Science.gov

Sample records for replicon plasmid-based vaccines

  1. Potent tetravalent replicon vaccines against botulinum neurotoxins using DNA-based Semliki Forest virus replicon vectors.

    PubMed

    Yu, Yun-Zhou; Guo, Jin-Peng; An, Huai-Jie; Zhang, Shu-Ming; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2013-05-07

    Human botulism is commonly associated with botulinum neurotoxin (BoNT) serotypes A, B, E and F. This suggests that the greatest need is for a tetravalent vaccine that provides protection against all four of these serotypes. In current study, we investigated the feasibility of generating several tetravalent vaccines that protected mice against the four serotypes. Firstly, monovalent replicon vaccine against BoNT induced better antibody response and protection than that of corresponding conventional DNA vaccine. Secondly, dual-expression DNA replicon pSCARSE/FHc or replicon particle VRP-E/FHc vaccine was well resistant to the challenge of BoNT/E and BoNT/F mixture as a combination vaccine composed of two monovalent replicon vaccines. Finally, the dual-expression DNA replicon or replicon particle tetravalent vaccine could simultaneously and effectively neutralize and protect the four BoNT serotypes. Protection correlated directly with serum ELISA titers and neutralization antibody levels to BoNTs. Therefore, replicon-based DNA or particle might be effective vector to develop BoNT vaccines, which might be more desirable for use in clinical application than the conventional DNA vaccines. Our studies demonstrate the utility of combining dual-expression DNA replicon or replicon particle vaccines into multi-agent formulations as potent tetravalent vaccines for eliciting protective responses to four serotypes of BoNTs.

  2. Replicon RNA Viral Vectors as Vaccines

    PubMed Central

    Lundstrom, Kenneth

    2016-01-01

    Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions. PMID:27827980

  3. Pentavalent replicon vaccines against botulinum neurotoxins and tetanus toxin using DNA-based Semliki Forest virus replicon vectors

    PubMed Central

    Yu, YunZhou; Liu, Si; Ma, Yao; Gong, Zheng-Wei; Wang, Shuang; Sun, Zhi-Wei

    2014-01-01

    The clostridial neurotoxin (CNT) family includes botulinum neurotoxin (BoNT), serotypes A, B, E, and F of which can cause human botulism, and tetanus neurotoxin (TeNT), which is the causative agent of tetanus. This suggests that the greatest need is for a multivalent or multiagent vaccine that provides protection against all 5 agents. In this study, we investigated the feasibility of generating several pentavalent replicon vaccines that protected mice against BoNTs and TeNT. First, we evaluated the potency of individual replicon DNA or particle vaccine against TeNT, which induced strong antibody and protective responses in BALB/c mice following 2 or 3 immunizations. Then, the individual replicon TeNT vaccines were combined with tetravalent BoNTs vaccines to prepare 4 types of pentavalent replicon vaccines. These replicon DNA or particle pentavalent vaccines could simultaneously and effectively induce antibody responses and protect effects against the 5 agents. Finally, a solid-phase assay showed that the sera of pentavalent replicon formulations-immunized mice inhibited the binding of THc to the ganglioside GT1b as the sera of individual replicon DNA or particle-immunized mice. These results indicated these pentavalent replicon vaccines could protect against the 4 BoNT serotypes and effectively neutralize and protect the TeNT. Therefore, our studies demonstrate the utility of combining replicon DNA or particle vaccines into multi-agent formulations as potent pentavalent vaccines for eliciting protective responses against BoNTs and TeNT. PMID:25424795

  4. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    PubMed

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax.

  5. Engineered alphavirus replicon vaccines based on known attenuated viral mutants show limited effects on immunogenicity.

    PubMed

    Maruggi, Giulietta; Shaw, Christine A; Otten, Gillis R; Mason, Peter W; Beard, Clayton W

    2013-12-01

    The immunogenicity of alphavirus replicon vaccines is determined by many factors including the level of antigen expression and induction of innate immune responses. Characterized attenuated alphavirus mutants contain changes to the genomic 5' UTR and mutations that result in altered non-structural protein cleavage timing leading to altered levels of antigen expression and interferon (IFN) induction. In an attempt to create more potent replicon vaccines, we engineered a panel of Venezuelan equine encephalitis-Sindbis virus chimeric replicons that contained these attenuating mutations. Modified replicons were ranked for antigen expression and IFN induction levels in cell culture and then evaluated in mice. The results of these studies showed that differences in antigen production and IFN induction in vitro did not correlate with large changes in immunogenicity in vivo. These findings indicate that the complex interactions between innate immune response and the replicon's ability to express antigen complicate rational design of more potent alphavirus replicons.

  6. Mitigating the looming vaccine crisis: production and delivery of plasmid-based vaccines.

    PubMed

    Ongkudon, Clarence M; Ho, Jenny; Danquah, Michael K

    2011-03-01

    The exponentially growing human population and the emergence of new diseases are clear indications that the world can no longer depend solely on conventional vaccine technologies and production schemes. The race to find a new vaccine technology is crucial to help speed up and complement the World Health Organization (WHO) disease elimination program. The ultimate goal is to uncover fast and efficient production schemes in the event of a pandemic, and also to effectively fight deadly diseases such as malaria, bird flu, hepatitis, and human immunodeficiency virus (HIV). Plasmid DNA vaccines, if properly formulated, offer specific priming of the immune system and similar or even better prophylactic effects than conventional vaccines. This article discusses many of the critical issues that need to be considered when developing fast, effective, and reliable plasmid DNA vaccine manufacturing processes. Different modes of plasmid production via bacterial fermentation are compared. Plasmid purification by chromatography is specifically discussed as it is the most commercially viable bioprocess engineering technique for continuous purification of supercoiled plasmid DNA. Current techniques and progress covering the area of plasmid DNA vaccine design, formulation, and delivery are also put forward.

  7. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    PubMed

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine.

  8. Development and preclinical evaluation of an alphavirus replicon particle vaccine for cytomegalovirus.

    PubMed

    Reap, Elizabeth A; Morris, John; Dryga, Sergey A; Maughan, Maureen; Talarico, Todd; Esch, Robert E; Negri, Sarah; Burnett, Bruce; Graham, Andrew; Olmsted, Robert A; Chulay, Jeffrey D

    2007-10-16

    We used a replication-incompetent, single-cycle, alphavirus replicon vector system to produce virus-like replicon particles (VRP) expressing the extracellular domain of human cytomegalovirus (CMV) glycoprotein B or a pp65/IE1 fusion protein. Efficient production methods were scaled to produce pilot lots and clinical lots of each alphavirus replicon vaccine component. The vaccine induced high-titered antibody responses in mice and rabbits, as measured by ELISA and CMV neutralization assays, and robust T-cell responses in mice, as measured by IFN-gamma ELISPOT assay. A toxicity study in rabbits showed no adverse effects in any toxicology parameter. These studies support clinical testing of this novel CMV alphavirus replicon vaccine in humans.

  9. [The vaccines based on the replicon of the venezuelan equine encephalomyelitis virus against viral hemorrhagic fevers].

    PubMed

    Petrov, A A; Plekhanova, T M; Sidorova, O N; Borisevich, S V; Makhlay, A A

    2015-01-01

    The status of the various recombinant DNA and RNA-derived candidate vaccines, as well as the Venezuelan equine encephalomyelitis virus (VEEV) replicon vaccine system against extremely hazardous viral hemorrhagic fevers, were reviewed. The VEEV-based replication-incompetent vectors offer attractive features in terms of safety, high expression levels of the heterologous viral antigen, tropism to dendritic cells, robust immune responses, protection efficacy, low potential for pre-existing anti-vector immunity and possibility of engineering multivalent vaccines were tested. These features of the VEEV replicon system hold much promise for the development of new generation vaccine candidates against viral hemorrhagic fevers.

  10. Prime-boost vaccinations using recombinant flavivirus replicon and vaccinia virus vaccines: an ELISPOT analysis.

    PubMed

    Rattanasena, Paweena; Anraku, Itaru; Gardner, Joy; Le, Thuy T; Wang, Xiang Ju; Khromykh, Alexander A; Suhrbier, Andreas

    2011-03-01

    Recombinant Kunjin replicon virus-like particle (VLP), vaccinia virus (rVV) and DNA vaccines were tested in a large series of prime-boost vaccinations using interferon (IFN)γ ELISPOT assays that reflected effector (E), effector memory (EM) and central memory (CM) responses. All vaccine constructs encoded the murine polytope immunogen and responses to four CD8 T-cell epitopes (TYQRTRALV, SYIPSAEKI, YPHFMPTNL and RPQASGVYM) were measured. VLP/rVV out performed (by 14- to 20-fold) DNA/rVV for induction of CM responses, whereas EM responses were only marginally increased. DNA/VLP induced more EM, but not CM responses, than VLP alone, illustrating that DNA priming is not universally beneficial. rVV/VLP gave comparable results to VLP/rVV combinations, although the former induced approximately threefold more E responses, illustrating the utility of poxvirus priming in this setting. Although higher doses of VLP and rVV increased responses after single immunizations, such dose increases provided only marginal benefit in heterologous prime-boost settings. Triple combinations also provided no benefit over two vaccinations. DNA vaccination was associated with broad CM, but not EM responses, and the breadth of EM and E responses was significantly improved by increasing viral vector dose. VLP/rVV, rather than DNA priming, induced T cells with consistently high IFNγ secretion profiles across all ELISPOT measures. Vector-specific CD8 T-cell responses generally correlated well with immunogen-specific responses, although, as expected, single use of each vector reduced the relative levels of vector-specific responses. These experiments illustrate the utility of replicons in heterologous prime-boost vaccinations, and illustrate the diversity of data that can be obtained from ELISPOT analyses.

  11. Distinct immune responses of recombinant plasmid DNA replicon vaccines expressing two types of antigens with or without signal sequences.

    PubMed

    Yu, Yun-Zhou; Li, Na; Wang, Wen-Bin; Wang, Shuang; Ma, Yao; Yu, Wei-Yuan; Sun, Zhi-Wei

    2010-11-03

    Here, DNA replicon vaccines encoding the Hc domain of botulinum neurotoxin serotype A (AHc) or the receptor binding domain of anthrax protective antigen (PA4) with or without signal sequences were evaluated in mice. Strong antibody and protective responses were elicited only from AHc DNA vaccines with an Ig κ signal sequence or tissue plasminogen activator signal sequence. Meanwhile, there were no differences in total antibody responses or isotypes, lymphocyte proliferative responses, cytokine profiles and protective immune responses with the PA4 DNA vaccines with or without a signal sequence. Therefore, use of targeting sequences in designing DNA replicon vaccines depends on the specific antigen.

  12. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses.

    PubMed

    Pushko, P; Geisbert, J; Parker, M; Jahrling, P; Smith, J

    2001-12-01

    Lassa and Ebola viruses cause acute, often fatal, hemorrhagic fever diseases, for which no effective vaccines are currently available. Although lethal human disease outbreaks have been confined so far to sub-Saharan Africa, they also pose significant epidemiological concern worldwide as demonstrated by several instances of accidental importation of the viruses into North America and Europe. In the present study, we developed experimental individual vaccines for Lassa virus and bivalent vaccines for Lassa and Ebola viruses that are based on an RNA replicon vector derived from an attenuated strain of Venezuelan equine encephalitis virus. The Lassa and Ebola virus genes were expressed from recombinant replicon RNAs that also encoded the replicase function and were capable of efficient intracellular self-amplification. For vaccinations, the recombinant replicons were incorporated into virus-like replicon particles. Guinea pigs vaccinated with particles expressing Lassa virus nucleoprotein or glycoprotein genes were protected from lethal challenge with Lassa virus. Vaccination with particles expressing Ebola virus glycoprotein gene also protected the animals from lethal challenge with Ebola virus. In order to evaluate a single vaccine protecting against both Lassa and Ebola viruses, we developed dual-expression particles that expressed glycoprotein genes of both Ebola and Lassa viruses. Vaccination of guinea pigs with either dual-expression particles or with a mixture of particles expressing Ebola and Lassa virus glycoprotein genes protected the animals against challenges with Ebola and Lassa viruses. The results showed that immune responses can be induced against multiple vaccine antigens coexpressed from an alphavirus replicon and suggested the possibility of engineering multivalent vaccines based upon alphavirus vectors for arenaviruses, filoviruses, and possibly other emerging pathogens.

  13. Kunjin virus replicon-based vaccines expressing Ebola virus glycoprotein GP protect the guinea pig against lethal Ebola virus infection.

    PubMed

    Reynard, O; Mokhonov, V; Mokhonova, E; Leung, J; Page, A; Mateo, M; Pyankova, O; Georges-Courbot, M C; Raoul, H; Khromykh, A A; Volchkov, V E

    2011-11-01

    Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)-derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor-truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection.

  14. Multiagent Vaccines Vectored by Venezuelan Equine Encephalitis Virus Replicon Elicits Immune Responses to Marburg Virus and Protection Against Anthrax and Botulinum Neurotoxin in Mice

    DTIC Science & Technology

    2006-01-01

    formulations of individual Venezuelan equine encephalitis (VEE) virus replicon- vectored vaccines against a bacterial disease, anthrax; a viral disease...here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease...on days 0, 35, and 70 with the indicated vaccines. Ne b Infectious units were used to measure VRP and milliliters were used to measur c The

  15. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    SciTech Connect

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-08-15

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  16. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins.

    PubMed

    Zheng, Min; Jin, Ningyi; Liu, Qi; Huo, Xiaowei; Li, Yang; Hu, Bo; Ma, Haili; Zhu, Zhanbo; Cong, Yanzhao; Li, Xiao; Jin, Minglan; Zhu, Guangze

    2009-08-15

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  17. Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates.

    PubMed

    Bates, John T; Pickens, Jennifer A; Schuster, Jennifer E; Johnson, Monika; Tollefson, Sharon J; Williams, John V; Davis, Nancy L; Johnston, Robert E; Schultz-Darken, Nancy; Slaughter, James C; Smith-House, Frances; Crowe, James E

    2016-02-10

    Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are major causes of illness among children, the elderly, and the immunocompromised. No vaccine has been licensed for protection against either of these viruses. We tested the ability of two Venezuelan equine encephalitis virus-based viral replicon particle (VEE-VRP) vaccines that express the hRSV or hMPV fusion (F) protein to confer protection against hRSV or hMPV in African green monkeys. Animals immunized with VEE-VRP vaccines developed RSV or MPV F-specific antibodies and serum neutralizing activity. Compared to control animals, immunized animals were better able to control viral load in the respiratory mucosa following challenge and had lower levels of viral genome in nasopharyngeal and bronchoalveolar lavage fluids. The high level of immunogenicity and protective efficacy induced by these vaccine candidates in nonhuman primates suggest that they hold promise for further development.

  18. A Kunjin Replicon Virus-like Particle Vaccine Provides Protection Against Ebola Virus Infection in Nonhuman Primates

    PubMed Central

    Pyankov, Oleg V.; Bodnev, Sergey A.; Pyankova, Olga G.; Solodkyi, Vladislav V.; Pyankov, Stepan A.; Setoh, Yin Xiang; Volchkova, Valentina A.; Suhrbier, Andreas; Volchkov, Viktor V.; Agafonov, Alexander A.; Khromykh, Alexander A.

    2015-01-01

    The current unprecedented outbreak of Ebola virus (EBOV) disease in West Africa has demonstrated the urgent need for a vaccine. Here, we describe the evaluation of an EBOV vaccine candidate based on Kunjin replicon virus-like particles (KUN VLPs) encoding EBOV glycoprotein with a D637L mutation (GP/D637L) in nonhuman primates. Four African green monkeys (Cercopithecus aethiops) were injected subcutaneously with a dose of 109 KUN VLPs per animal twice with an interval of 4 weeks, and animals were challenged 3 weeks later intramuscularly with 600 plaque-forming units of Zaire EBOV. Three animals were completely protected against EBOV challenge, while one vaccinated animal and the control animal died from infection. We suggest that KUN VLPs encoding GP/D637L represent a viable EBOV vaccine candidate. PMID:25732811

  19. Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant.

    PubMed

    Li, Na; Yu, Yun-Zhou; Yu, Wei-Yuan; Sun, Zhi-Wei

    2011-03-01

    Granulocyte-macrophage clony-stimulating factor (GM-CSF) is an attractive adjuvant for a DNA vaccine on account of its ability to recruit antigen-presenting cells to the site of antigen synthesis as well as stimulate the maturation of dendritic cells.This study evaluated the utility of GM-CSF as a plasmid DNA replicon vaccine adjuvants for botulinum neurotoxin serotype A (BoNT/A) in mouse model. In balb/c mice that received the plasmid DNA replicon vaccines derived from Semliki Forest virus (SFV) carrying the Hc gene of BoNT/A (AHc), both antibody and lymphoproliferative response specific to AHc were induced, the immunogenicity was enhanced by co-delivery or coexpress of the GM-CSF gene. In particular, when AHc and GM-CSF were coexpressed within the SFV based DNA vaccine, the anti-AHc antibody titers and survival rates of immunized mice after challenged with BoNT/A were significantly increased, and further enhanced by coimmunization with aluminum phosphate adjuvant.

  20. A chimeric alphavirus RNA replicon gene-based vaccine for human parainfluenza virus type 3 induces protective immunity against intranasal virus challenge.

    PubMed

    Greer, Catherine E; Zhou, Fengmin; Legg, Harold S; Tang, Zequn; Perri, Silvia; Sloan, Barbara A; Megede, Jan Zur; Uematsu, Yasushi; Vajdy, Michael; Polo, John M

    2007-01-05

    Parainfluenza virus type 3 (PIV3) infections continue to be a significant health risk for infants, young children, and immunocompromised adults. We describe a gene-based vaccine strategy against PIV3 using replication-defective alphavirus vectors. These RNA replicon vectors, delivered as virus-like particles and expressing the PIV3 hemagglutinin-neuraminidase glycoprotein, were shown to be highly immunogenic in mice and hamsters, inducing PIV3-specific neutralizing antibody responses. Importantly, the replicon particle-based vaccine administered intramuscularly or intranasally protected against mucosal PIV3 challenge in hamsters, preventing virus replication in both nasal turbinates and lungs. These data suggest that the alphavirus replicon platform can be useful for a PIV3 vaccine and possibly other respiratory viruses.

  1. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  2. Enhancement of the immunogenicity of an alphavirus replicon-based DNA vaccine against classical swine fever by electroporation and coinjection with a plasmid expressing porcine interleukin 2.

    PubMed

    Tian, Da-Yong; Sun, Yuan; Wai, Sing Fai; Lee, Fuk Ki; Meng, Qi-Lin; Suen, Kar Man; Wang, Nan; Han, Wen; Li, Su; Li, Yong-Feng; Li, Dan; Ling, Li-Jun; Liao, Ya-Jin; Qiu, Hua-Ji

    2012-05-21

    Alphavirus replicon-based DNA vaccines have emerged as a promising approach to generation of antigen-specific immune responses. However, due to their low immunogenicity, there is a need for other approaches to enhance the vaccine potency. In this study, electroporation (EP) and a plasmid expressing porcine interleukin 2 (IL-2) were used to improve the immunogenicity of an alphavirus replicon-based DNA vaccine pSFV1CS-E2 against classical swine fever (CSF). Pigs were immunized with pSFV1CS-E2 alone or together with IL-2 by EP or by simple intramuscular injection. The results showed that EP combined with IL-2 resulted in marked enhancement of E2-specific antibody responses. Moreover, CSFV-specific lymphocyte proliferation, IFN-γ and IL-4 responses were increased significantly in the pSFV1CS-E2+IL-2/EP group. Pigs immunized with pSFV1CS-E2 plus IL-2 by EP were completely protected from lethal challenge, which is comparable to the sterilizing immunity and full protection offered by the live attenuated vaccine C-strain and in contrast with the incomplete protection conferred by pSFV1CS-E2 without or with IL-2 or EP alone, as demonstrated by the presence of pathological changes or/and viral loads. We conclude that EP in combination with IL-2 can significantly improve the immunogenicity of the plasmid DNA vaccine.

  3. Three types of human CpG motifs differentially modulate and augment immunogenicity of nonviral and viral replicon DNA vaccines as built-in adjuvants.

    PubMed

    Yu, Yun-Zhou; Li, Na; Ma, Yao; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2013-01-01

    NakedDNA vaccines given by intramuscular injection are efficient in mouse models, but they require improvement for human use. As the immunogenicity of DNA vaccines depends, to a large extent, on the presence of CpG motifs as built-in adjuvants, we addressed this issue by inserting three types of human CpG motifs (A-type, B-type, and C-type) into the backbone of nonviral DNA and viral DNA replicon vectors with distinct immunostimulatory activities on human PBMCs. The adjuvant effects of CpG modifications in DNA vaccines expressing three types of antigens (β-Gal, AHc, or PA4) were then characterized in mice and found to significantly enhance antigen-specific humoral and cell-mediated immune responses. The three types of CpG motifs also differentially affected and modulated immune responses and protective potency against botulinum neurotoxin serotype A and Bacillus anthracis A16R challenge. Taken together, these results demonstrate that insertion of human CpG motifs can differentially modulate the immunogenicity of nonviral DNA vaccines as well as viral DNA replicon vaccines. Our study provides not only a better understanding of the in vivo activities of CpG motif adjuvants but implications for the rational design of such motifs as built-in adjuvants for DNA vectors targeting specific antigens.

  4. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies

    PubMed Central

    Ricklin, Meret E.; Vielle, Nathalie J.; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4+ T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  5. Phase I safety and immunogenicity evaluations of an alphavirus replicon HIV-1 subtype C gag vaccine in healthy HIV-1-uninfected adults.

    PubMed

    Wecker, M; Gilbert, P; Russell, N; Hural, J; Allen, M; Pensiero, M; Chulay, J; Chiu, Ya-Lin; Abdool Karim, S S; Burke, D S

    2012-10-01

    On the basis of positive preclinical data, we evaluated the safety and immunogenicity of an alphavirus replicon HIV-1 subtype C gag vaccine (AVX101), expressing a nonmyristoylated form of Gag, in two double-blind, randomized, placebo-controlled clinical trials in healthy HIV-1-uninfected adults. Escalating doses of AVX101 or placebo were administered subcutaneously to participants in the United States and Southern Africa. Because of vaccine stability issues, the first trial was halted prior to completion of all dose levels and a second trial was implemented. The second trial was also stopped prematurely due to documentation issues with the contract manufacturer. Safety and immunogenicity were evaluated through assessments of reactogenicity, reports of adverse events, and assessment of replication-competent and Venezuelan equine encephalitis (VEE) viremia. Immunogenicity was measured using the following assays: enzyme-linked immunosorbent assay (ELISA), chromium 51 ((51)Cr)-release cytotoxic T lymphocyte (CTL), gamma interferon (IFN-γ) ELISpot, intracellular cytokine staining (ICS), and lymphoproliferation assay (LPA). Anti-vector antibodies were also measured. AVX101 was well tolerated and exhibited only modest local reactogenicity. There were 5 serious adverse events reported during the trials; none were considered related to the study vaccine. In contrast to the preclinical data, immune responses in humans were limited. Only low levels of binding antibodies and T-cell responses were seen at the highest doses. This trial also highlighted the difficulties in developing a novel vector for HIV.

  6. Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant.

    PubMed

    Rivas-Aravena, Andrea; Fuentes, Yazmin; Cartagena, Julio; Brito, Tania; Poggio, Verónica; La Torre, José; Mendoza, Hegaly; Gonzalez-Nilo, Fernando; Sandino, Ana María; Spencer, Eugenio

    2015-07-01

    Adjuvants used in vaccine aquaculture are frequently harmful for the fish, causing melanosis, granulomas and kidney damage. Along with that, vaccines are mostly administered by injection, causing pain and stress to the fish. We used the DNA coding for the replicase of alphavirus as adjuvant (Ad) of a vaccine against ISAV. The Ad and an inactivated ISAV (V) were loaded in chitosan nanoparticles (NPs) to be administered orally to Atlantic salmon. NP-Ad was able to deliver the DNA ex vivo and in vivo. Oral administration of the NPs stimulated the expression of immune molecules, but did not stimulate the humoral response. Although the vaccination with NP-V results in a modest protection of fish against ISAV, NP-V administered together with NP-Ad caused a protection of 77%. Therefore, the DNA coding for the replicase of alphavirus could be administered orally and can potentiate the immuneprotection of a virine against infection.

  7. RNA replicons - a new approach for influenza virus immunoprophylaxis.

    PubMed

    Zimmer, Gert

    2010-02-01

    RNA replicons are derived from either positive- or negative-strand RNA viruses. They represent disabled virus vectors that are not only avirulent, but also unable to revert to virulence. Due to autonomous RNA replication, RNA replicons are able to drive high level, cytosolic expression of recombinant antigens stimulating both the humoral and the cellular branch of the immune system. This review provides an update on the available literature covering influenza virus vaccines based on RNA replicons. The pros and cons of these vaccine strategies will be discussed and future perspectives disclosed.

  8. Development and characterization of promoterless helper RNAs for the production of alphavirus replicon particle.

    PubMed

    Kamrud, K I; Alterson, K; Custer, M; Dudek, J; Goodman, C; Owens, G; Smith, J F

    2010-07-01

    Alphavirus-based replicon systems are frequently used as preclinical vectors and as antigen discovery tools, and they have recently been assessed in clinical vaccine trials. Typically, alphavirus replicon RNAs are delivered within virus-like replicon particles (VRP) that are produced following transfection of replicon RNA and two helper RNAs into permissive cells in vitro. The non-structural proteins expressed from the replicon RNA amplify the replicon RNA in cis and the helper RNAs in trans, the latter providing the viral structural proteins necessary to package the replicon RNA into VRP. Current helper RNA designs incorporate the alphavirus 26S promoter to direct the transcription of high levels of structural gene mRNAs. We demonstrate here that the 26S promoter is not required on helper RNAs to produce VRP and propose that such promoterless helper RNAs, by design, reduce the probability of generating replication-competent virus that may otherwise result from RNA recombination.

  9. Mutation detection in plasmid-based biopharmaceuticals.

    PubMed

    Oliveira, Pedro H; Prather, Kristala L J; Prazeres, Duarte M F; Monteiro, Gabriel A

    2011-04-01

    As the number of applications involving therapeutic plasmid DNA (pDNA) increases worldwide, there is a growing concern over maintaining rigorous quality control through a panel of high-quality assays. For this reason, efficient, cost-effective and sensitive technologies enabling the identification of genetic variants and unwanted side products are needed to successfully establish the identity and stability of a plasmid-based biopharmaceutical. This review highlights several bioinformatic tools for ab initio detection of potentially unstable DNA regions, as well as techniques used for mutation detection in nucleic acids, with particular emphasis on pDNA.

  10. Chromosomal replicons of higher plants

    SciTech Connect

    Van't Hof, J.

    1987-03-16

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs.

  11. Replicon system for Lassa virus.

    PubMed

    Hass, Meike; Gölnitz, Uta; Müller, Stefanie; Becker-Ziaja, Beate; Günther, Stephan

    2004-12-01

    Lassa virus is endemic to West Africa and causes hemorrhagic fever in humans. To facilitate the functional analysis of this virus, a replicon system was developed based on Lassa virus strain AV. Genomic and antigenomic minigenomes (MG) were constructed consisting of the intergenic region of S RNA and a reporter gene (Renilla luciferase) in antisense orientation, flanked by the 5' and 3' untranslated regions of S RNA. MGs were expressed under the control of the T7 promoter. Nucleoprotein (NP), L protein, and Z protein were expressed from plasmids containing the T7 promoter and internal ribosomal entry site. Transfection of cells stably expressing T7 RNA polymerase (BSR T7/5) with MG in the form of DNA or RNA and plasmids for the expression of NP and L protein resulted in high levels of Renilla luciferase expression. The replicon system was optimized with respect to the ratio of the transfected constructs and by modifying the 5' end of the MG. Maximum activity was observed 24 to 36 h after transfection with a signal-to-noise ratio of 2 to 3 log units. Northern blot analysis provided evidence for replication and transcription of the MG. Z protein downregulated replicon activity close to background levels. Treatment with ribavirin and alpha interferon inhibited replicon activity, suggesting that both act on the level of RNA replication, transcription, or ribonucleoprotein assembly. In conclusion, this study describes the first replicon system for a highly pathogenic arenavirus. It is a tool for investigating the mechanisms of replication and transcription of Lassa virus and may facilitate the testing of antivirals outside a biosafety level 4 laboratory.

  12. Mucosal and systemic adjuvant activity of alphavirus replicon particles

    NASA Astrophysics Data System (ADS)

    Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.

    2006-03-01

    Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus

  13. In vitro and in vivo characterization of microRNA-targeted alphavirus replicon and helper RNAs.

    PubMed

    Kamrud, Kurt I; Coffield, V McNeil; Owens, Gary; Goodman, Christin; Alterson, Kim; Custer, Max; Murphy, Michael A; Lewis, Whitney; Timberlake, Sarah; Wansley, Elizabeth K; Berglund, Peter; Smith, Jonathan

    2010-08-01

    Alphavirus-based replicon vector systems (family Togaviridae) have been developed as expression vectors with demonstrated potential in vaccine development against both infectious diseases and cancer. The single-cycle nature of virus-like replicon particles (VRP), generated by supplying the structural proteins from separate replicable helper RNAs, is an attractive safety component of these systems. MicroRNAs (miRNAs) have emerged as important cellular RNA regulation elements. Recently, miRNAs have been employed as a mechanism to attenuate or restrict cellular tropism of replication-competent viruses, such as oncolytic adenoviruses, vesicular stomatitis virus, and picornaviruses as well as nonreplicating lentiviral and adenoviral vectors. Here, we describe the incorporation of miRNA-specific target sequences into replicable alphavirus helper RNAs that are used in trans to provide the structural proteins required for VRP production. VRP were found to be efficiently produced using miRNA-targeted helper RNAs if miRNA-specific inhibitors were introduced into cells during VRP production. In the absence of such inhibitors, cellular miRNAs were capable of downregulating helper RNA replication in vitro. When miRNA targets were incorporated into a replicon RNA, cellular miRNAs were capable of downregulating replicon RNA replication upon delivery of VRP into animals, demonstrating activity in vivo. These data provide the first example of miRNA-specific repression of alphavirus replicon and helper RNA replication and demonstrate the feasibility of miRNA targeting of expression vector helper functions that are provided in trans.

  14. Evaluation of neurovirulence and biodistribution of Venezuelan equine encephalitis replicon particles expressing herpes simplex virus type 2 glycoprotein D.

    PubMed

    Kowalski, Jacek; Adkins, Karissa; Gangolli, Seema; Ren, Jian; Arendt, Heather; DeStefano, Joanne; Obregon, Jennifer; Tummolo, Donna; Natuk, Robert J; Brown, Tom P; Parks, Christopher L; Udem, Stephen A; Long, Deborah

    2007-03-08

    The safety of a propagation-defective Venezuelan equine encephalitis virus (VEEV) replicon particle vaccine was examined in mice. After intracranial inoculation we observed approximately 5% body weight loss, modest inflammatory changes in the brain, genome replication, and foreign gene expression. These changes were transient and significantly less severe than those caused by TC-83, a live-attenuated vaccinal strain of VEEV that has been safely used to immunize military personnel and laboratory workers. Replicon particles injected intramuscularly or intravenously were detected at limited sites 3 days post-administration, and were undetectable by day 22. There was no evidence of dissemination to spinal cord or brain after systemic administration. These results demonstrate that propagation-defective VEEV replicon particles are minimally neurovirulent and lack neuroinvasive potential.

  15. Plasmid-Based Reverse Genetics for Animal Double-Stranded RNA Viruses

    PubMed Central

    Kobayashi, Takeshi; Antar, Annukka A. R.; Boehme, Karl W.; Danthi, Pranav; Eby, Elizabeth A.; Guglielmi, Kristen M.; Holm, Geoffrey H.; Johnson, Elizabeth M.; Maginnis, Melissa S.; Naik, Sam; Skelton, Wesley B.; Wetzel, J. Denise; Wilson, Gregory J.; Chappell, James D.; Dermody, Terence S.

    2007-01-01

    SUMMARY Mammalian orthoreoviruses (reoviruses) are highly tractable experimental models for studies of double-stranded (ds) RNA virus replication and pathogenesis. Reoviruses infect respiratory and intestinal epithelium and disseminate systemically in newborn animals. Until now, a strategy to rescue infectious virus from cloned cDNA has not been available for any member of the Reoviridae family of dsRNA viruses. We report the generation of viable reovirus following plasmid transfection of murine L929 (L) cells using a strategy free of helper virus and independent of selection. Point mutations introduced into viral capsid proteins σ1 and σ3 were used to define sequences that govern susceptibility to cleavage by intestinal proteases. We recovered a recombinant virus that expresses green fluorescent protein (GFP) by replacement of the σ3 open-reading frame with GFP. The plasmid-based reverse genetics approach described here can be exploited for studies of reovirus replication and pathogenesis and used to develop reovirus as a vaccine vector. PMID:18005692

  16. Vaccinations

    MedlinePlus

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  17. Characterization of cell lines stably transfected with rubella virus replicons

    SciTech Connect

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  18. Self-replicating alphavirus RNA vaccines.

    PubMed

    Ljungberg, Karl; Liljeström, Peter

    2015-02-01

    Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.

  19. A polyprotein-expressing salmonid alphavirus replicon induces modest protection in atlantic salmon (Salmo salar) against infectious pancreatic necrosis.

    PubMed

    Abdullah, Azila; Olsen, Christel M; Hodneland, Kjartan; Rimstad, Espen

    2015-01-19

    Vaccination is an important strategy for the control and prevention of infectious pancreatic necrosis (IPN) in farmed Atlantic salmon (Salmo salar) in the post-smolt stage in sea-water. In this study, a heterologous gene expression system, based on a replicon construct of salmonid alphavirus (SAV), was used for in vitro and in vivo expression of IPN virus proteins. The large open reading frame of segment A, encoding the polyprotein NH2-pVP2-VP4-VP3-COOH, as well as pVP2, were cloned and expressed by the SAV replicon in Chinook salmon embryo cells (CHSE-214) and epithelioma papulosum cyprini (EPC) cells. The replicon constructs pSAV/polyprotein (pSAV/PP) and pSAV/pVP2 were used to immunize Atlantic salmon (Salmo salar) by a single intramuscular injection and tested in a subsequent IPN virus (IPNV) challenge trial. A low to moderate protection against IPN was observed in fish immunized with the replicon vaccine that encoded the pSAV/PP, while the pSAV/pVP2 construct was not found to induce protection.

  20. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along ... suppressor T cells stop the attack. After a vaccination, the body will have a memory of an ...

  1. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    PubMed

    Sánchez-Puig, Juana M; Lorenzo, María M; Blasco, Rafael

    2013-01-01

    Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  2. Synchronization of replicons in Ehrlich ascites cells

    SciTech Connect

    Gekeler, V.; Probst, H. )

    1988-03-01

    Ehrlich ascites cells, in which replication units at the beginning of the S phase started and grew synchronously, were obtained by the following protocol: (1) selection of G{sub 1} cells by zonal centrifugation, (2) hypoxia for 12 h, (3) reaeration, (4) addition of cycloheximide (30 {mu}M) within the first minute after reoxygenation. Studies on the effectiveness of the different steps revealed: (i) G{sub 1} cells reoxygenated after 12 h of hypoxia traverse two succeeding cell cycles high synchronously. This was shown by monitoring the thymidine incorporation rate, the thymidine pulse-labeling index, and the mitotic index. (ii) Cycloheximide, like hypoxia, suppresses replicon initiation in Ehrlich ascites cells without interfering with DNA chain growth and DNA maturation. The reversibility of the suppression is less complete than in the case of hypoxia. This was shown by DNA fiber autoradiography and by analyzing the length distribution of pulse- or pulse/pulse-chase-labeled daughter DNA in alkaline sucrose gradients. The alkaline sedimentation patterns of daughter-strand DNA, pulse labeled immediately after the cycloheximide addition at the end of the elaborated protocol and 1 and 2 h later, indicated synchronous initiation and growth of a homogeneous population of DNA molecules to replicon-sized lengths.

  3. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs: In vivo synthesised heterologous (alien) RNA constructs are capable of initiating self-replication following transmission to the host organism.

    PubMed

    Kochetov, Alex V

    2014-12-01

    Artificial genetic constructs that direct the synthesis of self-replicating RNA molecules are used widely to induce gene silencing, for bioproduction, and for vaccination. Interestingly, one variant of the self-replicon has not been discussed in the literature: namely, transgenic organisms that synthesise alien replicons. For example, plant cells may be easily genetically modified to produce bacteriophages or insect viruses. Alien replicon-producing organisms (ARPOs) may serve as a unique tool for biocontrol or to selectively influence the characteristics of a target organism. The ARPO approach would have to meet strict biosafety criteria, and its practical applications are problematic. However, a discussion on ARPO applicability would be valuable to outline the full set of options available in the bioengineering toolbox. In this paper, RNA replicons for bioengineering are reviewed briefly, and the ARPO approach is discussed.

  4. Alphavirus-Based Vaccines.

    PubMed

    Lundstrom, Kenneth

    2016-01-01

    Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus.

  5. Multiple replicons constituting the genome of Pseudomonas cepacia 17616.

    PubMed Central

    Cheng, H P; Lessie, T G

    1994-01-01

    Macrorestriction fragment analysis of DNA from Pseudomonas cepacia 17616, in conjunction with Southern hybridization experiments using junction fragments containing rare restriction enzyme sites as probes, indicated that this bacterium contains three large circular replicons of 3.4, 2.5, and 0.9 megabases (Mb). Inclusion of the 170-kb cryptic plasmid present in this strain gave an overall estimate of genome size of 7 Mb. Other Southern hybridization experiments indicated that the three large replicons contained rRNA genes as well as insertion sequence elements identified previously in this strain. The distribution of SwaI, PacI, and PmeI sites on the three replicons was determined. A derivative of Tn5-751 carrying a SwaI site was used to inactivate and map genes on the 2.5- and 3.4-Mb replicons. Mutants were isolated in which the 2.5- and 0.9-Mb replicons had been reduced in size to 1.8 and 0.65 Mb, respectively. The loss of DNA from the 2.5-Mb replicon was associated with lysine auxotrophy, beta-lactamase deficiency, and failure to utilize ribitol and trehalose as carbon and energy sources. DNA fragments corresponding in size to randomly linearized forms of the different replicons were detected in unrestricted DNA by pulsed-field gel electrophoresis. The results provide a framework for further genetic analysis of strain 17616 and for evaluation of the genomic complexities of other P. cepacia isolates. Images PMID:7517389

  6. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    DTIC Science & Technology

    2005-06-05

    Marburg virus (MARV). Here, we developed replication -competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis...No evidence of EBOV or MARV replication was detected in any of the protected animals after challenge. Our data suggest that these vaccine...number of efforts have focused on developing vaccines against MARV. Alphavirus replicons expressing MARV proteins protected cynomolgus monkeys from

  7. Construction and applications of rabbit hemorrhagic disease virus replicon.

    PubMed

    Wang, Binbin; Zhe, Mingjia; Chen, Zongyan; Li, Chuanfeng; Meng, Chunchun; Zhang, Miaotao; Liu, Guangqing

    2013-01-01

    The study of rabbit hemorrhagic disease virus (RHDV) has long been hindered by the absence of an in vitro culture system. In this study, using RHDV as a model, a series of DNA-based reporter replicons were constructed in which the firefly luciferase (Fluc) gene was fused in-frame with the open reading frame of the replicon. In this construct, the Fluc gene was inserted where the coding region of viral structural protein was deleted and was under the control of a minimal cytomegalovirus (CMV) immediate-early promoter. Fluc activity analysis showed that these reporter replicons replicate efficiently in mammalian cells. On the basis of the replicon, 5'non-coding regions (5'NCR) and genome-linked protein (VPg) were deleted, and the effect on the expression of replicon was analyzed. The results showed that the expression level of Fluc was reduced in the absence of 5'NCR and VPg, suggesting that the 5'NCR and VPg may play an important role in replication and/or translation of RHDV. To further verify the speculation, we also constructed a replication deficient mutant (pRHDV-luc/Δ3D), and the impact of 5'NCR and VPg deletion on viral translation efficiency was analyzed, our results indicated that both VPg and 5'NCR were involved in RHDV translation.

  8. Construction and characterization of poliovirus subgenomic replicons

    SciTech Connect

    Kaplan, G.; Racaniello, V.R. )

    1988-05-01

    Poliovirus RNAs containing in-frame deletions within the capsid-coding region were produced by in vitro transcription of altered poliovirus type 1 cDNA by using bacteriophage T7 RNA polymerase. Three RNAs were transcribed that contained deletions of 2,317 nucleotides (bases 747 to 3,064), 1,781 nucleotides (bases 1,175 to 2,956), and 1,295 nucleotides (bases 1,175 to 2,470). All three subgenomic RNAs replicated after transfection into HeLa cells, demonstrating that sequences encoding the capsid polypeptides are not essential for viral RNA replication in vivo. Viral RNA containing the largest deletion (R1) replicated approximately three times better than full-length RNA produced in vitro. Northern blot (RNA blot) hybridization analysis of total cellular RNA from HeLa cells at different times after transfection with R1 demonstrated the presence of increasing amounts of the expected 5.1-kilobase subgenomic RNA. Analysis by immunoprecipitation of ({sup 35}S-labeled) viral proteins induced after transfection of R1 RNA into HeLa cells revealed the presence of proteins 2A{sup pro}, 2C, and 3D{sup pol} and its precursors, suggesting that the polyprotein cleavages are similar to those occurring in virus-infected cells. These internally and terminally deleted RNAs inhibited the replication of subgenomic replicons R1, R2, and R3 and caused a reduction in plaque size when cotransfected with P1/Mahoney or P2/Lansing viral RNA, suggesting that individual cells had received both RNAs.

  9. Examination of a plasmid-based reverse genetics system for human astrovirus.

    PubMed

    Chapellier, Benoit; Tange, Shoichiro; Tasaki, Hidetaka; Yoshida, Kazuhiro; Zhou, Yan; Sakon, Naomi; Katayama, Kazuhiko; Nakanishi, Akira

    2015-10-01

    A plasmid-based reverse genetics system for human astrovirus type 1 (HAstV1) is examined. Upon transfection into 293T cells, the plasmid vector, which harbors a HAstV1 expression cassette, expressed astroviral RNA that appeared to be capable of viral RNA replication, as indicated by the production of subgenomic RNA and capsid protein expression irrespective of the heterologous 5' ends of the transcribed RNA. Particles infectious to Caco-2 cells were made in this system; however, their infectivity was much lower than would be expected from the amount of particles apparently produced. Using Huh-7 cells as the transfection host with the aim of improving viral capsid processing for virion maturation partially restored the efficiency of infectious particle formation. Our results support the possibility that the DNA transfection process induces a cellular response that targets late, but not early, stages of HAstV1 infection.

  10. Single-Dose Immunization with Virus Replicon Particles Confers Rapid Robust Protection against Rift Valley Fever Virus Challenge

    PubMed Central

    Dodd, Kimberly A.; Metcalfe, Maureen G.; Nichol, Stuart T.; Albariño, César G.

    2012-01-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRPRVF) vaccine candidate. Using a mouse model, we show that VRPRVF immunization provides the optimal balance of safety and single-dose robust efficacy. VRPRVF can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRPRVF proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRPRVF, although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD50). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRPRVF immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection. PMID:22345465

  11. FMDV replicons encoding green fluorescent protein are replication competent.

    PubMed

    Tulloch, Fiona; Pathania, Uday; Luke, Garry A; Nicholson, John; Stonehouse, Nicola J; Rowlands, David J; Jackson, Terry; Tuthill, Toby; Haas, Juergen; Lamond, Angus I; Ryan, Martin D

    2014-12-01

    The study of replication of viruses that require high bio-secure facilities can be accomplished with less stringent containment using non-infectious 'replicon' systems. The FMDV replicon system (pT7rep) reported by Mclnerney et al. (2000) was modified by the replacement of sequences encoding chloramphenicol acetyl-transferase (CAT) with those encoding a functional L proteinase (L(pro)) linked to a bi-functional fluorescent/antibiotic resistance fusion protein (green fluorescent protein/puromycin resistance, [GFP-PAC]). Cells were transfected with replicon-derived transcript RNA and GFP fluorescence quantified. Replication of transcript RNAs was readily detected by fluorescence, whilst the signal from replication-incompetent forms of the genome was >2-fold lower. Surprisingly, a form of the replicon lacking the L(pro) showed a significantly stronger fluorescence signal, but appeared with slightly delayed kinetics. Replication can, therefore, be quantified simply by live-cell imaging and image analyses, providing a rapid and facile alternative to RT-qPCR or CAT assays.

  12. Identification of two replicons in phage-plasmid P4.

    PubMed

    Tocchetti, A; Serina, S; Terzano, S; Dehò, G; Ghisotti, D

    1998-06-05

    DNA replication of phage-plasmid P4 proceeds bidirectionally from the ori1 site (previously named ori), but requires a second cis-acting region, crr. Replication depends on the product of the P4 alpha gene, a protein with primase and helicase activity, that binds both ori1 and crr. A negative regulator of P4 DNA replication, the Cnr protein, is required for copy number control of plasmid P4. Using a plasmid complementation test for replication, we found that two replicons, both dependent on the alpha gene product, coexist in P4. The first replicon is made by the cnr and alpha genes and the ori1 and crr sites. The second is limited to the alpha and crr region. Thus, in the absence of the ori1 region, replication can initiate at a different site. By deletion mapping, a cis-acting region, ori2, essential for replication of the alpha-crr replicon was mapped within a 270-bp fragment in the first half of the alpha gene. The ori2 site was found to be dispensable in a replicon that contains ori1. A construct that besides crr and alpha carries also the cnr gene was unable to replicate, suggesting that Cnr not only controls replication from ori1, but also silences ori2.

  13. The dynamic replicon: adapting to a changing cellular environment.

    PubMed

    Herrick, John

    2010-02-01

    Eukaryotic cells are often exposed to fluctuations in growth conditions as well as endogenous and exogenous stress-related agents. During development, global patterns of gene transcription change substantially, and these changes are associated with altered patterns of DNA replication and larger distances between replication origins in somatic cells compared to embryos. Conversely, when cells experience difficulties while replicating DNA, the replication program is dramatically altered and distances between replication origins decrease. Recent evidence indicates that each unit of replication, or replicon, can correspond to one or more potential replication origins, but in the case of multiple potential origins, only one is selected to initiate replication of the replicon. How one origin is selected from multiple potential origins and how origin densities are regulated during genome duplication remains unclear. The following review addresses some of the mechanisms involved in regulating replication origins during both a normal and perturbed eukaryotic cell cycle.

  14. 4D Visualization of replication foci in mammalian cells corresponding to individual replicons

    PubMed Central

    Chagin, V. O.; Casas-Delucchi, C. S.; Reinhart, M.; Schermelleh, L.; Markaki, Y.; Maiser, A.; Bolius, J. J.; Bensimon, A.; Fillies, M.; Domaing, P.; Rozanov, Y. M.; Leonhardt, H.; Cardoso, M. C.

    2016-01-01

    Since the pioneering proposal of the replicon model of DNA replication 50 years ago, the predicted replicons have not been identified and quantified at the cellular level. Here, we combine conventional and super-resolution microscopy of replication sites in live and fixed cells with computational image analysis. We complement these data with genome size measurements, comprehensive analysis of S-phase dynamics and quantification of replication fork speed and replicon size in human and mouse cells. These multidimensional analyses demonstrate that replication foci (RFi) in three-dimensional (3D) preserved somatic mammalian cells can be optically resolved down to single replicons throughout S-phase. This challenges the conventional interpretation of nuclear RFi as replication factories, that is, the complex entities that process multiple clustered replicons. Accordingly, 3D genome organization and duplication can be now followed within the chromatin context at the level of individual replicons. PMID:27052570

  15. Plasmid-Based Generation of Induced Neural Stem Cells from Adult Human Fibroblasts

    PubMed Central

    Capetian, Philipp; Azmitia, Luis; Pauly, Martje G.; Krajka, Victor; Stengel, Felix; Bernhardi, Eva-Maria; Klett, Mariana; Meier, Britta; Seibler, Philip; Stanslowsky, Nancy; Moser, Andreas; Knopp, Andreas; Gillessen-Kaesbach, Gabriele; Nikkhah, Guido; Wegner, Florian; Döbrössy, Máté; Klein, Christine

    2016-01-01

    Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV)-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC) 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72%) and glial cells (9% astrocytes, 6% oligodendrocytes). Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts). Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial) pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside the cells at

  16. Mutations Conferring a Noncytotoxic Phenotype on Chikungunya Virus Replicons Compromise Enzymatic Properties of Nonstructural Protein 2

    PubMed Central

    Utt, Age; Das, Pratyush Kumar; Varjak, Margus; Lulla, Valeria; Lulla, Aleksei

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) (genus Alphavirus) has a positive-sense RNA genome. CHIKV nonstructural protein 2 (nsP2) proteolytically processes the viral nonstructural polyprotein, possesses nucleoside triphosphatase (NTPase), RNA triphosphatase, and RNA helicase activities, and induces cytopathic effects in vertebrate cells. Although alphaviral nsP2 mutations can result in a noncytotoxic phenotype, the effects of such mutations on nsP2 enzymatic activities are not well understood. In this study, we introduced a P718G (PG) mutation and selected for additional mutations in CHIKV nsP2 that resulted in a CHIKV replicon with a noncytotoxic phenotype in BHK-21 cells. Combinations of PG and either an E116K (EK) substitution or a GEEGS sequence insertion after residue T648 (5A) markedly reduced RNA synthesis; however, neither PG nor 5A prevented nsP2 nuclear translocation. Introducing PG into recombinant nsP2 inhibited proteolytic cleavage of nsP1/nsP2 and nsP3/nsP4 sites, reduced GTPase and RNA helicase activities, and abolished RNA stimulation of GTPase activity. 5A and EK modulated the effects of PG. However, only the RNA helicase activity of nsP2 was reduced by both of these mutations, suggesting that defects in this activity may be linked to a noncytotoxic phenotype. These results increase our understanding of the molecular basis for the cytotoxicity that accompanies alphaviral replication. Furthermore, adaptation of the CHIKV replicon containing both 5A and PG allowed the selection of a CHIKV replicon with adaptive mutations in nsP1 and nsP3 that enable persistence in human cell line. Such cell lines represent valuable experimental systems for discovering host factors and for screening inhibitors of CHIKV replication at lower biosafety levels. IMPORTANCE CHIKV is a medically important pathogen that causes febrile illness and can cause chronic arthritis. No approved vaccines or antivirals are available for CHIKV. The attenuation of CHIKV is critical to the

  17. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A.; del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities. PMID:28243228

  18. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules.

    PubMed

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A; Del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities.

  19. Viral Vectors for Use in the Development of Biodefense Vaccines

    DTIC Science & Technology

    2005-06-17

    of foreign proteins, makes alphavirus replicon vectors ideal candidates for use as vaccine vectors [65,66]. Construction of chimeric alphaviruses ...inoculation. 3.1. Sindbis virus-vectored vaccines SINV is one of the least pathogenic alphaviruses for humans and belongs to the Old World Alphavirus group...1232–1238. [65] J.H. Strauss, E.G. Strauss, The alphaviruses : gene expres- sion, replication , and evolution, Microbiol. Rev. 58 (1994) 491–562. [66] S

  20. Episomal plasmid-based generation of induced pluripotent stem cells from fetal femur-derived human mesenchymal stromal cells.

    PubMed

    Megges, Matthias; Oreffo, Richard O C; Adjaye, James

    2016-01-01

    Human bone mesenchymal stromal cells derived from fetal femur 55 days post-conception were reprogrammed to induced pluripotent stem cells using episomal plasmid-based expression of OCT4, SOX2, NANOG, LIN28, SV40LT, KLF4 and c-MYC and supplemented with the following pathway inhibitors - TGFβ receptor inhibitor (A-83-01), MEK inhibitor (PD325901), GSK3β inhibitor (CHIR99021) and ROCK inhibitor (HA-100). Successful induction of pluripotency in two iPS-cell lines was demonstrated in vitro and by the Pluritest.

  1. A plasmid-based expression system to study protein-protein interactions at the Golgi in vivo.

    PubMed

    Bera, Sujoy; Raghuram, Vijeta; Mikhaylova, Marina; Kreutz, Michael R

    2016-06-01

    There is still an unmet need for simple methods to verify, visualize, and confirm protein-protein interactions in vivo. Here we describe a plasmid-based system to study such interactions. The system is based on the transmembrane domain (TMD) of the EF-hand Ca(2+) sensor protein calneuron-2. We show that fusion of 28 amino acids that include the TMD of calneuron-2 to proteins of interest results in prominent localization on the cytoplasmic side of the Golgi. The recruitment of binding partners to the protein of interest fused to this sequence can then be easily visualized by fluorescent tags.

  2. Replication-defective viruses as vaccines and vaccine vectors.

    PubMed

    Dudek, Tim; Knipe, David M

    2006-01-05

    The classical viral vaccine approaches using inactivated virus or live-attenuated virus have not been successful for some viruses, such as human immunodeficiency virus or herpes simplex virus. Therefore, new types of vaccines are needed to combat these infections. Replication-defective mutant viruses are defective for one or more functions that are essential for viral genome replication or synthesis and assembly of viral particles. These viruses are propagated in complementing cell lines expressing the missing gene product; however, in normal cells, they express viral gene products but do not replicate to form progeny virions. As vaccines, these mutant viruses have advantages of both classical types of viral vaccines in being as safe as inactivated virus but expressing viral antigens inside infected cells so that MHC class I and class II presentation can occur efficiently. Replication-defective viruses have served both as vaccines for the virus itself and as a vector for the expression of heterologous antigens. The potential advantages and disadvantages of these vaccines are discussed as well as contrasting them with single-cycle mutant virus vaccines and replicon/amplicon versions of vaccines. Replication-defective viruses have also served as important probes of the host immune response in helping to define the importance of the first round of infected cells in the host immune response, the mechanisms of activation of innate immune response, and the role of the complement pathway in humoral immune responses to viruses.

  3. Novel hepatitis C virus reporter replicon cell lines enable efficient antiviral screening against genotype 1a.

    PubMed

    Robinson, Margaret; Yang, Huiling; Sun, Siu-Chi; Peng, Betty; Tian, Yang; Pagratis, Nikos; Greenstein, Andrew E; Delaney, William E

    2010-08-01

    The hepatitis C virus (HCV) subgenomic replicon is the primary tool for evaluating the activity of anti-HCV compounds in drug discovery research. Despite the prevalence of HCV genotype 1a (approximately 70% of U.S. HCV patients), few genotype 1a reporter replicon cell lines have been described; this is presumably due to the low replication capacity of such constructs in available Huh-7 cells. In this report, we describe the selection of highly permissive Huh-7 cell lines that support robust replication of genotype 1a subgenomic replicons harboring luciferase reporter genes. These novel cell lines support the replication of multiple genotype 1a replicons (including the H77 and SF9 strains), are significantly more permissive to genotype 1a HCV replication than parental Huh7-Lunet cells, and maintain stable genotype 1a replication levels suitable for antiviral screening. We found that the sensitivity of genotype 1a luciferase replicons to known antivirals was highly consistent between individual genotype 1a clonal cell lines but could vary significantly between genotypes 1a and 1b. Sequencing of the nonstructural region of 12 stable replicon cell clones suggested that the enhanced permissivity is likely due to cellular component(s) in these new cell lines rather than the evolution of novel adaptive mutations in the replicons. These new reagents will enhance drug discovery efforts targeting genotype 1a and facilitate the profiling of compound activity among different HCV genotypes and subtypes.

  4. 5′ and 3′ Untranslated Regions Strongly Enhance Performance of Geminiviral Replicons in Nicotiana benthamiana Leaves

    PubMed Central

    Diamos, Andrew G.; Rosenthal, Sun H.; Mason, Hugh S.

    2016-01-01

    We previously reported a recombinant protein production system based on a geminivirus replicon that yields high levels of vaccine antigens and monoclonal antibodies in plants. The bean yellow dwarf virus (BeYDV) replicon generates massive amounts of DNA copies, which engage the plant transcription machinery. However, we noticed a disparity between transcript level and protein production, suggesting that mRNAs could be more efficiently utilized. In this study, we systematically evaluated genetic elements from human, viral, and plant sources for their potential to improve the BeYDV system. The tobacco extensin terminator enhanced transcript accumulation and protein production compared to other commonly used terminators, indicating that efficient transcript processing plays an important role in recombinant protein production. Evaluation of human-derived 5′ untranslated regions (UTRs) indicated that many provided high levels of protein production, supporting their cross-kingdom function. Among the viral 5′ UTRs tested, we found the greatest enhancement with the tobacco mosaic virus omega leader. An analysis of the 5′ UTRs from the Arabidopsis thaliana and Nicotinana benthamiana photosystem I K genes found that they were highly active when truncated to include only the near upstream region, providing a dramatic enhancement of transgene production that exceeded that of the tobacco mosaic virus omega leader. The tobacco Rb7 matrix attachment region inserted downstream from the gene of interest provided significant enhancement, which was correlated with a reduction in plant cell death. Evaluation of Agrobacterium strains found that EHA105 enhanced protein production and reduced cell death compared to LBA4301 and GV3101. We used these improvements to produce Norwalk virus capsid protein at >20% total soluble protein, corresponding to 1.8 mg/g leaf fresh weight, more than twice the highest level ever reported in a plant system. We also produced the monoclonal antibody

  5. Antimicrobial susceptibility and plasmid replicon typing of Salmonella enterica serovar Kentucky isolates recovered from broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella Kentucky has become the predominate serotype recovered from broiler slaughter in the United States and the prevalence of antimicrobial resistance (AMR) has increased dramatically in this serotype. Relationships between AMR, genotype, and plasmid replicon types were characterized for 600 ...

  6. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    PubMed

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  7. Inhibition of replicon initiation in human cells following stabilization of topoisomerase-DNA cleavable complexes.

    PubMed Central

    Kaufmann, W K; Boyer, J C; Estabrooks, L L; Wilson, S J

    1991-01-01

    Diploid human fibroblast strains were treated for 10 min with inhibitors of type I and type II DNA topoisomerases, and after removal of the inhibitors, the rate of initiation of DNA synthesis at replicon origins was determined. By alkaline elution chromatography, 4'-(9-acridinylamino)methanesulfon-m-anisidide (amsacrine), an inhibitor of DNA topoisomerase II, was shown to produce DNA strand breaks. These strand breaks are thought to reflect drug-induced stabilization of topoisomerase-DNA cleavable complexes. Removal of the drug led to a rapid resealing of the strand breaks by dissociation of the complexes. Velocity sedimentation analysis was used to quantify the effects of amsacrine treatment on DNA replication. It was demonstrated that transient exposure to low concentrations of amsacrine inhibited replicon initiation but did not substantially affect DNA chainelongation within operating replicons. Maximal inhibition of replicon initiation occurred 20 to 30 min after drug treatment, and the initiation rate recovered 30 to 90 min later. Ataxia telangiectasia cells displayed normal levels of amsacrine-induced DNA strand breaks during stabilization of cleavable complexes but failed to downregulate replicon initiation after exposure to the topoisomerase inhibitor. Thus, inhibition of replicon initiation in response to DNA damage appears to be an active process which requires a gene product which is defective or missing in ataxia telangiectasia cells. In normal human fibroblasts, the inhibition of DNA topoisomerase I by camptothecin produced reversible DNA strand breaks. Transient exposure to this drug also inhibited replicon initiation. These results suggest that the cellular response pathway which downregulates replicon initiation following genotoxic damage may respond to perturbations of chromatin structure which accompany stabilization of topoisomerase-DNA cleavable complexes. PMID:1646393

  8. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  9. Towards a safe, effective vaccine for Rift Valley fever virus

    PubMed Central

    LaBeaud, Desiree

    2011-01-01

    Rift Valley fever virus (RVFV) is an important animal and human threat and leads to longstanding morbidity and mortality in susceptible hosts. Since no therapies currently exist to treat Rift Valley fever, it remains a public and animal health priority to develop safe, effective RVFV vaccines (whether for animals, humans, or both) that provide long-term protective immunity. In the evaluated article, Bhardwaj and colleagues describe the creation and testing of two successful vaccine strategies against RVFV, a DNA plasmid vaccine expressing Gn coupled to C3d, and an alpha-virus replicon vaccine expressing Gn protein. Both vaccines elicited strong neutralizing antibody responses, prevented morbidity and mortality in RVFV-challenged mice, and enabled protection of naive mice via passive antibody transfer from vaccinated mice. Both DNA and replicon RVFV vaccines have previously been shown to protect against RVFV challenge, but these results allow for direct comparison of the two methods and evaluation of a combined prime–boost method. The results also highlight the specific humoral and cell-mediated immune responses to vaccination. PMID:21423850

  10. HPV vaccine

    MedlinePlus

    Vaccine - HPV; Immunization - HPV; Gardasil; HPV2; HPV4; Vaccine to prevent cervical cancer; Genital warts - HPV vaccine; Cervical dysplasia - HPV vaccine; Cervical cancer - HPV vaccine; Cancer of the cervix - HPV vaccine; Abnormal ...

  11. Vaccines against influenza A viruses in poultry and swine: Status and future developments.

    PubMed

    Rahn, J; Hoffmann, D; Harder, T C; Beer, M

    2015-05-15

    Influenza A viruses are important pathogens with a very broad host spectrum including domestic poultry and swine. For preventing clinical disease and controlling the spread, vaccination is one of the most efficient tools. Classical influenza vaccines for domestic poultry and swine are conventional inactivated preparations. However, a very broad range of novel vaccine types ranging from (i) nucleic acid-based vaccines, (ii) replicon particles, (iii) subunits and virus-like particles, (iv) vectored vaccines, or (v) live-attenuated vaccines has been described, and some of them are now also used in the field. The different novel approaches for vaccines against avian and swine influenza virus infections are reviewed, and additional features like universal vaccines, novel application approaches and the "differentiating infected from vaccinated animals" (DIVA)-strategy are summarized.

  12. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9.

    PubMed

    Gil-Humanes, Javier; Wang, Yanpeng; Liang, Zhen; Shan, Qiwei; Ozuna, Carmen V; Sánchez-León, Susana; Baltes, Nicholas J; Starker, Colby; Barro, Francisco; Gao, Caixia; Voytas, Daniel F

    2017-03-01

    The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence-specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T-DNA, biolistics or by stably integrating nuclease-encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10-fold enhancements in GT frequencies have been achieved using DNA virus-based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon-based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110-fold increase in expression of a reporter gene relative to non-replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12-fold greater than non-viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene-targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV-based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome.

  13. Vaccine to Confer to Nonhuman Primates Complete Protection Against Multistrain Ebola and Marburg Virus Infections

    DTIC Science & Technology

    2008-01-01

    Therefore, much progress has been made using alternative vaccine platforms, such as recombinant viral vec- tors. For example, alphavirus replicons...immunogenicity in rhesus monkeys of DNA plas- mid, recombinant vaccinia virus, and replication -defective adenovirus vec- tors expressing a human...recombinants. Virology 239:206–216. 14. Hevey, M., D. Negley, P. Pushko, J. Smith, and A. Schmaljohn. 1998. Mar- burg virus vaccines based upon alphavirus

  14. Immunogenicity and Safety of an Inactivated Rift Valley Fever Vaccine in a 19-Year Study

    DTIC Science & Technology

    2011-02-26

    culture replicates used in assays, and/or the broad spaces in dilution series chosen for tests [18]. The female gender-associated increase in immune...WhitmoreA, Thompson J, ParsonsM,GrobbelaarAA,KempA, et al. An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiol...Holbrook MR, et al. A replication -incompetent Rift Valley fever vaccine: chimeric virus-like particles protect mice and rats against lethal challenge

  15. Novel approaches to develop Rift Valley fever vaccines.

    PubMed

    Indran, Sabarish V; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed.

  16. Novel approaches to develop Rift Valley fever vaccines

    PubMed Central

    Indran, Sabarish V.; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever (RVF) is endemic to sub-Saharan Africa, and has spread into Madagascar, Egypt, Saudi Arabia, and Yemen. Rift Valley fever virus (RVFV) of the family Bunyaviridae, genus Phlebovirus causes hemorrhagic fever, neurological disorders or blindness in humans, and high rate abortion and fetal malformation in ruminants. RVFV is classified as a Category A Priority pathogen and overlap select agent by CDC/USDA due to its potential impact on public health and agriculture. There is a gap in the safety and immunogenicity in traditional RVF vaccines; the formalin-inactivated RVFV vaccine TSI-GSD-200 requires three doses for protection, and the live-attenuated Smithburn vaccine has a risk to cause abortion and fetal malformation in pregnant ruminants. In this review, problems of traditional vaccines and the safety and efficacy of recently reported novel RVF candidate vaccines including subunit vaccines, virus vector, and replicons are discussed. PMID:23112960

  17. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti

    PubMed Central

    diCenzo, George C.; Checcucci, Alice; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo; Dziewit, Lukasz; Finan, Turlough M.; Galardini, Marco; Fondi, Marco

    2016-01-01

    The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. PMID:27447951

  18. Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review.

    PubMed

    Bellanger, Xavier; Guilloteau, Hélène; Bonot, Sébastien; Merlin, Christophe

    2014-09-15

    Plasmid-based dissemination of antibiotic resistance genes in environmental microbial communities is a matter of concern for public health, but it remains difficult to study for methodological reasons. In this study, we used the broad host range plasmid pB10 to compare and to point out the main drawbacks of the three different approaches currently used to evaluate plasmid transfer in natural communities. Culture-based selection of transconjugants appeared to be compromised by high prevalence of antibiotic resistances among natural communities, unless high loads of initial pB10-donor inocula were used. Fluorescence-based detection of transconjugants reached a dead-end consequently to the narrow host range of bacteria expressing fluorescent proteins from a genetically modified pB10 plasmid, in addition to the relatively high background level of fluorescence exhibited by some environmental matrices. The molecular-based approach was the only one to provide a mean to detect rare plasmid transfer events following a low but realistic initial pB10-donor inoculation. Whatever the method, culture-based or molecular-based, the detection of successful transfer events in a given environmental matrix seemed to be linked to the initial stability of the donor inoculum. Depending on the matrix considered, eukaryotic predation plays a significant role in either limiting or promoting the plasmid transfer events.

  19. Investigation of TbfA in Riemerella anatipestifer using plasmid-based methods for gene over-expression and knockdown

    PubMed Central

    Liu, MaFeng; Wang, MengYi; Zhu, DeKang; Wang, MingShu; Jia, RenYong; Chen, Shun; Sun, KunFeng; Yang, Qiao; Wu, Ying; Chen, XiaoYue; Biville, Francis; Cheng, AnChun

    2016-01-01

    Riemerella anatipestifer is a duck pathogen that has caused serious economic losses to the duck industry worldwide. Despite this, there are few reported studies of the physiological and pathogenic mechanisms of Riemerella anatipestifer infection. In previous study, we have shown that TonB1 and TonB2 were involved in hemin uptake. TonB family protein (TbfA) was not investigated, since knockout of this gene was not successful at that time. Here, we used a plasmid based gene over-expression and knockdown to investigate its function. First, we constructed three Escherichia-Riemerella anatipestifer shuttle vectors containing three different native Riemerella anatipestifer promoters. The shuttle plasmids were introduced into Riemerella anatipestifer ATCC11845 by conjugation at an efficiency of 5 × 10−5 antibiotic-resistant transconjugants per recipient cell. Based on the high-expression shuttle vector pLMF03, a method for gene knockdown was established. Knockdown of TbfA in Riemerella anatipestifer ATCC11845 decreased the organism’s growth ability in TSB medium but did not affect its hemin utilization. In contrast, over-expression of TbfA in Riemerella anatipestifer ATCC11845ΔtonB1ΔtonB2. Significantly promoted the organism’s growth in TSB medium but significantly inhibited its hemin utilization. Collectively, these findings suggest that TbfA is not involved in hemin utilization by Riemerella anatipestifer. PMID:27845444

  20. Reverse Genetics Approaches for the Development of Influenza Vaccines

    PubMed Central

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  1. Comparative analyses of extrachromosomal bacterial replicons, identification of chromids, and experimental evaluation of their indispensability.

    PubMed

    Dziewit, Lukasz; Bartosik, Dariusz

    2015-01-01

    Bacterial genomic information can be divided between various replicons, including chromosomes, plasmids, and chromids (essential plasmid-like replicons with properties of both chromosomes and plasmids). Comparative analyses of bacterial plasmids, including homology searches, phylogenetic and phylogenomic analyses, as well as network construction for the characterization of their relationships, are good starting points for the identification of chromids. Chromids possess several chromosome-like genetic features (e.g., codon usage, GC content), but most significantly, they carry housekeeping genes, which make them indispensable for cell viability. However, it is important to confirm in silico predictions experimentally. The essential nature of a predicted chromid is usually verified by the application of a target-oriented replicon curing technique, based on the incompatibility phenomenon. Further tests examining growth in various media are used to distinguish secondary chromids from plasmids, and mutational analysis (e.g., using the yeast FLP/FRT recombination system) is employed to identify essential genes carried by particular chromids.

  2. DNA vaccines: a rational design against parasitic diseases.

    PubMed

    Carvalho, Joana A; Rodgers, Jean; Atouguia, Jorge; Prazeres, Duarte M F; Monteiro, Gabriel A

    2010-02-01

    Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.

  3. Conserved aspartic acid 233 and alanine 231 are not required for poliovirus polymerase function in replicons

    PubMed Central

    Freistadt, Marion S; Eberle, Karen E

    2007-01-01

    Nucleic acid polymerases have similar structures and motifs. The function of an aspartic acid (conserved in all classes of nucleic acid polymerases) in motif A remains poorly understood in RNA-dependent RNA polymerases. We mutated this residue to alanine in a poliovirus replicon. The resulting mutant could still replicate, although at a reduced level. In addition, mutation A231C (also in motif A) yielded high levels of replication. Taken together these results show that poliovirus polymerase conserved residues D233 and A231 are not essential to poliovirus replicon function. PMID:17352827

  4. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection.

    PubMed

    Dalmia, Neha; Klimstra, William B; Mason, Carol; Ramsay, Alistair J

    2015-01-01

    There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.

  5. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    PubMed Central

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  6. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    PubMed

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems.

  7. Targeted mutagenesis of dengue virus type 2 replicon RNA by yeast in vivo recombination.

    PubMed

    Manzano, Mark; Padmanabhan, Radhakrishnan

    2014-01-01

    The use of cDNA infectious clones or subgenomic replicons is indispensable in studying flavivirus biology. Mutating nucleotides or amino acid residues gives important clues to their function in the viral life cycle. However, a major challenge to the establishment of a reverse genetics system for flaviviruses is the instability of their nucleotide sequences in Escherichia coli. Thus, direct cloning using conventional restriction enzyme-based procedures usually leads to unwanted rearrangements of the construct. In this chapter, we discuss a cloning strategy that bypasses traditional cloning procedures. We take advantage of the observations from previous studies that (1) unstable sequences in bacteria can be cloned in eukaryotic systems and (2) Saccharomyces cerevisiae has a well-studied genetics system to introduce sequences using homologous recombination. We describe a protocol to perform targeted mutagenesis in a subgenomic dengue virus 2 replicon. Our method makes use of homologous recombination in yeast using a linearized replicon and a PCR product containing the desired mutation. Constructs derived from this method can be propagated in E. coli with improved stability. Thus, yeast in vivo recombination provides an excellent strategy to genetically engineer flavivirus infectious clones or replicons because this system is compatible with inherently unstable sequences of flaviviruses and is not restricted by the limitations of traditional cloning procedures.

  8. Next-generation dengue vaccines: novel strategies currently under development.

    PubMed

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  9. Two independent replicons can support replication of the anthrax toxin-encoding plasmid pXO1 of Bacillus anthracis

    PubMed Central

    Akhtar, Parvez; Khan, Saleem A.

    2014-01-01

    The large pXO1 plasmid (181.6 kb) of Bacillus anthracis encodes the anthrax toxin proteins. Previous studies have shown that two separate regions of pXO1 can support replication of pXO1 miniplasmids when introduced into plasmid-less strains of this organism. No information is currently available on the ability of the above two replicons, termed RepX and ORFs 14/16 replicons, to support replication of the full-length pXO1 plasmid. We generated mutants of the full-length pXO1 plasmid in which either the RepX or the ORFs 14/16 replicon was inactivated by TargeTron insertional mutagenesis. Plasmid pXO1 derivatives containing only the RepX or the ORFs 14/16 replicon were able to replicate when introduced into a plasmid-less B. anthracis strain. Plasmid copy number analysis showed that the ORFs 14/16 replicon is more efficient than the RepX replicon. Our studies demonstrate that both the RepX and ORFs 14/16 replicons can independently support the replication of the full-length pXO1 plasmid. PMID:22239982

  10. Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice.

    PubMed

    Boylan, Brendan T; Moreira, Fernando R; Carlson, Tim W; Bernard, Kristen A

    2017-02-01

    Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses.

  11. Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice

    PubMed Central

    Boylan, Brendan T.; Moreira, Fernando R.; Carlson, Tim W.

    2017-01-01

    Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses. PMID:28187142

  12. Candidate vaccine against botulinum neurotoxin serotype A derived from a Venezuelan equine encephalitis virus vector system.

    PubMed

    Lee, J S; Pushko, P; Parker, M D; Dertzbaugh, M T; Smith, L A; Smith, J F

    2001-09-01

    A candidate vaccine against botulinum neurotoxin serotype A (BoNT/A) was developed by using a Venezuelan equine encephalitis (VEE) virus replicon vector. This vaccine vector is composed of a self-replicating RNA containing all of the VEE nonstructural genes and cis-acting elements and also a heterologous immunogen gene placed downstream of the subgenomic 26S promoter in place of the viral structural genes. In this study, the nontoxic 50-kDa carboxy-terminal fragment (H(C)) of the BoNT/A heavy chain was cloned into the replicon vector (H(C)-replicon). Cotransfection of BHK cells in vitro with the H(C)-replicon and two helper RNA molecules, the latter encoding all of the VEE structural proteins, resulted in the assembly and release of propagation-deficient, H(C) VEE replicon particles (H(C)-VRP). Cells infected with H(C)-VRP efficiently expressed this protein when analyzed by either immunofluorescence or by Western blot. To evaluate the immunogenicity of H(C)-VRP, mice were vaccinated with various doses of H(C)-VRP at different intervals. Mice inoculated subcutaneously with H(C)-VRP were protected from an intraperitoneal challenge of up to 100,000 50% lethal dose units of BoNT/A. Protection correlated directly with serum enzyme-linked immunosorbent assay titers to BoNT/A. The duration of the immunity achieved was tested at 6 months and at 1 year postvaccination, and mice challenged at these times remained refractory to challenge with BoNT/A.

  13. HPV Vaccine

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness HPV Vaccine KidsHealth > For Teens > HPV Vaccine Print A A ... starting at age 9. continue How Does the Vaccine Work? The HPV vaccine is approved for people ...

  14. HPV Vaccine

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness HPV Vaccine KidsHealth > For Teens > HPV Vaccine A A A ... starting at age 9. continue How Does the Vaccine Work? The HPV vaccine is approved for people ...

  15. Alphavirus Replicon DNA Expressing HIV Antigens Is an Excellent Prime for Boosting with Recombinant Modified Vaccinia Ankara (MVA) or with HIV gp140 Protein Antigen

    PubMed Central

    Knudsen, Maria L.; Ljungberg, Karl; Tatoud, Roger; Weber, Jonathan; Esteban, Mariano; Liljeström, Peter

    2015-01-01

    Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP) vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA) and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF) adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose. PMID:25643354

  16. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA) or with HIV gp140 protein antigen.

    PubMed

    Knudsen, Maria L; Ljungberg, Karl; Tatoud, Roger; Weber, Jonathan; Esteban, Mariano; Liljeström, Peter

    2015-01-01

    Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP) vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA) and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF) adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  17. Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1

    PubMed Central

    Wang, Yuchen; Sima, Linshan; Lv, Jie; Huang, Suiyuan; Liu, Ying; Wang, Jiao; Krupovic, Mart

    2016-01-01

    ABSTRACT The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980T, suggesting their broad applicability as genetic tools for Natrinema species. IMPORTANCE Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980T. This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of

  18. Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315

    PubMed Central

    Kamgoué, Alain; Murray, Heath; Pasta, Franck

    2016-01-01

    Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of

  19. Vaccine hesitancy

    PubMed Central

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  20. Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing, and pulsed-field gel electrophoresis.

    PubMed

    Lindsey, Rebecca L; Frye, Jonathan G; Thitaram, Sutawee N; Meinersmann, Richard J; Fedorka-Cray, Paula J; Englen, Mark D

    2011-06-01

    The objective of this study was to examine the distribution of multidrug resistance in Escherichia coli in relation to plasmid replicon types, animal sources, and genotypes. E. coli isolates (n = 35) from seven different animal sources were selected and tested for susceptibility to 15 antimicrobials; pulsed-field gel electrophoresis was used to determine genetic relationships among the E. coli isolates. Plasmid types based on their incompatibility (Inc) replicon types were determined, and linkage disequilibrium analysis was performed for antimicrobial resistance profiles, replicon types, and animal source. A high degree of genotypic diversity was observed: 34 different pulsed-field gel electrophoresis types among the 35 isolates examined. Twelve different plasmid Inc types were detected, and all isolates carried at least one replicon type. IncF (n = 25; 71.4%) and IncFIB (n = 19; 54.3%) were the most common replicon types identified. Chloramphenicol resistance was significantly linked with four Inc types (A/C, FIIA, F, and Y), and amoxicillin/clavulanic acid was linked with three Inc types (B/O, P and Y). Resistance to any other antimicrobial was linked to two or fewer replicon types. The isolate source was linked with resistance to seven antimicrobials and IncI1. We conclude that commensal E. coli from animal sources are highly variable genotypically and are reservoirs of a diverse array of plasmids carrying antimicrobial resistance.

  1. Salmonid alphavirus replicon is functional in fish, mammalian and insect cells and in vivo in shrimps (Litopenaeus vannamei).

    PubMed

    Olsen, Christel M; Pemula, Anand Kumar; Braaen, Stine; Sankaran, Krishnan; Rimstad, Espen

    2013-11-19

    The Salmonid alphavirus (SAV) is the etiological agent of pancreas disease in Atlantic salmon (Salmo salar) and Sleeping disease in rainbow trout (Oncorhynchus mykiss). SAV differs from alphaviruses infecting terrestrial animals in that it infects salmonid fish at low temperatures and does not use an arthropod vector for transmission. In this study we have shown that a SAVbased replicon could express proteins when driven by the subgenomic promoter in vitro in cells from fish, mammals and insects, as well as in vivo in shrimps (Litopanaeus vannamei). The SAV-replicon was found to be functional at temperatures ranging from 4 to 37°C. Protein expression was slow and moderate compared to that reported from terrestrial alphavirus replicons or from vectors where protein expression was under control of the immediate early CMV-promoter. No cytopathic effect was visually observable in cells transfected with SAV-replicon vectors. Double stranded RNA was present for several days after transfection of the SAV-replicon in fish cell lines and its presence was indicated also in shrimp. The combination of prolonged dsRNA production, low toxicity, and wide temperature range for expression, may potentially be advantageous for the use of the SAV replicon to induce immune responses in aquaculture of fish and shrimp.

  2. A topoisomerase II-dependent mechanism for resetting replicons at the S–M-phase transition

    PubMed Central

    Cuvier, Olivier; Stanojcic, Slavica; Lemaitre, Jean-Marc; Mechali, Marcel

    2008-01-01

    Topoisomerase II (topo II) is required for chromosome segregation and for reprogramming replicons. Here, we show that topo II couples DNA replication termination with the clearing of replication complexes for resetting replicons at mitosis. Topo II inhibition impairs completion of DNA replication, accounting for replication protein A (RPA) stabilization onto ssDNA. Topo II inhibition does not affect the caffeine-sensitive ORC1 degradation found upon origin firing, but it impairs the cdk-dependent degradation/chromatin dissociation of an ORC1/2 reservoir at mitosis. Our results show that ORC1 degradation is rescued by Pin1 depletion and that this topo II-dependent clearing of ORC1/2 from chromatin involves the APC. PMID:18381889

  3. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max.

    PubMed

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin

    2014-02-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.

  4. Enhancement of protein expression by alphavirus replicons by designing self-replicating subgenomic RNAs.

    PubMed

    Kim, Dal Young; Atasheva, Svetlana; McAuley, Alexander J; Plante, Jessica A; Frolova, Elena I; Beasley, David W C; Frolov, Ilya

    2014-07-22

    Since the development of infectious cDNA clones of viral RNA genomes and the means of delivery of the in vitro-synthesized RNA into cells, alphaviruses have become an attractive system for expression of heterologous genetic information. Alphaviruses replicate exclusively in the cytoplasm, and their genetic material cannot recombine with cellular DNA. Alphavirus genome-based, self-replicating RNAs (replicons) are widely used vectors for expression of heterologous proteins. Their current design relies on replacement of structural genes, encoded by subgenomic RNAs (SG RNA), with heterologous sequences of interest. The SG RNA is transcribed from a promoter located in the alphavirus-specific RNA replication intermediate and is not further amplified. In this study, we have applied the accumulated knowledge of the mechanism of alphavirus replication and promoter structures, in particular, to increase the expression level of heterologous proteins from Venezuelan equine encephalitis virus (VEEV)-based replicons. During VEEV infection, replication enzymes are produced in excess to RNA replication intermediates, and a large fraction of them are not involved in RNA synthesis. The newly designed constructs encode SG RNAs, which are not only transcribed from the SG promoter, but are additionally amplified by the previously underused VEEV replication enzymes. These replicons produce SG RNAs and encoded proteins of interest 10- to 50-fold more efficiently than those using a traditional design. A modified replicon encoding West Nile virus (WNV) premembrane and envelope proteins efficiently produced subviral particles and, after a single immunization, elicited high titers of neutralizing antibodies, which protected mice from lethal challenge with WNV.

  5. Noncytopathic Replication of Venezuelan Equine Encephalitis Virus and Eastern Equine Encephalitis Virus Replicons in Mammalian Cells

    PubMed Central

    Petrakova, Olga; Volkova, Eugenia; Gorchakov, Rodion; Paessler, Slobodan; Kinney, Richard M.; Frolov, Ilya

    2005-01-01

    Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5′ untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins. PMID:15919912

  6. Selection of RNA Replicons Capable of Persistent Noncytopathic Replication in Mammalian Cells

    PubMed Central

    Frolov, Ilya; Agapov, Eugene; Hoffman, Thomas A.; Prágai, Béla M.; Lippa, Mara; Schlesinger, Sondra; Rice, Charles M.

    1999-01-01

    The natural life cycle of alphaviruses, a group of plus-strand RNA viruses, involves transmission to vertebrate hosts via mosquitoes. Chronic infections are established in mosquitoes (and usually in mosquito cell cultures), but infection of susceptible vertebrate cells typically results in rapid shutoff of host mRNA translation and cell death. Using engineered Sindbis virus RNA replicons expressing puromycin acetyltransferase as a dominant selectable marker, we identified mutations allowing persistent, noncytopathic replication in BHK-21 cells. Two of these adaptive mutations involved single-amino-acid substitutions in the C-terminal portion of nsP2, the viral helicase-protease. At one of these loci, nsP2 position 726, numerous substitution mutations were created and characterized in the context of RNA replicons and infectious virus. Our results suggest a direct correlation between the level of viral RNA replication and cytopathogenicity. This work also provides a series of alphavirus replicons for noncytopathic gene expression studies (E. V. Agapov, I. Frolov, B. D. Lindenbach, B. M. Prágai, S. Schlesinger, and C. M. Rice, Proc. Natl. Acad. Sci. USA 95:12989–12994, 1998) and a general strategy for selecting RNA viral mutants adapted to different cellular environments. PMID:10196280

  7. Inhibition of the foot-and-mouth disease virus subgenomic replicon by RNA aptamers

    PubMed Central

    Forrest, Sophie; Lear, Zoe; Herod, Morgan R.; Ryan, Martin; Rowlands, David J.

    2014-01-01

    We have previously documented the inhibitory activity of RNA aptamers to the RNA-dependent RNA polymerase of foot-and-mouth disease virus (3Dpol). Here we report their modification and use with a subgenomic replicon incorporating GFP (pGFP-PAC replicon), allowing replication to be monitored and quantified in real-time. GFP expression in transfected BHK-21 cells reached a maximum at approximately 8 h post-transfection, at which time change in morphology of the cells was consistent with a virus-induced cytopathic effect. However, transfection of replicon-bearing cells with a 3Dpol aptamer RNA resulted in inhibition of GFP expression and maintenance of normal cell morphology, whereas a control aptamer RNA had little effect. The inhibition was correlated with a reduction in 3Dpol (detected by immunoblotting) and shown to be dose dependent. The 3Dpol aptamers appeared to be more effective than 2′-C-methylcytidine (2′CMC). Aptamers to components of the replication complex are therefore useful molecular tools for studying viral replication and also have potential as diagnostic molecules in the future. PMID:25096816

  8. Noncytopathic replication of Venezuelan equine encephalitis virus and eastern equine encephalitis virus replicons in Mammalian cells.

    PubMed

    Petrakova, Olga; Volkova, Eugenia; Gorchakov, Rodion; Paessler, Slobodan; Kinney, Richard M; Frolov, Ilya

    2005-06-01

    Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5' untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.

  9. Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo

    NASA Astrophysics Data System (ADS)

    Yin, Di; Li, Yang; Lin, Hang; Guo, Baofeng; Du, Yanwei; Li, Xin; Jia, Huijie; Zhao, Xuejian; Tang, Jun; Zhang, Ling

    2013-03-01

    Graphene oxide (GO) has attracted intensive interest in the biomedical field in recent years. We investigate whether the use of functional graphene oxide as an efficient delivery system for delivering specific molecular antitumor therapeutics in vivo could achieve a more excellent antitumor effect. Constitutive activation of signal transducer and activator of transcription 3 (Stat3) promotes survival in a wide spectrum of human cancers. In this paper, we study the in vivo behavior of graphene oxide chemically functionalized with polyethylenimine and polyethylene glycol (GO-PEI-PEG) as a plasmid-based Stat3-specific small interfering RNA (siRNA) carrier in mouse malignant melanoma. The in vivo results indicate significant regression in tumor growth and tumor weight after plasmid-based Stat3 siRNA delivered by GO-PEI-PEG treatment. Moreover, there was no significant side effect from GO-PEI-PEG treatment according to histological examination and blood chemistry analysis in mice. Thus, our work is the first success of using GO-PEI-PEG as a promising carrier for plasmid Stat3 siRNA delivery and down-regulation of Stat3 by a polymer-mediated vehicle and suggests the great promise of graphene in biomedical applications such as cancer treatment.

  10. [Travelers' vaccines].

    PubMed

    Ouchi, Kazunobu

    2011-09-01

    The number of Japanese oversea travelers has gradually increased year by year, however they usually pay less attention to the poor physical condition at the voyage place. Many oversea travelers caught vaccine preventable diseases in developing countries. The Vaccine Guideline for Oversea Travelers 2010 published by Japanese Society of Travel Health will be helpful for spreading the knowledge of travelers' vaccine and vaccine preventable diseases in developing countries. Many travelers' vaccines have not licensed in Japan. I hope these travelers' vaccines, such as typhoid vaccine, meningococcal vaccine, cholera vaccine and so on will be licensed in the near future.

  11. Alphavirus Replicon-based Adjuvants Enhance the Immunogenicity and Effectiveness of Fluzone® in Rhesus Macaques

    PubMed Central

    Carroll, Timothy D; Matzinger, Shannon R; Barro, Mario; Fritts, Linda; McChesney, Michael B; Miller, Christopher J; Johnston, Robert E

    2010-01-01

    Venezuelan equine encephalitis virus replicon particles (VRP) without a transgene (null VRP) have been used to adjuvant effective humoral [1], cellular [2], and mucosal [3] immune responses in mice. To assess the adjuvant activity of null VRP in the context of a licensed inactivated influenza virus vaccine, rhesus monkeys were immunized with Fluzone® alone or Fluzone® mixed with null VRP and then challenged with a human seasonal influenza isolate, A/Memphis/7/2001 (H1N1). Compared to Fluzone® alone, Fluzone®+null VRP immunized animals had stronger influenza-specific CD4+ T cell responses (4.4 fold) with significantly higher levels of virus-specific IFN-γ (7.6 fold) and IL-2 (5.3 fold) producing CD4+ T cells. Fluzone®+null VRP immunized animals also had significantly higher plasma anti-influenza IgG (p<0.0001, 1.3 log) and IgA (p<0.05, 1.2 log) levels. In fact, the mean plasma anti-influenza IgG titers after one Fluzone®+null VRP immunization was 1.2 log greater (p<0.04) than after two immunizations with Fluzone® alone. After virus challenge, only Fluzone®+null VRP immunized monkeys had a significantly lower level of viral replication (p<0.001) relative to the unimmunized control animals. Although little anti-influenza antibody was detected in the respiratory secretions after immunization, strong anamnestic anti-influenza IgG and IgA responses were present in secretions of the Fluzone®+null VRP immunized monkeys immediately after challenge. There were significant inverse correlations between influenza RNA levels in tracheal lavages and plasma anti-influenza HI and IgG anti-influenza antibody titers prior to challenge. These results demonstrate that null VRP dramatically improve both the immunogenicity and protection elicited by a licensed inactivated influenza vaccine. PMID:21111777

  12. Leptospirosis vaccines

    PubMed Central

    Wang, Zhijun; Jin, Li; Węgrzyn, Alicja

    2007-01-01

    Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP) vaccines, lipopolysaccharide (LPS) vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool. PMID:18072968

  13. Vaccine Hesitancy.

    PubMed

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact.

  14. Fowlpox-based survivin vaccination for malignant mesothelioma therapy

    PubMed Central

    Bertino, Pietro; Panigada, Maddalena; Soprana, Elisa; Bianchi, Valentina; Bertilaccio, Sabrina; Sanvito, Francesca; Rose, Aaron H.; Yang, Haining; Gaudino, Giovanni; Hoffmann, Peter R.; Siccardi, Antonio; Carbone, Michele

    2013-01-01

    Survivin protein is an attractive candidate for cancer immunotherapy since it is abundantly expressed in most common human cancers and mostly absent in normal adult tissues. Malignant mesothelioma (MM) is a deadly cancer associated with asbestos or erionite exposure for which no successful therapies are currently available. In this study, we evaluated the therapeutic efficacy of a novel survivin-based vaccine by subcutaneous or intraperitoneum injection of BALB/c mice with murine fiber-induced MM tumor cells followed by vaccination with recombinant Fowlpox virus replicons encoding survivin. Vaccination generated significant immune responses in both models, leading to delayed tumor growth and improved animal survival. Flow cytometry and immunofluorescence analyses of tumors from vaccinated mice showed CD8+ T cell infiltration, and real-time PCR demonstrated increased mRNA and protein levels of immunostimulatory cytokines. Analyses of survivin peptide-pulsed spleen and lymph node cells from vaccinated mice using ELISPOT and intracellular cytokine staining confirmed antigen-specific, interferon-γ-producing CD8+ T cell responses. In addition pentamer-based flow cytometry showed that vaccination generated survivin-specific CD8+ T cells. Importantly, vaccination did not affect fertility or induce autoimmune abnormalities in mice. Our results demonstrate that vaccination with recombinant Fowlpox expressing survivin improves T cell responses against aggressive MM tumors and may form the basis for promising clinical applications. PMID:23335100

  15. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers

    PubMed Central

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S.

    2013-01-01

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups “at risk”. Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2nd vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3rd platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas. PMID:23420494

  16. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    PubMed

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  17. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.

    PubMed

    Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

    2015-02-01

    Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination.

  18. Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia

    PubMed Central

    2014-01-01

    Background Rhizobium grahamii belongs to a new phylogenetic group of rhizobia together with Rhizobium mesoamericanum and other species. R. grahamii has a broad-host-range that includes Leucaena leucocephala and Phaseolus vulgaris, although it is a poor competitor for P. vulgaris nodulation in the presence of Rhizobium etli or Rhizobium phaseoli strains. This work analyzed the genome sequence and transfer properties of R. grahamii plasmids. Results Genome sequence was obtained from R. grahamii CCGE502 type strain isolated from Dalea leporina in Mexico. The CCGE502 genome comprises one chromosome and two extrachromosomal replicons (ERs), pRgrCCGE502a and pRgrCCGE502b. Additionally, a plasmid integrated in the CCGE502 chromosome was found. The genomic comparison of ERs from this group showed that gene content is more variable than average nucleotide identity (ANI). Well conserved nod and nif genes were found in R. grahamii and R. mesoamericanum with some differences. R. phaseoli Ch24-10 genes expressed in bacterial cells in roots were found to be conserved in pRgrCCGE502b. Regarding conjugative transfer we were unable to transfer the R. grahamii CCGE502 symbiotic plasmid and its megaplasmid to other rhizobial hosts but we could transfer the symbiotic plasmid to Agrobacterium tumefaciens with transfer dependent on homoserine lactones. Conclusion Variable degrees of nucleotide identity and gene content conservation were found among the different R. grahamii CCGE502 replicons in comparison to R. mesoamericanum genomes. The extrachromosomal replicons from R. grahamii were more similar to those found in phylogenetically related Rhizobium species. However, limited similarities of R. grahamii CCGE502 symbiotic plasmid and megaplasmid were observed in other more distant Rhizobium species. The set of conserved genes in R. grahamii comprises some of those that are highly expressed in R. phaseoli on plant roots, suggesting that they play an important role in root colonization

  19. Edible vaccines.

    PubMed

    Meloen, R H; Hamilton, W D; Casal, J I; Dalsgaard, K; Langeveld, J P

    1998-01-01

    The ultimate vaccine is an oral vaccine which given once protects against a multitude of diseases. Furthermore this ultimate vaccine needs to be very stable and inexpensive to produce. Probably this latter condition can be met only if the vaccines are produced in plants. Such vaccines are called 'edible vaccines'. Edible vaccines can be produced in plants in many ways. Using recombinant plantvirus, CPMV, it was shown that plants can produce massive amounts of chimaeric virus particles which protect after a single injection the target animal against disease. The final step, oral administration, is being addressed at present. Preliminary experiments by others suggest that this step may be solved sooner than expected.

  20. Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans.

    PubMed Central

    Porter, D C; Ansardi, D C; Morrow, C D

    1995-01-01

    Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated

  1. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays.

    PubMed

    Pohjala, Leena; Utt, Age; Varjak, Margus; Lulla, Aleksei; Merits, Andres; Ahola, Tero; Tammela, Päivi

    2011-01-01

    Chikungunya virus (CHIKV), an alphavirus, has recently caused epidemic outbreaks and is therefore considered a re-emerging pathogen for which no effective treatment is available. In this study, a CHIKV replicon containing the virus replicase proteins together with puromycin acetyltransferase, EGFP and Renilla luciferase marker genes was constructed. The replicon was transfected into BHK cells to yield a stable cell line. A non-cytopathic phenotype was achieved by a Pro718 to Gly substitution and a five amino acid insertion within non-structural protein 2 (nsP2), obtained through selection for stable growth. Characterization of the replicon cell line by Northern blotting analysis revealed reduced levels of viral RNA synthesis. The CHIKV replicon cell line was validated for antiviral screening in 96-well format and used for a focused screen of 356 compounds (natural compounds and clinically approved drugs). The 5,7-dihydroxyflavones apigenin, chrysin, naringenin and silybin were found to suppress activities of EGFP and Rluc marker genes expressed by the CHIKV replicon. In a concomitant screen against Semliki Forest virus (SFV), their anti-alphaviral activity was confirmed and several additional inhibitors of SFV with IC₅₀ values between 0.4 and 24 µM were identified. Chlorpromazine and five other compounds with a 10H-phenothiazinyl structure were shown to inhibit SFV entry using a novel entry assay based on a temperature-sensitive SFV mutant. These compounds also reduced SFV and Sindbis virus-induced cytopathic effect and inhibited SFV virion production in virus yield experiments. Finally, antiviral effects of selected compounds were confirmed using infectious CHIKV. In summary, the presented approach for discovering alphaviral inhibitors enabled us to identify potential lead structures for the development of alphavirus entry and replication phase inhibitors as well as demonstrated the usefulness of CHIKV replicon and SFV as biosafe surrogate models for anti

  2. Experiences with new generation vaccines against equine viral arteritis, West Nile disease and African horse sickness.

    PubMed

    MacLachlan, N James; Balasuriya, Udeni B; Davis, Nancy L; Collier, Martha; Johnston, Robert E; Ferraro, Gregory L; Guthrie, Alan J

    2007-07-26

    Viral diseases constitute an ever growing threat to the horse industry worldwide because of the rapid movement of large numbers of horses for competition and breeding. A number of different types of vaccines are available for protective immunization of horses against viral diseases. Traditional inactivated and live-attenuated (modified live virus, MLV) virus vaccines remain popular and efficacious but recombinant vaccines are increasingly being developed and used, in part because of the perceived deficiencies of some existing products. New generation vaccines include MLVs with deletions and/or mutations of critical genes, subunit vaccines that incorporate immunogenic proteins (or portions thereof) or expression vectors that produce these proteins as immunogens, and DNA vaccines. New generation vaccines have been developed for several viral diseases of horses. We recently have developed an alphavirus replicon-vectored equine arteritis virus (EAV) vaccine, and evaluated a commercial canary pox virus-vectored vaccine for West Nile disease. The success of these new-generation vaccines has catalyzed efforts to develop improved vaccines for the prevention of African horse sickness, a disease of emerging global significance.

  3. Edible vaccines.

    PubMed

    Artnzen, C J

    1997-01-01

    Vaccines were the result of trial and error research until molecular biology and genetic engineering made possible the creation of of many new and improved vaccines. New vaccines need to be inexpensive, easily administered, and capable of being stored and transported without refrigeration; without these characteristics, developing countries find it difficult to adopt vaccination as the central strategy for preventing their most devastating diseases. The authors describe a promising approach to inexpensive and effective vaccines: producing them in plants we commonly consume.

  4. Genotype 2a hepatitis C virus subgenomic replicon can replicate in HepG2 and IMY-N9 cells.

    PubMed

    Date, Tomoko; Kato, Takanobu; Miyamoto, Michiko; Zhao, Zijiang; Yasui, Kotaro; Mizokami, Masashi; Wakita, Takaji

    2004-05-21

    A hepatitis C virus genotype 2a subgenomic replicon, JFH-1 replicon, was previously established using the consensus sequence of clone JFH-1 from a patient with fulminant hepatitis and, in a previous report, was indicated to replicate efficiently in Huh7. Here the replication of JFH-1 replicon was tested in HepG2, a human hepatocyte-derived cell line, and in IMY-N9, a cell line developed by fusing human hepatocytes and HepG2 cells. Following transfection with in vitro transcribed replicon RNA and selection by cultivation with G418, colonies formed in both cell lines although at efficiencies substantially lower than those of Huh7. The H2476L mutation identified in the Huh7 replicon in our previous study increased the colony formation efficiencies of the JFH-1 replicon in HepG2 and IMY-N9 cells. Higher amounts of replicon RNA were detected in IMY-N9 clones than in HepG2 clones by real time detection reverse transcription-PCR, and replicon RNA replication and viral protein expression were confirmed by Northern and Western blotting in isolated clones. Sequencing of replicon RNAs revealed that mutations found in hepatitis C virus-derived regions were not identical and that two of nine HepG2 clones and three of nine IMY-N9 clones had no or one synonymous mutation. This system with the JFH-1 replicon and three cell lines is useful not only for estimating the cellular factors affecting viral activity but also for clarifying the common gene response of the host.

  5. Vaccine safety.

    PubMed

    Jacobson, Robert M

    2003-11-01

    Rates of reported adverse events are remarkably low. VAERS identifies an adverse event rate approximating 11.4 reports per 100,000 vaccine doses. Approximately 15% of these reports represent SAEs, but less than 2% involve death; in most cases, reviews have shown no causal relation between the events and the vaccine. Across the spectrum of vaccines in use (including those directed against influenza and hepatitis B virus), many claims of adverse events regarding vaccines represent typical reactions to vaccinations. These reactions can be thought of as foreign-body reactions and predominate among the inactivated vaccines. In controlled studies, the adverse event rates that occur with vaccination resemble those that occur with placebo injections. Typical reactions associated with live viral and bacterial vaccines, such as MMR and varicella vaccines, may resemble attenuated forms of the disease for which the vaccine is directed. Other claims against vaccines represent chance-coincidence or misunderstood data; further studies of claims have vindicated the overall safety of the vaccines in most cases. Two documented safety concerns with vaccines, however, have demonstrated that vaccines (like other biologics and pharmacologic) can result in harm (eg, rotavirus and OPV vaccines). The denouement with these vaccines indicates the broad postmarketing data collection and evaluation that extends efforts made with prelicensure study to balance the benefits from vaccination with the risk for harm. Overall, measures including prelicensure study and postlicensure surveillance, such as VAERS, the Vaccine Safety Datalink Project, and the Clinical Immunization Safety Assessment Centers, have resulted in an exceptional safety profile for the vaccines in use.

  6. Development and application of automated systems for plasmid-based functional proteomics to improve syntheitc biology of engineered industrial microbes for high level expression of proteases for biofertilizer production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to microarray technology, which provides a robust method to study protein function in a rapid, economical, and proteome-wide fashion, plasmid-based functional proteomics is an important technology for rapidly obtaining large quantities of protein and determining protein function across a...

  7. Rotavirus vaccines

    PubMed Central

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2016-01-01

    Rotavirus is the leading cause of severe diarrhea among children <5 years worldwide. Currently licensed rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  8. DENGUE VACCINES.

    PubMed

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has progressed to Phase 3 efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA, and purified inactivated vaccine candidates are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and Virus-Like Particles (VLP)-based vaccines are under evaluation in preclinical studies.

  9. Vaccines (immunizations) - overview

    MedlinePlus

    ... diphtheria, mumps, measles, pertussis (whooping cough), meningitis, and polio. Many of these infections can cause serious or ... MMR - vaccine Pneumococcal conjugate vaccine Pneumococcal polysaccharide ... (vaccine) Rotavirus vaccine Tdap vaccine Tetanus - vaccine

  10. Vaccine Safety

    MedlinePlus

    ... FAQs about Vaccine Safety Research Publications HDM Reports ISO Scientific Agenda Ensuring Safety History Understanding Side Effects ... Datalink Publications Emergency Preparedness Vaccine Safety Partners About ISO File Formats Help: How do I view different ...

  11. Versatile plasmid-based expression systems for Gram-negative bacteria--General essentials exemplified with the bacterium Ralstonia eutropha H16.

    PubMed

    Gruber, Steffen; Schwab, Helmut; Koefinger, Petra

    2015-12-25

    The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements.

  12. Effects of activated aflatoxin B/sub 1/ and caffeine on DNA replicon initiation in HeLa cells

    SciTech Connect

    Cramer, P.; Painter, R.B.

    1981-01-01

    Afatoxin B/sub 1/ (AFB/sub 1/) is activated by a rat microsomal extract (S-9) to form a product that inhibits DNA synthesis in HeLa cells. At 10/sup -7/ M, AFB/sub 1/ inhibited initiation of replicons, as shown in alkaline sucrose gradient profiles 30 min after incubation with the drug. Ninety minutes later, the profile of treated cells was similar to that of control, but 4 h later there was another effect on replicon initiation. At 10/sup -6/ M, the inhibition of initiation was greater than at 10/sup -7/ M and increased progressively. Four hours after removal of the drug, the gradient profile showed low amounts of radioactivity in all size classes of DNA. When cells were incubated in medium containing caffeine (2 mM) even as late as 60 min after incubation with AFB/sub 1/, the inhibition of replicon initiation was prevented. If caffeine was later removed from the medium, replicon initiation was then inhibited. At 10/sup -7/ M or 10/sup -6/ M, AFB/sub 1/ had little immediate effect on chain elongation, but at 10/sup -5/ M, the gradient profiles showed an accumulation of low molecular weight DNA molecules, with no radioactivity in the region of high molecular weight DNA, owing to a block to chain elongation; this was not affected by caffeine. These results suggest that AFB/sub 1/ induces damage that changes the fonformation of chromatin so that initiation of new replicons cannot occur; in the presence of caffeine this change does not occur and DNA replication is not inhibited.

  13. Development of Recombinant Arenavirus-Based Vaccines.

    PubMed

    Martínez-Sobrido, Luis; de la Torre, Juan Carlos

    2017-01-01

    The development of arenavirus reverse genetics has provided investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. These advances in arenavirus genetics have also facilitated screens to identify anti-arenaviral drugs and the pursuit of novel strategies to generate live-attenuated arenavirus vaccine candidates. Moreover, the generation of tri-segmented (r3) arenaviruses expressing foreign genes of interest (GOI) has opened the possibility of implementing live-attenuated arenaviruses-based vaccine vector approaches. In this chapter, we will summarize the implementation of plasmid-based reverse genetics techniques for the development of r3 arenaviruses expressing foreign GOI for their implementation as vaccine vectors.

  14. Edible vaccines.

    PubMed Central

    Artnzen, C J

    1997-01-01

    Vaccines were the result of trial and error research until molecular biology and genetic engineering made possible the creation of of many new and improved vaccines. New vaccines need to be inexpensive, easily administered, and capable of being stored and transported without refrigeration; without these characteristics, developing countries find it difficult to adopt vaccination as the central strategy for preventing their most devastating diseases. The authors describe a promising approach to inexpensive and effective vaccines: producing them in plants we commonly consume. Images p190-a p191-a p193-a p196-a PMID:9182305

  15. Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins.

    PubMed

    Otten, Gillis R; Schaefer, Mary; Doe, Barbara; Liu, Hong; Srivastava, Indresh; Megede, Jan zur; Kazzaz, Jina; Lian, Ying; Singh, Manmohan; Ugozzoli, Mildred; Montefiori, David; Lewis, Mark; Driver, David A; Dubensky, Thomas; Polo, John M; Donnelly, John; O'Hagan, Derek T; Barnett, Susan; Ulmer, Jeffrey B

    2005-07-01

    DNA vaccines have been used widely in experimental primate models of human immunodeficiency virus (HIV), but their effectiveness has been limited. In this study, we evaluated three technologies for increasing the potency of DNA vaccines in rhesus macaques. These included DNA encoding Sindbis virus RNA replicons (pSINCP), cationic poly(lactide-co-glycolide) (PLG) microparticles for DNA delivery, and recombinant protein boosting. The DNA-based pSINCP replicon vaccines encoding HIV Gag and Env were approximately equal in potency to human cytomegalovirus (CMV) promoter-driven conventional DNA vaccines (pCMV). The PLG microparticle DNA delivery system was particularly effective at enhancing antibody responses induced by both pCMV and pSINCP vaccines and had less effect on T cells. Recombinant Gag and Env protein boosting elicited rapid and strong recall responses, in some cases to levels exceeding those seen after DNA or DNA/PLG priming. Of note, Env protein boosting induced serum-neutralizing antibodies and increased frequencies of gamma interferon-producing CD4 T cells severalfold. Thus, PLG microparticles are an effective means of delivering DNA vaccines in nonhuman primates, as demonstrated for two different types of DNA vaccines encoding two different antigens, and are compatible for use with DNA prime-protein boost regimens.

  16. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  17. [Antiviral vaccines].

    PubMed

    Girard, M

    1999-01-01

    Vaccination has been successful in controlling numerous diseases in man and animals. Smallpox has been eradicated and poliomyelitis is on the verge of being eradicated. The traditional immunization arsenal includes vaccines using live, attenuated, and inactivated organisms. DNA recombinant technology has added two new types of vaccines, i.e. subunit vaccines based on purified antigens produced by genetic engineering in bacterial, yeast, or animal-cell cultures and live recombinant vaccines based on attenuated bacterial or viral vectors. Currently the best known examples of these new vaccines are those using poxvirus vectors (vaccinia virus, canarypox virus, or fowlpox virus) but new vectors are under development. Another application for genetic engineering in the field of vaccinology is the development of DNA vaccines using naked plasmid DNA. This technique has achieved remarkable results in small rodents but its efficacy, safety, and feasibility in man has yet to be demonstrated. Numerous studies are now under way to improve the process. In the field of synthetic vaccines, lipopeptides have shown promise for induction of cell immune response. Development of vaccines for administration by the oral or nasal route may one day revolutionize vaccination techniques. However, effective vaccines against hepatitis C and HIV have stalled in the face of the complexity and pathophysiology of these diseases. These are the greatest challenges confronting scientists at the dawn of the new millennium.

  18. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  19. Immunogenicity and Protective Response Induced by Recombinant Plasmids Based on the BAB1_0267 and BAB1_0270 Open Reading Frames of Brucella abortus 2308 in BALB/c Mice

    PubMed Central

    Gómez, Leonardo A.; Alvarez, Francisco I.; Fernández, Pablo A.; Flores, Manuel R.; Molina, Raúl E.; Coloma, Roberto F.; Oñate, Angel A.

    2016-01-01

    Immunogenicity induced by recombinant plasmids based on the BAB1_0267 and BAB1_0270 open reading frames (ORFs) of Brucella abortus 2308 was evaluated. Bioinformatics analyses indicate that the BAB1_0267 and BAB1_0270 ORFs encode a protein with a SH3 domain and a Zn-dependent metalloproteinase, respectively. Both ORFs have important effects on intracellular survival and replication of B. abortus 2308, mediated via professional and non-professional phagocytic cells. Our results show that immunization with the recombinant plasmid based on the BAB1_0267 ORF significantly increases the production of IgG1, levels of IFN-γ and the lymphoproliferative response of splenocytes. However, BAB1_0267 did not provide significant levels of protection. The plasmid based on the BAB1_0270 significantly increased IgG2a production, levels of IFN-γ and TNF-α, and the lymphoproliferative response of splenocytes. These results demonstrate that immunization with the BAB1_0270 derived recombinant plasmid induce a Th1-type immune response, correlated with a heightened resistance to B. abortus 2308 infection in mice. It is concluded that the Th1-type immune response against bacterial Zn-dependent metalloproteinase induces a protective response in mice, and that pV270 recombinant plasmid is an effective candidate microbicide against brucellosis. PMID:27747197

  20. VX-950, a Novel Hepatitis C Virus (HCV) NS3-4A Protease Inhibitor, Exhibits Potent Antiviral Activities in HCV Replicon Cells

    PubMed Central

    Lin, Kai; Perni, Robert B.; Kwong, Ann D.; Lin, Chao

    2006-01-01

    The NS3-4A serine protease of hepatitis C virus (HCV) is essential for viral replication and therefore has been one of the most attractive targets for developing specific antiviral agents against HCV. VX-950, a highly selective, reversible, and potent peptidomimetic inhibitor of the HCV NS3-4A protease, is currently in clinical development for the treatment of hepatitis C. In this report, we describe the in vitro characterization of anti-HCV activities of VX-950 in subgenomic HCV replicon cells. Incubation with VX-950 resulted in a time- and dose-dependent reduction of HCV RNA and proteins in replicon cells. Moreover, following a 2-week incubation with VX-950, a reduction in HCV RNA levels of 4.7 log10 was observed, and this reduction resulted in elimination of HCV RNA from replicon cells, since there was no rebound in replicon RNA after withdrawal of the inhibitor. The combination of VX-950 and alpha interferon was additive to moderately synergistic in reducing HCV RNA in replicon cells with no significant increase in cytotoxicity. The benefit of the combination was sustained over time: a 4-log10 reduction in HCV RNA level was achieved following a 9-day incubation with VX-950 and alpha interferon at lower concentrations than when either VX-950 or alpha interferon was used alone. The combination of VX-950 and alpha interferon also suppressed the emergence of in vitro resistance mutations against VX-950 in replicon cells. PMID:16641454

  1. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  2. Vaccines.gov

    MedlinePlus

    ... Statements Vaccine Approvals Features: News & Video Free Resources Vaccines are safe, effective, and save lives. Find answers ... by science, on vaccine safety. Are your child’s vaccines up to date? Getting all recommended vaccines on ...

  3. [HPV vaccination].

    PubMed

    Stronski Huwiler, Susanne; Spaar, Anne

    2016-01-01

    Human Papilloma Viruses are associated with genital carcinoma (of the cervix, anus, vulva, vagina and the penis) as well as with non-genital carcinoma (oropharyngeal carcinoma) and genital warts. In Switzerland two highly efficient and safe vaccines are available. The safety of these vaccines has been repeatedly subject of controversial discussions, however so far post marketing surveillance has always been able to confirm the safety. In Switzerland girls and young women have been offered the HPV vaccination within cantonal programmes since 2008. 2015 the recommendation for the HPV-vaccination for boys and young men was issued, and starting July 1, 2016 they as well will be offered vaccination free of charge within the cantonal programmes. This article discusses the burden of disease, efficacy and safety of the vaccines and presents facts which are important for vaccinating these young people. Specifically, aspects of the decisional capacity of adolescents to consent to the vaccination are presented. Finally, the future perspective with a focus on a new vaccine with an enlarged spectrum of HPV-types is discussed.

  4. CD8+ T-cell interaction with HCV replicon cells: evidence for both cytokine- and cell-mediated antiviral activity.

    PubMed

    Liu, Chen; Zhu, Haizhen; Tu, Zhengkun; Xu, Yi-Ling; Nelson, David R

    2003-06-01

    The interaction between the host immune response and infected hepatocytes plays a central role in the pathogenesis of hepatitis C virus (HCV). The lack of a suitable animal or in vitro model has hindered our understanding of the host T-cell/HCV interaction. Our aim was to develop an in vitro model to study the mechanisms of HCV-specific T-cell-mediated antiviral and cytolytic function. The HCV replicon was HLA typed and lymphocytes were obtained from an HLA class I-matched subject. CD8(+) T cells were expanded with 2 HCV-specific/HLA-restricted peptides for NS3. Lymphocyte preparations were cocultured with HCV replicon (FCA1) and control (Huh7) cells labeled with (51)Cr. After a 48-hour incubation, the cells were harvested for RNA extraction. Standard blocking assays were performed in the presence of anti-interferon gamma (IFN-gamma), anti-tumor necrosis factor alpha (TNF-alpha), and anti-FasL. Cytolytic activity was measured by (51)Cr release. HCV replicon cells express homozygous HLA-A11 alleles and present HCV nonstructural proteins. HCV-specific expansion of CD8(+) cells led to a 10-fold decrease in HCV replication by Northern blot analysis and 21% specific lysis of FCA1 cells (compared with 2% of control Huh7 cells). Twenty percent of this antiviral activity was independent of T-cell binding, suggesting cytokine-mediated antiviral activity. The CD8(+) antiviral effect was markedly reduced by blocking either IFN-gamma or FasL but was unaffected by blocking TNF-alpha. In conclusion, HCV-specific CD8(+) cells inhibit viral RNA replication by cytokine-mediated and direct cytolytic effects. This T-cell/HCV subgenomic replicon system represents a model for the investigation of CD8 cell interaction with HCV-infected hepatocytes.

  5. In vitro and in vivo mutational analysis of the 3'-terminal regions of hepatitis e virus genomes and replicons.

    PubMed

    Graff, Judith; Nguyen, Hanh; Kasorndorkbua, Chaiyan; Halbur, Patrick G; St Claire, Marisa; Purcell, Robert H; Emerson, Suzanne U

    2005-01-01

    Hepatitis E virus (HEV) replication is not well understood, mainly because the virus does not infect cultured cells efficiently. However, Huh-7 cells transfected with full-length genomes produce open reading frame 2 protein, indicative of genome replication (6). To investigate the role of 3'-terminal sequences in RNA replication, we constructed chimeric full-length genomes with divergent 3'-terminal sequences of genotypes 2 and 3 replacing that of genotype 1 and transfected them into Huh-7 cells. The production of viral proteins by these full-length chimeras was indistinguishable from that of the wild type, suggesting that replication was not impaired. In order to better quantify HEV replication in cell culture, we constructed an HEV replicon with a reporter (luciferase). Luciferase production was cap dependent and RNA-dependent RNA polymerase dependent and increased following transfection of Huh-7 cells. Replicons harboring the 3'-terminal intergenotypic chimera sequences were also assayed for luciferase production. In spite of the large sequence differences among the 3' termini of the viruses, replication of the chimeric replicons was surprisingly similar to that of the parental replicon. However, a single unique nucleotide change within a predicted stem structure at the 3' terminus substantially reduced the efficiency of replication: RNA replication was partially restored by a covariant mutation. Similar patterns of replication were obtained when full-length genomes were inoculated into rhesus macaques, suggesting that the in vitro system could be used to predict the effect of 3'-terminal mutations in vivo. Incorporation of the 3'-terminal sequences of the swine strain of HEV into the genotype 1 human strain did not enable the human strain to infect swine.

  6. Novel methods for expression of foreign antigens in live vector vaccines

    PubMed Central

    Wang, Jin Yuan; Harley, Regina H.; Galen, James E.

    2013-01-01

    Bacterial live vector vaccines represent a vaccine development strategy that offers exceptional flexibility. In this approach, genes encoding protective antigens of unrelated bacterial, viral or parasitic pathogens are expressed in an attenuated bacterial vaccine strain that delivers these foreign antigens to the immune system, thereby eliciting relevant immune responses. Rather than expressing these antigens using low copy expression plasmids, here we pursue expression of foreign proteins from the live vector chromosome. Our strategy is designed to compensate for the inherent disadvantage of loss of gene dosage (vs. plasmid-based expression) by integrating antigen-encoding gene cassettes into multiple chromosomal sites already inactivated in an attenuated Salmonella enterica serovar Typhi vaccine candidate. We tested expression of a cassette encoding the green fluorescent protein (GFPuv) integrated separately into native guaBA, htrA or clyA chromosomal loci. Using single integrations, we show that expression levels of GFPuv are significantly affected by the site of integration, regardless of the inclusion of additional strong promoters within the incoming cassette. Using cassettes integrated into both guaBA and htrA, we observe cumulative synthesis levels from two integration sites superior to single integrations. Most importantly, we observe that GFPuv expression increases in a growth phase-dependent manner, suggesting that foreign antigen synthesis may be “tuned” to the physiology of the live vaccine. We expect this novel platform expression technology to prove invaluable in the development of a wide variety of multivalent live vector vaccines, capable of expressing multiple antigens from both chromosomal and plasmid-based expression systems within a single strain. PMID:23406777

  7. The combined use of alphavirus replicons and pseudoinfectious particles for the discovery of antivirals derived from natural products.

    PubMed

    Delekta, Phillip C; Raveh, Avi; Larsen, Martha J; Schultz, Pamela J; Tamayo-Castillo, Giselle; Sherman, David H; Miller, David J

    2015-06-01

    Alphaviruses are a prominent class of reemergent pathogens due to their globally expanding ranges, potential for lethality, and possible use as bioweapons. The absence of effective treatments for alphaviruses highlights the need for innovative strategies to identify antiviral agents. Primary screens that use noninfectious self-replicating RNAs, termed replicons, have been used to identify potential antiviral compounds for alphaviruses. Only inhibitors of viral genome replication, however, will be identified using replicons, which excludes many other druggable steps in the viral life cycle. To address this limitation, we developed a western equine encephalitis virus pseudoinfectious particle system that reproduces several crucial viral life cycle steps in addition to genome replication. We used this system to screen a library containing ~26,000 extracts derived from marine microbes, and we identified multiple bacterial strains that produce compounds with potential antiviral activity. We subsequently used pseudoinfectious particle and replicon assays in parallel to counterscreen candidate extracts, and followed antiviral activity during biochemical fractionation and purification to differentiate between inhibitors of viral entry and genome replication. This novel process led to the isolation of a known alphavirus entry inhibitor, bafilomycin, thereby validating the approach for the screening and identification of potential antiviral compounds.

  8. Antigenic requirement for Gag in a vaccine that protects against high-dose mucosal challenge with simian immunodeficiency virus.

    PubMed

    Schell, John B; Bahl, Kapil; Folta-Stogniew, Ewa; Rose, Nina; Buonocore, Linda; Marx, Preston A; Gambhira, Ratish; Rose, John K

    2015-02-01

    We reported previously on a vaccine approach that conferred apparent sterilizing immunity to SIVsmE660. The vaccine regimen employed a prime-boost using vectors based on recombinant vesicular stomatitis virus (VSV) and an alphavirus replicon expressing either SIV Gag or SIV Env. In the current study, we tested the ability of vectors expressing only the SIVsmE660 Env protein to protect macaques against the same high-dose mucosal challenge. Animals developed neutralizing antibody levels comparable to or greater than seen in the previous vaccine study. When the vaccinated animals were challenged with the same high-dose of SIVsmE660, all became infected. While average peak viral loads in animals were slightly lower than those of previous controls, the viral set points were not significantly different. These data indicate that Gag, or the combination of Gag and Env are required for the generation of apparent sterilizing immunity to the SIVsmE660 challenge.

  9. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola

    PubMed Central

    Van Ham, Roeland C. H. J.; González-Candelas, Fernando; Silva, Francisco J.; Sabater, Beatriz; Moya, Andrés; Latorre, Amparo

    2000-01-01

    Buchnera aphidicola is an obligate, strictly vertically transmitted, bacterial symbiont of aphids. It supplies its host with essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. Several lineages of Buchnera show adaptation to their nutritional role in the form of plasmid-mediated amplification of key-genes involved in the biosynthesis of tryptophan (trpEG) and leucine (leuABCD). Phylogenetic analyses of these plasmid-encoded functions have thus far suggested the absence of horizontal plasmid exchange among lineages of Buchnera. Here, we describe three new Buchnera plasmids, obtained from species of the aphid host families Lachnidae and Pemphigidae. All three plasmids belong to the repA1 family of Buchnera plasmids, which is characterized by the presence of a repA1-replicon responsible for replication initiation. A comprehensive analysis of this family of plasmids unexpectedly revealed significantly incongruent phylogenies for different plasmid and chromosomally encoded loci. We infer from these incongruencies a case of horizontal plasmid transfer in Buchnera. This process may have been mediated by secondary endosymbionts, which occasionally undergo horizontal transmission in aphids. PMID:10984505

  10. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.

    PubMed

    Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

    2013-06-28

    Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers.

  11. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus

    PubMed Central

    Ljungberg, Karl; Kümmerer, Beate M.; Gosse, Leslie; Dereuddre-Bosquet, Nathalie; Tchitchek, Nicolas; Hallengärd, David; García-Arriaza, Juan; Meinke, Andreas; Esteban, Mariano; Merits, Andres

    2017-01-01

    Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory. PMID:28352649

  12. Comparison of HCV NS3 protease and NS5B polymerase inhibitor activity in 1a, 1b and 2a replicons and 2a infectious virus.

    PubMed

    Paulson, Matthew S; Yang, Huiling; Shih, I-hung; Feng, Joy Y; Mabery, Eric M; Robinson, Margaret F; Zhong, Weidong; Delaney, William E

    2009-08-01

    The hepatitis C virus infection system represents an important new tool for drug discovery. In this study, we compared the in vitro antiviral efficacy of several NS3 and NS5B inhibitors in genotype 1a, 1b, and 2a replicons and in the 2a infectious virus system. The nucleoside inhibitor 2'-C-methyl adenosine showed similar efficacy in each system tested. Three non-nucleoside inhibitors had small differences in potency between genotype 1a and 1b. In contrast, there was a dramatic loss of potency for these non-nucleoside inhibitors in the genotype 2a replicon, 2a infectious virus, and 2a NS5B biochemical assays. The protease inhibitor BILN-2061 had similar efficacy against 1a and 1b replicons but was 61-109-fold less potent against the 2a replicon and virus, respectively. VX-950, a covalent protease inhibitor, had similar efficacy (<3-fold changes in EC(50)) regardless of genotype or subtype. Importantly, we observed a significant correlation (p<0.0001) in antiviral potency between the 2a replicon and 2a infectious virus for all classes of compounds tested.

  13. Typhoid Vaccine

    MedlinePlus

    ... serious disease. It is caused by bacteria called Salmonella Typhi. Typhoid causes a high fever, fatigue, weakness, stomach ... a typhoid carrier. Laboratory workers who work with Salmonella Typhi bacteria. Inactivated typhoid vaccine (shot)One dose provides ...

  14. Typhoid Vaccine

    MedlinePlus

    ... serious disease. It is caused by bacteria called Salmonella Typhi. Typhoid causes a high fever, fatigue, weakness, ... a typhoid carrier. • Laboratory workers who work with Salmonella Typhi bacteria. Inactivated typhoid vaccine (shot) • One dose ...

  15. Ear Infection and Vaccines

    MedlinePlus

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  16. Adults Need Vaccines, Too!

    MedlinePlus

    ... turn JavaScript on. Feature: Adult Vaccinations Adults Need Vaccines, Too! Past Issues / Summer 2015 Table of Contents ... of the millions of adults not receiving the vaccines you need? What vaccines do you need? All ...

  17. Smallpox Vaccine Overview

    MedlinePlus

    ... Facebook Tweet Share Compartir SMALLPOX FACT SHEET The Smallpox Vaccine The smallpox vaccine helps the body develop ... disease or may modify the severity of disease. Smallpox Vaccine Safety The smallpox vaccine is the best ...

  18. Influenza Vaccine, Live Intranasal

    MedlinePlus

    ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT ... to your doctor or pharmacist about the best flu vaccine option for you or your family.

  19. Venezuelan Equine Encephalitis Replicon Particles Can Induce Rapid Protection against Foot-and-Mouth Disease Virus

    PubMed Central

    Diaz-San Segundo, Fayna; Dias, Camila C. A.; Moraes, Mauro P.; Weiss, Marcelo; Perez-Martin, Eva; Owens, Gary; Custer, Max; Kamrud, Kurt; de los Santos, Teresa

    2013-01-01

    We have previously shown that delivery of the porcine type I interferon gene (poIFN-α/β) with a replication-defective human adenovirus vector (adenovirus 5 [Ad5]) can sterilely protect swine challenged with foot-and-mouth disease virus (FMDV) 1 day later. However, the need of relatively high doses of Ad5 limits the applicability of such a control strategy in the livestock industry. Venezuelan equine encephalitis virus (VEE) empty replicon particles (VRPs) can induce rapid protection of mice against either homologous or, in some cases, heterologous virus challenge. As an alternative approach to induce rapid protection against FMDV, we have examined the ability of VRPs containing either the gene for green fluorescent protein (VRP-GFP) or poIFN-α (VRP-poIFN-α) to block FMDV replication in vitro and in vivo. Pretreatment of swine or bovine cell lines with either VRP significantly inhibited subsequent infection with FMDV as early as 6 h after treatment and for at least 120 h posttreatment. Furthermore, mice pretreated with either 107 or 108 infectious units of VRP-GFP and challenged with a lethal dose of FMDV 24 h later were protected from death. Protection was induced as early as 6 h after treatment and lasted for at least 48 h and correlated with induction of an antiviral response and production of IFN-α. By 6 h after treatment several genes were upregulated, and the number of genes and the level of induction increased at 24 h. Finally, we demonstrated that the chemokine IP-10, which is induced by IFN-α and VRP-GFP, is directly involved in protection against FMDV. PMID:23468490

  20. ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity†

    PubMed Central

    Dubarry, Nelly; Pasta, Franck; Lane, David

    2006-01-01

    Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432

  1. Development and characterization of a replicon-based phenotypic assay for assessing HCV NS4B from clinical isolates.

    PubMed

    Rajyaguru, Sonal; Yang, Huiling; Martin, Ross; Miller, Michael D; Mo, Hongmei

    2013-11-01

    The hepatitis C virus (HCV) NS4B inhibitors have shown potent inhibition of HCV replication in vitro. To assess the effect of viral diversity on the susceptibility to NS4B inhibitors, genotype (GT)-specific GT1a and GT1b replicon shuttle vectors were designed and created for cloning HCV NS4B genes from clinical isolates. For the GT1b NS4B shuttle vector, the S2204I adaptive mutation was introduced in NS5A to improve replication due to the replacement of the K1846T adaptive mutation in NS4B with NS4B from the clinical isolates. In addition to the adaptive mutations, a newly identified Huh-7 cell line, Huh-7-1C, which is highly permissive for both GT1a and GT1b replication, was used to further enhance the replication levels. HCV NS4B gene from clinical isolates was amplified and inserted into the corresponding GT1a and GT1b modified lab strain chimeric replicons. GT1a and GT1b chimeric replicons expressing diverse NS4B genes from corresponding subtypes of clinical isolates replicated at highly efficient levels for phenotypic analysis. Due to natural variation in their amino acid residues in NS4B, these isolates displayed varying drug susceptibilities to an NS4B inhibitor. In mixed populations with wild-type, the sensitivity of resistance detection of NS4B resistant mutants H94R and V105M was between 20% and 80%. The chimeric shuttle vectors can be used to characterize the activity of antiviral drugs targeting NS4B from diverse natural clinical isolates and aid in the development of novel compounds against HCV NS4B.

  2. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis.

    PubMed

    Wilcks, A; Smidt, L; Okstad, O A; Kolsto, A B; Mahillon, J; Andrup, L

    1999-05-01

    A 5.8-kb fragment of the large conjugative plasmid pAW63 from Bacillus thuringiensis subsp. kurstaki HD73 containing all the information for autonomous replication was cloned and sequenced. By deletion analysis, the pAW63 replicon was reduced to a 4.1-kb fragment harboring four open reading frames (ORFs). Rep63A (513 amino acids [aa]), encoded by the largest ORF, displayed strong similarity (40% identity) to the replication proteins from plasmids pAMbeta1, pIP501, and pSM19035, indicating that the pAW63 replicon belongs to the pAMbeta1 family of gram-positive theta-replicating plasmids. This was confirmed by the facts that no single-stranded DNA replication intermediates could be detected and that replication was found to be dependent on host-gene-encoded DNA polymerase I. An 85-bp region downstream of Rep63A was also shown to have strong similarity to the origins of replication of pAMbeta1 and pIP501, and it is suggested that this region contains the bona fide pAW63 ori. The protein encoded by the second large ORF, Rep63B (308 aa), was shown to display similarity to RepB (34% identity over 281 aa) and PrgP (32% identity over 310 aa), involved in copy control of the Enterococcus faecalis plasmids pAD1 and pCF10, respectively. No significant similarity to known proteins or DNA sequences could be detected for the two smallest ORFs. However, the location, size, hydrophilicity, and orientation of ORF6 (107 codons) were analogous to those features of the putative genes repC and prgO, which encode stability functions on plasmids pAD1 and pCF10, respectively. The cloned replicon of plasmid pAW63 was stably maintained in Bacillus subtilis and B. thuringiensis and displayed incompatibility with the native pAW63. Hybridization experiments using the cloned replicon as a probe showed that pAW63 has similarity to large plasmids from other B. thuringiensis subsp. kurstaki strains and to a strain of B. thuringiensis subsp. alesti.

  3. Human vaccines & immunotherapeutics: news.

    PubMed

    Riedmann, Eva M

    2013-10-01

    Infant rotavirus vaccination provides for herd immunity Nonreplicating sporozoite vaccine protects humans against malaria Personalized brain cancer vaccine enters phase 2 trial Novel implantable therapeutic cancer vaccine to be tested in humans Clostridium difficile vaccine candidate successful in phase 1 CDC reports strong uptake of HPV vaccine in boys Whooping cough outbreak in Texas.

  4. HIV Infection and Adult Vaccination

    MedlinePlus

    ... conjugate vaccine series which protects against meningococcal disease Hepatitis B vaccine series to protect against hepatitis B HPV vaccine ... conjugate vaccine series which protects against meningococcal disease Hepatitis B vaccine series to protect against hepatitis B HPV vaccine ...

  5. Cancer vaccines.

    PubMed

    Butterfield, Lisa H

    2015-04-22

    Cancer vaccines are designed to promote tumor specific immune responses, particularly cytotoxic CD8 positive T cells that are specific to tumor antigens. The earliest vaccines, which were developed in 1994-95, tested non-mutated, shared tumor associated antigens that had been shown to be immunogenic and capable of inducing clinical responses in a minority of people with late stage cancer. Technological developments in the past few years have enabled the investigation of vaccines that target mutated antigens that are patient specific. Several platforms for cancer vaccination are being tested, including peptides, proteins, antigen presenting cells, tumor cells, and viral vectors. Standard of care treatments, such as surgery and ablation, chemotherapy, and radiotherapy, can also induce antitumor immunity, thereby having cancer vaccine effects. The monitoring of patients' immune responses at baseline and after standard of care treatment is shedding light on immune biomarkers. Combination therapies are being tested in clinical trials and are likely to be the best approach to improving patient outcomes.

  6. Nanoparticle vaccines.

    PubMed

    Zhao, Liang; Seth, Arjun; Wibowo, Nani; Zhao, Chun-Xia; Mitter, Neena; Yu, Chengzhong; Middelberg, Anton P J

    2014-01-09

    Nanotechnology increasingly plays a significant role in vaccine development. As vaccine development orientates toward less immunogenic "minimalist" compositions, formulations that boost antigen effectiveness are increasingly needed. The use of nanoparticles in vaccine formulations allows not only improved antigen stability and immunogenicity, but also targeted delivery and slow release. A number of nanoparticle vaccines varying in composition, size, shape, and surface properties have been approved for human use and the number of candidates is increasing. However, challenges remain due to a lack of fundamental understanding regarding the in vivo behavior of nanoparticles, which can operate as either a delivery system to enhance antigen processing and/or as an immunostimulant adjuvant to activate or enhance immunity. This review provides a broad overview of recent advances in prophylactic nanovaccinology. Types of nanoparticles used are outlined and their interaction with immune cells and the biosystem are discussed. Increased knowledge and fundamental understanding of nanoparticle mechanism of action in both immunostimulatory and delivery modes, and better understanding of in vivo biodistribution and fate, are urgently required, and will accelerate the rational design of nanoparticle-containing vaccines.

  7. Development of Recombinant Measles Virus-Based Vaccines.

    PubMed

    Mühlebach, Michael D; Hutzler, Stefan

    2017-01-01

    This chapter describes the development of recombinant measles virus (MV)-based vaccines starting from plasmid DNA. Live-attenuated measles vaccines are very efficient and safe. Since the availability of a reverse genetic system to manipulate MV genomes and to generate respective recombinant viruses, a considerable number of recombinant viruses has been generated that present antigens of foreign pathogens during MV replication. Thereby, robust humoral and cellular immune responses can be induced, which have shown protective capacity in a substantial number of experiments.For this purpose, the foreign antigen-encoding genes are cloned into additional transcription units of plasmid based full-length MV vaccine strain genomes, which in turn are used to rescue recombinant MV by providing both full-length viral RNA genomes respective anti-genomes together with all protein components of the viral ribonucleoprotein complex after transient transfection of the so-called rescue cells. Infectious centers form among these transfected cells, which allow clonal isolation of single recombinant viruses that are subsequently amplified, characterized in vitro, and then evaluated for their immunogenicity in appropriate preclinical animal models.

  8. Mucosal vaccines

    PubMed Central

    Nizard, Mevyn; Diniz, Mariana O; Roussel, Helene; Tran, Thi; Ferreira, Luis CS; Badoual, Cecile; Tartour, Eric

    2014-01-01

    The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites. PMID:25424921

  9. Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families.

    PubMed

    Williams, Laura E; Wireman, Joy; Hilliard, Valda C; Summers, Anne O

    2013-01-01

    Plasmids are important in evolution and adaptation of host bacteria, yet we lack a comprehensive picture of their own natural variation. We used replicon typing and RFLP analysis to assess diversity and distribution of plasmids in the ECOR, SARA, SARB and SARC reference collections of Escherichia coli and Salmonella. Plasmids, especially large (≥30 kb) plasmids, are abundant in these collections. Host species and genotype clearly impact plasmid prevalence; plasmids are more abundant in ECOR than SAR, but, within ECOR, subgroup B2 strains have the fewest large plasmids. The majority of large plasmids have unique RFLP patterns, suggesting high variation, even within dominant replicon families IncF and IncI1. We found only four conserved plasmid types within ECOR, none of which are widely distributed. Within SAR, conserved plasmid types are primarily serovar-specific, including a pSLT-like plasmid in 13 Typhimurium strains. Conservation of pSLT contrasts with variability of other plasmids, suggesting evolution of serovar-specific virulence plasmids is distinct from that of most enterobacterial plasmids. We sequenced a conserved serovar Heidelberg plasmid but did not detect virulence or antibiotic resistance genes. Our data illustrate the high degree of natural variation in large plasmids of E. coli and Salmonella, even among plasmids sharing backbone genes.

  10. Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins.

    PubMed

    Zhang, Zhaoduo; Cavalier-Smith, Thomas; Green, Beverley R

    2002-04-01

    gene transfer to the nucleus. One assumes differential gene deletion within a multicopy population of the resulting oligogenic circles. The other postulates active transposition of putative replicon origins and formation of minicircles by homologous recombination between them.

  11. Immune Interference After Sequential Alphavirus Vaccine Vaccinations

    DTIC Science & Technology

    2009-01-01

    REPORT DATE 11 MAR 2009 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Immune interference after sequential alphavirus ...of administration of investigational alphavirus vaccines on neutralizing antibody response. Volunteers who received the inactivated eastern and...vaccine strategy among those receiving multiple alphavirus vaccines and those developing next generation vaccines for these threats. 15. SUBJECT TERMS

  12. Protective immune responses in rabbits induced by a suicidal DNA vaccine of the VP60 gene of rabbit hemorrhagic disease virus.

    PubMed

    Cheng, Yingjie; Chen, Zongyan; Li, Chuanfeng; Meng, Chun; Wu, Run; Liu, Guangqing

    2013-03-01

    A suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon was evaluated for the development of a vaccine against rabbit hemorrhagic disease virus (RHDV). The VP60 gene of RHDV was cloned and inserted into pSCA1, an SFV DNA-based replicon vector. The resultant plasmid, pSCA/VP60, was transfected into BHK-21 cells, and the antigenicity of the expressed protein was confirmed using indirect immunofluorescence and a western blot assay. In addition, immunogenicity was studied in rabbits. Fifteen rabbits were injected intramuscularly twice with pSCA/VP60 at 2-week intervals. They were challenged with an RHDV isolate 2weeks after the second immunization. In all cases, anti-RHDV antibodies were detected by ELISA. Additionally, the lymphocyte proliferation response was tested by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide method, and neutralizing antibodies were measured by microneutralization tests. Our results showed that RHDV-specific antibodies and an RHDV-specific cell-mediated immune response were strongly induced in rabbits. Furthermore, all of the rabbits were protected against challenge with wild type RHDV. In conclusion, we demonstrated that the suicidal DNA vaccine is a promising vaccine candidate that facilitates the prevention of rabbit hemorrhagic disease caused by RHDV.

  13. Protective immune responses in guinea pigs and swine induced by a suicidal DNA vaccine of the capsid gene of swine vesicular disease virus.

    PubMed

    Sun, Shi-Qi; Liu, Xiang-Tao; Guo, Hui-Chen; Yin, Shuang-Hui; Shang, You-Jun; Feng, Xia; Liu, Zai-Xin; Xie, Qing-Ge

    2007-03-01

    A suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon was evaluated for the development of a vaccine against swine vesicular disease virus (SVDV). The 1BCD gene of SVDV was cloned and inserted into pSCA1, an SFV DNA-based replicon vector. The resultant plasmid, pSCA/1BCD, was transfected into BHK-21 cells and the antigenicity of the expressed protein was confirmed using an indirect immunofluorescence assay. Immunogenicity was studied in guinea pigs and swine. Animals were injected intramuscularly three times with pSCA/1BCD at regular intervals. Anti-SVDV antibodies were detected by ELISA, the lymphocyte proliferation response was tested by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide method and neutralizing antibodies were measured by microneutralization tests. The data showed that SVDV-specific antibodies, neutralizing antibodies and lymphocyte proliferation were induced in both guinea pigs and swine. Furthermore, after three successive vaccinations with pSCA/1BCD, half of the pigs were protected against challenge with SVDV. These results should encourage further work towards the development of a DNA vaccine against SVDV.

  14. Replicating vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early work on fish immunology and disease resistance demonstrated fish (like animals and humans) that survived infection were typically resistant to re-infection with the same pathogen. The concepts of resistance upon reinfection lead to the research and development of replicating (live) vaccines in...

  15. AIDS Vaccines.

    ERIC Educational Resources Information Center

    Matthews, Thomas J.; Bolognesi, Dani P.

    1988-01-01

    Reveals that success of discovering vaccines is far from being assured although several candidates are being tested. States that the devious nature of the virus, the lack of a good animal model for the disease, and the difficulties of clinical trials inhibit the efforts of researchers. (RT)

  16. Polio Vaccine

    MedlinePlus

    ... workers who might handle polio virus, and healthcare workers treating patients who could have polio. These higher-risk adults may need 1 to 3 doses of IPV, depending on how many doses they have had in the past.There are no known risks to getting IPV at the same time as other vaccines.

  17. Rotavirus Vaccine

    MedlinePlus

    ... including a severe allergy to latex. Babies with "severe combined immunodeficiency" (SCID) should not get rotavirus vaccine. Babies who have had a type of bowel blockage called "intussusception" should not get ... with moderate or severe diarrhea or vomiting. Check with your doctor if ...

  18. Malaria vaccine.

    PubMed

    1994-05-01

    Some have argued that the vaccine against malaria developed by Manuel Pattaroyo, a Colombian scientist, is being tested prematurely in humans and that it is unlikely to be successful. While the Pattaroyo vaccine has been shown to confer protection against the relatively mild malaria found in Colombia, doubts exist over whether it will be effective in Africa. Encouraging first results, however, are emerging from field tests in Tanzania. The vaccine triggered a strong new immune response, even in individuals previously exposed to malaria. Additional steps must be taken to establish its impact upon mortality and morbidity. Five major trials are underway around the world. The creator estimates that the first ever effective malaria vaccine could be available for widespread use within five years and he has no intention of securing a patent for the discovery. In another development, malaria specialists from 35 African countries convened at an international workshop in Zimbabwe to compare notes. Participants disparaged financial outlays for the fight against malaria equivalent to 2% of total AIDS funding as insufficient; noted intercountry differences in prevention, diagnosis, and treatment; and found information exchange between anglophone and francophone doctors to be generally poor.

  19. Valuing vaccination

    PubMed Central

    Bärnighausen, Till; Bloom, David E.; Cafiero-Fonseca, Elizabeth T.; O’Brien, Jennifer Carroll

    2014-01-01

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery. PMID:25136129

  20. Nanotoxoid Vaccines

    PubMed Central

    Hu, Che-Ming J.; Zhang, Liangfang

    2014-01-01

    To improve innate defense against diseases, vaccine formulations are routinely administered to mount immune responses against disease-causing organisms or their associated toxins. These formulations are typically prepared with weakened forms of microbes, their surface proteins, or their virulence factors, which can train the immune system to recognize and neutralize similar infectious threats in later exposures. Owing to many unique properties of nanoparticles in enhancing vaccine potency, nanoscale carriers are drawing increasing interest as a platform for developing safer and more effective vaccine formulations. Notably, a nanoparticle-based strategy was recently demonstrated to safely deliver intact, non-denatured protein toxins to mount a potent anti-toxin immune response. A biomimetic nanoparticle cloaked in biological membranes was used to sequester membrane-active toxins. Upon interaction with the nanoparticles, the toxins become retrained and lose their toxicity as they are precluded from interacting with cellular targets. The resulting particle/toxin complex adopts a nanoparticulate morphology that facilitates the toxins’ intracellular delivery. This sequestration approach has immense immunological implications owing to its ability in enabling structurally preserved toxins for immune processing. This technique offers opportunities in novel toxoid vaccine designs that promise more effective anti-toxin immune responses and contrasts the existing paradigm in toxoid preparation, in which toxins are antigenically altered to ensure virulence removal. The potent nanotoxoid formulations provide a viable anti-virulence measure in combating microbial infections that involve membrane-damaging toxins, including methicillin-resistant Staphylococcus aureus (MRSA) and Group A streptococcal infections. PMID:25285152

  1. Vexing Vaccines

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    Schools play a key role in ensuring that children are being immunized against diseases, but conflicting research is making enforcement difficult. This article discusses a growing trend of vaccine avoidance and the endless supply of conflicting information and research about immunization safety. Despite the controversy, many people appear to accept…

  2. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids.

    PubMed

    Weaver, Keith E; Kwong, Stephen M; Firth, Neville; Francia, Maria Victoria

    2009-03-01

    The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.

  3. Vaccine chronicle in Japan.

    PubMed

    Nakayama, Tetsuo

    2013-10-01

    The concept of immunization was started in Japan in 1849 when Jenner's cowpox vaccine seed was introduced, and the current immunization law was stipulated in 1948. There have been two turning points for amendments to the immunization law: the compensation remedy for vaccine-associated adverse events in 1976, and the concept of private vaccination in 1994. In 1992, the regional Court of Tokyo, not the Supreme Court, decided the governmental responsibility on vaccine-associated adverse events, which caused the stagnation of vaccine development. In 2010, many universal vaccines became available as the recommended vaccines, but several vaccines, including mumps, zoster, hepatitis B, and rota vaccines, are still voluntary vaccines, not universal routine applications. In this report, immunization strategies and vaccine development are reviewed for each vaccine item and future vaccine concerns are discussed.

  4. Varicella (Chickenpox) Vaccine

    MedlinePlus

    ProQuad® (as a combination product containing Measles Vaccine, Mumps Vaccine, Rubella Vaccine, Varicella Vaccine) ... up to about 1 person in 5) and measles-like rash (about 1 person in 20) than MMR and varicella vaccines given separately. Moderate Problems:Seizure (jerking or staring) ...

  5. Construction of a subgenomic CV-B3 replicon expressing emerald green fluorescent protein to assess viral replication of a cardiotropic enterovirus strain in cultured human cells.

    PubMed

    Wehbe, Michel; Huguenin, Antoine; Leveque, Nicolas; Semler, Bert L; Hamze, Monzer; Andreoletti, Laurent; Bouin, Alexis

    2016-04-01

    Coxsackieviruses B (CV-B) (Picornaviridae) are a common infectious cause of acute myocarditis in children and young adults, a disease, which is a precursor to 10-20% of chronic myocarditis and dilated cardiomyopathy (DCM) cases. The mechanisms involved in the disease progression from acute to chronic myocarditis phase and toward the DCM clinical stage are not fully understood but are influenced by both viral and host factors. Subgenomic replicons of CV-B can be used to assess viral replication mechanisms in human cardiac cells and evaluate the effects of potential antiviral drugs on viral replication activities. Our objectives were to generate a reporter replicon from a cardiotropic prototype CV-B3/28 strain and to characterize its replication properties into human cardiac primary cells. To obtain this replicon, a cDNA plasmid containing the full CV-B3/28 genome flanked by a hammerhead ribozyme sequence and an MluI restriction site was generated and used as a platform for the insertion of sequences encoding emerald green fluorescent protein (EmGFP) in place of those encoding VP3. In vitro transcribed RNA from this plasmid was transfected into HeLa cells and human primary cardiac cells and was able to produce EmGFP and VP1-containing polypeptides. Moreover, non-structural protein biological activity was assessed by the specific cleavage of eIF4G1 by viral 2A(pro). Viral RNA replication was indirectly demonstrated by inhibition assays, fluoxetine was added to cell culture and prevented the EmGFP synthesis. Our results indicated that the EmGFP CV-B3 replicon was able to replicate and translate as well as the CV-B3/28 prototype strain. Our EmGFP CV-B3 replicon will be a valuable tool to readily investigate CV-B3 replication activities in human target cell models.

  6. Immune interference after sequential alphavirus vaccine vaccinations.

    PubMed

    Pittman, Phillip R; Liu, Ching-Tong; Cannon, Timothy L; Mangiafico, Joseph A; Gibbs, Paul H

    2009-08-06

    We compared the effect of order of administration of investigational alphavirus vaccines on neutralizing antibody response. Volunteers who received the inactivated eastern and western equine encephalitis (EEE and WEE) vaccines before live attenuated Venezuelan (VEE) vaccine had significantly lower rates of antibody response than those receiving VEE vaccine before EEE and WEE vaccines (66.7% vs. 80.6%; p=0.026). The odds of having a VEE antibody non-response among those initially receiving EEE and WEE vaccines, adjusted for gender, were significant (odds ratio [OR]=2.20; 95% CI=1.2-4.1 [p=0.0145]) as were the odds of non-response among females adjusted for group (OR=1.81; 95% CI=1.2-2.7 [p=0.0037]). Antibody interference and gender effect have major implications for vaccine strategy among those receiving multiple alphavirus vaccines and those developing next generation vaccines for these threats.

  7. Human Papillomavirus (HPV) Vaccines

    MedlinePlus

    ... Directory Cancer Prevention Overview Research Human Papillomavirus (HPV) Vaccines On This Page What are human papillomaviruses? Which ... infections? Can HPV infections be prevented? What HPV vaccines are available? Who should get the HPV vaccines? ...

  8. Meningococcal Vaccine (For Parents)

    MedlinePlus

    ... to 2-Year-Old Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: Meningococcal Vaccines ... or her parents, and the doctor. Why the Vaccines Are Recommended Meningococcal disease is caused by a ...

  9. Your Baby's First Vaccines

    MedlinePlus

    ... Link Vaccines & Immunizations Immunization Schedules Your Child's First Vaccines Format: Select one PDF [335 KB] RTF [260 ... child will get one or more of these vaccines today: DTaP Hib Hepatitis B Polio PCV13 Why ...

  10. Vaccines Stop Illness

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Vaccines Stop Illness Past Issues / Spring 2008 Table of ... meningitis won't infect, cripple, or kill children. Vaccine Safety In light of recent questions about vaccine ...

  11. Vaccines and Thimerosal

    MedlinePlus

    ... this? Submit What's this? Submit Button Thimerosal in Vaccines Recommend on Facebook Tweet Share Compartir Thimerosal is ... harm. Thimerosal prevents the growth of bacteria in vaccines. Thimerosal is added to vials of vaccine that ...

  12. Childhood Vaccine Schedule

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Childhood Vaccine Schedule Past Issues / Spring 2008 Table of Contents ... please turn Javascript on. When to Vaccinate What Vaccine Why Birth (or any age if not previously ...

  13. Meningococcal Vaccine (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: ... who are at increased risk for meningococcal disease. Immunization Schedule Vaccination with meningococcal conjugate vaccine is recommended: ...

  14. Human Papillomavirus (HPV) Vaccine

    MedlinePlus

    Why get vaccinated?HPV vaccine prevents infection with human papillomavirus (HPV) types that are associated with cause ... at http://www.cdc.gov/hpv. HPV Vaccine (Human Papillomavirus) Information Statement. U.S. Department of Health and ...

  15. Vaccinations during Pregnancy

    MedlinePlus

    ... get is safe. Make sure your vaccinations are up to date before you get pregnant. What is a vaccination? ... are recommended before pregnancy? It’s best to be up to date on all your routine adult vaccinations before you ...

  16. Vaccine-Preventable Disease Photos

    MedlinePlus

    Home | About | A-Z | Contact | Follow Vaccine Information You Need VACCINE BASICS Evaluating Online Health Information FAQs How Vaccines Work Importance of Vaccines Paying for Vaccines State Immunization Programs ...

  17. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  18. [Vaccination against mouse pox].

    PubMed

    Mahnel, H

    1985-01-01

    Attenuated MVA-strain of vaccinia virus has been efficient in the control of enzootic mousepox and in prophylactic vaccination. The virus has been used as a live vaccine for prophylactic and emergency vaccinations as well as for sanitation of populations. More than 100 000 vaccinations were carried out safely. Even after suspension of the obligatory vaccination of humans against smallpox the MVA-vaccine can be employed without risk and danger.

  19. Engineered human vaccines

    SciTech Connect

    Sandhu, J.S. . Div. of Immunology and Neurobiology)

    1994-01-01

    The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.

  20. Human Vaccines & Immunotherapeutics

    PubMed Central

    Riedmann, Eva M

    2014-01-01

    Measles vaccination: Targeted and non-targeted benefits CDC reports: 2-dose regimen of chickenpox vaccine is a success Positive preliminary results from the CAPiTA study Seasonal flu vaccine associate with reduced stroke risk HPV vaccine shown to halve cervical abnormalities Global prize for mobile mast vaccine storage project Developmental pathway of potent HIV-neutralizing antibodies Burkholderia vaccine: US Dep of Defense collaborates with Bavarian Nordic

  1. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility.

    PubMed

    Chain, Patrick S G; Denef, Vincent J; Konstantinidis, Konstantinos T; Vergez, Lisa M; Agulló, Loreine; Reyes, Valeria Latorre; Hauser, Loren; Córdova, Macarena; Gómez, Luis; González, Myriam; Land, Miriam; Lao, Victoria; Larimer, Frank; LiPuma, John J; Mahenthiralingam, Eshwar; Malfatti, Stephanie A; Marx, Christopher J; Parnell, J Jacob; Ramette, Alban; Richardson, Paul; Seeger, Michael; Smith, Daryl; Spilker, Theodore; Sul, Woo Jun; Tsoi, Tamara V; Ulrich, Luke E; Zhulin, Igor B; Tiedje, James M

    2006-10-17

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven "central aromatic" and twenty "peripheral aromatic" pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  2. Hepatitis B Vaccine

    MedlinePlus

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  3. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection.

    PubMed

    White, Laura J; Sariol, Carlos A; Mattocks, Melissa D; Wahala M P B, Wahala; Yingsiwaphat, Vorraphun; Collier, Martha L; Whitley, Jill; Mikkelsen, Rochelle; Rodriguez, Idia V; Martinez, Melween I; de Silva, Aravinda; Johnston, Robert E

    2013-03-01

    Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.

  4. Vaccines and vaccinations. The strategic issues.

    PubMed

    Ford, R B

    2001-05-01

    The rapid proliferation of companion animal vaccines, advances in diagnostic and vaccine technology, and concerns over vaccine safety are clearly among the most important issues practicing veterinarians face as we enter the 21st century. Although many would argue that these are already issues, the future promises to be especially challenging as the vaccines we currently use and the protocols we recommend undergo unprecedented review.

  5. An integrated approach identifies IFN-regulated microRNAs and targeted mRNAs modulated by different HCV replicon clones

    PubMed Central

    2011-01-01

    Background Infections with hepatitis C virus (HCV) progress to chronic phase in 80% of patients. To date, the effect produced by HCV on the expression of microRNAs (miRs) involved in the interferon-β (IFN-β) antiviral pathway has not been explored in details. Thus, we compared the expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in three different clones of Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system). Methods The expression profile of 24 selected miRs in IFN-β-treated Huh-7 cells and in HCV replicon 21-5 clone with respect to Huh-7 parental cells was analysed by real-time PCR. To exclude clone specific variations, the level of 16 out of 24 miRs, found to be modulated in 21-5 clone, was evaluated in two other HCV replicon clones, 22-6 and 21-7. Prediction of target genes of 3 miRs, confirmed in all HCV clones, was performed by means of miRGator program. The gene dataset obtained from microarray analysis of HCV clones was farther used to validate target prediction. Results The expression profile revealed that 16 out of 24 miRs were modulated in HCV replicon clone 21-5. Analysis in HCV replicon clones 22-6 and 21-7 indicated that 3 out of 16 miRs, (miR-128a, miR-196a and miR-142-3p) were modulated in a concerted fashion in all three HCV clones. Microarray analysis revealed that 37 out of 1981 genes, predicted targets of the 3 miRs, showed an inverse expression relationship with the corresponding miR in HCV clones, as expected for true targets. Classification of the 37 genes by Panther System indicated that the dataset contains genes involved in biological processes that sustain HCV replication and/or in pathways potentially implicated in the control of antiviral response by HCV infection. Conclusions The present findings reveal that 3 IFN-β-regulated miRs and 37 genes, which are likely their functional targets, were commonly modulated by HCV in three replicon clones. The future use

  6. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs.

    PubMed

    Chockalingam, A K; Thiyagarajan, S; Govindasamy, N; Patnaikuni, R; Garlapati, S; Golla, R R; Joyappa, D H; Krishnamshetty, P; Veluvarti, V V S; Veluvati, V V S

    2010-01-01

    Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

  7. Avian influenza vaccines and vaccination for poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines against avian influenza (AI) have had more limited use in poultry than vaccines against other poultry diseases such as Newcastle disease (ND) and infectious bronchitis, and have been used more commonly in the developing world. Over the past 40 years, AI vaccines have been primarily based o...

  8. History of vaccination

    PubMed Central

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before. PMID:25136134

  9. History of vaccination.

    PubMed

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  10. Vaccines today, vaccines tomorrow: a perspective

    PubMed Central

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts. PMID:23596584

  11. Occurrence of 20S RNA and 23S RNA replicons in industrial yeast strains and their variation under nutritional stress conditions.

    PubMed

    López, Victoria; Gil, Rosario; Vicente Carbonell, José; Navarro, Alfonso

    2002-04-01

    We have characterized industrial yeast strains used in the brewing, baking, and winemaking industries for the presence or absence of cytoplasmic single-stranded 20S and 23S RNAs. Furthermore, the variation of intracellular concentrations of these replicons in brewing and laboratory strains under nutritional stress conditions was determined. Our results show a correlation between the relative abundance of these replicons and exposure of yeast to nutritionally stressful conditions, indicating that these RNAs could be employed as molecular probes to evaluate the exposure of 20S(+) and/or 23S(+) yeast strains to stress situations during industrial manipulation. During this study, several 20S(-)23S(+) Saccharomyces cerevisiae strains were isolated and identified. This is the first time that a yeast strain containing only 23S RNA has been reported, demonstrating that 20S RNA is not required for 23S RNA replication.

  12. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses.

    PubMed

    Shi, Huoying; Liu, Xiu Fan; Zhang, Xiaorong; Chen, Sujuan; Sun, Lei; Lu, Jianhong

    2007-10-16

    In the face of disease outbreaks in poultry and the potential pandemic threat to humans caused by the highly pathogenic avian influenza viruses (HPAIVs) of H5N1 subtype, improvement in biosecurity and the use of inactivated vaccines are two main options for the control of this disease. Vaccine candidates of influenza A viruses of H5N1 subtype have been generated in several laboratories by plasmid-based reverse genetics with hemagglutinin (HA) and neuraminidase (NA) genes from the epidemic strains of avian viruses in a background of internal genes from the vaccine donor strain of human strains, A/Puerto Rico/8/34 (PR8). These reassortant viruses containing genes from both avian and human viruses might impose biosafety concerns, also may be do if C4/F AIV would be a live attenuated vaccine or cold-adaptive strain vaccine. In order to generate better and safer vaccine candidate viruses, we genetically constructed attenuated reassortant H5N1 influenza A virus, designated as C4/F AIV, by plasmid-based reverse genetics with all eight genes from the avian strains. The C4/F AIV virus contained HA and NA genes from an epidemic strain A/Chicken/Huadong/04 (H5N1) (C4/H5N1) in a background of internal genes derived from a low pathogenic strain of A/Chicken/F/98(H9N2). The reassortant virus was attenuated by removal of the multibasic amino acid motif in the HA gene by mutation and deletion (from PQRERRRKKR (downward arrow) G to PQIETR (downward arrow) G). The intravenous pathogenicity index (IVPI) of C4/F AIV virus was 0, whereas that of the donor virus C4/H5N1 was 3.0. The virus HA titer of C4/H5N1 in the allantoic fluid from infected embryonated eggs was as high as 1:2048. The inactivated vaccine prepared from the reassortant virus C4/F AIV-induced high HI titer in vaccinated chickens and gave 100% protection when challenged with highly pathogenic avian influenza virus of H5N1 subtype.

  13. Vaccine Policy Issues

    DTIC Science & Technology

    2005-05-19

    evidence “favors rejection” of the idea that either the measles- mumps-rubella vaccine or thimerosal-containing vaccines cause autism (IOM...Immunization Safety Review: Vaccines and Autism , Washington, D.C., National Academies Press, 2004). 46ACIP’s rotavirus vaccine fact sheet is at [http...that the vaccines or preservatives or packaging might cause autism and other neurodevelopmental disorders. One focus has been on thimerosal, a mercury

  14. Proteome Analysis of Liver Cells Expressing a Full- Length Hepatitis C Virus (HCV) Replicon and Biopsy Specimens of Posttransplantation Liver from HCV-Infected Patients

    SciTech Connect

    Jacobs, Jon M.; Diamond, Deborah L.; Chan, Eric Y.; Gritsenko, Marina A.; Qian, Weijun; Stastna, Miroslava; Baas, Tracey; Camp, David G.; Carithers, Jr., Robert L.; Smith, Richard D.; Katze, Michael G.

    2005-06-01

    The development of a reproducible model system for the study of Hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full length HCV replicon. We detected > 4,400 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry (MS). The set of Huh-7.5 proteins confidently identified is, to our knowledge, the most comprehensive yet reported for a human cell line. Consistent with the literature, a comparison of Huh-7.5 cells (+) and (-) the HCV replicon identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where > 1,500 proteins were detected from 2 {micro}g protein lysate using the Huh-7.5 protein database and the accurate mass and time (AMT) tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.

  15. Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature

    DOE PAGES

    Groom, Joseph; Chung, Daehwan; Olson, Daniel G.; ...

    2016-01-29

    Clostridium thermocellum is a leading candidate for the consolidated bioprocessing of lignocellulosic biomass for the production of fuels and chemicals. A limitation to the engineering of this strain is the availability of stable replicating plasmid vectors for homologous and heterologous expression of genes that provide improved and/or novel pathways for fuel production. Current vectors relay on replicons from mesophilic bacteria and are not stable at the optimum growth temperature of C. thermocellum. To develop more thermostable genetic tools for C. thermocellum, we constructed vectors based on the hyperthermophilic Caldicellulosiruptor bescii replicon pBAS2. Autonomously replicating shuttle vectors based on pBAS2 reproduciblymore » transformed C. thermocellum at 60 °C and were maintained in multiple copy. Promoters, selectable markers and plasmid replication proteins from C. bescii were functional in C. thermocellum. Phylogenetic analyses of the proteins contained on pBAS2 revealed that the replication initiation protein RepL is unique among thermophiles. Lastly, these results suggest that pBAS2 may be a broadly useful replicon for other thermophilic Firmicutes.« less

  16. Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature

    SciTech Connect

    Groom, Joseph; Chung, Daehwan; Olson, Daniel G.; Lynd, Lee R.; Guss, Adam M.; Westpheling, Janet

    2016-01-29

    Clostridium thermocellum is a leading candidate for the consolidated bioprocessing of lignocellulosic biomass for the production of fuels and chemicals. A limitation to the engineering of this strain is the availability of stable replicating plasmid vectors for homologous and heterologous expression of genes that provide improved and/or novel pathways for fuel production. Current vectors relay on replicons from mesophilic bacteria and are not stable at the optimum growth temperature of C. thermocellum. To develop more thermostable genetic tools for C. thermocellum, we constructed vectors based on the hyperthermophilic Caldicellulosiruptor bescii replicon pBAS2. Autonomously replicating shuttle vectors based on pBAS2 reproducibly transformed C. thermocellum at 60 °C and were maintained in multiple copy. Promoters, selectable markers and plasmid replication proteins from C. bescii were functional in C. thermocellum. Phylogenetic analyses of the proteins contained on pBAS2 revealed that the replication initiation protein RepL is unique among thermophiles. Lastly, these results suggest that pBAS2 may be a broadly useful replicon for other thermophilic Firmicutes.

  17. A tetravalent alphavirus-vector based dengue vaccine provides effective immunity in an early life mouse model.

    PubMed

    Khalil, Syed Muaz; Tonkin, Daniel R; Mattocks, Melissa D; Snead, Andrew T; Johnston, Robert E; White, Laura J

    2014-07-07

    Dengue viruses (DENV1-4) cause 390 million clinical infections every year, several hundred thousand of which progress to severe hemorrhagic and shock syndromes. Preexisting immunity resulting from a previous DENV infection is the major risk factor for severe dengue during secondary heterologous infections. During primary infections in infants, maternal antibodies pose an analogous risk. At the same time, maternal antibodies are likely to prevent induction of endogenous anti-DENV antibodies in response to current live, attenuated virus (LAV) vaccine candidates. Any effective early life dengue vaccine has to overcome maternal antibody interference (leading to ineffective vaccination) and poor induction of antibody responses (increasing the risk of severe dengue disease upon primary infection). In a previous study, we demonstrated that a non-propagating Venezuelan equine encephalitis virus replicon expression vector (VRP), expressing the ectodomain of DENV E protein (E85), overcomes maternal interference in a BALB/c mouse model. We report here that a single immunization with a tetravalent VRP vaccine induced NAb and T-cell responses to each serotype at a level equivalent to the monovalent vaccine components, suggesting that this vaccine modality can overcome serotype interference. Furthermore, neonatal immunization was durable and could be boosted later in life to further increase NAb and T-cell responses. Although the neonatal immune response was lower in magnitude than responses in adult BALB/c mice, we demonstrate that VRP vaccines generated protective immunity from a lethal challenge after a single neonatal immunization. In summary, VRP vaccines expressing DENV antigens were immunogenic and protective in neonates, and hence are promising candidates for safe and effective vaccination in early life.

  18. A Nonhuman Primate Scrub Typhus Model: Protective Immune Responses Induced by pKarp47 DNA Vaccination in Cynomolgus Macaques

    PubMed Central

    Chattopadhyay, Suchismita; Jiang, Ju; Nawtaisong, Pruksa; Lee, John S.; Tan, Esterlina; Dela Cruz, Eduardo; Burgos, Jasmin; Abalos, Rodolfo; Blacksell, Stuart D.; Lombardini, Eric; Turner, Gareth D.; Day, Nicholas P. J.; Richards, Allen L.

    2015-01-01

    We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi–specific, IFN-γ–producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine

  19. Typhoid fever vaccination strategies.

    PubMed

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control.

  20. Obesity vaccines.

    PubMed

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight.

  1. DNA Vaccination in Chickens.

    PubMed

    Gupta, Shishir Kumar; Dey, Sohini; Chellappa, Madhan Mohan

    2016-01-01

    Robust and sustainable development of poultry industry requires prevention of deadly infectious diseases. Vigorous vaccination of the birds is a routine practice; however, the live and inactivated vaccines that are used have inherent disadvantages. New-generation vaccines such as DNA vaccines offer several advantages over conventional vaccines. DNA vaccines, which encode an antigen of interest or multiple antigens in the target host, are stable, easy to produce and administer, do not require cold chain maintenance, and are not affected by the maternal antibodies. In addition, DNA vaccines can also be administered in ovo, and thus, mass vaccination and early induction of immune response can effectively be achieved. In this chapter, we focus on the development of DNA vaccines against important infectious viral as well as parasitic diseases of poultry.

  2. Neurologic complications of vaccinations.

    PubMed

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination.

  3. Vaccinations for Adults with Diabetes

    MedlinePlus

    Vaccinations for Adults with Diabetes The table below shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  4. Diabetes and Hepatitis B Vaccination

    MedlinePlus

    ... monitoring in close succession. CDC now recommends the hepatitis B vaccine for adults with diabetes. What is the recommendation ... As with other vaccines, the effectiveness of the hepatitis B vaccine decreases with age. Decisions to vaccinate should include ...

  5. Nasal spray flu vaccine (image)

    MedlinePlus

    The flu vaccine can also be administered as a nasal spray instead of the usual injection method. It can be ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should not ...

  6. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  7. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  8. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  9. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  10. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  11. Vaccines against poverty

    PubMed Central

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  12. Vaccines against poverty.

    PubMed

    MacLennan, Calman A; Saul, Allan

    2014-08-26

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.

  13. Vaccines and Immunization Practice.

    PubMed

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices.

  14. Profiling of antimicrobial resistance and plasmid replicon types in β-lactamase producing Escherichia coli isolated from Korean beef cattle

    PubMed Central

    Shin, Seung Won; Jung, Myunghwan; Shin, Min-Kyung

    2015-01-01

    In this study, 78 isolates of Escherichia coli isolated from Korean beef cattle farms were investigated for the production of extended-spectrum β-lactamase (ESBL) and/or AmpC β-lactamase. In the disc diffusion test with ampicillin, amoxicillin, cephalothin, ceftiofur, cefotaxime, ceftazidime, and cefoxitin, 38.5% of the isolates showed resistance to all of ampicillin, amoxicillin, and cephalothin. The double disc synergy method revealed that none of the isolates produced ESBL or AmpC β-lactamases. DNA sequencing showed that all isolates encoded genes for TEM-1-type β-lactamase. Moreover, 78.2% of the isolates transferred the TEM-1-type β-lactamase gene via conjugation. In plasmid replicon typing of all donors, IncFIB and IncFIA were identified in 71.4% and 41.0% of plasmids, respectively. In transconjugants, IncFIB and IncFIA were the most frequent types detected (61.5% and 41.0%, respectively). Overall, the present study indicates that selection pressures of antimicrobials on β-lactamases in beef cattle may be low relative to other livestock animals in Korea. Moreover, to reduce selection pressure and dissemination of β-lactamase, the long-term surveillance of antimicrobial use in domestic beef cattle should be established. PMID:26119172

  15. Molecular characterization of Bifidobacterium longum biovar longum NAL8 plasmids and construction of a novel replicon screening system.

    PubMed

    Guglielmetti, Simone; Karp, Matti; Mora, Diego; Tamagnini, Isabella; Parini, Carlo

    2007-04-01

    In this study, we performed molecular characterization and sequence analysis of three plasmids from the human intestinal isolate Bifidobacterium longum biovar longum NAL8 and developed a novel vector screening system. Plasmids pNAL8H (10 kb) and pNAL8M (4.9 kb) show close sequence similarity to and the same gene organization as the already characterized B. longum plasmids. The B. longum plasmid pNAC1 was identified as being most closely related to pNAL8L (3.5 kb). However, DNA sequence analysis suggested that direct repeat-rich sites could have promoted several recombination events to diversify the two plasmid molecules. We verified the likely rolling circle replication of plasmid pNAL8L and studied the phylogenetic relationship in all the Bifidobacterium plasmids fully sequenced to date based on in silico comparative sequence analysis of their replication proteins and iteron regions. Our transformation experiments confirmed that the ColE1 replication origin from high-copy-number pUC vectors could interfere with the replication apparatus of Bifidobacterium plasmids and give rise to false positive clones. As a result, we developed a system suitable for avoiding possible interference by other functional replication modules on the vector and for screening functional replicons from wild-type plasmids.

  16. The use of synthetic oligonucleotides with universal templates for rapid DNA sequencing: results with staphylococcal replicon pC221.

    PubMed

    Brenner, D G; Shaw, W V

    1985-02-01

    A rapid sequencing strategy has been devised and applied to determine the complete nucleotide sequence (4555 bp) of Staphylococcus aureus plasmid pC221. The entire replicon was cloned into phage M13mp8 in both orientations to provide 'universal templates' for primed DNA synthesis from internally-sited oligonucleotide primers. The latter were synthesized by a modification of a recently described paper disc method which employs phosphotriester chemistry. Less than 4 weeks was required for the synthesis of the required primers and for the sequencing experiments. Plasmid pC221 bears a substrate-inducible chloramphenicol acetyltransferase (CAT) gene that shares much homology with its counterparts in pC194 (S. aureus) and the chromosomal cat-86 gene of Bacillus pumilus, both in coding regions and upstream sequences believed to be involved in the induction phenomenon. A second plasmid-specified protein, REP D, has an 81% identity in the REP C polypeptide that has been shown to be essential for the replication of staphylococcal plasmid pT181. The 5' flanking region of rep D shows striking similarities with its counterpart in rep C that determines copy number and incompatibility. The nucleotide sequence reveals two additional and overlapping open reading frames that may specify proteins that play roles in plasmid relaxation and transfer.

  17. Characterization of untranslated regions of the salmonid alphavirus 3 (SAV3) genome and construction of a SAV3 based replicon.

    PubMed

    Karlsen, Marius; Villoing, Stephane; Rimstad, Espen; Nylund, Are

    2009-10-27

    Salmonid alphavirus (SAV) causes disease in farmed salmonid fish and is divided into different genetic subtypes (SAV1-6). Here we report the cloning and characterization of the 5'- and 3'- untranslated regions (UTR) of a SAV3 isolated from Atlantic salmon in Norway. The sequences of the UTRs are very similar to those of SAV1 and SAV2, but single nucleotide polymorphisms are present, also in the 3' - conserved sequence element (3'-CSE). Prediction of the RNA secondary structure suggested putative stem-loop structures in both the 5'- and 3'-ends, similar to those of alphaviruses from the terrestrial environment, indicating that the general genome replication initiation strategy for alphaviruses is also utilized by SAV. A DNA replicon vector, pmSAV3, based upon a pVAX1 backbone and the SAV3 genome was constructed, and the SAV3 non-structural proteins were used to express a reporter gene controlled by the SAV3 subgenomic promoter. Transfection of pmSAV3 into CHSE and BF2 cell lines resulted in expression of the reporter protein, confirming that the cloned SAV3 replication apparatus and UTRs are functional in fish cells.

  18. Protective immune response in mice induced by a suicidal DNA vaccine encoding NTPase-II gene of Toxoplasma gondii.

    PubMed

    Zheng, Lina; Hu, Yue; Hua, Qianqian; Luo, Fangjun; Xie, Guizhen; Li, Xiangzhi; Lin, Jiaxin; Wan, Yujing; Ren, Shoufeng; Pan, Changwang; Tan, Feng

    2017-02-01

    DNA-based alphaviral RNA replicon vectors, also called suicidal DNA vectors, have been employed to alleviate biosafety concerns attribution to its ability to induce apoptotic cell death of the transfected cells. Toxoplasma gondii nucleoside triphosphate hydrolase-II (TgNTPase-II), which facilitates the parasite to salvage purines from the host cell for survival and replication, have been demonstrated to be a potential vaccine candidate for toxoplasmosis. Herein, we evaluated the immunogenic potential of a suicidal DNA vaccine encoding TgNTPase-II gene, pDREP-TgNTPase-II, delivered intramuscularly in combination with electroporation. Immunization of mice with pDREP-TgNTPase-II elicited specific humoral responses, with high IgG antibody titers and a mixed IgG1/IgG2a response. The cellular immune response was associated with high level production of IFN-γ, IL-2, IL-10 cytokines and low level IL-4 production as well as the increase of the percentage of CD8+ T cells, indicating that a Th1 predominant response was elicited. Furthermore, mice vaccinated with this suicidal DNA vaccine displayed partial protection against acute infection with the virulent RH strain as well as chronic infection with PRU cyst, which shows 77.7% and 71.4% reduction in brain cyst burden in comparison to PBS and pDREP-eGFP control group, respectively. Based on the cellular and antibody responses, the suicidal DNA vaccine elicited a Th1-predominant immune response against T. gondii challenge.

  19. Immunogenicity of a Candidate DNA Vaccine Based on the prM/E Genes of a Dengue Type 2 Virus Cosmopolitan Genotype Strain.

    PubMed

    Putri, Dwi Hilda; Sudiro, Tjahjani Mirawati; Yunita, Rina; Jaya, Ungke Anton; Dewi, Beti Ernawati; Sjatha, Fithriyah; Konishi, Eiji; Hotta, Hak; Sudarmono, Pratiwi

    2015-01-01

    The development of a dengue virus vaccine is a major priority in efforts to control the diseases. Several researchers are currently using the Asian 1 and Asian 2 genotypes as vaccine candidates for dengue type 2 virus (DENV-2). However, in this study, we constructed a recombinant plasmid-based prM/E gene, from a DENV-2 Cosmopolitan genotype strain as a dengue DNA vaccine candidate. The protein expression of the recombinant plasmid in CHO cells was analyzed using an enzyme-linked immunosorbent assay, western blotting, and sucrose gradient sedimentation. After being used to immunize ddY mice three times at doses of 25 or 100 μg, the DNA vaccine induced humoral immune responses. There was no difference in the neutralizing antibody titer (focus reduction neutralization test 50% value) of mice immunized with 25 and 100 μg DNA vaccine doses. When challenged with 3 × 10(5) FFU DENV-2, immunized mice could raise anamnestic neutralizing antibody responses, which were observed at day 4 and day 8 post-challenge. Analysis of immunogenicity using BALB/c mice showed that their antibody neutralization titers were lower than those of ddY mice. In addition, the antibodies produced after immunization and challenge could also neutralize a DENV-2 Asian 2 genotype (New Guinea C) strain. Therefore, the DENV-2 Cosmopolitan genotype may be a DENV-2 vaccine candidate.

  20. Universal fungal vaccines

    PubMed Central

    Hamad, Mawieh

    2012-01-01

    The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks. PMID:22922769

  1. Vaccine Safety Datalink

    Cancer.gov

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  2. Pneumococcal Vaccines (PCV, PPSV)

    MedlinePlus

    ... to 2-Year-Old Your Child's Immunizations: Pneumococcal Vaccines (PCV, PPSV) KidsHealth > For Parents > Your Child's Immunizations: ... or HIV infection); or cochlear implants. Why the Vaccines Are Recommended Children younger than 2 years old, ...

  3. Vaccines and Pregnancy

    MedlinePlus

    ... best live chat Live Help Fact Sheets Share Vaccines and Pregnancy Thursday, 01 September 2016 In every ... risk. This sheet talks about whether exposure to vaccines may increase the risk for birth defects over ...

  4. National Vaccine Program Office

    MedlinePlus

    ... Track Your Community Vaccine Safety Scientific Agenda Newsletter Sign Up Subscribe to newsletter updates for the latest information ... National Vaccine Program Office. Email Connect With NVPO Sign Up for NVPO Updates To sign up for updates ...

  5. China's emerging vaccine industry.

    PubMed

    Hendriks, Jan; Liang, Yan; Zeng, Bing

    2010-07-01

    The Chinese vaccine industry is developing rapidly due to an emerging and large market for current and new vaccines, a large potential for local vaccine manufacturing both in the public and private domain, and a governmental orientation towards national vaccine self-sufficiency. There are currently over 40 companies and institutions manufacturing a large variety of traditional (EPI) and some new vaccines. The innovative development capacity of state vaccine institutions is stimulated by significant government investments. Various Chinese influenza manufacturers were in 2009 among the first worldwide to obtain national license for their pandemic H1N1 flu vaccines. It is of interest to note that private but also governmental entities are committed to raise manufacturing quality standards to reach WHO prequalification. It is expected that WHO prequalification for at least one product from a Chinese manufacturer will have been obtained by 2011. This will open the door to the global market for Chinese vaccines.

  6. Live Virus Smallpox Vaccine

    MedlinePlus

    ... Submit What's this? Submit Button The Live Virus Smallpox Vaccine Language: English Español (Spanish) Recommend on Facebook ... the vaccinia virus. Who should NOT get the smallpox vaccine? People most likely to have side effects ...

  7. Screening Tests and Vaccines

    MedlinePlus

    ... Contact Us Text size | Print | Screening Tests and Vaccines This information in Spanish ( en español ) Getting important screening tests and vaccines can save your life. Check this section of ...

  8. The HPV Vaccination Crisis

    Cancer.gov

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  9. Clinical vaccine development

    PubMed Central

    2015-01-01

    Vaccination is regarded as one of the biggest triumphs in the history of medicine. We are living in the most successful period of vaccine development. The accumulation of multidisciplinary knowledge and the investment of massive funding have enabled the development of vaccines against many infectious diseases as well as other diseases including malignant tumors. The paradigm of clinical vaccine evaluation and licensure has also been modernized based on scientific improvements and historical experience. However, there remain a number of hurdles to overcome. Continuous efforts are focused on increasing the efficacy and reducing the risks related to vaccine use. Cutting-edge knowledge about immunology and microbiology is being rapidly translated to vaccine development. Thus, physicians and others involved in the clinical development of vaccines should have sufficient understanding of the recent developmental trends in vaccination and the diseases of interest. PMID:25648742

  10. Vaccines in Multiple Sclerosis.

    PubMed

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy.

  11. Vaccines against malaria.

    PubMed

    Ouattara, Amed; Laurens, Matthew B

    2015-03-15

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease.

  12. Mathematical models of vaccination.

    PubMed

    Scherer, Almut; McLean, Angela

    2002-01-01

    Mathematical models of epidemics have a long history of contributing to the understanding of the impact of vaccination programmes. Simple, one-line models can predict target vaccination coverage that will eradicate an infectious agent, whilst other questions require complex simulations of stochastic processes in space and time. This review introduces some simple ordinary differential equation models of mass vaccination that can be used to address important questions about the predicted impact of vaccination programmes. We show how to calculate the threshold vaccination coverage rate that will eradicate an infection, explore the impact of vaccine-induced immunity that wanes through time, and study the competitive interactions between vaccine susceptible and vaccine resistant strains of infectious agent.

  13. Novel BVDV-2 mutants as new candidates for modified-live vaccines.

    PubMed

    Zemke, Johanna; König, Patricia; Mischkale, Katrin; Reimann, Ilona; Beer, Martin

    2010-04-21

    Protection against Bovine viral diarrhea virus (BVDV) type 2 infection of commercially available vaccines is often limited due to marked genetic and antigenic differences between BVDV types 1 (BVDV-1) and 2 (BVDV-2). Therefore, the immunogenicity of selected BVDV-1 and BVDV-2 mutants derived from infectious full-length cDNA clones and their use as modified-live vaccine candidates against challenge infection with a virulent heterologous BVDV-2 field isolate were investigated. Deletion mutants of BVDV-1 and BVDV-2 lacking a part of the N(pro) gene (BVDV-1DeltaN(pro)/BVDV-2DeltaN(pro)) were used as well as a packaged replicon with a deletion in the structural core protein encoding region (BVDV-2DeltaC-pseudovirions). The 25 calves used in this vaccination/challenge trial were allocated in five groups (n=5/group). One group received BVDV-1DeltaN(pro) (1 shot), one group BVDV-2DeltaN(pro) (1 shot), one group received both, BVDV-1DeltaN(pro) and BVDV-2DeltaN(pro) (1 shot), and one group was immunised with the BVDV-2DeltaC-pseudovirions (2 shots). The fifth group served as non-vaccinated control group. All groups were challenged intranasally with the BVDV-2 strain HI916 and monitored for signs of clinical disease, virus shedding and viremia. All tested BVDV vaccine candidates markedly reduced the outcome of the heterologous virulent BVDV-2 challenge infection showing graduated protective effects. The BVDV-2DeltaN(pro) mutant was able to induce complete protection and a "sterile immunity" upon challenge. Thus it represents a promising candidate for an efficacious future live vaccine.

  14. Ongoing pharmacovigilance on vaccines.

    PubMed

    Santuccio, Carmela; Trotta, Francesco; Felicetti, Patrizia

    2015-02-01

    Vaccines have peculiar characteristics as well as their surveillance. Specific requirements, needs and challenges for the vaccine vigilance are discussed in the perspective to improve the whole system in order to guarantee a safer vaccine use and the keeping of the public confidence in vaccinations. Key elements for the routine safety monitoring, new regulations and some available tools are taken into account. Finally, the Italian experience is shortly described.

  15. Generation of recombinant arenavirus for vaccine development in FDA-approved Vero cells.

    PubMed

    Cheng, Benson Y H; Ortiz-Riaño, Emilio; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2013-08-01

    The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis. In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications. Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses. The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines, which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells.

  16. Vaccine against herpes zoster.

    PubMed

    Pasternak, Jacyr

    2013-01-01

    The herpes zoster vaccine is made using high doses of live attenuated varicella/zoster virus. The vaccine is well tolerated and has few adverse effects: the most common one is pain at the injection site. Complications can occur mainly in persons who had prior zoster keratitis or uveitis. The vaccine can prevent this disease with low mortality but high morbidity.

  17. [Improving vaccination measures].

    PubMed

    Iannazzo, S

    2014-01-01

    Despite the benefits of routine vaccination of newborns are known and widely documented, in recent years we are observing a gradual increase in the number of parents who express doubts and concerns about the safety of vaccines and the real need to submit their children to vaccinations included in the national recommendations. This attitude is reinforced by the current epidemiological profile, in Western countries, of many vaccine preventable diseases, accompanied by a low risk perception among parents. Institutions and all the actors involved in vaccination programs have a duty to investigate the reasons for the loss of confidence in vaccination among the population in order to identify and implement appropriate and effective interventions. The improvement of vaccination should, theoretically, goes on a double track, placing side by side the provision of effective vaccines, safe and necessary, and interventions designed to increase demand for vaccination among the population, improve access to vaccination services, improve the system as a whole. But to actually improve the vaccinations' offer it is necessary also to provide interventions aimed at regaining the confidence of the population in relation to vaccination and the institutions that promote them. Particular attention should be given to the aspects of communication and risk communication.

  18. Yellow Fever Vaccine

    MedlinePlus

    What is yellow fever?Yellow fever is a serious disease caused by the yellow fever virus. It is found in certain parts of Africa ... How can I prevent yellow fever?Yellow fever vaccine can prevent yellow fever. ... only at designated vaccination centers. After getting the vaccine, you ...

  19. A Dengue Vaccine.

    PubMed

    Durbin, Anna P

    2016-06-30

    Denvaxia is the first licensed vaccine for the prevention of dengue. It is a live vaccine developed using recombinant DNA technology. The vaccine is given as three doses over the course of a year and has the potential to prevent hundreds of thousands of hospitalizations each year.

  20. Polysaccharide-Based Vaccines

    NASA Astrophysics Data System (ADS)

    Santana, Violeta Fernández; Balbin, Yury Valdés; Calderón, Janoi Chang; Icart, Luis Peña; Verez-Bencomo, Vicente

    Capsular polysaccharides (CPS) and lipopolysaccharides from bacteria are employed for the production of vaccines against human diseases. Initial development of CPS as a vaccine was followed by the development and introduction of conjugate polysaccharide-protein vaccines. The principles leading to both developments are reviewed.

  1. Dengue vaccines for travelers.

    PubMed

    Wilder-Smith, Annelies; Deen, Jacqueline L

    2008-07-01

    Dengue is an arthropod-borne infection caused by a flavivirus and spread by the Aedes mosquitoes. Many of the countries where dengue is endemic are popular tourist destinations and the disease is an increasingly important problem encountered by international travelers. Personal protection against the day-feeding dengue vectors is problematic, indicating the urgent need for a dengue vaccine. This review discusses the challenges of vaccine development, current vaccine strategies and the prospects for the availability of a vaccine for travelers in the future. Cost-effectiveness studies will need to take into account many factors, including the attack rate of dengue in travelers, the proportion of travelers who will need hospitalization, the cost of altered travel itineraries, the cost of the vaccine, duration of travel, destination and season. To be licensed as a travelers' vaccine, vaccine trials must address safety, immunogenicity, duration of protection, schedules and boosters in adults (in particular in immunologically naive adults), trials that may differ from those conducted in endemic countries. Vaccine schedules with long intervals would be a major obstacle to the uptake of the vaccine by travelers. Enhanced reactogenicity or interference with immunization must be effectively excluded for travelers with prior or concurrent vaccination against other flaviviruses, such as yellow fever or Japanese encephalitis. Licensing dengue as a travelers' vaccine poses unique challenges beyond the development of a vaccine for the endemic population.

  2. Improving newcastle disease vaccination with homologous vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All Newcastle disease viruses (NDVs) belong to a single serotype; however, current vaccine strains display important amino acid differences at the F and HN protein compared with virulent outbreak strains (vNDV). Previous studies have shown decreased viral shedding after challenge when vaccines were...

  3. Importance of vaccination habit and vaccine choice on influenza vaccination among healthy working adults.

    PubMed

    Lin, Chyongchiou J; Nowalk, Mary Patricia; Toback, Seth L; Rousculp, Matthew D; Raymund, Mahlon; Ambrose, Christopher S; Zimmerman, Richard K

    2010-11-10

    This randomized cluster trial was designed to improve workplace influenza vaccination rates using enhanced advertising, choice of vaccine type (intranasal or injectable) and an incentive. Workers aged 18-49 years were surveyed immediately following vaccination to determine factors associated with vaccination behavior and choice. The questionnaire assessed attitudes, beliefs and social support for influenza vaccine, demographics, and historical, current, and intentional vaccination behavior. Of the 2389 vaccinees, 83.3% received injectable vaccine and 16.7% received intranasal vaccine. Factors associated with previous influenza vaccination were older age, female sex, higher education and greater support for injectable vaccine (all P<.02). Current influenza vaccination with intranasal vaccine vs. injectable vaccine was associated with higher education, the study interventions, greater support for the intranasal vaccine and nasal sprays, less support of injectable vaccine, more negative attitudes about influenza vaccine, and a greater likelihood of reporting that the individual would not have been vaccinated had only injectable vaccine been offered (all P<.01). Intentional vaccine choice was most highly associated with previous vaccination behavior (P<.001). A key to long term improvements in workplace vaccination is to encourage first time influenza vaccination through interventions that include incentives, publicity and vaccine choice.

  4. Brucellosis vaccines for livestock.

    PubMed

    Goodwin, Zakia I; Pascual, David W

    2016-11-15

    Brucellosis is a livestock disease responsible for fetal loss due to abortions. Worldwide, this disease has profound economic and social impact by reducing the ability of livestock producers to provide an adequate supply of disease-free meat and dairy products. In addition to its presence in domesticated animals, brucellosis is harbored in a number of wildlife species creating new disease reservoirs, which adds to the difficulty of eradicating this disease. Broad and consistent use of the available vaccines would contribute in reducing the incidence of brucellosis. Unfortunately, this practice is not common. In addition, the current brucellosis vaccines cannot provide sterilizing immunity, and in certain circumstances, vaccinated livestock are not protected against co-mingling Brucella-infected wildlife. Given that these vaccines are inadequate for conferring complete protection for some vaccinated livestock, alternatives are being sought, and these include genetic modifications of current vaccines or their reformulations. Alternatively, many groups have sought to develop new vaccines. Subunit vaccines, delivered as a combination of soluble vaccine plus adjuvant or the heterologous expression of Brucella epitopes by different vaccine vectors are currently being tested. New live attenuated Brucella vaccines are also being developed and tested in their natural hosts. Yet, what is rarely considered is the route of vaccination which could improve vaccine efficacy. Since Brucella infections are mostly transmitted mucosally, mucosal delivery of a vaccine has the potential of eliciting a more robust protective immune response for improved efficacy. Hence, this review will examine these questions and provide the status of new vaccines for livestock brucellosis.

  5. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    SciTech Connect

    Filone, Claire Marie; Heise, Mark; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu; Bertolotti-Ciarlet, Andrea . E-mail: aciarlet@mail.med.upenn.edu

    2006-12-20

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

  6. Diagnostic and vaccine chapter.

    PubMed

    Wolfram, J H; Kokanov, S K; Verkhovsky, O A

    2010-10-01

    The first report in this chapter describes the development of a killed composite vaccine. This killed vaccine is non-infectious to humans, other animals, and the environment. The vaccine has low reactivity, is non-abortive, and does not induce pathomorphological alterations to the organs of vaccinated animals. The second report of this chapter describes the diagnostic value of a competitive enzyme-linked immunosorbent assay for detecting Brucella-specific antibodies and its ability to discriminate vaccinated cattle from infected cattle. The results indicated that the competitive enzyme-linked immunosorbent assay is more sensitive than traditional tests for detecting antibodies to Brucella abortus in naturally and experimentally infected cattle.

  7. Patenting malarial vaccine.

    PubMed

    Wiwanitkit, Viroj

    2008-01-01

    Malaria is an important tropical infection affecting millions of world population each year. Malarial vaccine development is the hope for successful control of malaria. Knowledge on malaria vaccine has been considered patentable subject for decades. Due to the present advance biotechnology, the number of patent applications related to malarial vaccine is growing exponentially. Several malarial vaccine candidates have been recently identified and the genetic manipulation of these candidates is becoming more efficient with the advancement of new biotechnologies. This review summarizes some of the recent published patents on malarial vaccines covering antigens, candidate epitopes and recombinant processing.

  8. Vaccination for Disease

    NASA Astrophysics Data System (ADS)

    Oehen, Stephan; Hengartner, Hans; Zinkernagel, Rolf M.

    1991-01-01

    Recombinant virus vaccines that express a limited number of epitopes are currently being developed to prevent disease by changing the relative balance between viral spread and the immune response. Some circumstances, however, were found in infections with a noncytopathic virus in which vaccination caused disease; sensitive parameters included the genetic background of the host, the time or dose of infection, and the constituents of the vaccine. Thus, immunopathologic damage by T cells may be an unwanted consequence of vaccination with the new types of peptide or recombinant vaccines that are being investigated for the human immunodeficiency viruses and other pathogens.

  9. A bivalent typhoid live vector vaccine expressing both chromosome- and plasmid-encoded Yersinia pestis antigens fully protects against murine lethal pulmonary plague infection.

    PubMed

    Galen, James E; Wang, Jin Yuan; Carrasco, Jose A; Lloyd, Scott A; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D; Nataro, James P; Pasetti, Marcela F

    2015-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity.

  10. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    PubMed Central

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  11. Emerging Vaccine Informatics

    PubMed Central

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  12. Vaccinations for pregnant women.

    PubMed

    Swamy, Geeta K; Heine, R Phillips

    2015-01-01

    In the United States, eradication and reduction of vaccine-preventable diseases through immunization has directly increased life expectancy by reducing mortality. Although immunization is a public priority, vaccine coverage among adult Americans is inadequate. The Institute of Medicine, the Community Preventive Services Task Force, and other public health entities have called for the development of innovative programs to incorporate adult vaccination into routine clinical practice. Obstetrician-gynecologists are well suited to serve as vaccinators of women in general and more specifically pregnant women. Pregnant women are at risk for vaccine-preventable disease-related morbidity and mortality and adverse pregnancy outcomes, including congenital anomalies, spontaneous abortion, preterm birth, and low birth weight. In addition to providing direct maternal benefit, vaccination during pregnancy likely provides direct fetal and neonatal benefit through passive immunity (transplacental transfer of maternal vaccine-induced antibodies). This article reviews: 1) types of vaccines; 2) vaccines specifically recommended during pregnancy and postpartum; 3) vaccines recommended during pregnancy and postpartum based on risk factors and special circumstances; 4) vaccines currently under research and development for licensure for maternal-fetal immunization; and 5) barriers to maternal immunization and available patient and health care provider resources.

  13. Vaccination against Klebsiella aerogenes.

    PubMed Central

    Roe, E. A.; Jones, R. J.

    1984-01-01

    Klebsiella vaccine was prepared from strains of Klebsiella aerogenes with capsular types K1, K36, K44 and K Cross (a type which cross-reacts in vitro with sera from many klebsiella capsular types). The vaccine was extracted by dialysis and ultrafiltration from capsular material released during growth of the bacteria in a five-day batch culture. Mice given one dose of vaccine from K1a (1.0 microgram/mouse) survived lethal intraperitoneal challenge of 11/11 homologous klebsiella strains four days after vaccination; 14 days after vaccination protection against the same challenge strains had declined to 5/11 strains. Vaccines from K1a, b, c, K36, K44 and K Cross induced homologous protection and protected mice against different ranges of heterologous klebsiella capsular types. The protective response of the mice was greatly enhanced by administering three doses of the vaccines. Vaccines from K1, K36, K44 and K Cross protected mice against 14/20, 11/20, 10/20 and 9/20 homologous and heterologous klebsiella challenge strains respectively. None of the klebsiella vaccines was toxic for mice at the immunizing dose (1.0 microgram/mouse). Vaccine from K36 was the most lethal, killing mice at 10(3) immunizing doses. The least toxic vaccine was from K44, which killed mice at 10(4) immunizing doses. PMID:6389699

  14. [Vaccinations for international travelers].

    PubMed

    Berens-Riha, N; Alberer, M; Löscher, T

    2014-03-01

    Vaccinations are a prominent part of health preparations before international travel. They can avoid or significantly reduce the risk of numerous infectious diseases. Until recently, vaccination against yellow fever was the only obligatory vaccination. However, according to updated international health regulations, other vaccinations and prophylactic measures may be required at entry from certain countries. For all routine vaccinations as recommended in Germany, necessary revaccination and catch-up of missed vaccinations should be administered before travel. At most destinations the risk of infection is higher than in Germany. Hepatitis A vaccine is generally recommended for travelers to areas of increased risk, polio vaccine for all destinations where eradication is not yet confirmed (Asia and Africa). The indications for other travel vaccines must take into consideration travel destination and itinerary, type and duration of travel, individual risk of exposure as well as the epidemiology of the disease to be prevented. Several vaccines of potential interest for travel medicine, e.g., new vaccines against malaria and dengue fever, are under development.

  15. The Third Replicon of Members of the Burkholderia cepacia Complex, Plasmid pC3, Plays a Role in Stress Tolerance

    PubMed Central

    Agnoli, Kirsty; Frauenknecht, Carmen; Freitag, Roman; Schwager, Stephan; Jenul, Christian; Vergunst, Annette; Carlier, Aurelien

    2014-01-01

    The metabolically versatile Burkholderia cepacia complex (Bcc) occupies a variety of niches, including the plant rhizosphere and the cystic fibrosis lung (where it is often fatal to the patient). Bcc members have multipartite genomes, of which the third replicon, pC3 (previously chromosome 3), has been shown to be a nonessential megaplasmid which confers virulence and both antifungal and proteolytic activity on several strains. In this study, pC3 curing was extended to cover strains of 16 of the 17 members of the Bcc, and the phenotypes conferred by pC3 were determined. B. cenocepacia strains H111, MCO-3, and HI2424 were previously cured of pC3; however, this had not proved possible in the epidemic strain K56-2. Here, we investigated the mechanism of this unexpected stability and found that efficient toxin-antitoxin systems are responsible for maintaining pC3 of strain K56-2. Identification of these systems allowed neutralization of the toxins and the subsequent deletion of K56-2pC3. The cured strain was found to exhibit reduced antifungal activity and was attenuated in both the zebrafish and the Caenorhabditis elegans model of infection. We used a PCR screening method to examine the prevalence of pC3 within 110 Bcc isolates and found that this replicon was absent in only four cases, suggesting evolutionary fixation. It is shown that plasmid pC3 increases the resistance of B. cenocepacia H111 to various stresses (oxidative, osmotic, high-temperature, and chlorhexidine-induced stresses), explaining the prevalence of this replicon within the Bcc. PMID:24334662

  16. Endotoxins in commercial vaccines.

    PubMed Central

    Geier, M R; Stanbro, H; Merril, C R

    1978-01-01

    Twenty samples of commercial vaccines intended for administration to humans were assayed for the presence of bacterial endotoxins by using the Limulus amebocyte lysate test. Sixteen of the vaccines contained more than 0.1 ng of endotoxin per ml (which corresponds to 103 bacterial cell wall equivalents per ml in the undiluted vaccines). These results suggest that at some stage of preparation, the vaccines have contained varying amounts of gram-negative bacteria and may indicate the presence of other bacterial products as well. It might be useful to list the level of endotoxins, phage, and other contaminants on each vaccine lot to facilitate studies on any side effects of these contaminants. Selection of vaccine lots with the least endotoxin might reduce some of the adverse effects of vaccinations. PMID:727776

  17. Vaccines for allergy

    PubMed Central

    Linhart, Birgit; Valenta, Rudolf

    2012-01-01

    Vaccines aim to establish or strengthen immune responses but are also effective for the treatment of allergy. The latter is surprising because allergy represents a hyper-immune response based on immunoglobulin E production against harmless environmental antigens, i.e., allergens. Nevertheless, vaccination with allergens, termed allergen-specific immunotherapy is the only disease-modifying therapy of allergy with long-lasting effects. New forms of allergy diagnosis and allergy vaccines based on recombinant allergen-derivatives, peptides and allergen genes have emerged through molecular allergen characterization. The molecular allergy vaccines allow sophisticated targeting of the immune system and may eliminate side effects which so far have limited the use of traditional allergen extract-based vaccines. Successful clinical trials performed with the new vaccines indicate that broad allergy vaccination is on the horizon and may help to control the allergy pandemic. PMID:22521141

  18. Vaccine epidemiology: A review

    PubMed Central

    Lahariya, Chandrakant

    2016-01-01

    This review article outlines the key concepts in vaccine epidemiology, such as basic reproductive numbers, force of infection, vaccine efficacy and effectiveness, vaccine failure, herd immunity, herd effect, epidemiological shift, disease modeling, and describes the application of this knowledge both at program levels and in the practice by family physicians, epidemiologists, and pediatricians. A case has been made for increased knowledge and understanding of vaccine epidemiology among key stakeholders including policy makers, immunization program managers, public health experts, pediatricians, family physicians, and other experts/individuals involved in immunization service delivery. It has been argued that knowledge of vaccine epidemiology which is likely to benefit the society through contributions to the informed decision-making and improving vaccination coverage in the low and middle income countries (LMICs). The article ends with suggestions for the provision of systematic training and learning platforms in vaccine epidemiology to save millions of preventable deaths and improve health outcomes through life-course. PMID:27453836

  19. Principles of Vaccination.

    PubMed

    Zepp, Fred

    2016-01-01

    While many of the currently available vaccines have been developed empirically, with limited understanding on how they activate the immune system and elicit protective immunity, the recent progress in basic sciences like immunology, microbiology, genetics, and molecular biology has fostered our understanding on the interaction of microorganisms with the human immune system. In consequence, modern vaccine development strongly builds on the precise knowledge of the biology of microbial pathogens, their interaction with the human immune system, as well as their capacity to counteract and evade innate and adaptive immune mechanisms. Strategies engaged by pathogens strongly determine how a vaccine should be formulated to evoke potent and efficient protective immune responses. The improved knowledge of immune response mechanisms has facilitated the development of new vaccines with the capacity to defend against challenging pathogens and can help to protect individuals particular at risk like immunocompromised and elderly populations. Modern vaccine development technologies include the production of highly purified antigens that provide a lower reactogenicity and higher safety profile than the traditional empirically developed vaccines. Attempts to improve vaccine antigen purity, however, may result in impaired vaccine immunogenicity. Some of such disadvantages related to highly purified and/or genetically engineered vaccines yet can be overcome by innovative technologies, such as live vector vaccines, and DNA or RNA vaccines. Moreover, recent years have witnessed the development of novel adjuvant formulations that specifically focus on the augmentation and/or control of the interplay between innate and adaptive immune systems as well as the function of antigen-presenting cells. Finally, vaccine design has become more tailored, and in turn has opened up the potential of extending its application to hitherto not accessible complex microbial pathogens plus providing new

  20. Influenza vaccines and vaccination strategies in birds.

    PubMed

    van den Berg, Thierry; Lambrecht, Bénédicte; Marché, Sylvie; Steensels, Mieke; Van Borm, Steven; Bublot, Michel

    2008-03-01

    Although it is well accepted that the present Asian H5N1 panzootic is predominantly an animal health problem, the human health implications and the risk of human pandemic have highlighted the need for more information and collaboration in the field of veterinary and human health. H5 and H7 avian influenza (AI) viruses have the unique property of becoming highly pathogenic (HPAI) during circulation in poultry. Therefore, the final objective of poultry vaccination against AI must be eradication of the virus and the disease. Actually, important differences exist in the control of avian and human influenza viruses. Firstly, unlike human vaccines that must be adapted to the circulating strain to provide adequate protection, avian influenza vaccination provides broader protection against HPAI viruses. Secondly, although clinical protection is the primary goal of human vaccines, poultry vaccination must also stop transmission to achieve efficient control of the disease. This paper addresses these differences by reviewing the current and future influenza vaccines and vaccination strategies in birds.

  1. Inhibition of Hepatitis C Virus Replicon RNA Synthesis by PSI-352938, a Cyclic Phosphate Prodrug of β-d-2′-Deoxy-2′-α-Fluoro-2′-β-C-Methylguanosine▿†

    PubMed Central

    Lam, Angela M.; Espiritu, Christine; Murakami, Eisuke; Zennou, Veronique; Bansal, Shalini; Micolochick Steuer, Holly M.; Niu, Congrong; Keilman, Meg; Bao, Haiying; Bourne, Nigel; Veselenak, Ronald L.; Reddy, P. Ganapati; Chang, Wonsuk; Du, Jinfa; Nagarathnam, Dhanapalan; Sofia, Michael J.; Otto, Michael J.; Furman, Phillip A.

    2011-01-01

    PSI-352938 is a novel cyclic phosphate prodrug of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine 5′-monophosphate that has potent activity against hepatitis C virus (HCV) in vitro. The studies described here characterize the in vitro anti-HCV activity of PSI-352938, alone and in combination with other inhibitors of HCV, and the cross-resistance profile of PSI-352938. The effective concentration required to achieve 50% inhibition for PSI-352938, determined using genotype 1a-, 1b-, and 2a-derived replicons stably expressed in the Lunet cell line, were 0.20, 0.13, and 0.14 μM, respectively. The active 5′-triphosphate metabolite, PSI-352666, inhibited recombinant NS5B polymerase from genotypes 1 to 4 with comparable 50% inhibitory concentrations. In contrast, PSI-352938 did not inhibit the replication of hepatitis B virus or human immunodeficiency virus in vitro. PSI-352666 did not significantly affect the activity of human DNA and RNA polymerases. PSI-352938 and its cyclic phosphate metabolites did not affect the cyclic GMP-mediated activation of protein kinase G. Clearance studies using replicon cells demonstrated that PSI-352938 cleared cells of HCV replicon RNA and prevented replicon rebound. An additive to synergistic effect was observed when PSI-352938 was combined with other classes of HCV inhibitors, including alpha interferon, ribavirin, NS3/4A inhibitors, an NS5A inhibitor, and nucleoside/nucleotide and nonnucleoside inhibitors. Cross-resistance studies showed that PSI-352938 remained fully active against replicons containing the S282T or the S96T/N142T amino acid alteration. Replicons that contain mutations conferring resistance to various classes of nonnucleoside inhibitors also remained sensitive to inhibition by PSI-352938. PSI-352938 is currently being evaluated in a phase I clinical study in genotype 1-infected individuals. PMID:21444700

  2. Influenza Vaccines: Challenges and Solutions

    PubMed Central

    Houser, Katherine; Subbarao, Kanta

    2015-01-01

    Vaccination is the best method for the prevention and control of influenza. Vaccination can reduce illness and lessen severity of infection. This review focuses on how currently licensed influenza vaccines are generated in the U.S., why the biology of influenza poses vaccine challenges, and vaccine approaches on the horizon that address these challenges. PMID:25766291

  3. Human Papillomavirus (HPV) Vaccine (Cervarix)

    MedlinePlus

    ... a previous dose of HPV vaccine, should not get the vaccine. Tell your doctor if the person getting vaccinated has any severe allergies, including an allergy to latex. HPV vaccine is not recommended for pregnant women. However, receiving HPV vaccine when pregnant is ...

  4. Human Papillomavirus (HPV) Vaccine (Gardasil)

    MedlinePlus

    ... a previous dose of HPV vaccine, should not get the vaccine. Tell your doctor if the person getting vaccinated has any severe allergies, including an allergy to yeast. HPV vaccine is not recommended for pregnant women. However, receiving HPV vaccine when pregnant is ...

  5. [Mercury in vaccines].

    PubMed

    Hessel, Luc

    2003-01-01

    Thiomersal, also called thimerosal, is an ethyl mercury derivative used as a preservative to prevent bacterial contamination of multidose vaccine vials after they have been opened. Exposure to low doses of thiomersal has essentially been associated with hypersensitivity reactions. Nevertheless there is no evidence that allergy to thiomersal could be induced by thiomersal-containing vaccines. Allergy to thiomersal is usually of delayed-hypersensitivity type, but its detection through cutaneous tests is not very reliable. Hypersensitivity to thiomersal is not considered as a contraindication to the use of thiomersal-containing vaccines. In 1999 in the USA, thiomersal was present in approximately 30 different childhood vaccines, whereas there were only 2 in France. Although there were no evidence of neurological toxicity in infants related to the use of thiomersal-containing vaccines, the FDA considered that the cumulative dose of mercury received by young infants following vaccination was high enough (although lower than the FDA threshold for methyl mercury) to request vaccine manufacturers to remove thiomersal from vaccine formulations. Since 2002, all childhood vaccines used in Europe and the USA are thiomersal-free or contain only minute amounts of thiomersal. Recently published studies have shown that the mercury levels in the blood, faeces and urine of children who had received thiomersal-containing vaccines were much lower than those accepted by the American Environmental Protection Agency. It has also been demonstrated that the elimination of mercury in children was much faster than what was expected on the basis of studies conducted with methyl mercury originating from food. Recently, the hypothesis that mercury contained in vaccines could be the cause of autism and other neurological developmental disorders created a new debate in the medical community and the general public. To date, none of the epidemiological studies conducted in Europe and elsewhere

  6. Vaccine strategies: Optimising outcomes.

    PubMed

    Hardt, Karin; Bonanni, Paolo; King, Susan; Santos, Jose Ignacio; El-Hodhod, Mostafa; Zimet, Gregory D; Preiss, Scott

    2016-12-20

    Successful immunisation programmes generally result from high vaccine effectiveness and adequate uptake of vaccines. In the development of new vaccination strategies, the structure and strength of the local healthcare system is a key consideration. In high income countries, existing infrastructures are usually used, while in less developed countries, the capacity for introducing new vaccines may need to be strengthened, particularly for vaccines administered beyond early childhood, such as the measles or human papillomavirus (HPV) vaccine. Reliable immunisation service funding is another important factor and low income countries often need external supplementary sources of finance. Many regions also obtain support in generating an evidence base for vaccination via initiatives created by organisations including World Health Organization (WHO), the Pan American Health Organization (PAHO), the Agence de Médecine Préventive and the Sabin Vaccine Institute. Strong monitoring and surveillance mechanisms are also required. An example is the efficient and low-cost approaches for measuring the impact of the hepatitis B control initiative and evaluating achievement of goals that have been established in the WHO Western Pacific region. A review of implementation strategies reveals differing degrees of success. For example, in the Americas, PAHO advanced a measles-mumps-rubella vaccine strategy, targeting different population groups in mass, catch-up and follow-up vaccination campaigns. This has had much success but coverage data from some parts of the region suggest that children are still not receiving all appropriate vaccines, highlighting problems with local service infrastructures. Stark differences in coverage levels are also observed among high income countries, as is the case with HPV vaccine implementation in the USA versus the UK and Australia, reflecting differences in delivery settings. Experience and research have shown which vaccine strategies work well and the

  7. Seasonal influenza vaccines.

    PubMed

    Fiore, Anthony E; Bridges, Carolyn B; Cox, Nancy J

    2009-01-01

    Influenza vaccines are the mainstay of efforts to reduce the substantial health burden from seasonal influenza. Inactivated influenza vaccines have been available since the 1940s and are administered via intramuscular injection. Inactivated vaccines can be given to anyone six months of age or older. Live attenuated, cold-adapted influenza vaccines (LAIV) were developed in the 1960s but were not licensed in the United States until 2003, and are administered via nasal spray. Both vaccines are trivalent preparations grown in eggs and do not contain adjuvants. LAIV is licensed for use in the United States for healthy nonpregnant persons 2-49 years of age.Influenza vaccination induces antibodies primarily against the major surface glycoproteins hemagglutinin (HA) and neuraminidase (NA); antibodies directed against the HA are most important for protection against illness. The immune response peaks at 2-4 weeks after one dose in primed individuals. In previously unvaccinated children <9 years of age, two doses of influenza vaccine are recommended, as some children in this age group have limited or no prior infections from circulating types and subtypes of seasonal influenza. These children require both an initial priming dose and a subsequent booster dose of vaccine to mount a protective antibody response.The most common adverse events associated with inactivated vaccines are sore arm and redness at the injection site; systemic symptoms such as fever or malaise are less commonly reported. Guillian-Barré Syndrome (GBS) was identified among approximately 1 per 100,000 recipients of the 1976 swine influenza vaccine. The risk of influenza vaccine-associated GBS from seasonal influenza vaccine is thought to be at most approximately 1-2 cases per 1 million vaccinees, based on a few studies that have found an association; other studies have found no association.The most common adverse events associated with LAIV are nasal congestion, headache, myalgias or fever. Studies of the

  8. Vaccine process technology.

    PubMed

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  9. Self-replicating Replicon-RNA Delivery to Dendritic Cells by Chitosan-nanoparticles for Translation In Vitro and In Vivo

    PubMed Central

    McCullough, Kenneth C; Bassi, Isabelle; Milona, Panagiota; Suter, Rolf; Thomann-Harwood, Lisa; Englezou, Pavlos; Démoulins, Thomas; Ruggli, Nicolas

    2014-01-01

    Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements—slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein. PMID:25004099

  10. Systems immunogenetics of vaccines.

    PubMed

    Mooney, Michael; McWeeney, Shannon; Sékaly, Rafick-Pierre

    2013-04-01

    Vaccines are the most cost effective public health measure for preventing viral infection and limiting epidemic spread within susceptible populations. However, the efficacy of current protective vaccines is highly variable, particularly in aging populations. In addition, there have been a number of challenges in the development of new vaccines due to a lack of detailed understanding of the immune correlates of protection. To identify the mechanisms underlying the variability of the immune response to vaccines, system-level tools need to be developed that will further our understanding of virus-host interactions and correlates of vaccine efficacy. This will provide critical information for rational vaccine design and allow the development of an analog to the "precision medicine" framework (already acknowledged as a powerful approach in medicine and therapeutics) to be applied to vaccinology.

  11. Herpes zoster virus vaccine.

    PubMed

    Woolery, William Alan

    2008-10-01

    Varicella zoster virus (VZV) is the etiologic agent of varicella and herpes zoster (HZ) in humans. Herpes zoster is the result of reactivation of VZV within certain sensory ganglia. The burden of illness from HZ and post-herpetic neuralgia (PHN) is high. Herpes-zoster vaccine contains live attenuated varicella-zoster virus in an amount approximately 14 times greater than that found in the varicella virus vaccine. Herpes zoster vaccine is approved for the prevention of shingles in appropriate persons aged 60 and older. The vaccine is administered in a single subcutaneous dose. Reported side effects are mild and generally limited to localized injection site findings. Herpes-zoster vaccine reportedly decreases the occurrence of herpes zoster by approximately 50 percent and prevents the development of PHN by two thirds. The vaccine appears to be minimally effective in those individuals over the age of 80 and is not recommended in this age group.

  12. [Vaccination for international travelers].

    PubMed

    Arrazola, M Pilar; Serrano, Almudena; López-Vélez, Rogelio

    2016-05-01

    Traveler's vaccination is one of the key strategies for the prevention of infectious diseases during international travel. The risk of acquiring an infectious disease is determined in each case by the characteristics of the traveler and the travel, so the pre-departure medical advice of the traveler must be individualized. The World Health Organization classifies travelerś vaccines into three groups. - Vaccines for routine use in national immunization programs: Haemophilus influenzae type b, hepatitis B, polio, measles-mumps-rubella, tetanus-diphtheria-whooping a cough, and chickenpox. - Vaccinations required by law in certain countries before to enter them: yellow fever, meningococcal disease and poliomyelitis. - Vaccines recommended depending on the circumstances: cholera, japanese encephalitis, tick-borne encephalitis, meningococcal disease, typhoid fever, influenza, hepatitis A, hepatitis B, rabies and BCG. This review is intended to introduce the reader to the field of international vaccination.

  13. Ricin vaccine development.

    PubMed

    Smallshaw, Joan E; Vitetta, Ellen S

    2012-01-01

    In this chapter we discuss vaccines to protect against the highly toxic plant-derived toxin, ricin. Due to its prevalence, ease of use, and stability it has been used in sporadic incidents of espionage. There is also concern that it will be used as an agent of bioterrorism. As a result there has been a great deal of interest in developing a safe vaccine or antidote to protect humans, and in particular soldiers and first responders. Although multiple types of vaccines have been tested, at this time two recombinant vaccines are the leading candidates for the national vaccine stockpile. In terms of passive post-exposure protection, monoclonal neutralizing antibodies that passively protect animals are also under development. These vaccines and antibodies are discussed in the context of the toxicity and structure of ricin.

  14. Vaccines and Kawasaki disease.

    PubMed

    Esposito, Susanna; Bianchini, Sonia; Dellepiane, Rosa Maria; Principi, Nicola

    2016-01-01

    The distinctive immune system characteristics of children with Kawasaki disease (KD) could suggest that they respond in a particular way to all antigenic stimulations, including those due to vaccines. Moreover, treatment of KD is mainly based on immunomodulatory therapy. These factors suggest that vaccines and KD may interact in several ways. These interactions could be of clinical relevance because KD is a disease of younger children who receive most of the vaccines recommended for infectious disease prevention. This paper shows that available evidence does not support an association between KD development and vaccine administration. Moreover, it highlights that administration of routine vaccines is mandatory even in children with KD and all efforts must be made to ensure the highest degree of protection against vaccine-preventable diseases for these patients. However, studies are needed to clarify currently unsolved issues, especially issues related to immunologic interference induced by intravenous immunoglobulin and biological drugs.

  15. Immunizations: vaccinations in general.

    PubMed

    Wiley, Catherine C

    2015-06-01

    The childhood immunization schedule is complex and nuanced. Although serious adverse reactions to immunizations are uncommon, clinicians must be well-versed in these reactions as well as the contraindications and precautions to each vaccine. • Conjugate vaccine technology links polysaccharide antigens to carrier proteins, triggering T-cell-dependent immunity to polysaccharides, thereby strengthening immune memory. • On the basis of some research evidence and consensus, live vaccines are generally contraindicated in immunocompromised patients and in pregnancy. Most live vaccines can be administered to household contacts of immunocompromised patients. • On the basis of some research and consensus, modified administration of meningococcal, pneumococcal, and less commonly, other vaccines may be indicated to protect immunocompromised patients. • On the basis of disease epidemiology and consensus, international travelers should be up-to-date with all routine immunizations; depending on destination, additional vaccines or immune globulin may be required.

  16. Chikungunya vaccines in development

    PubMed Central

    Schwameis, Michael; Buchtele, Nina; Wadowski, Patricia Pia; Schoergenhofer, Christian; Jilma, Bernd

    2016-01-01

    ABSTRACT Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates. PMID:26554522

  17. Vaccine herd effect.

    PubMed

    Kim, Tae Hyong; Johnstone, Jennie; Loeb, Mark

    2011-09-01

    Vaccination ideally protects susceptible populations at high risk for complications of the infection. However, vaccines for these subgroups do not always provide sufficient effectiveness. The herd effect or herd immunity is an attractive way to extend vaccine benefits beyond the directly targeted population. It refers to the indirect protection of unvaccinated persons, whereby an increase in the prevalence of immunity by the vaccine prevents circulation of infectious agents in susceptible populations. The herd effect has had a major impact in the eradication of smallpox, has reduced transmission of pertussis, and protects against influenza and pneumococcal disease. A high uptake of vaccines is generally needed for success. In this paper we aim to provide an update review on the herd effect, focusing on the clinical benefit, by reviewing data for specific vaccines.

  18. Therapeutic cancer vaccines

    PubMed Central

    Melief, Cornelis J.M.; van Hall, Thorbald; Arens, Ramon; Ossendorp, Ferry; van der Burg, Sjoerd H.

    2015-01-01

    The clinical benefit of therapeutic cancer vaccines has been established. Whereas regression of lesions was shown for premalignant lesions caused by HPV, clinical benefit in cancer patients was mostly noted as prolonged survival. Suboptimal vaccine design and an immunosuppressive cancer microenvironment are the root causes of the lack of cancer eradication. Effective cancer vaccines deliver concentrated antigen to both HLA class I and II molecules of DCs, promoting both CD4 and CD8 T cell responses. Optimal vaccine platforms include DNA and RNA vaccines and synthetic long peptides. Antigens of choice include mutant sequences, selected cancer testis antigens, and viral antigens. Drugs or physical treatments can mitigate the immunosuppressive cancer microenvironment and include chemotherapeutics, radiation, indoleamine 2,3-dioxygenase (IDO) inhibitors, inhibitors of T cell checkpoints, agonists of selected TNF receptor family members, and inhibitors of undesirable cytokines. The specificity of therapeutic vaccination combined with such immunomodulation offers an attractive avenue for the development of future cancer therapies. PMID:26214521

  19. Vaccine Treatment for Prostate Cancer

    MedlinePlus

    ... Back After Treatment Prostate Cancer Treating Prostate Cancer Vaccine Treatment for Prostate Cancer Sipuleucel-T (Provenge) is ... less advanced prostate cancer. Possible side effects of vaccine treatment Side effects from the vaccine tend to ...

  20. What Vaccines Do You Need?

    MedlinePlus

    ... Why Immunize? Vaccines: The Basics Adolescent and Adult Vaccine Quiz Recommend on Facebook Tweet Share Compartir Españ ... adolescentes y adultos Did you know that certain vaccines are recommended for adults and adolescents?* Take this ...

  1. Renal Disease and Adult Vaccination

    MedlinePlus

    ... Resources for Healthcare Professionals Renal Disease and Adult Vaccination Recommend on Facebook Tweet Share Compartir Vaccines are ... have immunity to this disease Learn about adult vaccination and other health conditions Asplenia Diabetes Type 1 ...

  2. Liver Disease and Adult Vaccination

    MedlinePlus

    ... Vaccination Recommendations Adult Vaccination Resources for Healthcare Professionals Liver Disease and Adult Vaccination Recommend on Facebook Tweet ... critical for people with health conditions such as liver disease. If you have chronic liver disease, talk ...

  3. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  4. Existing antibacterial vaccines.

    PubMed

    Mendoza, Natalia; Ravanfar, Parisa; Satyaprakash, Anita; Satyaprakah, Anita; Pillai, Sivaprabha; Creed, Rosella

    2009-01-01

    There are countless bacterial pathogens that cause disease in humans. Many of these bacterial infections not only cause significant morbidity and mortality in the human population but also cause a significant economic impact on society. Vaccines allow for reduction and potential eradication of such diseases. This article will review the currently approved antibacterial vaccines, which are vaccines for pertussis, tetanus, diphtheria, meningococcus, pneumococcus, Haemophilus influenza, cholera, typhoid, and anthrax.

  5. Emerging Vaccine Technologies

    PubMed Central

    Loomis, Rebecca J.; Johnson, Philip R.

    2015-01-01

    Vaccination has proven to be an invaluable means of preventing infectious diseases by reducing both incidence of disease and mortality. However, vaccines have not been effectively developed for many diseases including HIV-1, hepatitis C virus (HCV), tuberculosis and malaria, among others. The emergence of new technologies with a growing understanding of host-pathogen interactions and immunity may lead to efficacious vaccines against pathogens, previously thought impossible. PMID:26343196

  6. Myopericarditis following Smallpox Vaccination

    DTIC Science & Technology

    2004-04-20

    smallpox vaccinations with this strain of vaccinia virus . Fifty-eight males and one female aged 21–43 years with confirmed or probable acute...or unrecognized event after smallpox vaccinations with the New York City Board of Health strain of vaccinia virus (Dryvax; Wyeth Laboratories, Marietta...respectively). military personnel; myocarditis; pericarditis; smallpox; vaccination; vaccinia virus Abbreviations: CDC, Centers for Disease Control and

  7. [Does vaccination cause disease?].

    PubMed

    Zingg, W

    2005-10-01

    Not many inventions in medical history have influenced our society as much as vaccination. The concept is old and simple. When Edward Jenner published his work on cowpox, "variolation" was quite common. In this procedure, pus of patients with mild smallpox was transferred to healthy individuals. Meanwhile smallpox has been eradicated worldwide. Diseases such as poliomyelitis, diphtheria or tetanus almost disappeared in industrialized countries. The same happened with epiglottitis and meningitis due to Haemophilus influenzae type b (Hib) after vaccination against Hib was introduced in Switzerland in 1990. This success was possible because of routine vaccination. Immunization is a save procedure and adverse events are much lower than complications in the natural course of the prevented diseases. However vaccinations were accused to cause diseases themselves such as asthma, multiple sclerosis, diabetes mellitus, chronic arthritis or autism. Hitherto no large cohort study or case-control-study was able to proof responsibility of vaccines in any of these diseases. Public media are eager to publish early data from surveillance reports or case reports which are descriptive and never a principle of cause and effect. In large controlled trials there was no proof that vaccination causes asthma, hepatitis-B-vaccination causes multiple sclerosis or macrophagic myofasciitis, Hib-vaccination causes diabetes mellitus, rubella-vaccination causes chronic arthritis, measles-mumps-rubella-vaccination causes gait disturbance or thiomersal causes autism. These results are rarely published in newspapers or television. Thus, many caring parents are left with negative ideas about immunization. Looking for the best for their children they withhold vaccination and give way to resurgence of preventable diseases in our communities. This must be prevented. There is more evidence than expected that vaccination is safe and this can and must be told to parents.

  8. Rift Valley fever vaccines

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2009-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both humans and ruminants is the best approach to control Rift Valley fever. This article summarizes the development of inactivated RVFV vaccine, live attenuated vaccine, and other new generation vaccines. PMID:19837291

  9. Vaccines, our shared responsibility.

    PubMed

    Pagliusi, Sonia; Jain, Rishabh; Suri, Rajinder Kumar

    2015-05-05

    The Developing Countries Vaccine Manufacturers' Network (DCVMN) held its fifteenth annual meeting from October 27-29, 2014, New Delhi, India. The DCVMN, together with the co-organizing institution Panacea Biotec, welcomed over 240 delegates representing high-profile governmental and nongovernmental global health organizations from 36 countries. Over the three-day meeting, attendees exchanged information about their efforts to achieve their shared goal of preventing death and disability from known and emerging infectious diseases. Special praise was extended to all stakeholders involved in the success of polio eradication in South East Asia and highlighted challenges in vaccine supply for measles-rubella immunization over the coming decades. Innovative vaccines and vaccine delivery technologies indicated creative solutions for achieving global immunization goals. Discussions were focused on three major themes including regulatory challenges for developing countries that may be overcome with better communication; global collaborations and partnerships for leveraging investments and enable uninterrupted supply of affordable and suitable vaccines; and leading innovation in vaccines difficult to develop, such as dengue, Chikungunya, typhoid-conjugated and EV71, and needle-free technologies that may speed up vaccine delivery. Moving further into the Decade of Vaccines, participants renewed their commitment to shared responsibility toward a world free of vaccine-preventable diseases.

  10. Polyvalent AIDS Vaccines

    PubMed Central

    Lu, Shan; Grimes Serrano, Jill M.; Wang, Shixia

    2013-01-01

    A major hurdle in the development of a global HIV-1 vaccine is viral diversity. For close to three decades, HIV vaccine development has focused on either the induction of T cell immune responses or antibody responses, and only rarely on both components. After the failure of the STEP trial, the scientific community concluded that a T cell-based vaccine would likely not be protective if the T cell immune responses were elicited against only a few dominant epitopes. Similarly, for vaccines focusing on antibody responses, one of the main criticisms after VaxGen’s failed Phase III trials was on the limited antigen breadth included in the two formulations used. The successes of polyvalent vaccine approaches against other antigenically variable pathogens encourage implementation of the same approach for the design of HIV-1 vaccines. A review of the existing HIV-1 vaccination approaches based on the polyvalent principle is included here to provide a historical perspective for the current effort of developing a polyvalent HIV-1 vaccine. Results summarized in this review provide a clear indication that the polyvalent approach is a viable one for the future development of an effective HIV vaccine. PMID:21054250

  11. Vaccines: Shaping global health.

    PubMed

    Pagliusi, Sonia; Ting, Ching-Chia; Lobos, Fernando

    2017-03-14

    The Developing Countries Vaccine Manufacturers' Network (DCVMN) gathered leaders in immunization programs, vaccine manufacturing, representatives of the Argentinean Health Authorities and Pan American Health Organization, among other global health stakeholders, for its 17th Annual General Meeting in Buenos Aires, to reflect on how vaccines are shaping global health. Polio eradication and elimination of measles and rubella from the Americas is a result of successful collaboration, made possible by timely supply of affordable vaccines. After decades of intense competition for high-value markets, collaboration with developing countries has become critical, and involvement of multiple manufacturers as well as public- and private-sector investments are essential, for developing new vaccines against emerging infectious diseases. The recent Zika virus outbreak and the accelerated Ebola vaccine development exemplify the need for international partnerships to combat infectious diseases. A new player, Coalition for Epidemic Preparedness Innovations (CEPI) has made its entrance in the global health community, aiming to stimulate research preparedness against emerging infections. Face-to-face panel discussions facilitated the dialogue around challenges, such as risks of viability to vaccine development and regulatory convergence, to improve access to sustainable vaccine supply. It was discussed that joint efforts to optimizing regulatory pathways in developing countries, reducing registration time by up to 50%, are required. Outbreaks of emerging infections and the global Polio eradication and containment challenges are reminders of the importance of vaccines' access, and of the importance of new public-private partnerships.

  12. Dengue virus vaccine development.

    PubMed

    Yauch, Lauren E; Shresta, Sujan

    2014-01-01

    Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.

  13. Vaccination against Brucella.

    PubMed

    Nicoletti, P

    1990-01-01

    Vaccination has played an enormous role in reducing brucellosis in many countries. It is certain to continue to be the preeminent factor in control of the disease in others. The search for an ideal vaccine continues. Live vaccines have proved to be superior to inactivated products. They are effective, inexpensive, and immunity is more persistent. The disadvantages of postvaccinal antibodies can be minimized by reduction of previously recommended doses and through use of supplemental diagnostic tests. These procedures now make entire population vaccination of great practical significance with many advantages over limited use of the strains 19 and Rev. 1. Adult animal vaccination should be much more extensive in many countries. A live B. suis strain 2 vaccine developed in China deserves much additional evaluation, including use in swine, for which no satisfactory vaccine exists. It is generally agreed that cell-mediated responses are the dominant aspect of immunogenesis. However, the correlates that have frequently been used--dermal hypersensitivity and lymphocyte stimulation in vitro--appear to be poor indices of cell-mediated immunity in brucellosis. Many studies have shown that postvaccinal antibodies do not predict subsequent immunity. There is a great need for simple in vivo or in vitro methods to measure CMI. While vaccination of humans may be useful in control of brucellosis in some high-risk occupations, the ultimate success is dependent upon reduction of this very important zoonosis in natural hosts. This is most effectively accomplished by widespread use of vaccination.

  14. Vaccination in elite athletes.

    PubMed

    Gärtner, Barbara C; Meyer, Tim

    2014-10-01

    Public health vaccination guidelines cannot be easily transferred to elite athletes. An enhanced benefit from preventing even mild diseases is obvious but stronger interference from otherwise minor side effects has to be considered as well. Thus, special vaccination guidelines for adult elite athletes are required. In most of them, protection should be strived for against tetanus, diphtheria, pertussis, influenza, hepatitis A, hepatitis B, measles, mumps and varicella. When living or traveling to endemic areas, the athletes should be immune against tick-borne encephalitis, yellow fever, Japanese encephalitis, poliomyelitis, typhoid fever, and meningococcal disease. Vaccination against pneumococci and Haemophilus influenzae type b is only relevant in athletes with certain underlying disorders. Rubella and papillomavirus vaccination might be considered after an individual risk-benefit analysis. Other vaccinations such as cholera, rabies, herpes zoster, and Bacille Calmette-Guérin (BCG) cannot be universally recommended for athletes at present. Only for a very few diseases, a determination of antibody titers is reasonable to avoid unnecessary vaccinations or to control efficacy of an individual's vaccination (especially for measles, mumps, rubella, varicella, hepatitis B and, partly, hepatitis A). Vaccinations should be scheduled in a way that possible side effects are least likely to occur in periods of competition. Typically, vaccinations are well tolerated by elite athletes, and resulting antibody titers are not different from the general population. Side effects might be reduced by an optimal selection of vaccines and an appropriate technique of administration. Very few discipline-specific considerations apply to an athlete's vaccination schedule mainly from the competition and training pattern as well as from the typical geographical distribution of competitive sites.

  15. History of polio vaccination

    PubMed Central

    Baicus, Anda

    2012-01-01

    Poliomyelitis is an acute paralytic disease caused by three poliovirus (PV) serotypes. Less than 1% of PV infections result in acute flaccid paralysis. The disease was controlled using the formalin-inactivated Salk polio vaccine (IPV) and the Sabin oral polio vaccine (OPV). Global poliomyelitis eradication was proposed in 1988 by the World Health Organization to its member states. The strategic plan established the activities required for polio eradication, certification for regions, OPV cessation phase and post-OPV phase. OPV is the vaccine of choice for the poliomyelitis eradication program because it induces both a systemic and mucosal immune response. The major risks of OPV vaccination are the appearance of Vaccine-Associated Paralytic Poliomyelitis cases (VAPP) and the emergence of Vaccine Derived Polioviruses strains. The supplementary immunization with monovalent strains of OPV type 1 or type 3 or with a new bivalent oral polio vaccine bOPV (containing type 1 and type 3 PV) has been introduced in those regions where the virus has been difficult to control. Most countries have switched the schedule of vaccination by using IPV instead of OPV because it poses no risk of vaccine-related disease. Until 2008, poliomyelitis was controlled in Romania, an Eastern European country, predominantly using OPV. The alternative vaccination schedule (IPV/OPV) was implemented starting in September 2008, while beginning in 2009, the vaccination was IPV only. The risk of VAPP will disappear worldwide with the cessation of use of OPV. The immunization for polio must be maintained for at least 5 to 10 years using IPV. PMID:24175215

  16. Human Papillomavirus Vaccine

    PubMed Central

    Savas, Lara S.; Fernández, Maria E.; Jobe, David; Carmack, Chakema C.

    2012-01-01

    Background Research is needed to understand parental factors influencing human papillomavirus (HPV) vaccination, particularly in groups with a higher burden of cervical cancer. Purpose To determine correlates of HPV vaccination among a sample of low-income parents of age-eligible daughters (aged 9–17 years) who called the 2-1-1 Helpline. Secondary analyses describe potential differences in HPV vaccination correlates by Hispanic and black parent groups, specifically. Methods This 2009 cross-sectional feasibility survey of cancer prevention needs was conducted in Houston at the 2-1-1 Texas/United Way Helpline. In 2012, to examine the association between parental psychosocial, cognitive, and decisional factors and HPV vaccination uptake (one or two doses), bivariate and multivariable logistic regression analyses were conducted for minority parents and for Hispanic and black parent groups, separately. Results Lower rates of HPV vaccination uptake were reported among minority daughters of 2-1-1 callers (29% overall) compared with national and Texas rates. In final adjusted analysis, factors positively associated with HPV vaccination uptake included being offered the vaccination by a doctor or nurse, belief that the vaccine would prevent cervical cancer, and Hispanic ethnicity. Secondary analyses detected differences in factors associated with vaccination in Hispanic and black groups. Conclusions Findings indicate low levels of vaccination among 2-1-1 callers. Increased understanding of determinants of HPV vaccination in low-income minority groups can guide interventions to increase coverage. Because 2-1-1 informational and referral services networks reach populations considered medically underserved, 2-1-1 can serve as a community hub for informing development of and implementing approaches aimed at hard-to-reach groups. PMID:23157770

  17. Adverse reactions to vaccines.

    PubMed

    Martin, Bryan L; Nelson, Michael R; Hershey, Joyce N; Engler, Renata J M

    2003-06-01

    (The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.) Immunization healthcare is becoming increasingly complex as the number and types of vaccines have continued to expand. Like all prescription drugs, vaccines may be associated with adverse events. The majority of these reactions are self-limited and not associated with prolonged disability. The media, Internet and public advocacy groups have focused on potentially serious vaccine-associated adverse events with questions raised about causal linkages to increasing frequencies of diseases such as autism and asthma. Despite a lack of evidence of a causal relationship to a variety of vaccine safety concerns, including extensive reviews by the Institute of Medicine, questions regarding vaccine safety continue to threaten the success of immunization programs. Risk communication arid individual risk assessment is further challenged by the public health success of vaccine programs creating the perception that certain vaccines are no longer necessary or justified because of the rare reaction risk. There is a need for improved understanding of true vaccine contraindications and precautions as well as host factors and disease threat in order to develop a patient specific balanced risk communication intervention. When they occur, vaccine related adverse events must be treated, documented and reported through the VAERS system. The increasing complexity of vaccination health care has led the Center of Disease Control and Prevention (CDC) to identify Vaccine Safety Assessment and Evaluation as a potential new specialty.

  18. Venezuelan Equine Encephalitis Replicon Immunization Overcomes Intrinsic Tolerance and Elicits Effective Anti-Tumor Immunity to the ’Self’ Tumor-Associated Antigen, neu in a Rat Mammary Tumor Model

    DTIC Science & Technology

    2003-01-01

    Williamson C, Suarez DL, Johnston R, Perdue ML: Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens...Immunol Immunother 50: 615–624, 2002 75. Rongcun Y, Salazar -Onfray F, Charo J, Malmberg KJ, Evrin K, Maes H, Kono K, Hising C, Petersson M, Larsson O

  19. Clinical development of Ebola vaccines

    PubMed Central

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  20. A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile.

    PubMed

    Donald, Robert G K; Flint, Mike; Kalyan, Narender; Johnson, Erik; Witko, Susan E; Kotash, Cheryl; Zhao, Ping; Megati, Shakuntala; Yurgelonis, Irina; Lee, Phillip Kwok; Matsuka, Yury V; Severina, Elena; Deatly, Anne; Sidhu, Mini; Jansen, Kathrin U; Minton, Nigel P; Anderson, Annaliesa S

    2013-07-01

    The Clostridium difficile toxins A and B are primarily responsible for symptoms of C. difficile associated disease and are prime targets for vaccine development. We describe a plasmid-based system for the production of genetically modified toxins in a non-sporulating strain of C. difficile that lacks the toxin genes tcdA and tcdB. TcdA and TcdB mutations targeting established glucosyltransferase cytotoxicity determinants were introduced into recombinant plasmids and episomally expressed toxin mutants purified from C. difficile transformants. TcdA and TcdB mutants lacking glucosyltransferase and autoproteolytic processing activities were ~10 000-fold less toxic to cultured human IMR-90 cells than corresponding recombinant or native toxins. However, both mutants retained residual cytotoxicity that could be prevented by preincubating the antigens with specific antibodies or by formalin treatment. Such non-toxic formalin-treated mutant antigens were immunogenic and protective in a hamster model of infection. The remaining toxicity of untreated TcdA and TcdB mutant antigens was associated with cellular swelling, a phenotype consistent with pore-induced membrane leakage. TcdB substitution mutations previously shown to block vesicular pore formation and toxin translocation substantially reduced residual toxicity. We discuss the implications of these results for the development of a C. difficile toxoid vaccine.

  1. Pricing of new vaccines.

    PubMed

    Lee, Bruce Y; McGlone, Sarah M

    2010-08-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical, and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following ten components: 1. Conduct a target population analysis; 2. Map potential competitors and alternatives; 3. Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; 4. Quantify the incremental value of the new vaccine's characteristics; 5. Determine vaccine positioning in the marketplace; 6. Estimate the vaccine price-demand curve; 7. Calculate vaccine costs (including those of manufacturing, distribution, and research and development); 8. Account for various legal, regulatory, third party payer, and competitor factors; 9. Consider the overall product portfolio; 10. Set pricing objectives; 11. Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area.

  2. Argentine hemorrhagic fever vaccines.

    PubMed

    Ambrosio, Ana; Saavedra, Maria; Mariani, Mauricio; Gamboa, Graciela; Maiza, Andrea

    2011-06-01

    Argentine hemorrhagic fever (AHF), an acute disease caused by Junin virus (JUNV, Arenaviridae), has been an important issue to public health in Argentina since the early 1950s. The field rodent Calomys musculinus is JUNV natural reservoir and human disease is a consequence of contact with infected rodents. A steady extention of AHF endemic area is being observed since the first reports of the disease. Important achievements have been made in: (a) improvement of methods for the etiological diagnosis; (b) implementation and validation of therapeutical measures; (c) development of vaccines to protect against AHF. Reference is made to different research strategies used to obtain anti-AHF vaccines in the past and anti-arenaviral diseases in the present. Information is updated on features and field performance of Candid #1 vaccine, a live attenuted vaccine currently used to prevent AHF. This vaccine was developed through a joint international effort that envisioned it as an orphan drug. With transferred technology, Argentine government was committed to be Candid #1 manufacturer and to register this vaccine as a novel medical product under the Argentine regulatory authority. Candid #1 vaccine is the first one used to control an arenaviral hemorrhagic fever, the first live viral vaccine to be manufactured and registered in Argentina, reaching its target population through governmental effort.

  3. The Human Hookworm Vaccine.

    PubMed

    Hotez, Peter J; Diemert, David; Bacon, Kristina M; Beaumier, Coreen; Bethony, Jeffrey M; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; Freire, Marcos da Silva; Homma, Akira; Lee, Bruce Y; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K

    2013-04-18

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel(®) and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases.

  4. Herpes zoster vaccine (Zostavax).

    PubMed

    2006-09-11

    A live attenuated varicella-zoster vaccine (Zostavax--Merck) has been approved by the FDA for prevention of herpes zoster (HZ; zoster; shingles) in persons > or = 60 years old. Each dose of Zostavax contains about 14 times as much varicella-zoster virus (VZV) as Varivax, which has been used in the US since 1995 to vaccinate against varicella (chicken pox).

  5. Vaccines Against Malaria

    PubMed Central

    Ouattara, Amed; Laurens, Matthew B.

    2015-01-01

    Despite global efforts to control malaria, the illness remains a significant public health threat. Currently, there is no licensed vaccine against malaria, but an efficacious vaccine would represent an important public health tool for successful malaria elimination. Malaria vaccine development continues to be hindered by a poor understanding of antimalarial immunity, a lack of an immune correlate of protection, and the genetic diversity of malaria parasites. Current vaccine development efforts largely target Plasmodium falciparum parasites in the pre-erythrocytic and erythrocytic stages, with some research on transmission-blocking vaccines against asexual stages and vaccines against pregnancy-associated malaria. The leading pre-erythrocytic vaccine candidate is RTS,S, and early results of ongoing Phase 3 testing show overall efficacy of 46% against clinical malaria. The next steps for malaria vaccine development will focus on the design of a product that is efficacious against the highly diverse strains of malaria and the identification of a correlate of protection against disease. PMID:25452593

  6. Pricing of new vaccines

    PubMed Central

    McGlone, Sarah M

    2010-01-01

    New vaccine pricing is a complicated process that could have substantial long-standing scientific, medical and public health ramifications. Pricing can have a considerable impact on new vaccine adoption and, thereby, either culminate or thwart years of research and development and public health efforts. Typically, pricing strategy consists of the following eleven components: (1) Conduct a target population analysis; (2) Map potential competitors and alternatives; (3) Construct a vaccine target product profile (TPP) and compare it to projected or actual TPPs of competing vaccines; (4) Quantify the incremental value of the new vaccine's characteristics; (5) Determine vaccine positioning in the marketplace; (6) Estimate the vaccine price-demand curve; (7) Calculate vaccine costs (including those of manufacturing, distribution, and research and development); (8) Account for various legal, regulatory, third party payer and competitor factors; (9) Consider the overall product portfolio; (10) Set pricing objectives; (11) Select pricing and pricing structure. While the biomedical literature contains some studies that have addressed these components, there is still considerable room for more extensive evaluation of this important area. PMID:20861678

  7. Emerging human papillomavirus vaccines

    PubMed Central

    Ma, Barbara; Maraj, Bharat; Tran, Nam Phuong; Knoff, Jayne; Chen, Alexander; Alvarez, Ronald D; Hung, Chien-Fu; Wu, T.-C.

    2013-01-01

    Introduction Identification of human papillomavirus (HPV) as the etiologic factor of cervical, anogenital, and a subset of head and neck cancers has stimulated the development of preventive and therapeutic HPV vaccines to control HPV-associated malignancies. Excitement has been generated by the commercialization of two preventive L1-based vaccines, which use HPV virus-like particles (VLPs) to generate capsid-specific neutralizing antibodies. However, factors such as high cost and requirement for cold chain have prevented widespread implementation where they are needed most. Areas covered Next generation preventive HPV vaccine candidates have focused on cost-effective stable alternatives and generating broader protection via targeting multivalent L1 VLPs, L2 capsid protein, and chimeric L1/L2 VLPs. Therapeutic HPV vaccine candidates have focused on enhancing T cell-mediated killing of HPV-transformed tumor cells, which constitutively express HPV-encoded proteins, E6 and E7. Several therapeutic HPV vaccines are in clinical trials. Expert opinion Although progress is being made, cost remains an issue inhibiting the use of preventive HPV vaccines in countries that carry the majority of the cervical cancer burden. In addition, progression of therapeutic HPV vaccines through clinical trials may require combination strategies employing different therapeutic modalities. As research in the development of HPV vaccines continues, we may generate effective strategies to control HPV-associated malignancies. PMID:23163511

  8. Conscientious Objection to Vaccination.

    PubMed

    Clarke, Steve; Giubilini, Alberto; Walker, Mary Jean

    2017-03-01

    Vaccine refusal occurs for a variety of reasons. In this article we examine vaccine refusals that are made on conscientious grounds; that is, for religious, moral, or philosophical reasons. We focus on two questions: first, whether people should be entitled to conscientiously object to vaccination against contagious diseases (either for themselves or for their children); second, if so, to what constraints or requirements should conscientious objection (CO) to vaccination be subject. To address these questions, we consider an analogy between CO to vaccination and CO to military service. We argue that conscientious objectors to vaccination should make an appropriate contribution to society in lieu of being vaccinated. The contribution to be made will depend on the severity of the relevant disease(s), its morbidity, and also the likelihood that vaccine refusal will lead to harm. In particular, the contribution required will depend on whether the rate of CO in a given population threatens herd immunity to the disease in question: for severe or highly contagious diseases, if the population rate of CO becomes high enough to threaten herd immunity, the requirements for CO could become so onerous that CO, though in principle permissible, would be de facto impermissible.

  9. Conscientious Objection to Vaccination

    PubMed Central

    Clarke, Steve; Giubilini, Alberto

    2016-01-01

    ABSTRACT Vaccine refusal occurs for a variety of reasons. In this article we examine vaccine refusals that are made on conscientious grounds; that is, for religious, moral, or philosophical reasons. We focus on two questions: first, whether people should be entitled to conscientiously object to vaccination against contagious diseases (either for themselves or for their children); second, if so, to what constraints or requirements should conscientious objection (CO) to vaccination be subject. To address these questions, we consider an analogy between CO to vaccination and CO to military service. We argue that conscientious objectors to vaccination should make an appropriate contribution to society in lieu of being vaccinated. The contribution to be made will depend on the severity of the relevant disease(s), its morbidity, and also the likelihood that vaccine refusal will lead to harm. In particular, the contribution required will depend on whether the rate of CO in a given population threatens herd immunity to the disease in question: for severe or highly contagious diseases, if the population rate of CO becomes high enough to threaten herd immunity, the requirements for CO could become so onerous that CO, though in principle permissible, would be de facto impermissible. PMID:28008636

  10. HPV Vaccine and Pregnancy

    MedlinePlus

    ... vaccines are given as an injection in a series of three doses at three different times. They are licensed for males and females between ... pregnancy to complete any remaining shots in the series. Can I receive ... baby received the HPV vaccine around the time that I got pregnant. Is there a risk ...

  11. Vaccines and autoimmunity.

    PubMed

    De Martino, M; Chiappini, E; Galli, L

    2013-01-01

    Vaccines have eradicated or controlled many infectious diseases, saving each year millions of lives and quality of life of many other millions of people. In spite of the success of vaccines over the last two centuries, parents (and also some health care workers) gloss over the devastating consequences of diseases, which are now avoided thanks to vaccines, and direct their attention to possible negative effects of immunization. Three immunological objections are raised: vaccines cause antigenic overload, natural immunity is safer and better than vaccine-induced immunity, and vaccines induce autoimmunity. The last point is examined in this review. Theoretically, vaccines could trigger autoimmunity by means of cytokine production, anti-idiotypic network, expression of human histocompatibility leukocyte antigens, modification of surface antigens and induction of novel antigens, molecular mimicry, bystander activation, epitope spreading, and polyclonal activation of B cells. There is strong evidence that none of these mechanisms is really effective in causing autoimmune diseases. Vaccines are not a source of autoimmune diseases. By contrast, absolute evidence exists that infectious agents can trigger autoimmune mechanisms and that they do cause autoimmune diseases.

  12. Chimeric Pestivirus Experimental Vaccines.

    PubMed

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.

  13. Tularemia vaccines - an overview.

    PubMed

    McMurry, Julie A; Moise, Leonard; Gregory, Stephen H; De Groot, Anne S

    2007-10-01

    F tularensis is among of the most virulent pathogens known, yet it remains poorly understood. Correlates of protection involve robust CD4+ and CD8+ T cell responses, and the production of IFN-gamma, TNF-alpha, and IL-12. Novel approaches may be required to develop a safe vaccine that achieves these correlates. In contrast to other types of vaccines, epitope-based vaccines combine targeted biologic activity with the practical advantages of platform independence, scalable synthesis and manufacturing. These advantages, coupled with the proof of principle achieved with an epitope-based tularemia vaccine, suggest that this approach might be applied more widely to develop vaccines against other pathogens, intracellular bacteria most notably.

  14. The Combination of Grazoprevir, a Hepatitis C Virus (HCV) NS3/4A Protease Inhibitor, and Elbasvir, an HCV NS5A Inhibitor, Demonstrates a High Genetic Barrier to Resistance in HCV Genotype 1a Replicons

    PubMed Central

    Bystol, Karin; Curry, Stephanie; McMonagle, Patricia; Xia, Ellen; Ingravallo, Paul; Chase, Robert; Liu, Rong; Black, Todd; Hazuda, Daria; Howe, Anita Y. M.; Asante-Appiah, Ernest

    2016-01-01

    The selection of resistance-associated variants (RAVs) against single agents administered to patients chronically infected with hepatitis C virus (HCV) necessitates that direct-acting antiviral agents (DAAs) targeting multiple viral proteins be developed to overcome failure resulting from emergence of resistance. The combination of grazoprevir (formerly MK-5172), an NS3/4A protease inhibitor, and elbasvir (formerly MK-8742), an NS5A inhibitor, was therefore studied in genotype 1a (GT1a) replicon cells. Both compounds were independently highly potent in GT1a wild-type replicon cells, with 90% effective concentration (EC90) values of 0.9 nM and 0.006 nM for grazoprevir and elbasvir, respectively. No cross-resistance was observed when clinically relevant NS5A and NS3 RAVs were profiled against grazoprevir and elbasvir, respectively. Kinetic analyses of HCV RNA reduction over 14 days showed that grazoprevir and elbasvir inhibited prototypic NS5A Y93H and NS3 R155K RAVs, respectively, with kinetics comparable to those for the wild-type GT1a replicon. In combination, grazoprevir and elbasvir interacted additively in GT1a replicon cells. Colony formation assays with a 10-fold multiple of the EC90 values of the grazoprevir-elbasvir inhibitor combination suppressed emergence of resistant colonies, compared to a 100-fold multiple for the independent agents. The selected resistant colonies with the combination harbored RAVs that required two or more nucleotide changes in the codons. Mutations in the cognate gene caused greater potency losses for elbasvir than for grazoprevir. Replicons bearing RAVs identified from resistant colonies showed reduced fitness for several cell lines and may contribute to the activity of the combination. These studies demonstrate that the combination of grazoprevir and elbasvir exerts a potent effect on HCV RNA replication and presents a high genetic barrier to resistance. The combination of grazoprevir and elbasvir is currently approved for

  15. Vaccines for Canine Leishmaniasis

    PubMed Central

    Palatnik-de-Sousa, Clarisa B.

    2012-01-01

    Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost–effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL. PMID:22566950

  16. Lassa fever vaccine.

    PubMed

    Fisher-Hoch, Susan P; McCormick, Joseph B

    2004-04-01

    Lassa fever remains a serious challenge to public health in West Africa threatening both local residents in rural areas and those who serve them, particularly medical care providers. Given the ecology of the rodent host and conditions in the endemic area, a vaccine is mandatory for control. The challenge is to overcome the scientific, political and economic obstacles to producing a human use vaccine candidate. There are some scientific issues to resolve. It is known that the G-protein confers protection but we do not know its duration. If the N-protein is also included there may be a better duration of protection but it is unclear whether the N-protein as a vaccine may possibly enhance the infection. The original vaccinia vector must be replaced by new vectors, chimeras or by delivering DNA in some format. A live vaccine is attractive because it can confer protection in a single shot. A killed vaccine is more stable, particularly for distribution in the tropics but usually requires repeated shots. For practical reasons a live vaccine format should probably be pursued, which could then be combined with a yellow fever vaccine, using the same cold chains, since this disease occupies the same endemic areas in West Africa. Lassa vaccine initiatives have suffered from a lack of funding in the past but bioterrorism has brought new resources to Lassa virus science. Adequate funding and applications of new vaccine technologies give hope that we may soon see a vaccine in clinical trials. However, the difficulty of conducting trials in endemic areas and lack of political stability remain serious problems.

  17. Mucosal immunization with attenuated Salmonella Typhi expressing anthrax PA83 primes monkeys for accelerated serum antibody responses to parenteral PA83 vaccine

    PubMed Central

    Galen, James E.; Chinchilla, Magaly; Pasetti, Marcela F.; Wang, Jin Yuan; Zhao, Licheng; Arciniega-Martinez, Ivonne; Silverman, David J.; Levine, Myron M.

    2008-01-01

    Salmonella enterica serovar Typhi vaccine strain CVD 908-htrA was genetically engineered for stable plasmid-based expression of protective antigen of anthrax toxin (PA83) fused with the export protein ClyA (ClyA-PA83). The priming potential of CVD 908-htrA expressing ClyA-PA83 was assessed in 12 rhesus and 20 cynomolgus macaques immunized mucosally (intranasally) on days 0 and 14. A parenteral boost with purified PA83 plus alum was given to rhesus macaques on days 42 and 225; cynomolgus monkeys were boosted only once, 3 months after priming, with either PA or licensed anthrax vaccine (Biothrax®). Monkeys primed with S. Typhi expressing ClyA-PA83 developed high levels of serum toxin neutralization activity (TNA) antibodies (> 1.3 ×103 ED50), 7 days after boosting, while unprimed controls lacked serum TNA (0 ED50). The success in non-human primates of this anthrax vaccine strategy based on heterologous mucosal prime followed by parenteral subunit vaccine boost paves the way for clinical trials. PMID:19099487

  18. Single PA mutation as a high yield determinant of avian influenza vaccines

    PubMed Central

    Lee, Ilseob; Il Kim, Jin; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Yun, Soo-Hyeon; Lee, Joo-Yeon; Kim, Kisoon; Kang, Chun; Park, Man-Seong

    2017-01-01

    Human infection with an avian influenza virus persists. To prepare for a potential outbreak of avian influenza, we constructed a candidate vaccine virus (CVV) containing hemagglutinin (HA) and neuraminidase (NA) genes of a H5N1 virus and evaluated its antigenic stability after serial passaging in embryonated chicken eggs. The passaged CVV harbored the four amino acid mutations (R136K in PB2; E31K in PA; A172T in HA; and R80Q in M2) without changing its antigenicity, compared with the parental CVV. Notably, the passaged CVV exhibited much greater replication property both in eggs and in Madin-Darby canine kidney and Vero cells. Of the four mutations, the PA E31K showed the greatest effect on the replication property of reverse genetically-rescued viruses. In a further luciferase reporter, mini-replicon assay, the PA mutation appeared to affect the replication property by increasing viral polymerase activity. When applied to different avian influenza CVVs (H7N9 and H9N2 subtypes), the PA E31K mutation resulted in the increases of viral replication in the Vero cell again. Taken all together, our results suggest the PA E31K mutation as a single, substantial growth determinant of avian influenza CVVs and for the establishment of a high-yield avian influenza vaccine backbone. PMID:28084423

  19. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7.

    PubMed

    van de Wall, Stephanie; Walczak, Mateusz; van Rooij, Nienke; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans W; Daemen, Toos

    2015-03-24

    The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.

  20. DNA vaccines: a review.

    PubMed

    Lewis, P J; Babiuk, L A

    1999-01-01

    Therapeutic and prophylactic DNA vaccine clinical trials for a variety of pathogens and cancers are underway (Chattergoon et al., 1997; Taubes, 1997). The speed with which initiation of these trials occurred is no less than astounding; clinical trials for a human immunodeficiency virus (HIV) gp160 DNA-based vaccine were underway within 36 months of the first description of "genetic immunization" (Tang et al., 1992) and within 24 months of publication of the first article describing intramuscular delivery of a DNA vaccine (Ulmer et al., 1993). Despite the relative fervor with which clinical trials have progressed, it can be safely stated that DNA-based vaccines will not be an immunological "silver bullet." In this regard, it was satisfying to see a publication entitled "DNA Vaccines--A Modern Gimmick or a Boon to Vaccinology?" (Manickan et al., 1997b). There is no doubt that this technology is well beyond the phenomenology phase of study. Research niches and models have been established and will allow the truly difficult questions of mechanism and application to target species to be studied. These two aspects of future studies are intricately interwoven and will ultimately determine the necessity for mechanistic understanding and the evolution of target species studies. The basic science of DNA vaccines has yet to be clearly defined and will ultimately determine the success or failure of this technology to find a place in the immunological arsenal against disease. In a commentary on a published study describing DNA vaccine-mediated protection against heterologous challenge with HIV-1 in chimpanzees, Ronald Kennedy (1997) states, "As someone who has been in the trenches of AIDS vaccine research for over a decade and who, together with collaborators, has attempted a number of different vaccine approaches that have not panned out, I have a relatively pessimistic view of new AIDS vaccine approaches." Kennedy then goes on to summarize a DNA-based multigene vaccine

  1. Nanoparticles for transcutaneous vaccination

    PubMed Central

    Hansen, Steffi; Lehr, Claus‐Michael

    2012-01-01

    Summary The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano‐vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle‐free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra‐flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. PMID:21854553

  2. Vaccines, viruses, and voodoo.

    PubMed

    Borchers, Andrea T; Keen, Carl L; Shoenfeld, Yehuda; Silva, Joseph; Gershwin, M Eric

    2002-01-01

    Vaccinations are invaluable in protection from a wide variety of diseases that can cause substantial morbidity and mortality. Although a rare complication of vaccination, autoimmune disorders represent one of these morbidities. Recently, widespread public concern has arisen from case reports suggesting that--similar to what has been observed after natural viral infections--there might be an association between specific immunizations and autoimmune diseases. Herein we address the biological plausibility of such a connection, focusing particularly on the examples of hepatitis B, rubella, and measles-mumps-rubella (MMR) vaccinations, and the autoimmune diseases they are potentially associated with. Our review of the available data suggests that, for the general population, the risk: benefit ratio is overwhelmingly in favor of vaccinations. However, the possibility cannot be ruled out that, in genetically susceptible individuals, vaccination can result in the unmasking of an autoimmune disease triggered by the immunization. We also critically examine the existing data suggesting a link between immunization against MMR and autism, and briefly discuss the controversial evidence pointing to a possible relationship between mercury exposure from vaccines and autistic disorders. There is a continued urgent need for rigorously designed and executed studies addressing these potential associations, although the use of vaccinations remains a critical public health tool for protection against infectious disease.

  3. Zika Vaccine Development: Flavivirus Foils

    DTIC Science & Technology

    2016-09-01

    Martins, Bavari, Zika Vaccine Development 1 Zika Vaccine Development: Flavivirus Foils Martins KAO, Bavari S. The current Zika virus...contrast, work had been underway for decades on the development of an Ebola virus vaccine , laying the groundwork for a rapid response in 2014. The...broader community’s extensive experience with Dengue virus vaccine development and with the pros and cons of different vaccine platforms has led to

  4. Nucleotide sequence and characterization of the cryptic Bacillus thuringiensis plasmid pGI3 reveal a new family of rolling circle replicons.

    PubMed Central

    Hoflack, L; Seurinck, J; Mahillon, J

    1997-01-01

    The complete nucleotide sequence of plasmid pGI3 from Bacillus thuringiensis subsp. thuringiensis H1.1. was obtained. Although this 11,365-bp molecule contained at least 11 putative open reading frames (ORFs), extensive database searches did not reveal any homologous sequences with the exception of ORF6, which displayed similarity to the largest ORF of pSTK1, a 1,883-bp cryptic plasmid isolated from Bacillus stearothermophilus. Deletion analysis to determine the pGI3 minimal replicon revealed that ORF6 is the rep gene. Replication occurred via a single-stranded DNA (ssDNA) intermediate, as demonstrated by S1 treatment and Southern hybridization in nondenaturating conditions. Interestingly, however, no homology was found between the pGI3 (ORF6) and pSTK1 (ORF3) rep genes and those from other single-stranded DNA plasmids, nor was there any DNA similarity to the double-strand origins of replication characterized so far, indicating that pGI3 and pSTK1 form another, new family of ssDNA plasmids. PCR analysis revealed that the pGI3 rep gene is largely distributed among B. thuringiensis strains but can also be found in B. cereus and B. mycoides strains, albeit at a lower frequency. Finally, segregation experiments performed with B. subtilis and B. thuringiensis showed that the pGI3 derivatives, including the minimal replicon, were segregationally stable at temperatures suitable for B. thuringiensis growth (<43 degrees C). PMID:9260939

  5. [Pharmacovigilance of vaccines].

    PubMed

    Autret-Leca, E; Bensouda-Grimaldi, L; Jonville-Béra, A P; Beau-Salinas, F

    2006-02-01

    Safety of vaccines must be excellent to make vaccine's strategy acceptable, since it usually has a deferred individual benefit but immediate adverse drug reactions (ADRs). Pharmacovigilance of vaccines after their marketing is crucial because, prior to its availability on the market, the size of clinical trials is insufficient to identify rare or deferred adverse effects. The Pharmacovigilance is based on "spontaneous reporting" of ADRs to the Pharmacovigilance Regional Centre (PVRC) which establishes a relationship between each drug taken by the patient and the ADRs occurrence (imputability). This method is crucial to generate alerts, but under-estimates the real frequency of ADRs (1 to 10% of severe ADRs are reported). Thus pharmacoepidemiology studies are necessary to confirm the alerts identified by spontaneous reporting. ADRs can be specific, related to the antigen of an attenuated alive virus vaccine (lymphocyte meningitis after anti-mumps vaccine) or non-specific, related to a component different from the antigen (aluminium hydroxide involved in the "macrophagic myofasciitis", allergic reactions to neomycin, latex, egg or gelatine). Importance of Pharmacovigilance of vaccines is illustrated. Data, especially case-control studies, about the relationship between multiple sclerosis and hepatitis B vaccine are summarised. Data about the relationship between Crohn's disease or autism and MMR vaccine are analysed. As vaccines are used in healthy people, their safety must be excellent to be accepted. To monitor them after their marketing is the unique way to detect rare ADRs. This surveillance is made through reporting of ADRs to the PVRC. However, an active and intensive surveillance of ADRs as the one set up from the marketing of Prevenar should be systematic.

  6. Drug and vaccine allergy.

    PubMed

    Kelso, John M

    2015-02-01

    Most children with a history of penicillin allergy are labeled allergic and denied treatment with penicillin and sometimes other beta-lactam antibiotics. Most of these children never were or are no longer allergic to penicillin. Penicillin skin testing and oral challenge can identify patients who are not currently allergic, allowing them to be treated with penicillin. Children with egg allergy are often denied influenza vaccination, because the vaccine contains a small amount of egg protein. However, recent studies have demonstrated that children with even severe egg allergy can safely receive the vaccine, reducing their risk of the morbidity and mortality associated with influenza.

  7. Research toward Malaria Vaccines

    NASA Astrophysics Data System (ADS)

    Miller, Louis H.; Howard, Russell J.; Carter, Richard; Good, Michael F.; Nussenzweig, Victor; Nussenzweig, Ruth S.

    1986-12-01

    Malaria exacts a toll of disease to people in the Tropics that seems incomprehensible to those only familiar with medicine and human health in the developed world. The methods of molecular biology, immunology, and cell biology are now being used to develop an antimalarial vaccine. The Plasmodium parasites that cause malaria have many stages in their life cycle. Each stage is antigenically distinct and potentially could be interrupted by different vaccines. However, achieving complete protection by vaccination may require a better understanding of the complexities of B- and T-cell priming in natural infections and the development of an appropriate adjuvant for use in humans.

  8. Vaccines against drug abuse.

    PubMed

    Shen, X Y; Orson, F M; Kosten, T R

    2012-01-01

    The currently available medications for the treatment of drug abuse have had only limited success. Anti-addiction vaccines, aimed at eliciting antibodies that block the pharmacological effects of drugs, have great potential for treating drug abuse. We review the status of two vaccines that are undergoing clinical trials (for cocaine and nicotine addiction) and two that are still in preclinical development (for methamphetamine and heroin addiction). We also outline the challenges and ethical concerns associated with the development of anti-addiction vaccines and their use as future therapeutics.

  9. The HPV vaccine mandate controversy.

    PubMed

    Haber, Gillian; Malow, Robert M; Zimet, Gregory D

    2007-12-01

    In this editorial we address the controversies surrounding human papillomavirus (HPV) vaccine school-entry mandate legislation, but differentiate between the mandate debate and issues specific to the vaccine itself. Our goal is not to take a stand in favor of or opposed to mandates, but rather to critically examine the issues. We discuss the following arguments against HPV vaccine school-entry requirements: 1. The public health benefit of mandated HPV vaccination is not sufficient to warrant the intrusion on parental autonomy; 2. A vaccine that prevents a non-casually transmitted infection should not be mandated; 3. Opt-out provisions are inherently unfair to parents who oppose HPV vaccination; 4. Limited health care dollars should not be directed toward cervical cancer prevention; and 5. The vaccine is expensive and potential problems with supply suggest that mandates should not be implemented until insurance coverage and supply issues are resolved. Next, we critically evaluate the following critiques of HPV vaccination itself: 1. Giving girls HPV vaccine implies tacit consent to engage in sexual activity; 2. Giving girls this vaccine will confer a false sense of protection from sexually transmitted infections and will lead to sexual disinhibition; 3. Children already have too many vaccinations on the immunization schedule; 4. Long-term side effects of HPV vaccine are unknown; 5. The vaccine's enduring effectiveness is unknown and booster shots may be required; and 6. It is wrong to only target girls with HPV vaccine; boys should be vaccinated as well.

  10. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    PubMed

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  11. Vaccination of Mice Using the West Nile Virus E-Protein in a DNA Prime-Protein Boost Strategy Stimulates Cell-Mediated Immunity and Protects Mice against a Lethal Challenge

    PubMed Central

    De Filette, Marina; Soehle, Silke; Ulbert, Sebastian; Richner, Justin; Diamond, Michael S.; Sinigaglia, Alessandro; Barzon, Luisa; Roels, Stefan; Lisziewicz, Julianna; Lorincz, Orsolya; Sanders, Niek N.

    2014-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI) covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime – boost regime) with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical). In parallel a heterologous boost with purified recombinant WNV envelope (E) protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection. PMID:24503579

  12. Vaccine safety controversies and the future of vaccination programs.

    PubMed

    François, Guido; Duclos, Philippe; Margolis, Harold; Lavanchy, Daniel; Siegrist, Claire-Anne; Meheus, André; Lambert, Paul-Henri; Emiroğlu, Nedret; Badur, Selim; Van Damme, Pierre

    2005-11-01

    In the years following the hepatitis B vaccination/multiple sclerosis controversy, a number of new issues regarding vaccine safety have been raised, in some cases leading to more debate and confusion. Against this background, an international group of experts was convened to review the current points of view concerning the use of thimerosal as a preservative and its potential risks; the suggested link between thimerosal-containing vaccines and acute lymphoblastic leukemia; the alleged association between aluminum-containing vaccines/macrophagic myofasciitis and general systemic complaints; a possible link between vaccination and autoimmune pathology; and a hypothetical link between measles-mumps-rubella vaccination and autism. At present, there are no data to conclude that childhood vaccines, and in particular hepatitis B vaccine, pose a serious health risk or justify a change in current immunization practice. However, vaccine "scares" continue to have an international impact on immunization coverage. Creating a positive environment for immunization can be achieved by repositioning the value of vaccines and vaccination, supported by evidence-based information. The role of international organizations, the media, and the industry in the implementation of communication strategies was discussed and the impact of litigation issues on vaccination was evaluated. The Viral Hepatitis Prevention Board confirms its commitment to current recommendations for universal and risk group hepatitis B vaccination and further encourages the conduct of vaccine safety studies and the dissemination of their results.

  13. Parental knowledge of paediatric vaccination

    PubMed Central

    Borràs, Eva; Domínguez, Àngela; Fuentes, Miriam; Batalla, Joan; Cardeñosa, Neus; Plasencia, Antoni

    2009-01-01

    Background Although routine vaccination is a major tool in the primary prevention of some infectious diseases, there is some reluctance in a proportion of the population. Negative parental perceptions of vaccination are an important barrier to paediatric vaccination. The aim of this study was to investigate parental knowledge of paediatric vaccines and vaccination in Catalonia. Methods A retrospective, cross-sectional study was carried out in children aged < 3 years recruited by random sampling from municipal districts of all health regions of Catalonia. The total sample was 630 children. Parents completed a standard questionnaire for each child, which included vaccination coverage and knowledge about vaccination. The level of knowledge of vaccination was scored according to parental answers. Results An association was observed between greater vaccination coverage of the 4:4:4:3:1 schedule (defined as: 4 DTPa/w doses, 4 Hib doses, 4 OPV doses, 3 MenC doses and 1 MMR dose) and maternal age >30 years (OR: 2.30; 95% CI: 1.20–4.43) and with a knowledge of vaccination score greater than the mean (OR: 0.45; 95% CI: 0.28–0.72). The score increased with maternal educational level and in parents of vaccinated children. A total of 20.47% of parents stated that vaccines could have undesirable consequences for their children. Of these, 23.26% had no specific information and 17.83% stated that vaccines can cause adverse reactions and the same percentage stated that vaccines cause allergies and asthma. Conclusion Higher vaccination coverage is associated with older maternal age and greater knowledge of vaccination. Vaccination coverage could be raised by improving information on vaccines and vaccination. PMID:19473498

  14. Vaccines against typhoid fever.

    PubMed

    Guzman, Carlos A; Borsutzky, Stefan; Griot-Wenk, Monika; Metcalfe, Ian C; Pearman, Jon; Collioud, Andre; Favre, Didier; Dietrich, Guido

    2006-05-01

    Because of high infectivity and significant disease burden, typhoid fever constitutes a major global health problem. Implementation of adequate food handling practices and establishment of safe water supplies are the cornerstone for the development of an effective prevention program. However, vaccination against typhoid fever remains an essential tool for the effective management of this disease. Currently, there are two well tolerated and effective licensed vaccines. One is based on defined subunit virulence (Vi) polysaccharide antigen and can be administered either intramuscularly or subcutaneously and the other is based on the use of live attenuated bacteria for oral administration. The advantages and disadvantages of the various approaches taken in the development of a vaccine against typhoid fever are discussed, along with the potential for future vaccine candidates.

  15. Antibacterials: A sweet vaccine

    NASA Astrophysics Data System (ADS)

    Bundle, David

    2016-03-01

    Vaccination with a synthetic glycoconjugate, in combination with the administration of an inhibitor that blocks capsular polysaccharide synthesis in bacteria, could offer an alternative route to combat bacterial infections.

  16. Smallpox vaccine revisited.

    PubMed

    Capriotti, Teri

    2002-12-01

    Smallpox is a serious contagious disease which is back in the public eye. Yet, most health care providers are unprepared for its return. Nurses will be key health care professionals in a smallpox outbreak or vaccination program.

  17. Your child's first vaccines

    MedlinePlus

    ... of these vaccines today: [ ] DTaP [ ] Hib [ ] Hepatitis B [ ] Polio [ ] PCV13 (Provider: Check appropriate boxes) 1. Why get ... out of 4 who are chronically infected. 6. Polio Signs and symptoms can include flu-like illness, ...

  18. Future of Polio Vaccines

    PubMed Central

    2009-01-01

    Summary Over the past half-century, global use of highly effective vaccines against poliomyelitis brought this disease to the brink of elimination. Mounting evidence argues that a high level of population immunity must be maintained to preserve a polio-free status of the entire world after wild poliovirus circulation is stopped. Shifting factors in the risk-benefit-cost equation favor the creation of new poliovirus vaccines to be used in the foreseeable future. Genetically stable attenuated virus strains could be developed for an improved oral poliovirus vaccine, but proving their safety and efficacy would be impractical because of the enormous size of the clinical trials required. New versions of inactivated poliovirus vaccine (IPV) that could be used globally should be developed. An improved IPV must be efficacious, inexpensive, safe to manufacture, and easy to administer. Combination products containing IPV along with other protective antigens should become part of routine childhood immunizations around the world. PMID:19545205

  19. Pneumococcal Vaccines (PCV, PPSV)

    MedlinePlus

    ... Your 1- to 2-Year-Old Your Child's Immunizations: Pneumococcal Vaccines (PCV, PPSV) KidsHealth > For Parents > Your ... but also help stop the infections from spreading. Immunization Schedule PCV13 immunizations are given to all infants ...

  20. Promoting HPV Vaccination Online.

    PubMed

    Lee, Moon J; Cho, Jieun

    2017-01-01

    We investigated the effects of message framing and online media channel on young adults' perceived severity of human papillomavirus (HPV), perceived barriers and benefits of getting HPV vaccination, and behavioral intention to get vaccinated. An experiment was conducted with 142 college students. We found an interaction effect: The loss-framed message posted on Facebook was more effective in increasing the number of people who expressed their willingness to get HPV vaccination than the gain-framed message presented on Facebook. However, this framing effect was not found when the identical message was presented on an online newspaper. People's perceptions of severity of HPV and barriers of getting HPV vaccination were also influenced, depending on which media channel the information was circulated.

  1. Ingredients of Vaccines

    MedlinePlus

    ... quantities of mercury, aluminum, formaldehyde, human serum albumin, antibiotics, and yeast proteins in vaccines have not been found to be harmful in humans or experimental animals... Top of Page Related Pages Common Questions about ...

  2. Polymer hydrogels: Chaperoning vaccines

    NASA Astrophysics Data System (ADS)

    Staats, Herman F.; Leong, Kam W.

    2010-07-01

    A cationic nanosized hydrogel (nanogel) shows controlled antigen delivery in vivo following intranasal administration and hence holds promise for a clinically effective adjuvant-free and needle-free vaccine system.

  3. Pneumococcal vaccine (image)

    MedlinePlus

    Pneumococcal vaccine is an immunization against Streptococcus pneumoniae , a bacterium that frequently causes meningitis and pneumonia in the elderly, and people with chronic illnesses. Pneumococcal pneumonia accounts for 10 to ...

  4. Vaccine delivery management.

    PubMed

    Cheyne, J

    1989-01-01

    During the typical 12- to 18-month voyage of a vaccine from manufacturer to immunization site, many situations arise in which the cold chain may be interrupted. Extensive efforts have been made in the 1980s to ensure an uninterrupted cold chain through the use of improved equipment and better training of personnel. One important advance is the vaccine cold-chain monitor, which identifies weak spots in the cold chain and prevents the use of heat-damaged vaccine. Further improvements will require efforts by the recipient countries (e.g., better use of the private sector for transport and equipment management), by donor agencies (e.g., greater consideration of the operational and maintenance costs of the equipment selected and resolution of fuel shortages), and by industry (e.g., more appropriate packaging and pricing of vaccine, extension of the expiration period, and increased heat stability.

  5. Veterinary vaccines against toxoplasmosis.

    PubMed

    Hiszczyńska-Sawicka, Elżbieta; Gatkowska, Justyna M; Grzybowski, Marcin M; Długońska, Henryka

    2014-09-01

    Toxoplasma gondii is a cosmopolitan protozoan parasite that infects a wide range of mammal and bird species. Common infection leads to high economic (e.g., abortions in sheep) and human (e.g., congenital toxoplasmosis or neurotoxoplasmosis in humans) losses. With one exception (Toxovax for sheep), there are no vaccines to prevent human or animal toxoplasmosis. The paper presents the current state and challenges in the development of a vaccine against toxoplasmosis, designed for farm animals either bred for consumption or commonly kept on farms and involved in parasite transmission. So far, the trials have mostly revolved around conventional vaccines and, compared with the research using laboratory animals (mainly mice), they have not been very numerous. However, the results obtained are promising and could be a good starting point for developing an effective vaccine to prevent toxoplasmosis.

  6. [Development of new vaccines].

    PubMed

    González-Romo, Fernando; Picazo, Juan J

    2015-10-01

    Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases.

  7. Governments, off-patent vaccines, smallpox and universal childhood vaccination.

    PubMed

    Music, Stanley

    2010-01-22

    WHO is now celebrating more than 30 years of freedom from smallpox. What was originally seen as a victory over an ancient scourge can now be viewed as an epidemiologically driven programme to overcome governmental inertia and under-achievement in delivering an off-patent vaccine. Though efforts are accelerating global vaccine use, a plea is made to push the world's governments to commit to universal childhood vaccination via a proposed new programme. The latter should begin by exploiting a long list of ever more affordable off-patent vaccines, vaccines that can virtually eliminate the bulk of the world's current vaccine-preventable disease burden.

  8. Tuberculosis vaccine development: recent progress.

    PubMed

    Orme, I M; McMurray, D N; Belisle, J T

    2001-03-01

    Recent years have seen a renewed effort to develop new vaccines against tuberculosis. As a result, several promising avenues of research have developed, including the production of recombinant vaccines, auxotrophic vaccines, DNA vaccines and subunit vaccines. In this article we briefly review this work, as well as consider the pros and cons of the animal models needed to test these new vaccines. Screening to date has been carried out in mouse and guinea pig models, which have been used to obtain basic information such as the effect of the vaccine on bacterial load, and whether the vaccine can prevent or reduce lung pathology. The results to date lead us to be optimistic that new candidate vaccines could soon be considered for evaluation in clinical trials.

  9. DNA vaccines: roles against diseases

    PubMed Central

    Khan, Kishwar Hayat

    2013-01-01

    Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored. PMID:24432284

  10. HPV vaccines: a controversial issue?

    PubMed Central

    Nicol, A.F.; Andrade, C.V.; Russomano, F.B.; Rodrigues, L.L.S.; Oliveira, N.S.; Provance, D.W.

    2016-01-01

    Controversy still exists over whether the benefits of the available HPV vaccines outweigh the risks and this has suppressed uptake of the HPV vaccines in comparison to other vaccines. Concerns about HPV vaccine safety have led some physicians, healthcare officials and parents to withhold the recommended vaccination from the target population. The most common reason for not administering the prophylactic HPV vaccines are concerns over adverse effects. The aim of this review is the assessment of peer-reviewed scientific data related to measurable outcomes from the use of HPV vaccines throughout the world with focused attention on the potential adverse effects. We found that the majority of studies continue to suggest a positive risk-benefit from vaccination against HPV, with minimal documented adverse effects, which is consistent with other vaccines. However, much of the published scientific data regarding the safety of HPV vaccines appears to originate from within the financially competitive HPV vaccine market. We advocate a more independent monitoring system for vaccine immunogenicity and adverse effects to address potential conflicts of interest with regular systematic literature reviews by qualified individuals to vigilantly assess and communicate adverse effects associated with HPV vaccination. Finally, our evaluation suggests that an expanded use of HPV vaccine into more diverse populations, particularly those living in low-resource settings, would provide numerous health and social benefits. PMID:27074168

  11. Epilepsy and vaccinations: Italian guidelines.

    PubMed

    Pruna, Dario; Balestri, Paolo; Zamponi, Nelia; Grosso, Salvatore; Gobbi, Giuseppe; Romeo, Antonino; Franzoni, Emilio; Osti, Maria; Capovilla, Giuseppe; Longhi, Riccardo; Verrotti, Alberto

    2013-10-01

    Reports of childhood epilepsies in temporal association with vaccination have had a great impact on the acceptance of vaccination programs by health care providers, but little is known about this possible temporal association and about the types of seizures following vaccinations. For these reasons the Italian League Against Epilepsy (LICE), in collaboration with other Italian scientific societies, has decided to generate Guidelines on Vaccinations and Epilepsy. The aim of Guidelines on Vaccinations and Epilepsy is to present recent unequivocal evidence from published reports on the possible relationship between vaccines and epilepsy in order to provide information about contraindications and risks of vaccinations in patients with epilepsy. The following main issues have been addressed: (1) whether contraindications to vaccinations exist in patients with febrile convulsions, epilepsy, and/or epileptic encephalopathies; and (2) whether any vaccinations can cause febrile seizures, epilepsy, and/or epileptic encephalopathies. Diphtheria-tetanus-pertussis (DTP) vaccination and measles, mumps, and rubella vaccination (MMR) increase significantly the risk of febrile seizures. Recent observations and data about the relationships between vaccination and epileptic encephalopathy show that some cases of apparent vaccine-induced encephalopathy could in fact be caused by an inherent genetic defect with no causal relationship with vaccination.

  12. Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants

    PubMed Central

    Deming, Damon; Sheahan, Timothy; Heise, Mark; Yount, Boyd; Davis, Nancy; Sims, Amy; Suthar, Mehul; Harkema, Jack; Whitmore, Alan; Pickles, Raymond; West, Ande; Donaldson, Eric; Curtis, Kristopher; Johnston, Robert; Baric, Ralph

    2006-01-01

    Background In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. Methods and Findings Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with

  13. Vaccination strategies against influenza.

    PubMed

    Hanon, E

    2009-01-01

    Every year, Influenza virus infection is at the origin of substantial excess in morbidity and mortality in developed as well as developing countries. Influenza viruses undergo antigenic drift which cause annual replacement of strain included in classical trivalent vaccines. Less frequently, this virus can also undergo antigenic shift, which corresponds to a major antigenic change and can lead to an extra medical burden. Several vaccines have been made available to immunize individuals against seasonal as well as pandemic influenza viruses. For seasonal Influenza vaccines, live attenuated and classical inactivated trivalent vaccines have been licensed and are widely used. Additionally, several strategies are under investigations to improve further the efficacy of existing seasonal vaccines in children and elderly. These include the use of adjuvant, increase in antigen content, or alternative route of delivery. Similarly, several approaches have been licensed to address additional challenge posed by pandemic viruses. The different vaccination strategies used to maximise protection against seasonal as well as pandemic influenza will be reviewed and discussed in the perspective the current threat posed by the H1N1v pandemic Influenza.

  14. Rationalizing vaccine injury compensation.

    PubMed

    Mello, Michelle M

    2008-01-01

    Legislation recently adopted by the United States Congress provides producers of pandemic vaccines with near-total immunity from civil lawsuits without making individuals injured by those vaccines eligible for compensation through the Vaccine Injury Compensation Program. The unusual decision not to provide an alternative mechanism for compensation is indicative of a broader problem of inconsistency in the American approach to vaccine-injury compensation policy. Compensation policies have tended to reflect political pressures and economic considerations more than any cognizable set of principles. This article identifies a set of ethical principles bearing on the circumstances in which vaccine injuries should be compensated, both inside and outside public health emergencies. A series of possible bases for compensation rules, some grounded in utilitarianism and some nonconsequentialist, are discussed and evaluated. Principles of fairness and reasonableness are found to constitute the strongest bases. An ethically defensible compensation policy grounded in these principles would make a compensation fund available to all individuals with severe injuries and to individuals with less-severe injuries whenever the vaccination was required by law or professional duty.

  15. Recombinant baculovirus displayed vaccine

    PubMed Central

    Prabakaran, Mookkan; Kwang, Jimmy

    2014-01-01

    The rapid evolution of new sublineages of H5N1 influenza in Asia poses the greatest challenge in vaccine development for pre-pandemic preparedness. To overcome the antigenic diversity of H5N1 strains, multiple vaccine strains can be designed based on the distribution of neutralizing epitopes in the globular head of H5 hemagglutinin (HA). Recently, we selected two different HAs of H5N1 strains based on the neutralizing epitopes and reactivity with different neutralizing antibodies. The HAs of selected vaccine strains were individually expressed on the baculovirus envelope (bivalent-BacHA) with its native antigenic configuration. Further, oral delivery of live bivalent-BacHA elicited broadly reactive humoral, mucosal and cell-mediated immune responses and showed complete protection against antigenically distinct H5N1 strains in mice. The strategy for the vaccine strain selection, vaccine design and route of administration will provide an idea for development of a widely protective vaccine against highly pathogenic H5N1 for pre-pandemic preparedness. PMID:23941989

  16. What is a Therapeutic HIV Vaccine?

    MedlinePlus

    ... Services HIV Overview What is a Therapeutic HIV Vaccine? (Last updated 10/17/2016; last reviewed 10/ ... from the body. What is a therapeutic HIV vaccine? A therapeutic HIV vaccine is a vaccine that’s ...

  17. What is a Preventive HIV Vaccine?

    MedlinePlus

    ... Services HIV Overview What is a Preventive HIV Vaccine? (Last updated 2/20/2017; last reviewed 2/ ... preventive HIV vaccine. What is a preventive HIV vaccine? A preventive HIV vaccine is given to people ...

  18. Vaccinations for Adults with Hepatitis C Infection

    MedlinePlus

    Vaccinations for Adults with Hepatitis C Infection This table shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  19. Vaccinations for Adults with HIV Infection

    MedlinePlus

    Vaccinations for Adults with HIV Infection The table below shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  20. Vaccine discovery and translation of new vaccine technology.

    PubMed

    Rappuoli, Rino; Black, Steven; Lambert, Paul Henri

    2011-07-23

    An unprecedented increase in new vaccine development has occurred over the past three decades. This activity has resulted in vaccines that protect against an increased range of vaccine-preventable diseases, vaccines that reduce the number of required injections, and vaccines with improved safety and purity. New methods of discovery, such as reverse vaccinology, structural biology, and systems biology, promise new vaccines for different diseases and efficient development pathways for these vaccines. We expect development of vaccines not only for infectious diseases in children but also for healthy adults, pregnant women, and elderly people, and for new indications such as autoimmune disease and cancer. We have witnessed a concomitant development of new technology for assessment of vaccine safety to rapidly identify potential safety issues. Success of these new approaches will depend on effective implementation of vaccination programmes, creative thinking on the part of manufacturers and regulators as to how best to ensure that safe and effective vaccines are available in a timely manner, and improvement of public awareness about the benefits and risks of new vaccines in a way that encourages confidence in vaccines.

  1. Measuring government commitment to vaccination.

    PubMed

    Glassman, Amanda; Zoloa, Juan Ignacio; Duran, Denizhan

    2013-04-18

    Vaccination is among the most cost-effective health interventions and has attracted ever greater levels of funding from public and private donors. However, some countries, mainly populous lower-middle income countries, are lagging behind on vaccination financing and performance. In this paper, we discuss the rationale for investing in vaccination and construct a metric to measure government commitment to vaccination that could promote accountability and better tracking of performance. While noting the limitations of available data, we find that populous middle-income countries, which stand to gain tremendously from increased vaccination uptake, perform poorly in terms of their vaccination outcomes.

  2. Identifying and Addressing Vaccine Hesitancy

    PubMed Central

    Kestenbaum, Lori A.; Feemster, Kristen A.

    2015-01-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as vaccine hesitant. This phenomenon has developed due to the confluence of multiple social, cultural, political and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  3. Identifying and addressing vaccine hesitancy.

    PubMed

    Kestenbaum, Lori A; Feemster, Kristen A

    2015-04-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as "vaccine hesitant." This phenomenon has developed due to the confluence of multiple social, cultural, political, and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance.

  4. Glycoconjugate Vaccines: The Regulatory Framework.

    PubMed

    Jones, Christopher

    2015-01-01

    Most vaccines, including the currently available glycoconjugate vaccines, are administered to healthy infants, to prevent future disease. The safety of a prospective vaccine is a key prerequisite for approval. Undesired side effects would not only have the potential to damage the individual infant but also lead to a loss of confidence in the respective vaccine-or vaccines in general-on a population level. Thus, regulatory requirements, particularly with regard to safety, are extremely rigorous. This chapter highlights regulatory aspects on carbohydrate-based vaccines with an emphasis on analytical approaches to ensure the consistent quality of successive manufacturing lots.

  5. [Pneumococcal vaccines. New conjugate vaccines for adults].

    PubMed

    Campins Martí, Magda

    2015-11-01

    Pneumococcal infections are a significant cause of morbidity and mortality, and are one of the 10 leading causes of death worldwide. Children under 2 years have a higher incidence rate, followed by adults over 64 years. The main risk group are individuals with immunodeficiency, and those with anatomical or functional asplenia, but can also affect immunocompetent persons with certain chronic diseases. Significant progress has been made in the last 10 years in the prevention of these infections. Until a few years ago, only the 23-valent non-conjugate pneumococcal vaccine was available. Its results were controversial in terms of efficacy and effectiveness, and with serious limitations on the type of immune response induced. The current possibility of using the 13-valent conjugate vaccine in adults has led to greater expectations in improving the prevention of pneumococcal disease in these age groups.

  6. [Pertussis vaccine. Reemergence of the disease and new vaccination strategies].

    PubMed

    Moraga-Llop, Fernando A; Campins-Martí, Magda

    2015-03-01

    Pertussis continues to be a public health problem despite the significant decrease in its incidence due to routine vaccination. Resurgence of the disease in countries that have maintained high vaccination coverage has been observed in recent years. Although vaccination is the most effective preventive control measure, both natural and artificial immunity wane over time, and thus the protection offered by current vaccines is not long-lasting. Furthermore, acellular vaccines are less effective. The implementation of new vaccine strategies is required. Vaccination of pregnant women is the most effective strategy for preventing pertussis in young infants, who are the most vulnerable, and should be recommended together with cocooning, ie vaccination of future household and extra-domiciliary contacts who are the main transmitters of the disease.

  7. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    PubMed

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised.

  8. 9 CFR 113.318 - Pseudorabies Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Pseudorabies Vaccine. 113.318 Section... Virus Vaccines § 113.318 Pseudorabies Vaccine. Pseudorabies Vaccine shall be prepared from virus-bearing... be used for preparing seeds for vaccine production. All serials of vaccine shall be prepared from...

  9. 9 CFR 113.303 - Bluetongue Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bluetongue Vaccine. 113.303 Section... Virus Vaccines § 113.303 Bluetongue Vaccine. Bluetongue Vaccine shall be prepared from virus-bearing... be used for preparing the seeds for vaccine production. All serials of vaccine shall be prepared...

  10. 9 CFR 113.318 - Pseudorabies Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Pseudorabies Vaccine. 113.318 Section... Virus Vaccines § 113.318 Pseudorabies Vaccine. Pseudorabies Vaccine shall be prepared from virus-bearing... be used for preparing seeds for vaccine production. All serials of vaccine shall be prepared from...

  11. 9 CFR 113.318 - Pseudorabies Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Pseudorabies Vaccine. 113.318 Section... Virus Vaccines § 113.318 Pseudorabies Vaccine. Pseudorabies Vaccine shall be prepared from virus-bearing... be used for preparing seeds for vaccine production. All serials of vaccine shall be prepared from...

  12. 9 CFR 113.313 - Measles Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Measles Vaccine. 113.313 Section 113... Vaccines § 113.313 Measles Vaccine. Measles Vaccine shall be prepared from virus-bearing cell culture... for preparing the production seed virus for vaccine production. All serials of vaccine shall...

  13. 9 CFR 113.318 - Pseudorabies Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Pseudorabies Vaccine. 113.318 Section... Virus Vaccines § 113.318 Pseudorabies Vaccine. Pseudorabies Vaccine shall be prepared from virus-bearing... be used for preparing seeds for vaccine production. All serials of vaccine shall be prepared from...

  14. 9 CFR 113.303 - Bluetongue Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bluetongue Vaccine. 113.303 Section... Virus Vaccines § 113.303 Bluetongue Vaccine. Bluetongue Vaccine shall be prepared from virus-bearing... be used for preparing the seeds for vaccine production. All serials of vaccine shall be prepared...

  15. 9 CFR 113.313 - Measles Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Measles Vaccine. 113.313 Section 113... Vaccines § 113.313 Measles Vaccine. Measles Vaccine shall be prepared from virus-bearing cell culture... for preparing the production seed virus for vaccine production. All serials of vaccine shall...

  16. 9 CFR 113.303 - Bluetongue Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bluetongue Vaccine. 113.303 Section... Virus Vaccines § 113.303 Bluetongue Vaccine. Bluetongue Vaccine shall be prepared from virus-bearing... be used for preparing the seeds for vaccine production. All serials of vaccine shall be prepared...

  17. 9 CFR 113.313 - Measles Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Measles Vaccine. 113.313 Section 113... Vaccines § 113.313 Measles Vaccine. Measles Vaccine shall be prepared from virus-bearing cell culture... for preparing the production seed virus for vaccine production. All serials of vaccine shall...

  18. 9 CFR 113.303 - Bluetongue Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bluetongue Vaccine. 113.303 Section... Virus Vaccines § 113.303 Bluetongue Vaccine. Bluetongue Vaccine shall be prepared from virus-bearing... be used for preparing the seeds for vaccine production. All serials of vaccine shall be prepared...

  19. 9 CFR 113.313 - Measles Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Measles Vaccine. 113.313 Section 113... Vaccines § 113.313 Measles Vaccine. Measles Vaccine shall be prepared from virus-bearing cell culture... for preparing the production seed virus for vaccine production. All serials of vaccine shall...

  20. 9 CFR 113.318 - Pseudorabies Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pseudorabies Vaccine. 113.318 Section... Virus Vaccines § 113.318 Pseudorabies Vaccine. Pseudorabies Vaccine shall be prepared from virus-bearing... be used for preparing seeds for vaccine production. All serials of vaccine shall be prepared from...

  1. 9 CFR 113.303 - Bluetongue Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bluetongue Vaccine. 113.303 Section... Virus Vaccines § 113.303 Bluetongue Vaccine. Bluetongue Vaccine shall be prepared from virus-bearing... be used for preparing the seeds for vaccine production. All serials of vaccine shall be prepared...

  2. 9 CFR 113.313 - Measles Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Measles Vaccine. 113.313 Section 113... Vaccines § 113.313 Measles Vaccine. Measles Vaccine shall be prepared from virus-bearing cell culture... for preparing the production seed virus for vaccine production. All serials of vaccine shall...

  3. Cancer Vaccines: A Brief Overview.

    PubMed

    Thomas, Sunil; Prendergast, George C

    2016-01-01

    Vaccine approaches for cancer differ from traditional vaccine approaches for infectious disease in tending to focus on clearing active disease rather than preventing disease. In this review, we provide a brief overview of different types of vaccines and adjuvants that have been investigated for the purpose of controlling cancer burdens in patients, some of which are approved for clinical use or in late-stage clinical trials, such as the personalized dendritic cell vaccine sipuleucel-T (Provenge) and the recombinant viral prostate cancer vaccine PSA-TRICOM (Prostvac-VF). Vaccines against human viruses implicated in the development and progression of certain cancers, such as human papillomavirus in cervical cancer, are not considered here. Cancers express "altered self" antigens that tend to induce weaker responses than the "foreign" antigens expressed by infectious agents. Thus, immune stimulants and adjuvant approaches have been explored widely. Vaccine types considered include autologous patient-derived immune cell vaccines, tumor antigen-expressing recombinant virus vaccines, peptide vaccines, DNA vaccines, and heterologous whole-cell vaccines derived from established human tumor cell lines. Opportunities to develop effective cancer vaccines may benefit from seminal recent advances in understanding how immunosuppressive barricades are erected by tumors to mediate immune escape. In particular, targeted ablation of these barricades with novel agents, such as the immune checkpoint drug ipilimumab (anti-CTLA-4) approved recently for clinical use, may offer significant leverage to vaccinologists seeking to control and prevent malignancy.

  4. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.

  5. Vaccine hesitancy: Definition, scope and determinants.

    PubMed

    MacDonald, Noni E

    2015-08-14

    The SAGE Working Group on Vaccine Hesitancy concluded that vaccine hesitancy refers to delay in acceptance or refusal of vaccination despite availability of vaccination services. Vaccine hesitancy is complex and context specific, varying across time, place and vaccines. It is influenced by factors such as complacency, convenience and confidence. The Working Group retained the term 'vaccine' rather than 'vaccination' hesitancy, although the latter more correctly implies the broader range of immunization concerns, as vaccine hesitancy is the more commonly used term. While high levels of hesitancy lead to low vaccine demand, low levels of hesitancy do not necessarily mean high vaccine demand. The Vaccine Hesitancy Determinants Matrix displays the factors influencing the behavioral decision to accept, delay or reject some or all vaccines under three categories: contextual, individual and group, and vaccine/vaccination-specific influences.

  6. 75 FR 48712 - Proposed Vaccine Information Materials for Influenza Vaccine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... HUMAN SERVICES Centers for Disease Control and Prevention Proposed Vaccine Information Materials for Influenza Vaccine AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (HHS). ACTION: Notice with Comment Period. SUMMARY: Under the National Childhood Vaccine...

  7. 75 FR 48706 - Proposed Vaccine Information Materials for Rotavirus Vaccine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... HUMAN SERVICES Centers for Disease Control and Prevention Proposed Vaccine Information Materials for Rotavirus Vaccine AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (HHS). ACTION: Notice with comment period. SUMMARY: Under the National Childhood Vaccine...

  8. Evaluation of vaccine competition using HVT vector vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turkey herpesvirus (HVT) has been widely used as a vaccine for Marek’s disease (MD) since the 1970s. Because HVT is a safe vaccine that is poorly sensitive to interference from maternally derived antibodies, it has seen rising use as a vector for vaccines developed for protection against other comm...

  9. The Flu Vaccine and Pregnancy

    MedlinePlus

    ... Events Advocacy For Patients About ACOG The Flu Vaccine and Pregnancy Home For Patients Search FAQs The ... Spanish FAQ189, October 2015 PDF Format The Flu Vaccine and Pregnancy Pregnancy What is influenza (the flu)? ...

  10. New Vaccines Help Protect You

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues New Vaccines Help Protect You Past Issues / Fall 2006 Table ... this page please turn Javascript on. Important new vaccines have recently been approved for use and are ...

  11. Tetanus, Diphtheria, and Pertussis Vaccines

    MedlinePlus

    ... nose and throat. Whooping cough causes uncontrollable coughing. Vaccines can protect you from these diseases. In the U.S., there are four combination vaccines: DTaP prevents all three diseases. It is for ...

  12. The business of making vaccines.

    PubMed

    Sheridan, Cormac

    2005-11-01

    With a growing need for better and more plentiful vaccines, traditional vaccine companies are responding by increasing manufacturing capacity, the biotech industry, with innovative products. Both are surely needed.

  13. DNA vaccines in veterinary use

    PubMed Central

    Redding, Laurel; Werner, David B

    2015-01-01

    DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available. PMID:19722897

  14. DNA vaccines in veterinary use.

    PubMed

    Redding, Laurel; Weiner, David B

    2009-09-01

    DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available.

  15. Vaccination: An Act of Love

    MedlinePlus

    ... dreams. Remember too: Vaccination is an Act of Love. Dr. Mirta Roses Periago Director, Pan American Health ... MICROSCOPE ? KNOW WHY VACCINATION IS AN ACT OF LOVE? IT PROTECTS AGAINST MANY TYPES OF DISEASE! AND ...

  16. 10 Reasons to Get Vaccinated

    MedlinePlus

    ... What's this? Submit Button Past Emails CDC Features 10 Reasons To Get Vaccinated Language: English Español (Spanish) ... many reasons to get vaccinated; here are just 10. You may be at risk for serious diseases ...

  17. Current approaches to vaccine preparation

    PubMed Central

    Liu, Jiang-Jian; Cepica, Arnost

    1990-01-01

    Numerous conventional vaccines for animal use are currently available, and many of these vaccines have been instrumental in the control of infectious diseases of major economic importance. A vaccine has even been instrumental in global eradication of smallpox, an important human disease. However, many of the current vaccines are deficient in efficiency, potency, or safety. It has been recognized that the conventional methodologies are a limitation to further vaccine development. Introduction of monoclonal antibodies, recombinant DNA, and protein engineering techniques has facilitated a rather rapid increase in the knowledge of pathogenetic mechanisms, as well as of protective antigens at the molecular level. This knowledge provides the basis for development of a new generation of vaccines. As a rule, these vaccines contain purified immunogens, or even isolated epitopes, identified and prepared by molecular biological techniques. The efforts to find better delivery systems and better adjuvants accompany the research on vaccines. PMID:17423533

  18. HIV/AIDS and Vaccines

    MedlinePlus

    ... NIAID). /* // ** // */ Prevention Research Vaccines Microbicides Related Topics on AIDS.gov Clinical Trials Immune System 101 HIV Vaccine ... Be the Generation Last revised: 12/09/2016 AIDS.gov HIV/AIDS Basics • Federal Resources • Using New ...

  19. Enhanced expression of the Erns protein of classical swine fever virus in yeast and its application in an indirect enzyme-linked immunosorbent assay for antibody differentiation of infected from vaccinated animals.

    PubMed

    Luo, Yuzi; Li, Lin; Austermann-Busch, Sophia; Dong, Mei; Xu, Jingjing; Shao, Lina; Lei, Jianlin; Li, Na; He, Wen-Rui; Zhao, Bibo; Li, Su; Li, Yongfeng; Liu, Lihong; Becher, Paul; Sun, Yuan; Qiu, Hua-Ji

    2015-09-15

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a devastating disease of swine worldwide. Although a mandatory vaccination with the modified live vaccine C-strain has been implemented in China for decades, CSF remains a serious threat to the swine industry. To facilitate the control and eradication of CSF in China, the E2-based marker vaccine rAdV-SFV-E2, an adenovirus-delivered, alphavirus replicon-vectored vaccine, has been developed. Accordingly, an accompanying discriminatory test that allows differentiating infected from vaccinated animals (DIVA) is required. Here, the enhanced expression of E(rns) protein of CSFV was achieved in the methyltropic yeast Pichia pastoris by codon-optimization of the E(rns) gene, and an indirect enzyme-linked immunosorbent assay (iELISA) based on the yeast-expressed E(rns) (yE(rns)) was developed and evaluated. The optimized iELISA was able to detect CSFV-specific antibodies in the serum samples from the CSFV-infected pigs as early as 6 days post-infection, and discriminate the CSFV-infected pigs from those vaccinated with rAdV-SFV-E2. The iELISA was evaluated using a panel of swine sera, and showed comparable sensitivity (94.6%) and specificity (97.1%), and the consistence rates with the virus neutralization test were 96.8% for CSFV-infected swine sera, 83.3% for C-strain-vaccinated swine sera, and 95.0% for field swine sera. In addition, the iELISA showed higher sensitivity (90.4%) compared with PrioCHECK CSFV E(rns) (59.6%). Taken together, the yE(rns)-based iELISA is specific and sensitive, representing a promising DIVA test for E2-based marker vaccines against CSF.

  20. Development of a Novel, Single-Cycle Replicable Rift Valley Fever Vaccine

    PubMed Central

    Ramirez, Sydney I.; Morrill, John C.; Makino, Shinji

    2014-01-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate. PMID:24651859

  1. Development of a novel, single-cycle replicable rift valley Fever vaccine.

    PubMed

    Murakami, Shin; Terasaki, Kaori; Ramirez, Sydney I; Morrill, John C; Makino, Shinji

    2014-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.

  2. Economics of vaccines revisited.

    PubMed

    Postma, Maarten J; Standaert, Baudouin A

    2013-05-01

    Performing a total health economic analysis of a vaccine newly introduced into the market today is a challenge when using the conventional cost-effectiveness analysis we normally apply on pharmaceutical products. There are many reasons for that, such as: the uncertainty in the total benefit (direct and indirect) to be measured in a population when using a cohort model; (1) appropriate rules about discounting the long-term impact of vaccines are absent jeopardizing therefore their value at the initial investment; (2) the presence of opposite contexts when introducing the vaccine in developed vs. the developing world with high benefits, low initial health care investment for the latter vs. marginal benefit and high cost for the former; with a corresponding paradox for the vaccine becoming very cost-effective in low income countries but rather medium in middle low to high middle income countries; (3) and the type of trial assessment for the newer vaccines is now often performed with immunogenicity reaction instead of clinical endpoints which still leaves questions on their real impact and their head-to-head comparison. (4.)

  3. Financing of vaccines.

    PubMed

    Barton, J H

    2000-04-08

    This article discusses the need to increase the financial assistance for vaccine development. A health situation was cited to present the intolerable impact of the shortfall in funding for vaccines. This situation, on the other hand, has awakened the world community to respond by forming organizations and projects that will help eliminate this kind of problem in the future. However, this renewed interest in vaccine development would be impossible if there is no adequate funding and political commitment. Furthermore, the research and development to conduct and achieve highly effective vaccines will require a hundred to a hundred million US dollars in annual combined public and private research expenditures. To help solve this problem, one suggested solution is the development of a global fund to support production and distribution of new vaccines. Aside from that, other alternatives being looked into are the mechanisms used in other sectors that generated successful funding. This leads to the idea of creating a new treaty, which will provide the flexibility to gain support from new constituencies, to strengthen institutions, and to create adequately strong budgetary commitments.

  4. Vaccination against ectoparasites.

    PubMed

    Willadsen, P

    2006-01-01

    Ectoparasites of livestock are of great economic and social importance but their effective control remains difficult. The feasibility of vaccination as a novel control measure was established over a decade ago with the commercial release of a recombinant vaccine against the cattle tick Boophilus microplus. Since then, research has continued on ticks and other ectoparasites. While some ectoparasite species will undoubtedly be refractory to immunological control, for others there has been a steady accumulation of knowledge of partially protective antigens, now accelerating through the application of genomic technologies. Nevertheless, progress towards usable, commercially available vaccines has been limited by a number of factors. The number of highly effective antigens is still very small. Although some classes of antigen have been investigated in more detail than others, we have no systematic knowledge of what distinguishes an effective antigen. Much hope has been placed on the potential of multi-antigen mixtures to deliver the efficacy required of a successful vaccine but with little experimental evidence. The application of current knowledge across parasite and host species needs to be explored but little has been done. In most cases, the path to commercial delivery is uncertain. Although many constraints and challenges remain, the need for vaccines and our capacity to develop them can only increase.

  5. Vaccines for the elderly.

    PubMed

    Del Giudice, Giuseppe; Weinberger, Birgit; Grubeck-Loebenstein, Beatrix

    2015-01-01

    The aging of the human population is posing serious challenges to research and to public health authorities in order to prevent diseases that more frequently affect the elderly, a portion of the population that will increase more and more in the coming years. While some vaccines exist and are used in the elderly to effectively fight against some infections (e.g. influenza, pneumococci, varicella-zoster virus, diphtheria, and tetanus), still a lot of work remains to be done to better adapt these vaccines and to develop new ones for this age group. The prevention of infectious diseases affecting the elderly can be successful only through a holistic approach. This approach will aim at the following: (1) a deeper understanding of the mechanisms leading to the senescence of the immune system, (2) a better and broader use of vaccines recommended for the elderly, (3) the use of vaccines currently considered only for other age groups and (4) actively priming the population when they are immunological competent, before the physiological waning of immune responsiveness may affect the beneficial effects of vaccination.

  6. Cancer therapy and vaccination.

    PubMed

    Aly, Hamdy A A

    2012-08-31

    Cancer remains one of the leading causes of death worldwide, both in developed and in developing nations. It may affect people at all ages, even fetuses, but the risk for most varieties increases with age. Current therapeutic approaches which include surgery, chemotherapy and radiotherapy are associated with adverse side effects arising from lack of specificity for tumors. The goal of any therapeutic strategy is to impact on the target tumor cells with limited detrimental effect to normal cell function. Immunotherapy is cancer specific and can target the disease with minimal impact on normal tissues. Cancer vaccines are capable of generating an active tumor-specific immune response and serve as an ideal treatment due to their specificity for tumor cells and long lasting immunological memory that may safeguard against recurrences. Cancer vaccines are designed to either prevent (prophylactic) or treat established cancer (therapeutic). Identification of tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) has led to increased efforts to develop vaccination strategies. Vaccines may be composed of whole cells or cell extracts, genetically modified tumor cells to express costimulatory molecules, dendritic cells (DCs) loaded with TAAs, immunization with soluble proteins or synthetic peptides, recombinant viruses or bacteria encoding tumor-associated antigens, and plasmid DNA encoding TSAs or TAAs in conjunction with appropriate immunomodulators. All of these antitumor vaccination approaches aim to induce specific immunological responses and localized to TAAs, destroying tumor cells alone and leaving the vast majority of other healthy cells of the body untouched.

  7. Vaccination against bovine babesiosis.

    PubMed

    De Vos, A J; Bock, R E

    2000-01-01

    Bovine babesiosis is an important disease caused by Babesia bovis, B. bigemina, and B. divergens. Solid immunity develops after infection and this feature has been exploited with the use of live attenuated organisms as immunogens. Attributes of live vaccines include a durable immunity to heterologous challenge after one vaccination. To overcome disadvantages relating to poor quality control (risk of contamination and adverse reactions), production procedures have been modified to meet the requirements of codes of good manufacturing practice. This includes development of methods to allow production of cryopreserved vaccine and limit antigenic drift. Killed vaccines have also been used on a limited basis and consist of antigens extracted from cultured material or blood of infected calves, and given with adjuvant. The degree and duration of immunity against heterologous challenge is not well documented. Attempts are being made to develop subunit vaccines but the progress has been slow. A better understanding of the mechanisms involved in the expression of protective immunity against Babesia spp will aid in the identification of protective antigens.

  8. Vaccine hesitancy and healthcare providers.

    PubMed

    Paterson, Pauline; Meurice, François; Stanberry, Lawrence R; Glismann, Steffen; Rosenthal, Susan L; Larson, Heidi J

    2016-12-20

    While most people vaccinate according to the recommended schedule, this success is challenged by individuals and groups who delay or refuse vaccines. The aim of this article is to review studies on vaccine hesitancy among healthcare providers (HCPs), and the influences of their own vaccine confidence and vaccination behaviour on their vaccination recommendations to others. The search strategy was developed in Medline and then adapted across several multidisciplinary mainstream databases including Embase Classic & Embase, and PschInfo. All foreign language articles were included if the abstract was available in English. A total of 185 articles were included in the literature review. 66% studied the vaccine hesitancy among HCPs, 17% analysed concerns, attitudes and/or behaviour of HCPs towards vaccinating others, and 9% were about evaluating intervention(s). Overall, knowledge about particular vaccines, their efficacy and safety, helped to build HCPs own confidence in vaccines and their willingness to recommend vaccines to others. The importance of societal endorsement and support from colleagues was also reported. In the face of emerging vaccine hesitancy, HCPs still remain the most trusted advisor and influencer of vaccination decisions. The capacity and confidence of HCPs, though, are stretched as they are faced with time constraints, increased workload and limited resources, and often have inadequate information or training support to address parents' questions. Overall, HCPs need more support to manage the quickly evolving vaccine environment as well as changing public, especially those who are reluctant or refuse vaccination. Some recommended strategies included strengthening trust between HCPs, health authorities and policymakers, through more shared involvement in the establishment of vaccine recommendations.

  9. Listeria Vaccines for Pancreatic Cancer

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-12-1-0411 TITLE: Listeria vaccines for pancreatic cancer...29September2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Listeria vaccines for pancreatic cancer 5b. GRANT NUMBER W81XWH-12-1-0411 5c...explored the capacity of Listeria vaccines to induce anti-tumor T cell immunity in the KPC model. We have found that Listeria vaccines produce

  10. Safety of hepatitis B vaccines.

    PubMed

    Zuckerman, Arie J

    2004-05-01

    Although concerns about vaccine safety have increased, true adverse reactions associated with hepatitis B vaccines are few, apart from minor symptoms at the site of injection and occasionally systemic reactions. There is no evidence of an association with hepatitis B vaccination and Sudden Infant Death Syndrome, Multiple Sclerosis and the Chronic Fatigue Syndrome. Hepatitis B vaccines are safe and essential for the prevention of this important and common infection.

  11. Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae.

    PubMed

    Frank, Oliver; Michael, Victoria; Päuker, Orsola; Boedeker, Christian; Jogler, Christian; Rohde, Manfred; Petersen, Jörn

    2015-03-01

    Surface colonization is characteristic for a broad range of marine roseobacters and many strains have been isolated from biofilms, microbial mats and dinoflagellates. Phaeobacter inhibens DSM 17395, one of the best-studied representatives of the Roseobacter group, is an effective colonizer of marine surfaces, but the genetic basis of this trait is unknown. Based on the composition of its 65-kb RepA-I type plasmid that contains more than 20 genes for polysaccharide metabolism, including a rhamnose operon, which is required for O-antigen formation in Escherichia coli, it was hypothesized that this replicon was essential for surface attachment. Accordingly, a holistic approach was taken and the functional role of this extrachromosomal element in P. inhibens was investigated. Plasmid curing was performed with the homologous RepA-I replication system of Dinoroseobacter shibae DSM 16493(T). The Δ65-kb mutant completely lost its stickiness and could neither attach to artificial (glass, polystyrene) nor to natural surfaces (algae) and, consequently, its ability to form biofilms was impaired. Surprisingly, the mutant also lost the capacity for flagellar swimming motility required for surface colonization and the dispersal of biofilms. The data clearly showed that the 65-kb replicon of P. inhibens DSM 17395 was a genuine biofilm plasmid-mediating surface attachment. Homologous replicons are widely distributed among Rhodobacterales thus indicating the general importance of extrachromosomal elements for biofilm formation.

  12. A brief history of vaccines & vaccination in India

    PubMed Central

    Lahariya, Chandrakant

    2014-01-01

    The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts. PMID:24927336

  13. A brief history of vaccines & vaccination in India.

    PubMed

    Lahariya, Chandrakant

    2014-04-01

    The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  14. A CGMMV genome-replicon vector with partial sequences of coat protein gene efficiently expresses GFP in Nicotiana benthamiana.

    PubMed

    Jailani, A Abdul Kader; Solanki, Vikas; Roy, Anirban; Sivasudha, T; Mandal, Bikash

    2017-03-02

    A highly infectious clone of Cucumber green mottle mosaic virus (CGMMV), a cucurbit-infecting tobamovirus was utilized for designing of gene expression vectors. Two versions of vector were examined for their efficacy in expressing the green fluorescent protein (GFP) in Nicotiana benthamiana. When the GFP gene was inserted at the stop codon of coat protein (CP) gene of the CGMMV genome without any read-through codon, systemic expression of GFP, as well as virion formation and systemic symptoms expression were obtained in N. benthamiana. The qRT-PCR analysis showed 23 fold increase of GFP over actin at 10days post inoculation (dpi), which increased to 45 fold at 14dpi and thereafter the GFP expression was significantly declined. Further, we show that when the most of the CP sequence is deleted retaining only the first 105 nucleotides, the shortened vector containing GFP in frame of original CP open reading frame (ORF) resulted in 234 fold increase of GFP expression over actin at 5dpi in N. benthamiana without the formation of virions and disease symptoms. Our study demonstrated that a simple manipulation of CP gene in the CGMMV genome while preserving the translational frame of CP resulted in developing a virus-free, rapid and efficient foreign protein expression system in the plant. The CGMMV based vectors developed in this study may be potentially useful for the production of edible vaccines in cucurbits.

  15. Clinical Impact of Vaccine Development.

    PubMed

    Nambiar, Puja H; Daza, Alejandro Delgado; Livornese, Lawrence L

    2016-01-01

    The discovery and development of immunization has been a singular improvement in the health of mankind. This chapter reviews currently available vaccines, their historical development, and impact on public health. Specific mention is made in regard to the challenges and pursuit of a vaccine for the human immunodeficiency virus as well as the unfounded link between autism and measles vaccination.

  16. Global Routine Vaccination Coverage, 2015.

    PubMed

    Casey, Rebecca M; Dumolard, Laure; Danovaro-Holliday, M Carolina; Gacic-Dobo, Marta; Diallo, Mamadou S; Hampton, Lee M; Wallace, Aaron S

    2016-11-18

    In 1974, the World Health Organization (WHO) established the Expanded Program on Immunization* to provide protection against six vaccine-preventable diseases through routine infant immunization (1). Based on 2015 WHO and United Nations Children's Fund (UNICEF) estimates, global coverage with the third dose of diphtheria-tetanus-pertussis vaccine (DTP3), the first dose of measles-containing vaccine (MCV1) and the third dose of polio vaccine (Pol3) has remained stable (84%-86%) since 2010. From 2014 to 2015, estimated global coverage with the second MCV dose (MCV2) increased from 39% to 43% by the end of the second year of life and from 58% to 61% when older age groups were included. Global coverage was higher in 2015 than 2010 for newer or underused vaccines, including rotavirus vaccine, pneumococcal conjugate vaccine (PCV), rubella vaccine, Haemophilus influenzae type b (Hib) vaccine, and 3 doses of hepatitis B (HepB3) vaccine. Coverage estimates varied widely by WHO Region, country, and district; in addition, for the vaccines evaluated (MCV, DTP3, Pol3, HepB3, Hib3), wide disparities were found in coverage by country income classification. Improvements in equity of access are necessary to reach and sustain higher coverage and increase protection from vaccine-preventable diseases for all persons.

  17. Molecular signatures of vaccine adjuvants.

    PubMed

    Olafsdottir, Thorunn; Lindqvist, Madelene; Harandi, Ali M

    2015-09-29

    Mass vaccination has saved millions of human lives and improved the quality of life in both developing and developed countries. The emergence of new pathogens and inadequate protection conferred by some of the existing vaccines such as vaccines for tuberculosis, influenza and pertussis especially in certain age groups have resulted in a move from empirically developed vaccines toward more pathogen tailored and rationally engineered vaccines. A deeper understanding of the interaction of innate and adaptive immunity at molecular level enables the development of vaccines that selectively target certain type of immune responses without excessive reactogenicity. Adjuvants constitute an imperative element of modern vaccines. Although a variety of candidate adjuvants have been evaluated in the past few decades, only a limited number of vaccine adjuvants are currently available for human use. A better understanding of the mode of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in shaping a desired immune response. Recent advancement in systems biology powered by the emerging cutting edge omics technology has led to the identification of molecular signatures rapidly induced after vaccination in the blood that correlate and predict a later protective immune response or vaccine safety. This can pave ways to prospectively determine the potency and safety of vaccines and adjuvants. This review is intended to highlight the importance of big data analysis in advancing our understanding of the mechanisms of actions of adjuvants to inform rational development of future human vaccines.

  18. Protein carriers of conjugate vaccines

    PubMed Central

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  19. Vaccines and biologics.

    PubMed

    Ferreira, Isabel; Isenberg, David

    2014-08-01

    Patients with autoimmune rheumatic diseases are more susceptible to infectious complications during the course of their disease. The introduction of biologics has been a major achievement in treating these diseases, but an increased risk of infection associated with these therapies has become evident. Some infections can be prevented by vaccination and it is clearly worthwhile considering which immunisations would be sensible and practicable for these patients. To date no formal specific recommendations for patients on biologics have been published. A search was made of Medline (via PubMed) from 1970 to January 2014 to provide results. This review aims to provide a systematic analysis of the data about vaccines and biologics and considers recommendations for vaccination in adult patients with autoimmune rheumatic diseases treated with biologics.

  20. Optimizing influenza vaccine distribution.

    PubMed

    Medlock, Jan; Galvani, Alison P

    2009-09-25

    The criteria to assess public health policies are fundamental to policy optimization. Using a model parametrized with survey-based contact data and mortality data from influenza pandemics, we determined optimal vaccine allocation for five outcome measures: deaths, infections, years of life lost, contingent valuation, and economic costs. We find that optimal vaccination is achieved by prioritization of schoolchildren and adults aged 30 to 39 years. Schoolchildren are most responsible for transmission, and their parents serve as bridges to the rest of the population. Our results indicate that consideration of age-specific transmission dynamics is paramount to the optimal allocation of influenza vaccines. We also found that previous and new recommendations from the U.S. Centers for Disease Control and Prevention both for the novel swine-origin influenza and, particularly, for seasonal influenza, are suboptimal for all outcome measures.

  1. History of BCG Vaccine

    PubMed Central

    LUCA, Simona; MIHAESCU, Traian

    2013-01-01

    ABSTRACT Tuberculosis (TB) is still responsible for 2 million deaths every year despite being a treatable airborne infectious disease. "Consumption" and "Phthisis" were terms historically used to describe TB, which was responsible for one in four deaths in the 19th century. Due to its infectious nature, chronic progression and long treatment, TB is a great burden for society. Moreover the emergence of multi-drug resistant TB and the current TB-HIV epidemic has raised even greater concern. Treating and preventing TB has become a permanent challange since the ancient times. Bacille Calmette-Guérin (BCG) is the only vaccine available today and has been used for more than 90 years with astonishing safety records. However, its efficacy remains controversial. No universal BCG vaccination policy exists, with some countries merely recommending its use and others that have implemented immunization programs. In this article we review several important milestones of BCG vaccine development from the discovery till today. PMID:24023600

  2. DNA Vaccination Techniques.

    PubMed

    Fissolo, Nicolás; Montalban, Xavier; Comabella, Manuel

    2016-01-01

    Multiple sclerosis (MS) is the most common inflammatory, demyelinating, and neurodegenerative disorder of the central nervous system (CNS) in humans. Although the etiology of MS remains unknown, several lines of evidence support the notion that autoimmunity against components of the myelin sheath plays a major role in susceptibility to and development of the disease. At present, there are no approved MS therapies aimed specifically toward downregulating antigen-specific autoreactive immune cells. One antigen-specific approach that appears promising for the treatment of MS is DNA vaccination. This technique has demonstrated efficacy in clinical trials while maintaining safety.Here, we describe the generation of DNA vaccines containing immunologically relevant antigens of MS. Moreover, we present a detailed protocol for the prophylactic and therapeutic administration of DNA vaccines via intramuscular injection targeting on the development of experimental autoimmune encephalomyelitis (EAE), an animal model resembling MS.

  3. Vaccines against Clostridium difficile.

    PubMed

    Leuzzi, Rosanna; Adamo, Roberto; Scarselli, Maria

    2014-01-01

    Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens.

  4. The National Vaccine Injury Compensation Program.

    PubMed

    Cook, Katherine M; Evans, Geoffrey

    2011-05-01

    The National Childhood Vaccine Injury Act of 1986 established the National Vaccine Injury Compensation Program to compensate people thought to be injured by certain vaccines. The act's goals are to ensure an adequate supply of vaccines, to stabilize vaccine costs, and to establish and maintain an accessible and efficient setting for providing compensation to people found to have been injured by certain childhood vaccines. In addition, the legislation called for the reporting of adverse events after vaccination, the creation of vaccine-information materials that detail vaccine benefits and risks, and Institute of Medicine studies of possible vaccine-related injuries and encouraged research and development of new and safer vaccines. Over its 22-year history, the National Vaccine Injury Compensation Program has been a key component in stabilizing the US vaccine market through liability protection to both vaccine companies and health care providers and by providing a forum for people, no matter what age, to seek compensation.

  5. Dengue 4 Vaccine Development

    DTIC Science & Technology

    1987-09-01

    CopU~1C FftE 0~AD( ) DENGUE 4 VACCINE DEVELOPMENT Lf 0, to ANNUAL AND FINAL REPORT0 by 0Nyven J. Marchette, Ph.D. September 1, 1987 (For the period 1... Dengue 4 Vaccine Development 12. PERSONAL AUTHOR(S) Nyven Marchette. Ph.D. 13a. TYPE OF REPORT T COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE...necessary and identi’fy by block number) FIELD GROUP SUB-GROUP Key words: Virus, arbovirus, dengue , dengue -4, vaccinej attenuation, immunity, RAI

  6. Fungal Vaccines and Immunotherapeutics

    PubMed Central

    Santos, Evelyn; Levitz, Stuart M.

    2014-01-01

    Concomitant with the increased prevalence of immunocompromised persons, invasive fungal infections have become considerably more frequent in the last 50 years. High mortality rates caused by invasive mycoses and high morbidity because of intractable mucosal infections have created an unmet need for innovative prophylactic and therapeutic strategies against fungal pathogens. Several immunotherapeutics and vaccines are in development to address this need, although one has yet to reach the clinic. This review focuses on past and current immunotherapeutic and vaccine strategies being tested to either prevent or treat fungal infections, as well as the challenges associated with their development. PMID:25368016

  7. Vaccines to prevent leishmaniasis

    PubMed Central

    Kumar, Rajiv; Engwerda, Christian

    2014-01-01

    Leishmaniasis is a parasitic disease that encompasses a range of clinical manifestations affecting people in tropical and subtropical regions of the world. Epidemiological and experimental data indicate that protection from disease can be achieved in most people. In addition, we know how the host immune system must respond to infection in order to control parasite growth. However, there is still no vaccine for use in humans. Here, we review our understanding of host immunity following Leishmania infection and also discuss recent advances in the development of vaccines to prevent leishmaniasis, highlighting a new promising approach that targets the parasite hemoglobin receptor. PMID:25505961

  8. Communicating vaccine safety during the development and introduction of vaccines.

    PubMed

    Kochhar, Sonali

    2015-01-01

    Vaccines are the best defense available against infectious diseases. Vaccine safety is of major focus for regulatory bodies, vaccine manufacturers, public health authorities, health care providers and the public as vaccines are often given to healthy children and adults as well as to pregnant woman. Safety assessment is critical at all stages of vaccine development. Effective, clear and consistent communication of the risks and benefits of vaccines and advocacy during all stages of clinical research (including the preparation, approvals, conduct of clinical trials through the post marketing phase) is critically important. This needs to be done for all major stakeholders (e.g. community members, Study Team, Health Care Providers, Ministry of Health, Regulators, Ethics Committee members, Public Health Authorities and Policy Makers). Improved stakeholder alignment would help to address some of the concerns that may affect the clinical research, licensing of vaccines and their wide-spread use in immunization programs around the world.

  9. Chinese vaccine products go global: vaccine development and quality control.

    PubMed

    Xu, Miao; Liang, Zhenglun; Xu, Yinghua; Wang, Junzhi

    2015-05-01

    Through the continuous efforts of several generations, China has become one of the few countries in the world that is capable of independently addressing all the requirements by the Expanded Program on Immunization. Regulatory science is applied to continuously improve the vaccine regulatory system. Passing the prequalification by WHO has allowed Chinese vaccine products to go global. Chinese vaccine products not only secure disease prevention and control domestically but also serve the needs for international public health. This article describes the history of Chinese vaccine development, the current situation of Chinese vaccine industry and its contribution to the prevention and control of infectious diseases. We also share our experience of national quality control and vaccine regulation during the past decades. China's experience in vaccine development and quality control can benefit other countries and regions worldwide, including the developing countries.

  10. Japanese encephalitis vaccines: current vaccines and future prospects.

    PubMed

    Monath, T P

    2002-01-01

    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.

  11. Valuing vaccines: deficiencies and remedies.

    PubMed

    Bloom, David E

    2015-06-08

    Current evaluation models for the value of vaccines typically account for a small subset of the full social and economic benefits of vaccination. Health investments yield positive economic benefits via several channels at the household, community, and national levels. Underestimating, or worse, not considering these benefits can lead to ill-founded recommendations regarding the introduction of vaccines into immunization programs. The clear and strong links between health and wealth suggest the need to redesign valuation frameworks for vaccination so that the full costs may be properly weighed against the full benefits of vaccines.

  12. Parents' vaccination comprehension and decisions.

    PubMed

    Downs, Julie S; de Bruin, Wändi Bruine; Fischhoff, Baruch

    2008-03-17

    We report on 30 in-depth mental models interviews with parents discussing vaccination for their children, both in general terms and in response to communications drawn from sources supporting and opposing vaccines. We found that even parents favourable to vaccination can be confused by the ongoing debate, leading them to question their choices. Many parents lack basic knowledge of how vaccines work, and do not find the standard information provided to them to be particularly helpful in explaining it. Those with the greatest need to know about vaccination seem most vulnerable to confusing information. Opportunities for education may be missed if paediatricians do not appreciate parents' specific information needs.

  13. 13-valent pneumococcal conjugate vaccine.

    PubMed

    2011-01-01

    The 7-valent pneumococcal conjugate vaccine (4, 6B, 9V, 14, 18C, 19F, 23F) is the standard vaccine for the prevention of invasive pneumococcal infections in infants and children under 5 years of age. A 13-valent pneumococcal conjugate vaccine (with the addition of valences 1, 3, 5, 6A, 7F and 19A) has now been authorised to replace the 7-valent vaccine within the European Union. This new vaccine, adapted to recent epidemiological data on invasive pneumococcal infections, is supposed to cover at least 80% of pneumococcal infections in Europe. The protective potency of the 13-valent vaccine has not yet been tested in clinical trials. Clinical evaluation is based on two immunogenicity studies, in which the immunogenic potency of the 13-valent vaccine was similar to that of the 7-valent vaccine for their shared serotypes, but lower for serotypes 3, 6B and 9V. For these last two serotypes and for the new serotypes, the usual target antibody titre was reached after a booster injection. This was not the case for valence 3. * The vaccine used in immunogenicity studies did not contain polysorbate 80 (an excipient), and a non-inferiority study of the marketed vaccine containing polysorbate 80 was therefore conducted in 500 children. Non-inferiority was established for all 13 valences after the booster injection, but not for valences 6B and 23F after primary vaccination. According to the results of 10 studies, simultaneous administration of the 13-valent pneumococcal conjugate vaccine does not affect the immunogenicity of other vaccines generally administered before the age of 5 years. Other immunogenicity studies support the use of a variety of vaccine schedules for infants and children under 5 years of age who have not yet been vaccinated or who have started vaccination with the 7-valent vaccine. Increasing the number of valences in the vaccine from 7 to 13 led to no marked increase in local adverse effects (hypersensitivity, indurations, erythema) or systemic reactions

  14. Vaccination-related shoulder dysfunction.

    PubMed

    Bodor, Marko; Montalvo, Enoch

    2007-01-08

    We present two cases of shoulder pain and weakness following influenza and pneumococcal vaccine injections provided high into the deltoid muscle. Based on ultrasound measurements, we hypothesize that vaccine injected into the subdeltoid bursa caused a periarticular inflammatory response, subacromial bursitis, bicipital tendonitis and adhesive capsulitis. Resolution of symptoms followed corticosteroid injections to the subacromial space, bicipital tendon sheath and glenohumeral joint, followed by physical therapy. We conclude that the upper third of the deltoid muscle should not be used for vaccine injections, and the diagnosis of vaccination-related shoulder dysfunction should be considered in patients presenting with shoulder pain following a vaccination.

  15. DNA/genetic vaccination (minireview).

    PubMed

    Kucerova, L

    1998-01-01

    An important new approach to vaccination is plasmid DNA injection in vivo that can elicit an immune response against protein(s) encoded. Antigen that is expressed from the in vivo transfected cells induces both humoral and cellular immune response. DNA immunization is generally applicable for a wide range of proteins. It can provide an organism with immunity against viruses, bacteria, parasites, and tumors. DNA vaccines can overcome the disadvantages of vaccines presently used as well as provide various new vaccines that are currently not available. This minireview provides an overview of evaluated DNA vaccine candidates against infectious agents and certain cancers.

  16. Why are pharmaceutical companies gradually abandoning vaccines?

    PubMed

    Offit, Paul A

    2005-01-01

    During the past fifty years, the number of pharmaceutical companies making vaccines has decreased dramatically, and those that still make vaccines have reduced resources to make new ones. Pharmaceutical companies are gradually abandoning vaccines because the research, development, testing, and manufacture of vaccines are expensive and because the market to sell vaccines is much smaller than the market for other drug products. Congressional action could assure both a steady supply of existing vaccines and the promise of vaccines for the future.

  17. Influenza vaccine and healthcare workers.

    PubMed

    Aguilar-Díaz, Fatima Del Carmen; Jiménez-Corona, Maria Eugenia; Ponce-de-León-Rosales, Samuel

    2011-11-01

    We undertook this study to review attitudes, beliefs and practices of healthcare workers (HCW) toward pandemic influenza A vaccine (H1N1) 2009 reported in the literature. Relevant papers published from 2009-2011 reporting attitudes, beliefs and practices of HCW towards pandemic influenza vaccine were identified. Variables such as age, gender, profession, work place area, and previous vaccination uptake were analyzed. In this study, 30 articles regarding attitudes and beliefs toward pandemic influenza vaccination, vaccine uptake and intention to accept vaccine were analyzed. Most studies were cross-sectional in design. Vaccination intention and uptake varies among different countries, 13.5-89.0% and 7.5-63.0%, respectively. Most common reasons for rejection were fear of adverse events, doubt regarding efficacy, not feeling as belonging to a high-risk group and believing that influenza is not a serious illness. Physicians show more favorable attitudes compared to nurses. The main predictor of vaccine uptake was having received previous influenza vaccination. Pandemic influenza uptake was low in most countries. The main reason among HCW for rejection was concern regarding side effects. It is necessary to establish educational programs to provided reliable information and raise awareness of HCW about vaccine use so that they can act as vaccine promoters among the general population.

  18. A defense of compulsory vaccination.

    PubMed

    Flanigan, Jessica

    2014-03-01

    Vaccine refusal harms and risks harming innocent bystanders. People are not entitled to harm innocents or to impose deadly risks on others, so in these cases there is nothing to be said for the right to refuse vaccination. Compulsory vaccination is therefore justified because non-vaccination can rightly be prohibited, just as other kinds of harmful and risky conduct are rightly prohibited. I develop an analogy to random gunfire to illustrate this point. Vaccine refusal, I argue, is morally similar to firing a weapon into the air and endangering innocent bystanders. By re-framing vaccine refusal as harmful and reckless conduct my aim is to shift the focus of the vaccine debate from non-vaccinators' religious and refusal rights to everyone else's rights against being infected with contagious illnesses. Religious freedom and rights of informed consent do not entitle non-vaccinators to harm innocent bystanders, and so coercive vaccination requirements are permissible for the sake of the potential victims of the anti-vaccine movement.

  19. [Preventive vaccinations for medical personnel].

    PubMed

    Kerwat, Klaus; Goedecke, Marcel; Wulf, Hinnerk

    2014-05-01

    Vaccinations are among the most efficient and important preventive medical procedures. Modern vaccines are well tolerated. In Germany there are no longer laws for mandatory vaccinations, either for the general public or for medical personnel. Vaccinations are now merely "officially recommended" by the top health authorities on the basis of recommendations from the Standing Committee on Vaccinations (STIKO) of the Robert Koch Institute (RKI) according to § 20 para 3 of the Protection against Infection law (IfSG). The management of vaccine damage due to officially recommended vaccinations is guaranteed by the Federal States. Whereas vaccinations in childhood are generally considered to be a matter of course, the willingness to accept them decreases markedly with increasing age. In the medical sector vaccinations against, for example, hepatitis B are well accepted while other vaccinations against, for example, whooping cough or influenza are not considered to be so important. The fact that vaccinations, besides offering protection for the medical personnel, may also serve to protect the patients entrusted to medical care from nosocomial infections is often ignored.

  20. Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses.

    PubMed

    Yamanaka, Atsushi; Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro; Matsuda, Mami; Suzuki, Ryosuke; Konishi, Eiji

    2017-05-01

    The introduction of a foreign virus into an area may cause an outbreak, as with the Zika virus (ZIKV) outbreak in the Americas. Preparedness for handling a viral outbreak involves the development of tests for the serodiagnosis of foreign virus infections. We previously established a gene-based technology to generate some flaviviral antigens useful for functional antibody assays. The technology utilizes a Japanese encephalitis virus subgenomic replicon to generate single-round infectious particles (SRIPs) that possess designed surface antigens. In the present study, we successfully expanded the capacity of SRIPs to four human-pathogenic mosquito-borne flaviviruses that could potentially be introduced from endemic to non-endemic countries: ZIKV, Sepik virus, Wesselsbron virus, and Usutu virus. Flavivirus-crossreactive monoclonal antibodies dose-dependently neutralized these SRIPs. ZIKV-SRIPs also produced antibody-dose-dependent neutralization curves equivalent to those shown by authentic ZIKV particles using sera from a Zika fever patient. The faithful expression of designed surface antigens on SRIPs will allow their use in neutralization tests to diagnose foreign flaviviral infections.

  1. Structure and immunogenicity of alternative forms of the simian immunodeficiency virus gag protein expressed using Venezuelan equine encephalitis virus replicon particles.

    PubMed

    Cecil, Chad; West, Ande; Collier, Martha; Jurgens, Christy; Madden, Victoria; Whitmore, Alan; Johnston, Robert; Moore, Dominic T; Swanstrom, Ronald; Davis, Nancy L

    2007-06-05

    Venezuelan equine encephalitis virus replicon particles (VRP) were engineered to express different forms of SIV Gag to compare expression in vitro, formation of intra- and extracellular structures and induction of humoral and cellular immunity in mice. The three forms examined were full-length myristylated SIV Gag (Gagmyr+), full-length Gag lacking the myristylation signal (Gagmyr-) or a truncated form of Gagmyr- comprising only the matrix and capsid domains (MA/CA). Comparison of VRP-infected primary mouse embryo fibroblasts, mouse L929 cells and primate Vero cells showed comparable expression levels for each protein, as well as extracellular virus-like particles (VRP-Gagmyr+) and distinctive cytoplasmic aggregates (VRP-Gagmyr-) with each cell type. VRP were used to immunize BALB/c mice, and immune responses were compared using an interferon (IFN)-gamma ELISPOT assay and a serum antibody ELISA. Although all three VRP generated similar levels of IFN-gamma-producing cells at 1 week post-boost, at 10 weeks post-boost the MA/CA-VRP-induced response was maintained at a significantly higher level relative to that induced by Gagmyr+-VRP. Antibody responses to MA/CA-VRP and Gagmyr+-VRP were not significantly different.

  2. oriGNAI3: a narrow zone of preferential replication initiation in mammalian cells identified by 2D gel and competitive PCR replicon mapping techniques.

    PubMed Central

    Toledo, F; Baron, B; Fernandez, M A; Lachagès, A M; Mayau, V; Buttin, G; Debatisse, M

    1998-01-01

    The nature of mammalian origins of DNA replication remains controversial and this is primarily because two-dimensional gel replicon mapping techniques have identified broad zones of replication initiation whereas several other techniques, such as quantitative PCR, have disclosed more discrete sites of initiation at the same chromosomal loci. In this report we analyze the replication of an amplified genomic region encompassing the 3'-end of the GNAI3 gene, the entire GNAT2 gene and the intergenic region between them in exponentially growing Chinese hamster fibroblasts. These cells express GNAI3 but not GNAT2 . The replication pattern was first analyzed by two-dimensional neutral-alkaline gel electrophoresis. Surprisingly, the results revealed a small preferential zone of replication initiation, of at most 1.7 kb, located in a limited part of the GNAI3 - GNAT2 intergenic region. Mapping of this initiation zone was then confirmed by quantitative PCR. The agreement between the two techniques exploited here strengthens the hypothesis that preferred sites of replication initiation do exist in mammalian genomes. PMID:9580680

  3. Characterization of the basic replicon of pCM1, a narrow-host-range plasmid from the moderate halophile Chromohalobacter marismortui.

    PubMed Central

    Mellado, E; Asturias, J A; Nieto, J J; Timmis, K N; Ventosa, A

    1995-01-01

    The moderately halophilic bacterium Chromohalobacter marismortui contains a 17.5-kb narrow-host-range plasmid, pCM1, which shows interesting properties for the development of cloning vectors for the genetic manipulation of this important group of extremophiles. Plasmid pCM1 can stably replicate and is maintained in most gram-negative moderate halophiles tested. The replication origin has been identified and sequenced, and the minimal pCM1 replicon has been localized to a 1,600-bp region which includes two functionally discrete regions, the oriV region and the repA gene. oriV, located on a 700-bp fragment, contains four iterons 20 bp in length adjacent to a DnaA box that is dispensable but required for efficient replication of pCM1, and it requires trans-acting functions. The repA gene, which encodes a replication protein of 289 residues, is similar to the replication proteins of other gram-negative bacteria. PMID:7768853

  4. PTC725, an NS4B-Targeting Compound, Inhibits a Hepatitis C Virus Genotype 3 Replicon, as Predicted by Genome Sequence Analysis and Determined Experimentally

    PubMed Central

    Graci, Jason D.; Jung, Stephen P.; Pichardo, John; Tong, Xiao; Gu, Zhengxian

    2016-01-01

    PTC725 is a small molecule NS4B-targeting inhibitor of hepatitis C virus (HCV) genotype (gt) 1 RNA replication that lacks activity against HCV gt2. We analyzed the Los Alamos HCV sequence database to predict susceptible/resistant HCV gt's according to the prevalence of known resistance-conferring amino acids in the NS4B protein. Our analysis predicted that HCV gt3 would be highly susceptible to the activity of PTC725. Indeed, PTC725 was shown to be active against a gt3 subgenomic replicon with a 50% effective concentration of ∼5 nM. De novo resistance selection identified mutations encoding amino acid substitutions mapping to the first predicted transmembrane region of NS4B, a finding consistent with results for PTC725 and other NS4B-targeting compounds against HCV gt1. This is the first report of the activity of an NS4B targeting compound against HCV gt3. In addition, we have identified previously unreported amino acid substitutions selected by PTC725 treatment which further demonstrate that these compounds target the NS4B first transmembrane region. PMID:27620477

  5. The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element.

    PubMed Central

    Aiyar, A; Tyree, C; Sugden, B

    1998-01-01

    Plasmids containing oriP, the plasmid origin of Epstein-Barr virus (EBV), are replicated stably in human cells that express a single viral trans-acting factor, EBNA-1. Unlike plasmids of other viruses, but akin to human chromosomes, oriP plasmids are synthesized once per cell cycle, and are partitioned faithfully to daughter cells during mitosis. Although EBNA-1 binds multiple sites within oriP, its role in DNA synthesis and partitioning has been obscure. EBNA-1 lacks enzymatic activities that are present in the origin-binding proteins of other mammalian viruses, and does not interact with human cellular proteins that provide equivalent enzymatic functions. We demonstrate that plasmids with oriP or its constituent elements are synthesized efficiently in human cells in the absence of EBNA-1. Further, we show that human cells rapidly eliminate or destroy newly synthesized plasmids, and that both EBNA-1 and the family of repeats of oriP are required for oriP plasmids to escape this catastrophic loss. These findings indicate that EBV's plasmid replicon consists of genetic elements with distinct functions, multiple cis-acting elements that facilitate DNA synthesis and viral cis/trans elements that permit retention of replicated DNA in daughter cells. They also explain historical failures to identify mammalian origins of DNA synthesis as autonomously replicating sequences. PMID:9799247

  6. Military vaccines in today's environment.

    PubMed

    Schmaljohn, Connie S; Smith, Leonard A; Friedlander, Arthur M

    2012-08-01

    The US military has a long and highly distinguished record of developing effective vaccines against pathogens that threaten the armed forces. Many of these vaccines have also been of significant benefit to civilian populations around the world. The current requirements for force protection include vaccines against endemic disease threats as well as against biological warfare or bioterrorism agents, to include novel or genetically engineered threats. The cost of vaccine development and the modern regulatory requirements for licensing vaccines have strained the ability of the program to maintain this broad mission. Without innovative vaccine technologies, streamlined regulatory strategies, and coordinating efforts for use in civilian populations where appropriate, the military vaccine development program is in jeopardy.

  7. Development of dengue DNA vaccines.

    PubMed

    Danko, Janine R; Beckett, Charmagne G; Porter, Kevin R

    2011-09-23

    Vaccination with plasmid DNA against infectious pathogens including dengue is an active area of investigation. By design, DNA vaccines are able to elicit both antibody responses and cellular immune responses capable of mediating long-term protection. Great technical improvements have been made in dengue DNA vaccine constructs and trials are underway to study these in the clinic. The scope of this review is to highlight the rich history of this vaccine platform and the work in dengue DNA vaccines accomplished by scientists at the Naval Medical Research Center. This work resulted in the only dengue DNA vaccine tested in a clinical trial to date. Additional advancements paving the road ahead in dengue DNA vaccine development are also discussed.

  8. Tolerogenic vaccines for Multiple sclerosis.

    PubMed

    Mannie, Mark D; Curtis, Alan D

    2013-05-01

    Tolerogenic vaccines represent a new class of vaccine designed to re-establish immunological tolerance, restore immune homeostasis, and thereby reverse autoimmune disease. Tolerogenic vaccines induce long-term, antigen-specific, inhibitory memory that blocks pathogenic T cell responses via loss of effector T cells and gain of regulatory T cell function. Substantial advances have been realized in the generation of tolerogenic vaccines that inhibit experimental autoimmune encephalomyelitis in a preclinical setting, and these vaccines may be a prequel of the tolerogenic vaccines that may have therapeutic benefit in Multiple Sclerosis. The purpose here is to provide a snapshot of the current concepts and future prospects of tolerogenic vaccination for Multiple Sclerosis, along with the central challenges to clinical application.

  9. Prospects for new plague vaccines.

    PubMed

    Feodorova, Valentina A; Corbel, Michael J

    2009-12-01

    The potential application of Yersinia pestis for bioterrorism emphasizes the urgent need to develop more effective vaccines against airborne infection. The current status of plague vaccines has been reviewed. The present emphasis is on subunit vaccines based on the F1 and LcrV antigens. These provide good protection in animal models but may not protect against F1 strains with modifications to the type III secretion system. The duration of protection against pneumonic infection is also uncertain. Other strategies under investigation include defined live-attenuated vaccines, DNA vaccines, mucosal delivery systems and heterologous immunization. The live-attenuated strain Y. pestis EV NIIEG protects against aerosol challenge in animal models and, with further modification to reduce residual virulence and to optimize respiratory protection, it could provide a shortcut to improved vaccines. The regulatory problems inherent in licensing vaccines for which efficacy data are unavailable and their possible solutions are discussed herein.

  10. Veterinary and human vaccine evaluation methods.

    PubMed

    Knight-Jones, T J D; Edmond, K; Gubbins, S; Paton, D J

    2014-06-07

    Despite the universal importance of vaccines, approaches to human and veterinary vaccine evaluation differ markedly. For human vaccines, vaccine efficacy is the proportion of vaccinated individuals protected by the vaccine against a defined outcome under ideal conditions, whereas for veterinary vaccines the term is used for a range of measures of vaccine protection. The evaluation of vaccine effectiveness, vaccine protection assessed under routine programme conditions, is largely limited to human vaccines. Challenge studies under controlled conditions and sero-conversion studies are widely used when evaluating veterinary vaccines, whereas human vaccines are generally evaluated in terms of protection against natural challenge assessed in trials or post-marketing observational studies. Although challenge studies provide a standardized platform on which to compare different vaccines, they do not capture the variation that occurs under field conditions. Field studies of vaccine effectiveness are needed to assess the performance of a vaccination programme. However, if vaccination is performed without central co-ordination, as is often the case for veterinary vaccines, evaluation will be limited. This paper reviews approaches to veterinary vaccine evaluation in comparison to evaluation methods used for human vaccines. Foot-and-mouth disease has been used to illustrate the veterinary approach. Recommendations are made for standardization of terminology and for rigorous evaluation of veterinary vaccines.

  11. Veterinary and human vaccine evaluation methods

    PubMed Central

    Knight-Jones, T. J. D.; Edmond, K.; Gubbins, S.; Paton, D. J.

    2014-01-01

    Despite the universal importance of vaccines, approaches to human and veterinary vaccine evaluation differ markedly. For human vaccines, vaccine efficacy is the proportion of vaccinated individuals protected by the vaccine against a defined outcome under ideal conditions, whereas for veterinary vaccines the term is used for a range of measures of vaccine protection. The evaluation of vaccine effectiveness, vaccine protection assessed under routine programme conditions, is largely limited to human vaccines. Challenge studies under controlled conditions and sero-conversion studies are widely used when evaluating veterinary vaccines, whereas human vaccines are generally evaluated in terms of protection against natural challenge assessed in trials or post-marketing observational studies. Although challenge studies provide a standardized platform on which to compare different vaccines, they do not capture the variation that occurs under field conditions. Field studies of vaccine effectiveness are needed to assess the performance of a vaccination programme. However, if vaccination is performed without central co-ordination, as is often the case for veterinary vaccines, evaluation will be limited. This paper reviews approaches to veterinary vaccine evaluation in comparison to evaluation methods used for human vaccines. Foot-and-mouth disease has been used to illustrate the veterinary approach. Recommendations are made for standardization of terminology and for rigorous evaluation of veterinary vaccines. PMID:24741009

  12. Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice.

    PubMed

    Cabrera, Alex; Sáez, Darwin; Céspedes, Sandra; Andrews, Edilia; Oñate, Angel

    2009-01-01

    Recombinant replicons of Semliki Forest virus (SFV) can be used to induce high-level, transient expression of heterologous proteins in vivo. We constructed infectious but replication-deficient SFV particles carrying recombinant RNA encoding the Brucella abortus translation initiation factor 3 (IF3). The recombinant SFV particles (SFV-IF3 particles) were then evaluated for their ability to induce immune responses and to protect BALB/c mice against a challenge with B. abortus 2308 following vaccination. Animals inoculated with SFV-IF3 developed IF3-specific IgM antibodies at day 14 post-immunization. In vitro stimulation of splenocytes from vaccinated mice with either recombinant IF3 (rIF3) or crude Brucella protein extracts resulted in a T-cell proliferative response and induction of interferon gamma secretion, but not interleukin-4. In addition, mice immunized with SFV-IF3 exhibited a significant level of resistance against challenge with the virulent B. abortus strain 2308 (P<0.01). These findings indicate that an SFV-based vector carrying RNA encoding Brucella IF3 has potential for use as a vaccine to induce protection against B. abortus infections.

  13. The National Childhood Vaccine Injury Act. The National Vaccine Injury Compensation Program.

    ERIC Educational Resources Information Center

    Clark, Susan G.

    1995-01-01

    Reviews the National Childhood Vaccine Injury Act and the National Vaccine Injury Compensation Program to specifically address the injuries sustained through vaccination. The compensation program allows special education for children permanently injured by vaccines. Analyzes selected cases. (57 footnotes) (MLF)

  14. Vaccine development. On relating immunology to the Third World: some studies on leprosy

    PubMed Central

    Bloom, B. R.; Salgame, P.; Mehra, V.; Kato, H.; Modlin, R.; Rea, T.; Brennan, P.; Convit, J.; Lugozi, L.; Snapper, S.; Jacobs, W.

    1989-01-01

    Leprosy is of interest to immunologists because the varied clinical manifestations of the disease correlate closely with the immunological spectrum. Resistance to infection is dependent on appropriate cell-mediated immunity, but patients with the lepromatous form fail to respond to antigens of M. leprae. In vitro studies have revealed the existence of T-suppressor cells of the phenotype CD8+, CD3+, HLA-DR+, FcR+, 9.3-, which are restricted by major histocompatibility complex (MHC) class II antigens. Several new candidate vaccines against leprosy have been effective in breaking immunological unresponsiveness and engendering cell-mediated immunity in lepromatous leprosy patients, including the combination of BCG + killed M. leprae. Because BCG has unique adjuvant properties, we have begun to use molecular genetic approaches to develop BCG into a multivaccine vehicle capable of immunizing simultaneously against several pathogens. Both phage-based and plasmid-based strategies have been successfully developed for introducing selectable markers into BCG for the first time. ImagesFigure 1

  15. Immunology of BVDV vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of vaccination to control bovine viral diarrhea virus (BVDV) infections presents exceptional challenges due to the nature of the virus, the unique interaction of the virus with the immune system, and its ability to establish persistent infections. The lack of proof reading function during th...

  16. Alphavirus-Based Vaccines

    PubMed Central

    Lundstrom, Kenneth

    2014-01-01

    Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans. PMID:24937089

  17. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  18. [Human papillomavirus prophylactic vaccine].

    PubMed

    Kawana, Kei

    2012-06-01

    Human papillomavirus causes viral-dependent cancers, including cervical, anal, vulvar, penile, vaginal, and oropharyngeal, and condyloma acuminata. In the last decade, HPV prophylactic vaccine has been developed and spread worldwide after many large-scale clinical studies. These studies demonstrate significant clinical efficacy for prevention of HPV16/18/6/11-related diseases. In particular, prevention of cervical cancer should be the most important role in the world. In Japan, incidence of cervical cancer does not increase, but the peak of age of the patients at 2005 is 25-45 years old and became 20 years younger than that at 1985. The current two HPV vaccines can prevent the infection of HPV16/18 among high-risk HPVs and will provide a significant impact especially on young-age onset cervical cancer. Furthermore, quadrivalent HPV vaccine, Gardasil, has shown population impact that is decrease of patients with condyloma acuminate in several countries. The clinical efficacy seems to be convincing. Here HPV vaccine will be reviewed based on the literatures.

  19. Sex and Vaccination

    ERIC Educational Resources Information Center

    Zavrel, Erik; Herreid, Clyde Freeman

    2008-01-01

    This case study is centered upon the recent debate concerning the decision by Texas Governor Rick Perry to mandate the compulsory vaccination of girls in the Texas public school system against the human papillomavirus (HPV) prior to entering the sixth grade. The interrupted case method is particularly appropriate for this subject with the case…

  20. Alphavirus-based vaccines.

    PubMed

    Lundstrom, Kenneth

    2014-06-16

    Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.

  1. Vaccination against human papillomavirus

    PubMed Central

    Mello, Claudia Figueiredo

    2013-01-01

    ABSTRACT Human papillomavirus infection is common and causes different manifestations. This infection is a public health concern because it has been associated with genital tract malignant diseases among men and women. Currently two vaccines are available to prevent the human papillomavirus infection and its associated diseases. PMID:24488402

  2. Tetanus, Diphtheria (Td) Vaccine

    MedlinePlus

    Decavac® (as a combination product containing Diphtheria, Tetanus Toxoids) ... Tenivac® (as a combination product containing Diphtheria, Tetanus Toxoids) ... Why get vaccinated?Tetanus and diphtheria are very serious diseases. They are rare in the United States today, but people who do become ...

  3. Developments in rabies vaccines.

    PubMed

    Hicks, D J; Fooks, A R; Johnson, N

    2012-09-01

    The development of vaccines that prevent rabies has a long and distinguished history, with the earliest preceding modern understanding of viruses and the mechanisms of immune protection against disease. The correct application of inactivated tissue culture-derived vaccines is highly effective at preventing the development of rabies, and very few failures are recorded. Furthermore, oral and parenteral vaccination is possible for wildlife, companion animals and livestock, again using inactivated tissue culture-derived virus. However, rabies remains endemic in many regions of the world and causes thousands of human deaths annually. There also remain no means of prophylaxis for rabies once the virus enters the central nervous system (CNS). One reason for this is the poor immune response within the CNS to infection with rabies virus (RABV). New approaches to vaccination using modified rabies viruses that express components of the innate immune system are being applied to this problem. Preliminary reports suggest that direct inoculation of such viruses could trigger an effective anti-viral response and prevent a fatal outcome from RABV infection.

  4. Microneedle-based vaccines

    PubMed Central

    Prausnitz, Mark R.; Mikszta, John A.; Cormier, Michel; Andrianov, Alexander K.

    2010-01-01

    The threat of pandemic influenza and other public health needs motivates development of better vaccine delivery systems. To address this need, microneedles have been developed as micron-scale needles fabricated using low-cost manufacturing methods that administer vaccine into the skin using a simple device that may be suitable for self-administration. Delivery using solid or hollow microneedles can be accomplished by (i) piercing the skin and then applying a vaccine formulation or patch onto the permeabilized skin, (ii) coating or encapsulating vaccine onto or within microneedles for rapid, or delayed, dissolution and release in the skin and (iii) injection into the skin using a modified syringe or pump. Extensive clinical experience with smallpox, TB and other vaccines has shown that vaccine delivery into the skin using conventional intradermal injection is generally safe and effective and often elicits the same immune responses at lower doses compared to intramuscular injection. Animal experiments using microneedles have shown similar benefits. Microneedles have been used to deliver whole, inactivated virus; trivalent split antigen vaccines; and DNA plasmid encoding the influenza hemagglutinin to rodents and found strong antibody responses. In addition, ChimeriVax™-JE against yellow fever was administered to non-human primates and generated protective levels of neutralizing antibodies more than seven times greater than subcutaneous delivery; DNA plasmid encoding hepatitis B surface antigen was administered to mice and generated antibody and T cell responses at least as strong as hypodermic injections; recombinant Protective Antigen of Baccilus anthracis was administered to rabbits and provided complete protection from lethal aerosol anthrax spore challenge at a lower dose than intramuscular injection; and DNA plasmid encoding four vaccinia virus genes administered to mice in combination with electroporation generated neutralizing antibodies that apparently

  5. [Influenza vaccination. Effectiveness of current vaccines and future challenges].

    PubMed

    Ortiz de Lejarazu, Raúl; Tamames, Sonia

    2015-01-01

    Seasonal influenza is an annual challenge for health-care systems, due to factors such as co-circulation of 2 influenza A subtypes jointly with 2 influenza B lineages; the antigenic drift of these virus, which eludes natural immunity, as well as immunity conferred by vaccination; together with influenza impact in terms of morbidity and mortality. Influenza vaccines have been available for more than 70 years and they have progressed in formulation, production and delivery route. Recommendations on vaccination are focused on those with a higher probability of severe disease, and have a progressively wider coverage, and classically based on inactivated vaccines, but with an increasing importance of attenuated live vaccines. More inactivated vaccines are becoming available, from adyuvanted and virosomal vaccines to intradermal delivery, cell-culture or quadrivalent. Overall vaccine effectiveness is about 65%, but varies depending on characteristics of vaccines, virus, population and the outcomes to be prevented, and ranges from less than 10% to almost 90%. Future challenges are formulations that confer more extensive and lasting protection, as well as increased vaccination coverage, especially in groups such as pregnant women and health-care professionals, as well as being extended to paediatrics.

  6. Does intention to recommend HPV vaccines impact HPV vaccination rates?

    PubMed

    Feemster, Kristen A; Middleton, Maria; Fiks, Alexander G; Winters, Sarah; Kinsman, Sara B; Kahn, Jessica A

    2014-01-01

    Despite recommendations for routine vaccination, HPV vaccination rates among adolescent females have remained low. The objective of this prospective cohort study was to determine whether clinician intention to recommend HPV vaccines predicts HPV vaccine series initiation among previously unvaccinated 11 to 18 year-old girls (N=18,083) who were seen by a pediatric clinician (N=105) from a large primary care network within 3 years of vaccine introduction. We used multivariable logistic regression with generalized estimating equations, Cox Regression and standardized survival curves to measure the association between clinician intention and time to and rate of first HPV vaccine receipt among eligible females. All models adjusted for patient age, race/ethnicity, payor category, visit type, and practice location. Eighty-5 percent of eligible 11 to 12 year-old and 95% of 13 to 18 year-old girls were seen by a provider reporting high intention to recommend HPV vaccines. However, only 30% of the cohort initiated the HPV vaccine series and the mean number of days from first eligible visit to series initiation was 190 (95% C.I. 184.2, 195.4). After adjusting for covariates, high clinician intention was modestly associated with girls' likelihood of HPV vaccine series initiation (OR 1.36; 95 % C.I. 1.07, 1.71) and time to first HPV vaccination (HR 1.22; 95% 1.06, 1.40). Despite high intention to vaccinate among this cohort of pediatric clinicians, overall vaccination rates for adolescent girls remained low. These findings support ongoing efforts to develop effective strategies to translate clinician intention into timely HPV vaccine receipt.

  7. A public-professional web-bridge for vaccines and vaccination: user concerns about vaccine safety.

    PubMed

    García-Basteiro, Alberto L; Alvarez-Pasquín, María-José; Mena, Guillermo; Llupià, Anna; Aldea, Marta; Sequera, Victor-Guillermo; Sanz, Sergi; Tuells, Jose; Navarro-Alonso, José-Antonio; de Arísteguí, Javier; Bayas, José-María

    2012-05-28

    Vacunas.org (http://www.vacunas.org), a website founded by the Spanish Association of Vaccinology offers a personalized service called Ask the Expert, which answers any questions posed by the public or health professionals about vaccines and vaccination. The aim of this study was to analyze the factors associated with questions on vaccination safety and determine the characteristics of questioners and the type of question asked during the period 2008-2010. A total of 1341 questions were finally included in the analysis. Of those, 30% were related to vaccine safety. Questions about pregnant women had 5.01 higher odds of asking about safety (95% CI 2.82-8.93) than people not belonging to any risk group. Older questioners (>50 years) were less likely to ask about vaccine safety compared to younger questioners (OR: 0.44, 95% CI 0.25-0.76). Questions made after vaccination or related to influenza (including H1N1) or travel vaccines were also associated with a higher likelihood of asking about vaccine safety. These results identify risk groups (pregnant women), population groups (older people) and some vaccines (travel and influenza vaccines, including H1N1) where greater efforts to provide improved, more-tailored vaccine information in general and on the Internet are required.

  8. HIV vaccine update. DNA vaccination: a promising candidate for a vaccine against HIV-1?

    PubMed

    Van Der Ryst, E

    1996-01-01

    According to animal studies, DNA vaccines employ the genes encoding proteins of pathogens or tumors, in contrast to the more conventional vaccine approaches. In addition, DNA vaccinations do not involve infectious agents, proteins are expressed in their natural form resulting to better recognition of viral proteins by the antibodies, and both strong and durable cellular immune responses as well as neutralizing antibodies are induced. Altogether, this makes DNA vaccinations one of the most promising future candidates in the field of HIV vaccines. However, safety of DNA vaccines should be examined before these vaccines can be considered for large-scale clinical trials in humans. The question of a possible induction of anti-DNA antibodies, with the consequent development of autoimmune manifestations is emphasized. Another is the possible integration of DNA with insertional mutagenesis, which could lead to tumor formation and development of immunologic tolerance of antigen production persists.

  9. 9 CFR 113.327 - Bronchitis Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bronchitis Vaccine. 113.327 Section... Virus Vaccines § 113.327 Bronchitis Vaccine. Bronchitis Vaccine shall be prepared from virus-bearing... section shall be used for preparing the production seed virus for vaccine production. All serials shall...

  10. 9 CFR 113.327 - Bronchitis Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bronchitis Vaccine. 113.327 Section... Virus Vaccines § 113.327 Bronchitis Vaccine. Bronchitis Vaccine shall be prepared from virus-bearing... section shall be used for preparing the production seed virus for vaccine production. All serials shall...

  11. 9 CFR 113.332 - Tenosynovitis Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Tenosynovitis Vaccine. 113.332 Section... Virus Vaccines § 113.332 Tenosynovitis Vaccine. Tenosynovitis Vaccine shall be prepared from virus... pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All serials...

  12. 9 CFR 113.327 - Bronchitis Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bronchitis Vaccine. 113.327 Section... Virus Vaccines § 113.327 Bronchitis Vaccine. Bronchitis Vaccine shall be prepared from virus-bearing... section shall be used for preparing the production seed virus for vaccine production. All serials shall...

  13. 9 CFR 113.327 - Bronchitis Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bronchitis Vaccine. 113.327 Section... Virus Vaccines § 113.327 Bronchitis Vaccine. Bronchitis Vaccine shall be prepared from virus-bearing... section shall be used for preparing the production seed virus for vaccine production. All serials shall...

  14. 9 CFR 113.327 - Bronchitis Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bronchitis Vaccine. 113.327 Section... Virus Vaccines § 113.327 Bronchitis Vaccine. Bronchitis Vaccine shall be prepared from virus-bearing... section shall be used for preparing the production seed virus for vaccine production. All serials shall...

  15. 9 CFR 113.332 - Tenosynovitis Vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Tenosynovitis Vaccine. 113.332 Section... Virus Vaccines § 113.332 Tenosynovitis Vaccine. Tenosynovitis Vaccine shall be prepared from virus... pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All serials...

  16. 9 CFR 113.332 - Tenosynovitis Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Tenosynovitis Vaccine. 113.332 Section... Virus Vaccines § 113.332 Tenosynovitis Vaccine. Tenosynovitis Vaccine shall be prepared from virus... pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All serials...

  17. 9 CFR 113.332 - Tenosynovitis Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Tenosynovitis Vaccine. 113.332 Section... Virus Vaccines § 113.332 Tenosynovitis Vaccine. Tenosynovitis Vaccine shall be prepared from virus... pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All serials...

  18. 9 CFR 113.332 - Tenosynovitis Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Tenosynovitis Vaccine. 113.332 Section... Virus Vaccines § 113.332 Tenosynovitis Vaccine. Tenosynovitis Vaccine shall be prepared from virus... pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All serials...

  19. 42 CFR 70.9 - Vaccination clinics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vaccination clinics. 70.9 Section 70.9 Public... INTERSTATE QUARANTINE § 70.9 Vaccination clinics. (a) The Director may establish vaccination clinics, through contract or otherwise, authorized to administer vaccines and/or other prophylaxis. (b) A vaccination...

  20. 42 CFR 70.9 - Vaccination clinics.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vaccination clinics. 70.9 Section 70.9 Public... INTERSTATE QUARANTINE § 70.9 Vaccination clinics. (a) The Director may establish vaccination clinics, through contract or otherwise, authorized to administer vaccines and/or other prophylaxis. (b) A vaccination...