species. This is likely to be of interest to modellers of infectious diseases that jump species barriers and infect multiple species. Our method can be used to computationally determine the competency of a host to infect mosquitoes that will sustain WNV and other zoonotic diseases. We find that smaller passerine species are more competent in spreading the disease than larger non-passerine species. This suggests the role of host phylogeny as an important determinant of within-host pathogen replication. Ultimately, we view our work as an important step in linking within-host viral dynamics models to between-host models that determine spread of infectious disease between different hosts. © 2017 The Author(s).
Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase.
Zakian, V A; Brewer, B J; Fangman, W L
1979-08-01
Saccharomyces cerevisiae contains 50-100 copies per cell of a circular plasmid called 2 micron DNA. Replication of this DNA was studied in two ways. The distribution of replication events among 2 micron DNA molecules was examined by density transfer experiments with asynchronous cultures. The data show that 2 micron DNA replication is similar to chromosomal DNA replication: essentially all 2 micron duplexes were of hybrid density at one cell doubling after the density transfer, with the majority having one fully dense strand and one fully light strand. The results show that replication of 2 micron DNA occurs by a semiconservative mechanism where each of the plasmid molecules replicates once each cell cycle. 2 micron DNA is the only known example of a multiple-copy, extrachromosomal DNA in which every molecule replicates in each cell cycle. Quantitative analysis of the data indicates that 2 micron DNA replication is limited to a fraction of the cell cycle. The period in the cell cycle when 2 micron DNA replicates was examined directly with synchronous cell cultures. Synchronization was accomplished by sequentially arresting cells in G1 phase using the yeast pheromone alpha-factor and incubating at the restrictive temperature for a cell cycle (cdc 7) mutant. Replication was monitored by adding 3H-uracil to cells previously labeled with 14C-uracil, and determining the 3H/14C ratio for purified DNA species. 2 micron DNA replication did not occur during the G1 arrest periods. However, the population of 2 micron DNA doubled during the synchronous S phase at the permissive temperature, with most of the replication occurring in the first third of S phase. Our results indicate that a mechanism exists which insures that the origin of replication of each 2 micron DNA molecule is activated each S phase. As with chromosomal DNA, further activation is prevented until the next cell cycle. We propose that the mechanism which controls the replication initiation of each 2 micron DNA molecule is identical to that which controls the initiation of chromosomal DNA.
Richardson, Christopher D.; Li, Joachim J.
2014-01-01
Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs). We have mapped the two RIPs to ∼60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some regions of the genome may be more susceptible to these alterations than others. PMID:24945837
Sundaramurthy, Aravind; Chandra, Namas
2014-01-01
Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701
Discovery of 3,4-dihydropyrimidin-2(1H)-ones with inhibitory activity against HIV-1 replication.
Kim, Junwon; Park, Changmin; Ok, Taedong; So, Wonyoung; Jo, Mina; Seo, Minjung; Kim, Youngmi; Sohn, Jeong-Hun; Park, Youngsam; Ju, Moon Kyeong; Kim, Junghwan; Han, Sung-Jun; Kim, Tae-Hee; Cechetto, Jonathan; Nam, Jiyoun; Sommer, Peter; No, Zaesung
2012-03-01
3,4-Dihydropyrimidin-2(1H)-ones (DHPMs) were selected and derivatized through a HIV-1 replication assay based on GFP reporter cells. Compounds 14, 25, 31, and 36 exhibited significant inhibition of HIV-1 replication with a good safety profile. Chiral separation of each enantiomer by fractional crystallization showed that only the S enantiomer retained anti-HIV activity. Compound (S)-40, a novel and potent DHPM analog, could serve as an advanced lead for further development and the determination of the mechanism of action. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shock compression response of cold-rolled Ni/Al multilayer composites
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-06
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. Finally, these simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
2017-06-14
sensitivity: To simulate sera collected from experimentally - infected animals, we tested WNV (strain WN-USAMRIID99) serially diluted in heat-inactivated...Sensitivity of WNV Vero cell viability test Cq, WNV RT-qPCR Experimental Replicate PFU 1 2 3 2.00E+06 13.74 13.22 12.98 2.00E+05 13.61 13.23 12.13...proteins were identified and quantitated . Relative abundance of serum proteins to pre-infection levels was determined at each post -infection time-point
Standridge, J H; Lesar, D J
1977-01-01
The problem of extending the storage time of water samples for fecal coliform analysis was addressed. Included in this report is a literature review of the storage problem. Twenty-eight samples were analyzed in replicate to determine the effect of 24-h storage of water samples at 4 degrees C. A new statistical approach to data analysis, coupled with the concept of practical acceptability, is presented. According to our results, many samples can successfully be stored at 4 degrees C for 24 h. PMID:335972
Maxwell, Lara K; Bentz, Bradford G; Gilliam, Lyndi L; Ritchey, Jerry W; Pusterla, Nicola; Eberle, R; Holbrook, Todd C; McFarlane, Dianne; Rezabek, Grant B; Meinkoth, James; Whitfield, Chase; Goad, Carla L; Allen, George P
2017-10-01
OBJECTIVE To determine whether prophylactic administration of valacyclovir hydrochloride versus initiation of treatment at the onset of fever would differentially protect horses from viral replication and clinical disease attributable to equine herpesvirus type-1 (EHV-1) infection. ANIMALS 18 aged mares. PROCEDURES Horses were randomly assigned to receive an oral placebo (control), treatment at detection of fever, or prophylactic treatment (initiated 1 day prior to viral challenge) and then inoculated intranasally with a neuropathogenic strain of EHV-1. Placebo or valacyclovir was administered orally for 7 or 14 days after EHV-1 inoculation or detection of fever (3 horses/group). Effects of treatment on viral replication and clinical disease were evaluated. Plasma acyclovir concentrations and viremia were assessed to determine inhibitory concentrations of valacyclovir. RESULTS Valacyclovir administration decreased shedding of virus and viremia, compared with findings for control horses. Rectal temperatures and clinical disease scores in horses that received valacyclovir prophylactically for 2 weeks were lower than those in control horses. The severity of but not the risk for ataxia was decreased by valacyclovir administration. Viremia was decreased when steady-state trough plasma acyclovir concentrations were > 0.8 μg/mL, supporting the time-dependent activity of acyclovir. CONCLUSIONS AND CLINICAL RELEVANCE Valacyclovir treatment significantly decreased viral replication and signs of disease in EHV-1-infected horses; effects were greatest when treatment was initiated before viral inoculation, but treatment was also effective when initiated as late as 2 days after inoculation. During an outbreak of equine herpesvirus myeloencephalopathy, antiviral treatment may be initiated in horses at various stages of infection, including horses that have not yet developed signs of viral disease.
NASA Astrophysics Data System (ADS)
Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin
2014-11-01
The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.
Bj Rås, Karine Ø; Sousa, Mirta M L; Sharma, Animesh; Fonseca, Davi M; S Gaard, Caroline K; Bj Rås, Magnar; Otterlei, Marit
2017-08-21
Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear. Here we coupled the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, we identify for the first time the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1, 2 and 3 on nascent DNA. Our findings suggest that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F
2015-11-01
Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.
Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.
2016-01-01
Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453
DNA replication after mutagenic treatment in Hordeum vulgare.
Kwasniewska, Jolanta; Kus, Arita; Swoboda, Monika; Braszewska-Zalewska, Agnieszka
2016-12-01
The temporal and spatial properties of DNA replication in plants related to DNA damage and mutagenesis is poorly understood. Experiments were carried out to explore the relationships between DNA replication, chromatin structure and DNA damage in nuclei from barley root tips. We quantitavely analysed the topological organisation of replication foci using pulse EdU labelling during the S phase and its relationship with the DNA damage induced by mutagenic treatment with maleic hydrazide (MH), nitroso-N-methyl-urea (MNU) and gamma ray. Treatment with mutagens did not change the characteristic S-phase patterns in the nuclei; however, the frequencies of the S-phase-labelled cells after treatment differed from those observed in the control cells. The analyses of DNA replication in barley nuclei were extended to the micronuclei induced by mutagens. Replication in the chromatin of the micronuclei was rare. The results of simultanous TUNEL reaction to identify cells with DNA strand breaks and the labelling of the S-phase cells with EdU revealed the possibility of DNA replication occurring in damaged nuclei. For the first time, the intensity of EdU fluorescence to study the rate of DNA replication was analysed. Copyright © 2016 Elsevier B.V. All rights reserved.
Structure, replication efficiency and fragility of yeast ARS elements.
Dhar, Manoj K; Sehgal, Shelly; Kaul, Sanjana
2012-05-01
DNA replication in eukaryotes initiates at specific sites known as origins of replication, or replicators. These replication origins occur throughout the genome, though the propensity of their occurrence depends on the type of organism. In eukaryotes, zones of initiation of replication spanning from about 100 to 50,000 base pairs have been reported. The characteristics of eukaryotic replication origins are best understood in the budding yeast Saccharomyces cerevisiae, where some autonomously replicating sequences, or ARS elements, confer origin activity. ARS elements are short DNA sequences of a few hundred base pairs, identified by their efficiency at initiating a replication event when cloned in a plasmid. ARS elements, although structurally diverse, maintain a basic structure composed of three domains, A, B and C. Domain A is comprised of a consensus sequence designated ACS (ARS consensus sequence), while the B domain has the DNA unwinding element and the C domain is important for DNA-protein interactions. Although there are ∼400 ARS elements in the yeast genome, not all of them are active origins of replication. Different groups within the genus Saccharomyces have ARS elements as components of replication origin. The present paper provides a comprehensive review of various aspects of ARSs, starting from their structural conservation to sequence thermodynamics. All significant and conserved functional sequence motifs within different types of ARS elements have been extensively described. Issues like silencing at ARSs, their inherent fragility and factors governing their replication efficiency have also been addressed. Progress in understanding crucial components associated with the replication machinery and timing at these ARS elements is discussed in the section entitled "The replicon revisited". Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Crossan, Claire; Mourad, Nizar I; Smith, Karen; Gianello, Pierre; Scobie, Linda
2018-05-21
Subcutaneous implantation of a macroencapsulated patch containing human allogenic islets has been successfully used to alleviate type 1 diabetes mellitus (T1DM) in a human recipient without the need for immunosuppression. The use of encapsulated porcine islets to treat T1DM has also been reported. Although no evidence of pathogen transfer using this technology has been reported to date, we deemed it appropriate to determine if the encapsulation technology would prevent the release of virus, in particular, the porcine endogenous retrovirus (PERV). HEK293 (human epithelial kidney) and swine testis (ST) cells were co-cultured with macroencapsulated pig islets embedded in an alginate patch, macroencapsulated PK15 (swine kidney epithelial) cells embedded in an alginate patch and free PK15 cells. Cells and supernatant were harvested at weekly time points from the cultures for up to 60 days and screened for evidence of PERV release using qRT-PCR to detect PERV RNA and SG-PERT to detect reverse transcriptase (RT). No PERV virus, or evidence of PERV replication, was detected in the culture medium of HEK293 or pig cells cultured with encapsulated porcine islets. Increased PERV activity relative to the background was not detected in ST cells cultured with encapsulated PK15 cells. However, PERV was detected in 1 of the 3 experimental replicates of HEK293 cells cultured with encapsulated PK15 cells. Both HEK293 and ST cells cultured with free PK15 cells showed an increase in RT detection. With the exception of 1 replicate, there does not appear to be evidence of transmission of replication competent PERV from the encapsulated islet cells or the positive control PK15 cells across the alginate barrier. The detection of PERV would suggest the alginate barrier of this replicate may have become compromised, emphasizing the importance of quality control when producing encapsulated islet patches. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Żabka, Aneta; Polit, Justyna Teresa; Maszewski, Janusz
2012-01-01
Background and Aims Prolonged treatment of Allium cepa root meristems with changing concentrations of hydroxyurea (HU) results in either premature chromosome condensation or cell nuclei with an uncommon form of biphasic chromatin organization. The aim of the current study was to assess conditions that compromise cell cycle checkpoints and convert DNA replication stress into an abnormal course of mitosis. Methods Interphase-mitotic (IM) cells showing gradual changes of chromatin condensation were obtained following continuous 72 h treatment of seedlings with 0·75 mm HU (without renewal of the medium). HU-treated root meristems were analysed using histochemical stainings (DNA-DAPI/Feulgen; starch-iodide and DAB staining for H2O2 production), Western blotting [cyclin B-like (CBL) proteins] and immunochemistry (BrdU incorporation, detection of γ-H2AX and H3S10 phosphorylation). Key Results Continuous treatment of onion seedlings with a low concentration of HU results in shorter root meristems, enhanced production of H2O2, γ-phosphorylation of H2AX histones and accumulation of CBL proteins. HU-induced replication stress gives rise to axially elongated cells with half interphase/half mitotic structures (IM-cells) having both decondensed and condensed domains of chromatin. Long-term HU treatment results in cell nuclei resuming S phase with gradients of BrdU labelling. This suggests a polarized distribution of factors needed to re-initiate stalled replication forks. Furthermore, prolonged HU treatment extends both the relative time span and the spatial scale of H3S10 phosphorylation known in plants. Conclusions The minimum cell length and a threshold level of accumulated CBL proteins are both determining factors by which the nucleus attains commitment to induce an asynchronous course of chromosome condensation. Replication stress-induced alterations in an orderly route of the cell cycle events probably reflect a considerable reprogramming of metabolic functions of chromatin combined with gradients of morphological changes spread along the nucleus. PMID:23087128
2014-09-01
NoSQL Data Store Technologies John Klein, Software Engineering Institute Patrick Donohoe, Software Engineering Institute Neil Ernst...REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE NoSQL Data Store Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...distribute data 4. Data Replication – determines how a NoSQL database facilitates reliable, high performance data replication to build
Determination of trace amount of formaldehyde base on a bromate-Malachite Green system.
Tang, Yufang; Chen, Hao; Weng, Chao; Tang, Xiaohui; Zhang, Miaoling; Hu, Tao
2015-01-25
A novel catalytic kinetic spectrophotometric method for determination of trace amount of formaldehyde (FA) has been established, based on catalytic effect of trace amount of FA on the oxidation of Malachite Green (MG) by potassium bromate in presence of sulfuric acid medium, and was reported for the first time. The method was monitored by measuring the decrease in absorbance of MG at 617 nm and allowed a precise determination of FA in the range of 0.003-0.08 μg mL(-1), with a limit of detection down to 1 ng mL(-1). The relative standard deviation of 10 replicate measurements was 1.63%. The method developed was approved to be sensitive, selective and accurate, and adopted to determinate free FA in samples directly with good accuracy and reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.
Distinct contributions of replication and transcription to mutation rate variation of human genomes.
Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun
2012-02-01
Here, we evaluate the contribution of two major biological processes--DNA replication and transcription--to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes. Copyright © 2012 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.
SURPHEX (tm): New dry photopolymers for replication of surface relief diffractive optics
NASA Technical Reports Server (NTRS)
Shvartsman, Felix P.
1993-01-01
High efficiency, deep groove, surface relief Diffractive Optical Elements (DOE) with various optical functions can be recorded in a photoresist using conventional interferometric holographic and computer generated photolithographic recording techniques. While photoresist recording media are satisfactory for recording individual surface relief DOE, a reliable and precise method is needed to replicate these diffractive microstructures to maintain the high aspect ratio in each replicated DOE. The term 'high aspect ratio' means that the depth of a groove is substantially greater, i.e. 2, 3, or more times greater, than the width of the groove. A new family of dry photopolymers SURPHEX was developed recently at Du Pont to replicate such highly efficient, deep groove DOE's. SURPHEX photopolymers are being utilized in Du Pont's proprietary Dry Photopolymer Embossing (DPE) technology to replicate with very high degree of precision almost any type of surface relief DOE. Surfaces relief microstructures with width/depth aspect ratio of 1:20 (0.1 micron/2.0 micron) were faithfully replicated by DPE technology. Several types of plastic and glass/quartz optical substrates can be used for economical replication of DOE.
Accelerated Self-Replication under Non-Equilibrium, Periodic Energy Delivery
NASA Astrophysics Data System (ADS)
Zhang, Rui; Olvera de La Cruz, Monica
2014-03-01
Self-replication is a remarkable phenomenon in nature that has fascinated scientists for decades. In a self-replicating system, the original units are attracted to a template, which induce their binding. In equilibrium, the energy required to disassemble the newly assembled copy from the mother template is supplied by thermal energy. The possibility of optimizing self-replication is explored by controlling the frequency at which energy is supplied to the system. A model system inspired by a class of light switchable colloids is considered where light is used to control the interactions. Conditions under which self-replication can be significantly more effective under non-equilibrium, cyclic energy delivery than under equilibrium constant energy conditions are identified. Optimal self-replication does not require constant energy expenditure. Instead, the proper timing at which energy is delivered to the system is an essential controllable parameter to induce high replication rates. This work was supported by the Non-Equilibrium Energy Research Center (NERC), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.
Restrictions to cross species transmission of lentiviral infection gleaned from studies of FIV
Troyer, Jennifer; Poss, Mary
2009-01-01
More than 40 species of primates and over 20 species of cats harbor antibodies that sero-react to lentiviral antigens. In nearly all cases where viral genetic analysis has been conducted, each host species is infected with a unique lentivirus. Though lentivirus clades within a species can be substantially divergent, they are typically monophyletic within that species. A notable significant departure from this observation is apparent cross-species transmission of FIV between bobcats (Lynx rufus) and pumas (Puma concolor) in southern California that has occurred at least three times; evidence from one bobcat sequence suggests this cross-over may have also occurred in Florida between bobcats and the endangered Florida panther. Several other isolated reports demonstrate cross-species transmission of FIV isolates among captive animals housed in close proximity, and it is well established that HIV-1 and HIV-2 arose from human contact with SIV-infected nonhuman primates. Using an experimental model, we have determined that domestic cats (Felis catus) are susceptible to FIVs originating from pumas or lions. While infections are initially replicative, and animals seroconvert, within a relatively short period of time circulating virus is reduced to nearly undetectable levels in a majority of animals. This diminution of viral load is proportional to initial viral peak. Although viral reservoirs can be identified in gastrointestinal tissues, most viral genomes recovered peripherally are highly mutated, suggesting that the non-adapted host successfully inhibits normal viral replication, leading to replication incompetent viral progeny. Mechanisms possible for such restriction of cross-species infections in natural settings include: 1. Lack of contact conducive to lentiviral transmission between infected and shedding animals of different species; 2. Lack of suitable receptor repertoire to allow viral entry to susceptible cells of a new species; 3. Cellular machinery in the new host sufficiently divergent from the primary host to support viral replication (ie passive unfacilitated viral replication); 4. Intracellular restriction mechanisms present in the new host that is able to limit viral replication (i.e. active interrupted viral replication. These include factors that limit uncoating, replication, packaging, and virion release); 5. Unique ability of new host to raise sterilizing adaptive immunity, resulting in aborted infection and inability to spread infections among con-specifics; or, 6. Production of defective or non-infectious viral progeny that lack cellular cofactors to render them infectious to conspecifics (i.e. particles lacking appropriate cellular components in viral Env to render them infectious to other animals of the same species). Data to support or refute the relative importance of each of these possibilities is described in this review. Insights based on our in vivo cross-species model suggest intracellular restriction mechanisms effectively inhibit rapid inter-specific transmission of lentiviruses. Further, limited contact both within and between species in natural populations is highly relevant to limiting the opportunity for spread of FIV strains. Studies of naturally-occurring SIV and innate host restriction systems suggest these same two mechanisms are significant factors inhibiting widespread cross-species transmission of lentiviruses among primate species as well. PMID:19896218
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Jinlan; George, Nicholas P.; Duckett, Katrina L.
2010-05-25
Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 {angstrom} resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeaemore » and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.« less
Van Doorslaer, Koenraad; Chen, Dan; Chapman, Sandra; Khan, Jameela
2017-01-01
ABSTRACT Human papillomavirus (HPV) genomes are replicated and maintained as extrachromosomal plasmids during persistent infection. The viral E2 proteins are thought to promote stable maintenance replication by tethering the viral DNA to host chromatin. However, this has been very difficult to prove genetically, as the E2 protein is involved in transcriptional regulation and initiation of replication, as well as its assumed role in genome maintenance. This makes mutational analysis of viral trans factors and cis elements in the background of the viral genome problematic and difficult to interpret. To circumvent this problem, we have developed a complementation assay in which the complete wild-type HPV18 genome is transfected into primary human keratinocytes along with subgenomic or mutated replicons that contain the minimal replication origin. The wild-type genome provides the E1 and E2 proteins in trans, allowing us to determine additional cis elements that are required for long-term replication and partitioning of the replicon. We found that, in addition to the core replication origin (and the three E2 binding sites located therein), additional sequences from the transcriptional enhancer portion of the URR (upstream regulatory region) are required in cis for long-term genome replication. PMID:29162712
The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.
Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro
2013-12-01
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.
Active role of a human genomic insert in replication of a yeast artificial chromosome.
van Brabant, A J; Fangman, W L; Brewer, B J
1999-06-01
Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.
Cohesin Can Remain Associated with Chromosomes during DNA Replication.
Rhodes, James D P; Haarhuis, Judith H I; Grimm, Jonathan B; Rowland, Benjamin D; Lavis, Luke D; Nasmyth, Kim A
2017-09-19
To ensure disjunction to opposite poles during anaphase, sister chromatids must be held together following DNA replication. This is mediated by cohesin, which is thought to entrap sister DNAs inside a tripartite ring composed of its Smc and kleisin (Scc1) subunits. How such structures are created during S phase is poorly understood, in particular whether they are derived from complexes that had entrapped DNAs prior to replication. To address this, we used selective photobleaching to determine whether cohesin associated with chromatin in G1 persists in situ after replication. We developed a non-fluorescent HaloTag ligand to discriminate the fluorescence recovery signal from labeling of newly synthesized Halo-tagged Scc1 protein (pulse-chase or pcFRAP). In cells where cohesin turnover is inactivated by deletion of WAPL, Scc1 can remain associated with chromatin throughout S phase. These findings suggest that cohesion might be generated by cohesin that is already bound to un-replicated DNA. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Miller, Megan R; McMinn, Rebekah J; Misra, Vikram; Schountz, Tony; Müller, Marcel A; Kurth, Andreas; Munster, Vincent J
2016-10-15
Filoviruses are strongly associated with several species of bats as their natural reservoirs. In this study, we determined the replication potential of all filovirus species: Marburg marburgvirus, Taï Forest ebolavirus, Reston ebolavirus, Sudan ebolavirus, Zaire ebolavirus, and Bundibugyo ebolavirus. Filovirus replication was supported by all cell lines derived from 6 Old and New World bat species: the hammer-headed fruit bat, Buettikofer's epauletted fruit bat, the Egyptian fruit bat, the Jamaican fruit bat, the Mexican free-tailed bat and the big brown bat. In addition, we showed that Marburg virus Angola and Ebola virus Makona-WPGC07 efficiently replicated at 37°C, 37°-41°C, or 41°C, contrary to the hypothesis that temporal elevation in temperature due to flight affects filovirus replication in bats. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Plasmid P1 replication: negative control by repeated DNA sequences.
Chattoraj, D; Cordes, K; Abeles, A
1984-01-01
The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pieces of the incA fragment that each contain only three repeats destabilize P1 plasmids efficiently. This result makes it unlikely that incA specifies a regulatory product. Our in vivo results suggest that the repeating DNA sequence itself negatively controls replication by titrating a P1-determined protein, RepA, that is essential for replication. Consistent with this hypothesis is the observation that the RepA protein binds to the incA fragment in vitro. Images PMID:6387706
Random catalytic reaction networks
NASA Astrophysics Data System (ADS)
Stadler, Peter F.; Fontana, Walter; Miller, John H.
1993-03-01
We study networks that are a generalization of replicator (or Lotka-Volterra) equations. They model the dynamics of a population of object types whose binary interactions determine the specific type of interaction product. Such a system always reduces its dimension to a subset that contains production pathways for all of its members. The network equation can be rewritten at a level of collectives in terms of two basic interaction patterns: replicator sets and cyclic transformation pathways among sets. Although the system contains well-known cases that exhibit very complicated dynamics, the generic behavior of randomly generated systems is found (numerically) to be extremely robust: convergence to a globally stable rest point. It is easy to tailor networks that display replicator interactions where the replicators are entire self-sustaining subsystems, rather than structureless units. A numerical scan of random systems highlights the special properties of elementary replicators: they reduce the effective interconnectedness of the system, resulting in enhanced competition, and strong correlations between the concentrations.
Whitman, Richard L.; Nevers, Meredith B.
2004-01-01
Monitoring beaches for recreational water quality is becoming more common, but few sampling designs or policy approaches have evaluated the efficacy of monitoring programs. The authors intensively sampled water for E. coli (N=1770) at 63rd Street Beach, Chicago for 6 months in 2000 in order to (1) characterize spatial-temporal trends, (2) determine between and within transect variation, and (3) estimate sample size requirements and determine sampling reliability.E. coli counts were highly variable within and between sampling sites but spatially and diurnally autocorrelated. Variation in counts decreased with water depth and time of day. Required number of samples was high for 70% precision around the critical closure level (i.e., 6 within or 24 between transect replicates). Since spatial replication may be cost prohibitive, composite sampling is an alternative once sources of error have been well defined. The results suggest that beach monitoring programs may be requiring too few samples to fulfill management objectives desired. As the recreational water quality national database is developed, it is important that sampling strategies are empirically derived from a thorough understanding of the sources of variation and the reliability of collected data. Greater monitoring efficacy will yield better policy decisions, risk assessments, programmatic goals, and future usefulness of the information.
Drawing ability in typical and atypical development; colour cues and the effect of oblique lines.
Farran, E K; Dodd, G F
2015-06-01
Individuals with Williams syndrome (WS) have poor drawing ability. Here, we investigated whether colour could be used as a facilitation cue during a drawing task. Participants with WS and non-verbal ability matched typically developing (TD) children were shown line figures presented on a 3 by 3 dot matrix, and asked to replicate the figures by drawing on an empty dot matrix. The dots of the matrix were either all black (control condition), or nine different coloured dots (colour condition). In a third condition, which also used coloured dots, participants were additionally asked to verbalise the colours of the dots prior to replicating the line drawings (colour-verbal condition). Performance was stronger in both WS and TD groups on the two coloured conditions, compared with the control condition. However, the facilitation effect of colour was significantly weaker in the WS group than in the TD group. Replication of oblique line segments was less successful than replication of non-oblique line segments for both groups; this effect was reduced by colour facilitation in the TD group only. Verbalising the colours had no additional impact on performance in either group. We suggest that colour acted as a cue to individuate the dots, thus enabling participants to better ascertain the spatial relationships between the parts of each figure, to determine the start and end points of component lines, and to determine the correspondence between the model and their replication. The reduced facilitation in the WS group is discussed in relation to the effect of oblique versus non-oblique lines, the use of atypical drawing strategies, and reduced attention to the model when drawing the replication. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Lin, Chun-Kuang; Tseng, Chin-Kai; Chen, Kai-Hsun; Wu, Shih-Hsiung; Liaw, Chih-Chuang; Lee, Jin-Ching
2015-06-23
This study was designed to evaluate the effect of betulinic acid (BA), extracted from Avicennia marina, on the replication of hepatitis C virus (HCV) and to investigate the mechanism of this BA-mediated anti-HCV activity. HCV replicon and infectious systems were used to evaluate the anti-HCV activity of BA. Exogenous COX-2 or knock-down of COX-2 expression was used to investigate the role of COX-2 in the anti-HCV activity of BA. The effects of BA on the phosphorylation of NF-κB and on kinases in the MAPK signalling pathway were determined. The anti-HCV activity of BA in combination with other HCV inhibitors was also determined to assess its use as an anti-HCV supplement. BA inhibited HCV replication in both Ava5 replicon cells and in a cell culture-derived infectious HCV particle system. Treatment with a combination of BA and IFN-α, the protease inhibitor telaprevir or the NS5B polymerase inhibitor sofosbuvir resulted in the synergistic suppression of HCV RNA replication. Exogenous overexpression of COX-2 gradually attenuated the inhibitory effect of BA on HCV replication, suggesting that BA reduces HCV replication by suppressing the expression of COX-2. In particular, BA down-regulated HCV-induced COX-2 expression by reducing the phosphorylation of NF-κB and ERK1/2 of the MAPK signalling pathway. BA inhibits HCV replication by suppressing the NF-κB- and ERK1/2-mediated COX-2 pathway and may serve as a promising compound for drug development or as a potential supplement for use in the treatment of HCV-infected patients. © 2015 The British Pharmacological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Winnie; Zhou, Helen; Kemble, George
2008-10-25
We have previously determined that the temperature sensitive (ts) and attenuated (att) phenotypes of the cold adapted influenza A/Ann Arbor/6/60 strain (MDV-A), the master donor virus for the live attenuated influenza A vaccines (FluMist), are specified by the five amino acids in the PB1, PB2 and NP gene segments. To understand how these loci control the ts phenotype of MDV-A, replication of MDV-A at the non-permissive temperature (39 deg. C) was compared with recombinant wild-type A/Ann Arbor/6/60 (rWt). The mRNA and protein synthesis of MDV-A in the infected MDCK cells were not significantly reduced at 39 deg. C during amore » single-step replication, however, vRNA synthesis was reduced and the nuclear-cytoplasmic export of viral RNP (vRNP) was blocked. In addition, the virions released from MDV-A infected cells at 39 deg. C exhibited irregular morphology and had a greatly reduced amount of the M1 protein incorporated. The reduced M1 protein incorporation and vRNP export blockage correlated well with the virus ts phenotype because these defects could be partially alleviated by removing the three ts loci from the PB1 gene. The virions and vRNPs isolated from the MDV-A infected cells contained a higher level of heat shock protein 70 (Hsp70) than those of rWt, however, whether Hsp70 is involved in thermal inhibition of MDV-A replication remains to be determined. Our studies demonstrate that restrictive replication of MDV-A at the non-permissive temperature occurs in multiple steps of the virus replication cycle.« less
Hansen, M S; Segalés, J; Fernandes, L T; Grau-Roma, L; Bille-Hansen, V; Larsen, L E; Nielsen, O L
2013-11-01
Porcine circovirus type 2 (PCV2) infection is the cause of postweaning multisystemic wasting syndrome (PMWS). It has been speculated whether cell types permissive of replication are found in the primary lymphoid organs and whether infection of these tissues has an important role in the pathogenesis of PMWS. The aim of this study was to determine if primary lymphoid organ cells support viral replication during PCV2 infection. This was done by histopathological examination of thymus and bone marrow from pigs experimentally inoculated with PCV2 (n = 24), mock-infected pigs (n = 12), pigs naturally affected by PMWS (n = 33), and age-matched healthy control animals (n = 29). In situ hybridization (ISH) techniques were used to detect PCV2 nucleic acid irrespective of replicative status (complementary probe, CP) or to detect only the replicative form of the virus (replicative form probe, RFP). PCV2 was not detected in the experimentally PCV2-inoculated pigs or the control animals. Among the PMWS-affected pigs, 19 of 20 (95%) thymuses were positive for PCV2 by CP ISH, and 7 of 19 (37%) of these also supported viral replication. By CP ISH, PCV2 was detected in 16 of 33 (48%) bone marrow samples, and 5 of 16 (31%) of these also supported replication. The 2 ISH probes labeled the same cell types, which were histiocytes in both organs and lymphocytes in thymus. The RFP labeled fewer cells than the CP. Thus, PCV2 nucleic acids and replication were found in bone marrow and thymus of PMWS-affected pigs, but there was no evidence that primary lymphoid organ cells are major supporters of PCV2 replication.
Analysis of replication factories in human cells by super-resolution light microscopy
2009-01-01
Background DNA replication in human cells is performed in discrete sub-nuclear locations known as replication foci or factories. These factories form in the nucleus during S phase and are sites of DNA synthesis and high local concentrations of enzymes required for chromatin replication. Why these structures are required, and how they are organised internally has yet to be identified. It has been difficult to analyse the structure of these factories as they are small in size and thus below the resolution limit of the standard confocal microscope. We have used stimulated emission depletion (STED) microscopy, which improves on the resolving power of the confocal microscope, to probe the structure of these factories at sub-diffraction limit resolution. Results Using immunofluorescent imaging of PCNA (proliferating cell nuclear antigen) and RPA (replication protein A) we show that factories are smaller in size (approximately 150 nm diameter), and greater in number (up to 1400 in an early S- phase nucleus), than is determined by confocal imaging. The replication inhibitor hydroxyurea caused an approximately 40% reduction in number and a 30% increase in diameter of replication factories, changes that were not clearly identified by standard confocal imaging. Conclusions These measurements for replication factory size now approach the dimensions suggested by electron microscopy. This agreement between these two methods, that use very different sample preparation and imaging conditions, suggests that we have arrived at a true measurement for the size of these structures. The number of individual factories present in a single nucleus that we measure using this system is greater than has been previously reported. This analysis therefore suggests that each replication factory contains fewer active replication forks than previously envisaged. PMID:20015367
DNA replication stress restricts ribosomal DNA copy number.
Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L
2017-09-01
Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.
Lemmens, Bennie; van Schendel, Robin; Tijsterman, Marcel
2015-01-01
Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks. PMID:26563448
Lemmens, Bennie; van Schendel, Robin; Tijsterman, Marcel
2015-11-13
Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks.
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Mackin, R. O.; Jarrah, Z.; Boston, A. J.; Nolan, P. J.; Peyton, A. J.; Hawkes, N. P.
2009-01-01
A unique, digital time pick-off method, known as sample-interpolation timing (SIT) is described. This method demonstrates the possibility of improved timing resolution for the digital measurement of time of flight compared with digital replica-analogue time pick-off methods for signals sampled at relatively low rates. Three analogue timing methods have been replicated in the digital domain (leading-edge, crossover and constant-fraction timing) for pulse data sampled at 8 GSa s-1. Events arising from the 7Li(p, n)7Be reaction have been detected with an EJ-301 organic liquid scintillator and recorded with a fast digital sampling oscilloscope. Sample-interpolation timing was developed solely for the digital domain and thus performs more efficiently on digital signals compared with analogue time pick-off methods replicated digitally, especially for fast signals that are sampled at rates that current affordable and portable devices can achieve. Sample interpolation can be applied to any analogue timing method replicated digitally and thus also has the potential to exploit the generic capabilities of analogue techniques with the benefits of operating in the digital domain. A threshold in sampling rate with respect to the signal pulse width is observed beyond which further improvements in timing resolution are not attained. This advance is relevant to many applications in which time-of-flight measurement is essential.
Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages
Lathrop, Stephanie K.; Binder, Kelsey A.; Starr, Tregei; Cooper, Kendal G.; Chong, Audrey; Carmody, Aaron B.
2015-01-01
Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967
Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.
Lathrop, Stephanie K; Binder, Kelsey A; Starr, Tregei; Cooper, Kendal G; Chong, Audrey; Carmody, Aaron B; Steele-Mortimer, Olivia
2015-07-01
Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Synchronous contextual irregularities affect early scene processing: replication and extension.
Mudrik, Liad; Shalgi, Shani; Lamy, Dominique; Deouell, Leon Y
2014-04-01
Whether contextual regularities facilitate perceptual stages of scene processing is widely debated, and empirical evidence is still inconclusive. Specifically, it was recently suggested that contextual violations affect early processing of a scene only when the incongruent object and the scene are presented a-synchronously, creating expectations. We compared event-related potentials (ERPs) evoked by scenes that depicted a person performing an action using either a congruent or an incongruent object (e.g., a man shaving with a razor or with a fork) when scene and object were presented simultaneously. We also explored the role of attention in contextual processing by using a pre-cue to direct subjects׳ attention towards or away from the congruent/incongruent object. Subjects׳ task was to determine how many hands the person in the picture used in order to perform the action. We replicated our previous findings of frontocentral negativity for incongruent scenes that started ~ 210 ms post stimulus presentation, even earlier than previously found. Surprisingly, this incongruency ERP effect was negatively correlated with the reaction times cost on incongruent scenes. The results did not allow us to draw conclusions about the role of attention in detecting the regularity, due to a weak attention manipulation. By replicating the 200-300 ms incongruity effect with a new group of subjects at even earlier latencies than previously reported, the results strengthen the evidence for contextual processing during this time window even when simultaneous presentation of the scene and object prevent the formation of prior expectations. We discuss possible methodological limitations that may account for previous failures to find this an effect, and conclude that contextual information affects object model selection processes prior to full object identification, with semantic knowledge activation stages unfolding only later on. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robustness of synthetic oscillators in growing and dividing cells
NASA Astrophysics Data System (ADS)
Paijmans, Joris; Lubensky, David K.; Rein ten Wolde, Pieter
2017-05-01
Synthetic biology sets out to implement new functions in cells, and to develop a deeper understanding of biological design principles. Elowitz and Leibler [Nature (London) 403, 335 (2000), 10.1038/35002125] showed that by rational design of the reaction network, and using existing biological components, they could create a network that exhibits periodic gene expression, dubbed the repressilator. More recently, Stricker et al. [Nature (London) 456, 516 (2008), 10.1038/nature07389] presented another synthetic oscillator, called the dual-feedback oscillator, which is more stable. Detailed studies have been carried out to determine how the stability of these oscillators is affected by the intrinsic noise of the interactions between the components and the stochastic expression of their genes. However, as all biological oscillators reside in growing and dividing cells, an important question is how these oscillators are perturbed by the cell cycle. In previous work we showed that the periodic doubling of the gene copy numbers due to DNA replication can couple not only natural, circadian oscillators to the cell cycle [Paijmans et al., Proc. Natl. Acad. Sci. (USA) 113, 4063 (2016), 10.1073/pnas.1507291113], but also these synthetic oscillators. Here we expand this study. We find that the strength of the locking between oscillators depends not only on the positions of the genes on the chromosome, but also on the noise in the timing of gene replication: noise tends to weaken the coupling. Yet, even in the limit of high levels of noise in the replication times of the genes, both synthetic oscillators show clear signatures of locking to the cell cycle. This work enhances our understanding of the design of robust biological oscillators inside growing and diving cells.
Thyssen, Gregory N; Song, Xianliang; Naoumkina, Marina; Kim, Hee-Jin; Fang, David D
2014-07-01
The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary independently between different cell types and developmental stages. Our objective was to determine the relationship between mitochondrial gene copy number and transcript abundance in the elongating fiber cells of Upland cotton (Gossypium hirsutum L.). We compared RNA and DNA from cotton fiber cells at five developmental time points from early elongation through secondary cell wall thickening from the Ligon-lintless 2 (Li2) short fiber mutant and its wild type near isogenic line (NIL) DP5690. Mitochondrial gene copy number decreased from 3 to 8-DPA in the developing cotton fiber cells while transcript levels remained low. As secondary cell wall biosynthesis began in developing fibers, the expression levels and copy numbers of mitochondrial genes involved in energy production and respiration were up-regulated in wild type cotton DP5690. However, the short fiber mutant Li2, failed to increase expression of these genes, which include three subunits of ATP synthase, atp1, atp8 and atp9 and two cytochrome genes cox1 and cob. At the same time, Li2 failed to increase the copy numbers of these highly expressed genes. Surprisingly, we found that when mitochondrial genes were highly transcribed, they also had very high copy numbers. This observation suggests that in developing cotton fibers, increased mitochondrial sublimon replication may support increases in gene transcription. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korber, Bette
2009-01-01
Although there is increasing evidence that individuals already infected with human immunodeficiency virus type 1 (HIV-1) can be infected with a heterologous strain of the virus, the extent of protection against superinfection conferred by the first infection and the biologic consequences of superinfection are not well understood. We explored these questions in the simian immunodeficiency virus (SIV)/rhesus monkey model of HIV-1/AIDS. We infected cohorts of rhesus monkeys with either SIVmac251 or SIVsmE660 and then exposed animals to the reciprocal virus through intrarectal inoculations. Employing a quantitative real-time PCR assay, we determined the replication kinetics of the two strains of virusmore » for 20 weeks. We found that primary infection with a replication-competent virus did not protect against acquisition of infection by a heterologous virus but did confer relative control of the superinfecting virus. In animals that became superinfected, there was a reduction in peak replication and rapid control of the second virus. The relative susceptibility to superinfection was not correlated with CD4(+) T-cell count, CD4(+) memory T-cell subsets, cytokine production by virus-specific CD8(+) or CD4(+) cells, or neutralizing antibodies at the time of exposure to the second virus. Although there were transient increases in viral loads of the primary virus and a modest decline in CD4(+) T-cell counts after superinfection, there was no evidence of disease acceleration. These findings indicate that an immunodeficiency virus infection confers partial protection against a second immunodeficiency virus infection, but this protection may be mediated by mechanisms other than classical adaptive immune responses.« less
Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons.
Grünewald, Anne; Rygiel, Karolina A; Hepplewhite, Philippa D; Morris, Christopher M; Picard, Martin; Turnbull, Doug M
2016-03-01
To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication-associated 7S DNA employing a triplex real-time polymerase chain reaction (PCR) assay. Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single-cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
Vargas, Hugo E; Laskus, Tomasz; Radkowski, Marek; Wilkinson, Jeff; Balan, Vijay; Douglas, David D; Harrison, M Edwyn; Mulligan, David C; Olden, Kevin; Adair, Debra; Rakela, Jorge
2002-11-01
Patients with chronic hepatitis C frequently report tiredness, easy fatigability, and depression. The aim of this study is to determine whether hepatitis C virus (HCV) replication could be found in brain tissue in patients with hepatitis C and depression. We report two patients with recurrent hepatitis C after liver transplantation who also developed severe depression. One patient died of multiorgan failure and the other, septicemia caused by Staphylococcus aureussis. Both patients had evidence of severe hepatitis C recurrence with features of cholestatic fibrosing hepatitis. We were able to study samples of their central nervous system obtained at autopsy for evidence of HCV replication. The presence of HCV RNA-negative strand, which is the viral replicative form, was determined by strand-specific Tth-based reverse-transcriptase polymerase chain reaction. Viral sequences were compared by means of single-strand conformation polymorphism and direct sequencing. HCV RNA-negative strands were found in subcortical white matter from one patient and cerebral cortex from the other patient. HCV RNA-negative strands amplified from brain tissue differed by several nucleotide substitutions from serum consensus sequences in the 5' untranslated region. These findings support the concept of HCV neuroinvasion, and we speculate that it may provide a biological substrate to neuropsychiatric disorders observed in patients with chronic hepatitis C. The exact lineage of cells permissive for HCV replication and the possible interaction between viral replication and cerebral function that may lead to depression remain to be elucidated.
Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination
Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H
2015-01-01
Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413
Flanders, W Dana; Kirkland, Kimberly H; Shelton, Brian G
2014-10-01
Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Timing of host feeding drives rhythms in parasite replication
Cumnock, Katherine; Schneider, David; Subudhi, Amit; Savill, Nicholas J.
2018-01-01
Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience. PMID:29481559
Replication and meiotic transmission of yeast ribosomal RNA genes.
Brewer, B J; Zakian, V A; Fangman, W L
1980-11-01
The yeast Saccharomyces cerevisiae has approximately 120 genes for the ribosomal RNAs (rDNA) which are organized in tandem within chromosomal DNA. These multiple-copy genes are homogeneous in sequence but can undergo changes in copy number and topology. To determine if these changes reflect unusual features of rDNA metabolism, we have examined both the replication of rDNA in the mitotic cell cycle and the inheritance of rDNA during meiosis. The results indicate that rDNA behaves identically to chromosomal DNA: each rDNA unit is replicated once during the S phase of each cell cycle and each unit is conserved through meiosis. Therefore, the flexibility in copy number and topology of rDNA does not arise from the selective replication of units in each S phase nor by the selective inheritance of units in meiosis.
Lack of reliability in the disruption of cognitive performance following exposure to protons.
Rabin, Bernard M; Heroux, Nicholas A; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty L; Beck, Zachary; Baxter, Chelsea
2015-08-01
A series of three replications were run to determine the reliability with which exposure to protons produces a disruption of cognitive performance, using a novel object recognition task and operant responding on an ascending fixed-ratio task. For the first two replications, rats were exposed to head-only exposures to 1000 MeV/n protons at the NASA Space Radiation Laboratory. For the third replication, subjects were given head-only or whole-body exposures to both 1000 and 150 MeV/n protons. The results were characterized by a lack of consistency in the effects of exposure to protons on the performance of these cognitive tasks, both within and between replications. The factors that might influence the lack of consistency and the implications for exploratory class missions are discussed.
Siede, W; Eckardt, F
1986-01-01
A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.
Grigorov, Boyan; Rabilloud, Jessica; Lawrence, Philip; Gerlier, Denis
2011-01-01
Background Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent. Methods/Findings A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson's law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively. Conclusion Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry. PMID:21915289
Johnson, Kenneth L; Mason, Christopher J; Muddiman, David C; Eckel, Jeanette E
2004-09-01
This study quantifies the experimental uncertainty for LC retention time, mass measurement precision, and ion abundance obtained from replicate nLC-dual ESI-FT-ICR analyses of the low molecular weight fraction of serum. We used ultrafiltration to enrich the < 10-kDa fraction of components from the high-abundance proteins in a pooled serum sample derived from ovarian cancer patients. The THRASH algorithm for isotope cluster detection was applied to five replicate nLC-dual ESI-FT-ICR chromatograms. A simple two-level grouping algorithm was applied to the more than 7000 isotope clusters found in each replicate and identified 497 molecular species that appeared in at least four of the replicates. In addition, a representative set of 231 isotope clusters, corresponding to 188 unique molecular species, were manually interpreted to verify the automated algorithm and to set its tolerances. For nLC retention time reproducibility, 95% of the 497 species had a 95% confidence interval of the mean of +/- 0.9 min or less without the use of chromatographic alignment procedures. Furthermore, 95% of the 497 species had a mass measurement precision of < or = 3.2 and < or = 6.3 ppm for internally and externally calibrated spectra, respectively. Moreover, 95% of replicate ion abundance measurements, covering an ion abundance range of approximately 3 orders of magnitude, had a coefficient of variation of less than 62% without using any normalization functions. The variability of ion abundance was independent of LC retention time, mass, and ion abundance quartile. These measures of analytical reproducibility establish a statistical rationale for differentiating healthy and disease patient populations for the elucidation of biomarkers in the low molecular fraction of serum. Copyright 2004 American Chemical Society
Bautista-de Los Santos, Quyen Melina; Schroeder, Joanna L; Blakemore, Oliver; Moses, Jonathan; Haffey, Mark; Sloan, William; Pinto, Ameet J
2016-03-01
High-throughput and deep DNA sequencing, particularly amplicon sequencing, is being increasingly utilized to reveal spatial and temporal dynamics of bacterial communities in drinking water systems. Whilst the sampling and methodological biases associated with PCR and sequencing have been studied in other environments, they have not been quantified for drinking water. These biases are likely to have the greatest effect on the ability to characterize subtle spatio-temporal patterns influenced by process/environmental conditions. In such cases, intra-sample variability may swamp any underlying small, systematic variation. To evaluate this, we undertook a study with replication at multiple levels including sampling sites, sample collection, PCR amplification, and high throughput sequencing of 16S rRNA amplicons. The variability inherent to the PCR amplification and sequencing steps is significant enough to mask differences between bacterial communities from replicate samples. This was largely driven by greater variability in detection of rare bacteria (relative abundance <0.01%) across PCR/sequencing replicates as compared to replicate samples. Despite this, we captured significant changes in bacterial community over diurnal time-scales and find that the extent and pattern of diurnal changes is specific to each sampling location. Further, we find diurnal changes in bacterial community arise due to differences in the presence/absence of the low abundance bacteria and changes in the relative abundance of dominant bacteria. Finally, we show that bacterial community composition is significantly different across sampling sites for time-periods during which there are typically rapid changes in water use. This suggests hydraulic changes (driven by changes in water demand) contribute to shaping the bacterial community in bulk drinking water over diurnal time-scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ying, B; Toth, K; Spencer, JF; Meyer, J; Tollefson, AE; Patra, D; Dhar, D; Shashkova, EV; Kuppuswamy, M; Doronin, K; Thomas, MA; Zumstein, LA; Wold, WSM; Lichtenstein, DL
2012-01-01
Preclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus. INGN 007 (VRX-007), wild-type Ad5 and AdCMVpA (an RD vector) were compared in the hamster model, whereas only INGN 007 was examined in mice. DNA of all vectors was widely disseminated early after injection, but decayed rapidly in most organs. In the hamster model, DNA of INGN 007 and Ad5 was more abundant than that of the RD vector AdCMVpA at early times after injection, but similar levels were seen later. An increased level of INGN 007 and Ad5 DNA but not AdCMVpA DNA in certain organs early after injection, and the presence of infectious INGN 007 and Ad5 in lung and liver samples at early times after injection, strongly suggests that replication of INGN 007 and Ad5 occurred in several Syrian hamster organs. There was no evidence of INGN 007 replication in mice. In addition to providing important information about INGN 007, the results underscore the utility of the Syrian hamster as a permissive immunocompetent model for Ad5 pathogenesis and oncolytic Ad vectors. PMID:19197322
Visualization and Measurement of ATP Levels in Living Cells Replicating Hepatitis C Virus Genome RNA
Ando, Tomomi; Imamura, Hiromi; Suzuki, Ryosuke; Aizaki, Hideki; Watanabe, Toshiki; Wakita, Takaji; Suzuki, Tetsuro
2012-01-01
Adenosine 5′-triphosphate (ATP) is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV), a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET)-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome. PMID:22396648
Universal Temporal Profile of Replication Origin Activation in Eukaryotes
NASA Astrophysics Data System (ADS)
Goldar, Arach
2011-03-01
The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.
Egawa, Nagayasu; Nakahara, Tomomi; Ohno, Shin-ichi; Narisawa-Saito, Mako; Yugawa, Takashi; Fujita, Masatoshi; Yamato, Kenji; Natori, Yukikazu
2012-01-01
Papillomavirus genomes are thought to be amplified to about 100 copies per cell soon after infection, maintained constant at this level in basal cells, and amplified for viral production upon keratinocyte differentiation. To determine the requirement for E1 in viral DNA replication at different stages, an E1-defective mutant of the human papillomavirus 16 (HPV16) genome featuring a translation termination mutation in the E1 gene was used. The ability of the mutant HPV16 genome to replicate as nuclear episomes was monitored with or without exogenous expression of E1. Unlike the wild-type genome, the E1-defective HPV16 genome became established in human keratinocytes only as episomes in the presence of exogenous E1 expression. Once established, it could replicate with the same efficiency as the wild-type genome, even after the exogenous E1 was removed. However, upon calcium-induced keratinocyte differentiation, once again amplification was dependent on exogenous E1. These results demonstrate that the E1 protein is dispensable for maintenance replication but not for initial and productive replication of HPV16. PMID:22238312
Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication
Zhang, Ran; Liu, Chuangang; Cao, Yunzi; Jamal, Muhammad; Chen, Xi; Zheng, Jinfang; Li, Liang; You, Jing; Zhu, Qi; Liu, Shiyong; Dai, Jinxia; Cui, Min; Fu, Zhen F.; Cao, Gang
2017-01-01
Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication. PMID:28388579
MicroRNA Regulation of Human Protease Genes Essential for Influenza Virus Replication
Meliopoulos, Victoria A.; Andersen, Lauren E.; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J. Keegan; Tompkins, S. Mark; Tripp, Ralph A.
2012-01-01
Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies. PMID:22606348
Owen, Carolyn A.; Moukarzel, Romy; Huang, Xiao; Kassem, Mona A.; Eliasco, Eleonora; Aranda, Miguel A.; Coutts, Robert H. A.; Livieratos, Ioannis C.
2016-01-01
Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5′- and 3′-UTRs plus the 3′-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants. PMID:27314380
Khandelwal, Nitin; Chander, Yogesh; Rawat, Krishan Dutt; Riyesh, Thachamvally; Nishanth, Chikkahonnaiah; Sharma, Shalini; Jindal, Naresh; Tripathi, Bhupendra N; Barua, Sanjay; Kumar, Naveen
2017-08-01
At a noncytotoxic concentration, emetine was found to inhibit replication of DNA viruses [buffalopoxvirus (BPXV) and bovine herpesvirus 1 (BHV-1)] as well as RNA viruses [peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV)]. Using the time-of-addition and virus step-specific assays, we showed that emetine treatment resulted in reduced synthesis of viral RNA (PPRV and NDV) and DNA (BPXV and BHV-1) as well as inhibiting viral entry (NDV and BHV-1). In addition, emetine treatment also resulted in decreased synthesis of viral proteins. In a cell free endogenous viral polymerase assay, emetine was found to significantly inhibit replication of NDV, but not BPXV genome, suggesting that besides directly inhibiting specific viral polymerases, emetine may also target other factors essentially required for efficient replication of the viral genome. Moreover, emetine was found to significantly inhibit BPXV-induced pock lesions on chorioallantoic membrane (CAM) along with associated mortality of embryonated chicken eggs. At a lethal dose 50 (LD 50 ) of 126.49 ng/egg and at an effective concentration 50 (EC 50 ) of 3.03 ng/egg, the therapeutic index of the emetine against BPXV was determined to be 41.74. Emetine was also found to significantly delay NDV-induced mortality in chicken embryos associated with reduced viral titers. Further, emetine-resistant mutants were not observed upon long-term (P = 25) sequential passage of BPXV and NDV in cell culture. Collectively, we have extended the effective antiviral activity of emetine against diverse groups of DNA and RNA viruses and propose that emetine could provide significant therapeutic value against some of these viruses without inducing an antiviral drug-resistant phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.
Precaecal phosphorus digestibility of inorganic phosphate sources in male broilers
Bikker, P.; Spek, J. W.; Van Emous, R. A.; Van Krimpen, M. M.
2016-01-01
Abstract The aim of this study, comprising two experiments, was (1) to determine in Experiment 1 the relationship of incremental dietary P (phosphorus) content on precaecal digestible P in male broilers and (2) to determine in Experiment 2 the precaecal P digestibility of various inorganic P sources at marginal levels of P supply.In Experiment 1, a total of 260 male Ross 308 broilers were divided into groups of 10 birds per pen resulting in 8 replicates for treatment 1 and 6 replicates for treatments 2–4. Experimental diets were formulated to contain 4 incremental concentrations of digestible P by means of increasing concentrations of monocalcium phosphate (MCP). In the second experiment, 480-d-old male Ross 308 broilers were divided in groups of 12 birds per pen resulting in 16 replicates for the basal diet and 6 replicates for each test diet. A total of 4 inorganic P sources, MCP, monodicalcium phosphate (MDCP), dicalcium phosphate (DCP) and defluorinated phosphate (DFP) were added to the basal diet to determine the precaecal P digestibility. Three of the 4 inorganic P sources (MCP, MDCP and DCP) represented a mix of batches from different producers. At the end of both experiments, the chyme of the posterior part of the small intestine was collected. Digestibility of P and Ca was determined using titanium dioxide as indigestible marker.In Experiment 1, a reduction in precaecal digestibility of P was observed above an estimated precaecal digestible dietary P concentration of 4.8 g/kg.The precaecal P digestibility of the tested inorganic P sources in Experiment 2 was 78.3% for MCP, 59.0% for DCP, 70.7% for MDCP and 31.5% for DFP. PMID:27635437
Hensman, James; Lawrence, Neil D; Rattray, Magnus
2013-08-20
Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.
Claspin Promotes Normal Replication Fork Rates in Human Cells
Helleday, Thomas; Caldecott, Keith W.
2008-01-01
The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone. PMID:18353973
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P.; Robertson, Erle S.; Schildkraut, Carl L.; Verma, Subhash C.
2016-01-01
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. PMID:26837574
Pintel, David J.
2014-01-01
Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA. PMID:24699724
Adeyemi, Richard O; Fuller, Matthew S; Pintel, David J
2014-04-01
Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA.
Re-Evaluating Evidence for Linguistic Relativity: Reply to Boroditsky (2001)
ERIC Educational Resources Information Center
January, David; Kako, Edward
2007-01-01
Six unsuccessful attempts at replicating a key finding in the linguistic relativity literature [Boroditsky, L. (2001). Does language shape thought?: Mandarin and English speakers' conceptions of time. "Cognitive Psychology," 43, 1-22] are reported. In addition to these empirical issues in replicating the original finding, theoretical issues…
Tolerance of Sir1p/Origin Recognition Complex-Dependent Silencing for Enhanced Origin Firing at HMRa
McConnell, Kristopher H.; Müller, Philipp; Fox, Catherine A.
2006-01-01
The HMR-E silencer is a DNA element that directs the formation of silent chromatin at the HMRa locus in Saccharomyces cerevisiae. Sir1p is one of four Sir proteins required for silent chromatin formation at HMRa. Sir1p functions by binding the origin recognition complex (ORC), which binds to HMR-E, and recruiting the other Sir proteins (Sir2p to -4p). ORCs also bind to hundreds of nonsilencer positions distributed throughout the genome, marking them as replication origins, the sites for replication initiation. HMR-E also acts as a replication origin, but compared to many origins in the genome, it fires extremely inefficiently and late during S phase. One postulate to explain this observation is that ORC's role in origin firing is incompatible with its role in binding Sir1p and/or the formation of silent chromatin. Here we examined a mutant HMR-E silencer and fusions between robust replication origins and HMR-E for HMRa silencing, origin firing, and replication timing. Origin firing within HMRa and from the HMR-E silencer itself could be significantly enhanced, and the timing of HMRa replication during an otherwise normal S phase advanced, without a substantial reduction in SIR1-dependent silencing. However, although the robust origin/silencer fusions silenced HMRa quite well, they were measurably less effective than a comparable silencer containing HMR-E's native ORC binding site. PMID:16479013
Rodriguez-Rodriguez, Luis; Ivorra-Cortes, Jose; Carmona, F David; Martín, Javier; Balsa, Alejandro; van Steenbergen, Hanna W; van der Helm-van Mil, Annette H M; González-Álvaro, Isidoro; Fernandez-Gutiérrez, Benjamín
2015-11-05
Prostaglandin E receptor 4 (PTGER4) is implicated in immune regulation and bone metabolism. The aim of this study was to analyze its role in radiological joint damage in rheumatoid arthritis (RA). Six independent cohorts of patients with RA of European or North American descent were included, comprising 1789 patients with 5083 sets of X-rays. The Hospital Clínico San Carlos Rheumatoid Arthritis, Princesa Early Arthritis Register Longitudinal study, and Hospital Universitario de La Paz early arthritis (Spain) cohorts were used as discovery cohorts, and the Leiden Early Arthritis Clinic (The Netherlands), Wichita (United States), and National Databank for Rheumatic Diseases (United States and Canada) cohorts as replication cohorts. First, the PTGER4 rs6896969 single-nucleotide polymorphism (SNP) was genotyped using TaqMan assays and available Illumina Immunochip data and studied in the discovery and replication cohorts. Second, the PTGER4 gene and adjacent regions were analyzed using Immunochip genotyping data in the discovery cohorts. On the basis of pooled p values, linkage disequilibrium structure of the region, and location in regions with transcriptional properties, SNPs were selected for replication. The results from discovery, replication, and overall cohorts were pooled using inverse-variance-weighted meta-analysis. Influence of the polymorphisms on the overall radiological damage (constant effect) and on damage progression over time (time-varying effect) was analyzed. The rs6896969 polymorphism showed a significant association with radiological damage in the constant effect pooled analysis of the discovery cohorts, although no significant association was observed in the replication cohorts or the overall pooled analysis. Regarding the analysis of the PTGER4 region, 976 variants were analyzed in the discovery cohorts. From the constant and time-varying effect analyses, 12 and 20 SNPs, respectively, were selected for replication. Only the rs76523431 variant showed a significant association with radiographic progression in the time-varying effect pooled analysis of the discovery, replication, and overall cohorts. The overall pooled effect size was 1.10 (95 % confidence interval 1.05-1.14, p = 2.10 × 10(-5)), meaning that radiographic yearly progression was 10 % greater for each copy of the minor allele. The PTGER4 gene is a candidate risk factor for radiological progression in RA.
Quantifying Selection with Pool-Seq Time Series Data.
Taus, Thomas; Futschik, Andreas; Schlötterer, Christian
2017-11-01
Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence (E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly popular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of the selection targets. No such recommendations are available for the underlying parameters selection strength and dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective population size (Ne) and the number of replicates have the largest impact. Because the number of time points and sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in sequencing costs. We anticipate that time series analysis will become routine in E&R studies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Milfont, Taciano L; Schwarzenthal, Miriam
2014-05-01
Recent studies provide evidence for the chronotype-time perspective relationships. Larks are more future-oriented and owls are more present-oriented. The present study expands this initial research by examining whether the associations are replicable with other time perspective measures, and whether self-control explains the observed relationships. Chronotype was assessed with the Morningness-Eveningness Questionnaire and the basic associations with the Zimbardo Time Perspective Inventory were replicated in a sample of 142 New Zealand students, but not with other measures. Self-control mediated the influence of morningness on both future time perspective and delay of gratification. Implications of the findings are discussed.
Predictors of adherence to a brief behavioral insomnia intervention: daily process analysis.
Ruiter Petrov, Megan E; Lichstein, Kenneth L; Huisingh, Carrie E; Bradley, Laurence A
2014-05-01
Behavioral interventions for insomnia are effective in improving sleep, yet adherence is variable, and predictors of adherence have not been consistently replicated. The relationships between daily variations in state factors at the initiation of treatment and adherence have not been investigated. Using 2-week, self-report online logs, this study determined, among 53 college students with probable insomnia, the associations of pretreatment factors and daily factors during treatment on daily variations in adherence to one session of behavioral treatments for insomnia. These treatments included stimulus control therapy (SCT), sleep restriction therapy (SRT), and sleep hygiene (SH). Low self-efficacy was associated with poorer SCT and SH adherence. Participants with a "bed partner or pet" at least some of the time had better SCT adherence. Greater total sleep time and poorer sleep quality were associated with poor SCT and SRT adherence the following night. Greater sleep efficiency was related to greater next night SCT and SRT adherence. Alcohol consumption was related to poorer SRT and SH adherence the following night. Future studies should test the replicability of these findings. Adherence trials may want to test whether discouraging alcohol intake, enhancing treatment-related self-efficacy, and monitoring and providing feedback on sleep, early in treatment, affects adherence. Copyright © 2014. Published by Elsevier Ltd.
2010-01-01
Background The BALB/c mouse is commonly used to study RSV infection and disease. However, despite the many advantages of this well-characterised model, the inoculum is large, viral replication is restricted and only a very small amount of virus can be recovered from infected animals. A key question in this model is the fate of the administered virus. Is replication really being measured or is the model measuring the survival of the virus over time? To answer these questions we developed a highly sensitive strand-specific quantitative PCR (QPCR) able to accurately quantify the amount of RSV replication in the BALB/c mouse lung, allowing characterisation of RSV negative and positive strand RNA dynamics. Results In the mouse lung, no increase in RSV genome was seen above the background of the original inoculum whilst only a limited transient increase (< 1 log) in positive strand, replicative intermediate (RI) RNA occurred. This RNA did however persist at detectable levels for 59 days post infection. As expected, ribavirin therapy reduced levels of infectious virus and RI RNA in the mouse lung. However, whilst Palivizumab therapy was also able to reduce levels of infectious virus, it failed to prevent production of intracellular RI RNA. A comparison of RSV RNA kinetics in human (A549) and mouse (KLN205) cell lines demonstrated that RSV replication was also severely delayed and impaired in vitro in the mouse cells. Conclusions This is the first time that such a sensitive strand-specific QPCR technique has been to the RSV mouse system. We have accurately quantified the restricted and abortive nature of RSV replication in the mouse. Further in vitro studies in human and mouse cells suggest this restricted replication is due at least in part to species-specific host cell-viral interactions. PMID:20860795
Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L
2015-03-01
Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.
A magnetic-resonance-imaging-compatible remote catheter navigation system.
Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria
2013-04-01
A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.
Development of a replicated database of DHCP data for evaluation of drug use.
Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A
1996-01-01
This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database. PMID:8653451
Development of a replicated database of DHCP data for evaluation of drug use.
Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A
1996-01-01
This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database.
Reducing pharmacy wait time to promote customer service: a follow-up study.
Slowiak, Julie M; Huitema, Bradley E
2015-01-01
The present study had 3 objectives: (1) to evaluate the effects of 2 different interventions (feedback regarding customer satisfaction with wait time and combined feedback and goal setting) on wait time in a hospital outpatient pharmacy; (2) to assess the extent to which the previously applied interventions maintained their effects; and (3) to evaluate the differences between the effects of the original study and those of the present follow-up study. Participants were 10 employees (4 pharmacists and 6 technicians) of an outpatient pharmacy. Wait times and customer satisfaction ratings were collected for "waiting customers." An ABCB within-subjects design was used to assess the effects of the interventions on both wait time and customer satisfaction, where A was the baseline (no feedback and no goal setting); B was the customer satisfaction feedback; and C was the customer satisfaction feedback, the wait time feedback, and the goal setting for wait time reduction. Wait time decreased after baseline when the combined intervention was introduced, and wait time increased with the reintroduction of satisfaction feedback (alone). The results of the replication study confirm the pattern of the results of the original study and demonstrate high sensitivity of levels of customer satisfaction with wait time. The most impressive result of the replication is the nearly 2-year maintenance of lower wait time between the end of the original study and the beginning (baseline) of the replication.
A Combined Solar and Geomagnetic Index for Thermospheric Climate
NASA Technical Reports Server (NTRS)
Hunt, Linda; Mlynczak, Marty
2015-01-01
Infrared radiation from nitric oxide (NO) at 5.3 Â is a primary mechanism by which the thermosphere cools to space. The SABER instrument on the NASA TIMED satellite has been measuring thermospheric cooling by NO for over 13 years. Physically, changes in NO emission are due to changes in temperature, atomic oxygen, and the NO density. These physical changes however are driven by changes in solar irradiance and changes in geomagnetic conditions. We show that the SABER time series of globally integrated infrared power (Watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F10.7, Ap, and Dst indices. This fit enables several fundamental properties of NO cooling to be determined as well as their variability with time, permitting reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to be solar cycle dependent. This reconstruction provides a long-term time series of an integral radiative constraint on thermospheric climate that can be used to test climate models.
Hafner, Lukas; Lezaja, Aleksandra; Zhang, Xu; Lemmens, Laure; Shyian, Maksym; Albert, Benjamin; Follonier, Cindy; Nunes, Jose Manuel; Lopes, Massimo; Shore, David; Mattarocci, Stefano
2018-04-24
The Saccharomyces cerevisiae telomere-binding protein Rif1 plays an evolutionarily conserved role in control of DNA replication timing by promoting PP1-dependent dephosphorylation of replication initiation factors. However, ScRif1 binding outside of telomeres has never been detected, and it has thus been unclear whether Rif1 acts directly on the replication origins that it controls. Here, we show that, in unperturbed yeast cells, Rif1 primarily regulates late-replicating origins within 100 kb of a telomere. Using the chromatin endogenous cleavage ChEC-seq technique, we robustly detect Rif1 at late-replicating origins that we show are targets of its inhibitory action. Interestingly, abrogation of Rif1 telomere association by mutation of its Rap1-binding module increases Rif1 binding and origin inhibition elsewhere in the genome. Our results indicate that Rif1 inhibits replication initiation by interacting directly with origins and suggest that Rap1-dependent sequestration of Rif1 increases its effective concentration near telomeres, while limiting its action at chromosome-internal sites. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2
Kang, Sang-Min; Min, Saehong; Son, Kidong; Lee, Han Sol; Park, Eun Mee; Ngo, Huong T. T.; Tran, Huong T. L.; Lim, Yun-Sook; Hwang, Soon B.
2012-01-01
Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by quantitative real-time PCR, reporter assay, and immunoblot analysis. In addition, saponin potentiated IFN-α-induced anti-HCV activity. Moreover, saponin exerted antiviral activity even in IFN-α resistant mutant HCVcc-infected cells. To investigate how cellular genes were regulated by saponin, we performed microarray analysis using HCVcc-infected cells. We demonstrated that suppressor of cytokine signaling 2 (SOCS2) protein level was distinctively increased by saponin, which in turn resulted in inhibition of HCV replication. We further showed that silencing of SOCS2 resurrected HCV replication and overexpression of SOCS2 suppressed HCV replication. These data imply that saponin inhibits HCV replication via SOCS2 signaling pathway. These findings suggest that saponin may be a potent therapeutic agent for HCV patients. PMID:22745742
Exponential growth and selection in self-replicating materials from DNA origami rafts
NASA Astrophysics Data System (ADS)
He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.
2017-10-01
Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan
Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less
Ling, Feng; Hori, Akiko; Yoshitani, Ayako; Niu, Rong; Yoshida, Minoru; Shibata, Takehiko
2013-06-01
The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5'-exodeoxyribonuclease activity. Using a small ρ(-) mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ(-) cells and increased deletion mutagenesis at the ori5 region in ρ(+) cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5.
Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B
2018-04-01
Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.
Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, W.F.; Damron, D.M.; Lander, E.S.
1995-04-10
The intracellular pathogen Legionella pneumophila is unable to replicate in macrophages derived from most inbred mouse strains. Here, we report the mapping of a gene, called Lgn1, that determines whether mouse macrophages are permissive for the intracellular replication of L. pneumophila. Although Lgn1 has been previously reported to map to mouse chromosome 15, we show here that it actually maps to chromosome 13, between D13Mit128 and D13Mit70. In the absence of any regional candidates for Lgn1, this map position will facilitate positional cloning attempts directed at this gene. 22 refs., 2 figs., 2 tabs.
Risk Factors as Major Determinants of Resilience: A Replication Study.
Eshel, Yohanan; Kimhi, Shaul; Lahad, Mooli; Leykin, Dmitry; Goroshit, Marina
2018-03-16
The present study was conducted in the context of current concerns about replication in psychological research. It claims that risk factors should be regarded as an integral part of the definition of individual resilience, which should be defined in terms of the balance between individual strength or protective factors, and individual vulnerability or risk factors (IND-SVR). Five independent samples, including 3457 Israeli participants, were employed to determine the effects of resilience promoting and resilience suppressing variables on the IND-SVR index of resilience, and on its two components: recovery from adversity, and distress symptoms. Five path analyses were employed for determining the role of distress symptoms as a measure of psychological resilience, as compared to other indices of this resilience. Results indicated the major role of risk factors (distress symptoms) as an integral component of resilience. This role was generally replicated in the five investigated samples. Risk factors are legitimate, valid, and useful parts of the definition of psychological resilience. Resilience research has shifted away from studying individual risk factors to investigating the process through which individuals overcome the hardships they experience. The present data seem to suggest that this shift should be reexamined.
Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius
2008-01-01
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730
Durani, Lina Wati; Tan, Jen Kit; Chua, Kien Hui
2017-01-01
Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways. PMID:28596968
Durani, Lina Wati; Khor, Shy Cian; Tan, Jen Kit; Chua, Kien Hui; Mohd Yusof, Yasmin Anum; Makpol, Suzana
2017-01-01
Piper betle (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions of PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1 , PRDX6 , TP53 , CDKN2A , PAK2 , and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.
Cagliero, Cedric; Zhou, Yan Ning; Jin, Ding Jun
2014-01-01
In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes. PMID:25416798
Identifying the most hazardous synoptic meteorological conditions for Winter UK PM10 exceedences
NASA Astrophysics Data System (ADS)
Webber, Chris; Dacre, Helen; Collins, Bill; Masato, Giacomo
2016-04-01
Summary We investigate the relationship between synoptic scale meteorological variability and local scale pollution concentrations within the UK. Synoptic conditions representative of atmospheric blocking highlighted significant increases in UK PM10 concentration ([PM10]), with the probability of exceeding harmful [PM10] limits also increased. Once relationships had been diagnosed, The Met Office Unified Model (UM) was used to replicate these relationships, using idealised source regions of PM10. This helped to determine the PM10 source regions most influential throughout UK PM10 exceedance events and to test whether the model was capable of capturing the relationships between UK PM10 and atmospheric blocking. Finally, a time slice simulation for 2050-2060 helped to answer the question whether PM10 exceedance events are more likely to occur within a changing climate. Introduction Atmospheric blocking events are well understood to lead to conditions, conducive to pollution events within the UK. Literature shows that synoptic conditions with the ability to deflect the Northwest Atlantic storm track from the UK, often lead to the highest UK pollution concentrations. Rossby wave breaking (RWB) has been identified as a mechanism, which results in atmospheric blocking and its relationship with UK [PM10] is explored using metrics designed in Masato, et al., 2013. Climate simulations facilitated by the Met Office UM, enable these relationships between RWB and PM10 to be found within the model. Subsequently the frequency of events that lead to hazardous PM10 concentrations ([PM10]) in a future climate, can be determined, within a climate simulation. An understanding of the impact, meteorology has on UK [PM10] within a changing climate, will help inform policy makers, regarding the importance of limiting PM10 emissions, ensuring safe air quality in the future. Methodology and Results Three Blocking metrics were used to subset RWB into four categories. These RWB categories were all shown to increase UK [PM10] and to increase the probability of exceeding a UK [PM10] threshold, when they occurred within constrained regions. Further analysis highlighted that Omega Block events lead to the greatest probability of exceeding hazardous UK [PM10] limits. These events facilitated the advection of European PM10, while also providing stagnant conditions over the UK, facilitating PM10 accumulation. The Met Office UM was used and nudged to ERA-Interim Reanalysis wind and temperature fields, to replicate the relationships found using observed UK [PM10]. Inert tracers were implemented into the model to replicate UK PM10 source regions throughout Europe. The modelled tracers were seen to correlate well with observed [PM10] and Figure 1 highlights the correlations between a RWB metric and observed (a) and modelled (b) [PM10]. A further free running model simulation highlighted the deficiency of the Met Office UM in capturing RWB frequency, with a reduction over the Northwest Atlantic/ European region. A final time slice simulation was undertaken for the period 2050-2060, using Representative Concentration Pathway 8.5, which attempted to determine the change in frequency of UK PM10 exceedance events, due to changing meteorology, in a future climate. Conclusions RWB has been shown to increase UK [PM10] and to lead to greater probabilities of exceeding a harmful [PM10] threshold. Omega block events have been determined the most hazardous RWB subset and this is due to a combination of European advection and UK stagnation. Simulations within the Met Office UM were undertaken and the relationships seen between observed UK [PM10] and RWB were replicated within the model, using inert tracers. Finally, time slice simulations were undertaken, determining the change in frequency of UK [PM10] exceedance events within a changing climate. References Masato, G., Hoskins, B. J., Woolings, T., 2013; Wave-breaking Characteristics of Northern Hemisphere Winter Blocking: A Two-Dimensional Approach. J. Climate, 26, 4535-4549.
Cyclophilin B facilitates the replication of Orf virus.
Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng
2017-06-15
Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.
Griffiths, Samantha J.; Haas, Jürgen
2017-01-01
Varicella zoster virus (VZV) is a human herpesvirus which causes Varicella (chickenpox) upon primary infection and Zoster (shingles) following reactivation from latency (von Bokay, 1909). Whilst VZV is extensively studied, inherent features of VZV replication, such as cell-association of virus particles during in vitro culture and a restricted host range (limited to humans and some other primates) mean the cellular and viral mechanisms underlying VZV reactivation and pathogenesis remain largely uncharacterised. Much remains to be learnt about VZV, interactions with its host, and the development of disease. This protocol describes a basic VZV replication assay using a recombinant VZV-GFP reporter virus. As VZV is highly cell-associated in tissue culture, the reporter virus inoculum described here is a preparation of infected cells. This reporter virus-infected cell line can be used in combination with siRNA gene depletion or cDNA overexpression transfection protocols to determine the effect of individual cellular genes on virus replication. PMID:29085851
Giehr, Pascal; Kyriakopoulos, Charalampos; Ficz, Gabriella; Wolf, Verena; Walter, Jörn
2016-05-01
DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance.
Analyzing the dynamics of DNA replication in Mammalian cells using DNA combing.
Bialic, Marta; Coulon, Vincent; Drac, Marjorie; Gostan, Thierry; Schwob, Etienne
2015-01-01
How cells duplicate their chromosomes is a key determinant of cell identity and genome stability. DNA replication can initiate from more than 100,000 sites distributed along mammalian chromosomes, yet a given cell uses only a subset of these origins due to inefficient origin activation and regulation by developmental or environmental cues. An impractical consequence of cell-to-cell variations in origin firing is that population-based techniques do not accurately describe how chromosomes are replicated in single cells. DNA combing is a biophysical DNA fiber stretching method which permits visualization of ongoing DNA synthesis along Mb-sized single-DNA molecules purified from cells that were previously pulse-labeled with thymidine analogues. This allows quantitative measurements of several salient features of chromosome replication dynamics, such as fork velocity, fork asymmetry, inter-origin distances, and global instant fork density. In this chapter we describe how to obtain this information from asynchronous cultures of mammalian cells.
A newly discovered retrovirus, XMRV, isolated from prostate cancer tissues for the first time in 2006, has recently been reported in patients with this cancer, as well as in patients with chronic fatigue syndrome (CFS). However, five subsequent studies could not validate these reports. Since XMRV was isolated from the T and B cells of CFS patients, Vinay Pathak and his colleagues in the HIV Drug Resistance Program sought to determine how XMRV was countering intracellular defense mechanisms that inhibit retroviral replication in human cells.
Shock compression response of cold-rolled Ni/Al multilayer composites
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Weihs, Timothy P.; Thadhani, Naresh N.
2017-01-01
Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations [Specht et al., J. Appl. Phys. 111, 073527 (2012)]. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. These simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work.
Failure to Replicate the "Work Ethic" Effect in Pigeons
ERIC Educational Resources Information Center
Vasconcelos, Marco; Urcuioli, Peter J.; Lionello-DeNolf, Karen M.
2007-01-01
We report six unsuccessful attempts to replicate the "work ethic" phenomenon reported by Clement, Feltus, Kaiser, and Zentall (2000). In Experiments 1-5, pigeons learned two simultaneous discriminations in which the S+ and S- stimuli were obtained by pecking an initial stimulus once or multiple (20 or 40) times. Subsequent preference tests between…
USDA-ARS?s Scientific Manuscript database
We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal eff...
Bass, Hank W; Wear, Emily E; Lee, Tae-Jin; Hoffman, Gregg G; Gumber, Hardeep K; Allen, George C; Thompson, William F; Hanley-Bowdoin, Linda
2014-06-01
The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.
Molon, Mateusz; Zadrag-Tecza, Renata
2016-04-01
The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.
Single molecular biology: coming of age in DNA replication.
Liu, Xiao-Jing; Lou, Hui-Qiang
2017-09-20
DNA replication is an essential process of the living organisms. To achieve precise and reliable replication, DNA polymerases play a central role in DNA synthesis. Previous investigations have shown that the average rates of DNA synthesis on the leading and lagging strands in a replisome must be similar to avoid the formation of significant gaps in the nascent strands. The underlying mechanism has been assumed to be coordination between leading- and lagging-strand polymerases. However, Kowalczykowski's lab members recently performed single molecule techniques in E. coli and showed the real-time behavior of a replisome. The leading- and lagging-strand polymerases function stochastically and independently. Furthermore, when a DNA polymerase is paused, the helicase slows down in a self-regulating fail-safe mechanism, akin to a ''dead-man's switch''. Based on the real-time single-molecular observation, the authors propose that leading- and lagging-strand polymerases synthesize DNA stochastically within a Gaussian distribution. Along with the development and application of single-molecule techniques, we will witness a new age of DNA replication and other biological researches.
Yang, Hui-Peng; Luo, Su-Juan; Li, Yi-Nü; Zhang, Yao-Zhou; Zhang, Zhi-Fang
2011-10-01
The ORC (origin recognition complex) binds to the DNA replication origin and recruits other replication factors to form the pre-replication complex. The cDNA and genomic sequences of all six subunits of ORC in Bombyx mori (BmORC1-6) were determined by RACE (rapid amplification of cDNA ends) and bioinformatic analysis. The conserved domains were identified in BmOrc1p-6p and the C-terminal of BmOrc6p features a short sequence that may be specific for Lepidoptera. As in other organisms, each of the six BmORC subunits had evolved individually from ancestral genes in early eukaryotes. During embryo development, the six genes were co-regulated, but different ratios of the abundance of mRNAs were observed in 13 tissues of the fifth instar day-6 larvae. Infection by BmNPV (B. mori nucleopolyhedrovirus) initially decreased and then increased the abundance of BmORC. We suggest that some of the BmOrc proteins may have additional functions and that BmOrc proteins participate in the replication of BmNPV.
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment.
Gierliński, Marek; Cole, Christian; Schofield, Pietà; Schurch, Nicholas J; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J
2015-11-15
High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. g.j.barton@dundee.ac.uk. © The Author 2015. Published by Oxford University Press.
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment
Cole, Christian; Schofield, Pietà; Schurch, Nicholas J.; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J.
2015-01-01
Motivation: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. Results: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of ‘bad’ replicates, which can drastically affect the gene read-count distribution. Availability and implementation: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. Contact: g.j.barton@dundee.ac.uk PMID:26206307
Sauerhering, Lucie; Zickler, Martin; Elvert, Mareike; Behner, Laura; Matrosovich, Tatyana; Erbar, Stephanie; Matrosovich, Mikhail; Maisner, Andrea
2016-07-01
Highly pathogenic Nipah virus (NiV) causes symptomatic infections in pigs and humans. The severity of respiratory symptoms is much more pronounced in pigs than in humans, suggesting species-specific differences of NiV replication in porcine and human airways. Here, we present a comparative study on productive NiV replication in primary airway epithelial cell cultures of the two species. We reveal that NiV growth substantially differs in primary cells between pigs and humans, with a more rapid spread of infection in human airway epithelia. Increased replication, correlated with higher endogenous expression levels of the main NiV entry receptor ephrin-B2, not only significantly differed between airway cells of the two species but also varied between cells from different human donors. To our knowledge, our study provides the first experimental evidence of species-specific and individual differences in NiV receptor expression and replication kinetics in primary airway epithelial cells. It remains to be determined whether and how these differences contribute to the viral host range and pathogenicity.
Miller, Thomas E; terHorst, Casey P
2012-09-01
Succession is a foundation concept in ecology that describes changes in species composition through time, yet many successional patterns have not been thoroughly investigated. We highlight three hypotheses about succession that are often not clearly stated or tested: (1) individual communities become more stable over time, (2) replicate communities become more similar over time, and (3) diversity peaks at mid-succession. Testing general patterns of succession requires estimates of variation in trajectories within and among replicate communities. We followed replicate aquatic communities found within leaves of purple pitcher plants (Sarracenia purpurea) to test these three hypotheses. We found that stability of individual communities initially decreased, but then increased in older communities. Predation was highest in younger leaves but then declined, while competition was likely strongest in older leaves, as resources declined through time. Higher levels of predation and competition corresponded with periods of higher stability. As predicted, heterogeneity among communities decreased with age, suggesting that communities became more similar over time. Changes in diversity depended on trophic level. The diversity of bacteria slightly declined over time, but the diversity of consumers of bacteria increased linearly and strongly throughout succession. We suggest that studies need to focus on the variety of environmental drivers of succession, which are likely to vary through time and across habitats.
Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei; Chen, Mei-Ru
2014-08-01
Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Freudenberger, Nora; Meyer, Tina; Groitl, Peter; Dobner, Thomas; Schreiner, Sabrina
2018-02-15
Human adenoviruses (HAdV) are nonenveloped viruses containing a linear, double-stranded DNA genome surrounded by an icosahedral capsid. To allow proper viral replication, the genome is imported through the nuclear pore complex associated with viral core proteins. Until now, the role of these incoming virion proteins during the early phase of infection was poorly understood. The core protein V is speculated to bridge the core and the surrounding capsid. It binds the genome in a sequence-independent manner and localizes in the nucleus of infected cells, accumulating at nucleoli. Here, we show that protein V contains conserved SUMO conjugation motifs (SCMs). Mutation of these consensus motifs resulted in reduced SUMOylation of the protein; thus, protein V represents a novel target of the host SUMOylation machinery. To understand the role of protein V SUMO posttranslational modification during productive HAdV infection, we generated a replication-competent HAdV with SCM mutations within the protein V coding sequence. Phenotypic analyses revealed that these SCM mutations are beneficial for adenoviral replication. Blocking protein V SUMOylation at specific sites shifts the onset of viral DNA replication to earlier time points during infection and promotes viral gene expression. Simultaneously, the altered kinetics within the viral life cycle are accompanied by more efficient proteasomal degradation of host determinants and increased virus progeny production than that observed during wild-type infection. Taken together, our studies show that protein V SUMOylation reduces virus growth; hence, protein V SUMOylation represents an important novel aspect of the host antiviral strategy to limit virus replication and thereby points to potential intervention strategies. IMPORTANCE Many decades of research have revealed that HAdV structural proteins promote viral entry and mainly physical stability of the viral genome in the capsid. Our work over the last years showed that this concept needs expansion as the functions are more diverse. We showed that capsid protein VI regulates the antiviral response by modulation of the transcription factor Daxx during infection. Moreover, core protein VII interacts with SPOC1 restriction factor, which is beneficial for efficient viral gene expression. Here, we were able to show that core protein V also represents a novel substrate of the host SUMOylation machinery and contains several conserved SCMs; mutation of these consensus motifs reduced SUMOylation of the protein. Unexpectedly, we observed that introducing these mutations into HAdV promotes adenoviral replication. In conclusion, we offer novel insights into adenovirus core proteins and provide evidence that SUMOylation of HAdV factors regulates replication efficiency. Copyright © 2018 American Society for Microbiology.
Boulouis, Gregoire; Morotti, Andrea; Brouwers, H. Bart; Charidimou, Andreas; Jessel, Michael J.; Auriel, Eitan; Pontes-Neto, Octávio; Ayres, Alison; Vashkevich, Anastasia; Schwab, Kristin M.; Rosand, Jonathan; Viswanathan, Anand; Gurol, Mahmut E.; Greenberg, Steven M.; Goldstein, Joshua N.
2017-01-01
IMPORTANCE Hematoma expansion is a potentially modifiable predictor of poor outcome following an acute intracerebral hemorrhage (ICH). The ability to identify patients with ICH who are likeliest to experience hematoma expansion and therefore likeliest to benefit from expansion-targeted treatments remains an unmet need. Hypodensities within an ICH detected by noncontrast computed tomography (NCCT) have been suggested as a predictor of hematoma expansion. OBJECTIVE To determine whether hypodense regions, irrespective of their specific patterns, are associated with hematoma expansion in patients with ICH. DESIGN, SETTING, AND PARTICIPANTS We analyzed a large cohort of 784 patients with ICH (the development cohort; 55.6% female), examined NCCT findings for any hypodensity, and replicated our findings on a different cohort of patients (the replication cohort; 52.7% female). Baseline and follow-up NCCT data from consecutive patients with ICH presenting to a tertiary care hospital between 1994 and 2015 were retrospectively analyzed. Data analyses were performed between December 2015 and January 2016. MAIN OUTCOMES AND MEASURES Hypodensities were analyzed by 2 independent blinded raters. The association between hypodensities and hematoma expansion (>6 cm3 or 33% of baseline volume) was determined by multivariable logistic regression after controlling for other variables associated with hematoma expansion in univariate analyses with P ≤ .10. RESULTS A total of 1029 patients were included in the analysis. In the development and replication cohorts, 222 of 784 patients (28.3%) and 99 of 245 patients (40.4%; 321 of 1029 patients [31.2%]), respectively, had NCCT scans that demonstrated hypodensities at baseline (κ = 0.87 for interrater reliability). In univariate analyses, hypodensities were associated with hematoma expansion (86 of 163 patients with hematoma expansion had hypodensities [52.8%], whereas 136 of 621 patients without hematoma expansion had hypodensities [21.9%]; P < .001). The association between hypodensities and hematoma expansion remained significant (odds ratio, 3.42 [95%CI, 2.21–5.31]; P < .001) in a multivariable model; other independent predictors of hematoma expansion were a CT angiography spot sign, a shorter time to CT, warfarin use, and older age. The independent predictive value of hypodensities was again demonstrated in the replication cohort (odds ratio, 4.37 [95%CI, 2.05–9.62]; P < .001). CONCLUSION AND RELEVANCE Hypodensities within an acute ICH detected on an NCCT scan may predict hematoma expansion, independent of other clinical and imaging predictors. This novel marker may help clarify the mechanism of hematoma expansion and serve as a useful addition to clinical algorithms for determining the risk of and treatment stratification for hematoma expansion. PMID:27323314
Fanconi anemia FANCD2 and FANCI proteins regulate the nuclear dynamics of splicing factors.
Moriel-Carretero, María; Ovejero, Sara; Gérus-Durand, Marie; Vryzas, Dimos; Constantinou, Angelos
2017-12-04
Proteins disabled in the cancer-prone disorder Fanconi anemia (FA) ensure the maintenance of chromosomal stability during DNA replication. FA proteins regulate replication dynamics, coordinate replication-coupled repair of interstrand DNA cross-links, and mitigate conflicts between replication and transcription. Here we show that FANCI and FANCD2 associate with splicing factor 3B1 (SF3B1), a key spliceosomal protein of the U2 small nuclear ribonucleoprotein (U2 snRNP). FANCI is in close proximity to SF3B1 in the nucleoplasm of interphase and mitotic cells. Furthermore, we find that DNA replication stress induces the release of SF3B1 from nuclear speckles in a manner that depends on FANCI and on the activity of the checkpoint kinase ATR. In chromatin, both FANCD2 and FANCI associate with SF3B1, prevent accumulation of postcatalytic intron lariats, and contribute to the timely eviction of splicing factors. We propose that FANCD2 and FANCI contribute to the organization of functional domains in chromatin, ensuring the coordination of DNA replication and cotranscriptional processes. © 2017 Moriel-Carretero et al.
Characteristics of polyomavirus BK (BKPyV) infection in primary human urothelial cells.
Li, Ruomei; Sharma, Biswa Nath; Linder, Stig; Gutteberg, Tore Jarl; Hirsch, Hans H; Rinaldo, Christine Hanssen
2013-05-25
High-level polyomavirus BK (BKPyV) replication in urothelial cells is a hallmark of polyomavirus-associated hemorrhagic cystitis (PyVHC), a painful condition affecting bone marrow transplant recipients. In kidney transplant recipients, replication in tubular epithelial cells is associated with overt disease whereas high-level urothelial replication is clinically silent. We characterized BKPyV replication in primary human urothelial cells (HUCs) and compared it to replication in renal tubular epithelial cells (RPTECs). HUCs were easily infected, as shown by expression of T-antigens, VP1-3, and agnoprotein, and intranuclear virion production. Compared to RPTECs, progeny release was delayed by ≥24h and reduced. BKPyV-infected HUCs rounded up like "decoy cells" and detached without necrosis as shown by delayed cytokeratin-18 release, real-time viability monitoring and imaging. The data show that BKV infection of HUCs and RPTECs is significantly different and support the notion that PyVHC pathogenesis is not solely due to BKPyV replication, but likely requires urotoxic and immunological cofactors. Copyright © 2013 Elsevier Inc. All rights reserved.
Inside the lifestyle of the virophage.
Desnues, C; Raoult, D
2010-01-01
We sought to better characterize Sputnik, the first isolated virophage, and to analyze its parasitic lifestyle during co-infection with Marseillevirus (a new giant virus) in Acanthamoeba castellanii. A combination of electron microscopy, immunofluorescence microscopy, and real-time PCR was used to characterize the kinetics of the viral replication cycle. RT-PCR was performed to detect RNAs inside the Sputnik virions. Sputnik is a new viral entity carrying an almost complete ready-to-use set of viral RNAs (20 out of 21). Sputnik does not replicate with Marseillevirus but delays its replication cycle. While Marseillevirus is successfully internalized by A. castellanii following co-infections with Mamavirus and Sputnik, it does not initiate a replication cycle. In contrast, both Marseillevirus and Mamavirus can replicate in the amoeba in case of co-infection, but the development of one is exclusive from the other inside a single amoeba cell. This work provides new insight into the Sputnik replication cycle with another giant virus and confirms that Sputnik is a virophage. It shows new dimensions of the interactions existing among giant viruses. Copyright 2010 S. Karger AG, Basel.
Fast and cheap fabrication of molding tools for polymer replication
NASA Astrophysics Data System (ADS)
Richter, Christiane; Kirschner, Nadine; Worgull, Matthias; Rapp, Bastian E.
2017-02-01
Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap ( 50 €) and fast ( 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.
Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli
Kato, Jun-ichi; Katayama, Tsutomu
2001-01-01
The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the β-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA+, as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA+ proteins that comprise the apparatus regulating the activity of the initiator of replication. PMID:11483528
Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli.
Kato , J; Katayama, T
2001-08-01
The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.
Cellular replication limits in the Luria-Delbrück mutation model
NASA Astrophysics Data System (ADS)
Rodriguez-Brenes, Ignacio A.; Wodarz, Dominik; Komarova, Natalia L.
2016-08-01
Originally developed to elucidate the mechanisms of natural selection in bacteria, the Luria-Delbrück model assumed that cells are intrinsically capable of dividing an unlimited number of times. This assumption however, is not true for human somatic cells which undergo replicative senescence. Replicative senescence is thought to act as a mechanism to protect against cancer and the escape from it is a rate-limiting step in cancer progression. Here we introduce a Luria-Delbrück model that explicitly takes into account cellular replication limits in the wild type cell population and models the emergence of mutants that escape replicative senescence. We present results on the mean, variance, distribution, and asymptotic behavior of the mutant population in terms of three classical formulations of the problem. More broadly the paper introduces the concept of incorporating replicative limits as part of the Luria-Delbrück mutational framework. Guidelines to extend the theory to include other types of mutations and possible applications to the modeling of telomere crisis and fluctuation analysis are also discussed.
Differentiated strategies for improving streaming service quality
NASA Astrophysics Data System (ADS)
An, Hui; Chen, Xin-Meng
2005-02-01
With the explosive growth of streaming services, users are becoming more and more sensitive to its quality of service. To handle these problems, the research community focuses of the application of caching and replication techniques. But most approaches try to find specific strategies of caching of replication that suit for streaming service characteristics and to design some kind of universal policy to deal with all streaming objects. This paper explores the combination of caching and replication for improving streaming service quality and demonstrates that it makes sense to incorporate two technologies. It provides a system model and discusses some related issues of how to determining a refreshable streaming object and which refreshment policies a refreshable object should use.
Łopata, Krzysztof; Wojdas, Emilia; Nowak, Roman; Łopata, Paweł; Mazurek, Urszula
2018-01-01
The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk. PMID:29755422
Isolation and Characterization of Highly Replicable Hepatitis C Virus Genotype 1a Strain HCV-RMT
Arai, Masaaki; Tokunaga, Yuko; Takagi, Asako; Tobita, Yoshimi; Hirata, Yuichi; Ishida, Yuji; Tateno, Chise; Kohara, Michinori
2013-01-01
Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient’s serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo. PMID:24358200
Isolation and characterization of highly replicable hepatitis C virus genotype 1a strain HCV-RMT.
Arai, Masaaki; Tokunaga, Yuko; Takagi, Asako; Tobita, Yoshimi; Hirata, Yuichi; Ishida, Yuji; Tateno, Chise; Kohara, Michinori
2013-01-01
Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient's serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo.
Psychology's Replication Crisis and the Grant Culture: Righting the Ship.
Lilienfeld, Scott O
2017-07-01
The past several years have been a time for soul searching in psychology, as we have gradually come to grips with the reality that some of our cherished findings are less robust than we had assumed. Nevertheless, the replication crisis highlights the operation of psychological science at its best, as it reflects our growing humility. At the same time, institutional variables, especially the growing emphasis on external funding as an expectation or de facto requirement for faculty tenure and promotion, pose largely unappreciated hazards for psychological science, including (a) incentives for engaging in questionable research practices, (b) a single-minded focus on programmatic research, (c) intellectual hyperspecialization, (d) disincentives for conducting direct replications, (e) stifling of creativity and intellectual risk taking, (f) researchers promising more than they can deliver, and (g) diminished time for thinking deeply. Preregistration should assist with (a), but will do little about (b) through (g). Psychology is beginning to right the ship, but it will need to confront the increasingly deleterious impact of the grant culture on scientific inquiry.
The ESS and replicator equation in matrix games under time constraints.
Garay, József; Cressman, Ross; Móri, Tamás F; Varga, Tamás
2018-06-01
Recently, we introduced the class of matrix games under time constraints and characterized the concept of (monomorphic) evolutionarily stable strategy (ESS) in them. We are now interested in how the ESS is related to the existence and stability of equilibria for polymorphic populations. We point out that, although the ESS may no longer be a polymorphic equilibrium, there is a connection between them. Specifically, the polymorphic state at which the average strategy of the active individuals in the population is equal to the ESS is an equilibrium of the polymorphic model. Moreover, in the case when there are only two pure strategies, a polymorphic equilibrium is locally asymptotically stable under the replicator equation for the pure-strategy polymorphic model if and only if it corresponds to an ESS. Finally, we prove that a strict Nash equilibrium is a pure-strategy ESS that is a locally asymptotically stable equilibrium of the replicator equation in n-strategy time-constrained matrix games.
Ulusoy, Halil Ibrahim
2014-01-01
A new micelle-mediated extraction method was developed for preconcentration of ultratrace Hg(II) ions prior to spectrophotometric determination. 2-(2'-Thiazolylazo)-p-cresol (TAC) and Ponpe 7.5 were used as the chelating agent and nonionic surfactant, respectively. Hg(II) ions form a hydrophobic complex with TAC in a micelle medium. The main factors affecting cloud point extraction efficiency, such as pH of the medium, concentrations of TAC and Ponpe 7.5, and equilibration temperature and time, were investigated in detail. An overall preconcentration factor of 33.3 was obtained upon preconcentration of a 50 mL sample. The LOD obtained under the optimal conditions was 0.86 microg/L, and the RSD for five replicate measurements of 100 microg/L Hg(II) was 3.12%. The method was successfully applied to the determination of Hg in environmental water samples.
Akamatsu, Yufuko; Kobayashi, Takehiko
2015-05-01
In S phase, the replication and transcription of genomic DNA need to accommodate each other, otherwise their machineries collide, with chromosomal instability as a possible consequence. Here, we characterized the human replication fork barrier (RFB) that is present downstream from the 47S pre-rRNA gene (ribosomal DNA [rDNA]). We found that the most proximal transcription terminator, Sal box T1, acts as a polar RFB, while the other, Sal box T4/T5, arrests replication forks bidirectionally. The fork-arresting activity at these sites depends on polymerase I (Pol I) transcription termination factor 1 (TTF-1) and a replisome component, TIMELESS (TIM). We also found that the RFB activity was linked to rDNA copies with hypomethylated CpG and coincided with the time that actively transcribed rRNA genes are replicated. Failed fork arrest at RFB sites led to a slowdown of fork progression moving in the opposite direction to rRNA transcription. Chemical inhibition of transcription counteracted this deceleration of forks, indicating that rRNA transcription impedes replication in the absence of RFB activity. Thus, our results reveal a role of RFB for coordinating the progression of replication and transcription activity in highly transcribed rRNA genes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV.
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P; Robertson, Erle S; Schildkraut, Carl L; Verma, Subhash C
2016-05-05
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.
Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun
2016-01-01
The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.
NASA Technical Reports Server (NTRS)
Kerr, James R.; Haskins, James F.
1987-01-01
Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.
Registered Replication Report: Rand, Greene, and Nowak (2012).
Bouwmeester, S; Verkoeijen, P P J L; Aczel, B; Barbosa, F; Bègue, L; Brañas-Garza, P; Chmura, T G H; Cornelissen, G; Døssing, F S; Espín, A M; Evans, A M; Ferreira-Santos, F; Fiedler, S; Flegr, J; Ghaffari, M; Glöckner, A; Goeschl, T; Guo, L; Hauser, O P; Hernan-Gonzalez, R; Herrero, A; Horne, Z; Houdek, P; Johannesson, M; Koppel, L; Kujal, P; Laine, T; Lohse, J; Martins, E C; Mauro, C; Mischkowski, D; Mukherjee, S; Myrseth, K O R; Navarro-Martínez, D; Neal, T M S; Novakova, J; Pagà, R; Paiva, T O; Palfi, B; Piovesan, M; Rahal, R-M; Salomon, E; Srinivasan, N; Srivastava, A; Szaszi, B; Szollosi, A; Thor, K Ø; Tinghög, G; Trueblood, J S; Van Bavel, J J; van 't Veer, A E; Västfjäll, D; Warner, M; Wengström, E; Wills, J; Wollbrant, C E
2017-05-01
In an anonymous 4-person economic game, participants contributed more money to a common project (i.e., cooperated) when required to decide quickly than when forced to delay their decision (Rand, Greene & Nowak, 2012), a pattern consistent with the social heuristics hypothesis proposed by Rand and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned to conditions and who met the protocol inclusion criteria (an intent-to-treat approach that included the 65.9% of participants in the time-pressure condition and 7.5% in the forced-delay condition who did not adhere to the time constraints), and we observed a difference in contributions of -0.37 percentage points compared with an 8.6 percentage point difference calculated from the original data. Analyzing the data as the original article did, including data only for participants who complied with the time constraints, the RRR observed a 10.37 percentage point difference in contributions compared with a 15.31 percentage point difference in the original study. In combination, the results of the intent-to-treat analysis and the compliant-only analysis are consistent with the presence of selection biases and the absence of a causal effect of time pressure on cooperation.
Registered Replication Report: Rand, Greene, and Nowak (2012)
Bouwmeester, S.; Verkoeijen, P. P. J. L.; Aczel, B.; Barbosa, F.; Bègue, L.; Brañas-Garza, P.; Chmura, T. G. H.; Cornelissen, G.; Døssing, F. S.; Espín, A. M.; Evans, A. M.; Ferreira-Santos, F.; Fiedler, S.; Flegr, J.; Ghaffari, M.; Glöckner, A.; Goeschl, T.; Guo, L.; Hauser, O. P.; Hernan-Gonzalez, R.; Herrero, A.; Horne, Z.; Houdek, P.; Johannesson, M.; Koppel, L.; Kujal, P.; Laine, T.; Lohse, J.; Martins, E. C.; Mauro, C.; Mischkowski, D.; Mukherjee, S.; Myrseth, K. O. R.; Navarro-Martínez, D.; Neal, T. M. S.; Novakova, J.; Pagà, R.; Paiva, T. O.; Palfi, B.; Piovesan, M.; Rahal, R.-M.; Salomon, E.; Srinivasan, N.; Srivastava, A.; Szaszi, B.; Szollosi, A.; Thor, K. Ø.; Tinghög, G.; Trueblood, J. S.; Van Bavel, J. J.; van ‘t Veer, A. E.; Västfjäll, D.; Warner, M.; Wengström, E.; Wills, J.; Wollbrant, C. E.
2017-01-01
In an anonymous 4-person economic game, participants contributed more money to a common project (i.e., cooperated) when required to decide quickly than when forced to delay their decision (Rand, Greene & Nowak, 2012), a pattern consistent with the social heuristics hypothesis proposed by Rand and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned to conditions and who met the protocol inclusion criteria (an intent-to-treat approach that included the 65.9% of participants in the time-pressure condition and 7.5% in the forced-delay condition who did not adhere to the time constraints), and we observed a difference in contributions of −0.37 percentage points compared with an 8.6 percentage point difference calculated from the original data. Analyzing the data as the original article did, including data only for participants who complied with the time constraints, the RRR observed a 10.37 percentage point difference in contributions compared with a 15.31 percentage point difference in the original study. In combination, the results of the intent-to-treat analysis and the compliant-only analysis are consistent with the presence of selection biases and the absence of a causal effect of time pressure on cooperation. PMID:28475467
Reproducibility of geochemical and climatic signals in the Atlantic coral Montastraea faveolata
Smith, Joseph M.; Quinn, T.M.; Helmle, K.P.; Halley, R.B.
2006-01-01
Monthly resolved, 41-year-long stable isotopic and elemental ratio time series were generated from two separate heads of Montastraea faveolata from Looe Key, Florida, to assess the fidelity of using geochemical variations in Montastraea, the dominant reef-building coral of the Atlantic, to reconstruct sea surface environmental conditions at this site. The stable isotope time series of the two corals replicate well; mean values of ??18O and ??13C are indistinguishable between cores (compare 0.70??? versus 0.68??? for ??13C and -3.90??? versus - 3.94??? for ??18O). Mean values from the Sr/Ca time series differ by 0.037 mmol/mol, which is outside of analytical error and indicates that nonenvironmental factors are influencing the coral Sr/ Ca records at Looe Key. We have generated significant ?? 18O-sea surface temperature (SST) (R = -0.84) and Sr/ Ca-SST (R = -0.86) calibration equations at Looe Key; however, these equations are different from previously published equations for Montastraea. Variations in growth parameters or kinetic effects are not sufficient to explain either the observed differences in the mean offset between Sr/Ca time series or the disagreement between previous calibrations and our calculated ??18O-SST and Sr/Ca-SST relationships. Calibration differences are most likely due to variations in seawater chemistry in the continentally influenced waters at Looe Key. Additional geochemical replication studies of Montastraea are needed and should include multiple coral heads from open ocean localities complemented whenever possible by seawater chemistry determinations. Copyright 2006 by the American Geophysical Union.
Thiol-Ene functionalized siloxanes for use as elastomeric dental impression materials
Cole, Megan A.; Jankousky, Katherine C.; Bowman, Christopher N.
2014-01-01
Objectives Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. Methods Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. Results Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. Significance Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and ‘click’ nature. PMID:24553250
Bussière, F.; Lehoux, J.; Thompson, D. A.; Skrzeczkowski, L. J.; Perreault, J.-P.
1999-01-01
We characterized the peach latent mosaic viroid (PLMVd) replication intermediates that accumulate in infected peach leaves and determined the tissue and subcellular localization of the RNA species. Using in situ hybridization, we showed that PLMVd strands of both plus and minus polarities concentrate in the cells forming the palisade parenchyma. At the cellular level, PLMVd was found to accumulate predominantly in chloroplasts. Northern blot analyses demonstrated that PLMVd replicates via a symmetric mode involving the accumulation of both circular and linear monomeric strands of both polarities. No multimeric conformer was detected, indicating that both strands self-cleave efficiently via their hammerhead sequences. Dot blot hybridizations revealed that PLMVd strands of both polarities accumulate equally but that the relative concentrations vary by more than 50-fold between peach cultivars. Taken together these results establish two hallmarks for the classification of viroids. Group A viroids (e.g., PLMVd), which possess hammerhead structures, replicate in the chloroplasts via the symmetric mode. By contrast, group B viroids, which share a conserved central region, replicate in the nucleus via an asymmetric mechanism. This is an important difference between self-cleaving and non-self-cleaving viroids, and the implications for the evolutionary origin and replication are discussed. PMID:10400727
THE FORK AND THE KINASE: A DNA REPLICATION TALE FROM A CHK1 PERSPECTIVE
González Besteiro, Marina A.; Gottifredi, Vanesa
2014-01-01
Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. The checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged-DNA. Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Such findings unveil a puzzling connection between Chk1 and DNA-lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, the multifaceted and versatile functions of Chk1 at ongoing forks and replication origins determine the extent and quality of the cellular response to replication stress. PMID:25795119
A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae.
Pohl, Thomas J; Kolor, Katherine; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K
2013-11-06
Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time.
Replicating Health Economic Models: Firm Foundations or a House of Cards?
Bermejo, Inigo; Tappenden, Paul; Youn, Ji-Hee
2017-11-01
Health economic evaluation is a framework for the comparative analysis of the incremental health gains and costs associated with competing decision alternatives. The process of developing health economic models is usually complex, financially expensive and time-consuming. For these reasons, model development is sometimes based on previous model-based analyses; this endeavour is usually referred to as model replication. Such model replication activity may involve the comprehensive reproduction of an existing model or 'borrowing' all or part of a previously developed model structure. Generally speaking, the replication of an existing model may require substantially less effort than developing a new de novo model by bypassing, or undertaking in only a perfunctory manner, certain aspects of model development such as the development of a complete conceptual model and/or comprehensive literature searching for model parameters. A further motivation for model replication may be to draw on the credibility or prestige of previous analyses that have been published and/or used to inform decision making. The acceptability and appropriateness of replicating models depends on the decision-making context: there exists a trade-off between the 'savings' afforded by model replication and the potential 'costs' associated with reduced model credibility due to the omission of certain stages of model development. This paper provides an overview of the different levels of, and motivations for, replicating health economic models, and discusses the advantages, disadvantages and caveats associated with this type of modelling activity. Irrespective of whether replicated models should be considered appropriate or not, complete replicability is generally accepted as a desirable property of health economic models, as reflected in critical appraisal checklists and good practice guidelines. To this end, the feasibility of comprehensive model replication is explored empirically across a small number of recent case studies. Recommendations are put forward for improving reporting standards to enhance comprehensive model replicability.
The human intra-S checkpoint response to UVC-induced DNA damage.
Kaufmann, William K
2010-05-01
The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.
A statistical analysis of murine incisional and excisional acute wound models.
Ansell, David M; Campbell, Laura; Thomason, Helen A; Brass, Andrew; Hardman, Matthew J
2014-01-01
Mice represent the most commonly used species for preclinical in vivo research. While incisional and excisional acute murine wound models are both frequently employed, there is little agreement on which model is optimum. Moreover, current lack of standardization of wounding procedure, analysis time point(s), method of assessment, and the use of individual wounds vs. individual animals as replicates makes it difficult to compare across studies. Here we have profiled secondary intention healing of incisional and excisional wounds within the same animal, assessing multiple parameters to determine the optimal methodology for future studies. We report that histology provides the least variable assessment of healing. Furthermore, histology alone (not planimetry) is able to detect accelerated healing in a castrated mouse model. Perhaps most importantly, we find virtually no correlation between wounds within the same animal, suggesting that use of wound (not animal) biological replicates is perfectly acceptable. Overall, these findings should guide and refine future studies, increasing the likelihood of detecting novel phenotypes while reducing the numbers of animals required for experimentation. © 2014 by the Wound Healing Society.
A statistical analysis of murine incisional and excisional acute wound models
Ansell, David M; Campbell, Laura; Thomason, Helen A; Brass, Andrew; Hardman, Matthew J
2014-01-01
Mice represent the most commonly used species for preclinical in vivo research. While incisional and excisional acute murine wound models are both frequently employed, there is little agreement on which model is optimum. Moreover, current lack of standardization of wounding procedure, analysis time point(s), method of assessment, and the use of individual wounds vs. individual animals as replicates makes it difficult to compare across studies. Here we have profiled secondary intention healing of incisional and excisional wounds within the same animal, assessing multiple parameters to determine the optimal methodology for future studies. We report that histology provides the least variable assessment of healing. Furthermore, histology alone (not planimetry) is able to detect accelerated healing in a castrated mouse model. Perhaps most importantly, we find virtually no correlation between wounds within the same animal, suggesting that use of wound (not animal) biological replicates is perfectly acceptable. Overall, these findings should guide and refine future studies, increasing the likelihood of detecting novel phenotypes while reducing the numbers of animals required for experimentation. PMID:24635179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M.N.; Marse, T.J.; Williams, P.L.
1998-12-31
In this study initial data were generated to develop laboratory control charts for aquatic toxicity testing using the nematode Caenorhabditis elegans. Tests were performed using two reference toxicants: CdCl{sub 2} and CuCl{sub 2}. All tests were performed for 24 h without a food source and of 48 h with a food source in a commonly used nematode aquatic medium. Each test was replicated 6 times with each replicate having 6 wells per concentration with 10 {+-} 1 worms per well. Probit analysis was used to estimate LC{sub 50} values for each test. The data were used to construct a meanmore » ({bar x}) laboratory control chart for each reference toxicant. The coefficient of variation (CV) for three of the four reference toxicant tests was less than 20%, which demonstrates an excellent degree of reproducibility. These CV values are well within suggested standards for determination of organism sensitivity and overall test system credibility. A standardized procedure for performing 24 h and 48 h aquatic toxicity studies with C. elegans is proposed.« less
Spatial arrangement of legionella colonies in intact biofilms from a model cooling water system.
Taylor, Michael; Ross, Kirstin; Bentham, Richard
2013-01-01
There is disagreement among microbiologists about whether Legionella requires a protozoan host in order to replicate. This research sought to determine where in biofilm Legionellae are found and whether all biofilm associated Legionella would be located within protozoan hosts. While it is accepted that Legionella colonizes biofilm, its life cycle and nutritional fastidiousness suggest that Legionella employs multiple survival strategies to persist within microbial systems. Fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) demonstrated an undulating biofilm surface architecture and a roughly homogenous distribution of heterotrophic bacteria with clusters of protozoa. Legionella displayed 3 distinct spatial arrangements either contained within or directly associated with protozoa, or dispersed in loosely associated clusters or in tightly packed aggregations of cells forming dense colonial clusters. The formation of discreet clusters of tightly packed Legionella suggests that colony formation is influenced by specific environmental conditions allowing for limited extracellular replication. This work represents the first time that an environmentally representative, multispecies biofilm containing Legionella has been fluorescently tagged and Legionella colony morphology noted within a complex microbial system.
CLB5-dependent activation of late replication origins in S. cerevisiae.
Donaldson, A D; Raghuraman, M K; Friedman, K L; Cross, F R; Brewer, B J; Fangman, W L
1998-08-01
Replication origins in chromosomes are activated at specific times during the S phase. We show that the B-type cyclins are required for proper execution of this temporal program. clb5 cells activate early origins but not late origins, explaining the previously described long clb5 S phase. Origin firing appears normal in cIb6 mutants. In clb5 clb6 double mutant cells, the late origin firing defect is suppressed, accounting for the normal duration of the phase despite its delayed onset. Therefore, Clb5p promotes the timely activation of early and late origins, but Clb6p can activate only early origins. In clb5 clb6 mutants, the other B-type cyclins (Clb1-4p) promote an S phase during which both early and late replication origins fire.
DNA replication stress restricts ribosomal DNA copy number
Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin
2017-01-01
Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237
Barkley, K E; Fields, B; Dilger, A C; Boler, D D
2018-06-07
The objective was to determine the effect of machine, anatomical location and replication (multiple readings) on instrumental color and to characterize the amount of variation each factor contributed to overall color. Instrumental color was measured 3 times on the anterior and 3 times on the posterior end of 250 pork loins with 2 different Minolta CR-400 Chroma meter devices. Each Minolta was programed to use a D65 illuminant, 2º observer with an 8 mm aperture, and calibrated with white tiles specific to each machine. Therefore, a total of 12 instrumental color measurements were collected on each loin. The VARCOMP procedure in SAS was used to estimate the proportion of variation contributed by each factor to CIE L*, a*, b*, chroma and hue. Based on previous research, the average untrained consumer is able to distinguish between 3-L* units, 0.4-a* units, and 0.9-hue angle units. Loins evaluated with machine 1 were 0.71 L* units darker (P < 0.01), 1.09 b* units more yellow (P < 0.01), 0.47 chroma units more saturated (P < 0.01), and had a hue angle 5.12 units greater (P < 0.01) than when evaluated with machine 2 but did not differ (P = 0.24) in redness. The anterior portion of the loin was lighter, less red, more yellow, more saturated and had a greater hue angle than the posterior end (P < 0.01). All color trait values decreased (P < 0.01) as replication number increased. Inherent color differences among loins contributed the greatest proportion of variability for lightness (58%), redness (57%), yellowness (70%), saturation (70%) and hue angle (49%). Machine contributed 1% variability to lightness 3% to saturation, 23% to yellowness and 31% to hue angle (31%) but did not contribute to variability for redness. Anatomical location contributed 41% to lightness, 43% to redness, 7% to yellowness, 27% to saturation and 31% to hue angle. Replication did not contribute to total variation for any color traits, even though it did differ among measurements. Overall, there were differences in instrumental color values between the two machines tested but those differences were likely less than the threshold for detection by a consumer. Even so, inherent color differences between loins were a greater contributor to total variability than the differences between the 2 machines. Therefore, it is more important to define the location of measurements than replication or machine when using a Minolta CR-400 when performing color evaluations, assuming the settings are the same.
Stelzer, Erin A.; Loftin, Keith A.; Struffolino, Pamela
2013-01-01
Water samples were collected from Maumee Bay State Park Lakeside Beach, Oregon, Ohio, during the 2012 recreational season and analyzed for selected cyanobacteria gene sequences by DNA-based quantitative polymerase chain reaction (qPCR) and RNA-based quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results from the four DNA assays (for quantifying total cyanobacteria, total Microcystis, and Microcystis and Planktothrix strains that possess the microcystin synthetase E (mcyE) gene) and two RNA assays (for quantifying Microcystis and Planktothrix genera that are expressing the microcystin synthetase E (mcyE) gene) were compared to microcystin concentration results determined by an enzyme-linked immunosorbent assay (ELISA). Concentrations of the target in replicate analyses were log10 transformed. The average value of differences in log10 concentrations for the replicates that had at least one detection were found to range from 0.05 to >0.37 copy per 100 milliliters (copy/100 mL) for DNA-based methods and from >0.04 to >0.17 copy/100 mL for RNA-based methods. RNA has a shorter half-life than DNA; consequently, a 24-hour holding-time study was done to determine the effects of holding time on RNA concentrations. Holding-time comparisons for the RNA-based Microcystis toxin mcyE assay showed reductions in the number of copies per 100 milliliters over 24 hours. The log difference between time 2 hours and time 24 hours was >0.37 copy/100 mL, which was higher than the analytical variability (log difference of >0.17 copy/100 mL). Spearman’s correlation analysis indicated that microcystin toxin concentrations were moderately to highly related to DNA-based assay results for total cyanobacteria (rho=0.69), total Microcystis (rho=0.74), and Microcystis strains that possess the mcyE gene (rho=0.81). Microcystin toxin concentrations were strongly related with RNA-based assay results for Microcystis mcyE gene expression (rho=0.95). Correlation analysis could not be done for Planktothrix mcyE gene expression because of too few detections.