Science.gov

Sample records for repopulate irradiated marrow

  1. Stromal cell migration precedes hemopoietic repopulation of the bone marrow after irradiation

    SciTech Connect

    Werts, E.D.; Gibson, D.P.; Knapp, S.A.; DeGowin, R.L.

    1980-01-01

    Circulation of hemopoietic stem cells into an irradiated site has been thoroughly documented, but migration of stromal cells to repair radiation damage has not. We determined the radiosensitivity of mouse bone marrow stroma and evaluated stromal and hemopoietic repopulation in x-irradiated marrow. The D/sub 0/ for growth of colonies of marrow stromal cells (MSC) was 215 to 230 rad. Total-body irradiation (TB) obliterated marrow stromal and hemopoietic cells within 3 days. In contrast, 1 day after 1000 rad leg irradiation (LI), MSC rose to 80% of normal, but fell to 34% by 3 days and recovered to 72% by 30 days. However, femoral nucleated cells diminished to 20% by 3 days and recovered to 74% of normal by 30 days. Likewise, differentiated marrow cells and hemopoietic stem cells were initially depleted. With 1000 rad LI followed 3 h later by 1000 rad to the body while shielding the leg, MSC and femoral nucleated cells recovered to values intermediate between 1000 rad TB and 1000 rad LI. We concluded that: (1) the D/sub 0/ for MSC was 215 to 230 rad, (2) stromal repopulation preceded hemopoietic recovery, and (3) immigration of stromal cells from an unirradiated sanctuary facilitated hemopoietic repopulation of a heavily irradiated site.

  2. Evaluation of stem cell reserve using serial bone marrow transplantation and competitive repopulation in a murine model of chronic hemolytic anemia

    SciTech Connect

    Maggio-Price, L.; Wolf, N.S.; Priestley, G.V.; Pietrzyk, M.E.; Bernstein, S.E.

    1988-09-01

    Serial transplantation and competitive repopulation were used to evaluate any loss of self-replicative capacity of bone marrow stem cells in a mouse model with increased and persistent hemopoietic demands. Congenic marrows from old control and from young and old mice with hereditary spherocytic anemia (sphha/sphha) were serially transplanted at 35-day intervals into normal irradiated recipients. Old anemic marrow failed or reverted to recipient karyotype at a mean of 3.5 transplants, and young anemic marrow reverted at a mean of 4.0 transplants, whereas controls did so at a mean of 5.0 transplants. In a competitive assay in which a mixture of anemic and control marrow was transplanted, the anemic marrow persisted to 10 months following transplantation; anemic marrow repopulation was greater if anemic marrow sex matched with the host. It is possible that lifelong stress of severe anemia decreases stem cell reserve in the anemic sphha/sphha mouse marrow. However, marginal differences in serial transplantation number and the maintenance of anemic marrow in a competition assay would suggest that marrow stem cells, under prolonged stress, are capable of exhibiting good repopulating and self-replicating abilities.

  3. Skin graft rejection in mice repopulated with marrow of the skin donor type: a Skn gene in a congenic line

    SciTech Connect

    Harrison, D.E.; Mobraaten, L.E.

    1984-01-01

    Genetically anemic W/Wv mice and lethally irradiated wild-type mice were cured and populated by grafted marrow cells from donor mice of three congenic lines that differed at non-H-2 histocompatibility loci. Tail skin from mice of the same congenic lines was grafted 3-4 weeks later. In two cases, the recipients behaved as expected, no longer rejecting skin syngeneic with the marrow graft that had repopulated them. However, B6-H-24c skin was rejected by WBB6F1-W/Wv mice that were cured with B6-H-24c marrow showing a mean survival time of 9.9 weeks. It was rejected somewhat faster, with a mean survival time of 5.9 weeks, by W/Wv mice cured with marrow from other types of donors. Results were more variable in lethally irradiated WBB6F1-+/+ recipients of B6-H-24c marrow, but they also rejected B6-H-24c skin. Both types of recipients remained chimeras after the skin was rejected, showing more than 90% of the B6-H-24c hemoglobin type. This is the first report of a Skn gene in a congenic line.

  4. Fetal myocardium in the kidney capsule: an in vivo model of repopulation of myocytes by bone marrow cells.

    PubMed

    Zhang, Eric Y; Xiong, Qiang; Ye, Lei; Suntharalingam, Piradeep; Wang, Xiaohong; Astle, C Michael; Zhang, Jianyi; Harrison, David E

    2012-01-01

    Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model--a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP)-expressing C57Bl/6J (B6) donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue). Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors.

  5. Use of spleen organ cultures to monitor hemopoietic progenitor cell regeneration following irradiation and marrow transplantation

    SciTech Connect

    von Melchner, H.; Metcalf, D.; Mandel, T.E.

    1980-11-01

    After lethal irradiation of C57BL mice followed by the injection of 10/sup 7/ marrow cells, total cellularity and progenitor cell levels exceeded pretreatment levels within 12 days in the spleen, but regeneration remained incomplete in the marrow. The exceptional regenerative capacity of progenitor populations in the spleen was observed in organ cultures of spleen slices prepared 24 h after irradiation and transplantation, excluding continuous repopulation from the marrow as a significant factor in splenic regeneration.

  6. Skin allografts in lethally irradiated animals repopulated with syngeneic hemopoietic cells

    SciTech Connect

    Schwadron, R.B.

    1983-01-01

    Total body irradiation and repopulation with syngeneic hemopoietic cells can be used to induce tolerance to major histocompatibility complex (MHC) mismatched heart and kidney grafts in rats and mice. However, this protocol does not work for MHC mismatched skin grafts in rats or mice. Furthermore, LEW rats that accept WF cardiac allografts after irradiation and repopulation reject subsequent WF skin grafts. Treatment of skin allograft donors with methotrexate prior to grafting onto irradiated and reconstituted mice resulted in doubling of the mean survival time. Analysis of which antigens provoked skin graft rejection by irradiation and reconstituted animals revealed the importance of I region antigens. Cardiac allograft acceptance by irradiated and reconstituted animals is mediated by suppressor cells found in the spleen. Adoptively tolerant LEW rats accepted WF skin grafts in 50% of grafted animals. Analysis of this phenomenon revealed that the adoptive transfer procedure itself was important in achieving skin allograft acceptance by these animals. In general, it seems that the lack of ability of irradiated and reconstituted animals to accept fully MHC disparate skin grafts results from the inability of these animals to suppress lymph node effector cells against I region antigen seen on highly immunogenic allogeneic Langerhans cells in the skin.

  7. Influence of nandrolone decanoate on the repopulation of the thymus after total body irradiation of mice

    SciTech Connect

    Plum, J.; Huys, J.; De Scheerder, Y.; Dhont, E.; De Smedt, M.

    1982-10-01

    It has been reported that nandrolone decanoate is helpful in overcoming the neutropenic phase following irradiation. In the present study the influence of nandrolone decanoate on the thymus' cellularity after total body irradiation was investigated. In comparison with a placebo-treated group, mice receiving nandrolone decanoate showed a similar pattern of thymus repopulation, but a significantly lower number of thymocytes over the whole period of treatment was found. Nonirradiated mice also had a significantly lower number of thymocytes when treated with nandrolone decanoate. In addition, the number of circulating leukocytes was also evaluated over a period of 1 month after total body irradiation. On 11 of the 21 days investigated, a significantly higher number of leukocytes was found in the nandrolone decanoate-treated group. We conclude that the action of nandrolone decanoate was not clearly distinct from that of testosterone regarding either granulopoiesis or thymic involution.

  8. Reduction and repopulation of recipient T4+ and T8+ T-lymphocytes in allogeneic bone marrow transplantation

    SciTech Connect

    Gratama, J.W.; van den Bergh, R.L.; Naipal, A.; D'Amaro, J.; Zwaan, F.E.; Jansen, J.; de Gast, G.C.

    1986-02-01

    In eight recipients of allogeneic bone marrow grafts who had sex-mismatched donors, the reduction and subsequent repopulation of T4+ and T8+ T-lymphocytes of recipient origin were studied. The origin of the donor-recipient T4+ and T8+ T cells was studied using quinacrine staining of Y chromatin combined with T-cell typing for T4 and T8. Following chemoradiotherapy and bone marrow transplantation (BMT), T cells reached their nadir at a median of five (range 1-8) days after BMT. T8+ T cells decreased at a faster rate from the peripheral blood than T4+ T cells. The first T cells that appeared in the circulation at day 12 were predominantly T4+, and a large number of them were of recipient origin. Thereafter, they gradually decreased, and the numbers of T cells of donor origin increased. In the patients who had no or only minor complications, T4+ and T8+ T cells of donor origin repopulated the blood at similar rates. This pattern, however, was modified by severe graft-versus-host disease or by cytomegalovirus infection.

  9. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10. D2----B10)

    SciTech Connect

    Ildstad, S.T.; Wren, S.M.; Bluestone, J.A.; Barbieri, S.A.; Stephany, D.; Sachs, D.H.

    1986-01-01

    Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. Experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it.

  10. The repopulation of lymph nodes of dogs after 1200 R whole-body x-irradiation and intravenous administration of mononuclear blood leukocytes.

    PubMed Central

    Nelson, B.; Calvo, W.; Fliedner, T. M.; Herbst, E.; Bruch, C.; Schnappauf, H. P.; Flad, H. D.

    1976-01-01

    Fresh and cryopreserved autologous or allogeneic mononuclear blood cells (MBCs) intravenously injected in 1200 R total-body x-irradiated dogs repopulated lymph nodes within 10 days after tranfusion. Several parameters of the lymphopoietic regeneration were correlated with the number of cells transfused and with the number of colony-forming units contained in the cell suspension when they were cultured in agar (CFUc). Values within the normal or close to normal range were reached in the mesenteric nodes of most of the animals transfused with 10 X 10(9) MBC or more. These values were obtained when 5 X 10(5) CFUc or more were transfused. Axillary nodes showed lower values than mesenteric nodes. They were mostly under the normal range but well over those of the irradiated controls. Frozen and thawed MBCs seem to be as effective as fresh cells for lymphopoietic restoration. The mesenteric nodes of dogs transfused with allogeneic MBCs showed higher cellularity and larger cortical-paracortical areas than those of dogs tranfused with approximately the same number of autologous cells. The repopulation of lymph nodes parallels that of the marrow. Images Figure 3 Text-Figure 2 Figure 4 Figure 1 Figure 2 PMID:941979

  11. Bone marrow stem cells do not repopulate the healthy upper respiratory tract.

    PubMed

    Davies, Jane C; Potter, Mike; Bush, Andrew; Rosenthal, Mark; Geddes, Duncan M; Alton, Eric W F W

    2002-10-01

    Recent studies reported differentiation of both bone marrow and tissue-specific stem cells into cells of other organs. The demonstration that bone marrow stem cells differentiate into human hepatocytes in vivo has raised the possibility of new therapeutic approaches for liver disease. For diseases such as cystic fibrosis (CF), correction of the respiratory epithelium is being attempted by gene therapy. Differentiation of bone marrow stem cells into epithelium of the lung and airway was recently reported in an animal model, and would provide an alternative approach. We examined the nasal epithelium of female patients up to 15 years after gender-mismatched bone marrow transplantation. Donor-derived epithelial cells were sought with a combination of Y-chromosome fluorescence in situ hybridization and anti-cytokeratin antibody. In nasal brushing samples from 6 transplant-recipients, a median of 2.5% (range, 0.7-18.1%) of nuclei was male and identified as being of donor-origin. However, a complete absence of staining with anti-cytokeratin antibodies confirmed that these were not epithelial cells, but were likely to be either intraepithelial lymphocytes or mesenchymal cells. Following whole bone marrow transplantation, bone marrow progenitor cells do not differentiate into respiratory epithelium of the healthy upper airway. The differences between this and other studies could relate to the cells transplanted, to differential rates of turnover, or to the requirement for specific triggers to stimulate migration and differentiation. In the absence of such conditions, whole bone marrow transplantation is unlikely to provide a route for correction of the CF airway. PMID:12205565

  12. Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of Human Lung Cancer Cell Lines

    SciTech Connect

    Sak, Ali; Stuschke, Martin; Groneberg, Michael; Kuebler, Dennis; Poettgen, Christoph; Eberhardt, Wilfried E.E.

    2012-10-01

    Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of the plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation during

  13. Repopulation of the seminiferous epithelium of the rhesus monkey after X irradiation

    SciTech Connect

    van Alphen, M.M.; van de Kant, H.J.; de Rooij, D.G.

    1988-03-01

    Repopulation of the seminiferous epithelium became evident from Day 75 postirradiation onward after doses of 0.5, 1.0, and 2.0 Gy of X rays. Cell counts in cross sections of seminiferous tubules revealed that during this repopulation the numbers of Apale (Ap) spermatogonia, Adark (Ad) spermatogonia, and B spermatogonia increased simultaneously. After 0.5 Gy the number of spermatogonia increased from approximately 10% of the control level at Day 44 to 90% at Day 200. After 1.0 and 2.0 Gy the numbers of spermatogonia increased from less than 5% at Day 44 to 70% at Days 200 and 370. The number of Ad and B spermatogonia, which are considered to be resting and differentiating spermatogonia, respectively, already had increased when the number of proliferating Ap spermatogonia was still very low. This early inactivation and differentiation of a large part of the population of Ap spermatogonia slows down repopulation of the seminiferous epithelium of the primates. By studying repopulating colonies in whole mounts of seminiferous tubules various types of colonies were found. In colonies consisting of only A spermatogonia, 40% of the A spermatogonia were found to be of the Ad type, which indicates that even before the colony had differentiated, 40% of the A spermatogonia were inactivated into Ad. Differentiating colonies were also found in which one or two generations of germ cells were missing. In some of those colonies it was found that the Ap spermatogonia did not form any B spermatogonia during one or two cycles of the seminiferous epithelium, while in other colonies all Ap spermatogonia present had differentiated into B spermatogonia. This indicates that the differentiation of Ap into B spermatogonia is a stochastic process.

  14. Induction of tolerance to cardiac allografts in lethally irradiated rats reconstituted with syngeneic bone marrow

    SciTech Connect

    Hartnett, L.C.

    1983-01-01

    Generally, organ grafts from one individual animal to another are rejected in one-two weeks. However, if the recipients are given Total Body Irradiation (TBI) just prior to grafting, followed by reconstitution of hemopoietic function with syngeneic (recipient-type) bone marrow cells, then vascularized organ grafts are permanently accepted. Initially after irradiation, it is possible to induce tolerance to many strain combinations in rats. This thesis examines the system of TBI as applied to the induction of tolerance in LEW recipients of WF cardiac allografts. These two rat strains are mismatched across the entire major histocompatibility complex. When the LEW recipient are given 860 rads, a WF cardiac allograft and LEW bone marrow on the same day, 60% of the grafts are accepted. Methods employed to improve the rate of graft acceptance include: treating either donor or recipient with small amounts of methotrexate, or waiting until two days after irradiation to repopulate with bone marrow. It seems from these investigations of some of the early events in the induction of tolerance to allografts following TBI and syngeneic marrow reconstitution that an immature cell population in the bone marrow interacts with a radioresistant cell population in the spleen to produce tolerance to completely MHC-mismatched allografts.

  15. Expression of T cell antigen receptor genes in the thymus of irradiated mice after bone marrow transplantation

    SciTech Connect

    Matsuzaki, G.; Yoshikai, Y.; Kishihara, K.; Nomoto, K.

    1988-01-15

    Sequential appearance of the expression of T cell antigen receptor genes was investigated in the thymus of irradiated mice at the early stage after transplantation of Thy-1 congeneic H-2 compatible allogeneic bone marrow cells. The first cells to repopulate the thymus on day 7 after bone marrow transplantation were intrathymic radioresistant T cell precursors, which expanded mainly to CD4+CD8+ host-type thymocytes by day 14. A high level of gamma gene expression but a much reduced level of alpha and beta gene expression were detected in the host-type thymocytes on day 7. During regeneration of these cells, gamma-chain messages fell to low level and alpha and beta mRNA levels increased. The thymus of the recipients began to be repopulated by donor-derived T cells about 2 wk after bone marrow transplantation and was almost completely replaced by the third week. An ordered expression of gamma then beta and alpha-chain gene transcript was also observed in the donor-type thymocytes at the early stage after bone marrow transplantation. The use of thymocytes at early stage in whole-body irradiated bone marrow chimera provides a pertinent source for investigating the molecular mechanism of T cell differentiation in adult thymus.

  16. Whole bone marrow irradiation for the treatment of multiple myeloma

    SciTech Connect

    Coleman, M.; Saletan, S.; Wolf, D.; Nisce, L.; Wasser, J.; McIntyre, O.R.; Tulloh, M.

    1982-04-01

    Nine patients with multiple myeloma were treated with whole bone marrow irradiation. Six had heavily pretreated disease refractory to chemotherapy. Three had stable disease lightly pretreated by chemotherapy. A modification of the ''three and two'' total nodal radiation technique was employed. Although varying and often severe treatment related cytopenia occurred, infectious complications, clinical bleeding, and nonhematalogic complications were minimal. Five of nine patients showed a decrease in monoclonal protein components, and one showed an increase during treatment. These preliminary results indicate that a reduction of tumor cell burden may occur in patients following whole bone marrow irradiation and that the technique is feasible. Whole bone marrow irradiation combined with chemotherapy represents a new conceptual therapeutic approach for multiple myeloma.

  17. Heterogeneity within the hematopoietic stem cell compartment: evidence for a marrow-seeding stem cell distinct from CFU-s

    SciTech Connect

    Duke-Cohan, J.S.; Davies, A.J.; Wallis, V.J.

    1985-01-01

    Using a chromosome marker within a syngeneic system, we investigated the seeding characteristics of murine hematopoietic stem cells after transplantation to irradiated hosts. The chromosome-marked test cells were allowed to compete with normal marrow cells in repopulating the spleen and marrow of irradiated mice. Although the seeding behavior of normal marrow could be predicted from the number of colony-forming units-spleen (CFU-s) transplanted, the marrow seeding of melphalan-treated marrow was 7-fold greater than expected. Repopulation of marrow by spleen cells was less effective than expected from the CFU-s content, while the reverse was true after repopulation by fetal liver cells. These differences were emphasized after treatment of cell donors with melphalan. The results were due primarily to differences in the lodging properties of the transplanted cells, those seeding in the marrow were less sensitive to melphalan than CFU-s. In some instances marrow-repopulating ability could be separated from peak CFU-s activity on a density gradient, suggesting a marrow-repopulating cell exists that is distinct from CFU-s.

  18. Changes in compartments of hemospoietic and stromal marrow progenitor cells after continuous low dose gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Starostin, V.

    The low dose continuous gamma-irradiation chosen corresponded with that affected the organisms onboard a spacecraft (Mitrikas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice were used at 3 4 months of age. Experimental mice were- irradiated during 10 days to a total dose of 15 mGy (Co60 gamma-sources, mean dose rate of 1.5-2.0 mGy/day). Another group of intact mice served as control. Younger and advanced hemopoietic progenitors measured at day 11 (i.e. CFU -S-11) and day 7 (i.e. CFU-S-7), respectively, after transplantation of test donor cells were assayed by the method of Till and McCulloch (1961). Stromal changes were evaluated by estimation of in vitro fibroblastic colony-forming units (CFU -F ) content and by the ability of ectopically grafted (under renal capsule) stroma to regenerate the new bone marrow organ. CFU-S-11 number increased of 40% as compared with control and almost 2-fold higher than that of CFU-S-7. The CFU-F content increased almost of 3-fold. Size of ectopic marrow transplants was estimated at day 70 following grafting by counting myelokariocyte and CFU -S number that repopulated the newly formed bone marrow organ. It was found more than 2-fold increase of myelokariocytes in transplants produced by marrow stroma of irradiated donors. CFU -S contents in transplants increased strikingly in comparison to control level. CFU-S-7 and CFU-S-11 increased of 7.5- and of 3.7-fold, respectively, i.e. the rate of advanced CFU - S predominated. It should be noted a good correlation between number of stromal progenitor cells (CFU-F) and ectopic transplant sizes evaluated as myelokaryocyte counts when irradiated donors used. In the same time, if sizes of transplants was measured as CFU-S-7 and CFU - S-11 numbers, their increases were more pronounced. Therefore, continuous low dose gamma- irradiation augments significantly both hemopoietic and stromal progenitor cell number in bone marrow. Additionally, the ratio of distinct CFU -S subpopulations

  19. The potential of bone marrow stem cells to correct liver dysfunction in a mouse model of Wilson's disease.

    PubMed

    Allen, Katrina J; Cheah, Daphne M Y; Lee, Xiao Ling; Pettigrew-Buck, Nicole E; Vadolas, Jim; Mercer, Julian F B; Ioannou, Panayiotis A; Williamson, Robert

    2004-01-01

    Metabolic liver diseases are excellent targets for correction using novel stem cell, hepatocyte, and gene therapies. In this study, the use of bone marrow stem cell transplantation to correct liver disease in the toxic milk (tx) mouse, a murine model for Wilson's disease, was evaluated. Preconditioning with sublethal irradiation, dietary copper loading, and the influence of cell transplantation sites were assessed. Recipient tx mice were sublethally irradiated (4 Gy) prior to transplantation with bone marrow stem cells harvested from normal congenic (DL) littermates. Of 46 transplanted tx mice, 11 demonstrated genotypic repopulation in the liver. Sublethal irradiation was found to be essential for donor cell engraftment and liver repopulation. Dietary copper loading did not improve cell engraftment and repopulation results. Both intravenously and intrasplenically transplanted cells produced similar repopulation successes. Direct evidence of functionality and disease correction following liver repopulation was observed in the 11 mice where liver copper levels were significantly reduced when compared with mice with no liver repopulation. The reversal of copper loading with bone marrow cells is similar to the level of correction seen when normal congenic liver cells are used. Transplantation of bone marrow cells partially corrects the metabolic phenotype in a mouse model for Wilson's disease.

  20. The peripheral chimerism of bone marrow-derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice.

    PubMed

    Filip, Stanislav; Mokrý, Jaroslav; Vávrová, Jiřina; Sinkorová, Zuzana; Mičuda, Stanislav; Sponer, Pavel; Filipová, Alžběta; Hrebíková, Hana; Dayanithi, Govindan

    2014-05-01

    Bone marrow-derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP(+)) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP(+) lin(-) Sca-1(+) cells into non-haematopoietic tissues. The transplantation of BM cells or GFP(+) lin(-) Sca-1(+) cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP(+) cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP(+) lin(-) Sca-1(+) cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.

  1. Allograft tolerance in pigs after fractionated lymphoid irradiation. I. Skin grafts after partial lateral irradiation and bone marrow cell grafting

    SciTech Connect

    Vaiman, M.; Daburon, F.; Remy, J.; Villiers, P.A.; de Riberolles, C.; Lecompte, Y.; Mahouy, G.; Fradelizi, D.

    1981-05-01

    Experiments with pigs have been performed to establish bone marrow chimerism and skin graft tolerance between SLA genotyped animals. Recipients were conditioned by means of fractionated partial irradiation from lateral cobalt sources (partial lateral irradiation (PLI)). The head, neck, and lungs were protected with lead, the rest of the body being irradiated including the thymus, the majority of lymphoid organs with spleen, and most of the bone marrow sites.

  2. Contrasting feature in the repopulation of host-type T cells in the spleens of F1----P and P----F1 radiation bone marrow chimeras

    SciTech Connect

    Hirokawa, K.; Sado, T.; Kubo, S.; Kamisaku, H.; Utsuyama, M.

    1986-11-01

    The regeneration and persistence of host- and donor-derived T cells were examined in the thymus as well as the spleen of mouse radiation bone marrow chimeras of two semiallogeneic combinations (F1----P, P----F1) with different Thy-1 markers on T cells of donor and host origins. An unexpectedly large number of host-type T cells were recovered from the spleens of F1----P chimeras, amounting to as high as 45 and 25% of total T cells at 6 and 14 weeks after bone marrow transplantation (BMT), respectively. To the contrary, the residual host-type T cells in the spleens of P----F1 chimeras disappeared quickly, resulting in less than 0.1% of total T cells at 6 weeks after BMT. It was also revealed that the number of host-type T cells in the spleens of F1----P chimeras decreased in proportion to increase of radiation dose given to the recipients.

  3. Induction of allogeneic unresponsiveness by supralethal irradiation and bone marrow reconstitution. [Dogs

    SciTech Connect

    Rapaport, F.T.; Bachvaroff, R.J.; Akiyama, N.; Sato, T.

    1980-09-01

    Supralethally irradiated dogs were reconstituted wth their own stored bone marrow and were challenged at various time intervals with a kidney allograft. The data suggest that transplanted bone marrow cells may participate directly in the events leading to allogenic unresponsiveness. The time interval between marrow cell replacement and kidney allotransplantation required for optimal results suggest that at least one cycle of cell turnover by the replaced stem cells is needed in order to produce unresponsiveness. Host irradiation and reconstitution with stored autologous marrow may be useful in the treatment of certain forms of cancer.

  4. Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells.

    PubMed

    Wang, Xiaoli; Zhang, Wei; Tripodi, Joseph; Lu, Min; Xu, Mingjiang; Najfeld, Vesna; Li, Yan; Hoffman, Ronald

    2010-12-23

    Because primary myelofibrosis (PMF) originates at the level of the pluripotent hematopoietic stem cell (HSC), we examined the effects of various therapeutic agents on the in vitro and in vivo behavior of PMF CD34(+) cells. Treatment of PMF CD34(+) cells with chromatin-modifying agents (CMAs) but not hydroxyurea, Janus kinase 2 (JAK2) inhibitors, or low doses of interferon-α led to the generation of greater numbers of CD34(+) chemokine (C-X-C motif) receptor (CXCR)4(+) cells, which were capable of migrating in response to chemokine (C-X-C motif) ligand (CXCL)12 and resulted in a reduction in the proportion of hematopoietic progenitor cells (HPCs) that were JAK2V617F(+). Furthermore, sequential treatment of PMF CD34(+) cells but not normal CD34(+) cells with decitabine (5-aza-2'-deoxycytidine [5azaD]), followed by suberoylanilide hydroxamic acid (SAHA; 5azaD/SAHA), or trichostatin A (5azaD/TSA) resulted in a higher degree of apoptosis. Two to 6 months after the transplantation of CMAs treated JAK2V617F(+) PMF CD34(+) cells into nonobese diabetic/severe combined immunodeficient (SCID)/IL-2Rγ(null) mice, the percentage of JAK2V617F/JAK2(total) in human CD45(+) marrow cells was dramatically reduced. These findings suggest that both PMF HPCs, short-term and long-term SCID repopulating cells (SRCs), are JAK2V617F(+) and that JAK2V617F(+) HPCs and SRCs can be eliminated by sequential treatment with CMAs. Sequential treatment with CMAs, therefore, represents a possible effective means of treating PMF at the level of the malignant SRC.

  5. Total marrow irradiation using Helical TomoTherapy

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, Lourdes Maria

    Clinical dose response data of human tumours are limited or restricted to a radiation dose range determined by the level of toxicity to the normal tissues. This is the case for the most common disseminated plasma cell neoplasm, multiple myeloma, where the maximum dose deliverable to the entire bony skeleton using a standard total body irradiation (TBI) technique is limited to about 12 Gy. This study is part of scientific background of a phase I/II dose escalation clinical trial for multiple myeloma using image-guided intensity modulated radiotherapy (IG-IMRT) to deliver high dose to the entire volume of bone marrow with Helical TomoTherapy (HT). This relatively new technology can deliver highly conformal dose distributions to complex target shapes while reducing the dose to critical normal tissues. In this study tools for comparing and predicting the effectiveness of different approaches to total marrow irradiation (TMI) using HT were provided. The expected dose response for plasma cell neoplasms was computed and a radiobiological evaluation of different treatment cohorts in a dose escalating study was performed. Normal tissue complication probability (NTCP) and tumour control probability (TCP) models were applied to an actual TMI treatment plan for a patient and the implications of using different longitudinal field widths were assessed. The optimum dose was ˜39 Gy for which a predicted tumour control of 95% (+/-3%) was obtained, with a predicted 3% (0, 8%) occurrence of radiation pneumonitis. Tissue sparing was seen by using smaller field widths only in the organs of the head. This suggests it would be beneficial to use the small fields in the head only since using small fields for the whole treatment would lead to long treatment times. In TMI it may be necessary to junction two longitudinally adjacent treatment volumes to form a contiguous planning target volume PTV. For instance, this is the case when a different SUP-INF spatial resolution is required or when

  6. Autologous bone marrow transplantation following chemotherapy and irradiation in dogs with spontaneous lymphomas. [. gamma. rays

    SciTech Connect

    Bowles, C.A.; Bull, M.; McCormick, K.; Kadin, M.; Lucas, D.

    1980-09-01

    Thirty dogs with spontaneous lymphomas were administered two to six cycles of chemotherapy and were randomized into 3 groups to receive 800 rads of total body irradiation and autologous bone marrow transplantation. Of 10 dogs irradiated after chemotherapy-induced remission and infused with remission marrow (group 1), 8 (80%) had successful grafts and experienced remissions lasting 62 to 1024 days. Of 9 dogs irradiated during remission and infused with remission marrow mixed with autologous tumor cells (group 2), 6 (66%) had remission lasting 15 to 45 days. Eleven dogs with progressive tumor growth (relapse) following chemotherapy were irradiated and infused with remission marrow (group 3). Tumor remission lasting 39 to 350 days was observed in 5 dogs (45%) in this group, and 6 dogs died in less than 30 days. Dogs in groups 1 to 3 had median survival times of 216, 60, and 45 days, respectively. The prolonged survival times for dogs in group 1 compared to dogs in groups 2 and 3 suggest that protocols involving irradiation and autologous marrow grafting in this model would be most effective when these protocols are applied to animals having a minimum tumor burden at the time of irradiation and when the grafting is done with tumor-free autologous marrow.

  7. Effects of supralethal total body irradiation and bone marrow reconstitution upon immunologic memory

    SciTech Connect

    Akiyama, N.; Bachvaroff, R.J.; Sato, T.; Rapaport, F.T.

    1981-03-01

    The transplantation of bone marrow from prospectively selected genotypically and pedigree DLA-identical donors into supralethally irradiated littermate and nonlittermate recipients within the Copperstown beagle colony has regularly resulted in the establishment of long-term chimerism, with no evidence of graft-versus-host disease in the recipients. It has been demonstrated that irradiated recipients exhibit significant decreases in their ability to muster primary immunological responses during the first months after reconstitution with bone marrow. Beyond the documented capacity of preirradiation blood transfusions to interfere with subsequent engraftment of allogeneic marrow, however, there have been no systematic studies of the possible effects of irradiation and bone marrow transplantation upon immunologic memory. The present study was designed in order to assess this question in greater detail, with particular regard to the effects of irradiation and bone marrow reconstitution upon host sensitization to skin allografts. The results indicate that, within the experimental limitations described, the state of sensitivity produced by first set skin allograft rejection is not affected significantly by supralethal total body irradiation and reconstitution of the recipient with allogeneic bone marrow.

  8. Effects of sublethal irradiation on patterns of engraftment after murine bone marrow transplantation.

    PubMed

    Andrade, Jacob; Ge, Shundi; Symbatyan, Goar; Rosol, Michael S; Olch, Arthur J; Crooks, Gay M

    2011-05-01

    Attempts to reduce the toxicity of hematopoietic stem cell transplantation have led to the use of various immunosuppressive, yet nonmyeloablative preparative regimens that often include low-dose irradiation. To determine the effects of low-dose irradiation on the dynamics of donor cell engraftment after bone marrow transplantation (BMT), we coupled standard endpoint flow cytometric analysis with in vivo longitudinal bioluminescence imaging performed throughout the early (<10 days) and late (days 10-90) post-BMT periods. To exclude the contribution of irradiation on reducing immunologic rejection, severely immune-deficient mice were chosen as recipients of allogeneic bone marrow. Flow cytometric analysis showed that sublethal doses of total body irradiation (TBI) significantly increased long-term (14 weeks) donor chimerism in the bone marrow compared with nonirradiated recipients (P < .05). Bioluminescence imaging demonstrated that the effect of TBI (P < .001) on chimerism occurred only after the first 7 days post-BMT. Flow cytometric analysis on day 3 showed no increase in the number of donor cells in irradiated bone marrow, confirming that sublethal irradiation does not enhance marrow chimerism early after transplantation. Local irradiation also significantly increased late (but not early) donor chimerism in the irradiated limb. Intrafemoral injection of donor cells provided efficient early chimerism in the injected limb, but long-term systemic donor chimerism was highest with i.v. administration (P < .05). Overall, the combination of TBI and i.v. administration of donor cells provided the highest levels of long-term donor chimerism in the marrow space. These findings suggest that the major effect of sublethal irradiation is to enhance long-term donor chimerism by inducing proliferative signals after the initial phase of homing.

  9. Facilitation of allogeneic bone marrow engraftment in mice by total lymphoid irradiation combined with total-body irradiation

    SciTech Connect

    Ang, K.K.; Waer, M.; van der Schueren, E.; Vandeputte, M.

    1983-07-01

    Different groups of C57BL/Ka mice received daily fractions of 2 Gy total lymphoid irradiation (TLI) in a total dose of 34, 24, or 14 Gy. On the day after the last irradiation, 30 X 10(6) allogeneic (BALB/c) nucleated bone marrow cells were infused into the irradiated animals. When the last one or two fractions of the radiation schedule were given to the whole body (combined total lymphoid-total-body irradiation, TLBI): (1) stable bone marrow chimerism with a higher number of donor-type cells in the peripheral blood was induced in a higher percentage of mice that had received 34 Gy TLBI compared with mice that received 34 Gy TLI. (2) bone marrow chimerism could also be induced after 24 Gy or 14 Gy TLBI, whereas 24 and 14 Gy TLI alone were ineffective. The tolerance to the TLBI schedules was excellent and no clinical signs of graft-versus-host disease were noticed. It is concluded that the addition of TBI can facilitate bone marrow engraftment after TLI and drastically reduce the number of radiation fractions needed to obtain successful chimerism after allogeneic bone marrow transplantation in mice.

  10. Specific allogeneic unresponsiveness in irradiated dogs reconstituted with autologous bone marrow. [/sup 60/Co

    SciTech Connect

    Rapaport, F.T.; Bachvaroff, R.J.; Akiyama, N.; Sato, T.; Ferrebee, J.W.

    1980-07-01

    Hemopoietic reconstitution of supralethally irradiated adult dogs of the Cooperstown colony with their own stored bone marrow can produce long-term unresponsiveness to DLA-identical kidney allografts with no need for any additional immunosuppression. Eleven of 18 kidneys transplanted 12 h after replacement of autologous marrow into irradiated recipients currently survive with normal function for as long as 1417 d; 8 of 13 organs transplanted 28 h after marrow replacement, and 8 of 13 organs transplanted 36 h after marrow injection, currently survive up to 502 d, with no further treatment. Alterations in the timing and sequence of each procedure decrease the incidence of unresponsiveness. Survival and function of the kidney allografts were not affected by the rejection of successive skin grafts from the kidney donor. Skin grafts from other DLA-identical donors and DLA-incompatible skin grafts were rejected by the same recipients in uniform fashion.

  11. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    SciTech Connect

    Aydogan, Bulent; Yeginer, Mete; Kavak, Gulbin O.; Fan, John; Radosevich, James A.; Gwe-Ya, Kim

    2011-10-01

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330{sup o} arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of {>=}12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  12. Heart and kidney transplantation using total lymphoid irradiation and donor bone marrow in mongrel dogs

    SciTech Connect

    Kahn, D.R.; Dufek, J.H.; Hong, R.; Caldwell, W.L.; Thomas, F.J.; Kolenda, D.R.; Swanson, D.K.; Struble, R.A.

    1980-07-01

    Heart and kidney allografts showed markedly prolonged survival in unrelated mongrel dogs following total lymphoid irradiation (TLI) and donor bone marrow without any other immunosuppression. In every animal the heart survived longer than the kidney. Placing the kidney allograft in the abdomen with the bone marrow given intraperitoneally doubled kidney survival over placement in the neck, but heart survival was equally prolonged in the abdomen or neck. Splenectomy before TLI or after TLI, but just before transplantation, almost completely eliminated the prolonged survival of both heart and kidney allografts. Thus there is suggestive evidence that TLI plus bone marrow from the donor may be valuable for transplantation in man, particularly heart transplantation.

  13. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    SciTech Connect

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M. )

    1993-03-20

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing [sup 60]Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs.

  14. Bone marrow transplantation following total lymphoid irradiation. I. Correlation with field size and suppressor cell induction

    SciTech Connect

    Lowry, R.P.; Carpenter, C.B.; Gurley, K.E.; Merrill, J.P.

    1983-07-01

    Total lymphoid irradiation (TLI) induces a unique state of immunosuppression. Although permanent bone marrow chimerism has been obtained in rodents prepared by TLI, uniform marrow engraftment has been more difficult to obtain in larger mammals. Accordingly, studies were performed to assess the immunologic perturbations induced by TLI in inbred LEW rats, and to explore the effect of altering field size of irradiation on the induction of suppressor cells and the success of allogeneic bone marrow transplantation. Additional abdominal shielding to protect a single kidney (right) from irradiation during TLI presented successful of bone marrow engraftment (WF leads to LEW, N . 5) but chimerism was uniformly obtained (N . 3) using the full irradiation field (P less than .05) Lymphopenia and a relative monocytosis were noted in all rats subjected to TLI. Although TLI using the full irradiation field eliminated alloreactivity of nylon-wool-purified spleen cells, significant, if reduced, alloreactivity was noted in rats subjected to TLI using smaller irradiation fields. Irradiated (1500 rads) nylon-wool-purified splenic T cells of rats subjected to TLI using the full field effected significantly greater suppression (P less than .001) of a normal mixed lymphocyte culture than did cells from rats subjected to TLI with right kidney shields in place (relative response reduced to 15.2 +/- 5.7% versus 64.3 +/- 11.7%). Success of bone marrow engraftment in rats prepared by TLI was correlated, therefore, with the induction of a profound lymphopenia, elimination of alloreactivity, and the development of a potent splenic suppressor system.

  15. State of the antioxidative enzymes of rat bone marrow cells after irradiation, fractures, and a combination of both

    SciTech Connect

    Bogdanova, I.A.; Ovchinnikov, K.G.; Torbenko, V.P.; Gerasimov, A.M.

    1987-11-01

    The authors study bone marrow levels of antioxidative (antiradical) defensive systems (ADS) enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GP), glutathione reductase (GR), and glutathione: dehydroascorbate oxidoreductase (GDAR), rats and changes in their activity in the bone marrow at various times after irradiation, mechanical trauma, and a combination of both. Development of acute radiation sickness as a result of a single irradiation was accompanied by marked changes in the enzymic antioxidative system of rat bone marrow cells.

  16. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    SciTech Connect

    Schultheiss, Timothy E. . E-mail: Schultheiss@coh.org; Wong, Jeffrey; Liu, An; Olivera, Gustavo; Somlo, George

    2007-03-15

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribs and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.

  17. Role of marrow architecture and stromal cells in the recovery process of aplastic marrow of lethally irradiated rats parabiosed with healthy litter mates

    SciTech Connect

    Hayashi, K.; Kagawa, K.; Awai, M.; Irino, S.

    1986-01-01

    Bone marrow aplasia was induced in rats by whole body lethal irradiation (1,000 rads by x-ray), and rats died of irradiation injury within 7 days. Correlative studies at light (LM), transmission (TEM) and scanning electron microscopy (SEM) demonstrated swelling of endothelial and reticular cells and hemorrhage due to detachment of sinus endothelial cells on days 1 and 2. With time, structural recovery occurred without hemopoietic recovery. Reticular cells developed small intracytoplasmic lipid droplets on days 3 and 4. This resulted in fatty aplastic marrow within 7 days. On the other hand, in the marrow of irradiated rats parabiosed with healthy mates by aortic anastomosis, hemopoiesis was initiated by adhesion of nucleated blood cells to fine cytoplasmic pseudopods of fat-stored cells on days 1 and 2 after parabiosis. On days 3 to 5, reticular cells with large lipid droplets and fine pseudopods increased, then hemopoietic foci became clear and extensive. On day 8 after parabiosis, the aplastic bone marrow recovered completely both its structure and hemopoietic activity. Thus, hemopoietic recovery in lethally irradiated marrow begins with recovery of vascular endothelial cells, re-establishment of sinusoidal structure, and morphological and functional recoveries of reticular cells from fat-storage cells by releasing intracytoplasmic lipid droplets. Marrow stromal cells, namely reticular, fat-storage and fibroblastoid cells, share a common cellular origin, and regain their structure and function when fat-storage cells and fibroid cells are placed in contact with hemopoietic precursor cells.

  18. Fractionated sublethal total body irradiation and donor bone marrow infusion for induction of specific allograft tolerance

    SciTech Connect

    Pierce, G.E.; Kimler, B.F.; Thomas, J.H.; Watts, L.M.; Kinnaman, M.L.

    1981-03-01

    Fractionated total lymphoid irradiation (FT-lymphoid-I) plus donor bone marrow (BM) can induce tolerance to skin allografts. In the present study, fractionated total body irradiation (FT-body-I) was studied as an alternative to FT-lymphoid-I. FT-body-I produces less pulmonary and gastrointestinal injury than does single exposure total body irradiation, but because of the decreased capacity of lymphoid tissues to recover from the effects of irradiation between fractions, the effect of FT-body-I on lymphoid cells, when delivered within 24 h, is approximately the same as an equivalent single exposure of total body irradiation. Therefore, FT-body-I, like FT-lymphoid-I, has some selectivity for lymphoid tissues and has the advantage that it can be delivered within the time constraints of ex vivo organ preservation.

  19. Soluble Vascular Endothelial Cadherin as a New Biomarker of Irradiation in Highly Irradiated Baboons with Bone Marrow Protection.

    PubMed

    Hérodin, Francis; Voir, Diane; Vilgrain, Isabelle; Courçon, Marie; Drouet, Michel; Boittin, François-Xavier

    2016-06-01

    Vascular endothelial cadherin is the main component of adherens junctions enabling cohesion of the endothelial monolayer in vessels. The extracellular part of vascular endothelial cadherin (VE-cadherin) can be cleaved, releasing soluble fragments in blood (sVE-cadherin). In some diseases with endothelial dysfunction, a correlation between increased blood sVE-cadherin levels and disease state has been proposed. Irradiation is known to induce endothelial damage, but new serum biomarkers are needed to evaluate endothelial damage after irradiation. Here, the authors investigated whether sVE-cadherin may be an interesting biomarker of irradiation in highly irradiated baboons with bone marrow protection. sVE-cadherin was detected in the plasma of young as well as old baboons. Plasma sVE-cadherin levels significantly decrease a few days after irradiation but recover in the late time after irradiation. Kinetic analysis of plasma sVE-cadherin levels suggests a correlation with white blood cell counts in both the acute phase of irradiation and during hematopoietic recovery, suggesting that plasma sVE-cadherin levels may be partly linked to the disappearance and recovery of white blood cells. Interestingly, after hematopoietic recovery was completed, sVE-cadherin levels were found to exceed control values, suggesting that plasma sVE-cadherin may represent a new biomarker of endothelial damage or neovascularization in the late time after irradiation. PMID:27115227

  20. Alveolar macrophage kinetics and function after interruption of canine marrow function

    SciTech Connect

    Springmeyer, S.C.; Altman, L.C.; Kopecky, K.J.; Deeg, H.J.; Storb, R.

    1982-03-01

    To study the kinetics and function of alveolar macrophages after interruption of marrow function, we performed serial bronchoalveolar lavages in dogs. The studies were performed before and after 9.0 to 9.5 Grey total body irradiation and marrow infusion. Monocytes had disappeared from the bloodstream by Day 7 after the irradiation. Alveolar macrophages were significantly decreased at Day 21. At Days 14 and 21 myeloperoxidase-positive alveolar macrophages were also significantly decreased. Beyond Day 30 the number of circulating monocytes, myeloperoxidase-positive and total alveolar macrophages had returned. Sex chromatin stains of alveolar macrophages obtained from a male dog that received female marrow indicated that the repopulating macrophages were of marrow origin. In vitro studies of alveolar macrophage migration and phagocytosis demonstrated increased activities beyond Day 30. These studies suggest that in this model the alveolar macrophage is dependent on the bone marrow for support and that the alveolar macrophage depletion may impair lung defense mechanisms.

  1. Splenocytes seed bone marrow of myeloablated mice: implication for atherosclerosis.

    PubMed

    Wang, Lai; Yang, Mingjie; Arias, Ana; Song, Lei; Li, Fuqiang; Tian, Fang; Qin, Minghui; Yukht, Ada; Williamson, Ian K; Shah, Prediman K; Sharifi, Behrooz G

    2015-01-01

    Extramedullary hematopoiesis has been shown to contribute to the pathogenesis of a variety of diseases including cardiovascular diseases. In this process, the spleen is seeded with mobilized bone marrow cells that augment its hematopoietic ability. It is unclear whether these immigrant cells that are produced/reprogrammed in spleen are similar or different from those found in the bone marrow. To begin to understand this, we investigated the relative potency of adult splenocytes per se to repopulate bone marrow of lethally-irradiated mice and its functional consequences in atherosclerosis. The splenocytes were harvested from GFP donor mice and transplanted into myeloablated wild type recipient mice without the inclusion of any bone marrow helper cells. We found that adult splenocytes repopulated bone marrow of myeloablated mice and the transplanted cells differentiated into a full repertoire of myeloid cell lineages. The level of monocytes/macrophages in the bone marrow of recipient mice was dependent on the cell origin, i.e., the donor splenocytes gave rise to significantly more monocytes/macrophages than the donor bone marrow cells. This occurred despite a significantly lower number of hematopoietic stem cells being present in the donor splenocytes when compared with donor bone marrow cells. Atherosclerosis studies revealed that donor splenocytes displayed a similar level of atherogenic and atheroprotective activities to those of donor bone marrow cells. Cell culture studies showed that the phenotype of macrophages derived from spleen is different from those of bone marrow. Together, these results demonstrate that splenocytes can seed bone marrow of myeloablated mice and modulate atherosclerosis. In addition, our study shows the potential of splenocytes for therapeutic interventions in inflammatory disease.

  2. Feasibility study for linac-based intensity modulated total marrow irradiation.

    PubMed

    Wilkie, Joel R; Tiryaki, Hanifi; Smith, Brett D; Roeske, John C; Radosevich, James A; Aydogan, Bulent

    2008-12-01

    Total body irradiation (TBI) is used as a preconditioning regimen prior to bone marrow transplant for treatment of hematologic malignancies. During TBI, large volumes of normal tissue are irradiated, and this can lead to toxicities, most significantly in the lungs. Intensity modulated total marrow irradiation (IMTMI) may be able to reduce these toxicities by directly targeting the bone marrow while minimizing the dose to critical structures. The goal of this study was to assess the feasibility of IMTMI by following the planning and delivery process for a Rando phantom. A three isocenter technique was used to provide a full body plan for treatment on a linear accelerator. Thermoluminescent detectors (TLDs) were placed at 22 positions throughout the phantom to compare the delivered doses to the planned doses. Individual intensity modulated radiation therapy verification plans were delivered to a solid water phantom for the three isocenters, and doses measured from an ion chamber and film were compared to the planned doses. The treatment plan indicated that target coverage was achieved with this IMTMI technique, and that the doses to critical structures were reduced by 29%-65% compared to conventional TBI. TLD readings demonstrated accurate dose delivery, with an average difference of 3.5% from the calculated dose. Ion chamber readings for the verification plans were all within 3% of the expected dose, and film measurements showed accurate dose distributions. Results from this study suggest that IMTMI using the three isocenter technique can be accurately delivered and may result in substantial dose reductions to critical structures.

  3. [CYTOGENETIC EFFECTS IN MICE BONE MARROW AFTER IRRADIATION BY FAST NEUTRONS].

    PubMed

    Vorozhtsova, S V; Bulynina, T M; Ivanov, A A

    2016-01-01

    Mechanisms of damaging mice bone marrow cells by 1.5 MeV neutrons at the dose of 25-250 cGy, dose rate of 23.9 cGy/s and γ-quants ⁶⁰Co as a standard radiation were studied. The mitotic index and aberrant mitoses in marrow preparations were counted in 24 and 72 hours after irradiation. Coefficients of relative biological effectiveness (RBE) of fast neutrons 24 and 72 hours post irradiation calculated from mitotic index reduction and aberrant mitoses formation were within the range from 4.1 ± 0.1 to 7.3 ± 0.1. Mean time of the existence of chromosomal aberrations in marrow cells was determined. For the specified doses from γ-rays, the period of aberrations existence was 1.4-1.1 cycles and for neutrons, 1.0-0.6 cycles. Morphologic analysis of neutron-induced damages and ratio of the most common breaks demonstrated a high production of bridges, which outnumbered cells with fragments in 3 to 4 times suggesting a more destructive effect on the genetic structures of cells. RBE of fast neutrons is a variable that grows with a radiation dose. Moreover, RBE estimated after 72 hours exceeded values it had 24 hours after irradiation. PMID:27347593

  4. [CYTOGENETIC EFFECTS IN MICE BONE MARROW AFTER IRRADIATION BY FAST NEUTRONS].

    PubMed

    Vorozhtsova, S V; Bulynina, T M; Ivanov, A A

    2016-01-01

    Mechanisms of damaging mice bone marrow cells by 1.5 MeV neutrons at the dose of 25-250 cGy, dose rate of 23.9 cGy/s and γ-quants ⁶⁰Co as a standard radiation were studied. The mitotic index and aberrant mitoses in marrow preparations were counted in 24 and 72 hours after irradiation. Coefficients of relative biological effectiveness (RBE) of fast neutrons 24 and 72 hours post irradiation calculated from mitotic index reduction and aberrant mitoses formation were within the range from 4.1 ± 0.1 to 7.3 ± 0.1. Mean time of the existence of chromosomal aberrations in marrow cells was determined. For the specified doses from γ-rays, the period of aberrations existence was 1.4-1.1 cycles and for neutrons, 1.0-0.6 cycles. Morphologic analysis of neutron-induced damages and ratio of the most common breaks demonstrated a high production of bridges, which outnumbered cells with fragments in 3 to 4 times suggesting a more destructive effect on the genetic structures of cells. RBE of fast neutrons is a variable that grows with a radiation dose. Moreover, RBE estimated after 72 hours exceeded values it had 24 hours after irradiation.

  5. Chimaerism of immunocompetent cells in allogeneic bone marrow-reconstituted lethally irradiated chickens.

    PubMed

    Lydyard, P M; Ivanvi, J

    1975-08-01

    Injection of parental bone marrow cells into 12-day-old lethally irradiated F1 hybrid chickens resulted in chimaerism of donor-type graft-versus-host (GVH)-reactive cells and suppression of antisheep red blood cell antibody response. These manifestations of a chronic graft-versus-host reaction were prevented by pretreatment of the donor marrow with specific anti-T cell globulin. In some chimaeras donor-type GVH-reactive cells developed gradually from T cells precursors of donor origin. Transplantation of spleen and marrow cells from sheep red blood cell-primed F1 hybrid donors into lethally irradiated parental recipients resulted in the loss of memory potential within 1-2 weeks of transfer, whereas donor-type IgG allotype synthesis was preserved. Injection of goat antichicken thymocyte serum to recipients 1 day before reconstitution enabled the antibody response of memory cells at 1-2 weeks, although it failed to prevent their rejection by 8-9 weeeks after transplantation. Split chimaerism of donor-type GVH-reactive cells was demonstrated in chickens which had previously rejected the B cells derived from the same graft. PMID:241144

  6. In vitro effects of OK-432 on irradiated mouse bone marrow cells

    SciTech Connect

    Nose, Masako; Kawase, Yoshiko; Suzuki, Gen; Akashi, Makoto; Akanuma, Atsuo ); Aoki, Yoshiro )

    1994-06-15

    In vitro effects of OK-432 (polysaccharide extract of Streptococcus haemolyticus) on irradiated mouse bone marrow cells are examined. Bone marrow cells of BDF1 mouse (1 [times] 10[sup 6] cells/ml) were incubated with alpha medium, 2% fetal calf serum and OK-432 in a CO[sub 2] incubator at 37[degrees]C for 24, 48 and 72 h, respectively. After centrifugation, each supernatant was collected and used for conditioned medium in a CFU-GM assay: Changes in CFU-GM as a function of incubation time and OK-432 dose were examined; changes of CFU-GM according to various doses of OK-432 were examined in two mouse strains, BDF[sub 1] and BALB/c mouse; changes in the protective effect of OK-432 in terms of CFU-GM as a function of administration timing of OK-432 in relation to irradiation. As a radiation source, [sup 137]Cs at a dose rate of 500 cGy/min was used. The CFU-GM decreased with the incubation time when OK-432 was not administered, while it significantly increased with incubation time when OK-432 was added at 0.5 and 1.0 KE/ml at 48-72 h of incubation. The former showed marked increase at 48-72 h of incubation. CFU-GM of BDF[sub 1] mouse was always higher than that of BALB/c mouse for any dose of OK-432. CFU-GM per femur according to the timing of administration of OK-432 from 24 h before to 24 h after irradiation showed 10299 [+-] 2300 (24 h before), 10783 [+-] 2463 (3 h before), 10045 [+-] 1501 (immediately after), 8504 [+-] 1188 (3 h after), 4898 [+-] 1212 (6 h after), 1214 [+-] 736 (12 h after) and 181 [+-] 113 (24 h after irradiation), respectively. OK-432 stimulates cultures mouse bone marrow cells to produce GM-CSF in vitro by direct contact action. This direct stimulating action of OK-432 on GM-CSF production of bone marrow cells can be kept from 24 h before to at least 3 h after irradiation. 6 refs., 4 figs.

  7. Disturbances in dental development after total body irradiation in bone marrow transplant recipients

    SciTech Connect

    Dahlloef, G.B.; Barr, M.; Bolme, P.; Modeer, T.; Loennqvist, B.R.; Ringden, O.; Heimdahl, A.

    1988-01-01

    The dental status of 16 children who had been treated with bone marrow transplantation (BMT) for serious bone marrow diseases was followed for up to 6 years. Several types of disturbances in dental development were observed in children who had been conditioned with total body irradiation (TBI) at 10 Gy before BMT. Thus, impaired root development that caused short V-shaped roots was found in all patients, a complete failure of root development and premature apical closure were found in five patients, enamel hypoplasia was observed in four patients, and microdontia was observed in three patients conditioned with TBI. Patients younger than 6 years of age at BMT exhibited the most severe and extensive dental aberrations. The TBI at 10 Gy appeared to be the major cause of the disturbances found.

  8. Sesamol attenuates genotoxicity in bone marrow cells of whole-body γ-irradiated mice.

    PubMed

    Kumar, Arun; Selvan, Tamizh G; Tripathi, Akanchha M; Choudhary, Sandeep; Khan, Shahanshah; Adhikari, Jawahar S; Chaudhury, Nabo K

    2015-09-01

    Ionising radiation causes free radical-mediated damage in cellular DNA. This damage is manifested as chromosomal aberrations and micronuclei (MN) in proliferating cells. Sesamol, present in sesame seeds, has the potential to scavenge free radicals; therefore, it can reduce radiation-induced cytogenetic damage in cells. The aim of this study was to investigate the radioprotective potential of sesamol in bone marrow cells of mice and related haematopoietic system against radiation-induced genotoxicity. A comparative study with melatonin was designed for assessing the radioprotective potential of sesamol. C57BL/6 mice were administered intraperitoneally with either sesamol or melatonin (10 and 20mg/kg body weight) 30 min prior to 2-Gy whole-body irradiation (WBI) and sacrificed after 24h. Total chromosomal aberrations (TCA), MN and cell cycle analyses were performed using bone marrow cells. The comet assay was performed on bone marrow cells, splenocytes and lymphocytes. Blood was drawn to study haematological parameters. Prophylactic doses of sesamol (10 and 20mg/kg) in irradiated mice reduced TCA and micronucleated polychromatic erythrocyte frequency in bone marrow cells by 57% and 50%, respectively, in comparison with radiation-only groups. Sesamol-reduced radiation-induced apoptosis and facilitated cell proliferation. In the comet assay, sesamol (20mg/kg) treatment reduced radiation-induced comets (% DNA in tail) compared with radiation only (P < 0.05). Sesamol also increased granulocyte populations in peripheral blood similar to melatonin. Overall, the radioprotective efficacy of sesamol was found to be similar to that of melatonin. Sesamol treatment also showed recovery of relative spleen weight at 24h of WBI. The results strongly suggest the radioprotective efficacy of sesamol in the haematopoietic system of mice. PMID:25863274

  9. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  10. Osteogenic activity of bone marrow-derived mesenchymal stem cells (BMSCs) seeded on irradiated allogenic bone.

    PubMed

    Tohma, Yasuaki; Dohi, Yoshiko; Ohgushi, Hajime; Tadokoro, Mika; Akahane, Manabu; Tanaka, Yasuhito

    2012-02-01

    Allogenic bone grafting, a technique used in orthopaedic surgery, has several problems, including low osteogenic activity. To overcome the problem, this study aimed to determine whether in vivo osteogenesis could be enhanced using allogenic irradiated bone grafts after seeding with autologous bone marrow-derived mesenchymal stem cells (BMSCs). The allogenic bone cylinders were extracted from ACI rats and sterilized by irradiation. Donor BMSCs were obtained from fresh Fischer 344 (F344) rat bone marrow by cell culture. The allogenic bone with or without BMSCs were transplanted subcutaneously into syngeneic F344 rats. At 4 weeks after transplantation, high alkaline phosphatase (ALP) activity, bone-specific osteocalcin mRNA expression and newly formed bone were detected in the allogenic bone with BMSCs. The origin of the newly formed bone was derived from cultured donor BMSCs. However, none of these identifiers of osteogenesis were detected in either the fresh or the irradiated allogenic bone without BMSCs. These results indicate the availability of autologous BMSCs to heighten the osteogenic response of allogenic bone. Our present tissue-engineering method might contribute to a wide variety of allogenic bone grafting techniques in clinical settings.

  11. Idiopathic interstitial pneumonia following bone marrow transplantation: the relationship with total body irradiation

    SciTech Connect

    Keane, T.J.; Van Dyk, J.; Rider, W.D.

    1981-10-01

    Interstitial pneumonia is a frequent and often fatal complication of allogenic bone marrow transplantation. Thirty to 40 percent of such cases are of unknown etiology and have been labelled as cases of idiopathic interstitial pneumonia. Idiopathic cases are more commonly associated with the use of total body irradiation; their occurrence appears to be independent of immunosupression or graft versus host disease. Evidence is presented from the literature suggesting that the development of idiopathic interstitial pneumonia is related to the absolute absorbed dose of radiation to lung. The similarity of idiopathic pneumonia to radiation pneumonitis seen in a different clinical setting is described.

  12. Transplantation tolerance in primates after total lymphoid irradiation and allogeneic bone marrow injection

    SciTech Connect

    Smit, J.A.; Hill, R.R.H.; Myburgh, J.A.; Browde, S.

    1980-08-01

    After total lymphoid irradiation (TLI), allogeneic bone marrow (BM) injection, and organ transplantation in baboons, there is a prolonged period of reduced lymphocyte proliferative responsiveness to polyclonal mitogens and allogeneic lymphocytes. The effect observed is greater with the use of fractionated TLI than after single doses of irradiation. Suppressor cell activity can be demonstrated in vitro in most animals by inhibition of mixed lymphocyte reactivity (MLR) by mitomycin-treated recipient lymphocytes harvested after TLI, with or without allogeneic BM injection, and organ transplantation. Preliminary data suggest the presence of both donor-specific and nondonor-specific suppression, although other interpretations are possible, and suppressor phenomena may not be responsible for the transplantation tolerance observed.

  13. Effect of intrasplenic injection of allogeneic bone marrow cells on the survival of lethally X-irradiated mice

    SciTech Connect

    Imamura, M.; Miyazaki, T.; Okabe, M.; Sakurada, K.; Musashi, M.; Kawamura, K.; Hatakeyama, M.

    1983-01-01

    Radiation chimeras in mice were induced by intrasplenic injection of allogeneic bone marrow cells instead of intravenous injection. Interestingly, the survival time in X-irradiated BALB/c mice inoculated intrasplenically (i.s.) with bone marrow cells from C3H/He mice was markedly prolonged as compared with that in X-irradiated BALB/c mice inoculated i.v. with bone marrow cells from C3H/He mice. However, when C57BL/6 mice were used as donors, a significant difference between i.s. injection and i.v. injection has not been found in survival time at 60 days after X irradiation. On the contrary, when bone marrow cells from BALB/c or C57BL/6 mice were injected into X-irradiated C3H/He mice, i.s. injection gave longer survival days to recipients than did i.v. injection. Based on testing their chimerism, it was suggested that lymphoid cells of donor origin were predominantly identified in almost all BALB/c or C3H/He recipients which were inoculated i.s. with bone marrow cells from C57BL/6 mice. However, somewhat incomplete chimerism was observed when the C3H/He to BALB/c donor-recipient combination was used and vice versa.

  14. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation.

    PubMed

    Sumita, Yoshinori; Liu, Younan; Khalili, Saeed; Maria, Ola M; Xia, Dengsheng; Key, Sharon; Cotrim, Ana P; Mezey, Eva; Tran, Simon D

    2011-01-01

    Treatment for most patients with head and neck cancers includes ionizing radiation. A consequence of this treatment is irreversible damage to salivary glands (SGs), which is accompanied by a loss of fluid-secreting acinar-cells and a considerable decrease of saliva output. While there are currently no adequate conventional treatments for this condition, cell-based therapies are receiving increasing attention to regenerate SGs. In this study, we investigated whether bone marrow-derived cells (BMDCs) can differentiate into salivary epithelial cells and restore SG function in head and neck irradiated mice. BMDCs from male mice were transplanted into the tail-vein of 18Gy-irradiated female mice. Salivary output was increased in mice that received BMDCs transplantation at week 8 and 24 post-irradiation. At 24 weeks after irradiation (IR), harvested SGs (submandibular and parotid glands) of BMDC-treated mice had greater weights than those of non-treated mice. Histological analysis shows that SGs of treated mice demonstrated an increased level of tissue regenerative activity such as blood vessel formation and cell proliferation, while apoptotic activity was increased in non-transplanted mice. The expression of stem cell markers (Sca-1 or c-kit) was detected in BMDC-treated SGs. Finally, we detected an increased ratio of acinar-cell area and approximately 9% of Y-chromosome-positive (donor-derived) salivary epithelial cells in BMDC-treated mice. We propose here that cell therapy using BMDCs can rescue the functional damage of irradiated SGs by direct differentiation of donor BMDCs into salivary epithelial cells.

  15. Sustained Engraftment of Cryopreserved Human Bone Marrow CD34(+) Cells in Young Adult NSG Mice.

    PubMed

    Wiekmeijer, Anna-Sophia; Pike-Overzet, Karin; Brugman, Martijn H; Salvatori, Daniela C F; Egeler, R Maarten; Bredius, Robbert G M; Fibbe, Willem E; Staal, Frank J T

    2014-06-01

    Hematopoietic stem cells (HSCs) are defined by their ability to repopulate the bone marrow of myeloablative conditioned and/or (lethally) irradiated recipients. To study the repopulating potential of human HSCs, murine models have been developed that rely on the use of immunodeficient mice that allow engraftment of human cells. The NSG xenograft model has emerged as the current standard for this purpose allowing for engraftment and study of human T cells. Here, we describe adaptations to the original NSG xenograft model that can be readily implemented. These adaptations encompass use of adult mice instead of newborns and a short ex vivo culture. This protocol results in robust and reproducible high levels of lympho-myeloid engraftment. Immunization of recipient mice with relevant antigen resulted in specific antibody formation, showing that both T cells and B cells were functional. In addition, bone marrow cells from primary recipients exhibited repopulating ability following transplantation into secondary recipients. Similar results were obtained with cryopreserved human bone marrow samples, thus circumventing the need for fresh cells and allowing the use of patient derived bio-bank samples. Our findings have implications for use of this model in fundamental stem cell research, immunological studies in vivo and preclinical evaluations for HSC transplantation, expansion, and genetic modification.

  16. Prolonged bone marrow and skin allograft survival after pretransplant conditioning with cyclophosphamide and total lymphoid irradiation. [Mice

    SciTech Connect

    Kersey, J.H.; Kruger, J.; Song, C.; Kloster, B.

    1980-05-01

    Current studies were designed to provide long-term survival of allogeneic skin and bone marrow in mice preconditioned with various combinations of cyclophosphamide (CY) and/or total lymphoid irradiation (TLI). Long-term skin graft and bone marrow survival was obtained across the major histocompatibility barrier (BALB/c into C57BL/6) using pregrafting conditioning with either fractionated TLI or the combination of CY with a single dose of TLI. CY alone and a single dose of TLI alone were relatively ineffective as regrafting immunosuppressive combinations. Allogeneic bone marrow was required for long-term skin graft survival with either conditioning regimen. Allogeneic marrow transplantation resulted in somewhat more deaths than syngeneic transplantation with both CY + TLI and fractionated TLI.

  17. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4.

    PubMed

    Peled, A; Petit, I; Kollet, O; Magid, M; Ponomaryov, T; Byk, T; Nagler, A; Ben-Hur, H; Many, A; Shultz, L; Lider, O; Alon, R; Zipori, D; Lapidot, T

    1999-02-01

    Stem cell homing and repopulation are not well understood. The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 were found to be critical for murine bone marrow engraftment by human severe combined immunodeficient (SCID) repopulating stem cells. Treatment of human cells with antibodies to CXCR4 prevented engraftment. In vitro CXCR4-dependent migration to SDF-1 of CD34+CD38-/low cells correlated with in vivo engraftment and stem cell function. Stem cell factor and interleukin-6 induced CXCR4 expression on CD34+ cells, which potentiated migration to SDF-1 and engraftment in primary and secondary transplanted mice. Thus, up-regulation of CXCR4 expression may be useful for improving engraftment of repopulating stem cells in clinical transplantation. PMID:9933168

  18. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation.

    PubMed Central

    Anklesaria, P; Kase, K; Glowacki, J; Holland, C A; Sakakeeny, M A; Wright, J A; FitzGerald, T J; Lee, C Y; Greenberger, J S

    1987-01-01

    Whether bone marrow stromal cells of donors contribute physiologically to hematopoietic stem cell reconstitution after marrow transplantation is unknown. To determine the transplantability of nonhematopoietic marrow stromal cells, stable clonal stromal cell line (GB1/6) expressing the a isoenzyme of glucose-6-phosphate isomerase (Glu6PI-a, D-glucose-6-phosphate ketol-isomerase; EC 5.3.1.9) was derived from murine long-term bone marrow cultures and made resistant to neomycin analogue G418 by retroviral gene transfer. GB1/6 cells were fibronectin+, laminin+, and collagen-type IV+ and collagen type I-; these GB1/6 cells supported in vitro growth of hematopoietic stem cells forming colony-forming units of spleen cells (CFU-S) and of granulocytes, erythrocytes, and macrophage/megakarocytes (CFU-GEMM) in the absence of detectable growth factors interleukin 3 (multi-colony-stimulating factor), granulocyte/macrophage colony-stimulating factor, granulocyte-stimulating factor, or their poly(A)+ mRNAs. The GB1/6 cells produced macrophage colony-stimulating factor constitutively. Recipient C57BL/6J (glucose-6-phosphate isomerase b) mice that received 3-Gy total-body irradiation and 13 Gy to the right hind limb were injected i.v. with GB1/6 cells. Engrafted mice demonstrated donor-originating Glu6PI-a+ stromal cells in marrow sinuses in situ 2 mo after transplantation and a significantly enhanced hematopoietic recovery compared with control irradiated nontransplanted mice. Continuous (over numerous passages) marrow cultures derived from transplanted mice demonstrated G418-resistant, Glu6PI-a+ stromal colony-forming cells and greater cumulative production of multipotential stem cells of recipient origin compared with cultures established from irradiated, nontransplanted control mice. These data are evidence for physiological function in vivo of a transplanted bone marrow stromal cell line. Images PMID:2890167

  19. Irradiated or aseptically prepared frozen dairy desserts: acceptability to bone marrow transplant recipients.

    PubMed

    Dong, F M; Hashisaka, A E; Rasco, B A; Einstein, M A; Mar, D R; Aker, S N

    1992-06-01

    Sterile ice cream and frozen yogurt were offered to immunosuppressed patients recovering from bone marrow transplantation. To obtain sterile products, two of the dairy desserts (prepackaged ice cream and frozen yogurt bars) were exposed to 40 kGy of cobalt 60 irradiation. Four different flavors of ice cream were aseptically prepared under a laminar airflow hood using commercially sterilized ingredients. A commercially sterile, frozen milk-based drink on the low-microbial menu served as the control. Ratings of the seven products by 17 patients indicated that a frozen vanilla milk-based drink and aseptically prepared chocolate ice cream were highly acceptable to recovery immunosuppressed patients who have difficulty eating most foods. However, the seven desserts received higher ratings from a sensory panel of healthy individuals than from the patient panel, confirming that new foods for the low-microbial diet should be "market-tested" by the targeted patient population before inclusion in the menu.

  20. Induction of tolerance to a soluble antigen following irradiation and bone marrow reconstitution.

    PubMed

    Schleimer, R P; Scibienski, R J; Vollger, H F; Benjamini, E

    1982-01-01

    Antigen-specific tolerance was induced in mice by lethal irradiation followed by reconstitution with syngeneic, anti-T-cell-treated bone marrow and injection of the protein antigen lysozyme. Animals tolerized with lysozyme responded normally to a second antigen, sheep red blood cells, and animals treated with the same tolerizing regimen using a different protein antigen, bovine serum albumin, responded normally to lysozyme. Challenge of the tolerant mice with lysozyme covalently coupled to LPS induced an antilysozyme response indicating that if tolerance was expressed on the B-cell level that antigen-specific B-cells were still present. These results eliminate clonal abortion and clonal selection as the mechanism of tolerance generation. The tolerance generated by this procedure is either expressed on the T-cell level or is produced by a state of B-cell clonal anergy which can be overcome by the use of antigen coupled to lipopolysaccharide.

  1. Dosimetric evaluation of total marrow irradiation using 2 different planning systems.

    PubMed

    Nalichowski, Adrian; Eagle, Don G; Burmeister, Jay

    2016-01-01

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using the Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465cGy for VoLO and 1284 and 1541cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO׳s graphics processing unit (GPU)-based optimization and dose calculation algorithm also allowed much faster creation of TMI plans. PMID:27372384

  2. The influence of antiorthostatic unloading and long gamma-irradiation on rat bone marrow (MSCs)

    NASA Astrophysics Data System (ADS)

    Roe, Maria; Bobyleva, Polina; Shtemberg, Andrey; Buravkova, Ludmila

    With the prospect of long interplanetary spaceflight becoming a real possibility there are some important questions that need to be answered regarding the combined effects of microgravity and long gamma-irradiation.The aim of this study was to evaluate the effects of synchronous antiorthostatic unloading and fractional gamma-irradiation on the functional characteristics of rat bone marrow multipotent stromal cells (MSCs).This experiment was carried out following all rules laid out by the Commission on Bioethics at the SSC RF - IBMP RAS. In this experiment the Wistar rats were kept in an unloaded position for a duration of 30 days. They were also subjected to 6 doses of gamma-radiation on the “GOBO-60” with a source of (137) Cs. The dose rate set to 1 meter 50 sGr / H (Total dose of 3 Gr).The study revealed a significant reduction in the number of colonies (CFU-F) in all cultures from the experimental groups when compared to the control groups. The most significant reduction was observed in the group, which had been subject to combined unloading, and radiation. This result was confirmed by examination of cell cultures during 10 days of growth.We found that the CD45 expression was increased in the groups exposed to radiation. At the same time a reduction in the expression of CD90 was observed during combination of radiation and unloading we found.The experimental groups also differed from the control group showing smaller lipid inclusions and decreased expression of alkaline phosphates in the MSCs. This experiment concluded that the bone marrow MSCs after a combination of unloading and multiple radiation sessions, showed a decrease in proliferation and differentiation potential which could reduce the adaption and reparative capacity of the organism.

  3. Extramedullary Relapse Following Total Marrow and Lymphoid Irradiation in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation

    SciTech Connect

    Kim, Ji Hyun; Stein, Anthony; Schultheiss, Timothy E.; Palmer, Joycelynne; Liu, An; Rosenthal, Joseph; Forman, Stephen J.

    2014-05-01

    Purpose: Approximately 5% to 20% of patients who undergo total body irradiation (TBI) in preparation for hematopoietic cell transplantation (HCT) can develop extramedullary (EM) relapse. Whereas total marrow and lymphoid irradiation (TMLI) provides a more conformally targeted radiation therapy for patients, organ sparing has the potential to place the patient at a higher risk for EM relapse than TBI. This study evaluated EM relapse in patients treated with TMLI at our institution. Methods and Materials: Patients eligible for analysis had been enrolled in 1 of 3 prospective TMLI trials between 2006 and 2012. The TMLI targeted bones, major lymph node chains, liver, spleen, testes, and brain, using image-guided tomotherapy with total dose ranging from 12 to 15 Gy. Results: A total of 101 patients with a median age of 47 years were studied. The median follow-up was 12.8 months. Incidence of EM relapse and bone marrow (BM) relapse were 12.9% and 25.7%, respectively. Of the 13 patients who had EM relapse, 4 also had BM relapse, and 7 had EM disease prior to HCT. There were a total of 19 EM relapse sites as the site of initial recurrence: 11 soft tissue, 6 lymph node, 2 skin. Nine of these sites were within the target region and received ≥12 Gy. Ten initial EM relapse sites were outside of the target region: 5 sites received 10.1 to 11.4 Gy while 5 sites received <10 Gy. Pretransplantation EM was the only significant predictor of subsequent EM relapse. The cumulative incidence of EM relapse was 4% at 1 year and 11.4% at 2 years. Conclusions: EM relapse incidence was as frequent in regions receiving ≥10 Gy as those receiving <10 Gy. EM relapse rates following TMLI that included HCT regimens were comparable to published results with regimens including TBI and suggest that TMLI is not associated with an increased EM relapse risk.

  4. Prevention of GVHD by modulation of rat bone marrow with UV-B irradiation. II. Kinetics of migration of UV-B-irradiated bone marrow cells in naive and lethally irradiated rats

    SciTech Connect

    Oluwole, S.F.; Engelstad, K.; Hardy, M.A. )

    1990-06-01

    UV-B irradiation (700 J/m2) of bone marrow (BM) cells prior to transplantation into lethally gamma-irradiated (1050 rad) allogeneic rats prevents the development of GVHD and results in a stable mixed lymphohematopoietic chimerism. To better understand the underlying mechanisms of the development of stable radiation chimeras in this model, this study was designed to examine whether the dose (700 J/m2) of UV-B irradiation used for the modulation of the BM inoculum would affect the homing pattern of radiolabeled BM cells compared to that of thoracic duct lymphocytes (TDL) in the naive and lethally irradiated recipients. The results showed that intravenously administered, 111Indium-oxine-labeled, unmodified TDL home specifically to the spleen, lymph nodes, and BM compartments with a subsequent recirculation of a large number of cells from the spleen to the lymph nodes. In contrast, radiolabeled, unmodified BM cells migrate specifically to the spleen, liver, and BM with the lymph nodes, thymus, and nonlymphoid organs containing very little amounts of radioactivity. The stable concentrations of radioactivity in the lymphoid and nonlymphoid compartments between 3 and 72 hr after injection suggest that BM cells, unlike TDL, do not recirculate. The migration pattern of BM cells in the naive recipient was not significantly different from that seen in lethally irradiated animals except for the higher concentration of radioactivity in the spleen and BM of irradiated animals compared to that seen in naive recipients. The similarity of tissue localization of BM cells in naive or in irradiated syngeneic recipients to that of allogeneic recipients suggests that the homing of BM cells is not MHC restricted.

  5. Feasibility of intrafraction whole-body motion tracking for total marrow irradiation

    NASA Astrophysics Data System (ADS)

    Sharma, Manju; Santos, Troy Dos; Papanikolopoulos, Nikolaos P.; Hui, Susanta Kumar

    2011-05-01

    With image-guided tomotherapy, highly targeted total marrow irradiation (TMI) has become a feasible alternative to conventional total body irradiation. The uncertainties in patient localization and intrafraction motion of the whole body during hour-long TMI treatment may pose a risk to the safety and accuracy of targeted radiation treatment. The feasibility of near-infrared markers and optical tracking system (OTS) is accessed along with a megavoltage scanning system of tomotherapy. Three near-infrared markers placed on the face of a rando phantom are used to evaluate the capability of OTS in measuring changes in the markers' positions as the rando is moved in the translational direction. The OTS is also employed to determine breathing motion related changes in the position of 16 markers placed on the chest surface of human volunteers. The maximum uncertainty in locating marker position with the OTS is 1.5 mm. In the case of normal and deep breathing motion, the maximum marker position change is observed in anterior-posterior direction with the respective values of 4 and 12 mm. The OTS is able to measure surface changes due to breathing motion. The OTS may be optimized to monitor whole body motion during TMI to increase the accuracy of treatment delivery and reduce the radiation dose to the lungs.

  6. Feasibility of intrafraction whole-body motion tracking for total marrow irradiation.

    PubMed

    Sharma, Manju; Dos Santos, Troy; Papanikolopoulos, Nikolaos P; Hui, Susanta Kumar

    2011-05-01

    With image-guided tomotherapy, highly targeted total marrow irradiation (TMI) has become a feasible alternative to conventional total body irradiation. The uncertainties in patient localization and intrafraction motion of the whole body during hour-long TMI treatment may pose a risk to the safety and accuracy of targeted radiation treatment. The feasibility of near-infrared markers and optical tracking system (OTS) is accessed along with a megavoltage scanning system of tomotherapy. Three near-infrared markers placed on the face of a rando phantom are used to evaluate the capability of OTS in measuring changes in the markers' positions as the rando is moved in the translational direction. The OTS is also employed to determine breathing motion related changes in the position of 16 markers placed on the chest surface of human volunteers. The maximum uncertainty in locating marker position with the OTS is 1.5 mm. In the case of normal and deep breathing motion, the maximum marker position change is observed in anterior-posterior direction with the respective values of 4 and 12 mm. The OTS is able to measure surface changes due to breathing motion. The OTS may be optimized to monitor whole body motion during TMI to increase the accuracy of treatment delivery and reduce the radiation dose to the lungs.

  7. Microdosimetric and Biological Effects of Photon Irradiation at Different Energies in Bone Marrow.

    PubMed

    Belley, Matthew D; Ashcraft, Kathleen A; Lee, Chen-Ting; Cornwall-Brady, Milton R; Chen, Jane-Jane; Gunasingha, Rathnayaka; Burkhart, Markus; Dewhirst, Mark; Yoshizumi, Terry T; Down, Julian D

    2015-10-01

    To ensure reliability and reproducibility of radiobiological data, it is necessary to standardize dosimetry practices across all research institutions. The photoelectric effect predominates over other interactions at low energy and in high atomic number materials such as bone, which can lead to increased dose deposition in soft tissue adjacent to mineral bone due to secondary radiation particles. This may produce radiation effects that deviate from higher energy photon irradiation that best model exposure from clinical radiotherapy or nuclear incidences. Past theoretical considerations have indicated that this process should affect radiation exposure of neighboring bone marrow (BM) and account for reported differences in relative biological effectiveness (RBE) for hematopoietic failure in rodents. The studies described herein definitively estimate spatial dose distribution and biological effectiveness within the BM compartment for (137)Cs gamma rays and 320 kVp X rays at two levels of filtration: 1 and 4 mm Cu half-value layer (HVL). In these studies, we performed: 1. Monte Carlo simulations on a 5 μm resolution model of mouse vertebrae and femur derived from micro-CT images; 2. In vitro biological experiments irradiating BM cells plated directly on the surface of a bone-equivalent material (BEM); and 3. An in vivo study on BM cell survival in irradiated live mice. Simulation results showed that the relative dose increased in proximity to bone at the lower radiation energies and produced averaged values of relative dose over the entire BM volume within imaged trabecular bone of 1.17, 1.08 and 1.01 for beam qualities of 1 mm Cu HVL, 4 mm Cu HVL and (137)Cs, respectively. In accordance with Monte Carlo simulations, in vitro irradiation of BM cells located on BEM and in vivo whole-body irradiation at a prescribed dose to soft tissue of 6 Gy produced relative cell killing of hematopoietic progenitors (CFU-C) that significantly increased for the 1 mm Cu HVL X rays

  8. Allogeneic bone marrow transplantation in mice after total lymphoid irradiation: influence of breeding conditions and strain of recipient mice

    SciTech Connect

    Waer, M.; Ang, K.K.; van der Schueren, E.; Vandeputte, M.

    1984-02-01

    Different groups of C57BL/ka or BALB/c mice received a dose of 34 Gy or 42 Gy of fractionated total lymphoid irradiation (TLI) before bone marrow transplantation with 30 x 10/sup 6/ BALB/c or C57BL nucleated bone marrow cells, respectively. BALB/c mice that were not bred in specific pathogen-free conditions before TLI showed a high morbidity and mortality rate after 34 Gy of TLI and allogeneic bone marrow transplantation as compared with BALB/c or C57BL that were bred in pathogen-free conditions before irradiation. Many of the conventionally bred BALB/c mice had clinical and histologic signs of graft-vs-host disease after TLI and allogeneic bone marrow infusion. Although leucocytosis and lymphocytosis and the immunologic competence as measured with in vitro tests were equally depressed after 34 Gy TLI in BALB/c and C57BL mice, chimerism was nevertheless significantly easier to obtain in BALB/c mice. The incidence of chimerism after TLI could be enhanced in C57BL mice by increasing the total radiation dose from 34 to 42 Gy. This augmentation of chimerism was paralleled by the induction of more suppressor cells after 42 Gy of TLI in C57BL mice.

  9. Iron carrier proteins facilitate engraftment of allogeneic bone marrow and enduring hemopoietic chimerism in the lethally irradiated host

    SciTech Connect

    Pierpaoli, W.; Dall'Ara, A.; Yi, C.X.; Neri, P.; Santucci, A.; Choay, J. )

    1991-04-15

    Cell-free supernatants of rabbit bone marrow were fractionated, separated, and purified by Ultrogel and Superose chromatography. A single fraction promoted engraftment of allogeneic bone marrow and enduring hemopoietic chimerism across the H-2 barrier in lethally irradiated mice. This 'bio-active' fraction, analyzed by reducing SDS-PAGE electrophoresis, and transblotted on PVDF membrane, and purified by reverse-phase HPLC and SDS-PAGE electrophoresis yielded a main prealbumin band that when examined for primary structure by Edman degradation, proved to be rabbit transferrin. This was also attested by highly specific precipitation of the prealbumin band with polyclonal antibodies to rabbit transferrin. Iron-saturated human transferrin, lactotransferrin, and egg transferrin (conalbumin) were assayed in irradiated C57BL/6 mice infused with bone marrow from histoincompatible BALB/c donors. Mice treated with iron-loaded transferrins survive and develop enduring allogeneic chimerism with no discernible signs of graft-versus-host disease. Iron carrier proteins thus provide an unique means of achieving successful engraftment of allogeneic bone marrow in immunologically hostile murine H-2 combinations.

  10. Parvovirus Infection Suppresses Long-Term Repopulating Hematopoietic Stem Cells

    PubMed Central

    Segovia, José C.; Guenechea, Guillermo; Gallego, Jesús M.; Almendral, José M.; Bueren, Juan A.

    2003-01-01

    The functional disturbance of self-renewing and multipotent hematopoietic stem cells (HSCs) in viral diseases is poorly understood. In this report, we have assessed the susceptibility of mouse HSCs to strain i of the autonomous parvovirus minute virus of mice (MVMi) in vitro and during persistent infection of an immunodeficient host. Purified 5FUr Lin− Sca-1+ primitive hematopoietic precursors were permissive for MVMi genome replication and the expression of viral gene products. The lymphoid and myeloid repopulating capacity of bone marrow (BM) cells was significantly impaired after in vitro infection, although the degree of functional effect proportionally decreased with the posttransplantation time. This indicated that MVMi targets the heterogeneous compartment of repopulating cells with differential affinity and suggests that the virus may persist in some primitive HSCs in the quiescent stage, killing those eventually recruited for proliferative activity. Immunodeficient SCID mice oronasally infected with MVMi were cured of the characteristic virus-induced lethal leukopenia by transplantation of immunocompetent BM grafts. However, two double-stranded viral DNA species, probably uncommon replicative intermediates, remained in the marrow of every transplanted mouse months after infectious virus clearance. Genetic analysis of the rescued mice showed that the infection ensured a stable engraftment of donor hematopoiesis by markedly depleting the pool of endogenous HSCs. The MVMi-induced suppression of HSC functions illustrates the accessibility of this compartment to infection during a natural viral hematological disease. These results may provide clues to understanding delayed hematopoietic syndromes associated with persistent viral infections and to prospective gene delivery to HSCs in vivo. PMID:12857918

  11. Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: A multifactorial process

    SciTech Connect

    Abedi, Mehrdad; Greer, Deborah A.; Colvin, Gerald A.; Demers, Delia A.; Dooner, Mark S.; Harpel, Jasha A.; Weier, Heinz-Ulrich G.; Lambert, Jean-Francois; Quesenberry, Peter J.

    2004-01-10

    Murine marrow cells are capable of repopulating skeletal muscle fibers. A point of concern has been the robustness of such conversions. We have investigated the impact of type of cell delivery, muscle injury, nature of delivered cell, and stem cell mobilizations on marrow to muscle conversion. We transplanted GFP transgenic marrow into irradiated C57BL/6 mice and then injured anterior tibialis muscle by cardiotoxin. One month after injury, sections were analyzed by standard and deconvolutional microscopy for expression of muscle and hematopietic markers. Irradiation was essential to conversion although whether by injury or induction of chimerism is not clear. Cardiotoxin and to a lesser extent PBS injected muscles showed significant number of GFP+ muscle fibers while uninjected muscles showed only rare GFP+ cells. Marrow conversion to muscle was increased by two cycles of G-CSF mobilization and to a lesser extent with G-CSF and steel or GM-CSF. Transplantation of female GFP to male C57 BL/6 and GFP to Rosa26 mice showed fusion of donor cells to recipient muscle. High numbers of donor derived muscle colonies and up to12 percent GFP positive muscle cells were seen after mobilization or direct injection. These levels of donor muscle chimerism approach levels which could be clinically significant in developing strategies for the treatment of muscular dystrophies. In summary, the conversion of marrow to skeletal muscle cells is based on cell fusion and is critically dependent on injury. This conversion is also numerically significant and increases with mobilization.

  12. Protection by WR-2721 of human bone marrow function following irradiation

    SciTech Connect

    Constine, L.S.; Zagars, G.; Rubin, P.; Kligerman, M.

    1986-08-01

    Protection by WR-2721 of bone marrow (BM) from depression following hemibody irradiation (HBI) was assessed in patients receiving palliative therapy for widespread symptomatic metastasis on a Phase I/II Radiation Therapy Oncology Group (RTOG) protocol. Twenty-five patients are currently evaluable for the assessment of hematologic toxicity. HBI (600 or 700 cGy) was delivered starting 15-30 min after WR-2721 (600-900 mg/m2) intravenous infusion. Twenty patients from previous RTOG HBI studies were comparable in terms of radiation dose, hematologic data, and previous cytotoxic therapy. The WBC and platelet count nadirs at any time within 6 wk following HBI were used for data analysis, and toxicity was rated according to RTOG criteria. For the patients treated with WR-2721, moderate, severe, or life-threatening toxicity were seen in 16%, 12%, and 0% of the patients, respectively, compared to 30%, 15%, and 10% of patients in the group not treated with WR-2721. For the subpopulation of patients treated with the higher irradiation dose (700 cGy), differences in toxicity appeared to be greater. Conversely, for the sub-population of patients treated only to the upper hemibody, the difference in toxicity was less apparent. The percentage change from the median pre-treatment white blood cell (WBC) and platelet counts (PC) was not different between the WR-2721 treated and non-treated group; however, the median WBC count for the WR-2721 group returned to the pre-treatment value by the fourth week following HBI, whereas, it remained at 61% of the pre-HBI value for the control group. Within the group of patients treated with WR-2721, 5 of 17 (29%) receiving 600 mg/m2 demonstrated a greater than 75% decline in either WBC or platelets, compared to 0/8 patients treated with 750-900 mg/m2. These preliminary data support a protective effect by WR-2721.

  13. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors.

    PubMed

    Green, Danielle E; Rubin, Clinton T

    2014-06-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  14. Modeling a radiotherapy clinical procedure: total body irradiation.

    PubMed

    Esteban, Ernesto P; García, Camille; De La Rosa, Verónica

    2010-09-01

    Leukemia, non-Hodgkin's lymphoma, and neuroblastoma patients prior to bone marrow transplants may be subject to a clinical radiotherapy procedure called total body irradiation (TBI). To mimic a TBI procedure, we modified the Jones model of bone marrow radiation cell kinetics by adding mutant and cancerous cell compartments. The modified Jones model is mathematically described by a set of n + 4 differential equations, where n is the number of mutations before a normal cell becomes a cancerous cell. Assuming a standard TBI radiotherapy treatment with a total dose of 1320 cGy fractionated over four days, two cases were considered. In the first, repopulation and sub-lethal repair in the different cell populations were not taken into account (model I). In this case, the proposed modified Jones model could be solved in a closed form. In the second, repopulation and sub-lethal repair were considered, and thus, we found that the modified Jones model could only be solved numerically (model II). After a numerical and graphical analysis, we concluded that the expected results of TBI treatment can be mimicked using model I. Model II can also be used, provided the cancer repopulation factor is less than the normal cell repopulation factor. However, model I has fewer free parameters compared to model II. In either case, our results are in agreement that the standard dose fractionated over four days, with two irradiations each day, provides the needed conditioning treatment prior to bone marrow transplant. Partial support for this research was supplied by the NIH-RISE program, the LSAMP-Puerto Rico program, and the University of Puerto Rico-Humacao.

  15. Sublethal fractionated total-body irradiation and donor bone marrow infusion for induction of allograft tolerance

    SciTech Connect

    Pierce, G.E.; Watts, L.M.; Clancy, J. Jr.

    1985-03-01

    Tolerance to skin allografts across the strong histocompatibility barrier H-2b to H-2d was achieved with sublethal fractionated total-body irradiation, FTBI, delivered to H-2d mice in 3 doses of 250 rads within 24 hr, followed by transfusion of 3 x 10(7) H-2b donor bone marrow (BM) cells. H-2b skin allografts were applied within 48 hr after the initial radiation. 70% of the mice became long-term (greater than 180-day) survivors with fur-bearing grafts. Marked interexperiment variability in survival rates suggested that infection was the major use of death in this model and lower weight gain and survival rates for allogenic BM vs. media-treated controls suggested that graft-versus-host disease (GVHD) was also a factor. The observation, however, that long-term survivors (70% of all mice) gained weight and appeared healthy suggested that the GVHD might be self-limiting. Chimeric analysis revealed that approximately 25% of spleen cells were of donor origin, both at short-term (6 weeks) and long-term (greater than 1 year) intervals after tolerance induction. In spite of hematopoietic chimerism, a low incidence of spontaneous tumors, less than 1%, occurred in the long-term survivors.

  16. A multi-compartment cell repopulation model allowing for inter-compartmental migration following radiation exposure, applied to leukaemia.

    PubMed

    Little, Mark P

    2007-03-01

    There is much uncertainty about cancer risks at the high radiation doses used in radiotherapy (RT). It has generally been assumed that cancer induction decreases rapidly at high doses due to cell killing. However, this is not seen in all RT groups, and a model recently developed by Sachs and Brenner [2005. Solid tumor risks after high doses of ionizing radiation. Proc. Natl Acad. Sci. USA 102, 13040-13045] proposed a mechanism for repopulation of cells after radiation exposure that explained why this might happen, at least for solid tumours. In this paper, this model is generalized to allow for heterogeneity in the dose received, and various alternate patterns of repopulation are also considered. The model is fitted to the Japanese atomic bomb survivor leukaemia incidence data, and data for various therapeutically irradiated groups. Two sets of parameters from these model fits are used to assess the sensitivity of model predictions. It is shown that in general allowing for heterogeneity in dose distribution and haematopoietic stem cell migration results in lower risks than the same average dose administered uniformly and without such migration, although this does not hold in the limiting case of complete stem cell repopulation between radiation dose fractions. We also investigate the difference made by assuming a compartmental repopulation signal, and a global repopulation signal. In general we show that in the absence of stochastic extinction, compartmental repopulation always predicts a larger number of mutated cells than global repopulation. However, in certain dose regimes stochastic extinction cannot be ignored, and in these cases the numbers of mutated cells predicted with global repopulation can exceed that for compartmental repopulation. In general, mutant cell numbers are highly overdispersed, with variance much greater than the mean.

  17. Effects of marrow grafting on preleukemia cells and thymic nurse cells in C57BL/Ka mice after a leukemogenic split-dose irradiation

    SciTech Connect

    Defresne, M.P.; Greimers, R.; Lenaerts, P.; Boniver, J.

    1986-11-01

    A split-dose regimen of whole-body irradiation (4 X 175 rad at weekly intervals) induced thymic lymphomas in C57BL/Ka mice after a latent period of 3-9 months. Meanwhile, preleukemia cells arose in the thymus and bone marrow and persisted until the onset of lymphomas. Simultaneously, thymic lymphopoiesis was impaired; thymocyte numbers were subnormal and thymic nurse cells disappeared in a progressive but irreversible fashion. The depletion of these lymphoepithelial complexes, which are normally involved in the early steps of thymic lymphopoiesis, was related to altered prothymocyte activity in bone marrow and to damaged thymic microenvironment, perhaps as a consequence of the presence of preleukemia cells. The grafting of normal bone marrow cells after irradiation prevented the development of lymphomas. However, marrow reconstitution did not inhibit the induction of preleukemia cells. They disappeared from the thymus during the second part of the latent period. At the same time, thymic lymphopoiesis was restored; thymocytes and nurse cell numbers returned to normal as a consequence of the proliferation of grafted marrow-derived cells within the thymus. The results thus demonstrated an intimate relationship between preleukemia cells and an alteration of thymic lymphopoiesis, which particularly involved the nurse cell microenvironment. Some preleukemia cells in marrow-reconstituted, irradiated mice derived from the unirradiated marrow inoculate. Thus these cells acquired neoplastic potential through a factor present in the irradiated tissues. The nature of this indirect mechanism was briefly discussed.

  18. Role of immobilization of irradiated rats in the protective effect of bone marrow shielding

    NASA Technical Reports Server (NTRS)

    Gronskaya, N. F.; Strelin, G. S.

    1982-01-01

    Rats were exposed to X-radiation to study the influence of immobilization and shielding of part of bone marrow during exposure on survival. It is concluded that (1) the beneficial effect of the stress factor (created by the immobilization of rats during exposure) can aggregate with the effect of bone marrow shielding and, under certain conditions, imitate the latter; and (2) the probability of the protective effect of immobilization should be taken into account when assessing the influence of bone marrow shielding.

  19. Total lymphoid irradiation, high-dose chemotherapy and autologous bone marrow transplantation for chemotherapy-resistant Hodgkin's disease.

    PubMed

    Yahalom, J; Gulati, S; Shank, B; Clarkson, B; Fuks, Z

    1989-11-01

    Seventeen patients with advanced stage Hodgkin's disease who relapsed or failed to respond to multiple regimens of combination chemotherapy (mostly Mechlorethamine, Vincristine, Procarbarzine, Prednisone and Adriamycin, Bleomycin, Vinblastine, Dacarbazine) were treated with accelerated hyperfractionated total lymphoid irradiation (TLI) and high-dose chemotherapy followed by autologous bone marrow transplantation (AuBMT). Candidates for the protocol did not have prior radiation therapy and had no evidence of bone marrow involvement. Their bone marrow was initially harvested and cryopreserved. The treatment protocol consisted of reinduction with conventional doses of combination chemotherapy followed by boost local field irradiation to areas of residual disease (1500 cGy within 5 days) and total lymphoid irradiation (2004 cGy given in 12 fractions of 167 cGy each t.i.d. delivered within 4 days). The patients were treated with Etoposide (250 mg/m2/day I.V. X 3 days) and high-dose Cyclophosphamide (60 mg/kg/day I.V. X 2 days). Cryopreserved (unpurged) autologous bone marrow was infused 48 hr after completion of chemotherapy. Of the 17 patients treated, four were in relapse and 13 refractory to multiple regimens of combination chemotherapy. Four patients died during the immediate peritransplant period (2--septicemia, 2--pulmonary complications). Of the 13 surviving patients, 12 entered a complete remission and one had a partial remission and died of disease 6 months later. One patient relapsed 5 months after treatment and is currently alive with disease. Eleven patients (65%) are alive with no evidence of disease 4-35 months (median 20 months) following completion of therapy. Treatment with this protocol results in a high rate of complete remission and a potential for long-term disease-free survival in previously unirradiated patients with advanced stage refractory or relapsed Hodgkin's disease who have exhausted conventional modes of chemotherapy. PMID:2478511

  20. In vitro quantitation of lethal and physiologic effects of total body irradiation on stromal and hematopoietic stem cells in continuous bone marrow cultures from Rf mice

    SciTech Connect

    Greenberger, J.S.; Eckner, R.J.; Otten, J.A.; Tennant, R.W.

    1982-07-01

    The effects of in vivo total body irradiation (TBI) and interval from TBI to explant of marrow on: stromal cell proliferation in vitro; stromal cell support of hematopoiesis in continuous bone marrow culture; and generation of WEHI-3 growth factor (GF)-dependent lines of hematopoietic progenitor cells were evaluated. Explant of marrow at 2, 4, 5, or 6 months after single fraction TBI (300-800 rad) was associated with decreased longevity of hemopoiesis and a decrease in the proliferative capacity of fibroblastic adherent-stromal colony forming cells (CFUf) as measured by colony size at 14 days and number of colonies per 10/sup 6/ cells plated. In contrast, explant of marrow 8 to 24 months after TBI produced cultures with longevity that was indistinguishable from age-matched control cultures (19-24 weeks). Marrow from irradiated first and second generation recipients of serially transferred marrow demonstrated a similar 7-month in vivo recovery period; however, the plateau maximum duration of hemopoiesis did not return to control levels. Purified stromal cell cultures were prepared by corticosteroid-deprivation of explanted marrow for 28 days and were then engrafted in vitro with marrow from C57BL/6J or RfM/UN mice that had been irradiated 1 month previously. Hemopoiesis in these cultures was restored, and they produced GM-CFUc and granulocytes for 15-24 weeks. Thus, healthy stroma supported growth of recently irradiated hemopoietic cells in vitro. Indirect effects of x-irradiation on hemopoietic stem cells through damage and repair in the stromal cell compartment can be effectively studied with the present bone marrow culture system. (JMT)

  1. Transplantation of islet cells across major histocompatibility barriers after total lymphoid irradiation and infusion of allogeneic bone marrow cells

    SciTech Connect

    Britt, L.D.; Scharp, D.W.; Lacy, P.E.; Slavin, S.

    1982-08-01

    Diabetic Lewis rats (AgB1/L) were evaluated as recipients of allogeneic Wistar-Furth (AgB2/2) isolated adult islets without the use of standard recipient immunosuppression. One group was treated with fractionated total lymphoid irradiation (TLI) and Wistar-Furth bone marrow cell reconstitution to proven chimerism prior to islet transplantation. This group returned to a prediabetic state following Wistar-Furth islet transplantation without any evidence of rejection for 100 days posttransplant. A second group of Lewis rats received only TLI without bone marrow treatment. They gave a varying result following islet transplantation with one recipient showing evidence of prolonged islet survival. A third chimeric control group did not receive isolated islets and did not alter their diabetic state. A fourth group was not given TLI nor donor bone marrow cells and uniformly rejected their allogeneic islets by 7 days. Thus, allogeneic adult islets will survive across major rat histocompatibility barriers using TLI and donor bone marrow chimerism as the only form of immunosuppression.

  2. Characterization of regulatory dendritic cells differentiated from the bone marrow of UV-irradiated mice.

    PubMed

    Ng, Royce L X; Scott, Naomi M; Bisley, Jackie L; Lambert, Misty J; Gorman, Shelley; Norval, Mary; Hart, Prue H

    2013-12-01

    When antigen-loaded dendritic cells (DCs) differentiated from the bone marrow (BM) of UV-irradiated mice (UV-BMDCs) were adoptively transferred into naive mice or mice pre-sensitized with that antigen, the recipients exhibited a reduced immune response following antigen challenge. Hence, UV-BMDCs are poorly immunogenic and can suppress pre-existing immunity. The UV-induced effect on BM-derived DCs was rapid (observed 1 day after UV radiation), long-lasting (observed 10 days after UV radiation) and UV dose-dependent. The mechanism by which UV-BMDCs could regulate immunity was investigated. The CD11c(+) cells, differentiated using granulocyte-macrophage colony-stimulating factor + interleukin-4, were confirmed to be DCs because they did not express the myeloid-derived suppressor cell marker, Gr1. UV-BMDCs did not display altered antigen uptake, processing or ability to activate T cells in vitro. When gene expression in UV-BMDCs and DCs differentiated from the BM of non-irradiated mice (control-BMDCs) was examined, Ccl7, Ccl8 and CSF1R (CD115) mRNA transcripts were up-regulated in UV-BMDCs compared with control-BMDCs. However, neutralizing antibodies for Ccl7 and Ccl8 did not abrogate the reduced immunogenicity of UV-BMDCs in vivo. Moreover, the up-regulation of CSF1R transcript did not correspond with increased receptor expression on UV-BMDCs. The phenotypes of UV-BMDCs and control-BMDCs were similar, with no difference in the expression of CD4, CD8α, CD103, B220 or F4/80, or the regulatory molecules CCR7 (CD197), FasL (CD95L), B7H3 (CD276) and B7H4. However, PDL1 (CD274) expression was reduced in UV-BMDCs compared with control-BMDCs following lipopolysaccharide stimulation. In summary, UV-BMDCs do not express the classical phenotypic or gene expression properties of DCs reported by others as 'regulatory' or 'tolerogenic'. PMID:23826713

  3. Total lymphoid irradiation and cyclophosphamide conditioning prior to bone marrow transplantation for patients with severe aplastic anemia

    SciTech Connect

    Ramsay, N.K.; Kim, T.H.; McGlave, P.; Goldman, A.; Nesbit, M.E. Jr.; Krivit, W.; Woods, W.G.; Kersey, J.H.

    1983-09-01

    A preparative regimen, consisting of total lymphoid irradiation and cyclophosphamide, was utilized in 40 patients with severe aplastic anemia undergoing allogeneic marrow transplantation. This regimen was successful in decreasing rejection in these previously transfused patients, as only one patient rejected the marrow graft. Twenty-nine of the 40 transplanted patients are surviving from 1.5 to 59 mo, with a median follow-up of 24 mo. The actuarial survival rate for these heavily transfused patients with aplastic anemia is 72% at 2 yr. This preparative regimen is extremely effective in decreasing rejection following transplantation for severe aplastic anemia. Future efforts in this area must be aimed at the elimination of graft-versus-host disease and control of fatal infections.

  4. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    PubMed

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation.

  5. Transient engraftment of syngeneic bone marrow after conditioning with high-dose cyclophosphamide and thoracoabdominal irradiation in a patient with aplastic anemia

    SciTech Connect

    Matsue, K.; Niki, T.; Shiobara, S.; Ueda, M.; Ohtake, S.; Mori, T.; Matsuda, T.; Harada, M. )

    1990-01-01

    We describe the clinical course of a 16 year old girl with aplastic anemia who was treated by syngeneic bone marrow transplantation. Engraftment was not obtained by simple infusion of bone marrow without immunosuppression. The patient received a high-dose cyclophosphamide and thoracoabdominal irradiation, followed by second marrow transplantation from the same donor. Incomplete but significant hematologic recovery was observed; however, marrow failure recurred 5 months after transplantation. Since donor and recipient pairs were genotypically identical, graft failure could not be attributed to immunological reactivity of recipient cells to donor non-HLA antigens. This case report implies that graft failure in some cases of aplastic anemia might be mediated by inhibitory cells resistant to cyclophosphamide and irradiation.

  6. Comparison of Cesium-137 and X-ray Irradiators by Using Bone Marrow Transplant Reconstitution in C57BL/6J Mice

    PubMed Central

    Gibson, Brian W; Boles, Nathan C; Souroullas, George P; Herron, Alan J; Fraley, Joe K; Schwiebert, Rebecca S; Sharp, John J; Goodell, Margaret A

    2015-01-01

    Mice are used extensively in transplantation studies involving bone marrow ablation. Due to the increasing security issues and expenses involved with γ irradiators, self-contained X-ray irradiators have been increasing in popularity. We hypothesized that bone marrow ablation by irradiation of mice with a 137Cs irradiator would be comparable to that from an X-ray source irradiator. A lethal-dose curve was obtained by irradiating C57BL/6J mice with 500, 700, 900, and 1100 cGy from either source. These data were used to determine the lethal radiation exposure range for a noncompetitive bone marrow engraftment curve for each source. At 90 d after reconstitution, the bone marrow engraftment curves revealed significant differences between the 2 sources in the establishment of B cell, myeloid, and T cell lineages. Murine B cell reconstitution after exposure to a 137Cs source was greater than that after X-ray exposure at each dose level, whereas the converse was true for myeloid cell reconstitution. At the 1050- and 1100-cGy doses, mice irradiated by using the X-ray source demonstrated higher levels of T cell reconstitution but decreased survival compared with mice irradiated with the 137Cs source. We concluded that although both sources ablated endogenous bone marrow sufficiently to enable stem cell engraftment, there are distinct physiologic responses that should be considered when choosing the optimal source for use in a study and that irradiation from the 137Cs source was associated with lower overall morbidity due to opportunistic infection. PMID:26141441

  7. Comparison of Cesium-137 and X-ray Irradiators by Using Bone Marrow Transplant Reconstitution in C57BL/6J Mice.

    PubMed

    Gibson, Brian W; Boles, Nathan C; Souroullas, George P; Herron, Alan J; Fraley, Joe K; Schwiebert, Rebecca S; Sharp, John J; Goodell, Margaret A

    2015-06-01

    Mice are used extensively in transplantation studies involving bone marrow ablation. Due to the increasing security issues and expenses involved with γ irradiators, self-contained X-ray irradiators have been increasing in popularity. We hypothesized that bone marrow ablation by irradiation of mice with a (137)Cs irradiator would be comparable to that from an X-ray source irradiator. A lethal-dose curve was obtained by irradiating C57BL/6J mice with 500, 700, 900, and 1100 cGy from either source. These data were used to determine the lethal radiation exposure range for a noncompetitive bone marrow engraftment curve for each source. At 90 d after reconstitution, the bone marrow engraftment curves revealed significant differences between the 2 sources in the establishment of B cell, myeloid, and T cell lineages. Murine B cell reconstitution after exposure to a (137)Cs source was greater than that after X-ray exposure at each dose level, whereas the converse was true for myeloid cell reconstitution. At the 1050- and 1100-cGy doses, mice irradiated by using the X-ray source demonstrated higher levels of T cell reconstitution but decreased survival compared with mice irradiated with the (137)Cs source. We concluded that although both sources ablated endogenous bone marrow sufficiently to enable stem cell engraftment, there are distinct physiologic responses that should be considered when choosing the optimal source for use in a study and that irradiation from the (137)Cs source was associated with lower overall morbidity due to opportunistic infection. PMID:26141441

  8. Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy

    SciTech Connect

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn E.; Wilke, Christopher T.; Storme, Guy; Weisdorf, Daniel J.; Hui, Susanta K.

    2013-11-15

    Purpose: To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect and provide possible solutions to reduce this effect. Methods and Materials: Nine cases were divided into 2 groups based on patient size, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (>47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to the thread effect, and the dose–volume histogram (DVH) parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (eg, bones of the arm or femur), at the central axis (eg, vertebrae), and planning target volume (PTV), defined as the entire skeleton plus 1-cm margin. Results: Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95 and V107, respectively) between large and small mLRD groups were 4.2% (P=.016) and 16% (P=.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=.965), mLRD and V95 (rs=−.742), and mLRD and V107 (rs=.870) of bones of the arm. Conclusions: Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced.

  9. Peripheral dose heterogeneity due to the thread effect in total marrow irradiation with helical tomotherapy

    PubMed Central

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn; Wilke, Christopher; Storme, Guy; Weisdorf, Daniel J.; Hui, Susanta K

    2013-01-01

    Purpose To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect, and provide possible solutions to reduce this effect. Methods and Materials Nine cases were divided into two groups based on patientsize, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (> 47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to the thread effect, and the DVH parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (e.g. bones of the arm, or femur), at the central axis (e.g. vertebrae), and PTV, defined as the entire skeleton plus 1 cm margin. Results Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95, and V107, respectively) between large and small mLRD groups were 4.2% (p=0.016), and 16% (p=0.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=0.965), mLRD and V95 (rs=−0.742), and mLRD and V107 (rs=0.870) of bones of the arm. Conclusions Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced. PMID:24011657

  10. Preclinical Assessment of Volumetric Modulated Arc Therapy for Total Marrow Irradiation

    SciTech Connect

    Fogliata, Antonella; Cozzi, Luca; Clivio, Alessandro; Ibatici, Adalberto; Mancosu, Pietro; Navarria, Piera; Nicolini, Giorgia; Santoro, Armando; Vanetti, Eugenio; Scorsetti, Marta

    2011-06-01

    Purpose: A preclinical investigation was undertaken to explore a treatment technique for total marrow irradiation using RapidArc, a volumetric modulated arc technique. Materials and Methods: Computed tomography datasets of 5 patients were included. Plans with eight overlapping coaxial arcs were optimized for 6-MV photon beams. Dose prescription was 12 Gy in 2 Gy per fraction, normalized so that 100% isodose covered 85% of the planning target volume (PTV). The PTV consisted of the whole skeleton (including ribs and sternum), from the top of the skull to the medium distal third of the femurs. Planning objectives for organs at risk (OARs) were constrained to a median dose <6 to 7 Gy. OARs included brain, eyes, oral cavity, parotids, thyroid, lungs, heart, kidneys, liver, spleen, stomach, abdominal cavity, bladder, rectum, and genitals. Pretreatment quality assurance consisted of portal dosimetry comparisons, scoring the delivery to calculation agreement with the gamma agreement index. Results: The median total body volume in the study was 57 liters (range, 49-81 liters), for an average diameter of 47 cm (range, 46-53 cm) and a total length ranging from 95 to 112 cm. The median PTV volume was 6.8 liters (range, 5.8-10.8 liters). The mean dose to PTV was 109% (range, 107-112%). The global mean of median dose to all OARs was 4.9 Gy (range, 4.5-5.1 Gy over the 5 patients). The individual mean of median doses per organ ranged from 2.3 Gy (oral cavity) to 7.3 Gy (bowels cavity). Preclinical quality assurance resulted in a mean gamma agreement index of 94.3 {+-} 5.1%. The delivery time measured from quality assurance runs was 13 minutes. Conclusion: Sparing of normal tissues with adequate coverage of skeletal bones was shown to be feasible with RapidArc. Pretreatment quality assurance measurements confirmed the technical agreement between expected and actually delivered dose distributions, suggesting the possibility of incorporating this technique in the treatment options

  11. Radioprotection of mice by a single subcutaneous injection of heat-killed Lactobacillus casei after irradiation

    SciTech Connect

    Nomoto, K.; Yokokura, T.; Tsuneoka, K.; Shikita, M. )

    1991-03-01

    Treatment of whole-body gamma-irradiated mice with a preparation of Lactobacillus casei (LC 9018) immediately after irradiation caused a sustained increase in serum colony-stimulating activity which was followed by an enhanced repopulation of granulocyte-macrophage colony-forming cells in the femoral marrow and spleen. Numbers of blood leukocytes, erythrocytes, and platelets were increased earlier in the treated mice than in the controls, and the survival rate was elevated significantly. The radioprotective effect was dependent on the dose of LC 9018 as well as on the dose of radiation. These results demonstrate the value of LC 9018 for the treatment of myelosuppression after radiotherapy or radiation accidents.

  12. [Anti-mouse CD122 antibody promotes the hematopoietic repopulating capacity of cord blood CD34⁺ cells in NOD/SCID mice].

    PubMed

    Sheng, Men-Yao; Shi, Hui; Xing, Wen; Wang, Wen-Jun; Si, Xiao-Hui; Bai, Jie; Yuan, Wei-Ping; Zhou, Yuan; Yang, Feng-Chun

    2014-12-01

    The study was aimed to investigate the effect of anti-mouse CD122 antibody on the hematopoietic repopulating capacity of cord blood CD34⁺ cells in a humanized murine model-non obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. After sublethal irradiation with γ-ray, NOD/SCID mice were intraperitoneally injected with 200 µg mouse isotype control antibody or anti-mouse CD122 antibody. Human cord blood CD34⁺ cells or phosphate-buffered saline (PBS) were injected via the tail vein at 6-8 hours later. Cohort of the mice injected with anti-mice CD122 antibody or control antibody alone were sacrificed at different time point (at week 2, 3, and 4 weeks) after the injection, and the percentage of NK cells in the peripheral blood was analyzed by flow cytometry. To evaluate the effect of anti-mouse CD122 antibody on the repopulating capacity of cord blood CD34⁺ cells in the recipient mice, phenotype analysis was performed in the bone marrow at 6 and 8 weeks after the transplantation. The results showed that the proportion of NK cells in the peripheral blood were (4.6 ± 0.6)% and (5.7 ± 1.7)% at week 2 and 3 after anti-CD122 antibody injection respectively,which decreased by 60%, compared with the mice injected with isotype control antibody. After 6 and 8 weeks of cord blood CD34⁺ cell transplantation,the percentage of human CD45⁺ in the bone marrow of the recipient mice treated with anti-mice CD122 antibody was (63.0 ± 12.2)% and (53.2 ± 16.3)%,respectively,which were dramatically higher than that in the mice treated with isotype control antibody (7.7 ± 3.6)% and (6.1 ± 2.4)%. Moreover,at 8 weeks after transplantation,human CD34⁺ cells appeared significantly in the recipients treated with anti-CD122 antibody. It is concluded that the anti-mouse CD122 antibody enhances the hematopoietic repopulating capacity of cord blood CD34⁺ cells in the NOD/SCID mice through decreasing the proportion of NK cells.

  13. Interleukin-1 administration before lethal irradiation and allogeneic bone marrow transplantation: early transient increase of peripheral granulocytes and successful engraftment with accelerated leukocyte, erythrocyte, and platelet recovery.

    PubMed

    Tiberghien, P; Laithier, V; Mabed, M; Racadot, E; Reynolds, C W; Angonin, R; Loumi, R; Pavy, J J; Cahn, J Y; Noir, A

    1993-04-01

    Administration of interleukin-1 beta (IL-1 beta) before a lethal irradiation with or without allogeneic bone marrow transplantation (BMT) protects greater than 90% of the irradiated mice. To approach the mechanisms responsible for the radioprotective effect of IL-1, we examined the effects of IL-1 pretreatment on engraftment and kinetics of peripheral blood, spleen, and marrow cell reconstitution after irradiation and BMT. Although the BMT was not necessary for the survival of the IL-1-pretreated lethally irradiated mice, allogeneic marrow did engraft in these mice as evaluated in the spleen and marrow 2 months after BMT. IL-1 pretreatment significantly accelerated hematopoietic recovery versus transplanted saline-treated controls with a pronounced enhancement of peripheral leukocyte, platelet, and erythrocyte recovery. Leukocyte recovery in IL-1-pretreated mice was unique in that IL-1 first induced an early transient (maximum at day 7) increase of peripheral granulocytes before accelerating leukocyte recovery after day 11. IL-1 pretreatment also significantly enhanced marrow cell recovery after allogeneic BMT with an eightfold increase in marrow cellularity from day 4 to 11 versus control transplanted mice. When lethal irradiation was not followed by allogeneic BMT. IL-1 pretreatment also affected the peripheral reconstitution of leukocytes, platelets, and erythrocytes. Interestingly, in the absence of BMT, IL-1 also induced an early circulation of peripheral granulocytes. Overall, our data demonstrate that a single administration of IL-1 before lethal irradiation and allogeneic BMT can induce an early transient increase of circulating granulocytes, followed by an accelerated multilineage recovery and long-term allogeneic engraftment. PMID:8461477

  14. Multi-institutional Feasibility Study of a Fast Patient Localization Method in Total Marrow Irradiation With Helical Tomotherapy: A Global Health Initiative by the International Consortium of Total Marrow Irradiation

    SciTech Connect

    Takahashi, Yutaka; Vagge, Stefano; Agostinelli, Stefano; Han, Eunyoung; Matulewicz, Lukasz; Schubert, Kai; Chityala, Ravishankar; Ratanatharathorn, Vaneerat; Tournel, Koen; Penagaricano, Jose A.; Florian, Sterzing; Mahe, Marc-Andre; Verneris, Michael R.; Weisdorf, Daniel J.; and others

    2015-01-01

    Purpose: To develop, characterize, and implement a fast patient localization method for total marrow irradiation. Methods and Materials: Topographic images were acquired using megavoltage computed tomography (MVCT) detector data by delivering static orthogonal beams while the couch traversed through the gantry. Geometric and detector response corrections were performed to generate a megavoltage topogram (MVtopo). We also generated kilovoltage topograms (kVtopo) from the projection data of 3-dimensional CT images to reproduce the same geometry as helical tomotherapy. The MVtopo imaging dose and the optimal image acquisition parameters were investigated. A multi-institutional phantom study was performed to verify the image registration uncertainty. Forty-five MVtopo images were acquired and analyzed with in-house image registration software. Results: The smallest jaw size (front and backup jaws of 0) provided the best image contrast and longitudinal resolution. Couch velocity did not affect the image quality or geometric accuracy. The MVtopo dose was less than the MVCT dose. The image registration uncertainty from the multi-institutional study was within 2.8 mm. In patient localization, the differences in calculated couch shift between the registration with MVtopo-kVtopo and MVCT-kVCT images in lateral, cranial–caudal, and vertical directions were 2.2 ± 1.7 mm, 2.6 ± 1.4 mm, and 2.7 ± 1.1 mm, respectively. The imaging time in MVtopo acquisition at the couch speed of 3 cm/s was <1 minute, compared with ≥15 minutes in MVCT for all patients. Conclusion: Whole-body MVtopo imaging could be an effective alternative to time-consuming MVCT for total marrow irradiation patient localization.

  15. Growth of erythroid burst-forming units (BFU-E) in cultures of canine bone marrow and peripheral blood cells: effect of serum from irradiated dogs

    SciTech Connect

    Kreja, L.; Baltschukat, K.; Nothdurft, W.

    1988-08-01

    Erythroid burst-forming units (BFU-E) from canine bone marrow and peripheral blood could be grown in methylcellulose in the presence of an appropriate batch of fetal calf serum (FCS), transferrin, and erythropoietin (Epo). However, improved colony formation (size and number of bursts) was obtained when serum from total body irradiated dogs was present in the culture. This serum, obtained from dogs at day 9 after total body irradiation with a dose of 3.9 Gy, reduced markedly the Epo requirement of BFU-E. Furthermore, it allowed the omission of FCS from the culture medium if cholesterol and bovine serum albumin (BSA) were used as FCS substitutes. BFU-E concentrations were found to be rather different in the peripheral blood and in bone marrow samples from different sites (i.e., iliac crest, sternum, and humerus) of normal beagles. The studies further show that canine bone marrow BFU-E can be cryopreserved in liquid nitrogen.

  16. Successful semiallogeneic and allogeneic bone marrow reconstitution of lethally irradiated adult mice mediated by neonatal spleen cells

    SciTech Connect

    LaFace, D.M.; Peck, A.B.

    1987-11-01

    Spleens of fetal/newborn mice less than 3-4 days of age contain a naturally occurring cell population capable of suppressing T-dependent and T-independent immune responses of third-party adult cells both in vitro and in vivo. We have utilized newborn spleen cells to prevent acute graft-versus-host (GVH) disease in lethally irradiated adult hosts reconstituted with semiallogeneic or even allogeneic bone marrow cells. Pretreatment of reconstituting cell populations with newborn spleen cells reduced the incidence of GVH disease from 100% to 20% in semiallogeneic and from 100% to 40% in allogeneic combinations. Long-term-surviving reconstituted hosts proved immunologically unresponsive to both donor and host histocompatibility antigens, yet possessed a fully chimeric lymphoid system responsive to T and B cell mitogens, as well as unrelated third-party alloantigens.

  17. Repopulation Kinetics and the Linear-Quadratic Model

    NASA Astrophysics Data System (ADS)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  18. SU-E-T-600: In Vivo Dosimetry for Total Body and Total Marrow Irradiations with Optically Stimulated Luminescence Dosimeters

    SciTech Connect

    Niedbala, M; Save, C; Cygler, J

    2014-06-01

    Purpose: To evaluate the feasibility of using optically stimulated luminescence dosimeters (OSLDs) for in-vivo dosimetry of patients undergoing Total Body and Total Marrow Irradiations (TBI and TMI). Methods: TBI treatments of 12 Gy were delivered in 6 BID fractions with the patient on a moving couch under a static 10 MV beam (Synergy, Elekta). TMI treatments of 18 Gy in 9 BID fractions were planned and delivered using a 6 MV TomoTherapy unit (Accuray). To provide a uniform dose to the entire patient length, the treatment was split into 2 adjacent fields junctioned in the thigh region. Our standard clinical practice involves in vivo dosimetry with MOSFETs for each TBI fraction and TLDs for at least one fraction of the TMI treatment for dose verification. In this study we also used OSLDs. Individual calibration coefficients were obtained for the OSLDs based on irradiations in a solid water phantom to the dose of 50 cGy from Elekta Synergy 10 MV (TBI) and 6 MV (TMI) beams. Calibration coefficients were calculated based on the OSLDs readings taken 2 hrs post-irradiation. For in vivo dosimetry OSLDs were placed alongside MOSFETs for TBI patients and in approximately the same locations as the TLDs for TMI patients. OSLDs were read 2 hours post treatment and compared to the MOSFET and TLD results. Results: OSLD measured doses agreed within 5% with MOSFET and TLD results, with the exception of the junction region in the TMI patient due to very high dose gradient and difficulty of precise and reproducible detector placement. Conclusion: OSLDs are useful for in vivo dosimetry of TBI and TMI patients. The quick post-treatment readout is an advantage over TLDs, allowing the results to be obtained between BID fractions, while wireless detectors are advantageous over MOSFETs for treatments involving a moving couch.

  19. Dose Escalation of Total Marrow Irradiation With Concurrent Chemotherapy in Patients With Advanced Acute Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation

    SciTech Connect

    Wong, Jeffrey Y.C.; Forman, Stephen; Somlo, George; Liu An; Schultheiss, Timothy; Radany, Eric; Palmer, Joycelynne; Stein, Anthony

    2013-01-01

    Purpose: We have demonstrated that toxicities are acceptable with total marrow irradiation (TMI) at 16 Gy without chemotherapy or TMI at 12 Gy and the reduced intensity regimen of fludarabine/melphalan in patients undergoing hematopoietic cell transplantation (HCT). This article reports results of a study of TMI combined with higher intensity chemotherapy regimens in 2 phase I trials in patients with advanced acute myelogenous leukemia or acute lymphoblastic leukemia (AML/ALL) who would do poorly on standard intent-to-cure HCT regimens. Methods and Materials: Trial 1 consisted of TMI on Days -10 to -6, etoposide (VP16) on Day -5 (60 mg/kg), and cyclophosphamide (CY) on Day -3 (100 mg/kg). TMI dose was 12 (n=3 patients), 13.5 (n=3 patients), and 15 (n=6 patients) Gy at 1.5 Gy twice daily. Trial 2 consisted of busulfan (BU) on Days -12 to -8 (800 {mu}M min), TMI on Days -8 to -4, and VP16 on Day -3 (30 mg/kg). TMI dose was 12 (n=18) and 13.5 (n=2) Gy at 1.5 Gy twice daily. Results: Trial 1 had 12 patients with a median age of 33 years. Six patients had induction failures (IF), and 6 had first relapses (1RL), 9 with leukemia blast involvement of bone marrow ranging from 10%-98%, 5 with circulating blasts (24%-85%), and 2 with chloromas. No dose-limiting toxicities were observed. Eleven patients achieved complete remission at Day 30. With a median follow-up of 14.75 months, 5 patients remained in complete remission from 13.5-37.7 months. Trial 2 had 20 patients with a median age of 41 years. Thirteen patients had IF, and 5 had 1RL, 2 in second relapse, 19 with marrow blasts (3%-100%) and 13 with peripheral blasts (6%-63%). Grade 4 dose-limiting toxicities were seen at 13.5 Gy (stomatitis and hepatotoxicity). Stomatitis was the most frequent toxicity in both trials. Conclusions: TMI dose escalation to 15 Gy is possible when combined with CY/VP16 and is associated with acceptable toxicities and encouraging outcomes. TMI dose escalation is not possible with BU/VP16 due to

  20. Postgrafting immunosuppression with sirolimus and cyclosporine facilitates stable mixed hematopoietic chimerism in dogs given sublethal total body irradiation before marrow transplantation from DLA-identical littermates.

    PubMed

    Hogan, William J; Little, Marie-Térèse; Zellmer, Eustacia; Friedetzky, Anke; Diaconescu, Razvan; Gisburne, Serina; Lee, Richard; Kuhr, Christian; Storb, Rainer

    2003-08-01

    We studied the value of postgrafting immunosuppression with sirolimus (SRL) and cyclosporine (CSP) in enhancing engraftment of dog leukocyte antigen-identical littermate marrow after nonmyeloablative conditioning in a canine model. Dogs received either 2 Gy (n=7) or 1 Gy (n=5) total body irradiation (TBI), followed by postgrafting immunosuppression with SRL and CSP. In the first cohort, all 7 dogs showed rapid initial engraftment. One engrafted dog died on day 21 due to hemorrhagic pneumonitis. Durable engraftment was seen in 5 of 6 remaining dogs, with a median follow-up of >48 (range, >32 to >56) weeks. The sixth dog rejected the marrow graft (as assessed by variable number of tandem repeats) at 11 weeks; however, a subsequent skin graft from the same marrow donor did not undergo acute cellular rejection, suggesting donor-specific tolerance. In the second cohort, all 5 dogs rejected the marrow graft at a median of 9 weeks (range, 3-11 weeks). We conclude that SRL/CSP is as effective as a previously studied combination of mycophenolate mofetil and CSP at establishing durable marrow engraftment after sublethal conditioning. PMID:12931117

  1. Diphthongs in the repopulated vowel space

    NASA Astrophysics Data System (ADS)

    Bogacka, Anna

    2005-04-01

    The study examined 8 British English diphthongs produced by Polish learners of English, testing the diphthongs' quality, duration, nasalization, and occurrence of glottal stops before the diphthongs. There were twelve conditions in which the diphthongs were tested: word-initial, word-final, before a voiced obstruent, before a voiceless obstruent, before a nasal consonant, and before a nasal consonant followed by a fricative, and each of these conditions was tested in a stressed and unstressed position. The diphthongs were tested in real words, embedded in sentences, controlled for the stress position, rhythmic units, and length. The sentences were read by 8 female and 8 male Polish learners of English and control subjects. The aim of the phonetic analysis done with Praat, and employing the methodologies used by Flege (1995) for SLA and Peeters (1991) and Jacewicz, Fujimara, and Fox (2003) for diphthongs, is to examine the shape of the restructured vowel space (Liljencrants and Lindblom 1972; Stevens 1989). The approach taken here is termed Vowel Space Repopulation to emphasize that the vowel space of Polish speakers of English is re-structured by new categories in complex ways which are not adequately captured by traditional notions such as ``transfer,'' ``interference,'' or ``interlanguage.''

  2. Transplantation tolerance in primates following total lymphoid irradiation and allogeneic bone marrow injection. I. Orthoptic liver allographs

    SciTech Connect

    Myburgh, J.A.; Smit, J.A.; Browde, S.; Hill, R.R.H.

    1980-05-01

    Fractionated total lymphoid irradiation (TLI) and allogeneic bone marrow (BM) injection have been reported to produce stable chimerism without graft-versus-host disease (GVHD) in inbred mice and rats and mongrel dogs, and transplantation tolerance for skin and heart grafts in rodents. This concept has been studied in outbred chacma baboons receiving orthotopic liver allografts with the use of five different irradiation protocols. Eight fractions of 200 rad to the whole torso, followed immediately by allogeneic BM injections, and liver grafts from the BM donors 3 to 4 weeks later resulted in markedly prolonged survivals of 63 to 106 days in four baboons (median survival of untreated controls 19 days). Only one of the four animals died directly from the effects of rejection. BM chimerism was demonstrated in two baboons. There were no clinical or histological signs of GVHD in any of the animals. Two fractions of TLI, totaling 800 rad, 23 hr apart and followed immediately by BM injection and liver grafting resulted in profound thrombocytopenia and death form intraperitoneal hemorrhage in four of five baboons. In one animal BM injection and liver transplantation were delayed for 75 days. The baboon is still alive more than 6 months later. Three groups received single doses of 300, 400, and 500 rad to the whole torso, followed by allogeneic BM injections 1 and 2 weeks later, and liver transplants from their BM donors after an additional 3 to 4 weeks. The four baboons receiving 300 rad survived for 42, 86, 123, and >180 days. Two of the four baboons receiving 400 rad died of septic intraabdominal complications with minimal or no evidence of rejection. Fourh of the five baboons receiving 500 rad died from rejection.

  3. [The influence of consecutive application of B-190 preparation and interleukin-1beta on survival rate and bone marrow hematopoiesis of irradiated mice].

    PubMed

    Grebeniuk, A N; Zatsepin, V V; Aksenova, N V; Nazarov, V B; Vlasenko, T N

    2010-01-01

    The purpose of research was the experimental estimation of efficiency of consecutive application of a radioprotector B-190 and means of emergency therapy of radiating injury interleukin-1beta at acute irradiation. An estimation of treatment-and-prophylactic action of the given circuit of introduction of preparations carried out by studying 30 day-survival and average life expectancy of the lost animals, research of bone marrow hemopoiesis. It is established, that consecutive application of a radioprotector B-190 in a doze of 50 mg/kg for 15 mines up to an irradiation and interleukin-1beta in a doze of 50 mkg/kg through 15 mines after irradiating increases survival and prevents decrease in quantity of CFU-S9 at the irradiated mice in the greater degree, than their isolated introduction. PMID:20968059

  4. Recovery of immune functions in dogs after total body irradiation and transplantation of autologous blood or bone marrow cells

    SciTech Connect

    Pruemmer, O.R.; Raghavachar, A.; Fliedner, T.M.

    1985-10-01

    The restoration of immune functions was followed in dogs for 101 days after fractionated total body irradiation and autologous transfusion of peripheral blood leukocytes (PBL) or bone marrow (BM) cells. Median numbers of 0.9 X 10(5) granulocyte-macrophage progenitor cells per kilogram of body weight were transferred in either group of recipients. The following parameters recovered more rapidly in PBL recipients as opposed to BM recipients: total blood lymphocyte, T- and B-cell counts, serum levels of immunoglobulins IgM and IgA, in vitro blastogenic responses after stimulation with concanavalin A and pokeweed mitogen, and in vitro plasma cell formation after polyclonal B-cell activation with pokeweed mitogen with or without lipopolysaccharide. No major differences were noted for the restoration of serum IgG levels. Circulating lymphocyte and T-cell numbers remained subnormal for more than three months in both groups, whereas B-cell numbers and serum levels of IgA continued to be depressed in BM recipients only. Thus, autologous PBL restored immune functions more rapidly than did BM. Transplantation of PBL, alone or in addition to autologous BM, might also shorten the period of immunodeficiency after cytoreduction in a variety of malignancies in man.

  5. Functional screen identifies regulators of murine hematopoietic stem cell repopulation

    PubMed Central

    Holmfeldt, Per; Ganuza, Miguel; Marathe, Himangi; He, Bing; Hall, Trent; Kang, Guolian; Moen, Joseph; Pardieck, Jennifer; Saulsberry, Angelica C.; Cico, Alba; Gaut, Ludovic; McGoldrick, Daniel; Finkelstein, David; Tan, Kai

    2016-01-01

    Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp521. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3−/− HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host. PMID:26880577

  6. Preconditioning of the liver for efficient repopulation by primary hepatocyte transplants.

    PubMed

    Krause, Petra; Rave-Frank, Margret; Christiansen, Hans; Koenig, Sarah

    2014-01-01

    The therapeutic potential of liver cell transplantation has been demonstrated in multiple clinical studies to correct hereditary metabolic or chronic liver diseases. However, there are several outstanding issues, which need to be investigated: most notably donor cell engraftment and the subsequent selective expansion of transplanted cells. This protocol describes the preconditioning of the liver in a dipeptidyl peptidase-IV (DPPIV(-))-deficient rat model of efficient repopulation utilizing a selective external beam irradiation technique combined with regional transient portal ischemia (RTPI). Irradiation of the host liver impairs endogenous cell division, and the subsequent RTPI constitutes a strongly proliferative stimulus. Transplanted cells benefit from this stimulus, whereas endogenous cells have no ability to respond, due to a reduction in the mitotic capacity of the host liver. As described here, an effective preparative regime for liver repopulation is external beam liver irradiation in the form of a single dose of 25 Gy applied to the whole organ followed (4 days later) by RTPI of the right liver lobes lasting 90 min. After 1 h of reperfusion, the donor hepatocytes may be transplanted directly into the spleen as implantation site for further redistribution into the portal system and liver. This preparative regime certainly has the potential to be implemented in the clinic, since neither toxins nor highly potent carcinogens are used.

  7. Influence of radiation field and fractionation schedule of total lymphoid irradiation (TLI) on the induction of suppressor cells and stable chimerism after bone marrow transplantation in mice

    SciTech Connect

    Waer, M.; Ang, K.K.; van der Schueren, E.; Vandeputte, M.

    1984-02-01

    When BALB/c mice received 17 daily fractions of 2 Gy each of total lymphoid irradiation (TLI, total dose 34 Gy) and 30 x 10/sup 6/ C/sub 57/ B1 bone marrow cells (BM) on the day after the last fraction, stable bone marrow chimerism without signs of graft-vs-host disease (GVHD) was obtained in 84% of the animals. On the contrary, in BALB/c mice receiving only seven fractions of TLI (total dose 14 Gy), all bone marrow grafts were rejected. When the last two fractions of a 14-Gy TLI course were given without shielding the extra lymphatic tissues (combined total lymphoid + total body irradiation, TLBI), chimerism could be induced in 53% of the animals. When this 14-Gy TLBI schedule was used, it was even possible to administer four fractions per day (multiple fractions per day schedule, MFD), thus reducing the overall treatment time to 2 consecutive days. After this concentrated form of TLBI, chimerism was detected in 35% of the animals. As in the 34-Gy TLI schedule, graft-vs-host reaction could not be prevented in the 14-Gy TLBI schedule when spleen lymphocytes (10 x 10/sup 6/) were added to the BM inocolum. Leucopenia or suppression of the phytohaemagglutinin (PHA)-induced blastogenesis could not predict which schedule would result in a successful allogeneic bone marrow take. Suppressor cells of the mixed lymphocyte reaction, on the other hand, were only found in the spleen of BALB/c mice treated with the TLI or TLBI schedules, which also resulted in stable bone marrow chimerism.

  8. Recruitment of Bone Marrow-Derived Valve Interstitial Cells is a Normal Homeostatic Process

    PubMed Central

    Hajdu, Zoltan; Romeo, Stephen J.; Fleming, Paul A.; Markwald, Roger R.; Visconti, Richard P.; Drake, Christopher J.

    2011-01-01

    Advances in understanding of the maintenance of the cardiac valves during normal cardiac function and response to injury have lead to several novel findings, including that there is contribution of extra-cardiac cells to the major cellular population of the valve: the valve interstitial cell (VIC). While suggested to occur in human heart studies, we have been able to experimentally demonstrate, using a mouse model, that cells of bone marrow hematopoietic stem cell origin engraft into the valves and synthesize collagen type I. Based on these initial findings, we sought to further characterize this cell population in terms of its similarity to VICs and begin to elucidate its contribution to valve homeostasis. To accomplish this, chimeric mice whose bone marrow was repopulated with enhanced green fluorescent protein (EGFP) expressing total nucleated bone marrow cells were used to establish a profile of EGFP+ valve cells in terms of their expression of hematopoietic antigens, progenitor markers, fibroblast- and myofibroblast-related molecules, as well as their distribution within the valves. Using this profile, we show that normal (non-irradiated, non-transplanted) mice have BM-derived cell populations that exhibit identical morphology and phenotype to those observed in transplanted mice. Collectively, our findings establish that the engraftment of bone marrow-derived cells occurs as part of normal valve homeostasis. Further, our efforts demonstrate that the use of myeloablative irradiation, which is commonly employed in studies involving bone marrow transplantation, does not elicit changes in the bone marrow-derived VIC phenotype in recipient mice. PMID:21871458

  9. Hyperfractionation versus single dose irradiation in human acute lymphocytic leukemia cells: application to TBI for marrow transplantation.

    PubMed

    Shank, B

    1993-04-01

    A major purpose of total body irradiation (TBI) for bone marrow transplantation in leukemia patients is to help eradicate all leukemia cells; the ideal regimen has not yet been determined. To answer basic questions regarding leukemic cell survival kinetics, a human acute lymphoblastic leukemia (ALL) cell line (Reh), with the common ALL antigen (CALLA-positive), has been used to assess in vitro the efficacy of one widely used hyperfractionated TBI (HTBI) regimen versus single dose TBI (SDTBI). The regimen studied in this model was 1.2-1.25 Gy/fraction, 3 fractions/day, 5 h apart each day, for 5 days (11-12 fractions) for a total dose of 13.2-15.0 Gy. It was found that: (i) cell survival was consistent with the linear-quadratic model for early responding tissues (alpha/beta = 7.0 Gy). (ii) The change in shape of the 'effective' cell survival curve for three fractions/day was consistent with the hypothesis that there was complete repair between fractions. (iii) Cell regrowth between fractions was minimal (< or = 5%). (iv) Division delay between fractions (2.9 h/Gy) could explain the small contribution to the survival curve of regrowth between fractions. (v) For a full HTBI course to 15 Gy, cell survival was predicted to be approximately 5 x 10(-5), compared with approximately 10(-3) for a low dose rate (0.04-0.07 Gy/min) SDTBI to 10 Gy; the latter projected from the initial slope of the high dose rate, single dose survival curve. PMID:8327730

  10. Interplay effects between dose distribution quality and positioning accuracy in total marrow irradiation with volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Navarria, Piera; Reggiori, Giacomo; Tomatis, Stefano; Alongi, Filippo; Scorsetti, Marta; Castagna, Luca; Sarina, Barbara; Nicolini, Giorgia; Fogliata, Antonella; Cozzi, Luca

    2013-11-15

    Purpose: To evaluate the dosimetric consequences of inaccurate isocenter positioning during treatment of total marrow (lymph-node) irradiation (TMI-TMLI) using volumetric modulated arc therapy (VMAT).Methods: Four patients treated with TMI and TMLI were randomly selected from the internal database. Plans were optimized with VMAT technique. Planning target volume (PTV) included all the body bones; for TMLI, lymph nodes and spleen were considered into the target, too. Dose prescription to PTV was 12 Gy in six fractions, two times per day for TMI, and 2 Gy in single fraction for TMLI. Ten arcs on five isocenters (two arcs for isocenter) were used to cover the upper part of PTV (i.e., from cranium to middle femurs). For each plan, three series of random shifts with values between −3 and +3 mm and three between −5 and +5 mm were applied to the five isocenters simulating involuntary patient motion during treatment. The shifts were applied separately in the three directions: left–right (L-R), anterior–posterior (A-P), and cranial–caudal (C-C). The worst case scenario with simultaneous random shifts in all directions simultaneously was considered too. Doses were recalculated for the 96 shifted plans (24 for each patient).Results: For all shifts, differences <0.5% were found for mean doses to PTV, body, and organs at risk with volumes >100 cm{sup 3}. Maximum doses increased up to 15% for C-C shifted plans. PTV covered by the 95% isodose decreased of 2%–8% revealing target underdosage with the highest values in C-C direction.Conclusions: The correct isocenter repositioning of TMI-TMLI patients is fundamental, in particular in C-C direction, in order to avoid over- and underdosages especially in the overlap regions. For this reason, a dedicated immobilization system was developed in the authors' center to best immobilize the patient.

  11. Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel field junction technique

    SciTech Connect

    Zeverino, Michele; Agostinelli, Stefano; Taccini, Gianni; Cavagnetto, Francesca; Garelli, Stefania; Gusinu, Marco; Vagge, Stefano; Barra, Salvina; Corvo, Renzo

    2012-10-01

    Given the limitations in the travel ability of the helical tomotherapy (HT) couch, total marrow irradiation (TMI) has to be split in 2 segments, with the lower limbs treated with feet first orientation. The aim of this work is to present a planning technique useful to reduce the dose inhomogeneity resulting from the matching of the 2 helical dose distributions. Three HT plans were generated for each of the 18 patients enrolled. Upper TMI (UTMI) and lower TMI (LTMI) were planned onto the whole-body computed tomography (CT) and on the lower-limb CT, respectively. A twin lower TMI plan (tLTMI) was designed on the whole-body CT. Agreement between LTMI and tLTMI plans was assessed by computing for each dose-volume histogram (DVH) structure the {gamma} index scored with 1% of dose and volume difference thresholds. UTMI and tLTMI plans were summed together on the whole-body CT, enabling the evaluation of dose inhomogeneity. Moreover, a couple of transition volumes were used to improve the dose uniformity in the abutment region. For every DVH, a number of points >99% passed the {gamma} analysis, validating the method used to generate the twin plan. The planned dose inhomogeneity at the junction level resulted within {+-}10% of the prescribed dose. Median dose reduction to organs at risk ranged from 30-80% of the prescribed dose. Mean conformity index was 1.41 (range 1.36-1.44) for the whole-body target. The technique provided a 'full helical' dose distribution for TMI treatments, which can be considered effective only if the dose agreement between LTMI and tLTMI plans is met. The planning of TMI with HT for the whole body with adequate dose homogeneity and conformity was shown to be feasible.

  12. Linear Accelerator-Based Intensity-Modulated Total Marrow Irradiation Technique for Treatment of Hematologic Malignancies: A Dosimetric Feasibility Study

    SciTech Connect

    Yeginer, Mete; Roeske, John C.; Radosevich, James A.; Aydogan, Bulent

    2011-03-15

    Purpose: To investigate the dosimetric feasibility of linear accelerator-based intensity-modulated total marrow irradiation (IM-TMI) in patients with hematologic malignancies. Methods and Materials: Linear accelerator-based IM-TMI treatment planning was performed for 9 patients using the Eclipse treatment planning system. The planning target volume (PTV) consisted of all the bones in the body from the head to the mid-femur, except for the forearms and hands. Organs at risk (OAR) to be spared included the lungs, heart, liver, kidneys, brain, eyes, oral cavity, and bowel and were contoured by a physician on the axial computed tomography images. The three-isocenter technique previously developed by our group was used for treatment planning. We developed and used a common dose-volume objective method to reduce the planning time and planner subjectivity in the treatment planning process. Results: A 95% PTV coverage with the 99% of the prescribed dose of 12 Gy was achieved for all nine patients. The average dose reduction in OAR ranged from 19% for the lungs to 68% for the lenses. The common dose-volume objective method decreased the planning time by an average of 35% and reduced the inter- and intra- planner subjectivity. Conclusion: The results from the present study suggest that the linear accelerator-based IM-TMI technique is clinically feasible. We have demonstrated that linear accelerator-based IM-TMI plans with good PTV coverage and improved OAR sparing can be obtained within a clinically reasonable time using the common dose-volume objective method proposed in the present study.

  13. Measuring stem cell frequency in epidermis: A quantitative in vivo functional assay for long-term repopulating cells

    NASA Astrophysics Data System (ADS)

    Schneider, T. E.; Barland, C.; Alex, A. M.; Mancianti, M. L.; Lu, Y.; Cleaver, J. E.; Lawrence, H. J.; Ghadially, R.

    2003-09-01

    Epidermal stem cells play a central role in tissue homeostasis, wound repair, tumor initiation, and gene therapy. A major impediment to the purification and molecular characterization of epidermal stem cells is the lack of a quantitative assay for cells capable of long-term repopulation in vivo, such as exists for hematopoietic cells. The tremendous strides made in the characterization and purification of hematopoietic stem cells have been critically dependent on the availability of competitive transplantation assays, because these assays permit the accurate quantitation of long-term repopulating cells in vivo. We have developed an analogous functional assay for epidermal stem cells, and have measured the frequency of functional epidermal stem cells in interfollicular epidermis. These studies indicate that cells capable of long-term reconstitution of a squamous epithelium reside in the interfollicular epidermis. We find that the frequency of these long-term repopulating cells is 1 in 35,000 total epidermal cells, or in the order of 1 in 104 basal epidermal cells, similar to that of hematopoietic stem cells in the bone marrow, and much lower than previously estimated in epidermis. Furthermore, these studies establish a novel functional assay that can be used to validate immunophenotypic markers and enrichment strategies for epidermal stem cells, and to quantify epidermal stem cells in various keratinocyte populations. Thus further studies using this type of assay for epidermis should aid in the progress of cutaneous stem cell-targeted gene therapy, and in more basic studies of epidermal stem cell regulation and differentiation.

  14. CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages.

    PubMed

    Matsuoka, S; Ebihara, Y; Xu, M; Ishii, T; Sugiyama, D; Yoshino, H; Ueda, T; Manabe, A; Tanaka, R; Ikeda, Y; Nakahata, T; Tsuji, K

    2001-01-15

    The CD34 antigen serves as an important marker for primitive hematopoietic cells in therapeutic transplantation of hematopoietic stem cells (HSC) and gene therapy, but it has remained an open question as to whether or not most HSC express CD34. Using a competitive long-term reconstitution assay, the results of this study confirm developmental changes in CD34 expression on murine HSC. In fetuses and neonates, CD34 was expressed on Lin(-)c-Kit(+) long-term repopulating HSC of bone marrow (BM), liver, and spleen. However, CD34 expression on HSC decreased with aging, and in mice older than 10 weeks, HSC were most enriched in the Lin(-)c-Kit(+)CD34(-) marrow cell fraction. A second transplantation was performed from primary recipients who were transplanted with neonatal Lin(-)c-Kit(+) CD34(high) HSC marrow. Although donor-type HSC resided in CD34-expressing cell fraction in BM cells of the first recipients 4 weeks after the first transplantation, the stem cell activity had shifted to Lin(-)c-Kit(+)CD34(-) cells after 16 weeks, indicating that adult Lin(-)c-Kit(+)CD34(-) HSC are the progeny of neonatal CD34-expresssing HSC. Assays for colony-forming cells showed that hematopoietic progenitor cells, unlike HSC, continue to express CD34 throughout murine development. The present findings are important because the clinical application of HSC can be extended, in particular as related to CD34-enriched HSC and umbilical cord blood HSC.

  15. Natural resistance of lethally irradiated F1 hybrid mice to parental marrow grafts is a function of H-2/Hh-restricted effectors

    SciTech Connect

    Daley, J.P.; Nakamura, I.

    1984-04-01

    The natural resistance of F1 hybrid mice against parental bone marrow grafts is thought to be mediated by natural killer (NK)-like effector cells. However, unlike the NK cell activity against a wide range of tumors and normal cells, hybrid resistance is characterized by the immunogenetic specificity controlled by a set of unique noncodominant genes denoted as Hh. Two alternative hypotheses can account for the specificity. Thus, the specificity may reflect either the Hh restriction of effectors or the Hh gene control of mechanisms regulating non-Hh-restricted effector activity. In this study, therefore, we tested the recognition specificity of putative effectors mediating hybrid resistance in lethally irradiated H-2b/d and H-2b/k F1 hybrid mice to the engraftment of parental H-2b bone marrow. As a direct means of defining the effector specificity, rejection of parental bone marrow grafts was subjected to competitive inhibition in situ by irradiated tumor cells. Of the 16 independent lines of lymphoma and other hemopoietic tumor cells tested, the ability to inhibit hybrid resistance was the exclusive property of all tumors derived from mice homozygous for the H-2Db region, regardless of whether the tumor cells were susceptible or resistant to NK cell-mediated cytotoxicity in vitro. Four cell lines heterozygous for the H-2Db were noninhibitory, including one that is susceptible to natural killing. Pretreatment of the F1 hosts with an interferon inducer augmented the resistance with no alteration in the recognition specificity of effector cells. Therefore, natural resistance to parental H-2b bone marrow grafts was mediated by effectors restricted by the H-2Db/Hh-1b gene(s), and not by the nonrestricted NK cells detectable in conventional in vitro assays.

  16. Shared oxidative pathways in response to gravity-dependent loading and gamma-irradiation of bone marrow-derived skeletal cell progenitors.

    PubMed

    Kondo, H; Limoli, C; Searby, N D; Almeida, E A C; Loftus, D J; Vercoutere, W; Morey-Holton, E; Giedzinski, E; Mojarrab, R; Hilton, D; Globus, R K

    2007-01-01

    Astronauts are exposed to radiation during space travel under conditions of dramatically reduced weightbearing activity. However, we know little about how gravity-dependent loading affects tissue sensitivity to radiation. We hypothesize gravity-dependent loading and irradiation share common molecular signaling pathways in bone cell progenitors that are sensitive to stress-induced reactive oxygen species (ROS), species capable of impacting skeletal health. To address this, progenitor cells with potential to differentiate into bone-forming osteoblasts were extracted from bone marrow, then cells were centrifuged (from 5-gravity (g) to 50-g for 5-180 min) on day 2 in culture, or were exposed to a single dose (1-5 Gy) of irradiation (137Cs 1 Gy/min) on day 3 or 4. Production of ROS was measured via fluorescence-activated cell sorting (FACS) using an oxidation-sensitive dye. Cell numbers were assessed by measurement of DNA content (CyQUANT). Osteoblastogenesis was estimated by measurement of alkaline phosphatase (ALP) activity and production of mineralized matrix (Alizarin Red staining). Transient centrifugation was a potent stimulus to bone marrow stromal cells, increasing production of ROS (1.2-fold), cell number (1.5-fold to 2.2-fold), and ALP activity (2.7-fold). Radiation also caused dose- and time-dependent increases in ROS production (1.1-fold to 1.4-fold) by bone marrow stromal cells, but inhibited subsequent osteoblast differentiation. In summary, gravity-dependent loading by centrifugation stimulated ROS production and increased numbers of osteoblasts. Although radiation increased production of ROS by bone marrow stromal cells, cell number and differentiation of osteoprogenitors appeared reduced. We conclude gravity-dependent loading and radiation both stimulate production of ROS and affect critical bone cell functions including growth and differentiation.

  17. Kinetics of gamma-H2AX induction and removal in bone marrow and testicular cells of mice after X-ray irradiation.

    PubMed

    Paris, Lorena; Cordelli, Eugenia; Eleuteri, Patrizia; Grollino, Maria Giuseppa; Pasquali, Emanuela; Ranaldi, Roberto; Meschini, Roberta; Pacchierotti, Francesca

    2011-07-01

    Male germ cells have been shown to differ in their DNA damage response (DDR) with respect to somatic cells. In addition, DDR pathways are modulated along spermatogenesis, accompanying profound chromatin modifications. Histone H2AX phosphorylation is a fundamental step of DDR. Few data are available on the long-term kinetics of phosphorylated H2AX (γ-H2AX) after in vivo irradiation. We have investigated, by microscopic and flow cytometric immunochemistry, γ-H2AX induction and removal in testicular cells of irradiated mice, in comparison with bone marrow cells. In unirradiated testicular cells, much higher levels of γ-H2AX were measured by flow cytometry with respect to bone marrow cells. Irradiation induced a redistribution of γ-H2AX into discrete foci detectable by microscopy. In irradiated bone marrow, the percentage of labelled cells peaked at 1 h and rapidly declined, in agreement with data on in vitro cell lines. In contrast, spermatocytes and round spermatids showed persistent labelling until 48 h. During this time, in spermatids, topological changes were observed in γ-H2AX foci from a pattern of many uncountable dots to a pattern of few large spots. Observations of testicular sections confirmed this trend in the reduction of foci number in spite of substantially invariable percentages of labelled cells in the analysed timeframe. To assess whether γ-H2AX persistence in testicular cells was due to unrepaired DNA breaks, we performed comet assay and immunofluorescence analysis of Mdc1, a marker of DDR different from γ-H2AX. Comet assay showed that most breaks were repaired within 2 h. Forty-eight hours after irradiation, contrary to γ-H2AX foci that remained detectable in 80% of initially labelled cells, Mdc1 foci were observed in only 20-30% of cells. These data suggest that, at long times after irradiation, mechanisms additional to impairment of DNA break repair may account for the long persistence of γ-H2AX foci in male germ cells.

  18. Gamma- and neutron continuous irradiations at low doses can increase stromal progenitor cell (cfu-f) number in mouse bone marrow

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Tsetlin, V.; Bueverova, E.; Payushina, O.; Butorina, N.; Starostin, V.

    Low doses of continuous gamma and neutron irradiation chosen in these experiments corresponded to those aboard a spacecraft (Mitricas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice at the age of 3-4 months were used. The experimental groups of mice were exposed for 10 days to gamma irradiation (total dose 1.5 cGy, dose rate 0.15 cGy/day) or neutron irradiation (neutrons with energy of 4 MeV at flow in the range from 10-5 to 10-6 n/cm2, flow densities from 1 to 30 n/cm2sec). Gamma irradiation stimulated the proliferative rate of femoral CFU-F and raised their number 1,5-4,5-fold. The size of ectopic marrow transplants from gamma irradiated donors also increased. However, no changes in CFU-S proliferative rate and their number were observed. Neutron irradiation at total absorbed dose of 48x10-3 cGy (total neutron flow 2,8x106 n/cm2) produced a 3-fold increase of femoral CFU-F number, but CFU-S number remained unchanged. If total absorbed dose was lowered to 7x10-3 cGy (total neutron flow 1,3x105 n/cm2) CFU-F number remained at the control level. Therefore, the effect of radiation hormesis that caused by the neutron irradiation was observed at doses much lower than those of gamma irradiation. Supported in part by Russian Ministry of Education (projects ``Scientific Schools'' - 1629.2003.4).

  19. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation

    PubMed Central

    Chen, Juan-Juan; Gao, Xiao-Tong; Yang, Lan; Fu, Wei; Liang, Liang; Li, Jun-Chang; Hu, Bin; Sun, Zhi-Jian; Huang, Si-Yong; Zhang, Yi-Zhe; Liang, Ying-Min; Qin, Hong-Yan; Han, Hua

    2016-01-01

    Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy. PMID:27188577

  20. Bacterial repopulation of drinking water pipe walls after chlorination.

    PubMed

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water. PMID:27483985

  1. Bacterial repopulation of drinking water pipe walls after chlorination.

    PubMed

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  2. Continuous gamma and neutron irradiation at low doses can increase the number of stromal progenitor cell (CFU-F) in mouse bone marrow

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E. I.; Tsetlin, V. V.; Bueverova, E. I.; Payushina, O. I.; Butorina, N. N.; Khrushchov, N. G.; Starostin, V. I.

    Experimental groups of male and female F1 (CBA × C57Bl/6) mice at the age of 3-4 months were exposed for 10 days to gamma irradiation (total dose 1.5 cGy, dose rate 0.15 cGy/day) or neutron irradiation (neutrons at average energy of 4.5 MeV at a total neutron flux ranging from 10 5 to 10 6 cm -2 and neutron flux density from 1 to 30 cm -2 s -1). These radiation doses were chosen so as to correspond to those received aboard spacecraft. [Mitrikas, V.G., Tsetlin, V.V., 2000. Radiation control onboard the MIR orbital manned station during the 22th solar cycle. Kosm. Issled. 38(2), 113-118.] Gamma irradiation stimulated the proliferation of femoral CFU-F, and their number increased by a factor of 1.5-4.5. The ectopic marrow grafts from γ-irradiated donors also increased in size. However, no changes in CFU-S proliferation rate and their number were observed. Neutron irradiation at a total absorbed dose of 2 × 10 -1 cGy (total neutron flux 2.8 × 10 7 cm -2) produced a 1.5-3-fold increase in the number of femoral CFU-F, but that of CFU-S remained unchanged. At a lower total absorbed dose 0.82 × 10 -2 cGy, total neutron flux 1.3 × 10 6 cm -2, the number of CFU-F remained at the control level. Therefore, the effect of radiation hormesis caused by neutron irradiation was observed at doses much lower than those of gamma irradiation.

  3. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and “early aging” mice

    PubMed Central

    Guest, Ian; Ilic, Zoran; Sell, Stewart

    2015-01-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16–18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best. PMID:26796640

  4. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  5. Bone marrow transplantation across major histocompatibility barriers in mice: II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    SciTech Connect

    Vallera, D.A.; Soderling, C.C.B.; Carlson, G.J.; Kersey, J.H.

    1982-03-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatability barriers.Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then given to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 100-rad TLI. In TLI plus CY-conditioned recipients, it was also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for these findings are discussed. (JMT)

  6. Clonal deletion of self-reactive T cells in irradiation bone marrow chimeras and neonatally tolerant mice. Evidence for intercellular transfer of Mlsa

    PubMed Central

    1989-01-01

    Tolerance to Mlsa has been shown to be associated with clonal deletion of cells carrying TCR beta chain variable regions V beta 6 or V beta 8.1 in mice possessing I-E antigens. To evaluate the rules of tolerance induction to Mlsa we prepared irradiation bone marrow chimeras expressing Mlsa or Mlsb and I-E by different cell types. Deletion of V beta 6+, Mlsa-reactive T cells required the presence of Mlsa and I-E products either on bone marrow-derived cells or on irradiated recipient cells. Tolerance was induced when Mlsa and I-E were expressed by distinct cells of the chimera. Also neonatally tolerized mice exhibited depletion of V beta 6+ cells after injection of I-E- Mlsa spleen cells (DBA/1) into newborn I-E+ Mlsb mice (BALB/c x B10.G)F1. These results suggest that the product of the Mlsa locus is soluble and/or may be transferred from cell to cell and bound to I-E antigens. The chimera experiments also showed that tolerance to Mlsa is H-2 allele independent, i.e., is apparently unrestricted. Differentiation of chimeric (H-2d/Mlsa x H-2q/Mlsb)F1 stem cells in either an H-2d or an H- 2q thymus revealed that tolerance assessed by absence of V beta 6+ T cells is not dependent on the thymically determined restriction specificity of T cells. PMID:2526850

  7. Bone marrow transplantation across major histocompatibility barriers in mice. II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    SciTech Connect

    Vallera, D.A.; Soderling, C.C.; Carlson, G.J.; Kersey, J.H.

    1982-03-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatibility barriers. Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then give to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 200-rad TLI. In TLI plus CY-conditional recipients, we have also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. Furthermore, graft failure in mice receiving normal dosages of anti-Thy-1.2 plus C-treated donor cells was not a strain-restricted phenomenon. Moreover, removal of bone marrow T cells with monoclonal anti-Lyt-1 plus complement also resulted in graft failure in TLI-conditioned recipients. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for there findings are discussed.

  8. The response of the granulocytic progenitor cells (CFU-C) of blood and bone marrow in dogs exposed to low doses of x irradiation

    SciTech Connect

    Nothdurft, W.; Fliedner, T.M.

    1982-01-01

    The effects of whole-body X irradiation on the granulocytic progenitor cell (CFU-C) population in the peripheral blood of dogs were studied over periods of 65 to 90 days after 22, 44, or 88 R using the in vitro agar culture technique. The number of CFU-C per milliliter blood was significantly reduced within 1 day to 15 to 43% of normal after 44 R and between 1 and 6% of normal after 88 R. After 22 R, there was no significant decrease below the preirradiation values. Regeneration of the number of blood CFU-C commenced between Days 14 and 17. This resulted in somewhat subnormal levels between Days 30 and 35 in the 44-R irradiated dogs. In the 88-R exposed dogs, the extent of regeneration at that time was only 32 to 34% of normal. In this latter group, the CFU-C concentration remained subnormal for more than 65 to 90 days, when it reached 40% of the preirradiation value. The CFU-C concentration in the bone marrow expressed as CFU-C/10/sup 5/ nucleated cells or CFU-C/10/sup 5/ mononuclear cells was below 50% of normal between Days 1 and 15 after 88 R. On Days 21 and 22 the concentration of bone marrow CFU-C increased to between 50 and 100% of the perirradiation levels. However, in all dogs the relative numbers of CFU-C in the bone marrow remained subnormal between Days 30 and 56 after exposure. The results suggest that the circulating hemopoietic stem and/or progenitor cells may serve as a valuable indicator of low-level radiation exposure.

  9. Characterization of hemopoietic stem cell chimerism in antibody-facilitated bone marrow chimeras

    SciTech Connect

    Francescutti, L.H.; Gambel, P.; Wegmann, T.G.

    1985-07-01

    The authors have previously described a model for bone marrow transplantation that involves preparation of the host with monoclonal antibody against class I or class II antigens instead of irradiation or cytotoxic drugs. This allows engraftment and subsequent repopulation of the host by donor tissue. They have previously reported on chimerism in the peripheral blood of P1----(P1 X P2)F1 animals. In this report, the authors describe the examination of the bone marrow and spleen stem cell chimerism of these antibody-facilitated (AF) chimeras, by determining, with an isozyme assay, the phenotype of methylcellulose colonies grown from stem cells. They have found a correlation between peripheral blood chimerism and the stem cell constitution of both spleen and bone marrow. The peripheral blood chimerism also correlates with the level of chimerism in macrophages derived from peritoneal exudate cells. These findings indicate that assaying the peripheral blood of such chimeras provides an excellent indication of the degree of chimerism at the stem cell level and stands in sharp contrast to the level of chimerism in certain lymphoid compartments.

  10. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    SciTech Connect

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Schumacher, D.; Shulman, H.; Graham, T.; Thomas, E.D.

    1981-11-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs died from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors.

  11. Anti-asialo GM1 antiserum treatment of lethally irradiated recipients before bone marrow transplantation: Evidence that recipient natural killer depletion enhances survival, engraftment, and hematopoietic recovery

    SciTech Connect

    Tiberghien, P.; Longo, D.L.; Wine, J.W.; Alvord, W.G.; Reynolds, C.W. )

    1990-10-01

    Natural killer (NK) cells are reported to have an important role in the resistance of lethally irradiated recipients to bone marrow transplantation (BMT). Therefore, we investigated the effects of recipient NK depletion on survival, chimerism, and hematopoietic reconstitution after lethal irradiation and the transplantation of limiting amounts of T-cell-deficient bone marrow (BM). When administered before BMT, anti-asialo GM1 (ASGM1) antiserum treatment, effective in depleting in vivo NK activity, was associated with a marked increase in survival in 3 of 3 allogeneic combinations (BALB/c into C3H/HeN, C57B1/6, or C3B6F1). This enhanced survival was independent of the susceptibility of each recipient strain to accept BALB/c BM. Moreover, recipient anti-ASGM1 treatment was also effective in increasing survival in recipients of syngeneic BM, suggesting that NK cells can adversely affect engraftment independent of genetically controlled polymorphic cell surface determinants. Analysis of chimerism in surviving animals 2 months post-BMT showed that recipient NK depletion significantly increased the level of donor engraftment when high doses of BM were transplanted. These studies also demonstrated that anti-ASGM1 pretreatment mainly resulted in an increase in extramedullary hematopoiesis in the second and third week after irradiation. Anti-ASGM1 treatment also dramatically accelerated the rate of appearance of donor-derived cells with a higher level of donor-cell engraftment apparent at a time when the differences in survival between NK-depleted and control BMT recipients became significant. Peripheral cell counts were also affected by NK depletion, with significantly enhanced platelet and red blood cell recovery and a moderate increase in granulocyte recovery.

  12. Dynamics of spinal microglia repopulation following an acute depletion.

    PubMed

    Yao, Yao; Echeverry, Stefania; Shi, Xiang Qun; Yang, Mu; Yang, Qiu Zi; Wang, Guan Yun Frances; Chambon, Julien; Wu, Yi Chen; Fu, Kai Yuan; De Koninck, Yves; Zhang, Ji

    2016-01-01

    Our understanding on the function of microglia has been revolutionized in the recent 20 years. However, the process of maintaining microglia homeostasis has not been fully understood. In this study, we dissected the features of spinal microglia repopulation following an acute partial depletion. By injecting intrathecally Mac-1-saporin, a microglia selective immunotoxin, we ablated 50% microglia in the spinal cord of naive mice. Spinal microglia repopulated rapidly and local homeostasis was re-established within 14 days post-depletion. Mac-1-saporin treatment resulted in microglia cell proliferation and circulating monocyte infiltration. The latter is indeed part of an acute, transient inflammatory reaction that follows cell depletion, and was characterized by an increase in the expression of inflammatory molecules and by the breakdown of the blood spinal cord barrier. During this period, microglia formed cell clusters and exhibited a M1-like phenotype. MCP-1/CCR2 signaling was essential in promoting this depletion associated spinal inflammatory reaction. Interestingly, ruling out MCP-1-mediated secondary inflammation, including blocking recruitment of monocyte-derived microglia, did not affect depletion-triggered microglia repopulation. Our results also demonstrated that newly generated microglia kept their responsiveness to peripheral nerve injury and their contribution to injury-associated neuropathic pain was not significantly altered. PMID:26961247

  13. Dynamics of spinal microglia repopulation following an acute depletion

    PubMed Central

    Yao, Yao; Echeverry, Stefania; Shi, Xiang Qun; Yang, Mu; Yang, Qiu Zi; Wang, Guan Yun Frances; Chambon, Julien; Wu, Yi Chen; Fu, Kai Yuan; De Koninck, Yves; Zhang, Ji

    2016-01-01

    Our understanding on the function of microglia has been revolutionized in the recent 20 years. However, the process of maintaining microglia homeostasis has not been fully understood. In this study, we dissected the features of spinal microglia repopulation following an acute partial depletion. By injecting intrathecally Mac-1-saporin, a microglia selective immunotoxin, we ablated 50% microglia in the spinal cord of naive mice. Spinal microglia repopulated rapidly and local homeostasis was re-established within 14 days post-depletion. Mac-1-saporin treatment resulted in microglia cell proliferation and circulating monocyte infiltration. The latter is indeed part of an acute, transient inflammatory reaction that follows cell depletion, and was characterized by an increase in the expression of inflammatory molecules and by the breakdown of the blood spinal cord barrier. During this period, microglia formed cell clusters and exhibited a M1-like phenotype. MCP-1/CCR2 signaling was essential in promoting this depletion associated spinal inflammatory reaction. Interestingly, ruling out MCP-1-mediated secondary inflammation, including blocking recruitment of monocyte-derived microglia, did not affect depletion-triggered microglia repopulation. Our results also demonstrated that newly generated microglia kept their responsiveness to peripheral nerve injury and their contribution to injury-associated neuropathic pain was not significantly altered. PMID:26961247

  14. CD154 blockade and donor-specific transfusions in DLA-identical marrow transplantation in dogs conditioned with 1-Gy total body irradiation.

    PubMed

    Jochum, Christoph; Beste, Mechthild; Zellmer, Eustacia; Graves, Scott S; Storb, Rainer

    2007-02-01

    Stable mixed donor/host chimerism has been reliably established in dogs given a sublethal dose (2 Gy) of total body irradiation (TBI) before and immunosuppression with mycophenolate mofetil (MMF) or rapamycin combined with cyclosporine (CSP) after marrow transplantation from dog leukocyte antigen (DLA)-identical littermates (hematopoietic cell transplantation [HCT]). When TBI was reduced to 1 Gy, only transient engraftment was observed. Here we investigated whether stable engraftment after 1-Gy TBI could be accomplished by reducing host-versus-donor immune responsiveness through preceding CD154 blockade and infusion of donor peripheral blood mononuclear cells (PBMCs). We found that the anti-human CD154 antibody, 5c8, cross-reacted with canine lymphocytes and blocked alloimmune responses in vitro. Based on pharmacokinetic studies, 6 dogs received a single intravenous injection of 5 mg/kg anti-CD154 antibody (on day -5), followed 1 day later by donor PBMCs. On day 0, the dogs were given 1 Gy of TBI and underwent DLA-identical marrow grafts. Postgraft immunosuppression consisted of MMF and CSP. All 6 dogs demonstrated initial engraftment; 3 dogs sustained the engraftment for >26 weeks, whereas 3 dogs rejected their grafts, after 9, 22, and 24 weeks, and survived with autologous recovery. Graft survival was significantly improved over that in 11 historical controls conditioned with 1-Gy TBI and given either MMF or rapamycin with CSP after HCT, all of which rejected their grafts between 3 and 12 weeks (P = .03). Preceding donor PBMC infusion and CD154 blockade improved survival of DLA-identical marrow grafts after 1-Gy TBI. PMID:17241922

  15. Parp-2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice

    PubMed Central

    Farrés, Jordi; Martín-Caballero, Juan; Martínez, Carlos; Lozano, Juan J.; Llacuna, Laura; Ampurdanés, Coral; Ruiz-Herguido, Cristina; Dantzer, Françoise; Schreiber, Valérie; Villunger, Andreas; Bigas, Anna; Yélamos, José

    2016-01-01

    Hematopoietic stem cells self-renew for life to guarantee the continuous supply of all blood cell lineages. Here we show that Poly(ADP-ribose) polymerase-2 (Parp-2) plays an essential role in hematopoietic stem/progenitor cells (HSPC) survival under steady-state conditions and in response to stress. Increased levels of cell death were observed in HSPC from untreated Parp-2−/− mice, but this deficit was compensated by increased rates of self-renewal, associated with impaired reconstitution of hematopoiesis upon serial bone marrow transplantation. Cell death after γ-irradiation correlated with an impaired capacity to repair DNA damage in the absence of Parp-2. Upon exposure to sublethal doses of γ-irradiation, Parp-2−/− mice exhibited bone marrow failure that correlated with reduced long-term repopulation potential of irradiated Parp-2−/− HSPC under competitive conditions. In line with a protective role of Parp-2 against irradiation-induced apoptosis, loss of p53 or the pro-apoptotic BH3-only protein Puma restored survival of irradiated Parp-2−/− mice, whereas loss of Noxa had no such effect. Our results show that Parp-2 plays essential roles in the surveillance of genome integrity of HSPC by orchestrating DNA repair and restraining p53-induced and Puma-mediated apoptosis. The data may affect the design of drugs targeting Parp proteins and the improvement of radiotherapy-based therapeutic strategies. PMID:23678004

  16. Influence of overall treatment time in a fractionated total lymphoid irradiation as an immunosuppressive therapy in allogeneic bone marrow transplantation in mice

    SciTech Connect

    Waer, M.; Ang, K.K.; Vandeputte, M.; Van der Schueren, E.

    1982-11-01

    Three groups of C/sub 57//BL/Ka mice received total lymphoid irradiation (TLI) in a total dose of 34 Gy in three different fractionation schedules. The tolerance of all different schedules was excellent. No difference in the peripheral white blood cell and lymphocyte counts nor the degree of immunosuppression as measured by phytohaemaglutinin or concanavalin A induced blastogenesis and mixed lymphocyte reaction were observed at the end of the treatment and up to 200 days. When bone marrow transplantation was performed one day after the end of each schedule, chimerism without signs of graft versus host disease was induced in all the groups. However, from the results in a limited number of animals it seems that concentrated schedules were less effective for chimerism induction. It has been demonstrated that it is possible to reduce drastically the overall treatment time for TLI before bone marrow transplantation. Further investigations are necessary in order to determine the optimal time-dose-fractionation factors and the different perameters involved in the transplantation.

  17. Influence of overall treatment time in a fractionated total lymphoid irradiation as an immunosuppressive therapy in allogeneic bone marrow transplantation in mice

    SciTech Connect

    Waer, M.; Ang, K.K.; Vandeputte, M.; van der Schueren, E.

    1982-11-01

    Three groups of C/sub 57//BL/Ka mice received total lymphoid irradiation (TLI) in a total dose of 34 Gy in three different fractionation schedules. In the first group daily fractions of 2 Gy were given during 3 1/2 weeks. In the second group 4 to 5 fractions with 3 1/2 hr interval were given each day, thus delivering 17 fractions in 4 days. In the third group three fractions were given daily for two consecutive days and was repeated two times after 8 or 9 days interval, resulting in a total treatment time of 3 1/2 weeks. The tolerance of all different schedules was excellent. No difference in the peripheral white blood cell and lymphocyte counts nor the degree of immunosuppression as measured by phytohaemaglutinin or concanavalin A induced blastogenesis and mixed lymphocyte reaction were observed at the end of the treatment and up to 200 days. When bone marrow transplantation was performed one day after the end of each schedule, chimerism without signs of graft versus host disease was induced in all the groups. However, from the results in a limited number of animals it seems that concentrated schedules were less effective for chimerism induction. It has been demonstrated that it is possible to reduce drastically the overall treatment time for TLI before bone marrow transplantation. Further investigations are necessary in order to determine the optimal time-dose-fractionation factors and the different parameters involved in the transplantation.

  18. Failure of donor lymphocyte infusion to prevent graft rejection in dogs given DLA-identical marrow after 1 Gy of total body irradiation.

    PubMed

    Baron, Frédéric; Sandmaier, Brenda M; Zellmer, Eustacia; Sorror, Mohamed; Storer, Barry; Storb, Rainer

    2006-08-01

    We investigated in a preclinical canine model of hematopoietic cell transplantation (HCT) whether preemptive donor lymphocyte infusion (DLI) given 1 month after HCT could prevent late graft rejection that was the rule in historical dogs given suboptimal conditioning with 1 Gy of total body irradiation (TBI) before and immunosuppression with cyclosporine (CSP) and either mycophenolate mofetil (MMF; n = 6) or rapamycin (n = 5) after dog leukocyte antigen (DLA)-identical marrow transplantation. Nine dogs given DLA-identical marrow after 1 Gy of TBI followed by postgrafting MMF and CSP were studied. A single DLI was given 28-36 days after HCT, either with (n = 5) or without (n = 4) preceding treatment with the immunosuppressive drug pentostatin. Two of the 4 dogs given DLI only maintained stable mixed donor-host chimera beyond 30 weeks after HCT, whereas 2 rejected their grafts, on weeks 10 and 15 after HCT. One of the 5 dogs given pentostatin before DLI maintained a stable mixed donor-host chimera beyond 30 weeks, whereas 4 rejected their grafts, at weeks 8, 12, 12, and 16 after HCT. The 30-week probability of stable mixed chimerism was 33% among dogs given DLI, versus 0% among 11 historical dogs (P = .003). In conclusion, DLI was only moderately effective in preventing graft rejection in this model. Additional immunosuppression with pentostatin did not improve that outcome. The model might be useful in developing potential strategies aimed at preventing graft rejection in patients with low donor chimerism levels. PMID:16864051

  19. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of 60Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration

    PubMed Central

    Bala, Madhu; Gupta, Manish; Saini, Manu; Abdin, M. Z.; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body 60Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain ‘A' mice demonstrated that SBL-1 treatment before 60Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration. PMID:26421051

  20. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of (60)Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration.

    PubMed

    Bala, Madhu; Gupta, Manish; Saini, Manu; Abdin, M Z; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body (60)Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain 'A' mice demonstrated that SBL-1 treatment before (60)Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration. PMID:26421051

  1. Multimodality image guided total marrow irradiation and verification of the dose delivered to the lung, PTV, and thoracic bone in a patient: a case study.

    PubMed

    Hui, Susanta K; Verneris, M R; Froelich, Jerry; Dusenbery, K; Welsh, James S

    2009-02-01

    This work reports our initial experience using multimodality image guidance to improve total marrow irradiation (TMI) using helical tomotherapy. We also monitored the details of the treatment delivery to glean information necessary for the implementation of future adaptive processes. A patient with metastatic Ewing's sarcoma underwent MRI, and bone scan imaging prior to TMI. A whole body kilovoltage CT (kVCT) scan was obtained for intensity modulated TMI treatment planning, including a boost treatment to areas of bony involvement. The delivered dose was estimated by using MVCT images from the helical tomotherapy treatment unit, compared to the expected dose distributions mapped onto the kVCT images. Clinical concerns regarding patient treatment and dosimetric uncertainties were also evaluated. A small fraction of thoracic bone volume received lower radiation dose than the prescribed dose. Reconstructed planned treatment volume (PTV) and the dose delivered to the lung were identical to planned dose. Bone scan imaging had a higher sensitivity for detecting skeletal metastasis compared to MR imaging. However the bone scan lacked sufficient specificity in three dimensions to be useful for planning conformal radiation boost treatments. Inclusion of appropriate imaging modalities improves detection of metastases, which allows the possibility of a radiation dose boost to metastases during TMI. Conformal intensity modulated radiation therapy via helical tomotherapy permitted radiation delivery to metastases in the skull with reduced dose to brain in conjunction with TMI. While TMI reduces irradiation to the lungs, onboard megavoltage computed tomography (MVCT) to verify accurate volumetric dose coverage to marrow-containing thoracic bones may be essential for successful conformal TMI treatment.

  2. Effects of T cell depletion in radiation bone marrow chimeras. I. Evidence for a donor cell population which increases allogeneic chimerism but which lacks the potential to produce GVHD

    SciTech Connect

    Sykes, M.; Sheard, M.; Sachs, D.H.

    1988-10-01

    The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation.

  3. The use of potential of bone marrow allograft and whole-body irradiation in the treatment of leukemia

    SciTech Connect

    Thomas, E.D.

    1982-10-15

    A brief history of the clinical application of marrow transplantation based on knowledge gained from ten years work utilizing the dog as an animal model is summarized. The techniques for marrow transplantation, donor selection, and conditioning of the recipient are described. Thirteen of the first 110 endstage leukemic patients who received allogeneic grafts and six of 16 patients who received syngeneic grafts are alive 6-11 years after grafting. Encouraged by the apparent ''cure'' of leukemia in these poor-risk patients, the Seattle transplant group in 1976 decided to give patients transplants earlier in the course of their disease. Patients with acute lymphoblastic leukemia in second or subsequent relapse were considered to have a poor prognosis. Twenty-two such patients received transplants, with seven surviving in remission 3-5 years later. Nineteen patients with acute nonlymphoblastic leukemia received transplants in first remission and 11 are living in remission 3.5-5.5 years after grafting. The median survival will not be less than 42 months. The problems associated with graft-versus-host disease and recurrence of leukemia and methods aimed at eliminating these problems are discussed.

  4. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation

    PubMed Central

    Wangensteen, Kirk J.; Zhang, Sophia; Greenbaum, Linda E.

    2015-01-01

    The fundamental question of which genes are most important in controlling liver regeneration remains unanswered. We employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah−/− mouse model of hereditary tyrosinemia. We discovered that the transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. Our approach enabled the identification of these factors as important regulators of liver repopulation and potential drug targets for the promotion of liver repopulation. PMID:25934503

  5. Image-Guided Total-Marrow Irradiation Using Helical Tomotherapy in Patients With Multiple Myeloma and Acute Leukemia Undergoing Hematopoietic Cell Transplantation

    SciTech Connect

    Wong, Jeffrey Y.C. Rosenthal, Joseph; Liu An; Schultheiss, Timothy; Forman, Stephen; Somlo, George

    2009-01-01

    Purpose: Total-body irradiation (TBI) has an important role in patients undergoing hematopoietic cell transplantation (HCT), but is associated with significant toxicities. Targeted TBI using helical tomotherapy results in reduced doses to normal organs, which predicts for reduced toxicities compared with standard TBI. Methods and Materials: Thirteen patients with multiple myeloma were treated in an autologous tandem transplantation Phase I trial with high-dose melphalan, followed 6 weeks later by total-marrow irradiation (TMI) to skeletal bone. Dose levels were 10, 12, 14, and 16 Gy at 2 Gy daily/twice daily. In a separate allogeneic HCT trial, 8 patients (5 with acute myelogenous leukemia, 1 with acute lymphoblastic leukemia, 1 with non-Hodgkin's lymphoma, and 1 with multiple myeloma) were treated with TMI plus total lymphoid irradiation plus splenic radiotherapy to 12 Gy (1.5 Gy twice daily) combined with fludarabine/melphalan. Results: For the 13 patients in the tandem autologous HCT trial, median age was 54 years (range, 42-66 years). Median organ doses were 15-65% that of the gross target volume dose. Primarily Grades 1-2 acute toxicities were observed. Six patients reported no vomiting; 9 patients, no mucositis; 6 patients, no fatigue; and 8 patients, no diarrhea. For the 8 patients in the allogeneic HCT trial, median age was 52 years (range, 24-61 years). Grades 2-3 nausea, vomiting, mucositis, and diarrhea were observed. In both trials, no Grade 4 nonhematologic toxicity was observed, and all patients underwent successful engraftment. Conclusions: This study shows that TMI using helical tomotherapy is clinically feasible. The reduced acute toxicities observed compare favorably with those seen with standard TBI. Initial results are encouraging and warrant further evaluation as a method to dose escalate with acceptable toxicity or to offer TBI-containing regimens to patients unable to tolerate standard approaches.

  6. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    SciTech Connect

    Kearns, M.; Lala, P.K.

    1982-05-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells.

  7. A study of thiotepa, etoposide and fractionated total body irradiation as a preparative regimen prior to bone marrow transplantation for poor prognosis patients with neuroblastoma.

    PubMed

    Kamani, N; August, C S; Bunin, N; Leahey, A; Bayever, E; Goldwein, J; Zusman, J; Evans, A E; Angio, G D

    1996-06-01

    We report the toxicity and efficacy of a new conditioning regimen for bone marrow transplantation (BMT) in children with poor prognosis neuroblastoma (NBL). Twenty-seven patients with poor prognosis NBL were treated with teniposide (360 mg/m2) or etoposide (500 mg/m2), thiotepa (600-900 mg/m2), and 1200 cGy fractionated total body irradiation (fTBI) followed by autologous marrow rescue (n = 19) or allogeneic BMT from HLA-identical siblings (n = 8). The two patients who received teniposide, 600 mg/m2 thiotepa and fTBI had minimal toxicity but relapsed 4 and 12 months post-auto BMT. The next two patients received 750 mg/m2 thiotepa, 500 mg/m2 etoposide and TBI. They tolerated the conditioning regimen well and are alive and in remission 77 and 75 months post-BMT. At the next thiotepa dose level (900 mg/m2), the first two allograft recipients both experienced fatal regimen-related toxicity. All subsequent allograft recipients received 750 mg/m2 thiotepa and autograft recipients received 900 mg/m2 thiotepa. As of 1 April 1995, eight of the 19 patients who received autologous marrow are surviving disease-free 21 to 77 months post-BMT. Nine autograft recipients relapsed at 2 to 37 months following transplantation. One patient died of hepatic veno-occlusive disease 2 months after auto BMT, and one of pneumonia 6 months post-transplantation. Three allograft recipients have relapsed at 6, 10 and 39 months post-transplant and three are alive and in remission 75, 53 and 27 months post-BMT. Overall, 11/27 patients (41%) are alive and in remission 21-77 months (median 47 months) following BMT. A conditioning regimen consisting of 500 mg/m2 etoposide, thiotepa (750 mg/m2 for allograft recipients and 900 mg/m2 for autograft recipients) and 1200 cGy fTBI has acceptable toxicity and is at least as effective as melphalan-containing regimens in the treatment of high-risk NBL.

  8. Total body irradiation as preparation for bone marrow transplantation in treatment of acute leukemia and aplastic anemia

    SciTech Connect

    Serota, F.T.; Burkey, E.D.; August, C.S.; D'Angio, G.J.

    1983-12-01

    In an attempt to improve survival while minimizing toxicity, many bone marrow transplant centers are now studying the use of cytoreduction regimens with an increased amount of radiation in single-dose or fractionated-exposure schedules for patients with leukemia and aplastic anemia. In order to review the current results, the literature prior to September, 1982 was surveyed and data were tabulated for each transplant center regarding the number of patients receiving transplants, diagnoses, cytoreduction regimen, clinical status, remission duration, relapse rate, causes of death and incidence of interstitial pneumonia. The incidence and severity of cataracts, growth failure, hypothyroidism and second malignant neoplasms were noted, and the data obtained from the literature search were updated and expanded by telephone questionnaire when possible. Marked variation in the technique of tranplantation was found among the participating institutions, making it difficult to determine the contribution of the various TBI doses, dose rates and fractionation schedules to the efficacy and toxicity of the combined regimen. In order to define the risk-benefit ratio of the various TBI regimens more clearly, prospective controlled, randomized studies will be required.

  9. Suppressor cell activity following total lymphoid irradiation (TLI), bone marrow (BM) injection, and kidney transplantation in baboons

    SciTech Connect

    Smit, J.A.; Myburgh, J.A.; Hill, R.R.H.; Browde, S.

    1981-03-01

    Induction of specific tissue transplantation tolerance by fractionated TLI was first described in adult mice, rats, and dogs. The method was equally effective in inducing unresponsiveness in outbred baboons, and irradiation given in fractions was confirmed to be more efficient than single dose. This study investigated the cumulative effect of 600 to 2400 rad TLI on the immune response of baboons treated according to a schedule applicable to patients awaiting renal transplantation. The possible mechanisms involved in tolerogenesis include the following: broad nonspecific nonreactivity, clonal deletion, suppressor cell activity, and enhancement.

  10. Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation

    PubMed Central

    Elmore, Monica R. P.; Lee, Rafael J.; West, Brian L.; Green, Kim N.

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  11. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation.

    PubMed

    Elmore, Monica R P; Lee, Rafael J; West, Brian L; Green, Kim N

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  12. Subclinical pulmonary function defects following autologous and allogeneic bone marrow transplantation: relationship to total body irradiation and graft-versus-host disease

    SciTech Connect

    Tait, R.C.; Burnett, A.K.; Robertson, A.G.; McNee, S.; Riyami, B.M.; Carter, R.; Stevenson, R.D. )

    1991-06-01

    Pulmonary function results pre- and post-transplant, to a maximum of 4 years, were analyzed in 98 patients with haematological disorders undergoing allogeneic (N = 53) or autologous bone marrow transplantation (N = 45) between 1982 and 1988. All received similar total body irradiation based regimens ranging from 9.5 Gy as a single fraction to 14.4 Gy fractionated. FEV1/FVC as a measure of airway obstruction showed little deterioration except in patients experiencing graft-versus-host disease in whom statistically significant obstructive ventilatory defects were evident by 6 months post-transplant (p less than 0.01). These defects appeared to be permanent. Restrictive ventilatory defects, as measured by reduction in TLC, and defects in diffusing capacity (DLCO and KCO) were also maximal at 6 months post-transplant (p less than 0.01). Both were related, at least in part, to the presence of GVHD (p less than 0.01) or use of single fraction TBI with absorbed lung dose of 8.0 Gy (p less than 0.05). Fractionated TBI resulted in less marked restricted ventilation and impaired gas exchange, which reverted to normal by 2 years, even when the lung dose was increased from 11.0 Gy to between 12.0 and 13.5 Gy. After exclusion of patients with GVHD (30% allografts) there was no significant difference in pulmonary function abnormalities between autograft and allograft recipients.

  13. Transfection of CXCR-4 using microbubble-mediated ultrasound irradiation and liposomes improves the migratory ability of bone marrow stromal cells.

    PubMed

    Wang, Gong; Zhuo, Zhongxiong; Zhang, Qian; Xu, Yali; Wu, Shengzheng; Li, Lu; Xia, Hongmei; Gao, Yunhua

    2015-01-01

    Bone marrow stromal cells (BMSCs) have proven useful for the treatment of various human diseases and injuries. However, their reparative capacity is limited by their poor migration and homing ability, which are primarily dependent on the SDF-1/CXCR4 axis. Most subcultured BMSCs lack CXCR4 receptor expression on the cell surface and exhibit impaired migratory capacity. To increase responsiveness to SDF-1 and promote cell migration and survival of cultured BMSCs, we used a combination of ultrasound-targeted microbubble destruction (UTMD) and liposomes to increase CXCR4 expression in vitro. We isolated and cultured rat BMSCs to their third passage and transduced them with recombinant plasmid pDsRed-CXCR4 using microbubble-mediated ultrasound irradiation and liposomes. Compared to some viral vectors, the method we employed here resulted in significantly better transfection efficiency, CXCR4 expression, and technical reproducibility. The benefits of this approach are likely due to the combination of "sonoporation" caused by shockwaves and microjet flow resulting from UTMD-generated cavitation. Following transfection, we performed a transwell migration assay and found that the migration ability of CXCR4-modified BMSCs was 9-fold higher than controls. The methods we describe here provide an effective, safe, non-viral means to achieve high levels of CXCR4 expression. This is associated with enhanced migration of subcultured BMSCs and may be useful for clinical application as well.

  14. Hepatic progenitor cells of biliary origin with liver repopulation capacity

    PubMed Central

    Boulter, Luke; Tsuchiya, Atsunori; Cole, Alicia M; Hay, Trevor; Guest, Rachel V; Wojtacha, Davina; Man, Tak Yung; Mackinnon, Alison; Ridgway, Rachel A; Kendall, Timothy; Williams, Michael J; Jamieson, Thomas; Raven, Alex; Hay, David C; Iredale, John P; Clarke, Alan R; Sansom, Owen J; Forbes, Stuart J

    2015-01-01

    Summary Hepatocytes and cholangiocytes self renew following liver injury. Following severe injury hepatocytes are increasingly senescent, whether Hepatic Progenitor Cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where Mdm2 is inducibly deleted in over 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease. PMID:26192438

  15. Hepatic progenitor cells of biliary origin with liver repopulation capacity.

    PubMed

    Lu, Wei-Yu; Bird, Thomas G; Boulter, Luke; Tsuchiya, Atsunori; Cole, Alicia M; Hay, Trevor; Guest, Rachel V; Wojtacha, Davina; Man, Tak Yung; Mackinnon, Alison; Ridgway, Rachel A; Kendall, Timothy; Williams, Michael J; Jamieson, Thomas; Raven, Alex; Hay, David C; Iredale, John P; Clarke, Alan R; Sansom, Owen J; Forbes, Stuart J

    2015-08-01

    Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease.

  16. Mouse liver repopulation with hepatocytes generated from human fibroblasts

    PubMed Central

    Zhu, Saiyong; Rezvani, Milad; Harbell, Jack; Mattis, Aras N.; Wolfe, Alan R.; Benet, Leslie Z.; Willenbring, Holger; Ding, Sheng

    2014-01-01

    Human induced pluripotent stem cells (iPSCs) promise to revolutionize research and therapy of liver diseases by providing a source of hepatocytes for autologous cell therapy and disease modeling. However, despite progress in advancing the differentiation of iPSCs into hepatocytes (iPSC-Heps) in vitro1–3, cells that replicate the ability of human primary adult hepatocytes (aHeps) to proliferate extensively in vivo have not been reported. This deficiency has hampered efforts to recreate human liver diseases in mice, and has cast doubt on the potential of iPSC-Heps for liver cell therapy. The reason is that extensive post-transplant expansion is needed to establish and sustain a therapeutically effective liver cell mass in patients, a lesson learned from clinical trials of aHep transplantation4. As a solution to this problem, we report generation of human fibroblast-derived hepatocytes that can repopulate mouse livers. Unlike current protocols for deriving hepatocytes from human fibroblasts, ours did not generate iPSCs, but shortcut reprogramming to pluripotency to generate an induced multipotent progenitor cell (iMPC) state from which endoderm progenitor cells (iMPC-EPCs) and subsequently hepatocytes (iMPC-Heps) could be efficiently differentiated. For this, we identified small molecules that aided endoderm and hepatocyte differentiation without compromising proliferation. After transplantation into an immune-deficient mouse model of human liver failure, iMPC-Heps proliferated extensively and acquired levels of hepatocyte function similar to aHeps. Unfractionated iMPC-Heps did not form tumors, most likely because they never entered a pluripotent state. To our knowledge, this is the first demonstration of significant liver repopulation of mice with human hepatocytes generated in vitro, which removes a long-standing roadblock on the path to autologous liver cell therapy. PMID:24572354

  17. Hedgehog signaling drives radioresistance and stroma-driven tumor repopulation in head and neck squamous cancers.

    PubMed

    Gan, Gregory N; Eagles, Justin; Keysar, Stephen B; Wang, Guoliang; Glogowska, Magdalena J; Altunbas, Cem; Anderson, Ryan T; Le, Phuong N; Morton, J Jason; Frederick, Barbara; Raben, David; Wang, Xiao-Jing; Jimeno, Antonio

    2014-12-01

    Local control and overall survival in patients with advanced head and neck squamous cell cancer (HNSCC) remains dismal. Signaling through the Hedgehog (Hh) pathway is associated with epithelial-to-mesenchymal transition, and activation of the Hh effector transcription factor Gli1 is a poor prognostic factor in this disease setting. Here, we report that increased GLI1 expression in the leading edge of HNSCC tumors is further increased by irradiation, where it contributes to therapeutic inhibition. Hh pathway blockade with cyclopamine suppressed GLI1 activation and enhanced tumor sensitivity to radiotherapy. Furthermore, radiotherapy-induced GLI1 expression was mediated in part by the mTOR/S6K1 pathway. Stroma exposed to radiotherapy promoted rapid tumor repopulation, and this effect was suppressed by Hh inhibition. Our results demonstrate that Gli1 that is upregulated at the tumor-stroma intersection in HNSCC is elevated by radiotherapy, where it contributes to stromal-mediated resistance, and that Hh inhibitors offer a rational strategy to reverse this process to sensitize HNSCC to radiotherapy. PMID:25297633

  18. Effects of GSM-modulated 900 MHz radiofrequency electromagnetic fields on the hematopoietic potential of mouse bone marrow cells.

    PubMed

    Rosado, Maria Manuela; Nasta, Francesca; Prisco, Maria Grazia; Lovisolo, Giorgio Alfonso; Marino, Carmela; Pioli, Claudio

    2014-12-01

    Studies describing the influence of radiofrequency electromagnetic fields on bone marrow cells (BMC) often lack functional data. We examined the effects of in vivo exposure to a Global System for Mobile Communications (GSM) modulated 900 MHz RF fields on BMC using two transplantation models. X-irradiated syngeneic mice were injected with BMC from either RF-field-exposed, sham-exposed or cage control mice. Twelve weeks after transplantation, no differences in thymocyte number, frequency of subpopulations and cell proliferation were found in mice receiving BMC from either group. Also, in the spleen cell number, percentages of B/T cells, B/T-cell proliferation, and interferon γ (IFN-γ) production were similar in all groups. In parallel, a mixture of BMC from congenic sham- and RF-exposed mice were co-transplanted into lymphopenic Rag2 deficient mice. BMC from RF-exposed and sham-exposed mice displayed no advantage or disadvantage when competing for the replenishment of lymphatic organs with mature lymphocytes in Rag2 deficient mice. This model revealed that BMC from sham-exposed and RF-exposed mice were less efficient than BMC from cage control mice in repopulating the thymus, an effect likely due to restraint stress. In conclusion, our results showed no effects of in vivo exposure to GSM-modulated RF-fields on the ability of bone marrow (BM) precursors to long-term reconstitute peripheral T and B cell compartments.

  19. Mechanisms Involved in the Development of the Chronic Gastrointestinal Syndrome in Nonhuman Primates after Total-Body Irradiation with Bone Marrow Shielding.

    PubMed

    Shea-Donohue, Terez; Fasano, Alessio; Zhao, Aiping; Notari, Luigi; Yan, Shu; Sun, Rex; Bohl, Jennifer A; Desai, Neemesh; Tudor, Greg; Morimoto, Motoko; Booth, Catherine; Bennett, Alexander; Farese, Ann M; MacVittie, Thomas J

    2016-06-01

    In this study, nonhuman primates (NHPs) exposed to lethal doses of total body irradiation (TBI) within the gastrointestinal (GI) acute radiation syndrome range, sparing ∼5% of bone marrow (TBI-BM5), were used to evaluate the mechanisms involved in development of the chronic GI syndrome. TBI increased mucosal permeability in the jejunum (12-14 Gy) and proximal colon (13-14 Gy). TBI-BM5 also impaired mucosal barrier function at doses ranging from 10-12.5 Gy in both small intestine and colon. Timed necropsies of NHPs at 6-180 days after 10 Gy TBI-BM5 showed that changes in small intestine preceded those in the colon. Chronic GI syndrome in NHPs is characterized by continued weight loss and intermittent GI syndrome symptoms. There was a long-lasting decrease in jejunal glucose absorption coincident with reduced expression of the sodium-linked glucose transporter. The small intestine and colon showed a modest upregulation of several different pro-inflammatory mediators such as NOS-2. The persistent inflammation in the post-TBI-BM5 period was associated with a long-lasting impairment of mucosal restitution and a reduced expression of intestinal and serum levels of alkaline phosphatase (ALP). Mucosal healing in the postirradiation period is dependent on sparing of stem cell crypts and maturation of crypt cells into appropriate phenotypes. At 30 days after 10 Gy TBI-BM5, there was a significant downregulation in the gene and protein expression of the stem cell marker Lgr5 but no change in the gene expression of enterocyte or enteroendocrine lineage markers. These data indicate that even a threshold dose of 10 Gy TBI-BM5 induces a persistent impairment of both mucosal barrier function and restitution in the GI tract and that ALP may serve as a biomarker for these events. These findings have important therapeutic implications for the design of medical countermeasures. PMID:27223826

  20. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    PubMed

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.

  1. REPOPULATION OF THE POSTMITOTIC NUCLEOLUS BY PREFORMED RNA

    PubMed Central

    Phillips, Stephanie Gordon

    1972-01-01

    This study is concerned with the fate of the nucleolar contents, particularly nucleolar RNA, during mitosis Mitotic cells harvested from monolayer cultures of Chinese hamster embryonal cells, KB6 (human) cells, or L929 (mouse) cells were allowed to proceed into interphase in the presence or absence (control) of 0.04–0 08 µg/ml of actinomycin D, a concentration which preferentially inhibits nucleolar (ribosomal) RNA synthesis 3 hr after mitosis, control cells had large, irregularly shaped nucleoli which stained intensely for RNA with azure B and for protein with fast green. In cells which had returned to interphase in the presence of actinomycin D, nucleoli were segregated into two components easily resolvable in the light microscope, and one of these components stained intensely for RNA with azure B. Both nucleolar components stained for protein with fast green In parallel experiments, cultures were incubated with 0.04–0 08 µg/ml actinomycin D for 3 hr before harvesting of mitotic cells, then mitotic cells were washed and allowed to return to interphase in the absence of actinomycin D. 3 hr after mitosis, nuclei of such cells were devoid of large RNA-containing structures, though small, refractile nucleolus-like bodies were observed by phase-contrast microscopy or in material stained for total protein. These experiments indicate that nucleolar RNA made several hours before mitosis persists in the mitotic cell and repopulates nucleoli when they reform after mitosis PMID:4112854

  2. Renin lineage cells repopulate the glomerular mesangium after injury.

    PubMed

    Starke, Charlotte; Betz, Hannah; Hickmann, Linda; Lachmann, Peter; Neubauer, Björn; Kopp, Jeffrey B; Sequeira-Lopez, Maria Luisa S; Gomez, R Ariel; Hohenstein, Bernd; Todorov, Vladimir T; Hugo, Christian P M

    2015-01-01

    Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein-reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein-positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers α8-integrin and PDGF receptor-β but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury.

  3. Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury

    PubMed Central

    Starke, Charlotte; Betz, Hannah; Hickmann, Linda; Lachmann, Peter; Neubauer, Björn; Kopp, Jeffrey B.; Sequeira-Lopez, Maria Luisa S.; Gomez, R. Ariel; Hohenstein, Bernd; Hugo, Christian P.M.

    2015-01-01

    Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein–reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein–positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers α8-integrin and PDGF receptor-β but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury. PMID:24904091

  4. Onset Time of Tumor Repopulation for Cervical Cancer: First Evidence From Clinical Data

    SciTech Connect

    Huang Zhibin; Mayr, Nina A.; Gao, Mingcheng; Lo, Simon S.; Wang, Jian Z.; Jia Guang; Yuh, William T.C.

    2012-10-01

    Purpose: Accelerated tumor repopulation has significant implications in low-dose rate (LDR) brachytherapy. Repopulation onset time remains undetermined for cervical cancer. The purpose of this study was to determine the onset time of accelerated repopulation in cervical cancer, using clinical data. Methods and Materials: The linear quadratic (LQ) model extended for tumor repopulation was used to analyze clinical data and magnetic resonance imaging-based three-dimensional tumor volumetric regression data from 80 cervical cancer patients who received external beam radiotherapy (EBRT) and LDR brachytherapy. The LDR dose was converted to EBRT dose in 1.8-Gy fractions by using the LQ formula, and the total dose ranged from 61.4 to 99.7 Gy. Patients were divided into 11 groups according to total dose and treatment time. The tumor control probability (TCP) was calculated for each group. The least {chi}{sup 2} method was used to fit the TCP data with two free parameters: onset time (T{sub k}) of accelerated repopulation and number of clonogens (K), while other LQ model parameters were adopted from the literature, due to the limited patient data. Results: Among the 11 patient groups, TCP varied from 33% to 100% as a function of radiation dose and overall treatment time. Higher dose and shorter treatment duration were associated with higher TCP. Using the LQ model, we achieved the best fit with onset time T{sub k} of 19 days and K of 139, with uncertainty ranges of (11, 22) days for T{sub k} and (48, 1822) for K, respectively. Conclusion: This is the first report of accelerated repopulation onset time in cervical cancer, derived directly from clinical data by using the LQ model. Our study verifies the fact that accelerated repopulation does exist in cervical cancer and has a relatively short onset time. Dose escalation may be required to compensate for the effects of tumor repopulation if the radiation therapy course is protracted.

  5. The nature of tolerance in adult recipient mice made tolerant of alloantigens with supralethal irradiation followed by syngeneic bone marrow cell transplantation plus injection of F1 spleen cells

    SciTech Connect

    Tomita, Y.; Himeno, K.; Mayumi, H.; Tokuda, N.; Nomoto, K. )

    1989-06-01

    The length of time after syngeneic bone marrow reconstitution when tolerance to alloantigens can be induced in adult mice during T cell differentiation from bone marrow cells was studied by exposing those T cells to (recipient x donor)F1 spleen cells. Supralethally irradiated C3H/He Slc(C3H; H-2k) mice were reconstituted with 1 x 10(7) syngeneic T cell-depleted bone marrow cells and then injected intravenously with 5 x 10(7) (C3H x C57BL/6(B6))F1 (B6C3F1; H-2bxk) or (C3H x AKR/J(AKR))F1 (AKC3F1; H-2kxk) spleen cells at various intervals. In the fully allogeneic combination of B6C3F1----C3H, EL-4 tumor originating from B6 was accepted, and survival of grafted B6 skin was significantly prolonged in the tolerant C3H mice treated with irradiation on day -1 followed by injection of syngeneic bone marrow cells on day 0 plus B6C3F1 spleen cells on days 0, 5, or 10, in a tolerogen-specific manner. In the multiminor histocompatibility antigen-disparate combination of AKC3F1----C3H, AKR skin grafts were permanently accepted in the tolerant C3H mice treated with AKC3F1 spleen cells on days 0, 5, 10, or 15. Immunological parameters, including cytotoxic T lymphocyte activity and delayed foot-pad reaction (DFR), were almost completely suppressed in C3H mice made tolerant of B6 or AKR antigens. A chimeric assay using a direct immunofluorescence method revealed that the tolerant C3H mice given B6C3F1 spleen cells on day 0 were mixed-chimeric for at least 8 weeks after syngeneic bone marrow reconstitution, but not definitely chimeric thereafter. The C3H mice given AKC3F1 spleen cells on day 0 were chimeric even 43 weeks after syngeneic bone marrow reconstitution, but the C3H mice given AKC3F1 spleen cells on day 15 showed temporal chimerism that disappeared within 43 weeks. The untolerant mice were never detectably chimeric.

  6. Reduced-intensity conditioning regimen using low-dose total body irradiation before allogeneic transplant for hematologic malignancies: Experience from the European Group for Blood and Marrow Transplantation

    SciTech Connect

    Belkacemi, Yazid . E-mail: y-belkacemi@o-lambret.fr; Labopin, Myriam; Hennequin, Christophe; Hoffstetter, Sylvette; Mungai, Raffaello; Wygoda, Marc; Lundell, Marie; Finke, Jurgen; Aktinson, Chris; Lorchel, Frederic; Durdux, Catherine; Basara, Nadezda

    2007-02-01

    Purpose: The high rate of toxicity is the limitation of myelobalative regimens before allogeneic transplantation. A reduced intensity regimen can allow engraftment of stem cells and subsequent transfer of immune cells for the induction of a graft-vs.-tumor reaction. Methods and Materials: The data from 130 patients (80 males and 50 females) treated between 1998 and 2003 for various hematologic malignancies were analyzed. The median patient age was 50 years (range, 3-72 years). Allogeneic transplantation using peripheral blood or bone marrow, or both, was performed in 104 (82%), 22 (17%), and 4 (3%) patients, respectively, from HLA identical sibling donors (n = 93, 72%), matched unrelated donors (n = 23, 18%), mismatched related donors (4%), or mismatched unrelated donors (6%). Total body irradiation (TBI) at a dose of 2 Gy delivered in one fraction was given to 101 patients (78%), and a total dose of 4-6 Gy was given in 29 (22%) patients. The median dose rate was 14.3 cGy/min (range, 6-16.4). Results: After a median follow-up period of 20 months (range, 1-62 months), engraftment was obtained in 122 patients (94%). Acute graft-vs.-host disease of Grade 2 or worse was observed in 37% of patients. Multivariate analysis showed three favorable independent factors for event-free survival: HLA identical sibling donor (p < 0.0001; relative risk [RR], 0.15), complete remission (p < 0.0001; RR, 3.08), and female donor to male patient (p = 0.006; RR 2.43). For relapse, the two favorable prognostic factors were complete remission (p < 0.0001, RR 0.11) and HLA identical sibling donor (p = 0.0007; RR 3.59). Conclusions: In this multicenter study, we confirmed high rates of engraftment and chimerism after the reduced intensity regimen. Our results are comparable to those previously reported. Radiation parameters seem to have no impact on outcome. However, the lack of a statistically significant difference in terms of dose rate may have been due, in part, to the small population

  7. The Culture Repopulation Ability (CRA) Assay and Incubation in Low Oxygen to Test Antileukemic Drugs on Imatinib-Resistant CML Stem-Like Cells.

    PubMed

    Cheloni, Giulia; Tanturli, Michele

    2016-01-01

    Chronic myeloid leukemia (CML) is a stem cell-driven disorder caused by the BCR/Abl oncoprotein, a constitutively active tyrosine kinase (TK). Chronic-phase CML patients are treated with impressive efficacy with TK inhibitors (TKi) such as imatinib mesylate (IM). However, rather than definitively curing CML, TKi induces a state of minimal residual disease, due to the persistence of leukemia stem cells (LSC) which are insensitive to this class of drugs. LSC persistence may be due to different reasons, including the suppression of BCR/Abl oncoprotein. It has been shown that this suppression follows incubation in low oxygen under appropriate culture conditions and incubation times.Here we describe the culture repopulation ability (CRA) assay, a non-clonogenic assay capable - together with incubation in low oxygen - to reveal in vitro stem cells endowed with marrow repopulation ability (MRA) in vivo. The CRA assay can be used, before moving to animal tests, as a simple and reliable method for the prescreening of drugs potentially active on CML and other leukemias with respect to their activity on the more immature leukemia cell subsets. PMID:27581140

  8. Marrow Hematopoietic Stem Cells Revisited: They Exist in a Continuum and are Not Defined by Standard Purification Approaches; Then There are the Microvesicles

    PubMed Central

    Quesenberry, Peter J.; Goldberg, Laura; Aliotta, Jason; Dooner, Mark

    2013-01-01

    Current concepts of hematopoiesis are encompassed in a hierarchical stem cell model. This developed initially from studies of colony-forming unit spleen and in vitro progenitors for different cell lineages, but then evolved into a comprehensive model of cells with different in vivo differentiative and proliferative potential. These cells were characterized and purified based largely on expression of a variety of lineage-specific and stem cell-specific surface epitopes. Monoclonal antibodies were bound to these epitopes and then used to physically and fluorescently separate different classes of these cells. The gold standard for the most primitive marrow stem cells was long-term multilineage repopulation and renewal in lethally irradiated mice. Progressive work seemed to have clonally defined a Lineage negative (Lin−), Sca-1+, c-kit+, CD150+ stem cell with great proliferative, differentiative, and renewal potential. This cell was stable and in the G0 phase of cell cycle. However, continued work in our laboratory indicated that the engraftment, differentiation, homing, and gene expression phenotype of the murine marrow stem cells continuously and reversibly changes with passage through cell cycle. Most recently, using cycle-defining supravital dyes and fluorescent-activated cell sorting and S-phase-specific tritiated thymidine suicide, we have established that the long-term repopulating hematopoietic stem cell is a rapidly proliferating, and thus a continually changing cell; as a corollary it cannot be purified or defined on a clonal single cell basis. Further in vivo studies employing injected and ingested 5-Bromodeoxyuridine (BrdU), showed that the G0 Lin-Sca-1, c-kit+ Flt3− cell was rapidly passing through cell cycle. These data are explained by considering the separative process: the proliferating stem cells are eliminated through the selective separations leaving non-representative dormant G0 stem cells. In other words, they throw out the real stem cells

  9. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  10. MODEL SYSTEMS AND EXPERIMENTAL CONDITIONS THAT LEAD TO EFFECTIVE REPOPULATION OF THE LIVER BY TRANSPLANTED CELLS

    PubMed Central

    Shafritz, David A.; Oertel, Michael

    2010-01-01

    In recent years, there has been substantial progress in transplanting cells into the liver with the ultimate goal of restoring liver mass and function in both inherited and acquired liver diseases. The basis for considering that this might be feasible is that the liver is a highly regenerative organ. After massive liver injury or surgical removal of two-thirds or more of the liver tissue, the organ can restore its mass with completely normal morphologic structure and function. It has also been found under highly selective conditions that transplanted hepatocytes can fully repopulate the liver and cure a metabolic disorder or deficiency state. Fetal liver cells can also substantially repopulate the normal liver, and it is hoped in the future that effective repopulation will be achievable with cultured cells or cell lines, pluripotent stem cells from other somatic tissues, embryonic stem cells, or induced pluripotent stem cells, which can now be generated in vitro by a variety of methods. The purpose of this review is to present the major systems that have been used for liver repopulation, the variables involved in obtaining successful repopulation and what has been achieved in these various systems to date with different cell types. PMID:20080205

  11. Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chain Mice.

    PubMed

    Cai, Shanbao; Wang, Haiyan; Bailey, Barbara; Hartwell, Jennifer R; Silver, Jayne M; Juliar, Beth E; Sinn, Anthony L; Baluyut, Arthur R; Pollok, Karen E

    2011-01-01

    Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chain(null) mice to support long-term engraftment of MGMT(P140K)-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was investigated. Mice were transplanted with MGMT(P140K)-transduced CD34(+) cells and transduced cells selected in vivo. At 4 months after transplantation, levels of human-cell engraftment, and MGMT(P140K)-transduced cells in the bone marrow of NOD/SCID versus NSG mice varied slightly in vehicle- and drug-treated mice. In secondary transplants, although equal numbers of MGMT(P140K)-transduced human cells were transplanted, engraftment was significantly higher in NOD/SCID/γ chain(null) mice compared to NOD/SCID mice at 2 months after transplantation. These data indicate that reconstitution of NOD/SCID/γ chain(null) mice with human-hematopoietic cells represents a more promising model in which to test for genotoxicity and efficacy of strategies that focus on manipulation of long-term repopulating cells of human origin.

  12. Cellular complexity of the bone marrow hematopoietic stem cell niche.

    PubMed

    Calvi, Laura M; Link, Daniel C

    2014-01-01

    The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.

  13. Evaluation of the silicon phthalocyanine Pc 4 for photodynamic bone marrow purging

    NASA Astrophysics Data System (ADS)

    Keij, Jan F.; Jiang, Yajuan; Sotiropoulos, Damianos A.; Ben-Hur, Ehud; Visser, Jan W.

    1998-07-01

    The silicon phthalocyanine Pc 4 was tested as a photosensitizer for the selective photoinactivation of malignant cells in bone marrow transplantation samples. Using a murine model system, incubation of 1.5 X 107 cells/mL with 15 nM Pc 4 followed by exposure to red light ((lambda) > 600 nm, fluence of 18 J/cm2) was shown to result in a greater than 6 log10 reduction of the clonogenic growth for the murine cell lines ABE-8.1/2, BC3A and L1210. The clonogenic growth of WEHI-3 and P815 cells was reduced by more than 5 log10 and more than 3 log10, respectively. Late murine hematopoietic progenitor cells were less sensitive than cancer cells; the surviving fractions were 0.084 for the colony forming unit, megakaryocyte (CFU-Mk); 0.038 for the colony forming unit, granulocyte macrophage (CFU-GM); 0.0018 for the colony forming unit, mix (CFU-mix) and < 0.003 for burst forming units, erythroid (BFU-E). Early hematopoietic progenitor cells, assayed in the in vitro cobble stone area forming cell assay, were not affected by the photodynamic treatment. Likewise, in vivo assays of early hematopoietic progenitor cells showed no reduction of their ability to repopulate the bone marrow. Irradiation of the samples following incubation of 1.5 X 106 cells/mL with Pc 4 resulted in increased photosensitivity of all cell types, including the early and late hematopoietic progenitor cells. Flow cytometric analysis of Pc 4 uptake by the cells revealed that the increased photosensitivity could be traced to increased Pc 4 uptake; however, Pc 4 uptake among cell types did not correlate with photosensitivity. When mixed with bone marrow (BM) cells, Pc 4 uptake in the cell lines increased as the fraction of BM increased from 0.5 to 0.95. These observations suggest that Pc 4 may be a suitable photosensitizer for bone marrow purging.

  14. Radiobiological modeling of interplay between accelerated repopulation and altered fractionation schedules in head and neck cancer.

    PubMed

    Marcu, Loredana G; Bezak, Eva

    2009-10-01

    Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling) is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

  15. Transgelin is a marker of repopulating mesangial cells after injury and promotes their proliferation and migration.

    PubMed

    Daniel, Christoph; Lüdke, Andrea; Wagner, Andrea; Todorov, Vladimir T; Hohenstein, Bernd; Hugo, Christian

    2012-06-01

    Mesangial cell (MC) migration is essential during glomerular repair and kidney development. The aim of the study was to identify marker/player for glomerular progenitor/reserve cells migrating into the glomerulus after MC injury and during glomerulogenesis in the rat. Experimental mesangial proliferative nephritis was induced in Sprague Dawley rats by intravenous injection of OX-7 antibody. We investigated mRNA expression profiles in isolated glomeruli from on days 0, 1, 2, 3, and 5 after induction of anti-Thy1 nephritis using Affymetrix microarray technology. Using self-organizing maps, transgelin was identified as a new marker for repopulating glomerular cells. Expression of transgelin during anti-Thy1 nephritis was investigated by northern blot, real-time PCR, western blot, and immunohistochemistry. Migration and proliferation assays using isolated MCs after transgelin knockdown by siRNA were performed to investigate the potential role of transgelin during glomerular repopulation. Transgelin mRNA was not detected in healthy glomeruli. It was strongly upregulated during the repopulation process starting on day 1, continued to be increased until day 5 and disappeared on day 7. Transgelin was specifically expressed at the edge of the migratory front during glomerular repopulation as indicated by transgelin/OX-7 double staining. Transgelin expression was similar in migrating vs non-migrating MCs in vitro. Blocking of transgelin expression by siRNA treatment resulted in inhibition of MC migration and proliferation. Transgelin was also expressed in MCs during glomerulogenesis and in biopsies from patients with IgA nephritis. In conclusion, transgelin in the kidney is upregulated in repopulating MCs in vivo and supports their migratory and proliferative repair response after injury.

  16. Treatment of experimental myasthenia gravis with total lymphoid irradiation

    SciTech Connect

    de Silva, S.; Blum, J.E.; McIntosh, K.R.; Order, S.; Drachman, D.B.

    1988-07-01

    Total lymphoid irradiation (TLI) has been reported to be effective in the immunosuppressive treatment of certain human and experimental autoimmune disorders. We have investigated the effects of TLI in Lewis rats with experimental autoimmune myasthenia gravis (EAMG) produced by immunization with purified torpedo acetylcholine receptor (AChR). The radiation is given in 17 divided fractions of 200 rad each, and nonlymphoid tissues are protected by lead shielding. This technique suppresses the immune system, while minimizing side effects, and permits the repopulation of the immune system by the patient's own bone marrow cells. Our results show that TLI treatment completely prevented the primary antibody response to immunization with torpedo AChR, it rapidly abolished the ongoing antibody response in established EAMG, and it suppressed the secondary (anamnestic) response to a boost of AChR. No EAMG animals died during TLI treatment, compared with six control animals that died of EAMG. TLI produces powerful and prompt immunosuppression and may eventually prove useful in the treatment of refractory human myasthenia gravis.

  17. Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal.

    PubMed

    Zhang, Cheng Cheng; Steele, Andrew D; Lindquist, Susan; Lodish, Harvey F

    2006-02-14

    Although the wild-type prion protein (PrP) is abundant and widely expressed in various types of tissues and cells, its physiological function(s) remain unknown, and PrP knockout mice do not exhibit overt and undisputed phenotypes. Here we showed that PrP is expressed on the surface of several bone marrow cell populations successively enriched in long-term (LT) hematopoietic stem cells (HSCs) using flow cytometry analysis. Affinity purification of the PrP-positive and -negative fractions from these populations, followed by competitive bone marrow reconstitution assays, shows that all LT HSCs express PrP. HSCs from PrP-null bone marrow exhibited impaired self-renewal in serial transplantation of lethally irradiated mouse recipients both in the presence and absence of competitors. When treated with a cell cycle-specific myelotoxic agent, the animals reconstituted with PrP-null HSCs exhibit increased sensitivity to hematopoietic cell depletion. Ectopic expression of PrP in PrP-null bone marrow cells by retroviral infection rescued the defective hematopoietic engraftment during serial transplantation. Therefore, PrP is a marker for HSCs and supports their self-renewal.

  18. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    SciTech Connect

    Colnot, C. . E-mail: colnotc@orthosurg.ucsf.edu; Huang, S.; Helms, J.

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.

  19. Analysis of cytokine production and V beta T-cell receptor subsets in irradiated recipients receiving portal or peripheral venous reconstitution with allogeneic bone marrow cells, with or without additional anti-cytokine monoclonal antibodies.

    PubMed Central

    Gorczynski, R M; Chen, Z; Zeng, H; Gorczynski, L; Terzioglu, E

    1998-01-01

    Irradiated (800 rads) AKR mice received intravenous (i.v.) reconstitution with a mixture of B10.BR T-depleted bone marrow cells and spleen cells. Only in groups of mice treated additionally with i.v. cyclophosphamide (Cy; 150 mg/kg), 24 hr before transplantation, was long-term (> 60% at 50 days) survival seen. In mice receiving only irradiation all animals died by 30 days post-transplantation. Histological changes consistent with graft-versus-host disease (GVHD) were seen in the liver of reconstituted mice at 30 days, along with an organ-specific increase in V beta 3 T-cell receptor-positive (TCR+) cells. No such increase in V beta 3 TCR+ cells was seen in the spleen from the same mice. These data are consistent with a tissue antigen-driven expansion of V beta 3 TCR+ cells associated with GVHD in the liver in this model. When we analysed cytokine production in vitro from CD3+ cells restimulated with 'host' (AKR) antigen-presenting cells (APC), we found a transition in cytokine production from preferential synthesis of type-1 cytokines [interleukin-2 (IL-2) and interferon-gamma (IFN-gamma)] at early times (day 15) post-reconstitution to increased production of type-2 cytokines [IL-4, transforming growth factor-beta (TGF-beta) and IL-10] at later times (day 30) post-reconstitution in Cy-treated recipients. Animals not receiving Cy did not show this 'switch' in cytokine production at later time points. We have observed a similar polarization in cytokine production, along with increased graft survival, in recipients of vascularized and non-vascularized allografts after portal venous (p.v.), but not i.v., pretransplant donor-specific immunization. We next studied AKR mice receiving 800 rads and subsequently reconstituted with B10.BR stem cells via the p.v. route. Again these mice showed prolonged survival (> 50% at 50 days), with polarization to IL-4, IL-10 and TGF-beta on restimulation of CD3+ cells in vitro at 30 days post-transplant and increased V beta 3 TCR+ cells

  20. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  1. Xeno-repopulation of Fah -/- Nod/Scid mice livers by human hepatocytes.

    PubMed

    Su, Baoliang; Liu, Changcheng; Xiang, Dao; Zhang, Haibin; Yuan, Siming; Wang, Minjun; Chen, Fei; Zhu, Haiying; He, Zhiying; Wang, Xin; Hu, Yiping

    2011-03-01

    Functional human hepatocytes xenografted into the liver of mice can be used as a model system to study pharmacokinetics, infection of hepatitis viruses, and the efficacy of hepatitis vaccines. Significant levels of liver xeno-repopulation have been reported in Fah (-/-) Rag2 (-/-) Il2rg (-/-) mice. However, A new model, termed Fah (-/-) Nod/Scid mice, which combines the advantages of liver repopulation in Fah (-/-) mice with the ease of xenotransplantation in Nod/Scid mice was obtained by gradual cross-breeding. Fah (-/-) Nod/Scid mice were easily maintained in breeding colonies and in adult animal care facilities. FK506 treatment combined with gradual withdrawal of NTBC before cell transplantation ensured that Fah (-/-) Nod/Scid mice were susceptible to liver xeno-repopulation by human hepatocytes; the proportion of engrafted human hepatocytes reached 33.6%. The function of the expanded human hepatocytes within the chimeric liver was confirmed by weight curve analysis, the expression of characteristic proteins, and the biochemical analysis of liver function. These results show that Fah (-/-) Nod/Scid mice are an ideal humanized liver mouse model with many useful applications.

  2. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  3. Early MR changes in vertebral bone marrow for patients following radiotherapy.

    PubMed

    Onu, M; Savu, M; Lungu-Solomonescu, C; Harabagiu, I; Pop, T

    2001-01-01

    Our study aimed to evaluate the vertebral marrow changes in patients following radiotherapy (RT) by measuring the T2 relaxation times before and during RT. We were mostly interested in evaluating early MR marrow changes during RT. Fifteen patients treated by RT for cervical cancer were submitted to MR examination before and during RT (5-23 days of RT). T2 values were calculated for irradiated and non-irradiated tissues (lumbar and sacral vertebral bone marrow, symphysis pubis marrow, and regional muscle). Fourteen patients presented increased T2 values for irradiated vertebral bone marrow (VBM), and 3 patients showed increased T2 values even for non-irradiated VBM. We found T2 variations for VBM as early as in the fifth day of RT for an absorbed dose as small as 9 Gy. Calculated T2 values in irradiated and also in non-irradiated tissues prove very early tissue alterations.

  4. Studies at Dounreay on the repopulation of offshore sediments by hot particles.

    PubMed

    Crawford, Ron; Toole, Joe; Innes, Steve

    2007-09-01

    Since 2000, much of the effort of diving surveys offshore of Dounreay to locate the presence of radioactive particles in the seabed sediments has been directed to a programme of repopulation studies, in which selected areas of the seabed have been surveyed a number of times and cleared of identified particles on each occasion. This work has led to an understanding of the distribution of particles within the seabed off Dounreay. The two-population model originally proposed by Atkinson (2001 UKAEA Document reference 000052) and further refined into three populations by Clayton and Atkinson (2002 UKAEA Document PSG Issue Note (02)33) has been substantially confirmed by the extended data set now available. It is apparent that the upper layers of the seabed sediments, containing a population of particles, are essentially mobile. These sediments migrate over the seabed driven by tidal wave and surge induced seabed currents, recontaminating areas which have been previously cleared of particles. The number of particles present in this layer at any given location has not been effectively reduced by the removal of particles over the years, nor has the distribution of activity within this population varied significantly. The highest concentration of particles, and the most active, reside close to and to the northeast of the effluent diffuser outfall. Particle numbers and their activity decrease with distance from the diffuser, and the rate of decrease is significantly greater to the southwest compared to the northeast. By contrast, there is evidence that the population of particles retained in the deeper sediments has changed significantly as a result of the repopulation surveys. Close to the diffuser, the population of particles identified at depth during initial surveys is high and contains significantly more highly active particles than are found in the surface sediments. It is also evident that once the deeper sediments are cleared of particles, the level of repopulation

  5. Stem cell plasticity revisited: The continuum marrow model and phenotypic changes mediated by microvesicles

    PubMed Central

    Quesenberry, Peter J.; Dooner, Mark S.; Aliotta, Jason M.

    2010-01-01

    The phenotype of marrow hematopoietic stem cells is determined by cell cycle state and microvesicle entry into the stem cells. The stem cell population is continually changing based on cell cycle transit and thus can only be defined on a population basis. Purification of marrow stem cells only addresses the heterogeneity of these populations. When whole marrow is studied, the long-term repopulating stem cells are in active cell cycle. However, with some variability, when highly purified stem cells are studied, the cells appear to be dormant. Thus, the study of purified stem cells is intrinsically misleading. Tissue-derived microvesicles enhanced by injury effect the phenotype of different cell classes. We propose that previously described stem cell plasticity is due to microvesicle modulation. We further propose a stem cell population model in which the individual cell phenotypes continually changes, but the population phenotype is relatively stable. This, in turn, is modulated by microvesicle and microenvironmental influences. PMID:20382199

  6. Resveratrol Increases the Bone Marrow Hematopoietic Stem and Progenitor Cell Capacity

    PubMed Central

    Rimmelé, Pauline; Lofek-Czubek, Sébastien; Ghaffari, Saghi

    2014-01-01

    Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here we show that a three-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. PMID:25163926

  7. Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%).

    PubMed

    Ivanovic, Zoran; Hermitte, Francis; Brunet de la Grange, Philippe; Dazey, Bernard; Belloc, Francis; Lacombe, Francis; Vezon, Gérard; Praloran, Vincent

    2004-01-01

    In the present work, we tested the hypothesis that liquid cultures (LCs) of cord blood CD34+ cells at an appropriate low O2 concentration could simultaneously allow colony-forming cell (CFC) expansion and nonobese diabetic/severe combined immunodeficiency mice-repopulating cell (SRC) maintenance. We first found that 3% was the minimal O2 concentration, still allowing the same rate of CFC expansion as at 20% O2. We report here that 7-day LCs of cord blood CD34+ cells at 3% O2 maintain SRC better than at 20% O2 and allow a similar amplification of CFCs (35- to 50-fold) without modifying the CD34+ cell proliferation. Their phenotypic profile (antigens: HLA-DR, CD117, CD33, CD13, CD11b, CD14, CD15, and CD38) was not modified, with exception of CD133, whose expression was lower at 3% O2. These results suggest that low O2 concentrations similar to those found in bone marrow participates in the regulation of hematopoiesis by favoring stem cell-renewing divisions. This expansion method that avoids stem cell exhaustion could be of paramount interest in hematopoietic transplantation by allowing the use of small-size grafts in adults. PMID:15342936

  8. Modeling marrow damage from response data: Evolution from radiation biology to benzene toxicity

    SciTech Connect

    Jones, T.D.; Morris, M.D.; Hasan, J.S.

    1996-12-01

    Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between 5 and 30 days. Mortality data from 27 experiments with 851 dose-response groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals: 12,827 mice, 2925 rats, 1676 sheep, 829 swine, 479 dogs, and 204 burros. Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is critical to hematopoietic recovery does not resemble stemlike cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD50 and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in the fitting of model coefficients. 29 refs., 5 figs., 5 tabs.

  9. Modeling marrow damage from response data: evolution from radiation biology to benzene toxicity.

    PubMed

    Jones, D T; Morris, M D; Hasan, J S

    1996-12-01

    Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between 5 and 30 days. Mortality data from 27 experiments with 851 dose-response groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals: 12,827 mice, 2925 rats, 1676 sheep, 829 swine, 479 dogs, and 204 burros. Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is critical to hematopoietic recovery does not resemble stemlike cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD50 and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in fitting of model coefficients.

  10. Modeling marrow damage from response data: Morphallaxis from radiation biology to benzene toxicity

    SciTech Connect

    Jones, T.D.; Morris, M.D.; Hasan, J.S.

    1995-12-01

    Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling of toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between {approximately} 5 and 30 days. Mortality data from 27 experiments with 851 doseresponse groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals distributed according to: (mice, 12,827); (rats, 2,925); (sheep, 1,676); (swine, 829); (dogs, 479); and (burros, 204). Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is ``critical`` to hematopoietic recovery does not resemble stem-like cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD{sub 50} and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in the fitting of model coefficients.

  11. Foamy viral vector integration sites in SCID-repopulating cells after MGMTP140K-mediated in vivo selection

    PubMed Central

    Olszko, Miles E.; Adair, Jennifer E.; Linde, Ian; Rae, Dustin T.; Trobridge, Patty; Hocum, Jonah D.; Rawlings, David J.; Kiem, Hans-Peter; Trobridge, Grant D.

    2015-01-01

    Foamy virus (FV) vectors are promising for hematopoietic stem cell (HSC) gene therapy but preclinical data on the clonal composition of FV vector transduced human repopulating cells is needed. Human CD34+ human cord blood cells were transduced with an FV vector encoding a methylguanine methyltransferase (MGMT)P140K transgene, transplanted into immunodeficient NOD/SCID IL2Rγnull (NSG) mice, and selected in vivo for gene-modified cells. The retroviral insertion site (RIS) profile of repopulating clones was examined using modified genomic sequencing PCR (MGS-PCR). We observed polyclonal repopulation with no evidence of clonal dominance even with the use of a strong internal spleen focus forming virus (SFFV) promoter known to be genotoxic. Our data supports the use of FV vectors with MGMTP140K for HSC gene therapy, but also suggests additional safety features should be developed and evaluated. PMID:25786870

  12. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a person's ...

  13. Bone Marrow Diseases

    MedlinePlus

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  14. Bone marrow aspiration

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  15. Efficient transduction of pigtailed macaque hematopoietic repopulating cells with HIV-based lentiviral vectors

    PubMed Central

    Trobridge, Grant D.; Beard, Brian C.; Gooch, Christina; Wohlfahrt, Martin; Olsen, Philip; Fletcher, James; Malik, Punam

    2008-01-01

    Lentiviral vectors are attractive for hematopoietic stem cell (HSC) gene therapy because they do not require mitosis for nuclear entry, they efficiently transduce hematopoietic repopulating cells, and self-inactivating (SIN) designs can be produced at high titer. Experiments to evaluate HIV-derived lentiviral vectors in nonhuman primates prior to clinical trials have been hampered by low transduction frequencies due in part to host restriction by TRIM5α. We have established conditions for efficient transduction of pigtailed macaque (Macaca nemestrina) long-term repopulating cells using VSV-G–pseudotyped HIV-based lentiviral vectors. Stable, long-term, high-level gene marking was observed in 3 macaques using relatively low MOIs (5-10) in a 48-hour ex vivo transduction protocol. All animals studied had rapid neutrophil engraftment with a median of 10.3 days to a count greater than 0.5 × 109/L (500/μL). Expression was detected in all lineages, with long-term marking levels in granulocytes at approximately 20% to 30%, and in lymphocytes at approximately 12% to 23%. All animals had polyclonal engraftment as determined by analysis of vector integration sites. These data suggest that lentiviral vectors should be highly effective for HSC gene therapy, particularly for diseases in which maintaining the engraftment potential of stem cells using short-term ex vivo transduction protocols is critical. PMID:18388180

  16. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may ... This captures a tiny sample, or core, of bone marrow within the needle. The sample and needle are ...

  17. Bone marrow transplantation reverses new-onset immunoinflammatory diabetes in a mouse model.

    PubMed

    Lv, Cheng-Lan; Wang, Jing; Xie, Ting; Ouyang, Jian

    2014-01-01

    Bone marrow transplantation might be an effective method to cure type 1 diabetes mellitus. This study aimed to investigate whether bone marrow transplantation could reverse hyperglycemia in diabetic mice and whether high-dose total body irradiation followed by high-dose bone marrow mononuclear cell infusion could improve the efficiency of bone marrow transplantation in treating diabetic mice. Diabetic mice after multiple low doses of streptozotocin injection were irradiated followed by infusion with approximately 1×10(7) bone marrow mononuclear cells intravenously. Before and after bone marrow transplantation, fasting blood glucose, intraperitoneal glucose tolerance test, serum insulin, pancreatic histology, and the examination of insulin and glucagon in islets were processed. All recipients returned to near euglycemic within 1 week after undergoing bone marrow transplantation. No mice became hyperglycemia again during investigation period. The change of serum insulin, glucose tolerance test, pancreatic histology and the expression of insulin and glucagon in recipient islets after bone marrow transplantation all revealed islets regeneration and significant amelioration when compared respectively with those of diabetic mice without bone marrow transplantation. Bone marrow transplantation contributed to reduce blood glucose, prevent further blood glucose hike in diabetic recipients, and promote islets regeneration. High-dose total body irradiation in combination with high-dose bone marrow monoclear cell infusion could improve the efficiency of bone marrow transplantation in treating streptozotocin-induced diabetes.

  18. Impact of Schedule Duration on Head and Neck Radiotherapy: Accelerated Tumor Repopulation Versus Compensatory Mucosal Proliferation

    SciTech Connect

    Fenwick, John D.; Pardo-Montero, Juan; Nahum, Alan E.; Malik, Zafar I.

    2012-02-01

    Purpose: To determine how modelled maximum tumor control rates, achievable without exceeding mucositis tolerance (tcp{sub max-early}) vary with schedule duration for head and neck squamous cell carcinoma (HNSCC). Methods and materials: Using maximum-likelihood techniques, we have fitted a range of tcp models to two HNSCC datasets (Withers' and British Institute of Radiology [BIR]), characterizing the dependence of tcp on duration and equivalent dose in 2 Gy fractions (EQD{sub 2}). Models likely to best describe future data have been selected using the Akaike information criterion (AIC) and its quasi-AIC extension to overdispersed data. Setting EQD{sub 2}s in the selected tcp models to levels just tolerable for mucositis, we have plotted tcp{sub max-early} against schedule duration. Results: While BIR dataset tcp fits describe dose levels isoeffective for tumor control as rising significantly with schedule protraction, indicative of accelerated tumor repopulation, repopulation terms in fits to Withers' dataset do not reach significance after accounting for overdispersion of the data. The tcp{sub max-early} curves calculated from tcp fits to the overall Withers' and BIR datasets rise by 8% and 0-4%, respectively, between 20 and 50 days duration; likewise, tcp{sub max-early} curves calculated for stage-specific cohorts also generally rise slowly with increasing duration. However none of the increases in tcp{sub max-early} calculated from the overall or stage-specific fits reach significance. Conclusions: Local control rates modeled for treatments which lie just within mucosal tolerance rise slowly but insignificantly with increasing schedule length. This finding suggests that whereas useful gains may be made by accelerating unnecessarily slow schedules until they approach early reaction tolerance, little is achieved by shortening schedules further while reducing doses to remain within mucosal tolerance, an approach that may slightly worsen outcomes.

  19. Bone marrow-derived T lymphocytes responsible for allograft rejection

    SciTech Connect

    Senjanovic, M.; Marusic, M.

    1984-08-01

    Lethally irradiated mice reconstituted with syngeneic bone marrow cells were grafted with allogeneic skin grafts 6-7 weeks after irradiation and reconstitution. Mice with intact thymuses rejected the grafts whereas the mice thymectomized before irradiation and reconstitution did not. Thymectomized irradiated mice (TIR mice) reconstituted with bone marrow cells from donors immune to the allografts rejected the grafts. Bone marrow cells from immunized donors, pretreated with Thy 1.2 antibody and C', did not confer immunity to TIR recipients. To determine the number of T lymphocytes necessary for the transfer of immunity by bone marrow cells from immunized donors, thymectomized irradiated mice were reconstituted with nonimmune bone marrow cells treated with Thy 1.2 antibody and C' and with various numbers of splenic T lymphocytes from nonimmune and immune donors. Allogeneic skin graft rejection was obtained with 10(6) nonimmune or 10(4) immune T cells. The effect of immune T cells was specific: i.e., immune T cells accelerated only rejection of the relevant skin grafts whereas against a third-party skin grafts acted as normal T lymphocytes.

  20. A multiscale model of the bone marrow and hematopoiesis

    PubMed Central

    Silva, Ariosto S; Anderson, Alexander R.A.

    2013-01-01

    The bone marrow is necessary for renewal of all hematopoietic cells and critical for maintenance of a wide range of physiologic functions. Multiple human diseases result from bone marrow dysfunction. It is also the site in which “liquid” tumors, including leukemia and multiple myeloma, develop as well as a frequent site of metastases. Understanding the complex cellular and microenvironmental interactions that govern normal bone marrow function as well as diseases and cancers of the bone marrow would be a valuable medical advance. Our goal is the development of a spatially-explicit in silico model of the bone marrow to understand both its normal function and the evolutionary dynamics that govern the emergence of bone marrow malignancy. Here we introduce a multiscale computational model of the bone marrow that incorporates three distinct spatial scales, cell, hematopoietic subunit, whole marrow. Implemented as a fixed lattice 3D cellular automaton, it reproduces the spatial characteristics of the normal bone marrow and is validated against data from the daily production of mature blood cells and response of hematopoiesis after irradiation. The major mechanisms modeled in this work are: (1) replication, specialization and migration of hematopoietic cells, (2) optimized spatial configuration of sinuses and hematopoietic compartments and, (3) intravasation of mature hematopoietic cells into sinuses. Our results, using parameter estimates from literature, recapitulates normal bone marrow function and suggest an explanation for the fractal-like structure of trabeculae and sinuses in the marrow, which would be an optimization of the hematopoietic function in order to maximize the number of mature blood cells produced daily within the volumetric restrictions of the marrow. PMID:21631151

  1. Long-term survival of murine allogeneic bone marrow chimeras: effect of anti-lymphocyte serum and bone marrow dose

    SciTech Connect

    Norin, A.J.; Emeson, E.E.; Veith, F.J.

    1981-02-01

    Graft-vs-host disease (GVHD) and failure of donor stem cells to engraft permanently are two major obstacles to successful bone marrow transplantation. The effect of a single large dose of anti-lymphocyte serum (ALS) on mice receiving various numbers of H-2 incompatible bone marrow cells was evaluated. Most animals receiving lethal total body irradiation (TBI) and allogeneic marrow died within 45 days due to GVHD. Mice that were given ALS 6 to 24 h before TBI and bone marrow 24 h after irradiation survived in good health for more than 200 days. These cell preparations caused lethal GVHD in third party mice indicating that the lack of alloreactivity was specific to the strain in which the unresponsiveness was originally induced.

  2. The CD44+ALDH+ Population of Human Keratinocytes Is Enriched for Epidermal Stem Cells with Long-Term Repopulating Ability

    PubMed Central

    Szabo, Akos Z.; Fong, Stephen; Yue, Lili; Zhang, Kai; Strachan, Lauren R.; Scalapino, Kenneth; Mancianti, Maria Laura; Ghadially, Ruby

    2014-01-01

    Like for other somatic tissues, isolation of a pure population of stem cells has been a primary goal in epidermal biology. We isolated discrete populations of freshly obtained human neonatal keratinocytes (HNKs) using previously untested candidate stem cell markers aldehyde dehydrogenase (ALDH) and CD44 as well as the previously studied combination of integrin α6 and CD71. An in vivo transplantation assay combined with limiting dilution analysis was used to quantify enrichment for long-term repopulating cells in the isolated populations. The ALDH+CD44+ population was enriched 12.6-fold for long-term repopulating epidermal stem cells (EpiSCs) and the integrin α6hiCD71lo population was enriched 5.6-fold, over unfractionated cells. In addition to long-term repopulation, CD44+ALDH+ keratinocytes exhibited other stem cell properties. CD44+ALDH+ keratinocytes had self-renewal ability, demonstrated by increased numbers of cells expressing nuclear Bmi-1, serial transplantation of CD44+ALDH+ cells, and holoclone formation in vitro. CD44+ALDH+ cells were multipotent, producing greater numbers of hair follicle-like structures than CD44−ALDH− cells. Furthermore, 58% ± 7% of CD44+ALDH+ cells exhibited label-retention. In vitro, CD44+ALDH+ cells showed enhanced colony formation, in both keratinocyte and embryonic stem cell growth media. In summary, the CD44+ALDH+ population exhibits stem cell properties including long-term epidermal regeneration, multipotency, label retention, and holoclone formation. This study shows that it is possible to quantify the relative number of EpiSCs in human keratinocyte populations using long-term repopulation as a functional test of stem cell nature. Future studies will combine isolation strategies as dictated by the results of quantitative transplantation assays, in order to achieve a nearly pure population of EpiSCs. PMID:23335266

  3. Abnormal lipid processing but normal long-term repopulation potential of myc−/− hepatocytes

    PubMed Central

    Edmunds, Lia R.; Otero, P. Anthony; Sharma, Lokendra; D'souza, Sonia; Dolezal, James M.; David, Sherin; Lu, Jie; Lamm, Lauren; Basantani, Mahesh; Zhang, Pili; Sipula, Ian J.; Li, Lucy; Zeng, Xuemei; Ding, Ying; Ding, Fei; Beck, Megan E.; Vockley, Jerry; Monga, Satdarshan P. S.; Kershaw, Erin E.; O'Doherty, Robert M.; Kratz, Lisa E.; Yates, Nathan A.; Goetzman, Eric P.; Scott, Donald; Duncan, Andrew W.; Prochownik, Edward V.

    2016-01-01

    Establishing c-Myc's (Myc) role in liver regeneration has proven difficult particularly since the traditional model of partial hepatectomy may provoke an insufficiently demanding proliferative stress. We used a model of hereditary tyrosinemia whereby the affected parenchyma can be gradually replaced by transplanted hepatocytes, which replicate 50-100-fold, over several months. Prior to transplantation, livers from myc−/− (KO) mice were smaller in young animals and larger in older animals relative to myc+/+ (WT) counterparts. KO mice also consumed more oxygen, produced more CO2 and generated more heat. Although WT and KO hepatocytes showed few mitochondrial structural differences, the latter demonstrated defective electron transport chain function. RNAseq revealed differences in transcripts encoding ribosomal subunits, cytochrome p450 members and enzymes for triglyceride and sterol biosynthesis. KO hepatocytes also accumulated neutral lipids. WT and KO hepatocytes repopulated recipient tyrosinemic livers equally well although the latter were associated with a pro-inflammatory hepatic environment that correlated with worsening lipid accumulation, its extracellular deposition and parenchymal oxidative damage. Our results show Myc to be dispensable for sustained in vivo hepatocyte proliferation but necessary for maintaining normal lipid homeostasis. myc−/− livers resemble those encountered in non-alcoholic fatty liver disease and, under sustained proliferative stress, gradually acquire the features of non-alcoholic steatohepatitis. PMID:27105497

  4. Efficient extravasation of tumor-repopulating cells depends on cell deformability

    PubMed Central

    Chen, Junjian; Zhou, Wenwen; Jia, Qiong; Chen, Junwei; Zhang, Shuang; Yao, Wenting; Wei, Fuxiang; Zhang, Yuejin; Yang, Fang; Huang, Wei; Zhang, Yao; Zhang, Huafeng; Zhang, Yi; Huang, Bo; Zhang, Zhihong; Jia, Haibo; Wang, Ning

    2016-01-01

    Cancer metastasis is the most deadly stage in cancer progression. Despite significant efforts over the past decades, it remains elusive why only a very small fraction of cancer cells is able to generate micrometastasis and metastatic colonization. Recently we have shown that tumor-repopulating cells (TRCs), a highly tumorigenic subpopulation of mouse melanoma cells, can be selected by being cultured and grown in 3D soft fibrin gels. Here we show that when injected into the yolk of a 2 day-post-fertilization (dpf) embryo of Tg (fli1:EGFP or kdrl:mCherry) zebrafish, TRCs are much more efficient in surviving and growing at various secondary sites to generate micrometastasis and metastatic colonization than control melanoma cells that are grown on rigid plastic. The metastasis of TRCs is dependent on the presence of Sox2, a self-renewal gene, and silencing Sox2 leads to the inhibition of TRC metastasis. High-resolution of 3D confocal images of the TRCs at the secondary sites show that extravasation and formation of micrometastases by TRCs are more efficient than by the control cells. Remarkably, efficient extravasation of TRCs in vivo and transmigration in vitro are determined by TRC deformability, as a result of low Cdc42 and high Sox2. Our findings suggest that tumor cell deformability is a key factor in controlling extravasation dynamics during metastasis. PMID:26787224

  5. Neolithic patrilineal signals indicate that the Armenian plateau was repopulated by agriculturalists

    PubMed Central

    Herrera, Kristian J; Lowery, Robert K; Hadden, Laura; Calderon, Silvia; Chiou, Carolina; Yepiskoposyan, Levon; Regueiro, Maria; Underhill, Peter A; Herrera, Rene J

    2012-01-01

    Armenia, situated between the Black and Caspian Seas, lies at the junction of Turkey, Iran, Georgia, Azerbaijan and former Mesopotamia. This geographic position made it a potential contact zone between Eastern and Western civilizations. In this investigation, we assess Y-chromosomal diversity in four geographically distinct populations that represent the extent of historical Armenia. We find a striking prominence of haplogroups previously implicated with the Agricultural Revolution in the Near East, including the J2a-M410-, R1b1b1*-L23-, G2a-P15- and J1-M267-derived lineages. Given that the Last Glacial Maximum event in the Armenian plateau occured a few millennia before the Neolithic era, we envision a scenario in which its repopulation was achieved mainly by the arrival of farmers from the Fertile Crescent temporally coincident with the initial inception of farming in Greece. However, we detect very restricted genetic affinities with Europe that suggest any later cultural diffusions from Armenia to Europe were not associated with substantial amounts of paternal gene flow, despite the presence of closely related Indo-European languages in both Armenia and Southeast Europe. PMID:22085901

  6. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging.

    PubMed

    Tang, Duozhuang; Tao, Si; Chen, Zhiyang; Koliesnik, Ievgen Oleksandrovich; Calmes, Philip Gerald; Hoerr, Verena; Han, Bing; Gebert, Nadja; Zörnig, Martin; Löffler, Bettina; Morita, Yohei; Rudolph, Karl Lenhard

    2016-04-01

    Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways.

  7. Neolithic patrilineal signals indicate that the Armenian plateau was repopulated by agriculturalists.

    PubMed

    Herrera, Kristian J; Lowery, Robert K; Hadden, Laura; Calderon, Silvia; Chiou, Carolina; Yepiskoposyan, Levon; Regueiro, Maria; Underhill, Peter A; Herrera, Rene J

    2012-03-01

    Armenia, situated between the Black and Caspian Seas, lies at the junction of Turkey, Iran, Georgia, Azerbaijan and former Mesopotamia. This geographic position made it a potential contact zone between Eastern and Western civilizations. In this investigation, we assess Y-chromosomal diversity in four geographically distinct populations that represent the extent of historical Armenia. We find a striking prominence of haplogroups previously implicated with the Agricultural Revolution in the Near East, including the J2a-M410-, R1b1b1(*)-L23-, G2a-P15- and J1-M267-derived lineages. Given that the Last Glacial Maximum event in the Armenian plateau occured a few millennia before the Neolithic era, we envision a scenario in which its repopulation was achieved mainly by the arrival of farmers from the Fertile Crescent temporally coincident with the initial inception of farming in Greece. However, we detect very restricted genetic affinities with Europe that suggest any later cultural diffusions from Armenia to Europe were not associated with substantial amounts of paternal gene flow, despite the presence of closely related Indo-European languages in both Armenia and Southeast Europe. PMID:22085901

  8. Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis

    PubMed Central

    Tong, Dali; Liu, Gaolei; Lan, Weihua; Zhang, Dianzheng; Xiao, Hualiang; Zhang, Yao; Huang, Zaoming; Yang, Junjie; Zhang, Jun; Jiang, Jun

    2016-01-01

    Cancer stem cells (CSCs) are a sub-population of tumor cells playing essential roles in initiation, differentiation, recurrence, metastasis and development of drug resistance of various cancers, including bladder cancer. Although multiple lines of evidence suggest that metformin is capable of repressing CSC repopulation in different cancers, the effect of metformin on bladder cancer CSCs remains largely unknown. Using the N-methyl-N-nitrosourea (MNU)-induced rat orthotropic bladder cancer model, we demonstrated that metformin is capable of repressing bladder cancer progression from both mild to moderate/severe dysplasia lesions and from carcinoma in situ (CIS) to invasive lesions. Metformin also can arrest bladder cancer cells in G1/S phases, which subsequently leads to apoptosis. And also metformin represses bladder cancer CSC repopulation evidenced by reducing cytokeratin 14 (CK14+) and octamer-binding transcription factor 3/4 (OCT3/4+) cells in both animal and cellular models. More importantly, we found that metformin exerts these anticancer effects by inhibiting COX2, subsequently PGE2 as well as the activation of STAT3. In conclusion, we are the first to systemically demonstrate in both animal and cell models that metformin inhibits bladder cancer progression by inhibiting stem cell repopulation through the COX2/PGE2/STAT3 axis. PMID:27058422

  9. Evaluation of bone-marrow scanning with technetium-99m sulfur colloid in pediatric oncology.

    PubMed

    Siddiqui, A R; Oseas, R S; Wellman, H N; Doerr, D R; Baehner, R L

    1979-05-01

    Eighty-six technetium-99m sulfur colloid (Tc-SC) bone-marrow scans in 56 pediatric oncology patients were reviewed. The distribution of the sulfur colloid was similar to that in adult bone marrow in normal children older than 10 yr, and involved progressively more marrow of the extremities in normal children under 10 years of age. After irradiation or chemotherapy there was an extension of the Tc-SC to peripheral marrow sites. There was also diminished uptake of the tracer in sites corresponding to irradiated areas. In most patients there was recovery of these defects by 6 mo after completion of therapy. Tumor replacement of the marrow was reflected in the scans, and the extent of the scan defect paralleled the course of the disease. In four patients, despite normal bone scans and radiographs, marrow-scan abnormalities due to tumor replacement were present and confirmed by needle aspiration and/or biopsy. In two other patients, the marrow-scan abnormality preceded radiographic and histologic evidence of tumor metastasis. Two patients who responded clinically showed persistent defects; biopsy in one revealed fibrosis. Technetium-99m sulfur colloid bone-marrow scanning appears to be a sensitive monitor of marrow alteration caused by metastases, irradiation damage, or tissue fibrosis in children receiving treatment for cancer.

  10. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    PubMed Central

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  11. Correction of bone marrow failure in dyskeratosis congenita by bone marrow transplantation.

    PubMed

    Ghavamzadeh, A; Alimoghadam, K; Nasseri, P; Jahani, M; Khodabandeh, A; Ghahremani, G

    1999-02-01

    Dyskeratosis congenita is recognized by its dermal lesions and constitutional aplastic anemia in some cases. We report successful allogeneic bone marrow transplantation in two siblings with this disease from their sister, and their long term follow-up. We used reduced doses of cyclophosphamide and busulfan for conditioning instead of total body irradiation. Also, we report late adverse effects of transplantation which are not distinguishable from the natural course of disease.

  12. Total lymphoid irradiation

    SciTech Connect

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  13. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells

    PubMed Central

    Gur-Cohen, Shiri; Itkin, Tomer; Chakrabarty, Sagarika; Graf, Claudine; Kollet, Orit; Ludin, Aya; Golan, Karin; Kalinkovich, Alexander; Ledergor, Guy; Wong, Eitan; Niemeyer, Elisabeth; Porat, Ziv; Erez, Ayelet; Sagi, Irit; Esmon, Charles T; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation-related also control retention of EPCR+ LT-HSCs in the bone marrow and their recruitment to the blood via two different protease activated receptor 1 (PAR1)-mediated pathways. Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to TACE-mediated EPCR shedding, enhanced CXCL12-CXCR4-induced motility, and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with protein C that retain EPCR+ LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing VLA4 affinity and adhesion. Inhibition of NO production by activated protein C (aPC)-EPCR-PAR1 signaling reduces progenitor cell egress, increases NOlow bone marrow EPCR+ LT-HSCs retention and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR that control NO production to balance maintenance and recruitment of bone marrow EPCR+ LT-HSCs with clinical relevance. PMID:26457757

  14. Bone Marrow Aspiration and Biopsy

    MedlinePlus

    ... the bone marrow and capability for blood cell production, including red blood cells (RBCs), white blood cells ( ... can affect the bone marrow and blood cell production. A specialist who has expertise in the diagnosis ...

  15. Bone-marrow transplant - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Bone-marrow is a soft, fatty tissue found inside of ...

  16. Ocular complications of bone marrow transplantation.

    PubMed

    Livesey, S J; Holmes, J A; Whittaker, J A

    1989-01-01

    Thirty-four patients who had undergone bone marrow transplantation (BMT) were examined; 83.3% of those who received single shot and none of those who received fractionated total body irradiation (TBI) developed cataracts. The use of steroids to treat chronic Graft Versus Host Disease (GVHD) produced more severe cataracts in those who had allogeneic transplants after single shot TBI, but follow-up has not been long enough to assess their effect following fractionated TBI. Keratoconjunctivitis sicca (KCS) was seen in 81.8% of patients with chronic GVHD and in 33.3% of patients after autologous BMT. PMID:2693135

  17. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Help a Friend Who Cuts? Aspiration and Biopsy: Bone Marrow KidsHealth > For Teens > Aspiration and Biopsy: Bone Marrow Print A A A Text Size What's in ... Risks If You Have Questions What It Is Bone marrow aspirations and biopsies are performed to examine bone ...

  18. Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ.

    PubMed

    Khan, Aleem Ahmed; Vishwakarma, Sandeep Kumar; Bardia, Avinash; Venkateshwarulu, J

    2014-12-01

    Demand of donor organs for transplantation in treatment of organ failure is increasing. Hence there is a need to develop new strategies for the alternative sources of organ development. Attempts are being made to use xenogenic organs by genetic manipulation but the organ rejection against human always has been a major challenge for the survival of the graft. Advancement in the genetic bioengineering and combination of different allied sciences for the development of humanized organ system, the therapeutic influence of stem cell fraction on the reconstitution of organ architecture and their regenerative abilities in different tissues and organs provides a better approach to solve the problem of organ shortage. However, the available strategies for generating the organ/tissue scaffolds limit its application due to the absence of complete three-dimensional (3D) organ architecture, mechanical strength, long-term cell survival, and vascularization. Repopulation of whole decellularized organ scaffolds using stem cells has added a new dimension for creating new bioengineered organs. In recent years, several studies have demonstrated the potential application of decellularization and recellularization approach for the development of functional bio-artificial organs. With the help of established procedures for conditioning, extensive stem cells and organ engineering experiments/transplants for the development of humanized organs will allow its preclinical evaluation for organ regeneration before translation to the clinic. This review focuses on the major aspects of organ scaffold generation and repopulation of different types of whole decellularized organ scaffolds using stem cells for the functional benefit and their confines.

  19. Revising the Radiobiological Model of Synchronous Chemotherapy in Head-and-Neck Cancer: A New Analysis Examining Reduced Weighting of Accelerated Repopulation

    SciTech Connect

    Meade, Sara; Sanghera, Paul; McConkey, Christopher; Fowler, Jack; Fountzilas, George; Glaholm, John; Hartley, Andrew

    2013-05-01

    Purpose: Previous studies of synchronous chemoradiation therapy have modeled the additional effect of chemotherapy as additional radiation therapy biologically effective dose (BED). Recent trials of accelerated versus conventional fractionation chemoradiation have cast doubt on such modeling. The purpose of this study was to identify alternative models. Methods and Materials: Nine trials of platinum-based chemoradiation were identified. In radiation therapy-alone arms, the radiation therapy BED for tumor was calculated using standard parameters. In chemoradiation arms, 3 methods were used to calculate tumor BED (tBED): additional BED, addition of 9.3 Gy BED for tumor to the radiation therapy BED; zero repopulation, BED with no correction for repopulation; variable t{sub p} (the average doubling time during accelerated repopulation), values of t{sub p} 3-10 were used to examine a partial suppression of repopulation. The correlations between the calculated percentage change in tBED for each method and observed percentage change in local control were assessed using the Pearson product moment correlation. Results: Significant correlations were obtained for all 3 methods but were stronger with zero repopulation (P=.0002) and variable t{sub p} (t{sub p} = 10) (P=.0005) than additional BED (P=.02). Conclusions: Radiobiological models using modified parameters for accelerated repopulation seem to correlate strongly with outcome in chemoradiation studies. The variable t{sub p} method shows strong correlation for outcome in local control and is potentially a more suitable model in the chemoradiation setting. However, a lack of trials with an overall treatment time of more than 46 days inhibits further differentiation of the optimal model.

  20. Injured kidney endothelium is only marginally repopulated by cells of extrarenal origin.

    PubMed

    Schirutschke, Holger; Vogelbacher, Regina; Stief, Andrea; Parmentier, Simon; Daniel, Christoph; Hugo, Christian

    2013-10-01

    The role of bone marrow marrow-derived cells after kidney endothelial injury is controversial. In this study, we investigated if and to what extent extrarenal cells incorporate into kidney endothelium after acute as well as during chronic endothelial injury. Fischer F-344wt (wild type) rat kidney grafts were transplanted into R26-hPAP (human placental alkaline phosphatase) transgenic Fischer F-344 recipient rats to allow identification of extrarenal cells by specific antibody staining. A severe model of renal thrombotic microangiopathy was induced via graft perfusion with antiglomerular endothelial cell (GEN) antibody and resulted in eradication of 85% of the glomerular and 69% of the peritubular endothelium (GEN group). At week 4 after injury, renal endothelial healing as well as recovery of the kidney function was seen. Endothelial chimerism was evaluated by double staining for hPAP and endothelial markers RECA-1 or JG-12. Just 0.25% of the glomerular and 0.1% of the peritubular endothelium was recipient derived. In a second experiment, chronic endothelial injury was induced by combination of kidney transplantation with 5/6 nephrectomy (5/6 Nx group). After 14 wk, only 0.86% of the peritubular and 0.05% of the glomerular endothelium was of recipient origin. In summary, despite demonstration of extensive damage and loss as well as excellent regeneration, just a minority of extrarenal cells were incorporated into kidney endothelium in rat models of acute and chronic renal endothelial cell injury. Our results highlight that kidney endothelial regeneration after specific and severe injury is almost exclusively of renal origin.

  1. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any

  2. Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells

    PubMed Central

    Liu, Na; Qi, Xin; Han, Zhibo; Liang, Lu; Kong, Deling; Han, Zhongchao; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2016-01-01

    Resident cardiac stem cells (CSCs) represent a responsive stem cell reservoir within the adult myocardium and have a significant function in myocardial homeostasis and injury. However, the distribution, origin, homing and possible therapeutic benefits of CSCs are still under discussion. Here we investigated whether bone marrow (BM) stem cells could contribute to repopulating the pool of CSCs in heart. The engraftment of BM cells in heart was detected at a low level after BM transplantation (BMT) and ischemia/reperfusion (I/R) could increase BM cells engraftment but not significant. We clarified that more than 50% CSCs are derived from BM and confirmed that BM-derived CSCs have similar characteristics with the host CSCs. Furthermore, we transplanted BM-derived CSCs into heart ischemia models and presented evidence for the first time that BM-derived CSCs can differentiate into cardiomyocytes in vivo. In conclusions, BM stem cells could be a potential back-up source of CSCs for restoring heart function after injury or maintaining homeostasis of CSCs. PMID:27345618

  3. DIRECT AND INDIRECT CONTRIBUTION OF BONE MARROW DERIVED CELLS TO CANCER

    PubMed Central

    Guest, Ian; Ilic, Zoran; Ma, Jun; Grant, Denise; Glinsky, Gennadi; Sell, Stewart

    2010-01-01

    Summary Stromal-epithelial interactions may control the growth and initiation of cancers. Here we not only test the hypothesis that bone marrow derived cells may effect development of cancers arising from other tissue cells by forming tumor stroma, but also that sarcomas may arise by transformation of stem cells from the bone marrow and epithelial cancers may arise by transdifferentiation of bone marrow stem cells to epithelial cancers. Lethally irradiated female FVB/N mice were restored with bone marrow (BM) transplants from a male transgenic mouse carrying the polyoma middle T-oncoprotein under the control of the mouse mammary tumor virus promoter (MMTV-PyMT) and followed for development of lesions. Eight of 8 lethally irradiated female FVB/N recipient mice, restored with BM transplants from a male MMTV-PyMT transgenic mouse, developed Ychromosome negative (Y−) cancers of various organs surrounded by Y+ stroma. One of the female FVB/N recipient mice also developed fibrosarcoma and one a diploid breast adenocarcinoma (BCA) containing Ychromosomes. In contrast, only 1 of 12 control female mice restored with normal male bone marrow developed a tumor (lymphoma) during the same time period.. These results indicate not only that the transgenic bone marrow derived stromal cells may indirectly contribute to development of tumors in recipient mice, but also that sarcomas may arise by transformation of bone marrow stem cells and that breast cancers arise by transdifferentiation of bone marrow stem cells, presumably by mesenchymal-epithelial transition. PMID:19816927

  4. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type.

    PubMed

    Rahmani, Waleed; Abbasi, Sepideh; Hagner, Andrew; Raharjo, Eko; Kumar, Ranjan; Hotta, Akitsu; Magness, Scott; Metzger, Daniel; Biernaskie, Jeff

    2014-12-01

    The dermal papilla (DP) provide instructive signals required to activate epithelial progenitors and initiate hair follicle regeneration. DP cell numbers fluctuate over the hair cycle, and hair loss is associated with gradual depletion/atrophy of DP cells. How DP cell numbers are maintained in healthy follicles remains unclear. We performed in vivo fate mapping of adult hair follicle dermal sheath (DS) cells to determine their lineage relationship with DP and found that a subset of DS cells are retained following each hair cycle, exhibit self-renewal, and repopulate the DS and the DP with new cells. Ablating these hair follicle dermal stem cells and their progeny retarded hair regrowth and altered hair type specification, suggesting that they function to modulate normal DP function. This work identifies a bipotent stem cell within the adult hair follicle mesenchyme and has important implications toward restoration of hair growth after injury, disease, and aging.

  5. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function.

    PubMed

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-07-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell

  6. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function

    PubMed Central

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J.; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-01-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34+ hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34+ cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34+ cells with high (CD34+ MitoHigh) versus low (CD34+ MitoLow) mitochondrial mass. The CD34+ MitoLow fraction contained 6-fold more CD34+CD38− primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34+ MitoHigh fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34+ MitoLow cells was significantly delayed as compared to that of CD34+ MitoHigh cells. The eventual complete differentiation of CD34+ MitoLow cells, which coincided with a robust expansion of the CD34− differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34+ cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of

  7. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    SciTech Connect

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  8. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    NASA Astrophysics Data System (ADS)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  9. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    SciTech Connect

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-12-08

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of {gamma}--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD{sub 50} values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  10. A stochastic model of radiation-induced bone marrow damage

    SciTech Connect

    Cotlet, G.; Blue, T.E.

    2000-03-01

    A stochastic model, based on consensus principles from radiation biology, is used to estimate bone-marrow stem cell pool survival (CFU-S and stroma cells) after irradiation. The dose response model consists of three coupled first order linear differential equations which quantitatively describe time dependent cellular damage, repair, and killing of red bone marrow cells. This system of differential equations is solved analytically through the use of a matrix approach for continuous and fractionated irradiations. The analytic solutions are confirmed through the dynamical solution of the model equations using SIMULINK. Rate coefficients describing the cellular processes of radiation damage and repair, extrapolated to humans from animal data sets and adjusted for neutron-gamma mixed fields, are employed in a SIMULINK analysis of criticality accidents. The results show that, for the time structures which may occur in criticality accidents, cell survival is established mainly by the average dose and dose rate.

  11. Immune reactivity after high-dose irradiation

    SciTech Connect

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-03-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient.

  12. Starvation marrow – gelatinous transformation of bone marrow

    PubMed Central

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  13. Thyroid dysfunction among long-term survivors of bone marrow transplantation

    SciTech Connect

    Sklar, C.A.; Kim, T.H.; Ramsay, N.K.

    1982-11-01

    Thyroid function studies were followed serially in 27 long-term survivors (median 33 months) of bone marrow transplantation. There were 15 men and 12 women (median age 13 1/12 years, range 11/12 to 22 6/12 years). Aplastic anemia (14 patients) and acute nonlymphocytic leukemia (eight patients) were the major reasons for bone marrow transplantation. Pretransplant conditioning consisted of single-dose irradiation combined with high-dose, short-term chemotherapy in 23 patients, while four patients received a bone marrow transplantation without any radiation therapy. Thyroid dysfunction occurred in 10 of 23 (43 percent) irradiated patients; compensated hypothyroidism (elevated thyroid-stimulating hormone levels only) developed in eight subjects, and two patients had primary thyroid failure (elevated thyroid-stimulating hormone levels and low T4 index). The abnormal thyroid studies were detected a median of 13 months after bone marrow transplantation. The four subjects who underwent transplantation without radiation therapy have remained euthyroid (median follow-up two years). The only variable that appeared to correlate with the subsequent development of impaired thyroid function was the type of graft-versus-host disease prophylaxis employed; the irradiated subjects treated with methotrexate alone had a higher incidence of thyroid dysfunction compared to those treated with methotrexate combined with antithymocyte globulin and prednisone (eight of 12 versus two of 11, p less than 0.05). The high incidence and subtle nature of impaired thyroid function following single-dose irradiation for bone marrow transplantation are discussed.

  14. Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians.

    PubMed

    Lei, Kai; Thi-Kim Vu, Hanh; Mohan, Ryan D; McKinney, Sean A; Seidel, Chris W; Alexander, Richard; Gotting, Kirsten; Workman, Jerry L; Sánchez Alvarado, Alejandro

    2016-08-22

    A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion.

  15. Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians.

    PubMed

    Lei, Kai; Thi-Kim Vu, Hanh; Mohan, Ryan D; McKinney, Sean A; Seidel, Chris W; Alexander, Richard; Gotting, Kirsten; Workman, Jerry L; Sánchez Alvarado, Alejandro

    2016-08-22

    A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion. PMID:27523733

  16. Lung function after bone marrow grafting

    SciTech Connect

    Depledge, M.H.; Barrett, A.; Powles, R.L.

    1983-02-01

    Results of a prospective lung function study are presented for 48 patients with acute myeloid leukemia (AML) treated with total body irradiation (TBI) and bone marrow transplantation (BMT) at the Royal Marsden Hospital between 1978 and 1980. Patients with active disease or who were in remission following cytoreductive chemotherapy had mildly impaired gas exchange prior to grafting. After TBI and BMT all patients studied developed progressive deterioration of lung function during the first 100 days, although these changes were subclinical. Infection and graft-versus-host disease (GvHD) were associated with further worsening of restrictive ventilatory defects and diffusing capacity (D/sub L/CO). Beyond 100 days, ventilatory ability returned to normal and gas transfer improved, although it failed to reach pre-transplant levels. There was no evidence of progressive pulmonary fibrosis during the first year after grafting.

  17. Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow.

    PubMed

    Lim, M; Pang, Y; Ma, S; Hao, S; Shi, H; Zheng, Y; Hua, C; Gu, X; Yang, F; Yuan, W; Cheng, T

    2016-01-01

    Degeneration of normal hematopoietic cells is a shared feature of malignant diseases in the hematopoietic system. Previous studies have shown the exhaustion of hematopoietic progenitor cells (HPCs) in leukemic marrow, whereas hematopoietic stem cells (HSCs) remain functional upon relocation to non-leukemic marrow. However, the underlying cellular mechanisms, especially the specific niche components that are responsible for the degeneration of HPCs, are unknown. In this study, we focused on murine bone mesenchymal stem cells (MSCs) and their supporting function for normal hematopoietic cells in Notch1-induced acute T-cell lymphocytic leukemia (T-ALL) mice. We demonstrate that the proliferative capability and differentiation potential of T-ALL MSCs were impaired due to accelerated cellular senescence. RNA-seq analysis revealed significant transcriptional alterations in leukemic MSCs. After co-cultured with the MSCs from T-ALL mice, a specific inhibitory effect on HPCs was defined, whereas in vivo repopulating potential of normal HSCs was not compromised. Furthermore, osteoprotegerin was identified as a cytokine to improve the function of T-ALL MSCs and to enhance normal HPC output via the p38/ERK pathway. Therefore, this study reveals a novel cellular mechanism underlying the inhibition of HPC generation in T-ALL. Leukemic MSCs may serve as a cellular target for improving normal hematopoietic regeneration therapeutically.

  18. Bone marrow-derived hematopoietic stem and progenitor cells infiltrate allogeneic and syngeneic transplants.

    PubMed

    Fan, Z; Enjoji, K; Tigges, J C; Toxavidis, V; Tchipashivili, V; Gong, W; Strom, T B; Koulmanda, M

    2014-12-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineage(negative) Sca-1(+) cKit(+) ("LSK") cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic "LSK" HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, "LSK" HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intramedullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs.

  19. Las Alpujarras region (South East Spain) HLA genes study: evidence of a probable success of 17th century repopulation from North Spain.

    PubMed

    Longás, Javier; Martínez-Laso, Jorge; Rey, Diego; Areces, Cristina; Casado, Eduardo Gómez; Parga-Lozano, Carlos; Luna, Francisco; de Salamanca, Mercedes Enriquez; Moral, Pedro; Arnaiz-Villena, Antonio

    2012-02-01

    Conquest of Granada Muslim Kingdom (1492 AD) finished with Muslim occupation; they were mostly North African Berbers who had reached Iberia by 711 AD. A politics of Iberian Christianization followed after this date: Jewish were expelled in 1492 and Moriscos (Spaniards practicing Muslim religion or speaking Arab) were expelled from all Spanish territory on 1609 AD. Las Alpujarras is a southern Spain mountainous secluded region, which underwent a repopulation from North Spain and a specific Muslim (Moriscos)-Christian war took place according to historical records. Both Las Alpujarras repopulation by northern Iberians and Moriscos expulsion success have been debated and are regarded as non-clarified episodes. In this study, we have addressed the question whether the repopulation succeeded by determining HLA genes of present day Las Alpujarras inhabitants and compared with those of other Mediterranean populations HLA frequencies and genealogies. HLA frequencies show ambiguous results because of extant HLA similar gene frequencies there exist in North Africa and Spain. This is reflected by the finding of North and South western Mediterraneans close relatedness of HLA dendrograms and correspondence analyses. However, the genealogical study of extended HLA haplotypes particularly Alpujarran high frequency of HLA-A29-B44-DRB1*0701-DQA1*02-DQB1*02 (not found in Algerians but frequent in North and Central Spain) and Alpujarran low frequency extended haplotype HLA-A3-B7-DRB1*1501-DQA1*0102-DQB1*0602 (frequent in North Europe) reveals that a significant HLA gene flow from North Spain is observed in present day Alpujarrans: both haplotypes are characteristic of North Spain and North Europe, respectively. This may indicate that enforced Alpujarran repopulation from North Spain may have been a success, which was started by Spanish King Philip II in 1571 AD.

  20. Las Alpujarras region (South East Spain) HLA genes study: evidence of a probable success of 17th century repopulation from North Spain.

    PubMed

    Longás, Javier; Martínez-Laso, Jorge; Rey, Diego; Areces, Cristina; Casado, Eduardo Gómez; Parga-Lozano, Carlos; Luna, Francisco; de Salamanca, Mercedes Enriquez; Moral, Pedro; Arnaiz-Villena, Antonio

    2012-02-01

    Conquest of Granada Muslim Kingdom (1492 AD) finished with Muslim occupation; they were mostly North African Berbers who had reached Iberia by 711 AD. A politics of Iberian Christianization followed after this date: Jewish were expelled in 1492 and Moriscos (Spaniards practicing Muslim religion or speaking Arab) were expelled from all Spanish territory on 1609 AD. Las Alpujarras is a southern Spain mountainous secluded region, which underwent a repopulation from North Spain and a specific Muslim (Moriscos)-Christian war took place according to historical records. Both Las Alpujarras repopulation by northern Iberians and Moriscos expulsion success have been debated and are regarded as non-clarified episodes. In this study, we have addressed the question whether the repopulation succeeded by determining HLA genes of present day Las Alpujarras inhabitants and compared with those of other Mediterranean populations HLA frequencies and genealogies. HLA frequencies show ambiguous results because of extant HLA similar gene frequencies there exist in North Africa and Spain. This is reflected by the finding of North and South western Mediterraneans close relatedness of HLA dendrograms and correspondence analyses. However, the genealogical study of extended HLA haplotypes particularly Alpujarran high frequency of HLA-A29-B44-DRB1*0701-DQA1*02-DQB1*02 (not found in Algerians but frequent in North and Central Spain) and Alpujarran low frequency extended haplotype HLA-A3-B7-DRB1*1501-DQA1*0102-DQB1*0602 (frequent in North Europe) reveals that a significant HLA gene flow from North Spain is observed in present day Alpujarrans: both haplotypes are characteristic of North Spain and North Europe, respectively. This may indicate that enforced Alpujarran repopulation from North Spain may have been a success, which was started by Spanish King Philip II in 1571 AD. PMID:21633894

  1. Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I

    PubMed Central

    Zhang, Ludi; Shao, Yanjiao; Li, Lu; Tian, Feng; Cen, Jin; Chen, Xiaotao; Hu, Dan; Zhou, Yan; Xie, Weifen; Zheng, Yunwen; Ji, Yuan; Liu, Mingyao; Li, Dali; Hui, Lijian

    2016-01-01

    Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah−/− rats. The Fah−/− rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah−/− rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah−/− rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah−/− livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah−/− rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah−/− rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes. PMID:27510266

  2. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation

    NASA Astrophysics Data System (ADS)

    Malhi, Harmeet; Gorla, Giridhar R.; Irani, Adil N.; Annamaneni, Pallavi; Gupta, Sanjeev

    2002-10-01

    The inability of transplanted cells to proliferate in the normal liver hampers cell therapy. We considered that oxidative hepatic DNA damage would impair the survival of native cells and promote proliferation in transplanted cells. Dipeptidyl peptidase-deficient F344 rats were preconditioned with whole liver radiation and warm ischemia-reperfusion followed by intrasplenic transplantation of syngeneic F344 rat hepatocytes. The preconditioning was well tolerated, although serum aminotransferase levels rose transiently and hepatic injury was observed histologically, along with decreased catalase activity and 8-hydroxy adducts of guanine, indicating oxidative DNA damage. Transplanted cells did not proliferate in the liver over 3 months in control animals and animals preconditioned with ischemia-reperfusion alone. Animals treated with radiation alone showed some transplanted cell proliferation. In contrast, the liver of animals preconditioned with radiation plus ischemia-reperfusion was replaced virtually completely over 3 months. Transplanted cells integrated in the liver parenchyma and liver architecture were preserved normally. These findings offer a paradigm for repopulating the liver with transplanted cells. Progressive loss of cells experiencing oxidative DNA damage after radiation and ischemia-reperfusion injury could be of significance for epithelial renewal in additional organs.

  3. Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I.

    PubMed

    Zhang, Ludi; Shao, Yanjiao; Li, Lu; Tian, Feng; Cen, Jin; Chen, Xiaotao; Hu, Dan; Zhou, Yan; Xie, Weifen; Zheng, Yunwen; Ji, Yuan; Liu, Mingyao; Li, Dali; Hui, Lijian

    2016-01-01

    Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah(-/-) rats. The Fah(-/-) rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah(-/-) rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah(-/-) rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah(-/-) livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah(-/-) rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah(-/-) rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes. PMID:27510266

  4. Accelerated and enhanced effect of CCR5-transduced bone marrow neural stem cells on autoimmune encephalomyelitis

    PubMed Central

    Yang, Jingxian; Yan, Yaping; Ma, Cun-Gen; Kang, Tingguo; Zhang, Nan; Gran, Bruno; Xu, Hui; Li, Ke; Ciric, Bogoljub; Zangaladze, Andro; Curtis, Mark; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2013-01-01

    The suppressive effect of neural stem cells (NSCs) on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), has been reported. However, the migration of NSCs to inflammatory sites was relatively slow as was the onset of rather limited clinical benefit. Lack of, or low expression of particular chemokine receptors on NSCs could be an important factor underlying the slow migration of NSCs. To enhance the therapeutic effect of NSCs, in the present study we transduced bone marrow (BM)-derived NSCs with CCR5, a receptor for CCL3, CCL4, and CCL5, chemokines that are abundantly produced in CNS-inflamed foci of MS/EAE. After i.v. injection, CCR5-NSCs rapidly reached EAE foci in larger numbers, and more effectively suppressed CNS inflammatory infiltration, myelin damage, and clinical EAE than GFP-NSCs used as controls. CCR5-NSC-treated mice also exhibited augmented remyelination and neuron/oligodendrocyte repopulation compared to PBS- or GFP-NSC-treated mice. We inferred that the critical mechanism underlying enhanced effect of CCR5-transduced NSCs on EAE is the early migration of chemokine receptor-transduced NSCs into the inflamed foci. Such migration at an earlier stage of inflammation enables NSCs to exert more effective immunomodulation, to reduce the extent of early myelin/neuron damage by creating a less hostile environment for remyelinating cells, and possibly to participate in the remyelination/neural re-population process. These features of BM-derived transduced NSCs, combined with their easy availability (the subject’s own BM) and autologous properties, may lay the groundwork for an innovative approach to rapid and highly effective MS therapy. PMID:22526024

  5. Relationships between ablation of distinct haematopoietic cell subsets and the development of donor bone marrow engraftment following recipient pretreatment with different alkylating drugs.

    PubMed Central

    Down, J. D.; Boudewijn, A.; Dillingh, J. H.; Fox, B. W.; Ploemacher, R. E.

    1994-01-01

    A number of different alkylating chemotherapeutic agents--busulphan, dimethylbusulphan (DMB), isopropylmethane sulphonate (IMS), melphalan, cyclophosphamide (CY) and bischloroethylnitrosourea (BCNU)--were investigated for their cytotoxic effects on different haemopoietic cell populations in host mice and for their ability to induce short- and long-term engraftment of transplanted bone marrow. At 24 h after drug treatment the femoral content of transient and permanent repopulating stem cell subsets was assessed, respectively, from the frequency of early- (day 5-15) and late- (day 25-35) developing cobblestone area-forming cells (CAFCs), growing in vitro in long-term bone marrow cultures (LTBMCs). At this time a fixed complement of 10(7) congenically marked donor bone marrow cells (B6-Gpi-1a-->B6-Gpi-1b) was infused in the drug-treated mice and erythroid engraftment was followed over 36 weeks. Diverse effects on early- and late-developing CAFC frequencies were found for the different drugs; these were generally related to the pattern of donor bone marrow engraftment in treated recipients. Melphalan was more toxic to early-developing than to late-developing CAFC subsets, and the transplant only offered an early wave of blood chimerism followed by return of host cells. CY and BCNU had minimal to moderate effects on CAFC content and engraftment with no apparent preference for any particular haemopoietic cell subset. IMS also had a relatively low toxic effect on host marrow CAFC frequencies but appeared exceptional in its ability to allow for more donor-type engraftment. The dimethane sulphonate compounds busulphan and DMB were especially potent at depleting late CAFC subsets and ensured high and lasting levels of donor bone marrow engraftment. These studies support the value of CAFC measurements for predicting the fate and growth of transplanted bone marrow cells in recipients pretreated with a variety of cytotoxic agents. PMID:7917905

  6. Bone marrow-targeted liposomal carriers

    PubMed Central

    Sou, Keitaro; Goins, Beth; Oyajobi, Babatunde O.; Travi, Bruno L.; Phillips, William T.

    2011-01-01

    Introduction Bone marrow targeted drug delivery systems appear to offer a promising strategy for advancing diagnostic, protective, and/or therapeutic medicine for the hematopoietic system. Liposome technology can provide a drug delivery system with high bone marrow targeting that is mediated by specific phagocytosis in bone marrow. Area covered This review focuses on a bone marrow specific liposome formulation labeled with technetium-99m (99mTc). Interspecies differences in bone marrow distribution of the bone marrow targeted formulation are emphasized. This review provides a liposome technology to target bone marrow. In addition, the selection of proper species for the investigation of bone marrow targeting is suggested. Expert opinion It can be speculated that the bone marrow macrophages have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat soluble vitamins for hematopoiesis. This homeostatic system offers a potent pathway to deliver drugs selectively into bone marrow tissues from blood. High selectivity of the present BMT-liposome formulation for bone marrow suggests the presence of an active and specific mechanism, but specific factors affecting the uptake of the bone marrow MPS are still unknown. Further investigation of this mechanism will increase our understanding of factors required for effective transport of agents to the bone marrow, and may provide an efficient system for bone marrow delivery for therapeutic purposes. PMID:21275831

  7. Telomeres and marrow failure.

    PubMed

    Calado, Rodrigo T

    2009-01-01

    Telomeres, repeat sequences at the ends of chromosomes, are protective chromosomal structures highly conserved from primitive organisms to humans. Telomeres inevitably shorten with every cell cycle, and telomere attrition has been hypothesized to be fundamental to normal senescence of cells, tissues, and organisms. Molecular mechanisms have evolved to maintain their length and protective function; telomerase (TERT) is a reverse transcriptase enzyme that uses an RNA molecule (TERC) as the template to elongate the 3' ends of telomeres. Shelterin is a collection of DNA-binding proteins that cover and protect telomeres. The recent discovery of inherited mutations in genes that function to repair telomeres as etiologic in a range of human diseases, which have clinical manifestations in diverse tissues, including the hematopoietic tissue, suggests that defects in telomere repair and protection can cause organ failure. Dyskeratosis congenita is the prototype of telomere diseases; it is characterized by bone marrow failure, mucocutaneous abnormalities, pulmonary fibrosis, liver cirrhosis, and increased susceptibility to cancer, including acute myeloid leukemia. Aplastic anemia, acute myeloid leukemia, and idiopathic pulmonary fibrosis also are associated with inherited mutations in telomere repair or protection genes. Additionally, telomere defects associate with predisposition to hematologic malignancy and epithelial tumors. Telomere erosion is abnormally rapid in patients with mutations in telomerase genes but also after hematopoietic stem cell transplant, and telomeres are naturally shorter in older individuals-all conditions associated with higher rates of malignant diseases. In human tissue culture, short telomeres produce end-to-end chromosome fusion, nonreciprocal translocations, and aneuploidy.

  8. [Kinetic study of splenocytes after allogeneic murine bone marrow transplantation].

    PubMed

    Liu, Jing-Hua; Zhou, Fan; Dou, Li-Ping; Wang, Li-Li; Wang, Xin-Rong; Li, Li; Yu, Li

    2010-08-01

    The study was purposed to understand immunological reconstitution of peripheral immune organs after transplantation, through establishing allogeneic murine bone marrow transplantation model and detecting the kinetic change of splenocytes after transplantation. C57BL/6 mice were donors, BALB/c mice were recipients. Recipient mice were divided into irradiation group (R), irradiation plus inoculating bone marrow mononuclear cells (MNC) group (B), and irradiation plus inoculating bone marrow mononuclear cells and spleno-MNC group (S). After transplantation, the mice were examined daily for the symptoms such as weight, hunched posture, activity, ruffled fur, diarrhea, and survival. Blood routine test was done once a week, splenocyte was counted and CD3, CD4, CD8, B220, CD11c positive cell relative count was detected by FACS on day 2, 7, 14, 27, 60 after transplantation, Liver, skin and intestine were biopsied for histopathological examination before dying. The results indicated that 89% mice in S group died of acute graft-versus-host disease (aGVHD) during day 6 to 78. The spleno-mononuclear cell count quickly decreased and reached to lowest level on day 2, then gradually recovered to level of pretransplantation on day 14; CD8 and B220 positive cells decreased to lowest level on day 12, in which CD8(+) cells quickly recovered and reached to level of pretransplantation, but the B220(+) recovered most slowly and sustained to be with low level, then gradually recovered to level of pretransplantation on day 60; CD3 and CD4 positive cells decreased relatively slowly, and reached to lowest level on day 14, then both gradually recovered to level of pretransplantation on day 60; CD11c positive cell count changed unstrikingly except day 14. It is concluded that when C57BL/6 mice are donors, and BALB/c mice are recipients treated with irradiation of 7.5 Gy and inoculated with 1 x 10⁷ bone marrow MNC and 1 x 10⁷ spleno-MNC, allogeneic murine bone marrow transplantation model

  9. Regression of Adjuvant-Induced Arthritis in Rats Following Bone Marrow Transplantation

    NASA Astrophysics Data System (ADS)

    van Bekkum, Dirk W.; Bohre, Els P. M.; Houben, Paul F. J.; Knaan-Shanzer, Shoshan

    1989-12-01

    Total body irradiation followed by bone marrow transplantation was found to be an effective treatment for adjuvant arthritis induced in rats. This treatment is most effective when applied shortly after the clinical manifestation of arthritis--i.e., 4-7 weeks after administration of Mycobacterium tuberculosis. Transplantation of bone marrow at a later stage results in a limited recovery, in that the inflammatory reaction regresses but the newly formed excessive bone is not eliminated. Local irradiation of the affected joints had no effect on the disease. It could also be excluded that the recovery of arthritis following marrow transplantation is due to lack of available antigen. Transplantation of syngeneic bone marrow is as effective as that of allogeneic bone marrow from a rat strain that is not susceptible to induction of adjuvant arthritis. The beneficial effect of this treatment cannot be ascribed to the immunosuppressive effect of total body irradiation, since treatment with the highly immunosuppressive drug Cyclosporin A resulted in a regression of the joint swelling but relapse occurred shortly after discontinuation of the treatment.

  10. Selection of patients with Hodgkin's disease and non-Hodgkin's lymphoma for bone marrow transplantation.

    PubMed

    Sullivan, K M; Appelbaum, F R; Horning, S J; Rosenberg, S A; Thomas, E D

    1986-01-01

    Despite substantial progress in curative therapy of malignant lymphomas, some patients fail current treatment and die of refractory disease. Although Although high-dose chemotherapy and supralethal total body irradiation followed by bone marrow transplantation may salvage and cure a proportion of these refractory patients, treatment of such end-stage patients with marrow grafting often fails because of resistant disease or transplant-related complications. Using the analogy of transplantation in the early phases of acute and chronic leukemias, results of marrow transplant in Hodgkin's disease and non-Hodgkin's lymphoma might be improved if performed earlier in the course of the malignancy. The following collaborative report by the Seattle and Stanford groups examines current results of conventional lymphoma therapy to define subgroups of patients with "high-risk" lymphoma for whom early marrow transplant might be offered to control otherwise incurable disease. PMID:3528333

  11. UVB pretreatment of rat bone marrow allografts. Prevention of GVHD and induction of allochimerism and donor-specific unresponsiveness

    SciTech Connect

    Chabot, J.A.; Pepino, P.; Wasfie, T.; Stegall, M.D.; Marboe, C.; Hardy, M.A. )

    1990-05-01

    Ultraviolet B irradiation has been used to pretreat blood and islets to prevent subsequent graft rejection. In this study the optimal dose of UVB irradiation of bone marrow was determined in syngeneic recipients and was subsequently applied to in-vitro treatment of bone marrow allografts. UVB pretreatment of donor bone marrow inoculum led to complete prevention of GVHD in allogeneic rat recipients without major marrow or other toxicity. Long-standing recipients of allogeneic UVB-BM became stable adult chimeras. The recipients of allogeneic BM were populated by donor-type peripheral blood lymphocytes and did not reject host or donor-type heart grafts. The BM allograft recipients were immunocompetent as measured by their ability to normally reject third-party cardiac allografts. We suggest that the prevention of GVHD and induction of stable chimerism in adult recipients of allogeneic UVB-BM may be mediated by suppressor mechanisms.

  12. Effect of vacuum ultraviolet and ultraviolet Irradiation on capacitance-voltage characteristics of low-k-porous organosilicate dielectrics

    NASA Astrophysics Data System (ADS)

    Sinha, H.; Lauer, J. L.; Nichols, M. T.; Antonelli, G. A.; Nishi, Y.; Shohet, J. L.

    2010-02-01

    High frequency capacitance-voltage (C-V) measurements are used to determine the effects of vacuum ultraviolet (VUV) and ultraviolet (UV) irradiation on defect states in porous low-k organosilicate (SiCOH) dielectrics. The characteristics show that VUV photons depopulate trapped electrons from defect states within the dielectric creating trapped positive charge. This is evidenced by a negative shift in the flat-band voltage of the C-V characteristic. UV irradiation reverses this effect by repopulating the defect states with electrons photoinjected from the silicon substrate. Thus, UV reduces the number of trapped positive charges in the dielectric and can effectively repair processing-induced damage.

  13. Radiation sensitivity and cycling status of mouse bone marrow prothymocytes and day 8 colony forming units spleen (CFUs)

    SciTech Connect

    Boersma, W.J.

    1983-11-01

    Mouse bone marrow prothymocytes as determined in an in vivo thymus regeneration assay have an in vitro gamma radiation sensitivity which is different from that of spleen colony forming cells (CFUs). Determination of Do according to in vivo irradiation revealed similar but insignificant differences. Prothymocytes in normal bone marrow maintain a low but slightly different proliferative state as compared to CFUs, according to determinations using the /sup 3/H-TdR suicide technique. In regenerating bone marrow prothymocytes were found to be sensitive to an inhibitory effect of in vitro incubation with cold thymidine. CFUs and normal bone marrow prothymocytes were not affected by cold thymidine. Taking into account the cold thymidine effect it can be concluded that prothymocytes and CFUs in regenerating bone marrow are fully in cycle. These results are best explained when prothymocytes and CFUs are considered to be different cells.

  14. Mesenchymal progenitor cells in red and yellow bone marrow.

    PubMed

    Gurevitch, O; Slavin, S; Resnick, I; Khitrin, S; Feldman, A

    2009-01-01

    Marrow cavities in all bones of newborn mammals contain haematopoietic tissue and stromal microenvironment that support haematopoiesis (haematopoietic microenvironment), known as red bone marrow (BM). From the early postnatal period onwards, the haematopoietic microenvironment, mainly in tubular bones of the extremities, is replaced by mesenchymal cells that accumulate lipid drops, known as yellow BM, whereas haematopoietic tissue gradually disappears. We analysed the ability of mesenchymal cell progenitors in red and yellow BM to produce bone and haematopoietic microenvironment in vivo after transplantation into normal or haematopoietically deficient (irradiated and old) recipients. We found that (1) normal substitution of red with yellow BM results from a gradual loss of mesenchymal stem cells (MSCs) capable of developing bone and haematopoietic microenvironment; (2) the mesenchymal cell population in tubular bones still containing active haematopoietic tissue gradually becomes depleted of MSCs, starting from a young age; (3) haematopoietic microenvironment is incapable of self-maintenance and its renewal depends on the presence of precursor cells; (4) the mesenchymal cell population remaining in areas with yellow BM contains cells able to develop functionally active haematopoietic microenvironment in conditions of haematopoietic insufficiency. Our data also indicate the possible existence of bi-potential stromal precursor cells producing either bone in normal, or bone together with active haematopoietic microenvironment in irradiated or old recipients. This study opens a spectrum of opportunities for the extension of haematopoietic territories by substituting the fat contents of BM cavities with haematopoietic tissue, thereby improving haematopoiesis compromised by cytotoxic treatments, irradiation, ageing, etc.

  15. [Inherited bone marrow failure syndromes].

    PubMed

    Okuno, Yusuke

    2016-02-01

    Inherited bone marrow failure syndromes comprise a series of disorders caused by various gene mutations. Genetic tests were formerly difficult to perform because of the large size and number of causative genes. However, recent advances in next-generation sequencing has enabled simultaneous testing of all causative genes to be performed at an acceptable cost. We collaboratively conducted a series of whole-exome sequencing studies of patients with inherited bone marrow failure syndromes and discovered RPS27/RPL27 and FANCT as causative genes of Diamond-Blackfan anemia and Fanconi anemia, respectively. Furthermore, we established a target gene sequencing system to cover 189 genes associated with pediatric blood diseases to assist genetic diagnoses in clinical practice. In this review, discovery of new causative genes and possible roles of next-generation sequencing in the genetic diagnosis of inherited bone marrow failure syndromes are discussed. PMID:26935625

  16. Effect of gamma irradiation on the reproductive system of the pond snail Physa acuta

    SciTech Connect

    Fujita, S.; Egami, N.

    1984-05-01

    Changes in the survival rate in adults and embryos of the pond snail Physa acuta were studied after acute whole-body ..gamma.. irradiation. The LD/sub 50/ value of the adult snails was about 40 kR. The LD/sub 50/ values of the embryos irradiated 0 and 1 day after oviposition were about 0.9 and 2 kR, respectively. Histological changes in the ovotestis, the number of eggs laid, and their hatchability were examined in the irradiated adult snails. A fall and a subsequent recovery were observed for these characteristics after irradiation with 8 kR of ..gamma.. rays. The relative constitution of the germ-cell populations was greatly changed by the same dose of ..gamma.. rays. After depletion, the ovotestis was first repopulated with gonia, and then with oocytes, spermatocytes, and spermatids.

  17. Effect of Ex Vivo Culture of CD34+ Bone Marrow Cells on Immune Reconstitution of XSCID Dogs Following Allogeneic Bone Marrow Transplantation

    PubMed Central

    Kennedy, Douglas R.; McLellan, Kyle; Moore, Peter F.; Henthorn, Paula S.; Felsburg, Peter J.

    2009-01-01

    Successful genetic treatment of most primary immunodeficiencies or hematological disorders will require the transduction of pluripotent, self-renewing hematopoietic stem cells (HSC) rather than their progeny in order to achieve enduring production of genetically corrected cells and durable immune reconstitution. Current ex vivo transduction protocols require manipulation of HSC by culture in cytokines for various lengths of time depending upon the retroviral vector that may force HSC to enter pathways of proliferation, and possibly differentiation, that could limit their engraftment potential, pluripotentiality and long-term repopulating capacity. We have compared the ability of normal CD34+ cells cultured in a standard cytokine cocktail for 18 hours or 4.5 days to reconstitute XSCID dogs following bone marrow transplantation in the absence of any pre-transplant conditioning with that of freshly isolated CD34+ cells. CD34+ cells cultured under standard γ-retroviral transduction conditions (4.5 days) showed decreased engraftment potential and ability to sustain long-term thymopoiesis. In contrast, XSCID dogs transplanted with CD34+ cells cultured for 18 hours showed a robust T cell immune reconstitution similar to dogs transplanted with freshly isolated CD34+ cells, however, the ability to sustain long-term thymopoiesis was impaired. These results emphasize the need to determine ex vivo culture conditions that maintain both the engraftment potential and “stem cell” potential of the cultured cells. PMID:19450750

  18. Local proliferation and extrahepatic recruitment of liver macrophages (Kupffer cells) in partial-body irradiated rats

    SciTech Connect

    Bouwens, L.; Knook, D.L.; Wisse, E.

    1986-06-01

    The relative significance of local proliferation and extrahepatic recruitment of Kupffer cells was investigated by partial-body irradiation before the induction of macrophage hyperplasia by zymosan. There was no difference in growth of the Kupffer cells population between nonirradiated rats and rats irradiated with the liver shielded, whereas irradiation of the liver with the rest of the body (bone marrow) shielded resulted in strong inhibition of growth (-61%). Splenectomy combined with bone marrow irradiation inhibited growth to a lesser extent as compared to liver irradiation (-38%). Monocyte and other leukocyte numbers were strongly reduced in peripheral blood and their accumulation in the liver was completely prevented by bone marrow irradiation. Our results demonstrate that local proliferation of resident Kupffer cells represents the predominant source for their increased number during hyperplasia.

  19. Planning for a Bone Marrow Transplant (BMT)

    MedlinePlus

    ... us Digg Facebook Google Bookmarks Planning for a Bone Marrow Transplant (BMT) If you're going to have ... to a friend or family member undergoing a bone marrow or cord blood transplant. Help Your Loved One ...

  20. Transplant Outcomes (Bone Marrow and Cord Blood)

    MedlinePlus

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  1. Laser Light Induced Photosensitization Of Lymphomas Cells And Normal Bone Marrow Cells

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Pervaiz, Shazib; Nealon, Don G.; VanderMeulen, David L.

    1988-06-01

    Dye mediated, laser light induced photosensitization was tested in an in vitro model for its efficacy in eliminating the contaminating tumor cells for ex vivo autologous bone marrow purging. Daudi and U-937 cells (3 x 106/ml) in RPMI-1640 supplemented with 0.25% human albumin were mixed with 20 µg/ml and 25 µg/ml of MC-540, respectively. These cell-dye mixtures were then exposed to 514 nm argon laser light. Identical treatment was given to the normal bone marrow cells. Viability was determined by the trypan blue exclusion method. Results show that at 31.2 J/cm2 irradiation, 99.9999% Daudi cells were killed while 87% of the normal bone marrow cells survived. No regrowth of Daudi cells was observed for 30 days in culture. However, a light dose of 93.6 J/cm2 was required to obtain 99.999% U-937 cell kill with 80% normal bone marrow cell survival. Mixing of irradiated bone marrow cells with an equal number of lymphoma cells did not interfere with the photodynamic killing of lymphoma cells. Exposure of cells to low doses of recombinant interferon-alpha prior to photodynamic therapy increased the viability of lymphoma cells.

  2. The healing effect of bone marrow-derived stem cells in acute radiation syndrome

    PubMed Central

    Mortazavi, Seyed Mohammad Javad; Shekoohi-Shooli, Fatemeh; Aghamir, Seyed Mahmood Reza; Mehrabani, Davood; Dehghanian, Amirreza; Zare, Shahrokh; Mosleh-Shirazi, Mohammad Amin

    2016-01-01

    Objectives: To determine the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on regeneration of bone marrow and intestinal tissue and survival rate in experimental mice with acute radiation syndrome (ARS). Methods: Forty mice were randomly divided into two equal groups of A receiving no BMSC transplantation and B receiving BMSCs. BMSCs were isolated from the bone marrow and cultured in DMEM media. Both groups were irradiated with 10 Gy (dose rate 0.28 Gy/ min) 60CO during 35 minutes with a field size of 35×35 for all the body area. Twenty-four hours after γ irradiation, 150×103 cells of passage 5 in 150 µl medium were injected intravenously into the tail. Animals were euthanized one and two weeks after cell transplantation. They were evaluated histologically for any changes in bone marrow and intestinal tissues. The survival rate in mice were also determined. Results: A significant increase for bone marrow cell count and survival rate were observed in group B in comparison to group A. Histological findings denoted to a healing in sample tissues. Conclusion: BMSCs could significantly reduce the side effects of ARS and increase the survival rate and healing in injured tissue. As such their transplantation may open a window in treatment of patients with ARS. PMID:27375707

  3. Graft rejection by cytolytic T cells. Specificity of the effector mechanism in the rejection of allogeneic marrow

    SciTech Connect

    Nakamura, H.; Gress, R.E. )

    1990-02-01

    Cellular effector mechanisms of allograft rejection remain incompletely described. Characterizing the rejection of foreign-marrow allografts rather than solid-organ grafts has the advantage that the cellular composition of the marrow graft, as a single cell suspension, can be altered to include cellular components with differing antigen expression. Rejection of marrow grafts is sensitive to lethal doses of radiation in the mouse but resistant to sublethal levels of radiation. In an effort to identify cells mediating host resistance, lymphocytes were isolated and cloned from spleens of mice 7 days after sublethal TBI (650 cGy) and inoculation with allogeneic marrow. All clones isolated were cytolytic with specificity for MHC encoded gene products of the allogeneic marrow donor. When cloned cells were transferred in vivo into lethally irradiated (1025 cGy) recipients unable to reject allogeneic marrow, results utilizing splenic 125IUdR uptake indicated that these MHC-specific cytotoxic clones could suppress marrow proliferation. In order to characterize the effector mechanism and the ability of the clones to affect final engraftment, double donor chimeras were constructed so that 2 target cell populations differing at the MHC from each other and from the host were present in the same marrow allograft. Results directly demonstrated an ability of CTL of host MHC type to mediate graft rejection and characterized the effector mechanism as one with specificity for MHC gene products.

  4. A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance

    PubMed Central

    Everson, Elizabeth M; Olzsko, Miles E; Leap, David J; Hocum, Jonah D; Trobridge, Grant D

    2016-01-01

    Hematopoietic stem cell (HSC) gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammaretroviral or lentiviral vectors. Here, we directly compared the safety and efficacy of foamy vectors to lentiviral vectors in human CD34+ repopulating cells in immunodeficient mice. To increase their genotoxic potential, foamy and lentiviral vectors with identical transgene cassettes with a known genotoxic spleen focus forming virus promoter were used. Both vectors resulted in efficient marking in vivo and a total of 825 foamy and 460 lentiviral vector unique integration sites were recovered in repopulating cells 19 weeks after transplantation. Foamy vector proviruses were observed less often near RefSeq gene and proto-oncogene transcription start sites than lentiviral vectors. The foamy vector group were also more polyclonal with fewer dominant clones (two out of six mice) than the lentiviral vector group (eight out of eight mice), and only lentiviral vectors had integrants near known proto-oncogenes in dominant clones. Our data further support the relative safety of foamy vectors for HSC gene therapy. PMID:27579335

  5. Ectopic miR-125a Expression Induces Long-Term Repopulating Stem Cell Capacity in Mouse and Human Hematopoietic Progenitors.

    PubMed

    Wojtowicz, Edyta E; Lechman, Eric R; Hermans, Karin G; Schoof, Erwin M; Wienholds, Erno; Isserlin, Ruth; van Veelen, Peter A; Broekhuis, Mathilde J C; Janssen, George M C; Trotman-Grant, Aaron; Dobson, Stephanie M; Krivdova, Gabriela; Elzinga, Jantje; Kennedy, James; Gan, Olga I; Sinha, Ankit; Ignatchenko, Vladimir; Kislinger, Thomas; Dethmers-Ausema, Bertien; Weersing, Ellen; Alemdehy, Mir Farshid; de Looper, Hans W J; Bader, Gary D; Ritsema, Martha; Erkeland, Stefan J; Bystrykh, Leonid V; Dick, John E; de Haan, Gerald

    2016-09-01

    Umbilical cord blood (CB) is a convenient and broadly used source of hematopoietic stem cells (HSCs) for allogeneic stem cell transplantation. However, limiting numbers of HSCs remain a major constraint for its clinical application. Although one feasible option would be to expand HSCs to improve therapeutic outcome, available protocols and the molecular mechanisms governing the self-renewal of HSCs are unclear. Here, we show that ectopic expression of a single microRNA (miRNA), miR-125a, in purified murine and human multipotent progenitors (MPPs) resulted in increased self-renewal and robust long-term multi-lineage repopulation in transplanted recipient mice. Using quantitative proteomics and western blot analysis, we identified a restricted set of miR-125a targets involved in conferring long-term repopulating capacity to MPPs in humans and mice. Our findings offer the innovative potential to use MPPs with enhanced self-renewal activity to augment limited sources of HSCs to improve clinical protocols. PMID:27424784

  6. A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance.

    PubMed

    Everson, Elizabeth M; Olzsko, Miles E; Leap, David J; Hocum, Jonah D; Trobridge, Grant D

    2016-01-01

    Hematopoietic stem cell (HSC) gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammaretroviral or lentiviral vectors. Here, we directly compared the safety and efficacy of foamy vectors to lentiviral vectors in human CD34(+) repopulating cells in immunodeficient mice. To increase their genotoxic potential, foamy and lentiviral vectors with identical transgene cassettes with a known genotoxic spleen focus forming virus promoter were used. Both vectors resulted in efficient marking in vivo and a total of 825 foamy and 460 lentiviral vector unique integration sites were recovered in repopulating cells 19 weeks after transplantation. Foamy vector proviruses were observed less often near RefSeq gene and proto-oncogene transcription start sites than lentiviral vectors. The foamy vector group were also more polyclonal with fewer dominant clones (two out of six mice) than the lentiviral vector group (eight out of eight mice), and only lentiviral vectors had integrants near known proto-oncogenes in dominant clones. Our data further support the relative safety of foamy vectors for HSC gene therapy. PMID:27579335

  7. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice.

    PubMed

    Sasaki, Yusuke; Noguchi-Sasaki, Mariko; Yasuno, Hideyuki; Yorozu, Keigo; Shimonaka, Yasushi

    2012-12-01

    Erythropoiesis-stimulating agents (ESA) are now central to the treatment of renal anemia and are associated with improved clinical outcomes. It is well known that erythropoietin (EPO) is a key regulator of erythropoiesis through its promotion of red blood cell production. In order to investigate the role of ESA on iron metabolism, we analyzed the regulation of the iron regulatory hormone hepcidin by ESA treatment in a bone marrow transplant model in mouse. After treating C57BL/6 mice with continuous erythropoietin receptor activator (C.E.R.A.), recombinant human epoetin-β (rhEPO), or recombinant human carbamylated epoetin-β (rhCEPO), we investigated serum hepcidin concentrations and parameters of erythropoiesis. Serum hepcidin concentrations after rhEPO treatment were analyzed in mice subjected to total body irradiation followed by bone marrow transplantation. C.E.R.A. administration caused long-term downregulation of serum hepcidin levels. Serum hepcidin levels in rhEPO-treated mice decreased significantly, whereas there was no change in rhCEPO-treated mice. The reduction in circulating hepcidin levels after rhEPO administration was not observed in irradiated mice. Finally, bone marrow transplantation recovered the response to rhEPO administration that downregulates hepcidin concentration in irradiated mice. These results indicate that ESA treatment downregulates serum hepcidin concentrations, mainly by indirect mechanisms affecting hematopoietic activity in bone marrow cells. PMID:23160767

  8. Allospecific rejection of MHC class I-deficient bone marrow by CD8 T cells.

    PubMed

    Haspot, F; Li, H W; Lucas, C L; Fehr, T; Beyaz, S; Sykes, M

    2014-01-01

    Avoidance of long-term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low-toxicity, nonimmunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC-mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti-CD154 and T cell-depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of preexisting alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC Class I-deficient and Class I/Class II-deficient marrow in a CD8 T cell-dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC Class I-deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC Class I-deficient donor cells in association with rejection. These data implicate a novel CD8 T cell-dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a T cell receptor-independent manner, of Class I-deficient donor cells.

  9. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  10. Enrichment for CFU-C from murine and human bone marrow using soybean agglutinin

    SciTech Connect

    Reisner, Y.; Kapoor, N.; Hodes, M.Z.; O'Reilly, R.J.; Good, R.A.

    1982-02-01

    Mouse bone marrow and spleen cells agglutinated by soybean agglutinin (SBA) or peanut agglutinin (PNA) were previously shown to be enriched for spleen colony-forming cells (CFU-S) and sufficiently depleted of graft-versus-host reaction producing cells to allow hematologic reconstitution of lethally irradiated allogeneic recipient mice. A similar enrichment for cells capable of forming colonies in soft agar culture (CFU-C) has now been found in the SBA-agglutinated fraction of mouse bone marrow cells, in contrast to the finding that in human bone marrow the majority of the CFU-C are in the fraction not agglutinated by SBA. Cytofluorometric studies with fluorescein-labeled SBA (FITC-SBA) revealed that the majority of both mouse and human bone marrow cells bind the lectin. Experiments mixing the human marrow fractions separated by SBA reveal that true enrichment for CFU-C is achieved in the unagglutinated fraction, as opposed to a possible depletion of a suppressor cell population. Granulocytic, monocytic, and mixed cell colonies were all enriched in the SBA-unagglutinated cell fraction from human bone marrow.

  11. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    PubMed

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  12. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    PubMed Central

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage. PMID:25206807

  13. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  14. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for

  15. Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment

    PubMed Central

    Ludin, Aya; Gur-Cohen, Shiri; Golan, Karin; Kaufmann, Kerstin B.; Itkin, Tomer; Medaglia, Chiara; Lu, Xin-Jiang; Ledergor, Guy; Kollet, Orit

    2014-01-01

    Abstract Significance: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. Recent Advances: ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROShigh short-term repopulating stem cells, and ROSlow quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. Critical Issues: Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. Future Directions: Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development. Antioxid. Redox Signal. 21, 1605–1619. PMID:24762207

  16. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow

    PubMed Central

    Takubo, Keiyo; Kobayashi, Hiroshi; Suzuki-Inoue, Katsue

    2015-01-01

    Hematopoietic stem cells (HSCs) depend on the bone marrow (BM) niche for their maintenance, proliferation, and differentiation. The BM niche is composed of nonhematopoietic and mature hematopoietic cells, including megakaryocytes (Mks). Thrombopoietin (Thpo) is a crucial cytokine produced by BM niche cells. However, the cellular source of Thpo, upon which HSCs primarily depend, is unclear. Moreover, no specific molecular pathway for the regulation of Thpo production in the BM has been identified. Here, we demonstrate that the membrane protein C-type lectin-like receptor-2 (CLEC-2) mediates the production of Thpo and other factors in Mks. Mice conditionally deleted for CLEC-2 in Mks (Clec2MkΔ/Δ) produced lower levels of Thpo in Mks. CLEC-2–deficient Mks showed down-regulation of CLEC-2–related signaling molecules Syk, Lcp2, and Plcg2. Knockdown of these molecules in cultured Mks decreased expression of Thpo. Clec2MkΔ/Δ mice exhibited reduced BM HSC quiescence and repopulation potential, along with extramedullary hematopoiesis. The low level of Thpo production may account for the decline in HSC potential in Clec2MkΔ/Δ mice, as administration of recombinant Thpo to Clec2MkΔ/Δ mice restored stem cell potential. Our study identifies CLEC-2 signaling as a novel molecular mechanism mediating the production of Thpo and other factors for the maintenance of HSCs. PMID:26552707

  17. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  18. Primary bone marrow oedema syndromes.

    PubMed

    Patel, Sanjeev

    2014-05-01

    MRI scanning in patients with rheumatological conditions often shows bone marrow oedema, which can be secondary to inflammatory, degenerative, infective or malignant conditions but can also be primary. The latter condition is of uncertain aetiology and it is also uncertain whether it represents a stage in the progression to osteonecrosis in some patients. Patients with primary bone marrow oedema usually have lower limb pain, commonly the hip, knee, ankle or feet. The diagnosis is one of exclusion with the presence of typical MRI findings. Treatment is usually conservative and includes analgesics and staying off the affected limb. The natural history is that of gradual resolution of symptoms over a number of months. Evidence for medical treatment is limited, but open-label studies suggest bisphosphonates may help in the resolution of pain and improve radiological findings. Surgical decompression is usually used as a last resort.

  19. Recovery capacity of glial progenitors after in vivo fission-neutron or X irradiation: age dependence, fractionation and low-dose-rate irradiations.

    PubMed

    Philippo, H; Winter, E A M; van der Kogel, A J; Huiskamp, R

    2005-06-01

    Previous experiments on the radiosensitivity of O-2A glial progenitors determined for single-dose fission-neutron and X irradiation showed log-linear survival curves, suggesting a lack of accumulation of recovery of sublethal damage. In the present study, we addressed this question and further characterized the radiobiological properties of these glial stem cells by investigating the recovery capacity of glial stem cells using either fractionated or protracted whole-body irradiation. Irradiations were performed on newborn, 2-week-old or 12-week-old rats. Fractionated irradiations (four fractions) were performed with 24-h intervals, followed by cell isolations 16- 24 h after the last irradiation. Single-dose irradiations were followed by cell isolation 16-24 h after irradiation or delayed cell isolation (4 days after irradiation) of the O-2A progenitor cells from either spinal cord (newborns) or optic nerve (2- and 12-week-old rats). Results for neonatal progenitor cell survival show effect ratios for both fractionated fission-neutron and X irradiation of the order of 1.8 when compared with single-dose irradiation. A similar ratio was found after single-dose irradiation combined with delayed plating. Comparable results were observed for juvenile and adult optic nerve progenitors, with effect ratios of the order of 1.2. The present investigation clearly shows that fractionated irradiation regimens using X rays or fission neutrons and CNS tissue from rats of various ages results in an increase in O-2A progenitor cell survival while repair is virtually absent. This recovery of the progenitor pool after irradiation can be observed at all ages but is greatest in the neonatal spinal cord and can probably be attributed to repopulation. PMID:15913395

  20. Defective bursa regeneration after irradiation of young thymectomized chickens

    SciTech Connect

    Bhogal, B.S.; Chi, D.S.; Galton, J.E.; Bell, M.K.; Thorbecke, G.J.

    1984-08-01

    The ability of the bursa of Fabricius to regenerate after gamma-irradiation and bone marrow reconstitution was examined in chickens thymectomized (TX) immediately after hatching. Irradiation (2 X 500 R) 3 weeks after hatching was followed by impaired bursa regeneration, as judged both by bursa/body weight ratios and by bursa follicle development 3-6 weeks later in TX as compared to control birds. Germinal center formation in the spleen was deficient, and immune responses to sheep erythrocytes (SRBC) and B. abortus (BA) were moderately reduced in the TX as compared to control birds irradiated at 3 weeks but not in TX birds irradiated at 5 weeks of age.

  1. Marrow transplantation from tolerant donors to treat and prevent autoimmune diseases in BXSB mice

    SciTech Connect

    Himeno, K.; Good, R.A.

    1988-04-01

    Autoimmune-prone BXSB male mice were supralethally irradiated and transplanted with CBA/H bone marrow cells. A complete and long-term chimerism was established when donor mice had been induced to develop tolerance of BXSB male antigens by combined treatment with BXSB male spleen cells and cyclophosphamide. Such chimeras did not express autoimmune phenomena or develop lethal autoimmune manifestations. Nor did the recipient mice develop the wasting syndrome or evidence of persistent immunodeficiencies that have been seen in other strains of autoimmune-resistant mice that had been transplanted with bone marrow cells across major histocompatibility complex barriers following an initial purging of the bone marrow of Thy-1+ cells using anti-Thy-1+C.

  2. Effects of glucan on bone marrow

    PubMed Central

    Vannucci, Luca; Vetvicka, Vaclav

    2014-01-01

    Bone marrow damage represents a significant problem in cancer treatment. Therefore, it is clear that the pharmacologic protection against bone marrow damage is of considerable interest, since the development of novel and effective medical approaches to combat radiation or cytotoxic damage are of major importance not only to the medical field but also to several industries and the military. This review represents a summary of our knowledge of the effects of various glucans on bone marrow protection. PMID:25332994

  3. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    PubMed Central

    Alwood, Joshua S.; Shahnazari, Mohammad; Chicana, Betsabel; Schreurs, A.S.; Kumar, Akhilesh; Bartolini, Alana; Shirazi-Fard, Yasaman

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays (137Cs, 0.8 Gy/min) or heavy ions (56Fe, 600MeV, 0.50–1.1 Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is ≥10 Gy) or accumulates over long-duration interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4 h—7 days later. Gamma irradiation caused a prompt (2.6-fold within 4 h) and persistent (peaking at 4.1-fold within 1 day) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappa-B ligand (Rankl), within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3 days of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (eg, monocyte chemotactic protein-1 increased by 11.9-fold, and tumor necrosis factor-alpha increased by 1.7-fold over controls). The ratio, Rankl/Opg, in marrow increased by 1.8-fold, a net pro-resorption balance. In the marrow, expression of the antioxidant transcription factor, Nfe2l2, strongly correlated with expression levels of Nfatc1, Csf1, Tnf, and Rankl. Radiation exposure increased a serum marker of bone resorption (tartrate-resistant acid phosphatase) and led to cancellous bone loss (16% decrement after 1 week). We conclude that total body irradiation (gamma or heavy-ion) caused temporal elevations in the concentrations of specific genes

  4. Effects of T cell depletion in radiation bone marrow chimeras. III. Characterization of allogeneic bone marrow cell populations that increase allogeneic chimerism independently of graft-vs-host disease in mixed marrow recipients

    SciTech Connect

    Sykes, M.; Chester, C.H.; Sundt, T.M.; Romick, M.L.; Hoyles, K.A.; Sachs, D.H. )

    1989-12-01

    The opposing problems of graft-vs-host disease vs failure of alloengraftment severely limit the success of allogeneic bone marrow transplantation as a therapeutic modality. We have recently used a murine bone marrow transplantation model involving reconstitution of lethally irradiated mice with mixtures of allogeneic and syngeneic marrow to demonstrate that an allogeneic bone marrow subpopulation, removed by T cell depletion with rabbit anti-mouse brain serum and complement (RAMB/C), is capable of increasing levels of allogeneic chimerism. This effect was observed in an F1 into parent genetic combination lacking the potential for graft-vs-host disease, and radiation protection studies suggested that it was not due to depletion of stem cells by RAMB/C. We have now attempted to characterize the cell population responsible for increasing allogeneic chimerism in this model. The results indicate that neither mature T cells nor NK cells are responsible for this activity. However, an assay involving mixed marrow reconstitution in an Ly-5 congenic strain combination was found to be more sensitive to small degrees of stem cell depletion than radiation protection assays using three-fold titrations of bone marrow cells. Using this assay, we were able to detect some degree of stem cell depletion by treatment with RAMB/C, but not with anti-T cell mAb. Nevertheless, if the effects of alloresistance observed in this model are considered, the degree of stem cell depletion detected by such mixing studies in insufficient to account for the effects of RAMB/C depletion on levels of allogeneic chimerism, suggesting that another cell population with this property remains to be identified.

  5. Postoperative irradiation of fresh autogenic cancellous bone grafts

    SciTech Connect

    Schwartz, H.C.; Leake, D.L.; Kagan, A.R.; Snow, H.; Pizzoferrato, A.

    1986-01-01

    Discontinuity defects were created in the mandibles of dogs and then reconstructed immediately with fresh autogenic cancellous bone grafts and Dacron-urethane prostheses. The grafts were irradiated to a total dose of 5000 rads after waiting intervals of between 3 and 12 weeks. Nonirradiated grafts served as controls. The grafts were evaluated clinically, radiographically, and histologically. There was complete incorporation of all grafts, regardless of the interval between surgery and radiotherapy. There were no soft-tissue complications. The controls were distinguishable from the irradiated grafts only by the presence of hematopoietic bone marrow. Fibrofatty marrow was observed in the irradiated grafts. Theoretical support for this technique is found in the biology of cancellous bone grafting and the pathology of radiation injury. In view of the difficulties associated with mandibular bone grafting in preoperatively irradiated patients, a new method of reconstructing selected cancer patients who require both mandibular resection and radiotherapy is suggested.

  6. Anti-bacterial immunity to Listeria monocytogenes in allogeneic bone marrow chimera in mice

    SciTech Connect

    Onoe, K.; Good, R.A.; Yamamoto, K.

    1986-06-01

    Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, (BR----AKR), as well as syngeneic marrow cells, (AKR----AKR), showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice that had total or partial histoincompatibility at the H-2 determinants between donor and recipient, (B10----AKR), (B10.AQR----AKR), (B10.A(4R)----AKR), or (B10.A(5R)----AKR), were almost completely unresponsive in DTH and antibacterial immunity. However, when (B10----AKR) H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type.

  7. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  8. Enhancement of bone marrow allografts from nude mice into mismatched recipients by T cells void of graft-versus-host activity

    SciTech Connect

    Lapidot, T.; Lubin, I.; Terenzi, A.; Faktorowich, Y.; Erlich, P.; Reisner, Y. )

    1990-06-01

    Transplantation of 8 x 10(6) C57BL/6-Nu+/Nu+ (nude) bone marrow cells into C3H/HeJ recipients after conditioning with 8 Gy of total body irradiation has resulted in a markedly higher rate of graft rejection or graft failure compared to that found in recipients of normal C57BL/6 or C57BL/6-Bg+/Bg+ (beige) T-cell-depleted bone marrow. Mixing experiments using different numbers of nude bone marrow cells with or without mature thymocytes (unagglutinated by peanut agglutinin) revealed that engraftment of allogeneic T-cell-depleted bone marrow is T-cell dependent. To ensure engraftment, a large inoculum of nude bone marrow must be supplemented with a trace number of donor T cells, whereas a small bone marrow dose from nude donors requires a much larger number of T cells for engraftment. Marked enhancement of donor type chimerism was also found when F1 thymocytes were added to nude bone marrow cells, indicating that the enhancement of bone marrow engraftment by T cells is not only mediated by alloreactivity against residual host cells but may rather be generated by growth factors, the release of which may require specific interactions between T cells and stem cells or between T cells and bone marrow stroma cells.

  9. NMR microscopy for skeletal dosimetry: An investigation of marrow cellularity on dose estimates

    NASA Astrophysics Data System (ADS)

    Patton, Phillip Wayne

    Irradiation of trabecular bone regions is an important area within internal dosimetry considering the role these bone sites play in both the skeletal and hematopoietic systems. Since bone marrow is located within trabecular bone regions, radiation incident upon bone is likely to also cause damage to the marrow. Radionuclides that localize in bone, especially charged-particle emitters, have the potential to cause damage to both endosteal tissues and bone marrow. Current radiation dosimetry models use chord length distributions obtained at the University of Leeds by F. W. Spiers over thirty years ago. To investigate these models and the validity of the assumptions made while measuring the chord lengths, a new approach was developed at the University of Florida that directly couples 3D NMR images to the EGS4-PRESTA radiation transport code. The current work investigates the impact of age, gender, and marrow cellularity on dose estimates by comparing data obtained from 3D NMR images of the femoral and humeral heads of three cadavers. These 3D segmented NMR images were directly coupled to the EGS4-PRESTA transport code. Absorbed fractions were calculated from both the infinite trabecular region transport model and from the macrostructural transport model. A comparison of absorbed fractions calculated from the femoral and humeral heads showed that the hypothesis of equivalent microstructure for these two bone sites is incorrect. In fact, absorbed fractions calculated from the two different bone sites vary by as much as 30%. Furthermore, a comparison of absorbed fractions calculated using the two different transport models showed an overestimation by the infinite trabecular region model of 20% for marrow space targets at 4 MeV. To allow direct transport within trabecular active marrow, adipocytes were introduced into 3D NMR images. A comparison to previous methods of calculating absorbed fractions for trabecular active marrow irradiating trabecular active marrow showed

  10. Transduction of Human CD34+ Repopulating Cells with a Self-Inactivating Lentiviral Vector for SCID-X1 Produced at Clinical Scale by a Stable Cell Line

    PubMed Central

    Lockey, Timothy; Mehta, Perdeep K.; Kim, Yoon-Sang; Eldridge, Paul W.; Gray, John T.; Sorrentino, Brian P.

    2012-01-01

    Abstract Self-inactivating (SIN)-lentiviral vectors have safety and efficacy features that are well suited for transduction of hematopoietic stem cells (HSCs), but generation of vector at clinical scale has been challenging. Approximately 280 liters of an X-Linked Severe Combined Immunodeficiency Disorder (SCID-X1) SIN-lentiviral vector in two productions from a stable cell line were concentrated to final titers of 4.5 and 7.2×108 tu/ml. These two clinical preparations and three additional development-scale preparations were evaluated in human CD34+ hematopoietic cells in vitro using colony forming cell (CFU-C) assay and in vivo using the NOD/Lt-scid/IL2Rγnull (NSG) mouse xenotransplant model. A 40-hour transduction protocol using a single vector exposure conferred a mean NSG repopulating cell transduction of 0.23 vector genomes/human genome with a mean myeloid vector copy number of 3.2 vector genomes/human genome. No adverse effects on engraftment were observed from vector treatment. Direct comparison between our SIN-lentiviral vector using a 40-hour protocol and an MFGγc γ-retroviral vector using a five-day protocol demonstrated equivalent NSG repopulating cell transduction efficiency. Clonality survey by linear amplification-mediated polymerase chain reaction (LAM-PCR) with Illumina sequencing revealed common clones in sorted myeloid and lymphoid populations from engrafted mice demonstrating multipotent cell transduction. These vector preparations will be used in two clinical trials for SCID-X1. PMID:23075105

  11. Enhancement by dimethyl myleran of donor type chimerism in murine recipients of bone marrow allografts

    SciTech Connect

    Lapidot, T.; Terenzi, A.; Singer, T.S.; Salomon, O.; Reisner, Y. )

    1989-05-15

    A major problem in using murine models for studies of bone marrow allograft rejection in leukemia patients is the narrow margin in which graft rejection can be analyzed. In mice irradiated with greater than 9 Gy total body irradiation (TBI) rejection is minimal, whereas after administration of 8 Gy TBI, which spares a significant number of clonable T cells, a substantial frequency of host stem cells can also be detected. In current murine models, unlike in humans, bone marrow allograft rejection is generally associated with full autologous hematopoietic reconstitution. In the present study, we investigated the effect of the myeloablative drug dimethyl myleran (DMM) on chimerism status following transplantation of T cell-depleted allogenic bone marrow (using C57BL/6 donors and C3H/HeJ recipients, conditioned with 8 Gy TBI). Donor type chimerism 1 to 2 months post-transplant of 1 to 3 x 10(6) bone marrow cells was markedly enhanced by using DMM one day after TBI and prior to transplantation. Conditioning with cyclophosphamide instead of DMM, in combination with 8 Gy TBI, did not enhance engraftment of donor type cells. Artificial reconstitution of T cells, after conditioning with TBI plus DMM, by adding mature thymocytes, or presensitization with irradiated donor type spleen cells 1 week before TBI and DMM, led to strong graft rejection and consequently to severe anemia. The anti-donor responses in these models were proportional to the number of added T cells and to the number of cells used for presensitization, and they could be neutralized by increasing the bone marrow inoculum.

  12. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells

    PubMed Central

    Shen, Hongmei; Yu, Hui; Liang, Paulina H.; Cheng, Haizi; XuFeng, Richard; Yuan, Youzhong; Zhang, Peng; Smith, Clayton A.

    2012-01-01

    Ultimate success of hematopoietic stem cell transplantation (HSCT) depends not only on donor HSCs themselves but also on the host environment. Total body irradiation is a component in various host conditioning regimens for HSCT. It is known that ionizing radiation exerts “bystander effects” on nontargeted cells and that HSCs transplanted into irradiated recipients undergo proliferative exhaustion. However, whether irradiated recipients pose a proliferation-independent bystander effect on transplanted HSCs is unclear. In this study, we found that irradiated mouse recipients significantly impaired the long-term repopulating ability of transplanted mouse HSCs shortly (∼ 17 hours) after exposure to irradiated hosts and before the cells began to divide. There was an increase of acute cell death associated with accelerated proliferation of the bystander hematopoietic cells. This effect was marked by dramatic down-regulation of c-Kit, apparently because of elevated reactive oxygen species. Administration of an antioxidant chemical, N-acetylcysteine, or ectopically overexpressing a reactive oxygen species scavenging enzyme, catalase, improved the function of transplanted HSCs in irradiated hosts. Together, this study provides evidence for an acute negative, yet proliferation-independent, bystander effect of irradiated recipients on transplanted HSCs, thereby having implications for HSCT in both experimental and clinical scenarios in which total body irradiation is involved. PMID:22374698

  13. Use of Marrow Scintigraphy to Confirm Compensatory Marrow Rather than Active Myeloma.

    PubMed

    Bartel, Twyla B; Yarbrough, Tracy L; De Blanche, Lorraine E

    2016-09-01

    We present the case of a 40-year-old male with multiple myeloma for whom bone marrow scintigraphy was utilized to help differentiate between active bony myelomatous disease versus treated lesions with compensatory marrow uptake. This case demonstrates technetium (Tc-99m) sulfur colloid imaging as an inexpensive technique to quickly distinguish between active focal bone disease and reactive marrow. PMID:27651743

  14. Use of Marrow Scintigraphy to Confirm Compensatory Marrow Rather than Active Myeloma

    PubMed Central

    Bartel, Twyla B.; Yarbrough, Tracy L.; De Blanche, Lorraine E.

    2016-01-01

    We present the case of a 40-year-old male with multiple myeloma for whom bone marrow scintigraphy was utilized to help differentiate between active bony myelomatous disease versus treated lesions with compensatory marrow uptake. This case demonstrates technetium (Tc-99m) sulfur colloid imaging as an inexpensive technique to quickly distinguish between active focal bone disease and reactive marrow. PMID:27651743

  15. Use of Marrow Scintigraphy to Confirm Compensatory Marrow Rather than Active Myeloma

    PubMed Central

    Bartel, Twyla B.; Yarbrough, Tracy L.; De Blanche, Lorraine E.

    2016-01-01

    We present the case of a 40-year-old male with multiple myeloma for whom bone marrow scintigraphy was utilized to help differentiate between active bony myelomatous disease versus treated lesions with compensatory marrow uptake. This case demonstrates technetium (Tc-99m) sulfur colloid imaging as an inexpensive technique to quickly distinguish between active focal bone disease and reactive marrow.

  16. Lung function after allogeneic bone marrow transplantation for leukaemia or lymphoma.

    PubMed

    Nysom, K; Holm, K; Hesse, B; Ulrik, C S; Jacobsen, N; Bisgaard, H; Hertz, H

    1996-05-01

    Longitudinal data were analysed on the lung function of 25 of 29 survivors of childhood leukaemia or lymphoma, who had been conditioned with cyclophosphamide and total body irradiation before allogeneic bone marrow transplantation, to test whether children are particularly vulnerable to pulmonary damage after transplantation. None developed chronic graft-versus-host disease. Transfer factor and lung volumes were reduced immediately after bone marrow transplantation, but increased during the following years. However, at the last follow up, 4-13 years (median 8) after transplantation, patients had significantly reduced transfer factor, total lung capacity, and forced vital capacity (-1.0, -1.2, and -0.8 SD score, respectively), and increased ratio of forced expiratory volume in one second to forced vital capacity (+0.9 SD score). None of the patients had pulmonary symptoms, and changes were unrelated to their age at bone marrow transplantation. In conclusion, patients had subclinical restrictive pulmonary disease at a median of eight years after total body irradiation and allogeneic bone marrow transplantation.

  17. Hypertrophy of cultured bovine aortic endothelium following irradiation

    SciTech Connect

    Rosen, E.M.; Vinter, D.W.; Goldberg, I.D.

    1989-03-01

    The vascular endothelium is a vital multifunctional tissue which covers the entire luminal surface of the circulatory system. Loss of continuity of the endothelial lining normally results in cell migration and proliferation to make up for cell loss and to ensure that exposure of the thrombogenic subendothelium to platelets and clotting factors is minimized. We showed that ionizing radiation (400-3000 cGy) causes dose-dependent cell loss from confluent monolayer cultures of bovine aortic endothelium, which cannot immediately be compensated by cell proliferation. Within 24 h, the remaining attached cells undergo substantial somatic hypertrophy (evidenced by increased protein content, cell volume, and attachment area) but remain diploid. If cell loss is not excessive, monolayer continuity is restored within several days. Although reduced protein degradation may contribute, most of the protein accumulation is due to synthesis of new protein. Unlike endothelium, irradiation of smooth muscle cultures causes neither cell loss nor increased protein synthesis. Hypertrophy of irradiated endothelial cells appears to be a consequence of a proliferative stimulus (cell loss) in a population of cells which is unable to divide. It can be modulated by replating irradiated cells at different densities. We suggest that endothelial hypertrophy is an early vascular homeostatic response before clonal proliferation of surviving cells or repopulation by cells from outside of the irradiated field can compensate for cell loss.

  18. Immunosuppression and organ transplantation tolerance using total lymphoid irradiation

    SciTech Connect

    Slavin, S.; Strober, S.; Fuks, Z.; Kaplan, H.S.

    1980-01-01

    Total lymphoid irradiation (TLI) is a method which delivers irradiation daily in fractionated doses (200 rads) to lymphoid organs while shielding bones, lungs, and the majority of the gastrointestinal tract. TLI is lymphocytopenic in mice, rats, dogs, and humans, and both T cells and B cells are eliminated from the circulation. TLI permits establishment of specific and long-lasting tolerance to alloantigens. Permanent acceptance of allogeneic bone marrow cells without graft-versus-host disease was achieved in rats and dogs across major histocompatibility barriers. Recipients were tolerant to allografts of skin, hearts, and kidney from animals syngeneic to marrow donors or to organs from the marrow donor. This approach may be suitable for pancreas transplantation in diabetes.

  19. Three-Dimensional Dose Calculation for Total Body Irradiation

    NASA Astrophysics Data System (ADS)

    Ito, Akira

    Bone Marrow Transplant (BMT) therapy has been a big success in the treatment of leukemia and other haematopoietic diseases 1 . Prior to BMT, total body irradiation (TBI) is given to the patient for the purpose of (1) killing leukemia cells in bone marrow, as well as in the whole body, and (2) producing immuno-suppressive status in the patient so that the donor's marrow cells will be transplanted without rejection. TBI employs a very large field photon beam to irradiate the whole body of the patient. A uniform dose distribution over the entire body is the treatment goal. To prevent the occurrence of a serious side effect (interstitial pneumonia), the lung dose should not exceed a certain level. This novel technique poses various new radiological physics problems. The accurate assessment of dose and dose distribution in the patient is essential. Physical and dosimetric problems associated with TBI are reviewed elsewhere 2,3 .

  20. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  1. Comparison of haematopoietic stem cell engraftment through the retro-orbital venous sinus and the lateral vein: alternative routes for bone marrow transplantation in mice.

    PubMed

    Leon-Rico, D; Fernández-García, M; Aldea, M; Sánchez, R; Peces-Barba, M; Martinez-Palacio, J; Yáñez, R M; Almarza, E

    2015-04-01

    Bone marrow transplantation in mice is performed by intravenous administration of haematopoietic repopulating cells, usually via the lateral tail vein. This technique can be technically challenging to carry out and may cause distress to the mice. The retro-orbital sinus is a large area where there is a confluence of several vessels that provides an alternative route for intravenous access. Retro-orbital injection, although aesthetically unpleasant, can be performed rapidly without requiring mechanical restriction or heat-induced vasodilation. In addition, this technique can be easily learned by novice manipulators. This route of administration has been reported for use in bone marrow transplantation but there is no comparison of retro-orbital and tail vein injections reported for this specific purpose, although both routes have been compared for many other applications. Here, we provide for the first time a comprehensive comparison between tail vein and retro-orbital injections for two different bone marrow transplant scenarios in P3B and B6D2F1 mice. In both cases, no significant differences regarding donor engraftment were observed between mice transplanted using each of the techniques. Haematological counts and leukocyte subpopulation distribution were practically identical between both animal groups. Moreover, donor engraftment levels were less homogenous when cells were transplanted by tail vein injection, probably due to a higher risk of failure associated with this technique. All these data suggest that retro-orbital injection is a compelling alternative to conventional tail vein injection for bone marrow transplant in mice, providing similar and more homogenous haematopoietic reconstitution.

  2. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  3. Bone marrow examination in pancytopenia.

    PubMed

    Rangaswamy, M; Prabhu; Nandini, N M; Manjunath, G V

    2012-08-01

    Pancytopenia is defined by reduction of all the three formed elements of blood below the normal reference. It may be a manifestation of a wide variety of disorders, which primarily or secondarily affect the bone marrow. Haematological investigation forms the bedrock in the management of patients with pancytopenia and therefore needs detailed study. The total number of cases studied were 100 over a period of two years in the department of pathology, JSS Hospital, Mysore. Megaloblastic anaemia (33%) was the commonest cause of pancytopenia. Other causes were nutritional anaemia (16%), aplastic anaemia (14%), hypersplenism (10%), sepsis (9%) and leukaemia (5%). Less common causes were alcoholic liver disease, haemolytic anaemia, HIV, dengue, systemic lupus erythematosus, viral hepatitis, disseminated TB and multiple myeloma. Most of the patients were in the age group of 11-30 years with a male:female ratio of 1.6:1.Generalised weakness and fatigue (88%) were the commonest presenting complaints. Haemoglobin level varied from 1-10 g/dl with majorIty (70%) of them in the range of 5.1-10 g/dI. TLC was in the range of 500-4000 cells/cmm. Most (34%) of them had 3100-4000 cells/cmm. Platelet count was in the range of 4000-1,40,000 cells/cmm. Reticulocyte count varied from 0.1%-15% with majority (82%) of them ranging from 0.1%-2%. The bone marrow cellularity was hypocellular in 14%, hypercellular in 75%, and normocellular in 11% of the patients. Pancytopenia is a relatively common entity with inadequate attention in Indian subcontinent. A comprehensive clinical and haematological study of patients with pancytopenia will usually help in the identification of the underlying cause. However in view of wide array of aetiologies, pancytopenia continues to be a diagnostic challenge for haematologists. PMID:23741821

  4. Bone marrow examination in pancytopenia.

    PubMed

    Rangaswamy, M; Prabhu; Nandini, N M; Manjunath, G V

    2012-08-01

    Pancytopenia is defined by reduction of all the three formed elements of blood below the normal reference. It may be a manifestation of a wide variety of disorders, which primarily or secondarily affect the bone marrow. Haematological investigation forms the bedrock in the management of patients with pancytopenia and therefore needs detailed study. The total number of cases studied were 100 over a period of two years in the department of pathology, JSS Hospital, Mysore. Megaloblastic anaemia (33%) was the commonest cause of pancytopenia. Other causes were nutritional anaemia (16%), aplastic anaemia (14%), hypersplenism (10%), sepsis (9%) and leukaemia (5%). Less common causes were alcoholic liver disease, haemolytic anaemia, HIV, dengue, systemic lupus erythematosus, viral hepatitis, disseminated TB and multiple myeloma. Most of the patients were in the age group of 11-30 years with a male:female ratio of 1.6:1.Generalised weakness and fatigue (88%) were the commonest presenting complaints. Haemoglobin level varied from 1-10 g/dl with majorIty (70%) of them in the range of 5.1-10 g/dI. TLC was in the range of 500-4000 cells/cmm. Most (34%) of them had 3100-4000 cells/cmm. Platelet count was in the range of 4000-1,40,000 cells/cmm. Reticulocyte count varied from 0.1%-15% with majority (82%) of them ranging from 0.1%-2%. The bone marrow cellularity was hypocellular in 14%, hypercellular in 75%, and normocellular in 11% of the patients. Pancytopenia is a relatively common entity with inadequate attention in Indian subcontinent. A comprehensive clinical and haematological study of patients with pancytopenia will usually help in the identification of the underlying cause. However in view of wide array of aetiologies, pancytopenia continues to be a diagnostic challenge for haematologists.

  5. Planarian Immobilization, Partial Irradiation, and Tissue Transplantation

    PubMed Central

    Guedelhoefer IV, Otto C.; Sánchez Alvarado, Alejandro

    2012-01-01

    cover the culture of large animals, immobilization, preparation for partial irradiation, tissue transplantation, and the optimization of animal recovery. Furthermore, the work described here demonstrates the first application of the partial irradiation method for use with the most widely studied planarian, Schmidtea mediterranea. Additionally, efficient tissue grafting in planaria opens the door for the functional testing of subpopulations of naïve or treated stem cells in repopulation assays, which has long been the gold-standard method of assaying adult stem cell potential in mammals8. Broad adoption of these techniques will no doubt lead to a better understanding of the cellular behaviors of adult stem cells during tissue homeostasis and regeneration. PMID:23007410

  6. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    SciTech Connect

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun; Mundt, Arno J.; Roeske, John C.; Aydogan, Bulent

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprised the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.

  7. Successful short-term ex vivo expansion of NOD/SCID repopulating ability and CAFC week 6 from umbilical cord blood.

    PubMed

    Kusadasi, N; van Soest, P L; Mayen, A E; Koevoet, J L; Ploemacher, R E

    2000-11-01

    In view of the limited potential for rapid hematological recovery after transplantation of umbilical cord blood cells (UCB) in adults, we have attempted to expand CD34+ selected hemopoietic stem cells (HSC) and progenitors in 2-week cultures of whole graft pools in the presence or absence of serum and stromal layers, and with various cytokine combinations including (1) FL + TPO; (2) FL + TPO plus SCF and/or IL6; or (3) SCF + IL6. Both in the input material and cultured grafts we determined the number of colony-forming cells (CFC), cobblestone area forming cells (CAFC), the NOD/SCID repopulating ability (SRA), and CD34+ CD38- subset by phenotyping. The highest fold-increase obtained for the number of nucleated cells (nc), CD34+, CD34+ CD38 cell numbers and CFC content was, respectively, 102 +/- 76, 24 +/- 19, 190 +/- 202 and 53 +/- 37 for stroma-free and 315 +/- 110, 25 +/- 3, 346 +/- 410 and 53 +/- 43 for stroma-supported cultures. CAFC week type 6 was maximally 11-fold expanded both under stroma-free and stroma-supported conditions. The FBMD-1 stromal cells supported a modest expansion of CD34+ CD38- cells (27 +/- 18-fold) and nc (6 +/- 4-fold), while a loss of CFC and CAFC subsets was observed. The stromal cells synergized with FL + TPO to give the highest expansion of hemopoietic progenitors. Stromal support could be fully replaced by complementing the FL + TPO stimulated cultures with SCF + IL6. FL + TPO were required and sufficient to give a 10- to 20-fold expansion of the ability of CD34+ UCB cells in 2-week cultures to engraft the BM of NOD/SCID mice. Stromal support, or complementation of the medium with SCF + IL6, did not significantly improve the in vivo engraftment potential. If the SRA and CAFC week 6 assays are accepted as tentative estimates of in vivo engrafting stem cells in humans, our findings may assist in the preparation of UCB grafts to meet the requirements for improved repopulation in the clinical setting. PMID:11069030

  8. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation.

    PubMed

    Caselli, Anna; Olson, Timothy S; Otsuru, Satoru; Chen, Xiaohua; Hofmann, Ted J; Nah, Hyun-Duck; Grisendi, Giulia; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M

    2013-10-01

    The efficiency of hematopoietic stem cell (HSC) engraftment after bone marrow (BM) transplantation depends largely on the capacity of the marrow microenvironment to accept the transplanted cells. While radioablation of BM damages osteoblastic stem cell niches, little is known about their restoration and mechanisms governing their receptivity to engraft transplanted HSCs. We previously reported rapid restoration and profound expansion of the marrow endosteal microenvironment in response to marrow radioablation. Here, we show that this reorganization represents proliferation of mature endosteal osteoblasts which seem to arise from a small subset of high-proliferative, relatively radio-resistant endosteal cells. Multiple layers of osteoblasts form along the endosteal surface within 48 hours after total body irradiation, concomitant with a peak in marrow cytokine expression. This niche reorganization fosters homing of the transplanted hematopoietic cells to the host marrow space and engraftment of long-term-HSC. Inhibition of insulin-like growth factor (IGF)-1-receptor tyrosine kinase signaling abrogates endosteal osteoblast proliferation and donor HSC engraftment, suggesting that the cytokine IGF-1 is a crucial mediator of endosteal niche reorganization and consequently donor HSC engraftment. Further understanding of this novel mechanism of IGF-1-dependent osteoblastic niche expansion and HSC engraftment may yield clinical applications for improving engraftment efficiency after clinical HSC transplantation.

  9. Therapy Effect: Impact on Bone Marrow Morphology.

    PubMed

    Li, K David; Salama, Mohamed E

    2016-03-01

    This article highlights the most common morphologic features identified in the bone marrow after chemotherapy for hematologic malignancies, growth-stimulating agents, and specific targeted therapies. The key is to be aware of these changes while reviewing post-therapeutic bone marrow biopsies and to not mistake reactive patterns for neoplastic processes. In addition, given the development and prevalent use of targeted therapy, such as tyrosine kinase inhibitors and immune modulators, knowledge of drug-specific morphologic changes is required for proper bone marrow interpretation and diagnosis.

  10. Acute and delayed toxicities of total body irradiation

    SciTech Connect

    Deeg, H.J.

    1983-12-01

    Total body irradiation is being used with increasing frequency for the treatment of lymphopoietic malignancies and in preparation for marrow transplantation. Acute toxicities include reversible gastroeneritis, mucositis, myelosuppression alopecia. As the success of treatment improves and more patients become long-term survivors, manifestations of delayed and chronic toxicity become evident. These include impairment of growth and development, gonadal failure and sterility, cataract formation and possibly secondary malignancies. The contribution of total body irradiation to the development of pneumonitis and pulmonary fibrosis is still poorly understood. Some of these changes are reversible or correctable, whereas others are permanent. Nevertheless, until equally effective but less toxic regimens become available, total body irradiation appears to be the treatment of choice to prepare patients with leukemia for marrow transplantation.

  11. Irradiation subassembly

    DOEpatents

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  12. Cytotoxic immigration of granulocytes into megakaryocytes as a late consequence of irradiation

    SciTech Connect

    Calvo, W.; Alabi, R.; Nothdurft, W.; Fliedner, T.M.

    1994-05-01

    The immigration of neutrophilic granulocytes into megakaryocyte was studied in the bone marrow of normal and X-irradiated beagle under various exposure conditions. Two groups of dogs received homogeneous total-body irradiation. One group received a dose of 1.6 Gy and the other received a dose of 2.4 Gy (midline tissue). A third group was irradiated from the left side of the body only. This exposure resulted in an inhomogeneous total-body irradiation (entrance dose 3.8 Gy, exit dose 0.9 Gy). A fourth group of animals received partial-body irradiation with a dose of 11.7 Gy delivered to the anterior two-thirds of the body, thereby subjecting about 70% of the hemopoietic marrow to irradiation. Dogs of a fifth group remained unexposed to irradiation and served as controls. The marrow was analyzed in sections of the ribs approximately 1 year after irradiation. The total number of megakaryocytes in one section was evaluated. The number of megakaryocytes showing granulocytes in their cytoplasm was determined and expressed as a percentage. This phenomenon can be explained as cytotoxic immigration of granulocytes into megakaryocytes. It was observed in approximately 1-2 of the megakaryocytes in the marrow of normal dogs. One year after irradiation the value increased of normal dogs. One year after irradiation the value increased to 10-26%. It was observed that neutrophilic granuloytes penetrated only into the large mature megakaryocytes in which the nuclei were most pyknotic. This phenomenon may be considered as a late effect of irradiation. 15 refs., 4 figs., 2 tabs.

  13. Attenuation of Hepatic Graft-versus-host Disease in Allogeneic Recipients of MyD88-deficient Donor Bone Marrow

    PubMed Central

    Lim, Ji-Young; Lee, Young-Kwan; Lee, Sung-Eun; Ju, Ji-Min; Park, Gyeongsin; Choi, Eun Young

    2015-01-01

    Acute graft-versus-host-disease (GVHD) is characterized by selective damage to the liver, the skin, and the gastrointestinal tract. Following allogeneic hematopoietic stem cell transplantation, donor bone marrow (BM) cells repopulate the immune system of the recipient. We previously demonstrated that the acute intestinal GVHD (iGVHD) mortality rate was higher in MyD88-deficient BM recipients than that in the control BM recipients. In the present study, the role of MyD88 (expressed by donor BM) in the pathophysiology of hepatic GVHD (hGVHD) was examined. Unlike iGVHD, transplantation with MyD88-deficient T-cell depleted (TCD) BM attenuated hGVHD severity and was associated with low infiltration of T cells into the liver of the recipients. Moreover, GVHD hosts, transplanted with MyD88-deficient TCD BM, exhibited markedly reduced expansion of CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) in the liver. Adoptive injection of the MDSC from wild type mice, but not MyD88-deficient mice, enhanced hepatic T cell infiltration in the MyD88-deficient TCD BM recipients. Pre-treatment of BM donors with LPS increased MDSC levels in the liver of allogeneic wild type BM recipients. In conclusion, hGVHD and iGVHD may occur through various mechanisms based on the presence of MyD88 in the non-T cell compartment of the allograft. PMID:26140044

  14. Bone Marrow Homing Enriches Stem Cells Responsible for Neogenesis of Insulin-Producing Cells, While Radiation Decreases Homing Efficiency.

    PubMed

    Goldenberg-Cohen, Nitza; Iskovich, Svetlana; Askenasy, Nadir

    2015-10-01

    Small-sized adult bone marrow cells isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate into insulin-producing cells and stabilize glycemic control. This study assessed competitive migration of syngeneic stem cells to the bone marrow and islets in a murine model of chemical diabetes. VLA-4 is expressed in ∼ 25% of these cells, whereas CXCR4 is not detected, however, it is transcriptionally upregulated (6-fold). The possibility to enrich stem cells by a bone marrow homing (BM-H) functional assay was assessed in sequential transplants. Fr25lin(-) cells labeled with PKH26 were grafted into primary myeloablated recipients, and mitotically quiescent Fr25lin(-)PKH(bright) cells were sorted from the bone marrow after 2 days. The contribution of bone marrow-homed stem cells was remarkably higher in secondary recipients compared to freshly elutriated cells. The therapeutic efficacy was further increased by omission of irradiation in the secondary recipients, showing a 25-fold enrichment of islet-reconstituting cells by the bone marrow homing assay. Donor cells identified by the green fluorescent protein (GFP) and a genomic marker in sex-mismatched transplants upregulated PDX-1 and produced proinsulin, affirming the capacity of BM-H cells to convert in the injured islets. There was no evidence of transcriptional priming of freshly elutriated subsets to express PDX-1, insulin, and other markers of endocrine progenitors, indicating that the bone marrow harbors stem cells with versatile differentiation capacity. Affinity to the bone marrow can be used to enrich stem cells for pancreatic regeneration, and reciprocally, conditioning reduces the competitive incorporation in the injured islets.

  15. Bone marrow transplant – children - discharge

    MedlinePlus

    Transplant - bone marrow - children - discharge; Stem cell transplant - children - discharge; Hematopoietic stem cell transplant -children - discharge; Reduced intensity, non-myeloablative transplant - children - discharge; Mini transplant - children - discharge; Allogenic bone ...

  16. Kidney allograft survival in dogs treated with total lymphoid irradiation

    SciTech Connect

    Howard, R.J.; Sutherland, D.E.R.; Lum, C.T.; Lewis, W.I.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1981-02-01

    Total lymphoid irradiation (TLI) is immunosuppressive and, in rodents, can induce a state where transplantation of allogenic bone marrow results in chimerism and permanent acceptance of organ allografts from the donor strain. Twelve splenectomized dogs were treated with TLI (150 rads per fraction, total dose 1950 to 3000 rads) before bilateral nephrectomy and renal allotransplantation. Eight dogs received bone marrow from the kidney donor. In 13 untreated control dogs renal allografts functioned for a mean +- (SE) of 4.7 +- 0.3 days. In the four TLI treated dogs who did not receive bone marrow the renal allografts functioned for 15 to 76 days (two dogs died with functioning grafts). In the eight TLI treated dogs who received donor bone marrow, two died immediately after transplantation, two rejected at 3 and 13 days, one died at 13 days with a functioning graft, and two have had the grafts function for longer than 500 days. Chimerism was not detected in the one dog tested. The response of peripheral blood lymphocytes to stimulation with phytohemaglutinin and in mixed lymphocyte culture was suppressed for at least one month after TLI. The results confirm the immunosuppressive effect of TLI. The absence of kidney rejection in two recipients of donor bone marrow show the potential of this approach to induce long-term immunologic unresponsiveness as to an organ allograft, but the outcome is unpredictable and further experiments are needed to define the optimal conditions for administration of TLI and bone marrow to the recipients.

  17. Standardization of procedures for ectopic marrow grafting. II. Influence on recipients of radiation dose and field size

    SciTech Connect

    Molineux, G.; Schofield, R.; Hendry, J.H.; Testa, N.G.

    1987-07-01

    The ectopic implantation of mouse marrow to the kidney capsule offers considerable scope as an assay of the hemopoietic microenvironment. Our previous work has shown that whole-body irradiation of the graft recipient prior to implantation results in superior ossicle formation in the kidney of the host. Here we report that a range of irradiation doses over a 4-Gy threshold are equivalent with respect to conditioning the graft recipient. We also show that two distinct and separable influences affect graft growth in the irradiated recipient, namely, a local effect brought about in the irradiated kidney (and restricted to it) and secondly, a systemic effect resulting from irradiation of sites other than the kidney, which nevertheless affects ossicle growth in the shielded renal capsule.

  18. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  19. Bone and bone marrow involvement in sarcoidosis.

    PubMed

    Yachoui, Ralph; Parker, Brian J; Nguyen, Thanhcuong T

    2015-11-01

    Bone and bone marrow involvement in sarcoidosis have been infrequently reported. We aimed to describe the clinical features, radiological descriptions, pathological examinations, and outcomes of three patients with osseous sarcoidosis and one patient with bone marrow sarcoidosis seen at our institution. Our case series included fluorodeoxyglucose positron emission tomography descriptions in assessing the whole-body extent of sarcoidosis. In the era of advanced imaging, large bone and axial skeleton sarcoidosis lesions are more common than previously reported.

  20. Clonal dysregulation of the antibody response to tetanus-toxoid after bone marrow transplantation.

    PubMed

    Gerritsen, E J; Van Tol, M J; Van 't Veer, M B; Wels, J M; Khouw, I M; Touw, C R; Jol-Van Der Zijde, C M; Hermans, J; Rümke, H C; Radl, J

    1994-12-15

    After bone marrow transplantation (BMT), a prolonged dysregulation of humoral immunity can be observed. In the present study, we investigated whether this is reflected in an abnormal production of specific antibodies (Ab) to the T-cell-dependent recall antigen tetanus-toxoid (TT). The study group consisted of children receiving transplants of an unmodified allogeneic graft and of adults receiving either a T-cell-depleted allogeneic or an unmodified autologous BM graft. Findings were compared with those in healthy controls. In pediatric graft recipients, who were routinely revaccinated early after BMT, the Ab response was quantitatively superior to that in adult graft recipients who did not receive early revaccination. In the majority of graft recipients, the time period after vaccination required to reach the peak level of antibodies was prolonged and the number of responding TT-specific B-cell clones was markedly decreased in comparison with controls. In controls, a low frequency of dominant B-cell clones may produce low quantities of homogeneous Ab components (H-Ab) against a heterogeneous background. However, in BM graft recipients, "overshooting" of Ab production by separate B-cell clones was observed, resulting in the development of H-Ab at a relatively high concentration. These abnormalities were present up to 10 years after BMT, irrespective of either the age of the recipient, the modulation of the graft, or the vaccination schedule used. It is hypothesized that the dysregulated Ab production is the consequence of activation of a restricted number of resting memory B cells, present in germinal centers, repopulating gradually after BMT. Our data show that routine revaccination early after BMT improves the humoral immune response. However, because of a clonally dysregulated Ab production, long-lasting qualitative defects may be present even after normalization of Ab titers.

  1. Irradiated foods

    MedlinePlus

    ... it reduces the risk of food poisoning . Food irradiation is used in many countries. It was first approved in the U.S. to prevent sprouts on white potatoes, and to control insects on wheat and in certain spices and seasonings.

  2. Full reconstitution of the immune deficiency in scid mice with normal stem cells requires low-dose irradiation of the recipients

    SciTech Connect

    Fulop, G.M.; Phillips, R.A.

    1986-06-15

    Mice homozygous for an autosomal recessive mutation for the scid gene exhibit a defect that specifically impairs lymphoid differentiation but not myelopoiesis. Such mice can be cured of their lymphoid deficiency by grafts with normal bone marrow, although full reconstitution of lymphoid function is seldom obtained. Long-term bone marrow cultures (LTBMC) are devoid of all mature B and pre-B cells but contain lymphoid stem cells. We therefore reconstituted scid mice with LTBMC cells to study the kinetics of B lymphocyte reconstitution in normal and irradiated (4 Gy) scid recipients and in irradiated (9.5 Gy) co-isogenic C.B-17 mice. Detectable colony-forming B cells rapidly increased in the spleen and bone marrow of irradiated C.B-17 and irradiated scid recipients, reaching normal levels between 4 and 6 wk post-grafting. Unirradiated scid recipients showed limited reconstitution in spleen and very poor reconstitution in bone marrow. Unirradiated scid recipients also had relatively few surface Ig+ cells in spleen or bone marrow, whereas both groups of irradiated recipients had normal numbers between 4 and 6 wk post-reconstitution. Normal levels of cytotoxic T cell activity by 8 wk after reconstitution were observed only in the irradiated C.B-17 and irradiated scid recipients. Analysis of mice reconstituted with cells from LTBMC indicates that these cultures contain lymphoid stem cells with significant proliferative and self-renewal potential, and that full reconstitution of lymphoid function requires prior irradiation of the scid recipient.

  3. Cure of murine thalassemia by bone marrow transplantation without eradication of endogenous stem cells

    SciTech Connect

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    1986-09-01

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gy followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.

  4. Marrow transplantation in the treatment of a murine heritable hemolytic anemia

    SciTech Connect

    Barker, J.E.; McFarland-Starr, E.C.

    1989-05-15

    Mice with hemolytic anemia, sphha/sphha, have extremely fragile RBCs with a lifespan of approximately one day. Neither splenectomy nor simple transplantation of normal marrow after lethal irradiation cures the anemia but instead causes rapid deterioration and death of the mutant unless additional prophylactic procedures are used. In this report, we show that normal marrow transplantation preceded by sublethal irradiation increases but does not normalize RBC count. The mutant RBCs but not all the WBCs are replaced by donor cells. Splenectomy of the improved recipient causes a dramatic decrease in RBC count, indicating that the mutant spleen is a site of donor-origin erythropoiesis as well as of RBC destruction. Injections of iron dextran did not improve RBC counts. Transplantation of primary recipient marrow cells into a secondary host with a heritable stem cell deficiency (W/Wv) corrects the defect caused by residence of the normal cells in the sphha/sphha host. The original +/+ donor cells replace the RBCs of the secondary host, and the RBC count is normalized. Results indicate that the environment in the sphha/sphha host is detrimental to normal (as well as mutant) erythroid cells but the restriction is not transmitted.

  5. Development of a cyclosporin-A-induced immune tolerant rat model to test marrow allograft cell type effects on bone repair.

    PubMed

    Espitalier, Florent; Durand, Nicolas; Rémy, Séverine; Corre, Pierre; Sourice, Sophie; Pilet, Paul; Weiss, Pierre; Guicheux, Jérôme; Malard, Olivier

    2015-05-01

    Bone repair is an important concept in tissue engineering, and the ability to repair bone in hypotrophic conditions such as that of irradiated bone, represents a challenge for this field. Previous studies have shown that a combination of bone marrow and (BCP) was effective to repair irradiated bone. However, the origin and role played by each cell type in bone healing still remains unclear. In order to track the grafted cells, the development of an animal model that is immunotolerant to an allograft of bone marrow would be useful. Furthermore, because the immune system interacts with bone turnover, it is of critical importance to demonstrate that immunosuppressive drugs do not interfere with bone repair. After a preliminary study of immunotolerance, cyclosporin-A was chosen to be used in immunosuppressive therapy. Ten rats were included to observe qualitative and quantitative bone repair 8 days and 6 weeks after the creation of bone defects. The defects were filled with an allograft of bone marrow alone or in association with BCP under immunosuppressive treatment (cyclosporin-A). The results showed that there was no significant interaction of cyclosporin-A with osseous regeneration. The use of this new immunotolerant rat model of bone marrow allograft in future studies will provide insight on how the cells within the bone marrow graft contribute to bone healing, especially in irradiated conditions.

  6. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    PubMed Central

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  7. Evaluation of diethyldithiocarbamate as a radioprotector of bone marrow

    SciTech Connect

    Allalunis-Turner, M.J.; Chapman, J.D.

    1984-09-01

    The radioprotective action of DDC on normal hematopoietic tissue in mice was evaluated. An increase in CFU-S and CFU-GM in DDC treated unirradiated control mice was consistently observed. When post-irradiation survival of CFU-S and CFU-GM from DDC treated animals was normalized to account for this observed increase, protection factors ranging from 0.9 to 1.6 were observed. The increase in CFU-GM is analogous to that observed in animals treated with endotoxin, a non-thiol radioprotector. When C3H/HeJ mice, which are genetically incapable of responding to endotoxin, were challenged with DDC, an average CFU-GM increase of 1.7 times was observed, suggesting that the stimulatory effects of DDC were not due to endotoxin contamination. DDC was administered daily for three days before irradiation and little or no increase in CFU-GM and no radioprotection was observed, suggesting that the marrow can become refractory to DDC. When WR-2721 was tested in similar studies, a dose-modifying radioprotection was observed, with no significant non-specific stimulation of hematopoietic cells.

  8. Altered biodistribution and incidental findings on gallium and labeled leukocyte/bone marrow scans.

    PubMed

    Love, Charito; Palestro, Christopher J

    2010-07-01

    infection. Labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis because 50% or more of cases present as nonspecific decreased activity. This test is not useful for diagnosing septic arthritis because labeled leukocytes accumulate in inflammatory, noninfectious arthritis. Nodal uptake in patients with lower extremity joint prostheses produces incongruent white blood cell/marrow images in the absence of infection. Careful attention to uptake patterns minimizes this problem. Radiation effects on bone marrow activity are dramatic. Acutely, there is intense, diffusely increased activity. As inflammation subsides, and marrow becomes fibrotic, the irradiated area appears as decreased activity.

  9. Management of the irradiated casualty.

    PubMed

    Bland, S A

    2004-09-01

    The initial management of any irradiated casualty is the early identification of the possibility of a significant exposure through dose prediction and recognition of prodromal symptoms. Subsequent management is aimed at supporting the effected systems until there is recovery. Where there is haematological failure, transplantation (bone marrow / stem cell) is possible although limited value in a mass casualty scenario. The provision of gold standard therapy within the field is unlikely to occur and early medical evacuation to an Echelon / Role 4 facility with specialist services will be required. Within the field, early assessment using the above systems of classification could be achieved at Echelon / Role 3 and may be enhanced with the establishment of Radiation Assessment Units. These would select casualties that could benefit from the advanced therapies. A summary of the levels of care is shown in Figure 3.

  10. Increased survival of normal cells during laser photodynamic therapy: implications for ex vivo autologous bone marrow purging

    SciTech Connect

    Gulliya, K.S.; Matthews, J.L.; Fay, J.W.; Dowben, R.M.

    1988-01-01

    Laser light-induced, dye-mediated photolysis of leukemic cells was tested in an in vitro model for its efficacy in eliminating occult tumor cells for ex vivo autologous bone marrow purging. Merocyanine 540 (MC540) was mixed with acute promyelocytic leukemia (HL-60) cells in the presence of human albumin. This cell-dye mixture was irradiated with 514 nm argon laser light. Results show that in the presence of 0.1%, 0.25% and 0.5% albumin, laser light doses of 62.4 J/cm/sup 2/, 93.6 J/cm/sup 2/ and 109.2 J/cm/sup 2/, respectively, were required for a 5 log reduction in the survival of leukemic cells. Under identical conditions, 80% to 84% of the normal bone marrow cells and 41% of the granulocyte-macrophage colony forming cells survived. The number of surviving stromal cells was reduced (1+) compared to the untreated control (4+). Mixing of irradiated bone marrow cells with equal number of HL-60 cells did not interfere with the killing of HL-60 cells treated with MC540 and laser light. The non-specific cytotoxicity of laser light alone was less than 6% for normal bone marrow cells. These results suggest that the concentration of human albumin plays an important role in laser light-induced phototoxicity. This laser light-induced selective photolysis of leukemic cells can be used in ex vivo purging of tumor cell-contaminated bone marrow grafts to achieve very high survival rates of normal bone marrow cells and granulocyte-macrophage colony forming cells.

  11. Protection against radiation induced hematopoietic damage in bone marrow of Swiss albino mice by Mentha piperita (Linn).

    PubMed

    Samarth, Ravindra M

    2007-11-01

    The protective effects of Mentha piperita (Linn) extract against radiation induced hematopoietic damage in bone marrow of Swiss albino mice have been studied. Mice were given either double distilled water or leaf extract of M. piperita orally (1 g/kg b.wt./day) once a day for three consecutive days, and after 30 min of treatments on the third day were exposed to 8 Gy gamma radiation. Mice were autopsied at 12, 24, 48 hrs and 5, 10 and 20 days post-irradiation to evaluate the percentage of bone marrow cells, frequency of micronuclei and erythropoietin level in serum. An exposure to gamma radiation resulted in a significant decline in the number of bone marrow cells such as leucoblasts, myelocytes, metamyelocytes, band/stab forms, polymorphs, pronormoblasts and normoblasts, lymphocytes, and megakaryocytes. Pretreatment with leaf extract of M. piperita followed by radiation exposure resulted in significant increases in the numbers of leucoblasts, myelocytes, metamyelocytes, band/stab forms, polymorphs, pronormoblasts and normoblasts, lymphocytes, and megakaryocytes in bone marrow as compared to the control group. Pretreatment with leaf extract of M. piperita followed by radiation exposure also resulted in significant decreases in micronucleus frequencies in bone marrow of Swiss albino mice. A significant increase in erythropoietin level was observed at all the studied intervals in leaf extract of M. piperita pretreated irradiated animals as compared to control animals (radiation alone). The results of the present investigation suggest the protective effects of leaf extract of M. piperita against radiation induced hematopoietic damage in bone marrow may be attributed to the maintenance of EPO level in Swiss albino mice.

  12. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  13. Bone Marrow Transplantation in Mice as a Tool to Generate Genetically Modified Animals

    NASA Astrophysics Data System (ADS)

    Rőszer, Tamás; Pintye, Éva; Benkő, Ilona

    2008-12-01

    Transgenic mice can be used either as models of known inherited human diseases or can be applied to perform phenotypic tests of genes with unknown function. In some special applications of gene modification we have to create a tissue specific mutation of a given gene. In some cases however the gene modification can be lethal in the intrauterine life, therefore we should engraft the mutated cells in the postnatal life period. After total body irradiation transplantation of bone marrow cells can be a solution to introduce mutant hematopoietic stem cells into a mature animal. Bone marrow transplantation is a useful and novel tool to study the role of hematopoietic cells in the pathogenesis of inflammation, autoimmune syndromes and many metabolic alterations coupled recently to leukocyte functions.

  14. Bone Marrow Transplantation in Mice as a Tool to Generate Genetically Modified Animals

    SciTech Connect

    Roszer, Tamas; Pintye, Eva; Benko', Ilona

    2008-12-08

    Transgenic mice can be used either as models of known inherited human diseases or can be applied to perform phenotypic tests of genes with unknown function. In some special applications of gene modification we have to create a tissue specific mutation of a given gene. In some cases however the gene modification can be lethal in the intrauterine life, therefore we should engraft the mutated cells in the postnatal life period. After total body irradiation transplantation of bone marrow cells can be a solution to introduce mutant hematopoietic stem cells into a mature animal. Bone marrow transplantation is a useful and novel tool to study the role of hematopoietic cells in the pathogenesis of inflammation, autoimmune syndromes and many metabolic alterations coupled recently to leukocyte functions.

  15. Thymic hyperplasia after chemotherapy in adults with mature B cell lymphoma and its influence on thymic output and CD4(+) T cells repopulation.

    PubMed

    Sun, Dao-Ping; Jin, Hui; Ding, Chong-Yang; Liang, Jin-Hua; Wang, Li; Fan, Lei; Wu, Yu-Jie; Xu, Wei; Li, Jian-Yong

    2016-05-01

    To investigate the thymic regenerative potential in adults accepting chemotherapy for lymphoma. The dynamics of thymic activity in 54 adults from baseline to 12 mo post-chemotherapy was analyzed by assessing thymic structural changes with serial computed tomography (CT) scans, and correlating these with measurements of thymic output by concurrent analysis of single-joint (sj) T-cell receptor excision circles (sjTREC) and CD31(+) recent thymic emigrants (RTE) in peripheral blood. Furthermore, the consequence of thymic renewal on peripheral CD4(+) T cell recovery after chemotherapy was evaluated. Time-dependent changes of thymic size and thymic output assessed by both sjTREC levels and CD31(+) RTE counts in peripheral blood were observed during and after chemotherapy. Enlargement of thymus over baseline following chemotherapy regarded as rebound thymic hyperplasia (TH) was identified in 20 patients aged 18-53 y (median 33 y). By general linear models repeated measure analysis, it was found that, patients with TH (n = 20) had a faster recovery of sjTREC levels and CD31(+) RTE counts after chemotherapy than patients with comparable age, gender, diagnosis, disease stage, thymic volume and output function at baseline but without TH (n = 18) (p = 0.035, 0.047); besides, patients with TH had a faster repopulation of both naïve CD4(+) T cell and natural regulatory CD4(+) T cell subsets than those without TH (p = 0.042, 0.038). These data suggested that adult thymus retains the capacity of regeneration after chemotherapy, especially in young adults. The presence of TH could contribute to the renewal of thymopoiesis and the replenishment of peripheral CD4(+) T cell pool following chemotherapy in adults. PMID:27467956

  16. A theoretical investigation into the role of tumour radiosensitivity, clonogen repopulation, tumour shrinkage and radionuclide RBE in permanent brachytherapy implants of 125I and 103Pd

    NASA Astrophysics Data System (ADS)

    Antipas, V.; Dale, R. G.; Coles, I. P.

    2001-10-01

    There is growing clinical interest in the use of 125I (half-life 59.4 days) and 103Pd (half-life 16.97 days) for permanent brachytherapy implants. These radionuclides pose interesting radiobiological challenges because, even with slowly growing tumours, significant tumour cell repopulation may occur during the long period taken to deliver the full radiation dose. This results in a considerable amount of the prescribed dose being wasted. There may also be changes in the tumour volume during treatment (due to oedema and/or shrinkage), thus altering the relative geometry of the implanted seeds and causing additional dose rate variations. This assessment examines the interaction between the above effects and additionally includes allowance for the influence of the relative biological effectiveness (RBE) of the radiations emitted by the two radionuclides. The results are presented in terms of the biologically effective doses (BEDs) and likely tumour control probabilities (TCPs) associated with the various parameter combinations. The overall BED enhancement due to the RBE effect is shown always to be greater than the RBE itself and is greatest in tumours which are radio-resistive and/or fast growing. The biological dose uncertainties are found to be less with 103Pd and the TCPs associated with this radionuclide are expected to be significantly higher in the treatment of some 'difficult' tumours. Using typically prescribed doses 125I appears to be better for treating radiosensitive tumours with long doubling times and which shrink fairly rapidly. However, unless 125I doses are reduced, this advantage may well be offset by the greatly enhanced biological doses delivered to adjacent normal structures.

  17. Tracking mouse bone marrow monocytes in vivo.

    PubMed

    Hamon, Pauline; Rodero, Mathieu Paul; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions. PMID:25867540

  18. Effects of mouse genotype on bone wound healing and irradiation-induced delay of healing.

    PubMed

    Glowacki, Julie; Mizuno, Shuichi; Kung, Jason; Goff, Julie; Epperly, Michael; Dixon, Tracy; Wang, Hong; Greenberger, Joel S

    2014-01-01

    We tested the effects of mouse genotype (C57BL/6NHsd, NOD/SCID, SAMR1, and SAMP6) and ionizing irradiation on bone wound healing. Unicortical wounds were made in the proximal tibiae, and the time course of spontaneous healing and effects of irradiation were monitored radiographically and histologically. There was reproducible healing beginning with intramedullary osteogenesis, subsequent bone resorption by osteoclasts, gradual bridging of the cortical wound, and re-population of medullary hematopoietic cells. The most rapid wound closure was noted in SAMR1 mice, followed by SAMP6, C57BL/6NHsd, and NOD/SCID. Ionizing irradiation (20 Gy) to the leg significantly delayed bone wound healing in mice of all four genotypes. Mice with genetically-determined predisposition to early osteopenia (SAMP6) or with immune deficiency (NOD/SCID) had impairments in bone wound healing. These mouse models should be valuable for determining the effects of irradiation on bone healing and also for the design and testing of novel bone growth-enhancing drugs and mitigators of ionizing irradiation.

  19. Abrogation of hybrid resistance to bone marrow engraftment by graft versus host induced immune deficiency

    SciTech Connect

    Hakim, F.T.; Shearer, G.M.

    1986-03-01

    Lethally irradiated F/sub 1/ mice, heterozygous at the hematopoietic histocompatibility (Hh) locus at H-2D/sup b/, reject bone marrow grafts from homozygous H-2/sup b/ parents. This hybrid resistance (HR) is reduced by prior injection of H-2/sup b/ parental spleen cells. Since injection of parental spleen cells produces a profound suppression of F/sub 1/ immune functions, the authors investigated whether parental-induced abrogation of HR was due to graft-vs-host induced immune deficiency (GVHID). HR was assessed by quantifying engraftment in irradiated mice using /sup 125/I-IUdR spleen uptake; GVHID by measuring generation of cytotoxic T lymphocytes (CTL) from unirradiated mice. They observed correlation in time course, spleen dose dependence and T cell dependence between GVHID and loss of HR. The injection of B10 recombinant congenic spleens into (B10 x B10.A) F/sub 1/ mice, prior to grafting with B10 marrow, demonstrated that only those disparities in major histocompatibility antigens which generated GVHID would result in loss of HR. Spleens from (B10 x B10.A(2R))F/sub 1/ mice (Class I disparity only) did not induce GVHID or affect HR, while (B10 x B10.A(5R)F/sub 1/ spleens (Class I and II disparity) abrogated CTL generation and HR completely. GVHID produced by a Class II only disparity, as in (B10 x B10.A(5R))F/sub 1/ spleens injected into (B6/sup bm12 x B10.A(5R))F/sub 1/ mice, was also sufficient to markedly reduce HR to B10 bone marrow. Modulation of hematopoietic graft rejection by GVHID may affect marrow engraftment in man.

  20. Implication of Ia-positive bone marrow interstitial stem cells in the induction of unresponsiveness to canine renal allografts

    SciTech Connect

    Rapaport, F.T.; Arnold, A.N.; Asari, H.; Sato, K.; Miura, S.; Chanana, A.; Cronkite, E.P.

    1987-02-01

    The removal from stored autologous host bone marrow of a monocytoid cell population by exposure to methylprednisolone is associated with successful introduction of unresponsiveness to renal allografts in irradiated recipients reconstituted with such treated marrow. The eliminated cells are a prominent component of the canine long bone marrow interstitium and share a number of important properties with dendritic cells (DC), including size and shape; poor or nonadherence to plastic or glass surfaces; negative staining for neutral esterase, acid phosphatase, or peroxidase; nonphagocytic; Ia positive, but negative for IgG or IgM; ability to act as accessory cells in augmenting the intensity of allogeneic mixed-lymphocyte reactions. Both cell types are of bone marrow origin and are susceptible to steroids in vitro. The results suggest that the bone marrow interstitial cells identified in the course of this study may be enriched with populations of canine dendritic cell precursors and dendritic cells at various stages of differentiation. The detection of a receptor site for Helix promatia on the surface of such cells may be of usefulness in their further characterization and in the analysis of their precise role in the modulation of allogeneic unresponsiveness.

  1. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow.

    PubMed

    Zhou, Bo O; Yue, Rui; Murphy, Malea M; Peyer, James G; Morrison, Sean J

    2014-08-01

    Studies of the identity and physiological function of mesenchymal stromal cells (MSCs) have been hampered by a lack of markers that permit both prospective identification and fate mapping in vivo. We found that Leptin Receptor (LepR) is a marker that highly enriches bone marrow MSCs. Approximately 0.3% of bone marrow cells were LepR(+), 10% of which were CFU-Fs, accounting for 94% of bone marrow CFU-Fs. LepR(+) cells formed bone, cartilage, and adipocytes in culture and upon transplantation in vivo. LepR(+) cells were Scf-GFP(+), Cxcl12-DsRed(high), and Nestin-GFP(low), markers which also highly enriched CFU-Fs, but negative for Nestin-CreER and NG2-CreER, markers which were unlikely to be found in CFU-Fs. Fate-mapping showed that LepR(+) cells arose postnatally and gave rise to most bone and adipocytes formed in adult bone marrow, including bone regenerated after irradiation or fracture. LepR(+) cells were quiescent, but they proliferated after injury. Therefore, LepR(+) cells are the major source of bone and adipocytes in adult bone marrow.

  2. Bone Marrow Immunity and Myelodysplasia.

    PubMed

    Lambert, Claude; Wu, Yuenv; Aanei, Carmen

    2016-01-01

    Myelodysplastic syndrome (MDS) is characterized by an ineffective hematopoiesis with production of aberrant clones and a high cell apoptosis rate in bone marrow (BM). Macrophages are in charge of phagocytosis. Innate Immune cells and specific T cells are in charge of immunosurveillance. Little is known on BM cell recruitment and activity as BM aspirate is frequently contaminated with peripheral blood. But evidences suggest an active role of immune cells in protection against MDS and secondary leukemia. BM CD8(+) CD28(-) CD57(+) T cells are directly cytotoxic and have a distinct cytokine signature in MDS, producing TNF-α, IL-6, CCL3, CCL4, IL-1RA, TNFα, FAS-L, TRAIL, and so on. These tools promote apoptosis of aberrant cells. On the other hand, they also increase MDS-related cytopenia and myelofibrosis together with TGFβ. IL-32 produced by stromal cells amplifies NK cytotoxicity but also the vicious circle of TNFα production. Myeloid-derived suppressing cells (MDSC) are increased in MDS and have ambiguous role in protection/progression of the diseases. CD33 is expressed on hematopoietic stem cells on MDS and might be a potential target for biotherapy. MDS also has impact on immunity and can favor chronic inflammation and emergence of autoimmune disorders. BM is the site of hematopoiesis and thus contains a complex population of cells at different stages of differentiation from stem cells and early engaged precursors up to almost mature cells of each lineage including erythrocytes, megakaryocytes, myelo-monocytic cells (monocyte/macrophage and granulocytes), NK cells, and B cells. Monocytes and B cell finalize their maturation in peripheral tissues or lymph nodes after migration through the blood. On the other hand, T cells develop in thymus and are present in BM only as mature cells, just like other well vascularized tissues. BM precursors have a strong proliferative capacity, which is usually associated with a high risk for genetic errors, cell dysfunction, and

  3. Bone Marrow Immunity and Myelodysplasia

    PubMed Central

    Lambert, Claude; Wu, Yuenv; Aanei, Carmen

    2016-01-01

    Myelodysplastic syndrome (MDS) is characterized by an ineffective hematopoiesis with production of aberrant clones and a high cell apoptosis rate in bone marrow (BM). Macrophages are in charge of phagocytosis. Innate Immune cells and specific T cells are in charge of immunosurveillance. Little is known on BM cell recruitment and activity as BM aspirate is frequently contaminated with peripheral blood. But evidences suggest an active role of immune cells in protection against MDS and secondary leukemia. BM CD8+ CD28− CD57+ T cells are directly cytotoxic and have a distinct cytokine signature in MDS, producing TNF-α, IL-6, CCL3, CCL4, IL-1RA, TNFα, FAS-L, TRAIL, and so on. These tools promote apoptosis of aberrant cells. On the other hand, they also increase MDS-related cytopenia and myelofibrosis together with TGFβ. IL-32 produced by stromal cells amplifies NK cytotoxicity but also the vicious circle of TNFα production. Myeloid-derived suppressing cells (MDSC) are increased in MDS and have ambiguous role in protection/progression of the diseases. CD33 is expressed on hematopoietic stem cells on MDS and might be a potential target for biotherapy. MDS also has impact on immunity and can favor chronic inflammation and emergence of autoimmune disorders. BM is the site of hematopoiesis and thus contains a complex population of cells at different stages of differentiation from stem cells and early engaged precursors up to almost mature cells of each lineage including erythrocytes, megakaryocytes, myelo-monocytic cells (monocyte/macrophage and granulocytes), NK cells, and B cells. Monocytes and B cell finalize their maturation in peripheral tissues or lymph nodes after migration through the blood. On the other hand, T cells develop in thymus and are present in BM only as mature cells, just like other well vascularized tissues. BM precursors have a strong proliferative capacity, which is usually associated with a high risk for genetic errors, cell dysfunction, and

  4. Modification of bone marrow radiosensensitivity by medicinal plant extracts.

    PubMed

    Ganasoundari, A; Zare, S M; Devi, P U

    1997-06-01

    Withaferin A (WA), a steroidal lactone, and Plumbagin (Pl), a naphthoquinone, from the roots of Withania somnifera and Plumbago rosea, respectively, have been shown to possess growth inhibitory and radiosensitizing effects on experimental mouse tumours. An aqueous extract of the leaves of Ocimum sanctum (OE) was found to protect mice against radiation lethality. Therefore, the radiomodifying effects of the above plant products on the bone marrow of the adult Swiss mouse was studied. Single doses of WA (30 mg kg-1) or Pl (5 mg kg-1) were injected intraperitoneally (ip) and OE (10 mg kg-1) was injected ip once daily for five consecutive days. Administration of extracts was followed by 2 Gy whole body gamma irradiation. Bone marrow stem cell survival was studied by an exogenous spleen colony unit (CFU-S) assay. The effects of WA and Pl were compared with that of cyclophosphamide (CP) and radioprotection by OE was compared with that of WR-2721 (WR). Radiation reduced the CFU-S to less than 50% of normal. WA, CP and Pl significantly enhanced this effect and reduced the CFU-S to almost the same extent (to < 20% of normal), although individually WA and Pl were less cytotoxic than CP. These results indicate that radiosensitization by WA and Pl is not tumour specific. OE significantly increased CFU-S compared with radiotherapy (RT) alone. OE+RT gave a higher stem cell survival (p < 0.05) than that produced by WR+RT. While WR alone had a toxic effect, OE treatment showed no such effect, suggesting that the latter may have an advantage over WR in clinical application. PMID:9227253

  5. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential.

  6. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential. PMID:26220824

  7. Studies of allogeneic bone marrow and spleen cell transplantation in a murine model using ultraviolet-B light

    SciTech Connect

    Pamphilon, D.H.; Alnaqdy, A.A.; Godwin, V.; Preece, A.W.; Wallington, T.B. )

    1991-05-01

    Ultraviolet irradiation inhibits alloreactive and mitogen-induced responses and might reduce both graft-versus-host and host-versus-graft reactions after bone marrow transplantation (BMT). We have studied proliferative responses to mitogens and reactivity in mixed lymphocyte culture after irradiation with ultraviolet (UV)-B light using splenocytes from Balb/c (H-2d) and CBA (H-2k) mice. Response to mitogens and in MLC was strongly inhibited by 20 J/m{sup 2} and abolished at 50 J/m{sup 2}. Clonogenic cell recovery (CFU-GM; CFU-S) after UV-B irradiation was also reduced. When bone marrow and spleen cells were transplanted from parent (Balb/c) animals into F1 hybrid (Balb/c X CBA) recipients, all animals died with features indicative of graft-versus-host disease (GVHD) in 34 days. If the grafts were first irradiated with 100 J/m{sup 2} of UV-B at a mean wavelength of 310 nm, then 76% survived to day 80 when they were killed and shown to have normal marrow cellularity. The remainder died in marrow aplasia or of GVHD. H-2 typing in a group of surviving recipients showed either donor hematopoiesis only (8 of 15), mixed allogeneic chimerism (5 of 15), or recipient type hematopoiesis (2 of 15). Higher doses (200 to 300 J/m{sup 2}) were detrimental to survival with 88% of recipients dying in marrow aplasia. Syngeneic BMT in Balb/c mice showed slower hematopoietic reconstitution when the grafts were first irradiated with 100 J/m{sup 2}. After BMT from Balb/c to CBA mice all recipients of unirradiated grafts died within 54 days. By contrast, after graft irradiation with 100 J/m{sup 2} survival of recipient animals to day 80 was 59%. If these grafts were treated with 50 J/m{sup 2} survival was only 26% with an increase in deaths due to GVHD. Hematopoiesis at day 80 in a group of survivors studied by Ig heavy chain allotyping indicated donor type hematopoiesis in 6 of 10 (50 J/m{sup 2}) and 2 of 9 (100 J/m{sup 2}).

  8. [Prolonged acute pancreatitis after bone marrow transplantation].

    PubMed

    De Singly, B; Simon, M; Bennani, J; Wittnebel, S; Zagadanski, A-M; Pacault, V; Gornet, J-M; Allez, M; Lémann, M

    2008-04-01

    Acute pancreatitis is not infrequent after allogenic marrow transplantation. Several causes can predispose to pancreatitis, including Graft-Versus-Host Disease (GVHD), a condition which is probably underestimated. In the literature, few description of pancreatic GVHD can be found. Pancreatic GVHD diagnosis can be difficult if pancreatic involvement occurs without other typical manifestations of GVHD. We report the case of a woman, 54 years old, suffering from prolonged, painful pancreatitis two months after allogenic bone marrow transplantation for acute myeloid leucemia. Pancreatic GVHD diagnosis was performed after five weeks on duodenal biopsies despite the absence of diarrheoa. The patient dramatically improved within few days on corticosteroids.

  9. Blood and Bone Marrow Evaluation for Eosinophilia.

    PubMed

    Boyer, Daniel F

    2016-10-01

    Evaluation of peripheral blood and bone marrow for an indication of persistent eosinophilia can be a challenging task because there are many causes of eosinophilia and the morphologic differences between reactive and neoplastic causes are often subtle or lack specificity. The purpose of this review is to provide an overview of the differential diagnosis for eosinophilia, to recommend specific steps for the pathologist evaluating blood and bone marrow, and to emphasize 2 important causes of eosinophilia that require specific ancillary tests for diagnosis: myeloproliferative neoplasm with PDGFRA rearrangement and lymphocyte-variant hypereosinophilic syndrome. PMID:27684977

  10. Endocrine deficit after fractionated total body irradiation.

    PubMed

    Ogilvy-Stuart, A L; Clark, D J; Wallace, W H; Gibson, B E; Stevens, R F; Shalet, S M; Donaldson, M D

    1992-09-01

    Endocrine function was assessed in 31 children (17 boys) after fractionated total body irradiation used in the preparative regimen for bone marrow transplantation. Endocrine dysfunction was present in 25 children. Fifteen of 29 had growth hormone insufficiency 0.9-4.9 years after total body irradiation, yet only three of the 15 had received previous cranial irradiation. Five of 30 had thyroid dysfunction: two with a low thyroxine and raised thyroid stimulating hormone (TSH) concentration and three with a raised TSH and normal thyroxine concentration. Thus the incidence of thyroid dysfunction (16%) is much lower than that reported after single fraction total body irradiation (39-59%). In only two children were abnormalities of the hypothalamic-pituitary-adrenal axis demonstrated. The majority of pubertal children assessed (n = 15) showed evidence of gonadal damage. All the pubertal girls (n = 5) had ovarian failure, although there was evidence of recovery of ovarian function in one girl. All seven boys in late puberty showed evidence of damage to the germinal epithelium, and two of three in early puberty had raised follicle stimulating hormone concentrations. Despite the use of a fractionated total body irradiation regimen, endocrine morbidity is substantial and children undergoing such procedures will require long term endocrine review and management.

  11. Dose and Radioadaptive Response Analysis of Micronucleus Induction in Mouse Bone Marrow.

    PubMed

    Bannister, Laura A; Mantha, Rebecca R; Devantier, Yvonne; Petoukhov, Eugenia S; Brideau, Chantal L A; Serran, Mandy L; Klokov, Dmitry Y

    2016-01-01

    Enhanced cellular DNA repair efficiency and suppression of genomic instability have been proposed as mechanisms underlying radio-adaptive responses following low-dose radiation exposures. We previously showed that low-dose γ irradiation does not generate radio-adaptation by lowering radiation-induced cytogenetic damage in mouse spleen. Since radiation may exert tissue-specific effects, we extended these results here by examining the effects of γ radiation on cytogenetic damage and proliferative index in bone marrow erythrocytes of C57BL/6 and BALB/c mice. In C57BL/6 mice, the induction of micronuclei in polychromatic erythrocytes (MN-PCE) was observed at radiation doses of 100 mGy and greater, and suppression of erythroblast maturation occurred at doses of >500 mGy. A linear dose-response relationship for MN-PCE frequencies in C57BL/6 mice was established for radiation doses between 100 mGy and 1 Gy, with departure from linearity at doses of >1 Gy. BALB/c mice exhibited increased MN-PCE frequencies above baseline following a 20 mGy radiation exposure but did not exhibit radio-sensitivity relative to C57BL/6 mice following 2 Gy exposure. Radio-adaptation of bone marrow erythrocytes was not observed in either strain of mice exposed to low-dose priming γ irradiation (single doses of 20 mGy or 100 mGy or multiple 20 mGy doses) administered at various times prior to acute 2 Gy irradiation, confirming the lack of radio-adaptive response for induction of cytogenetic damage or suppression or erythrocyte proliferation/maturation in bone marrow of these mouse strains. PMID:27649149

  12. Dose and Radioadaptive Response Analysis of Micronucleus Induction in Mouse Bone Marrow

    PubMed Central

    Bannister, Laura A.; Mantha, Rebecca R.; Devantier, Yvonne; Petoukhov, Eugenia S.; Brideau, Chantal L. A.; Serran, Mandy L.; Klokov, Dmitry Y.

    2016-01-01

    Enhanced cellular DNA repair efficiency and suppression of genomic instability have been proposed as mechanisms underlying radio-adaptive responses following low-dose radiation exposures. We previously showed that low-dose γ irradiation does not generate radio-adaptation by lowering radiation-induced cytogenetic damage in mouse spleen. Since radiation may exert tissue-specific effects, we extended these results here by examining the effects of γ radiation on cytogenetic damage and proliferative index in bone marrow erythrocytes of C57BL/6 and BALB/c mice. In C57BL/6 mice, the induction of micronuclei in polychromatic erythrocytes (MN-PCE) was observed at radiation doses of 100 mGy and greater, and suppression of erythroblast maturation occurred at doses of >500 mGy. A linear dose–response relationship for MN-PCE frequencies in C57BL/6 mice was established for radiation doses between 100 mGy and 1 Gy, with departure from linearity at doses of >1 Gy. BALB/c mice exhibited increased MN-PCE frequencies above baseline following a 20 mGy radiation exposure but did not exhibit radio-sensitivity relative to C57BL/6 mice following 2 Gy exposure. Radio-adaptation of bone marrow erythrocytes was not observed in either strain of mice exposed to low-dose priming γ irradiation (single doses of 20 mGy or 100 mGy or multiple 20 mGy doses) administered at various times prior to acute 2 Gy irradiation, confirming the lack of radio-adaptive response for induction of cytogenetic damage or suppression or erythrocyte proliferation/maturation in bone marrow of these mouse strains. PMID:27649149

  13. Dose and Radioadaptive Response Analysis of Micronucleus Induction in Mouse Bone Marrow.

    PubMed

    Bannister, Laura A; Mantha, Rebecca R; Devantier, Yvonne; Petoukhov, Eugenia S; Brideau, Chantal L A; Serran, Mandy L; Klokov, Dmitry Y

    2016-01-01

    Enhanced cellular DNA repair efficiency and suppression of genomic instability have been proposed as mechanisms underlying radio-adaptive responses following low-dose radiation exposures. We previously showed that low-dose γ irradiation does not generate radio-adaptation by lowering radiation-induced cytogenetic damage in mouse spleen. Since radiation may exert tissue-specific effects, we extended these results here by examining the effects of γ radiation on cytogenetic damage and proliferative index in bone marrow erythrocytes of C57BL/6 and BALB/c mice. In C57BL/6 mice, the induction of micronuclei in polychromatic erythrocytes (MN-PCE) was observed at radiation doses of 100 mGy and greater, and suppression of erythroblast maturation occurred at doses of >500 mGy. A linear dose-response relationship for MN-PCE frequencies in C57BL/6 mice was established for radiation doses between 100 mGy and 1 Gy, with departure from linearity at doses of >1 Gy. BALB/c mice exhibited increased MN-PCE frequencies above baseline following a 20 mGy radiation exposure but did not exhibit radio-sensitivity relative to C57BL/6 mice following 2 Gy exposure. Radio-adaptation of bone marrow erythrocytes was not observed in either strain of mice exposed to low-dose priming γ irradiation (single doses of 20 mGy or 100 mGy or multiple 20 mGy doses) administered at various times prior to acute 2 Gy irradiation, confirming the lack of radio-adaptive response for induction of cytogenetic damage or suppression or erythrocyte proliferation/maturation in bone marrow of these mouse strains.

  14. Cancer following medical irradiation.

    PubMed

    Boice, J D

    1981-03-01

    Several generalizations about radiation carcinogenesis can be made: 1) a single exposure is sufficient to elevate cancer incidence many years later: 2) radiation-induced cancer cannot be distinguished from naturally occurring cancer, i.e., there is not unique radiogenic cancer; 3) all cancers appear to be increased after irradiation with the exception of chronic lymphocytic leukemia, and possibly Hodgkin's disease, cervical cancer, and a few others; 4) the breast, thyroid, and bone marrow appear especially radiosensitive; 5) leukemia is the most prominent radiogenic tumor and shows a wave-like pattern of excess incidence over time, and the excess begins within two to four years, peaks about six to eight years, and decreases to normal levels about 25 years later; 6) solid tumors have a minimum latent period of about ten years, and for several cancers, the temporal pattern of incidence appears to follow the natural incidence, i.e., the cancers do not occur before the ages normally associated with increased incidence, implying that age-dependent factors influence the expression of disease; 7) age at exposure is perhaps the most important host factor influencing subsequent cancer risk; 8) the percentage increase in cancer incidence per rad is not the same for all cancers, i.e., some cancer of high natural incidence, e.g., colon, have low "relative risks" and some cancers of low natural incidence, e.g., thyroid, have high "relative risks;" 9) dose-effect curves are often linear, but curvilinearity is also observed and is possibly associated with the need for "two ionizing events" for transformation to occur at low doses, the influence of cell sterilization at moderate doses, the likelihood of "wasted" dose at high doses, and/or the influence of factors that effect the expression of disease.

  15. Adult hemolytic-uremic syndrome and bone marrow necrosis

    SciTech Connect

    Hicks, C.B.; Redmond, J. III

    1984-11-01

    A case is reported of adult hemolytic-uremic syndrome in which massive bone marrow necrosis developed, a previously undescribed complication. Technetium-99m minicolloid scanning and indium-111 bone marrow scans were used to demonstrate lack of bone marrow activity in the patient. 11 references, 2 figures.

  16. Intracranial extramedullary hematopoiesis. CT and bone marrow scan findings

    SciTech Connect

    Urman, M.; O'Sullivan, R.A.; Nugent, R.A.; Lentle, B.C. )

    1991-06-01

    This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.

  17. Bone Marrow Transplantation for Feline Mucopolysaccharidosis I

    PubMed Central

    Ellinwood, N. Matthew; Colle, Marie-Anne; Weil, Margaret A.; Casal, Margret L.; Vite, Charles H.; Wiemelt, Staci; Hasson, Christopher W.; O’Malley, Thomas M.; He, Xingxuan; Prociuk, Ulana; Verot, Lucie; Melniczek, John R.; Lannon, Anne; Aguirre, Gustavo D.; Knox, Van W.; Evans, Sydney M.; Vanier, Marie T.; Schuchman, Edward H.; Walkley, Steven U.; Haskins, Mark E.

    2009-01-01

    Severe mucopolysaccharidosis type I (MPS I) is a fatal neuropathic lysosomal storage disorder with significant skeletal involvement. Treatment involves bone marrow transplantation (BMT), and although effective, is suboptimal, due to treatment sequelae and residual disease. Improved approaches will need to be tested in animal models and compared to BMT. Herein we report on bone marrow transplantation to treat feline mucopolysaccharidosis I (MPS I). Five MPS I stably engrafted kittens, transplanted with unfractionated bone marrow (6.3 × 107 to 1.1 × 109 nucleated bone marrow cells per kilogram) were monitored for 13–37 months post-engraftment. The tissue total glycosaminoglycan (GAG) content was reduced to normal levels in liver, spleen, kidney, heart muscle, lung, and thyroid. Aorta GAG content was between normal and affected levels. Treated cats had a significant decrease in the brain GAG levels relative to untreated MPS I cats and a paradoxical decrease relative to normal cats. The α-L-iduronidase (IDUA) activity in the livers and spleens of transplanted MPS I cats approached heterozygote levels. In kidney cortex, aorta, heart muscle, and cerebrum, there were decreases in GAG without significant increases in detectable IDUA activity. Treated animals had improved mobility and decreased radiographic signs of disease. However, significant pathology remained, especially in the cervical spine. Corneal clouding appeared improved in some animals. Immunohistochemical and biochemical analysis documented decreased central nervous system ganglioside storage. This large animal MPS I study will serve as a benchmark of future therapies designed to improve on BMT. PMID:17482862

  18. Allogeneic and Autologous Bone-Marrow Transplantation

    PubMed Central

    Deeg, H. Joachim

    1988-01-01

    The author of this paper presents an overview of the current status of bone marrow transplantation, including indications, pre-transplant considerations, the transplant procedure, acute and delayed transplant-related problems, results currently attainable, and a short discussion of possible future developments. PMID:21253121

  19. Prevention and Mitigation of Acute Death of Mice after Abdominal Irradiation by the Antioxidant N-Acetyl-cysteine (NAC)

    PubMed Central

    Jia, Dan; Koonce, Nathan A.; Griffin, Robert J.; Jackson, Cassie; Corry, Peter M.

    2010-01-01

    Gastrointestinal (GI) injury is a major cause of acute death after total-body exposure to large doses of ionizing radiation, but the cellular and molecular explanations for GI death remain dubious. To address this issue, we developed a murine abdominal irradiation model. Mice were irradiated with a single dose of X rays to the abdomen, treated with daily s.c. injection of N-acetyl-l-cysteine (NAC) or vehicle for 7 days starting either 4 h before or 2 h after irradiation, and monitored for up to 30 days. Separately, mice from each group were assayed 6 days after irradiation for bone marrow reactive oxygen species (ROS), ex vivo colony formation of bone marrow stromal cells, and histological changes in the duodenum. Irradiation of the abdomen caused dose-dependent weight loss and mortality. Radiation-induced acute death was preceded not only by a massive loss of duodenal villi but also, surprisingly, abscopal suppression of stromal cells and elevation of ROS in the nonirradiated bone marrow. NAC diminished these radiation-induced changes and improved 10- and 30-day survival rates to >50% compared with <5% in vehicle-treated controls. Our data establish a central role for abscopal stimulation of bone marrow ROS in acute death in mice after abdominal irradiation. PMID:20426657

  20. Comparison of bone marrow aspiration and bone marrow biopsy in neoplastic diseases.

    PubMed

    Hamid, G A; Hanbala, N

    2009-07-01

    Naturally trephine biopsies have definitive advantages over aspirates in case of dry tap bone marrow aspirates as a result of fibrosis or densely packed bone marrow by tumour cells and may be informative independent of cytology especially in bone marrow involvement by lymphomas and carcinomas. In this prospective descriptive study we aimed to compare between the bone marrow trephine biopsy (BMTB) and bone marrow aspirates (BMAs) regarding the detection rate of solid tumours, lymphoma and myeloma involvement of the bone marrow. The study was carried out in the department of pathology and Haematology-Oncology of Al-Gamhouria Teaching Hospital/Aden during the period between Jan 2005 to Dec 2005. A total of 32 patients with suspected or confirmed malignancy undergone both BMTB and BMA from the posterior superior iliac crest and both results were compared. We divided them into three groups: those with solid tumours (21) patients, lymphoma (7) patients and with MM (4) patients. Our results showed that BMA had a 47.6% sensitivity, 100.0% specificity, with positive predictive value (100%), and negative predictive value (50.0%). In solid tumours alone it had a sensitivity of (40.0%), 100% specificity, with positive predictive value (100%), and negative predictive value (64.7%). This gives the BMA a lower sensitivity in detecting solid tumour metastasis and lymphoma involvement in comparison to BMTB. In conclusion, any patient with suspected or confirmed cancer should undergo BMTB because of its high sensitivity compared to BMA. PMID:20194084

  1. Bone marrow: its contribution to heme catabolism.

    PubMed

    Mähönen, Y; Anttinen, M; Vuopio, P; Tenhunen, R

    1976-01-01

    Heme oxygenase (HO) and biliverdin reductase (BR), the two NADPH-dependent enzymes involved in the degradation of hemoglobin and its derivatives, were measured in bone marrow aspirates from 5 hematologically normal persons, 4 patients with chronic leucemia (CL), 11 patients with acute leucemia (AL), 8 patients with refractory sideroblastic anemia (RA), 7 patients with iron-deficiency anemia (IA), 5 patients with hemolytic anemia (HA), and 7 patients with secondary anemia (SA) to determine the enzymatic capacity of the bone marrow in different hematologic disorders for heme catabolism. HO activity in the bone marrow of normal persons was 0.42 +/- 0.28 (SD) nmoles bilirubin/10 mg protein/min; in CL, 2.15 +/- 1.34; in AL, 0.39 +/- 0.25; in RA, 0.58 +/- 0.37; in IA, 0.41 +/- 0.28; in HA, 2.56 +/- 1.40; and in SA, 1.72 +/- 1.06. BR activity, respectively, was in normal persons 8.7 +/- 2.4 (SD) nmoles bilirubin/10 mg protein/min; in CL, 13.6 +/- 9.1; in AL, 3.8 +/- 3.1 in RA, 5.1 +/- 2.7; in IA, 5.5 +/- 3.7; in HA, 17.0 +/- 7.2; and in SA, 10.5 +/- 4.2. On the basis of these findings it seems evident that both oxygenase and biliverdin reductase activities of the bone marrow are capable of adaptive regulation. The physiologic role of bone marrow in heme catabolism seems to be of significant importance.

  2. Bone marrow processing for transplantation using Cobe Spectra cell separator.

    PubMed

    Veljković, Dobrila; Nonković, Olivera Šerbić; Radonjić, Zorica; Kuzmanović, Miloš; Zečević, Zeljko

    2013-06-01

    Concentration of bone marrow aspirates is an important prerequisite prior to infusion of ABO incompatible allogeneic marrow and prior to cryopreservation and storage of autologous marrow. In this paper we present our experience in processing 15 harvested bone marrow for ABO incompatible allogeneic and autologous bone marrow (BM) transplantation using Cobe Spectra® cell separator. BM processing resulted in the median recovery of 91.5% CD34+ cells, erythrocyte depletion of 91% and volume reduction of 81%. BM processing using cell separator is safe and effective technique providing high rate of erythrocyte depletion and volume reduction, and acceptable recovery of the CD34+ cells.

  3. Enhanced hematopoietic recovery in irradiated mice pretreated with interleukin-1 (IL-1)2,3

    SciTech Connect

    Schwartz, G.N.; MacVittie, T.J.; Vigneulle, R.M.; Patchen, M.L.; Douches, S.D.

    1987-01-01

    Data in this report compare the number of colony-forming cells (CFC) in bone marrow from irradiated and pre-irradiated C57B1/6J mice injected with saline or recombinant interleukin-1-alpha (rIL-1). Eight to 12 days after sublethal or lethal irradiation, there were more CFU-E (colony-forming units-erythroid), BFU-E (burst-forming units erythroid), GM-CFC (granulocyte-macrophage colony-forming cells), and 8 CFU-S (colony-forming units-spleen) in bone marrow from rIL-1 injected mice than from saline injected mice. Prior to irradiation, there was no increase in number of CFC in bone marrow from rIL-1 injected mice. However, as determined by sensitivity to hydroxyurea, rIL-1 injection stimulated GM-CFC into cell cycle. These results demonstrate that rIL-1 injection increases the number of CFC that survive in irradiated mice and may be a consequence of the stimulation of CFC into cell cycle prior to irradiation.

  4. Effect of low frequency low energy pulsing electromagnetic field (PEMF) on X-ray-irradiated mice

    SciTech Connect

    Cadossi, R.; Hentz, V.R.; Kipp, J.; Eiverson, R.; Ceccherelli, G.; Zucchini, P.; Emilia, G.; Torelli, G.; Franceschi, C.; Cossarizza, A.

    1989-02-01

    C3H/Km flora-defined mice were used to investigate the effect of exposure to pulsing electromagnetic field (PEMF) after total body x-ray irradiation. Prolonged exposure to PEMF had no effect on normal nonirradiated mice. When mice irradiated with different doses of x-ray (8.5 Gy, 6.8 Gy, and 6.3 Gy) were exposed to PEMF 24 h a day, we observed a more rapid decline in white blood cells (WBC) in the peripheral blood of mice exposed to PEMF at all the x-ray dosages used. No effect of exposure to PEMF was observed on the survival of the mice irradiated with 6.3 Gy and 8.5 Gy; in mice irradiated with 6.8 Gy, 2 out of 12 survived when exposed to PEMF as compared to 10 out of 12 control mice that were irradiated only. At day 4 after irradiation autoradiographic studies performed on bone marrow and spleen of 8.5-Gy-irradiated mice showed no difference between controls and mice exposed to PEMF, whereas on 6.8-Gy mice the bone marrow labeling index was lower in mice exposed to PEMF. In mice irradiated to 6.3 Gy we observed that the recovery of WBC in the peripheral blood was slowed in mice exposed to PEMF and their body weight was significantly lower than in control mice that were irradiated only. The spleen and bone marrow of the mice irradiated to 6.3 Gy and sacrificed at days 4, 14, 20, and 25 after irradiation were analyzed by autoradiography to evaluate the labeling index. Half of the spleens from mice sacrificed at day 25 after irradiation were used to evaluate the RNA content. Autoradiography showed that in the spleen and bone marrow of control mice, there were more cells labeled with (3H)thymidine at days 4 and 14 and less at days 20 and 25 after irradiation in comparison with mice irradiated and exposed to PEMF.

  5. Hemopoietic stem cell transplantation using mouse bone marrow and spleen cells fractionated by lectins.

    PubMed Central

    Reisner, Y; Itzicovitch, L; Meshorer, A; Sharon, N

    1978-01-01

    Mouse bone marrow and spleen cells were fractionated with the aid of soybean agglutinin and peanut agglutinin. A test for spleen colony-forming units in the isolated fractions showed that the hemopoietic stem cells are agglutinated by both of these lectins. The capacity of the agglutinated fractions to reconstitute lethally irradiated allogeneic mice was investigated. A sequential fractionation of splenocytes from SWR donors by soybean agglutinin and peanut agglutinin, or a single fractionation by soybean agglutinin of splenocytes from BALB/c donors, afforded a cell fraction that successfully reconstituted lethally irradiated (BALB/c X C57BL/6)F1 mice, without complications due to graft-versus-host reaction. Images PMID:26916

  6. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    PubMed

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  7. MR imaging of therapy-induced changes of bone marrow

    PubMed Central

    Henning, Tobias; Link, Thomas M.

    2006-01-01

    MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment. PMID:17021706

  8. Successful liver allografts in mice by combination with allogeneic bone marrow transplantation

    SciTech Connect

    Nakamura, T.; Good, R.A.; Yasumizu, R.; Inoue, S.; Oo, M.M.; Hamashima, Y.; Ikehara, S.

    1986-06-01

    Successful liver allografts were established by combination with allogeneic bone marrow transplantation. When liver tissue of BALB/c (H-2d) or C57BL/6J (H-2b) mice was minced and grafted under the kidney capsules of C3H/HeN (H-2k) mice, it was rejected. However, when C3H/HeN mice were irradiated and reconstituted with T-cell-depleted BALB/c or BALB/c nu/nu bone marrow cells, or with fetal liver cells of BALB/c mice, they accepted both donor (stem-cell)-type (BALB/c) and host (thymus)-type (C3H/HeN) liver tissue. Assays for both mixed-lymphocyte reaction and induction of cytotoxic T lymphocytes revealed that the newly developed T cells were tolerant of both donor (stem-cell)-type and host (thymus)-type major histocompatibility complex determinants. We propose that liver allografts combined with bone marrow transplantation should be considered as a viable therapy for patients with liver disease such as liver cirrhosis and hepatoma.

  9. Induction of erythropoietin responsiveness in vitro by a distinct population of bone marrow cells.

    PubMed

    Wagemaker, G; Peters, M F; Bol, S J

    1979-09-01

    Bone marrow contains a small population of primitive erythroid progenitor cells which can be detected by their capacity to form large numbers of erythroid progeny in viscous cultures containing erythropoietin (EP). These cells have been termed erythroid 'burst-forming units' (BFUe). The present study demonstrates that expression of the erythroid differentiation potential of BFUe requires the presence of an activity additional to EP. This activity has been designated as BFA (burst feeder activity). It is shown that the number of BFUe detected and their apparent sensitivity to EP are directly related to the BFA concentration of the cultures. BFA was found to be associated with a population of bone marrow cells of high buoyant density and small volume, which are sensitive to irradiation. The radiation dose-effect curve provided strong evidence that bone marrow BFA is independent of cell proliferation; this was supported by showing that BFA is unaffected by in vivo treatment with hydroxyurea. The findings are compatible with a two-step regulation model for erythroid differentiation in which BFA-induced progeny of BFUe acquire sensitivity to EP. PMID:316359

  10. [Protective effects of WR2721 on early bone marrow hematopoietic function in mice exposed to 6.5 Gy of (60)Co γ-rays].

    PubMed

    Deng, Zi-Liang; Zhang, Liu-Zhen; Cong, Yue; Liu, Xiao-Lan; Yu, Zu-Ying; Shan, Ya-Jun; Cui, Yu; Wang, Li-Mei; Xing, Shuang; Cong, Yu-Wen; Luo, Qing-Liang

    2014-06-01

    The aim of this study was to investigate the effect of WR2721(amifostine) against bone marrow hematopoietic damage of mice exposed to 6.5 Gy of (60)Co-γ ray. A total of 60 C57/BL6J mice was divided into 3 groups:normal group (mice were injected with physiological salt solution), irradiation group (mice were injected with physiologic salt solution before irradiation) and WR2721 group (mice were injected with WR2721 before irradiation). The WBC, neutrophil (Neut), Plt and RBC levels in peripheral blood of 3 group mice were counted within 60 days after irradiation; the bone marrow nuclear cells (BMNC) were counted at 2 and 24 hours after irradiation; the hematopoietic stem/progenitor cell (LK/LSK) level and colony formation capability were detected by flow cytometry at 2 and 24 hours after irradiation. The results indicated that the counts of WBC and neut at 4 and 18 days, Plt at 7-18 days and RBC at 10-30 day after irradiation in WR2721 group were higher than those in irradiation group (P < 0.05); the BMNC, LSK and LK levels obviously increased at 24 hours after irradiation (P < 0.05), the CFU-GEMM, CFU-GM, CFU-MK BFU-E and CFU-E all significantly increased at 2 and 24 hours after irradiation (P < 0.01), as compared with irradiation group. It is concluded that WR2721 can effectively alleviate early hematopoietic damage and promote the fast recovery of peripheral blood cells in mice exposed to γ-ray, suggesting that the WR2721 has significant radioprotective effect on hematopoietic system.

  11. Bismuth 213-labeled anti-CD45 radioimmunoconjugate to condition dogs for nonmyeloablative allogeneic marrow grafts

    SciTech Connect

    Sandmaier, B M.; Bethge, W A.; Wilbur, D. Scott; Hamlin, Donald K.; Santos, E B.; Brechbiel, M W.; Fisher, Darrell R. ); Storb, R.

    2002-01-01

    To lower treatment-related mortality and toxicity of conventional marrow transplantation, a nonmyeloablative regimen using 200 cGy total-body irradiation (TBI) and mycophenolate mofetil (MMF) combined with cyclosporine (CSP) for postgrafting immunosuppression was developed. To circumvent possible toxic effects of external- beam gamma irradiation, strategies for targeted radiation therapy were investigated. We tested whether the short-lived (46 minutes) alpha-emitter Bi-213 conjugated to an anti-CD45 monoclonal antibody (mAb) could replace 200 cGy TBI and selectively target hematopoietic tissues in a canine model of nonmyeloablative DLA-identical marrow transplantation. Biodistribution studies using iodine 123-labeled anti-CD45 mAb showed uptake in blood, marrow, lymph nodes, spleen, and liver. In a dose-escalation study, 7 dogs treated with the Bi-213-anti-CD45 conjugate (Bi-213 dose, 0.1-5.9 mCi/kg[3.7-218 MBq/kg]) without marrow grafts had no toxic effects other than a mild, reversible suppression of blood counts. On the basis of these studies, 3 dogs were treated with 0.5 mg/kg Bi-213-labeled anti-CD45 mAb (Bi-213 doses, 3.6, 4.6, and 8.8 mCi/kg[133, 170, and 326 MBq/kg]) given in 6 injections 3 and 2 days before grafting of marrow from DLA-identical littermates. The dogs also received MMF (10 mg/kg subcutaneously twice daily the day of transplantation until day 27 afterward) and CSP (15 mg/kg orally twice daily the day before transplantation until 35 days afterward). Therapy was well tolerated except for transient elevations in levels of transaminases in 3 dogs, followed by, in one dog, ascites. All dogs achieved prompt engraftment and stable mixed hematopoietic chimerism, with donor contributions ranging from 30% to 70% after more than 27 weeks of follow-up. These results form the basis for additional studies in animals and the design of clinical trials using Bi-213 as a nonmyeloablative conditioning regimen with minimal toxicity.

  12. Magnetic resonance imaging of the spinal marrow: Basic understanding of the normal marrow pattern and its variant

    PubMed Central

    Nouh, Mohamed Ragab; Eid, Ahmed Fathi

    2015-01-01

    For now, magnetic resonance (MR) is the best noninvasive imaging modality to evaluate vertebral bone marrow thanks to its inherent soft-tissue contrast and non-ionizing nature. A daily challenging scenario for every radiologist interpreting MR of the vertebral column is discerning the diseased from normal marrow. This requires the radiologist to be acquainted with the used MR techniques to judge the spinal marrow as well as its normal MR variants. Conventional sequences used basically to image marrow include T1W, fat-suppressed T2W and short tau inversion recovery (STIR) imaging provides gross morphological data. Interestingly, using non-routine MR sequences; such as opposed phase, diffusion weighted, MR spectroscopy and contrasted-enhanced imaging; may elucidate the nature of bone marrow heterogeneities; by inferring cellular and chemical composition; and adding new functional prospects. Recalling the normal composition of bone marrow elements and the physiologic processes of spinal marrow conversion and reconversion eases basic understanding of spinal marrow imaging. Additionally, orientation with some common variants seen during spinal marrow MR imaging as hemangiomas and bone islands is a must. Moreover, awareness of the age-associated bone marrow changes as well as changes accompanying different variations of the subject’s health state is essential for radiologists to avoid overrating normal MR marrow patterns as pathologic states and metigate unnecessary further work-up. PMID:26753060

  13. Magnetic resonance imaging of the spinal marrow: Basic understanding of the normal marrow pattern and its variant.

    PubMed

    Nouh, Mohamed Ragab; Eid, Ahmed Fathi

    2015-12-28

    For now, magnetic resonance (MR) is the best noninvasive imaging modality to evaluate vertebral bone marrow thanks to its inherent soft-tissue contrast and non-ionizing nature. A daily challenging scenario for every radiologist interpreting MR of the vertebral column is discerning the diseased from normal marrow. This requires the radiologist to be acquainted with the used MR techniques to judge the spinal marrow as well as its normal MR variants. Conventional sequences used basically to image marrow include T1W, fat-suppressed T2W and short tau inversion recovery (STIR) imaging provides gross morphological data. Interestingly, using non-routine MR sequences; such as opposed phase, diffusion weighted, MR spectroscopy and contrasted-enhanced imaging; may elucidate the nature of bone marrow heterogeneities; by inferring cellular and chemical composition; and adding new functional prospects. Recalling the normal composition of bone marrow elements and the physiologic processes of spinal marrow conversion and reconversion eases basic understanding of spinal marrow imaging. Additionally, orientation with some common variants seen during spinal marrow MR imaging as hemangiomas and bone islands is a must. Moreover, awareness of the age-associated bone marrow changes as well as changes accompanying different variations of the subject's health state is essential for radiologists to avoid overrating normal MR marrow patterns as pathologic states and metigate unnecessary further work-up. PMID:26753060

  14. Multiple cotton wool spots following bone marrow transplantation for treatment of acute lymphatic leukaemia.

    PubMed Central

    Gloor, B; Gratwohl, A; Hahn, H; Kretzschmar, S; Robert, Y; Speck, B; Daicker, B

    1985-01-01

    Three patients with acute lymphatic leukaemia developed visual impairment due to occlusion of small retinal vessels with multiple cotton wool spots after treatment which included whole body and skull irradiation followed by bone marrow transplantation and cyclosporin A. Withdrawal of cyclosporin A and treatment with corticosteroids was followed by recovery of visual acuity. This retinopathy and the retinal changes seen in the immunodeficiency syndrome are thought to be closely related. The possible role of cyclosporin A is discussed, though cotton wool spots and retinal haemorrhages have never been described in renal transplant patients during treatment with this drug. Withdrawal of cyclosporin A, which is highly effective in preventing graft-versus-host disease, can be fatal. Irradiation of the skull prior to bone marrow transplantation and intrathecal administration of methotrexate may be the most important factors causing the retinal ischaemic signs described here. The inclusion of an ophthalmologist in the team monitoring transplant patients would lead to increased documentation and a better understanding of this disease. Images PMID:3888252

  15. Treatment of osteoradionecrosis of mandible with bone marrow concentrate and with dental pulp stem cells.

    PubMed

    Manimaran, K; Sankaranarayanan, S; Ravi, V R; Elangovan, S; Chandramohan, M; Perumal, S Mahendra

    2014-01-01

    Osteoradionecrosis (ORN) is a noninfectious, necrotic condition of the bone occurring as a complication of radiotherapy. Most cases occur following trauma or surgical manipulation of the irradiated site. Mandible is the most common bone to be affected following head and neck irradiation. The aim was to develop a successful therapeutic approach for ORN. A spectrum of treatment modalities is practiced for ORN with variable success rate that includes simple irrigation of the affected bone to the partial or complete resection of the jaw bone. In this paper, we present two cases which had successful therapeutic approach for ORN of mandible with autologous bone marrow concentrate stem cells and allogeneic dental pulp stem cells (DPSC) with platelet rich plasma (PRP) following failure of conventional methods. Autologous bone marrow aspirate concentrate (BMAC) was injected around the socket and into the periosteum for one case, and DPSC were mixed with tricalcium phosphate and inserted at the site of the defect in one case. The patient treated with BMAC remained asymptomatic and complete bone remodeling was noticed after 1 year. The extraoral sinus was excised, and healing was uneventful without recurrence in the patient treated with allogeneic DPSC and PRP. Periodic panoramic radiographs revealed an appreciable bone formation from the 2(nd) month onward. We have successfully treated two cases of ORN with BMAC and DPSC, respectively.

  16. [Bone marrow autograft and cancer in children].

    PubMed

    Gentet, J C; Plouvier, E; Coze, C

    1993-11-01

    Since about 15 years intensive chemotherapy followed by autologous bone marrow transplantation has been used on the basis of "dose-response" principle to treat certain children with tumours of sombre prognosis. At present, the main indications for this method are metastatif neuroblastoma in less than one-year old children, non-Hodgkin's malignant lymphomas in partial remission or relapse, refractory or recurrent Hodgkin's disease and some peculiar forms of Wilms' tumour. In other tumours, such as rhabdomyosarcoma, Ewing's sarcoma or brain tumours, the indications have not yet been clearly determined. The treatment must be administered as part of multicentre French or European trials conducted in specialized centres. The practice and application of autologous bone marrow transplantation are being revolutionized by the availability of haematopoietic growth factors and the development of the peripheral blood stem cells reinjection technique. Genic therapy will soon have major repercussions in this field.

  17. [Bone marrow involvement and eosinophilia in paracoccidioidomycosis].

    PubMed

    Shikanai-Yasuda, M A; Higaki, Y; Uip, D E; Mori, N S; Del Negro, G; Melo, N T; Hutzler, R U; Amato Neto, V

    1992-01-01

    The authors described three acute paracoccidioidomycosis patients with bone marrow involvement. P. brasiliensis yeast forms were observed in bone marrow smears of all them, and in one case, culture also revealed fungus growth. The mononuclear phagocytic system involvement, the blood eosinophilia and the negative skin hypersensibility responses were emphasized in all of them, as well as the severity of the disease in one case, with disseminated bone lesions and 20.260 eosinophils/mm3 in peripheral blood. The authors discuss the possible role of eosinophil in the host-parasite interaction in paracoccidioidomycosis, suggesting that TH 2 subpopulation activation and increased IL 5 and GM-CSF secretions may be responsible by eosinophilia in the most severe case. PMID:1340036

  18. Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury.

    PubMed

    Demirayak, Bengi; Yüksel, Nurşen; Çelik, Onur Sinan; Subaşı, Cansu; Duruksu, Gökhan; Unal, Z Seda; Yıldız, Demir Kürşat; Karaöz, Erdal

    2016-10-01

    In the present study, we investigate and compare the efficacy of bone marrow- and adipose tissue-derived mesenchymal stem cell (MSCs) in corneal wound healing. A penetrating injury was created in the right corneas of Wistar rats (n = 40). Ten microliters of phosphate-buffered solution (PBS) containing 2 × 10(5) green fluorescent protein (GFP) labeled bone-marrow-derived MSCs to group 1 (n = 15), 10 μl of PBS containing 2 × 10(5) GFP-labeled adipose-tissue-derived MSCs to group 2 (n = 15), 10 μl PBS was injected into anterior chamber in group 3 (n = 10, control). Corneal opacity scoring, in vivo confocal microscopy, and histopathological evaluation were done at the end of 8 weeks. Immunofluorescence sections were evaluated to detect transplanted cells. Immune staining was performed to measure the expression levels of keratocan, aldehyde dehydrogenase (ALDH) and CD34. The gene expression levels of tumor necrosis factor (TNF-α), the interleukin 6 receptor (IL-6R), interleukin 12b (IL-12b), and transforming growth factor beta (TGF-β1) was measured on corneas. The establishment of stem cells in the corneas of the transplanted groups was confirmed by immunofluorescence staining. The expression of keratocan, ALDH, and CD34 increased in the transplanted groups (p < 0.05). The density of keratocytes increased significantly in both transplanted groups according to the in vivo confocal microscopy data (p < 0.05). The expression of TNF-α, IL-6R, and IL-12b decreased significantly in the transplanted groups (p < 0.05). Based on our findings, we consider that allogeneic stem cells facilitate the regeneration of corneal stroma and can be a cell source for stromal repopulation in diseased cornea.

  19. Melanin-Covered Nanoparticles for Protection of Bone Marrow During Radiation Therapy of Cancer

    SciTech Connect

    Schweitzer, Andrew D.; Revskaya, Ekaterina; Chu, Peter; Pazo, Valeria; Friedman, Matthew; Nosanchuk, Joshua D.; Cahill, Sean; Frases, Susana; Casadevall, Arturo; Dadachova, Ekaterina

    2010-12-01

    Purpose: Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's 'self-sieving' ability, protecting it against ionizing radiation. Methods and Materials: The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of {sup 188}Re-labeled 6D2 melanin-binding antibody. Results: Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. Conclusions: MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation

  20. MELANIN-COVERED NANOPARTICLES FOR PROTECTION OF BONE MARROW DURING RADIATION THERAPY OF CANCER

    PubMed Central

    Schweitzer, Andrew D.; Revskaya, Ekaterina; Chu, Peter; Pazo, Valeria; Friedman, Matthew; Nosanchuk, Joshua D.; Cahill, Sean; Frases, Susana; Casadevall, Arturo; Dadachova, Ekaterina

    2010-01-01

    Purpose Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's “self-sieving” ability, protecting it against ionizing radiation. Methods and Materials The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor–bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of 188Re-labeled 6D2 melanin-binding antibody. Results Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. Conclusions MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation

  1. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  2. Natural Killer Cells-Produced IFN-γ Improves Bone Marrow-Derived Hepatocytes Regeneration in Murine Liver Failure Model

    PubMed Central

    Li, Lu; Zeng, Zhutian; Qi, Ziping; Wang, Xin; Gao, Xiang; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2015-01-01

    Bone-marrow transplantation (BMT) can repopulate the liver through BM-derived hepatocyte (BMDH) generation, although the underlying mechanism remains unclear. Using fumarylacetoacetate hydrolase–deficient (Fah−/−) mice as a liver-failure model, we confirmed that BMDHs were generated by fusion of BM-derived CD11b+F4/80+myelomonocytes with resident Fah−/− hepatocytes. Hepatic NK cells became activated during BMDH generation and were the major IFN-γ producers. Indeed, both NK cells and IFN-γ were required for BMDH generation since WT, but not NK-, IFN-γ–, or IFN-γR1–deficient BM transplantation successfully generated BMDHs and rescued survival in Fah−/− hosts. BM-derived myelomonocytes were determined to be the IFN-γ–responding cells. The IFN-γ–IFN-γR interaction contributed to the myelomonocyte–hepatocyte fusion process, as most of the CD11b+ BMDHs in mixed BM chimeric Fah−/− hosts transplanted with a 1:1 ratio of CD45.1+ WT and CD45.2+ Ifngr1−/− BM cells were of CD45.1+ WT origin. Confirming these findings in vitro, IFN-γ dose-dependently promoted the fusion of GFP+ myelomonocytes with Fah−/− hepatocytes due to a direct effect on myelomonocytes; similar results were observed using activated NK cells. In conclusion, BMDH generation requires NK cells to facilitate myelomonocyte–hepatocyte fusion in an IFN-γ–dependent manner, providing new insights for treating severe liver failure. PMID:26345133

  3. Knee cartilage defect: marrow stimulating techniques.

    PubMed

    Mirza, M Zain; Swenson, Richard D; Lynch, Scott A

    2015-12-01

    Painful chondral defects of the knee are very difficult problems. The incidence of these lesions in the general population is not known since there is likely a high rate of asymptomatic lesions. The rate of lesions found during arthroscopic exam is highly variable, with reports ranging from 11 to 72 % Aroen (Aroen Am J Sports Med 32: 211-5, 2004); Curl(Arthroscopy13: 456-60, 1997); Figueroa(Arthroscopy 23(3):312-5, 2007;); Hjelle(Arthroscopy 18: 730-4, 2002). Examples of current attempts at cartilage restoration include marrow stimulating techniques, ostochondral autografts, osteochondral allografts, and autologous chondrocyte transplantation. Current research in marrow stimulating techniques has been focused on enhancing and guiding the biology of microfracture and other traditional techniques. Modern advances in stem cell biology and biotechnology have provided many avenues for exploration. The purpose of this work is to review current techniques in marrow stimulating techniques as it relates to chondral damage of the knee. PMID:26411978

  4. Bone marrow transplantation in sickle cell anaemia.

    PubMed Central

    Vermylen, C; Cornu, G; Philippe, M; Ninane, J; Borja, A; Latinne, D; Ferrant, A; Michaux, J L; Sokal, G

    1991-01-01

    Sickle cell anaemia is still responsible for severe crippling and death in young patients living in developing countries. Apart from prophylaxis and treatment of infections, no active treatment can be safely proposed in such areas of the world. Therefore a bone marrow transplantation was performed in 12 patients staying in Belgium and planning to return to Africa. Twelve patients, aged between 11 months and 23 years (median 4 years), underwent a HLA identical bone marrow transplantation. The conditioning regimen included oral busulphan for four consecutive days (4 mg/kg) followed by four days of intravenous cyclophosphamide (50 mg/kg). In 10 patients the engraftment was rapid and sustained. A further patient suffered transient red cell hypoplasia and another underwent a second bone marrow transplantation from the same donor at day 62 because of graft rejection. All patients are alive and well with a follow up ranging from 9-51 months (median 27 months). In all cases a complete cessation of vaso-occlusive episodes and haemolysis was observed as was a change in the haemoglobin pattern in accordance with the donor's electrophoretic pattern. PMID:1953001

  5. Long-term malignant hematopoiesis in human acute leukemia bone marrow biopsies implanted in severe combined immunodeficiency mice.

    PubMed

    Legrand, F; Khazaal, I; Peuchmaur, M; Fenneteau, O; Cavé, H; Rohrlich, P; Vilmer, E; Péault, B

    1997-09-01

    Bone marrow (BM) trephine biopsies from 15 pediatric patients with acute lymphoid (ALL) or myeloid (AML) leukemia were engrafted subcutaneously into severe combined immunodeficiency (SCID) mice conditioned by 200 cGy total-body irradiation. Implants were harvested 5 to 19 weeks later for histologic, cytologic, and/or flow cytometric analysis of the residing marrow. Eighteen of 19 grafts contained viable human leukemic cells to various extents as assessed by one or more of these methods. Thirteen of 14 implants analyzed by flow cytometry included high numbers of tumor cells, accounting for 85% to 100% of the total nucleated cells in seven of them. Histologically, engrafted marrow samples exhibited areas of blastic infiltration, and tumor-specific gene rearrangements were retrieved in long-term engrafted biopsies. Importantly, engrafted mice remained perfectly healthy even 5 months posttransplantation, and no human tumor cell dissemination was detected in the hematolymphoid and nonhematopoietic tissues at the time of autopsy. These results demonstrate that human malignant hematopoiesis can be sustained long-term in its original, intact marrow stromal environment transplanted in appropriately conditioned immunodeficient mice.

  6. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    SciTech Connect

    Taguchi, Kazuhiro . E-mail: s3061@nms.ac.jp; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-05-27

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.

  7. Role of regulatory T cells in transferable immunological tolerance to bone marrow donor in murine mixed chimerism model.

    PubMed

    Yoon, Il-Hee; Kim, Yong-Hee; Kim, You-sun; Shin, Jun-Seop; Park, Chung-Gyu

    2013-12-01

    Constructing a bone marrow chimera prior to graft transplantation can induce donor-specific immune tolerance. Mixed chimerism containing hematopoietic cells of both recipient- and donor-origin has advantages attributed from low dose of total body irradiation. In this study, we explored the mechanism of mixed chimerism supplemented with depletion of Natural Killer cells. Mixed chimerism with C57BL/6 bone marrow cells was induced in recipient BALB/c mice which were given 450 cGy of γ-ray irradiation (n = 16). As revealed by reduced proliferation and cytokine production in mixed leukocyte reaction and ELISpot assay (24.6 vs 265.5), the allo-immune response to bone marrow donor was reduced. Furthermore, the induction of transferable immunological tolerance was confirmed by adoptive transfer and subsequent acceptance of C57BL/6 skin graft (n = 4). CD4(+)FoxP3(+) regulatory T cells were increased in the recipient compartment of the mixed chimera (19.2% → 33.8%). This suggests that regulatory T cells may be therapeutically used for the induction of graft-specific tolerance by mixed chimerism.

  8. DNA content determination of micronucleated polychromatic erythrocytes induced by clastogens and spindle poisons in mouse bone marrow and peripheral blood

    SciTech Connect

    Grawe, J.; Amneus, H. Uppsala Univ. ); Zetterberg, G. )

    1993-01-01

    The frequencies and DNA distributions of micronuclei in polychromatic erythrocytes from the bone marrow and peripheral blood of mice after four different treatments were determined by flow cytometry. Polychromatic erthrocytes were detected using the fluorescent RNA stain thiazole orange, while micronuclei were detected with the DNA stain Hoechst 33342. The treatments were X-irradiation (1 Gy), cyclophosphamide (30 mg/kg), vincristine sulfphate (0.08 mg/kg), and cochicine (1 mg/kg). All treatments showed increased frequencies of micronucleated polychromatic erythrocytes at 30h after treatment in the bone marrow (colchicine 50h) and at 50h in the peripheral blood. The clostogenic agents X-irradiation and cyclophosphamide and the spindle poisons vincristine sulphate and cochicine could be grouped according to the fluorescent characteristics of the induced micronuclei as well as the relative frequency of small (0.5-2% if the diploid G1 DNA content) and large (2-10%) micronuclei. In the peripheral blood the relative frequency of large micronuclei was lower than in the bone marrow, indicating that they were partly eliminated before entrance into the peripheral circulation. The nature of presumed micronuclei was verified by sorting. The potential of this approach to give information on the mechanism of induction of micronuclei is discussed.

  9. Detection of irradiated liquor

    NASA Astrophysics Data System (ADS)

    Shengchu, Qi; Jilan, Wu; Rongyao, Yuan

    D-2,3-butanediol is formed by irradiation processes in irradiated liquors. This radiolytic product is not formed in unirradiated liquors and its presence can therefore be used to identify whether a liquor has been irradiated or not. The relation meso/dl≈1 for 2,3-butanediol and the amount present in irradiated liquors may therefore be used as an indication of the dose used in the irradiation.

  10. Chromosome aberrations in peripheral lymphocytes and radiation dose to active bone marrow in patients treated for cancer of the cervix

    SciTech Connect

    Kleinerman, R.A.; Littlefield, L.G.; Tarone, R.E.; Machado, S.G.; Blettner, M.; Peters, L.J.; Boice, J.D. Jr. )

    1989-07-01

    An international study of cervical cancer patients reported a doubling of the risk for leukemia following radiotherapy. To evaluate the extent of residual chromosome damage in circulating T-cell lymphocytes in this population, approximately 200 metaphases were examined from each of 96 irradiated and 26 nonirradiated cervical cancer patients treated more than 17 years ago (average 23 years). Radiation dose averaged over the total red bone marrow was estimated to be 8.1 Gy. The type and frequency of stable and unstable chromosome aberrations were quantified in 24,117 metaphases. Unstable aberrations did not differ significantly between irradiated and nonirradiated patients (P greater than 0.5). Stable aberrations (i.e., translocations, inversions, or chromosomes with deleted segments), however, were significantly higher among irradiated (2.8 per 100 cells) compared to nonirradiated (0.7 per 100 cells) women (P less than 10(4)). The frequency of these stable aberrations was found to increase significantly with increasing dose to the bone marrow. These data indicate that a direct relationship between radiation dose and extent of damage to somatic cells persists in populations and can be detected many years after partial-body radiation exposure. The stable aberration rate in irradiated cervical cancer patients was 50 to 75% lower than those observed 25 years or more after radiation exposure in atomic bomb survivors and in ankylosing spondylitis patients treated with radiotherapy. The average marrow dose was only 1 Gy in the examined atomic bomb survivors and 3.5 Gy in the ankylosing spondylitis patients. It appears, then, that a very high dose delivered to the pelvic cavity in fractionated doses resulted in far fewer persistent stable aberrations than lower doses delivered either in acute whole-body exposure or in fractionated doses to the spinal column and sacroiliac joints.

  11. β-Glucan enhances complement-mediated hematopoietic recovery after bone marrow injury

    PubMed Central

    Cramer, Daniel E.; Allendorf, Daniel J.; Baran, Jarek T.; Hansen, Richard; Marroquin, Jose; Li, Bing; Ratajczak, Janina; Ratajczak, Mariusz Z.; Yan, Jun

    2006-01-01

    Myelotoxic injury in the bone marrow (BM) as a consequence of total body irradiation (TBI) or granulocyte colony-stimulating factor (G-CSF) mobilization results in the deposition of iC3b on BM stroma (stroma-iC3b). In the present study, we have examined how stroma-iC3b interacts with hematopoietic progenitor cells (HPCs) and the role of complement (C) and complement receptor 3 (CR3) in BM injury/repair. We demonstrate here that stroma-iC3b tethers HPCs via the inserted (I) domain of HPC complement receptor 3 (CR3, CD11b/CD18, Mac-1). Following irradiation, stroma-iC3b was observed in the presence of purified IgM and normal mouse serum (NMS), but not serum from Rag-2-/- mice, implicating a role for antibody (Ab) and the classic pathway of C activation. Furthermore, a novel role for soluble yeast β-glucan, a ligand for the CR3 lectin-like domain (LLD), in the priming of CR3+ HPC is suggested. Soluble yeast β-glucan could enhance the proliferation of tethered HPCs, promote leukocyte recovery following sublethal irradiation, and increase the survival of lethally irradiated animals following allogeneic HPC transplantation in a CR3-dependent manner. Taken together, these observations suggest a novel role for C, CR3, and β-glucan in the restoration of hematopoiesis following injury. (Blood. 2006;107:835-840) PMID:16179370

  12. Mechanisms of dengue virus-induced bone marrow suppression.

    PubMed

    La Russa, V F; Innis, B L

    1995-03-01

    Infection with many flaviviruses is associated with transient suppression of haematopoiesis. Of the flaviviruses of man, none are more accessible to clinical and laboratory study than dengue. Consequently, the clinical syndrome of dengue-associated bone marrow suppression has been well documented. A review of experimental dengue infections of volunteers and histopathological studies of bone marrow from patients with severe dengue virus infection suggests that marrow suppression evolves rapidly through several phases: (1) onset of marrow suppression within 3-4 days of infection; (2) onset of host inflammatory responses in the marrow and of fever shortly thereafter; (3) occurrence of a neutrophil nadir on the fourth to fifth day after onset of fever; (4) almost simultaneously, immune activation sufficient to neutralize viraemia and accelerate elimination of infected cells; (5) remission of symptoms; and (6) resolution of cytopenias. Clinical observations and experimental data bear on possible mechanisms of dengue virus-mediated marrow suppression. Work from the authors' laboratory in which long-term bone marrow cultures were used to investigate interactions between dengue virus and bone marrow cells (stromal elements and haematopoietic progenitors) is also reviewed. Long-term marrow culture (LTMC) was a useful experimental system. In vitro, early blast cells as well as the more differentiated haematopoietic elements were abortively infected, killed and eliminated by phagocytosis by specialized marrow macrophages called dendritic cells. Moreover, the ARC from stroma rather than haematopoietic precursors were productively infected. When ARC were infected, stroma failed to support haematopoiesis. Cytokine production by virus-infected stromal cells was altered. A hypothesis is proposed to account for dengue virus-induced marrow suppression. Down-regulation of haematopoiesis is probably a protective mechanism of the microenvironment that limits injury to the marrow stem

  13. Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines.

    PubMed

    Kollmann, T R; Kim, A; Zhuang, X; Hachamovitch, M; Goldstein, H

    1994-08-16

    Investigation of human hematopoietic maturation has been hampered by the lack of in vivo models. Although engraftment of irradiated C.B-17 scid/scid (SCID) mice with human progenitor cells occurred after infusion with human pediatric bone marrow cells, significant engraftment of the mouse bone marrow with human cells was dependent upon continuous treatment with exogenous human cytokines. Furthermore, despite cytokine treatment, only minimal peripheral engraftment of these mice with human cells was observed. In the present study, after infusion of irradiated SCID mice with pre-cultured human fetal bone marrow cells (BM-SCID-hu mice), their bone marrow became significantly engrafted with human precursor cells and their peripheral lymphoid compartment became populated with human B cells and monocytes independently of the administration of extraneous human cytokines. Examination of the bone marrow of the BM-SCID-hu mice for human cytokine mRNA gene expression demonstrated human leukemia inhibitory factor mRNA and interleukin 7 mRNA in nine of nine BM-SCID-hu mice and macrophage-colony-stimulating factor mRNA in seven of eight BM-SCID-hu mice. This was an intriguing observation because these cytokines regulate different stages of human hematopoiesis. Since engraftment occurs in the absence of exogenous cytokine treatment, the BM-SCID-hu mouse model described should provide a useful in vivo system for studying factors important in the maturation of human myeloid and lymphoid cells in the bone marrow and the behavior of the mature human cells after dissemination into the peripheral lymphoid tissue.

  14. Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines.

    PubMed Central

    Kollmann, T R; Kim, A; Zhuang, X; Hachamovitch, M; Goldstein, H

    1994-01-01

    Investigation of human hematopoietic maturation has been hampered by the lack of in vivo models. Although engraftment of irradiated C.B-17 scid/scid (SCID) mice with human progenitor cells occurred after infusion with human pediatric bone marrow cells, significant engraftment of the mouse bone marrow with human cells was dependent upon continuous treatment with exogenous human cytokines. Furthermore, despite cytokine treatment, only minimal peripheral engraftment of these mice with human cells was observed. In the present study, after infusion of irradiated SCID mice with pre-cultured human fetal bone marrow cells (BM-SCID-hu mice), their bone marrow became significantly engrafted with human precursor cells and their peripheral lymphoid compartment became populated with human B cells and monocytes independently of the administration of extraneous human cytokines. Examination of the bone marrow of the BM-SCID-hu mice for human cytokine mRNA gene expression demonstrated human leukemia inhibitory factor mRNA and interleukin 7 mRNA in nine of nine BM-SCID-hu mice and macrophage-colony-stimulating factor mRNA in seven of eight BM-SCID-hu mice. This was an intriguing observation because these cytokines regulate different stages of human hematopoiesis. Since engraftment occurs in the absence of exogenous cytokine treatment, the BM-SCID-hu mouse model described should provide a useful in vivo system for studying factors important in the maturation of human myeloid and lymphoid cells in the bone marrow and the behavior of the mature human cells after dissemination into the peripheral lymphoid tissue. Images PMID:7914701

  15. Thiotepa-based versus total body irradiation-based myeloablative conditioning prior to allogeneic stem cell transplantation for acute myeloid leukaemia in first complete remission: a retrospective analysis from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation.

    PubMed

    Eder, Sandra; Labopin, Myriam; Arcese, William; Or, Reuven; Majolino, Ignazio; Bacigalupo, Andrea; de Rosa, Gennaro; Volin, Liisa; Beelen, Dietrich; Veelken, Hendrik; Schaap, Nicolaas P M; Kuball, Jurgen; Cornelissen, Jan; Nagler, Arnon; Mohty, Mohamad

    2016-01-01

    Thiotepa is an alkylating compound with an antineoplastic and myeloablative activity and can mimic the effect of radiation. However, it is unknown whether this new regimen could safely replace the long-established ones. This retrospective matched-pair analysis evaluated the outcome of adults with acute myeloid leukaemia in first complete remission who received myeloablative conditioning either with a thiotepa-based (n = 121) or a cyclophosphamide/total body irradiation-based (TBI; n = 358) regimen for allogeneic hematopoietic stem cell transplantation from an HLA-matched sibling or an unrelated donor. With a median follow-up of 44 months, the outcome was similar in both groups. Acute graft-versus-host disease grade II-IV was observed in 25% after thiotepa-containing regimen versus 35% after TBI (P = 0.06). The 2-yr cumulative incidence of chronic graft-versus-host disease was 40.5% for thiotepa and 41% for TBI (P = 0.98). At 2 yrs, the cumulative incidences of non-relapse mortality and relapse incidence were 23.9% (thiotepa) vs. 22.4% (TBI; P = 0.66) and 17.2% (thiotepa) vs. 23.3% (TBI; P = 0.77), respectively. The probabilities of leukaemia-free and overall survival at 2 yrs were not significantly different between the thiotepa and TBI groups, at 58.9% vs. 54.2% (P = 0.95) and 61.4% vs. 58% (P = 0.72), respectively. Myeloablative regimens using combinations including thiotepa can provide satisfactory outcomes, but the optimal conditioning remains unclear for the individual patient in this setting.

  16. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies

    PubMed Central

    Zahr, Abdallah Abou; Salama, Mohamed E.; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-01-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  17. Marrow Fat and Bone: Review of Clinical Findings

    PubMed Central

    Schwartz, Ann V.

    2015-01-01

    With growing interest in the connection between fat and bone, there has been increased investigation of the relationship with marrow fat in particular. Clinical research has been facilitated by the development of non-invasive methods to measure bone marrow fat content and composition. Studies in different populations using different measurement techniques have established that higher marrow fat is associated with lower bone density and prevalent vertebral fracture. The degree of unsaturation in marrow fat may also affect bone health. Although other fat depots tend to be strongly correlated, marrow fat has a distinct pattern, suggesting separate mechanisms of control. Longitudinal studies are limited, but are crucial to understand the direct and indirect roles of marrow fat as an influence on skeletal health. With greater appreciation of the links between bone and energy metabolism, there has been growing interest in understanding the relationship between marrow fat and bone. It is well established that levels of marrow fat are higher in older adults with osteoporosis, defined by either low bone density or vertebral fracture. However, the reasons for and implications of this association are not clear. This review focuses on clinical studies of marrow fat and its relationship to bone. PMID:25870585

  18. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies.

    PubMed

    Zahr, Abdallah Abou; Salama, Mohamed E; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-06-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  19. Systemic irradiation for selected stage IV and recurrent pediatric solid tumors: method, toxicity, and preliminary results

    SciTech Connect

    Wharam, M.D.; Kaizer, H.; Leventhal, B.G.; Munoz, L.; Tutschka, P.J.; Santos, G.W.; Elfenbein, G.J.; Order, S.E.

    1980-02-01

    Eight patients with advanced pediatric solid tumors received either sequential upper and lower half-body irradiation (HBI) (7.5 rad/min to 500 rad total) or total body irradiation (TBI) (7.5 rad/min to 800 rad total) as part of two multimodality treatment regimens. All patients received combination chemotherapy; drugs were determined by the tumor type. The TBI regimen was selected for two patients who had progression of disease with conventional chemotherapy and for two patients with stage IV neuroblastoma. This intensive regimen consisted of bone marrow harvesting, followed by local radiation to gross disease, marrow-ablative chemotherapy, TBI, and re-infusion of the cryopreserved autologous marrow. Significant acute toxicity was followed by hematologic reconstitution in each patient within seven weeks. At this writing, two patients survived, one of whom is disease free two and one half years without maintenance chemotherapy. A less intensive, outpatient regimen was selected for four patients; three had a complete or good partial response to chemotherapy. The fourth patient had tumor-involved bone marrow not responsive to chemotherapy and was therefore ineligible for marrow cryopreservation and TBI. Each of these four patients received HBI after chemotherapy and local radiation to the primary and/or metastatic sites. Acute toxicity was limited to nausea and vomiting. Significant leukopenia and thrombocytopenia occurred in three patients. All four patients were alive 10 to 26 months post HBI. This pilot study demonstrates that chemotherapy can be integrated with local fractionated radiation, and systemic radiation given as HBI or TBI with acceptable toxicity; sufficient bone marrow stem cells can be harvested after conventional chemotherapy and then cryopreserved to permit hematologic reconstitution of the patient who receives marrow ablative therapy.

  20. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  1. Autologous bone marrow transplantation by photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.

    1992-06-01

    Simultaneous exposure of Merocyanine 540 dye containing cultured tumor cells to 514-nm laser light (93.6 J/cm2) results in virtually complete cell destruction. Under identical conditions, 40% of the normal progenitor (CFU-GM) cells survive the treatment. Laser- photoradiation treated, cultured breast cancer cells also were killed, and living tumor cells could not be detected by clonogenic assays or by anti-cytokeratin monoclonal antibody method. Thus, laser photoradiation therapy could be useful for purging of contaminating tumor cells from autologous bone marrow.

  2. The inherited bone marrow failure syndromes.

    PubMed

    Chirnomas, S Deborah; Kupfer, Gary M

    2013-12-01

    Molecular pathogenesis may be elucidated for inherited bone marrow failure syndromes (IBMFS). The study and presentation of the details of their molecular biology and biochemistry is warranted for appropriate diagnosis and management of afflicted patients and to identify the physiology of the normal hematopoiesis and mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies, which include ribosome assembly and ribosomal RNA processing. The Fanconi anemia pathway has become interdigitated with the familial breast cancer syndromes. In this article, the diseases that account for most IBMFS diagnoses are analyzed. PMID:24237972

  3. Clinical utility of bone marrow culture.

    PubMed

    Moore, M A

    1976-01-01

    Standardized culture of bone marrow in soft agar permits the detection of a population of granulocyte-macrophage progenitor cells (CFU-c). A spectrum of qualitative abnormalities serves to distinguish myeloid leukemic CFU-c from normal and remission populations. These abnormalities in maturation and proliferation are diagnostic of a myeloid leukemic state and serve to functionally reclassify acute myeloid leukemia at diagnosis into a number of categories based on in vitro growth pattern. The virtue of this classification is that it permits detection of a substantial number of patients who are refractory to conventional remission induction protocols. The clear distinction between normal and leukemic growth in vitro permits early detection of emerging remission CFU-c during induction therapy and of early onset of relapse in patients who are otherwise in complete remission. In patients with leukemia undergoing allogeneic bone marrow engraftment, marrow culture has proved of value in documenting the reconstitution of the patient and in detecting re-emergence of the original leukemic stem line prior to its detection by cytogenetic and hematological techniques. Serial studies on patients with chronic myeloid leukemia have allowed early diagnosis of blastic transformation and classification of blastic phase disease on the basis of in vitro growth pattern has revealed a similar spectrum of in vitro abnormalities as seen in AML. The cloning of normal or leukemic human myeloid progenitor cells (CFU-c) in agar or methylcellulose has permitted analysis of both quantitative and qualitative changes in this cell compartment in leukemia and other myelodysplastic states (1-7). Among these changes are abnormalities in maturation of leukemic cells in vitro (4, 5, 6), defective proliferation as measured by colony size or cluster to colony ratio (5, 6), abnormalities in biophysical characteristics of leukemic CFU-c (4, 5), regulatory defects in responsiveness to positive and negative

  4. The National Marrow Donor Program and Be The Match Registry | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Marrow Transplants The National Marrow Donor Program and Be The Match Registry Past Issues / Summer 2011 Table ... the National Marrow Donor Program (NMDP) and its Be The Match Registry are nonprofit organizations dedicated to ...

  5. Changes in T-cell subsets in patients with rheumatoid arthritis treated with total lymphoid irradiation

    SciTech Connect

    Kotzin, B.L.; Kansas, G.S.; Engleman, E.G.; Hoppe, R.T.; Kaplan, H.S.; Strober, S.

    1983-05-01

    Patients with intractable rheumatoid arthritis (RA) were treated with total lymphoid irradiation (TLI, 2000 rads). We previously reported long-lasting clinical improvement associated with marked suppression of in vitro lymphocyte function in this group. In an attempt to better understand the mechanism of immunosuppression and clinical changes observed after TLI, we studied in greater detail changes in peripheral blood T-cell subsets identified by monoclonal antibodies. Before TLI, RA patients had a higher percentage of Leu-3 (helper subset) cells and a lower percentage of Leu-2 (suppressor/cytotoxic subset) cells than normals. Immediately after TLI, the absolute numbers of both Leu-2 and Leu-3 cells were reduced by at least 90%. Within 6-12 weeks, the number of Leu-2 cells returned to the pretreatment levels, but the levels of Leu-3 cells remained depressed for months thereafter. The lack of repopulation of Leu-3 cells resulted in a marked increase in the ratio of Leu-2 to Leu-3 cells as compared to pretreatment values (1.73 +/- 0.23 vs 0.39 +/- 0.06), and in a decrease in the percentage and absolute number of total T (Leu-1 and Leu-4) cells. The failure of Leu-3 cells (which mediate predominantly helper/inducer functions) to repopulate the peripheral blood may contribute to the prolonged clinical immunosuppression observed after TLI. Similar changes in T-cell subsets were not observed in RA patients given remittive drugs or low doses (200 rads) of radiotherapy. Thus, TLI differs from other treatment modalities with regard to its prolonged selective effect on the Leu-3 subset.

  6. Sequential half-body irradiation in childhood

    SciTech Connect

    Jenkin, R.D.T.; Berry, M.P.

    1983-12-01

    Single-dose half-body irradiation (HBI), introduced for the palliation of pain from widespread bone metastases in adults, has proved to be successful. The dose-limiting toxicity has proved to be acute radiation pneumonitis, with bone marrow tolerance of lesser importance, in spite of the fact that many patients received previous local irradiation and/or chemotherapy. Palliative HBI has not become a valuable treatment in pediatric malignancies, because of a shorter metastatic phase. Results are described in selected institutions, where HBI has been used in the treatment of pediatric malignancies. A single institution plot study was undertaken at the Princess Margaret Hospital involving 17 patients with Ewing's sarcoma of bone, without overt metastases at diagnosis. Results to date have not been obviously different from overall survival in the first intergroup Ewing's sarcoma study. Overall, the treatment has been shown to be well tolerated and can be given entirely on an out-patient basis. When compared on a historical basis with a previous single dose total body irradiation study, the one year survival rate was increased. HBI appears to be tolerable treatment, when given concurrently with or sequential to local and systemic treatment.

  7. Rationale for bone marrow transplantation in the treatment of autoimmune diseases.

    PubMed Central

    Ikehara, S; Good, R A; Nakamura, T; Sekita, K; Inoue, S; Oo, M M; Muso, E; Ogawa, K; Hamashima, Y

    1985-01-01

    Transplantation of normal bone marrow from C3H/HeN nu/nu (H-2k) mice into young MRL/MP-lpr/lpr (MRL/l; H-2k) mice (less than 1.5 mo) prevented the development of autoimmune diseases and characteristic thymic abnormalities in the recipient mice. When female MRL/1 (greater than 2 mo) or male BXSB (H-2b) mice (9 mo) with autoimmune diseases and lymphadenopathy were lethally irradiated and then reconstituted with allogeneic bone marrow cells from young BALB/c nu/nu (H-2d) mice (less than 2 mo), the recipients survived for more than 3 mo after the bone marrow transplantation and showed no graft-versus-host reaction. Histopathological study revealed that lymphadenopathy disappeared and that all evidence of autoimmune disease either was prevented from developing or was completely corrected even after its development in such mice. All abnormal T-cell functions were restored to normal. The newly developed T cells were found to be tolerant of both bone marrow donor-type (BALB/c) and host-type (MRL/1 or BXSB) major histocompatibility complex (MHC) determinants. Therefore, T-cell dysfunction in autoimmune-prone mice can be associated with both the involutionary changes that occur in the thymus of the autoimmune-prone mice and also to abnormalities that reside in the stem cells. However, normal stem cells from BALB/c nu/nu donors can differentiate into normal functional T cells even in mice whose thymus had undergone considerable involution, as in the case of BXSB or MRL/1 mice in the present studies. These findings suggest that marrow transplantation may be a strategy ultimately to be considered as an approach to treatment of life-threatening autoimmune diseases in humans. T-cell dysfunction in autoimmune-prone mice previously attributed to involutionary changes that occur in the thymus of these mice may instead be attributed to abnormalities that basically reside in the stem cells of the autoimmune-prone mice. Images PMID:3887403

  8. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry

    NASA Astrophysics Data System (ADS)

    Traino, A. C.; Ferrari, M.; Cremonesi, M.; Stabin, M. G.

    2007-09-01

    To perform patient-specific, blood-based red-marrow dosimetry, dose conversion factors (the S factors in the MIRD formalism) have to be scaled by patients' organ masses. The dose to red marrow includes both self-dose and cross-irradiation contributions. Linear mass scaling for the self-irradiation term only is usually applied as a first approximation, whereas the cross-irradiation term is considered to be mass independent. Recently, the need of a mass scaling correction on both terms, not necessarily linear and dependent on the radionuclide, has been highlighted in the literature. S-factors taking into account different mass adjustments of organs are available in the OLINDA/EXM code. In this paper, a general algorithm able to fit the mass-dependent factors Srm<--tb and Srm<--rm is suggested and included in a more general equation for red-marrow dose calculation. Moreover, parameters to be considered specifically for therapeutic radionuclides such as 131I, 90Y and 177Lu are reported. The red-marrow doses calculated by the traditional and new algorithms are compared for 131I in ablation therapy (14 pts), 177Lu- (13 pts) and 90Y- (11 pts) peptide therapy for neuroendocrine tumours, and 90Y-Zevalin therapy for NHL (21 pts). The range of differences observed is as follows: -36% to -10% for 131I ablation, -22% to 5% for 177Lu-DOTATATE, -9% to 11% for 90Y-DOTATOC and -8% to 6% for 90Y-Zevalin. All differences are mostly due to the activity in the remainder of the body contributing to cross-irradiation. This paper quantifies the influence of mass scaling adjustment on usually applied therapies and shows how to derive the appropriate parameters for other radionuclides and radiopharmaceuticals.

  9. Cyclic, low-dose total body irradiation for metastatic neuroblastoma

    SciTech Connect

    D'Angio, G.J.; Evans, A.E.

    1983-12-01

    Total body irradiation (TBI) can be thought of as a systemic anticancer agent. It therefore might best be given like an adjuvant drug, i.e., in tolerable doses, cyclically. The therapeutic ratio between normal bone marrow stem cells and suitably sensitive cancer cells should be widened by these means. Fourteen children with advanced (Stage IV) neuroblastomas were given 100-150 rad TBI in 50 rad daily fractions along with each three-week cycle of standard triple-agent chemotherapy (vincristine, DTIC, cyclophosphamide). Two patients died of toxicity and one is still undergoing therapy. Four of the remaining 12 survive free of disease for 12+ to 31+ months. The regimen is well tolerated, but prolonged, pronounced bone marrow depression, especially thrombocytopenia, commonly occurs after doses of 300-450 rad.

  10. Commercial food irradiation

    SciTech Connect

    Black, E.F.; Libby, L.M.

    1983-06-01

    Food irradiation is discussed. Irradiation exposes food to gamma rays from a cobalt-60 or a cesium-137 source, or to high-energy electrons emitted by an electron accelerator. A major advantage is that food can be packaged either before or after treatment. FDA regulations with regard to irradiation are discussed. Comments on an 'Advance Notice' on irradiation, published by the FDA in 1981 are summarized.

  11. [Chemosignals from isolated females have antimutagenic effect in dividing the cells of bone marrow from male mice of the CBA line].

    PubMed

    Daev, E V; Glinin, T S; Dukel'skaia, A V

    2014-01-01

    A level of X-ray induced mitotic disturbances in the cells of the bone marrow of male mice was studied under the modifying influence ofchemosignals from isolated adult female mice of the CBA line. It has been shown that the frequency of chromosomal aberrations in irradiated (4 Gr) males after exposing them for 24 hours on bedding soiled with female chemosignals is lower than in irradiated males in cages with clean bedding. The mechanisms and importance of the antimutagenic effect of female house mouse chemosignals are discussed.

  12. Glutamine supplementation in bone marrow transplantation.

    PubMed

    Ziegler, Thomas R

    2002-01-01

    An increasing number of clinical investigations have focused on supplementation of specialized enteral and parenteral nutrition with the amino acid glutamine. This interest derives from strong evidence in animal models and emerging clinical data on the efficacy of glutamine administration following chemotherapy, trauma, sepsis and other catabolic conditions. Glutamine has protein-anabolic effects in stressed patients and, among many key metabolic functions, is used as a major fuel/substrate by cells of the gastrointestinal epithelium and the immune system. These effects may be particularly advantageous in patients undergoing bone marrow transplantation (BMT), who exhibit post-transplant body protein wasting, gut mucosal injury and immunodeficiency. Studies to date indicate that enteral and parenteral glutamine supplementation is well tolerated and potentially efficacious after high-dose chemotherapy or BMT for cancer treatment. Although not all studies demonstrate benefits, sufficient positive data have been published to suggest that this nutrient should be considered as adjunctive metabolic support of some individuals undergoing marrow transplant. However, BMT is a rapidly evolving clinical procedure with regard to the conditioning and supportive protocols utilized. Thus, additional randomized, double-blind, controlled clinical trials are indicated to define the efficacy of glutamine with current BMT regimens.

  13. Antilymphocytic antibodies and marrow transplantation. VIII. Recipient conditioning with Clq-affine monoclonal anti-pan T antibodies prevents GVHD in homozygous fully mismatched mice

    SciTech Connect

    Thierfelder, S.; Kummer, U.; Schuh, R.; Mysliwietz, J.

    1986-10-01

    An approach to suppressing secondary disease with antibodies was studied that differed from conventional antibody treatment of donor marrow in vitro. It consisted of the selection of anti-Thy-1 antibodies with high affinity for Clq, the first subunit of the complement cascade, and a single injection of such antibodies into prospective irradiated marrow recipients. Monoclonal mouse IgM and rat IgG 2c antibodies of high titers in complement-dependent test systems but with low affinity for Clq caused little immunosuppression. Monoclonal rat IgG2b or mouse IgG2a anti-Thy-1 antibodies with high affinity for Clq prevented acute and chronic mortality of graft-v-host disease (GVHD), however, when injected in irradiated CBA or AKR mice prior to C57BL/6 spleen and/or bone marrow cell transfusion. This treatment simultaneously suppressed residual host-v-graft reactivity of the irradiated mice, so that permanent hematopoietic engraftment ensued even at 5 or 6 Gy. Full chimerism and specific tolerance were obtained. Primary immune response to SRBC was clearly depressed in the chimeras; secondary immune response was not. Clearance of T cell antibody activity (greater than 6 days), timing, and dose of injected antibody, as well as other modalities of the conditioning treatment that may have contributed to the remarkable immunosuppression, are discussed.

  14. High-level expression of the ER-MP58 antigen on mouse bone marrow hematopoietic progenitor cells marks commitment to the myeloid lineage.

    PubMed

    de Bruijn, M F; Ploemacher, R E; Mayen, A E; Voerman, J S; Slieker, W A; van Ewijk, W; Leenen, P J

    1996-12-01

    Studies on the early events in the differentiation of the nonspecific immune system require the identification and isolation of myeloid-committed progenitor cells. Using the monoclonal antibodies (mAb) ER-MP12 and ER-MP20, generated against immortalized macrophage precursors, we have shown previously that the earliest macrophage colony-stimulating factor (M-CSF)-responsive cells in the bone marrow have the ER-MP12hi 20- phenotype. In addition, we found that the ER-MP12hi 20- subset (comprising about 2 % of total nucleated marrow) contains progenitor cells of all hematopoietic lineages. Aiming at the identification and purification of the myeloid progenitor cells within the ER-MP12hi 20-subset, we used ER-MP58, a marker expressed at high level by all M-CSF-responsive bone marrow progenitors. With this marker the ER-MP12hi 20- cell population could be divided into three subfractions: one with absent or low level ER-MP58 expression, one with intermediate, and one with high ER-MP58 expression. These subfractions were isolated by fluorescence-activated cell sorting and tested in vitro and in vivo for their differentiation capacities. In addition, the expression of ER-MP58 on stem cell subsets was examined in the cobblestone area-forming cell (CAFC) assay. Our data indicate that in the ER-MP12hi 20- subpopulation myeloid-committed progenitors are characterized by high-level expression of the ER-MP58 antigen, whereas cells with other or broader differentiation capacities have an ER-MP58 negative/low or intermediate phenotype. These myeloid-committed progenitors have no significant repopulating ability in vivo, in contrast to the ER-MP58 intermediate cells. Primitive CAFC-28/35, corresponding to cells providing long-term hematopoietic engraftment in vivo, also did not express the ER-MP58 Ag at a high level. Thus, cells committed to the myeloid lineage can be separated from progenitor cells with other differentiation capacities by means of multiparameter cell sorting using

  15. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  16. Effects of the bone marrow microenvironment on hematopoietic malignancy.

    PubMed

    Askmyr, Maria; Quach, Julie; Purton, Louise E

    2011-01-01

    The bone marrow (BM) is contained within the bone cavity and is the main site of hematopoiesis, the continuous development of blood cells from immature hematopoietic stem and progenitor cells. The bone marrow consists of developing hematopoietic cells and non-hematopoietic cells, the latter collectively termed the bone marrow microenvironment. These non-hematopoietic cells include cells of the osteoblast lineage, adipocytes and endothelial cells. For many years these bone marrow microenvironment cells were predicted to play active roles in regulating hematopoiesis, and recent studies have confirmed such roles. Importantly, more recent data has indicated that cells of the BM microenvironment may also contribute to hematopoietic diseases. In this review we provide an overview of the roles of the data suggesting that the cells of the bone marrow microenvironment may play an active role in the initiation and progression of hematopoietic malignancy.

  17. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  18. Identification of Hub Genes Related to the Recovery Phase of Irradiation Injury by Microarray and Integrated Gene Network Analysis

    PubMed Central

    Zhang, Jing; Yang, Yue; Wang, Yin; Zhang, Jinyuan; Wang, Zejian; Yin, Ming; Shen, Xudong

    2011-01-01

    Background Irradiation commonly causes long-term bone marrow injury charactertized by defective HSC self-renewal and a decrease in HSC reserve. However, the effect of high-dose IR on global gene expression during bone marrow recovery remains unknown. Methodology Microarray analysis was used to identify differentially expressed genes that are likely to be critical for bone marrow recovery. Multiple bioinformatics analyses were conducted to identify key hub genes, pathways and biological processes. Principal Findings 1) We identified 1302 differentially expressed genes in murine bone marrow at 3, 7, 11 and 21 days after irradiation. Eleven of these genes are known to be HSC self-renewal associated genes, including Adipoq, Ccl3, Ccnd1, Ccnd2, Cdkn1a, Cxcl12, Junb, Pten, Tal1, Thy1 and Tnf; 2) These 1302 differentially expressed genes function in multiple biological processes of immunity, including hematopoiesis and response to stimuli, and cellular processes including cell proliferation, differentiation, adhesion and signaling; 3) Dynamic Gene Network analysis identified a subgroup of 25 core genes that participate in immune response, regulation of transcription and nucleosome assembly; 4) A comparison of our data with known irradiation-related genes extracted from literature showed 42 genes that matched the results of our microarray analysis, thus demonstrated consistency between studies; 5) Protein-protein interaction network and pathway analyses indicated several essential protein-protein interactions and signaling pathways, including focal adhesion and several immune-related signaling pathways. Conclusions Comparisons to other gene array datasets indicate that global gene expression profiles of irradiation damaged bone marrow show significant differences between injury and recovery phases. Our data suggest that immune response (including hematopoiesis) can be considered as a critical biological process in bone marrow recovery. Several critical hub genes that are

  19. Clonal deletion: A mechanism of tolerance in mixed bone marrow chimeras

    SciTech Connect

    Yu, J.C.; Webster, M.; Fox, I.J. )

    1990-06-01

    The mechanism of antigen-specific immunologic unresponsiveness which results from lethal irradiation and mixed (syngeneic-allogeneic) bone marrow cell (BMC) reconstitution is unknown. To determine whether clonal deletion is the mechanism of tolerance in this model, monoclonal antibody (Mab) RR-4-4, specific for a T-cell receptor (V beta 6) reactive against the minor alloantigen MLsa, was employed. Six-week-old B10 mice (H-2b, Mlsb, Thyl.2) were tolerized to AKR antigens (H-2k, Mlsa, Thyl.1) by whole body irradiation (950 R) and iv infusion of T-cell-depleted (TCD) B10 BMC + non-TCD AKR BMC. Chimerism and antigen-specific tolerance were documented by flow microfluorometry (FMF), skin grafting, mixed lymphocyte reaction, and cell-mediated lympholysis. When tolerant B10 mice (n = 15) had accepted AKR skin grafts for greater than 100 days, these animals were studied for the presence of host V beta 6+ T cells using Mab RR-4-4. FMF revealed that 0-5% of host (B10) lymph node and spleen cells from chimeras were V beta 6+ while 15-20% of lymph node and spleen cells from control B10 mice expressed V beta 6. These data demonstrate that clonal deletion occurs in the lethal irradiation-mixed reconstitution model as evidenced by the near total elimination of Mlsa-reactive V beta 6+ T cells and suggest that it maybe a mechanism responsible for tolerance in adult mice.

  20. Differential agglutination by soybean agglutinin of human leukemia and neuroblastoma cell lines: potential application to autologous bone marrow transplantation.

    PubMed

    Reisner, Y

    1983-11-01

    Normal human bone marrow cells were mixed with radioactively labeled tumor cells from different leukemia and neuroblastoma cell lines, and the cell mixtures were separated by differential agglutination with soybean agglutinin. It is shown that the cell fraction unagglutinated by soybean agglutinin, which was previously found to be capable of reconstituting the hematopoietic system of lethally irradiated recipients, can be purged of tumor cells with varying efficiency depending on the tumor cell expression of soybean agglutinin receptors as detected by flow cytofluorimetry with fluoresceinated soybean agglutinin.

  1. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  2. Exercise Regulation of Marrow Adipose Tissue

    PubMed Central

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  3. Exercise Regulation of Marrow Adipose Tissue.

    PubMed

    Pagnotti, Gabriel M; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise significantly

  4. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow

    SciTech Connect

    Mori, Luca; Bellini, Alberto; Stacey, Martin A.; Schmidt, Matthias; Mattoli, Sabrina . E-mail: smattoli@avail-research.com

    2005-03-10

    Myofibroblasts play a key role in wound closure but their origin is poorly understood. To investigate whether fibrocytes contribute to myofibroblast population, we examined the phenotype of fibrocytes and myofibroblasts present in the wounded skin of BALB/c mice. During wound healing, there was a marked increase in the number of cells expressing the myofibroblast marker {alpha}-smooth muscle actin in the granulation tissue. Between 4 and 7 days post-wounding, more than 50% of these cells also expressed the CD13 antigen. CD13{sup +}/collagen I{sup +} fibrocytes could be isolated at an early stage of the healing process from digested fragments of wounded tissue by fluorescence-activated cell sorting. Like authentic fibrocytes, these cells were also CD45{sup +}/CD34{sup +}/CD14{sup -}. Between 4 and 7 days post-injury, 61.4% of the isolated fibrocytes were found to express {alpha}-smooth muscle actin gene and protein. We repeated similar experiments in female mice that had received a male whole bone marrow transplant after total body irradiation. By in situ hybridization, we identified the Y chromosome in the nuclei of the majority of fibrocytes isolated from the wounded tissue of these animals. Our data indicate that circulating fibrocytes contribute to the myofibroblast population in the wounded skin and that they originate from the bone marrow.

  5. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  6. Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow

    SciTech Connect

    Itoh, K.; Tezuka, H.; Sakoda, H.; Konno, M.; Nagata, K.; Uchiyama, T.; Uchino, H.; Mori, K.J.

    1989-02-01

    Stromal cell lines, designated MS-1, -2, -3, -4, -5, -6, and -7 were established by irradiating the adherent cells in long-term bone marrow cultures with 900-rad x-rays. Two of the cell lines, MS-1 and MS-5, have the capacity to support the growth of hemopoietic stem cells (spleen colony-forming cells and granulocyte-macrophage colony-forming cells) for greater than 2 months in vitro. These two cell lines were alkaline phosphatase-, peroxidase-, and factor VIII-negative and positive for periodic acid-Schiff and nonspecific esterase. Extracellular matrix proteins such as fibronectin, laminin, and collagen type I were produced by these two cell lines. Neither MS-1 cell- nor MS-5 cell-conditioned medium supported the growth of hemopoietic stem cells, and hemopoietic stem cells were found preferentially to be under and on MS-1 and MS-5 layers rather than in suspension. Close contact with the MS-1 cell layer or the MS-5 cell layer appears to be essential in maintaining hemopoiesis in vitro. Conditioned media from MS-1 cells and MS-5 cells stimulated granulocyte colony formation from murine bone marrow cells in semisolid culture.

  7. Multiple loci govern the bone marrow-derived immunoregulatory mechanism controlling dominant resistance to autoimmune orchitis.

    PubMed Central

    Meeker, N D; Hickey, W F; Korngold, R; Hansen, W K; Sudweeks, J D; Wardell, B B; Griffith, J S; Teuscher, C

    1995-01-01

    The existence of immunoregulatory genes conferring dominant resistance to autoimmunity is well documented. In an effort to better understand the nature and mechanisms of action of these genes, we utilized the murine model of autoimmune orchitis as a prototype. When the orchitis-resistant strain DBA/2J is crossed with the orchitis-susceptible strain BALB/cByJ, the F1 hybrid is completely resistant to the disease. By using reciprocal radiation bone marrow chimeras, the functional component mediating this resistance was mapped to the bone marrow-derived compartment. Resistance is not a function of either low-dose irradiation- or cyclophosphamide (20 mg/kg)-sensitive immunoregulatory cells, but can be adoptively transferred by primed splenocytes. Genome exclusion mapping identified three loci controlling the resistant phenotype. Orch3 maps to chromosome 11, whereas Orch4 and Orch5 map to the telomeric and centromeric regions of chromosome 1, respectively. All three genes are linked to a number of immunologically relevant candidate loci. Most significant, however, is the linkage of Orch3 to Idd4 and Orch5 to Idd5, two susceptibility genes which play a role in autoimmune insulin-dependent type 1 diabetes mellitus in the nonobese diabetic mouse. PMID:7777570

  8. Use of CT densitometry to predict lung toxicity in bone marrow transplant patients

    SciTech Connect

    el-Khatib, E.E.; Freeman, C.R.; Rybka, W.B.; Lehnert, S.; Podgorsak, E.B.

    1989-01-01

    Total body irradiation (TBI) is considered an integral part of the preparation of patients with hematological malignancies for marrow transplantation. One of the major causes of death following bone marrow transplantation is interstitial pneumonia. Its pathogenesis is complex but radiation may play a major role in its development. Computed tomography (CT) has been used in animal and human studies as a sensitive non-invasive method for detecting changes in the lung following radiotherapy. In the present study CT scans are studied before and up to 1 year after TBI. Average lung densities measured before TBI showed large variations among the individual patients. On follow-up scans, lung density decreases were measured for patients who did not develop lung complications. Significant lung density increases were measured in patients who subsequently had lung complications. These lung density increases were observed prior to the onset of respiratory complications and could be correlated with the clinical course of the patients, suggesting the possibility for the usage of CT lung densitometry to predict lung complications before the onset of clinical symptoms.

  9. The Inherited Bone Marrow Failure Syndromes

    PubMed Central

    Chirnomas, S. Deborah; Kupfer, Gary M

    2013-01-01

    In spite of the rarity of inherited bone marrow failure syndromes (IBMFS), they represent diseases for which the molecular pathogenesis may be elucidated. Their study and presentation of the details of their molecular biology and biochemistry is warranted not only for appropriate diagnosis and management of afflicted patients but also because they lend clues to the normal physiology of the normal hematopoiesis and, in many cases, mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies that entail both ribosome assembly as well as ribosomal RNA processing. The Fanconi anemia (FA) pathway itself has become interdigitated with the familial breast cancer syndromes. The sections that follow present a more detailed analysis of the diseases that account for the majority of IBMFS diagnoses. PMID:24237972

  10. Psychosocial effects of unrelated bone marrow donation: experiences of the National Marrow Donor Program.

    PubMed

    Butterworth, V A; Simmons, R G; Bartsch, G; Randall, B; Schimmel, M; Stroncek, D F

    1993-04-01

    In this study, we investigated the psychosocial effects of unrelated marrow donation. Survey questionnaires were administered pre-donation, shortly post-donation, and 1 year post-donation to all donors through the National Marrow Donor Program over a 3-year period. Univariate, bivariate, and multivariate analyses were then performed. Donors were generally quite positive about the donation 1 year post-donation: 87% felt it was "very worthwhile" and 91% would be willing to donate again in the future. Marrow donors were more likely than kidney donors to feel better about themselves as a result of the donation (P < .001). Donors with longer collection times, in general, had less positive psychosocial outcomes from the donation. Donors who experienced lower back pain or difficulty walking as a result of the donation were more likely to experience the donation as more stressful and painful than expected, but no more likely to experience it as less positive emotionally than donors who did not experience these side effects.

  11. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    SciTech Connect

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-10-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods.

  12. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    SciTech Connect

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-10-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods.

  13. Cytocompatible, Photoreversible, and Self-Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation.

    PubMed

    Yu, Lianlian; Xu, Kaige; Ge, Liangpeng; Wan, Wenbing; Darabi, Ali; Xing, Malcolm; Zhong, Wen

    2016-09-01

    Photo-crosslinking and self-healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self-healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide-based hydrogels. With the [2+2] cyclo-addition of coumarin moieties, the hydrogels exhibit excellent self-healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self-healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells.

  14. Cytocompatible, Photoreversible, and Self-Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation.

    PubMed

    Yu, Lianlian; Xu, Kaige; Ge, Liangpeng; Wan, Wenbing; Darabi, Ali; Xing, Malcolm; Zhong, Wen

    2016-09-01

    Photo-crosslinking and self-healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self-healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide-based hydrogels. With the [2+2] cyclo-addition of coumarin moieties, the hydrogels exhibit excellent self-healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self-healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells. PMID:27280860

  15. Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults

    PubMed Central

    Richardson, Richard B

    2011-01-01

    Purpose: This paper reviews and reassesses the internationally accepted niches or ‘targets’ in bone marrow that are sensitive to the induction of leukaemia and primary bone cancer by radiation. Conclusions: The hypoxic conditions of the 10 μm thick endosteal/osteoblastic niche where preleukemic stem cells and hematopoietic stem cells (HSC) reside provides a radioprotective microenvironment that is 2-to 3-fold less radiosensitive than vascular niches. This supports partitioning the whole marrow target between the low haematological cancer risk of irradiating HSC in the endosteum and the vascular niches within central marrow. There is a greater risk of induced bone cancer when irradiating a 50 μm thick peripheral marrow adjacent to the remodelling/reforming portion of the trabecular bone surface, rather than marrow next to the quiescent bone surface. This choice of partitioned bone cancer target is substantiated by the greater radiosensitivity of: (i) Bone with high remodelling rates, (ii) the young, (iii) individuals with hypermetabolic benign diseases of bone, and (iv) the epidemiology of alpha-emitting exposures. Evidence is given to show that the absence of excess bone-cancer in atomic-bomb survivors may be partially related to the extremely low prevalence among Japanese of Paget's disease of bone. Radiation-induced fibrosis and the wound healing response may be implicated in not only radiogenic bone cancers but also leukaemia. A novel biological mechanism for adaptive response, and possibility of dynamic targets, is advocated whereby stem cells migrate from vascular niches to stress-mitigated, hypoxic niches. PMID:21204614

  16. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  17. Arabinoxylan rice bran (MGN-3/Biobran) provides protection against whole-body γ-irradiation in mice via restoration of hematopoietic tissues

    PubMed Central

    Ghoneum, Mamdooh; Badr El-Din, Nariman K.; Abdel Fattah, Salma M.; Tolentino, Lucilene

    2013-01-01

    The aim of the current study is to examine the protective effect of MGN-3 on overall maintenance of hematopoietic tissue after γ-irradiation. MGN-3 is an arabinoxylan from rice bran that has been shown to be a powerful antioxidant and immune modulator. Swiss albino mice were treated with MGN-3 prior to irradiation and continued to receive MGN-3 for 1 or 4 weeks. Results were compared with mice that received radiation (5 Gy γ rays) only, MGN-3 (40 mg/kg) only and control mice (receiving neither radiation nor MGN-3). At 1 and 4 weeks post-irradiation, different hematological, histopathological and biochemical parameters were examined. Mice exposed to irradiation alone showed significant depression in their complete blood count (CBC) except for neutrophilia. Additionally, histopathological studies showed hypocellularity of their bone marrow, as well as a remarkable decrease in splenic weight/relative size and in number of megakaryocytes. In contrast, pre-treatment with MGN-3 resulted in protection against irradiation-induced damage to the CBC parameters associated with complete bone marrow cellularity, as well as protection of the aforementioned splenic changes. Furthermore, MGN-3 exerted antioxidative activity in whole-body irradiated mice, and provided protection from irradiation-induced loss of body and organ weight. In conclusion, MGN-3 has the potential to protect progenitor cells in the bone marrow, which suggests the possible use of MGN-3/Biobran as an adjuvant treatment to counteract the severe adverse side effects associated with radiation therapy. PMID:23287771

  18. Regluating factors in helper T-cell maturation.

    PubMed

    Zollinger, L; Potworowski, E F; Rabourdin, A; Prévost, C; Paquette, M

    1980-06-01

    The effect of soluble and insoluble thymic fractions (STF and ITF, respectively) on the antibody response to sheep red blood cells (SRBC) was tested at different times after injection in mice. In normal mice, a temporary increase in the number of plaque forming cells (PFCs) was observed after injecting either ITF and STF, this increase being more prolonged when both fractions were injected together. In thymectomized, lethally irradiated mice repopulated with syngeneic untreated bone marrow, full reconstitution of T helper function was achieved only if both ITF and SFT were injected, partial reconstitution being obtained when either of these fractions was administered alone. In thymectomized, lethally irradiated mice repopulated with T-depleted bone marrow, reconstitution of the T helper function was only achieved when both ITF and SFT were administered. These results show that ITF and STF together constitute all the essential elements of the thymic microenvironment necessary to support the entire differentiation process of prethymic precurosors into helper T cells.

  19. Cyclosporin A and methotrexate in canine marrow transplantation: engraftment, graft-versus-host disease, and induction of intolerance

    SciTech Connect

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Raff, R.F.; Sale, G.E.; Atkinson, K.; Graham, T.C.; Thomas, E.D.

    1982-07-01

    We examined the effect of methotrexate (MTX) and cyclosporin A (Cy A) on engraftment, graft-versus-host disease (GVHD), and the induction of tolerance in dogs prepared for marrow transplantation by 9 Gy of total body irradiation and grafted with bone marrow and buffy coat cells. Nineteen dogs were given grafts from DLA-identical littermates followed by immunosuppression with Cy A for 25 or 100 days. All had sustained engraftment, and 12 became healthy long-term chimeras. Sixty dogs were given grafts from DLA-nonidentical unrelated donors. Among nine given MTX only postgrafting, one rejected the graft nd eight died with GVHD. Among 18 dogs given Cy A only postgrafting, eight failed to achieve engraftment, seven died of various causes, and three died with GVHD. Thirty-four dogs were given both MTX and Cy A in various regimens postgrafting. The only long-term survivors were 4 of 10 dogs given MTX on days 1, 3, 6, and 11 and Cy A from days 0 through 100. Two have chronic GVHD. We conclude that Cy A can induce graft-host tolerance across minor, but not major, histocompatibility differences. The combination of MTX early after transplantation with Cy A prevents failure of engraftment of histoincompatible marrow and some recipients become long-term survivors.

  20. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease

    PubMed Central

    Fuchs, Ephraim J.; Luznik, Leo; Lanzkron, Sophie M.; Gamper, Christopher J.; Jones, Richard J.; Brodsky, Robert A.

    2012-01-01

    Allogeneic marrow transplantation can cure sickle cell disease; however, HLA-matched donors are difficult to find, and the toxicities of myeloablative conditioning are prohibitive for most adults with this disease. We developed a nonmyeloablative bone marrow transplantation platform using related, including HLA-haploidentical, donors for patients with sickle cell disease. The regimen consisted of antithymocyte globulin, fludarabine, cyclophosphamide, and total body irradiation, and graft-versus-host disease prophylaxis with posttransplantation high-dose cyclophosphamide, mycophenolate mofetil, and tacrolimus or sirolimus. After screening 19 patients, we transplanted 17, 14 from HLA-haploidentical and 3 from HLA-matched related donors. Eleven patients engrafted durably. With a median follow-up of 711 days (minimal follow up 224 days), 10 patients are asymptomatic, and 6 patients are off immunosupression. Only 1 patient developed skin-only acute graft-versus-host disease that resolved without any therapy; no mortality was seen. Nonmyeloablative conditioning with posttransplantation high-dose cyclophosphamide expands the donor pool, making marrow transplantation feasible for most patients with sickle cell disease, and is associated with a low risk of complications, even with haploidentical related donors. Graft failure, 43% in haploidentical pairs, remains a major obstacle but may be acceptable in a fraction of patients if the majority can be cured without serious toxicities. PMID:22955919

  1. Contribution of bone marrow-derived cells to the pro-inflammatory effects of protease-activated receptor-2 in colitis

    PubMed Central

    Hyun, Eric; Andrade-Gordon, Patricia; Steinhoff, Martin; Beck, Paul L.

    2010-01-01

    Objective Our aim was to determine the contribution of proteinase-activated receptor-2 (PAR2)-expressing bone marrow-derived cells on the development of colonic inflammation. Materials Chimeric mice were generated by injecting bone marrow cells from wildtype (PAR2+/+) or PAR2 knockout mice (PAR2−/−) into irradiated PAR2+/+ or PAR2−/− mice. Treatments: Colitis was induced by giving 2.5% dextran sodium sulfate (DSS) solution for 7 days or by a single intracolonic administration of trinitrobenzene sulphonic acid (TNBS, 2 mg dissolved in 40% ethanol). Methods Seven days after the induction of colitis, bowel thickness, inflammatory parameters [myeloperoxidase (MPO) activity, macroscopic/microscopic damage scores], and leukocyte trafficking (visualized via intravital microscopy) were assessed. Results Total deficiency of PAR2 resulted in a marked reduction in severity of both TNBS and DSS induced colitis as assessed by MPO activity, macroscopic damage, bowel thickness, and leukocyte adherence. Colitis was attenuated in all chimeric lines in which there was loss of PAR2 in the host, non-bone marrow-derived tissue, independent of the status of PAR expression by bone marrow-derived cells. Interestingly, TNBS colitis was attenuated in PAR2+/+ chimeric mice with PAR2−/− derived bone marrow but these animals were not protected from DSS colitis. Conclusions Expression of PAR2 by host-derived tissues plays a dominant role in regulating colonic inflammation. PAR2 expression by bone marrow-derived cells appears to play a role in TNBS colitis but not in DSS induced injury. Electronic supplementary material The online version of this article (doi:10.1007/s00011-010-0181-9) contains supplementary material, which is available to authorized users. PMID:20339899

  2. Therapeutic effects of bone marrow-derived mesenchymal stem cells on radiation-induced lung injury.

    PubMed

    Xia, Chengcheng; Chang, Pengyu; Zhang, Yuyu; Shi, Weiyan; Liu, Bin; Ding, Lijuan; Liu, Min; Gao, Ling; Dong, Lihua

    2016-02-01

    Radiation-induced lung injury (RILI) is a fatal condition featured by interstitial pneumonitis and fibrosis. Mesenchymal stem cells (MSCs) have been widely used for treating RILI in rodent models. In the present study, we aimed to investigate whether the therapeutic effects of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) on RILI were in a dose-dependent manner. A total of 100 mice were randomly divided into: a control group (n=25), subject to lung irradiation and injection of phosphate-buffered solution (PBS) via the tail vein; and the hBM-MSC group, subject to lung irradiation followed by injection of a low dose (1x103 hBM-MSCs/g), medium dose (5x103 hBM-MSCs/g) and high dose (1x104 hBM-MSCs/g) of hBM-MSCs in PBS through the tail vein, respectively. After sacrifice, the pulmonary tissues were subject to hematoxylin and eosin (H&E) staining, Masson's trichrome staining and immunohistochemical staining to investigate the pathological changes. Immunofluorescent staining was performed to evaluate the differentiation capacity of hBM-MSCs in vivo by analyzing the expression of SPC and PECAM. hBM-MSCs improved the survival rate and histopathological features in the irradiated mice, especially in the low-dose group. Marked decrease in collagen deposition was noted in the irradiated mice treated using a low dose of hBM-MSCs. In addition, hBM-MSCs attenuated secretion and expression of IL-10 and increased the expression of TNF-α. Furthermore, hBM-MSCs had the potential to differentiate into functional cells upon lung injury. Low-dose hBM-MSCs contributed to functional recovery in mice with RILI. PMID:26717975

  3. Successful renal transplantation following prior bone marrow transplantation in pediatric patients.

    PubMed

    Thomas, Susan E; Hutchinson, Raymond J; DebRoy, Meelie; Magee, John C

    2004-10-01

    Improving survival rates following pediatric bone marrow transplantation (BMT) will likely result in greater numbers of children progressing to end-stage renal disease (ESRD) because of prior chemotherapy, irradiation, sepsis, and exposure to nephrotoxic agents. Renal transplantation remains the treatment of choice for ESRD; however, the safety of renal transplantation in this unique population is not well established. We report our experience with living related renal transplantation in three pediatric patients with ESRD following prior BMT. Two patients with neuroblastoma and ESRD because of BMT nephropathy, and one patient with Schimke immuno-osseous dysplasia and ESRD because of immune complex mediated glomerulonephritis and nephrotic syndrome. Age at time of BMT ranged from 2 to 7 yr. All patients had stable bone marrow function prior to renal transplantation. Age at renal transplant ranged from 8 to 14 yr. All three patients have been managed with conventional immunosuppression, as no patient received a kidney and BMT from the same donor source. These patients are currently 7 months to 6 yr status post-living related transplant. All have functioning bone marrow and kidney transplants, with serum creatinine levels ranging 0.6-1.2 mg/dL. There have been no episodes of rejection. One patient with a history of grade III skin and grade IV gastrointestinal-graft-vs.-host disease (GI-GVHD) prior to transplantation, had a mild flare of GI-GVHD (grade I) post-renal transplant and is currently asymptomatic. The incidence of opportunistic infection has been comparable with our pediatric renal transplant population without prior BMT. One patient was treated for basal cell carcinoma via wide local excision. Renal transplantation is an excellent option for the treatment of pediatric patients with ESRD following BMT. Short-term results in this small population show promising patient and graft survival, however long-term follow-up is needed. Pre-existing immune system

  4. Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis.

    PubMed

    Ohnishi, Shizuo; Ito, Hidefumi; Suzuki, Yasuhiro; Adachi, Yasushi; Wate, Reika; Zhang, Jianhua; Nakano, Satoshi; Kusaka, Hirofumi; Ikehara, Susumu

    2009-11-01

    It has been reported that bone marrow transplantation (BMT) has clinical effects on not only hematopoietic diseases and autoimmune diseases but also solid malignant tumors and metabolic diseases. We have found that intra-bone marrow-bone marrow transplantation (IBM-BMT) is superior to conventional intravenous BMT, since IBM-BMT enables rapid recovery of donor hematopoiesis and reduces the extent of graft-versus-host disease (GVHD). In this experiment, we examined the effects of IBM-BMT on symptomatic G93A mutant SOD1 transgenic mice (mSOD1 Tg mice), a model mouse line for amyotrophic lateral sclerosis (ALS). Symptomatic mSOD1 Tg mice (12 weeks old) were irradiated with 6Gyx2 at a 4-hour interval, one day before IBM-BMT. The mice were transplanted with bone marrow cells (BMCs) from 12-wk-old eGFP-transgenic C57BL/6 mice (eGFP Tg mice) or BMCs from 12-wk-old mSOD1 Tg mice. The ALS model mice transplanted with BMCs from eGFP Tg mice showed longer survival and slower disease progression than those transplanted with BMCs from mSOD1 Tg mice or untreated mSOD1 Tg mice. There was a significantly high number of eGFP(+) cells in the anterior horn of the spinal cord of the mSOD1 Tg mice transplanted with BMCs of eGFP Tg mice, some of which expressed Iba-1, a marker of microglia, although they did not differentiate into neural cells. These results suggest that the replacement with normal hematopoietic cells improved the neural cell environment, thereby slowing the progression of the disease.

  5. Engineered bone marrow-derived cell sheets restore structure and function of radiation-injured rat urinary bladders.

    PubMed

    Imamura, Tetsuya; Ogawa, Teruyuki; Minagawa, Tomonori; Yokoyama, Hitoshi; Nakazawa, Masaki; Nishizawa, Osamu; Ishizuka, Osamu

    2015-05-01

    Previously, we reported that implantation of isolated single bone marrow-derived cells into radiation-injured urinary bladders could restore structure and function. However, injections of isolated single cells had some limitations. Thus, in this study, we produced bone marrow-derived cell sheets in temperature-responsive culture dishes that release the monolayer sheets intact. We then determined whether the produced cell sheets could restore function to irradiated urinary bladders. Twenty female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2 gray once a week for 5 weeks. Bone marrow cells harvested from two male 17-week-old green fluorescence protein-transfected SD rats were placed in primary culture for 7 days. Bone marrow cell-derived outgrowths were harvested by enzymatic digestion and transferred into the atelocollagen-coated temperature-responsive culture dishes for 2 days. To harvest the secondarily cultured cells as monolayer sheets, a support membrane was put in each culture dish, and then the temperature was reduced to 20°C. Each released cell sheet was then patched onto the irradiated anterior bladder wall (n=10). As controls, cell-free sheets were similarly patched (n=10). After 4 weeks, transplanted cells were detected on the bladder walls. The cell sheet-transplanted bladders had smooth muscle layers and acetylcholinesterase-positive nerve fibers in proportions that were significantly larger than those of the control bladders. In addition, the cell sheet-transplanted bladders had reduced prolyl 4-hydroxylase beta (P4HB)-positive regions of collagen synthesis and apoptosis within the smooth muscle layers. In cystometric investigations, threshold pressures, voiding interval, micturition volume, and bladder capacity in the cell sheet-transplantation group were significantly higher than those in the control group. Residual volume of the cell sheet-transplantation group was significantly lower compared with the control. There were 24 growth

  6. Bone marrow hypoplasia in a cat treated with griseofulvin.

    PubMed

    Rottman, J B; English, R V; Breitschwerdt, E B; Duncan, D E

    1991-02-01

    Three weeks after initiation of griseofulvin treatment for dermatophytosis (40 mg/kg of body weight, q 12 h), an 8-yr-old domestic shorthair cat developed depression, vomiting, and pyrexia. Abnormalities found during physical examination included bilateral mydriasis, visual impairment, grade-II/V systolic murmur and multiple areas of alopecia. The cat was pancytopenic; serum biochemical abnormalities included hyperbilirubinemia, hyperglycemia, hyponatremia, and hypokalemia, and urinalysis revealed proteinuria, glycosuria, and bilirubinuria. Examination of a bone marrow aspirate revealed profound hypoplasia of all precursors. Griseofulvin toxicosis was diagnosed on the basis of the temporal relationship of drug administration with onset of clinical, hematologic, and biochemical abnormalities and failure to identify an infective or neoplastic cause for the bone marrow hypoplasia. The condition was refractory to treatment and the cat was euthanatized. Pathologic changes in the bone marrow were consistent with severe hypoplasia of all bone marrow precursors.

  7. [Bone marrow involvement in ovarian cancer determined by immunohistochemical methods].

    PubMed

    Gabriel, M; Obrebowska, A; Spaczyński, M

    2000-01-01

    Atypical epithelial cells in the bone marrow of patients with ovarian cancer were evaluated using immunohistochemical techniques. We investigated cytospin preparations of bone marrow taken from 9 women with benign ovarian tumors and 59 women with malignant ovarian tumors. Two monoclonal antibodies (NCL-C11 and NCL-CA 125) were used. With both antibodies we were able to detect keratin and CA 125 antigen expression in the bone marrow of 9 (18.4%) of the patients with ovarian cancer. With regard to the wide histological differentiation of ovarian carcinomas, the presence of atypical epithelial cells in the bone marrow was required as a prognostic factor for survival and relapses. This should be investigated in a larger study group. PMID:11326158

  8. Bone marrow osteoma of the tibia: A case report

    PubMed Central

    ZHOU, BEN-GEN; LIU, MEI-YUAN; LV, LI-CHUN; XIA, HONG

    2014-01-01

    In this study, an unusual case of osteoma is presented, whereby a bone marrow osteoma was identified in the tibia. No previous cases of bone marrow osteoma have been reported. In this case, an eight-year-old male presented with discontinuous discomfort in the right distal calf for six months. Radiological examination and computed tomography revealed a radiopaque lesion within the affected bone. A technetium-99m bone scan revealed focally increased uptake in the same region. Together, these observations prior to surgery indicated that the patient may suffer from bone disease. Subsequently, a surgical excision was performed and the biopsy specimen was identified as bone marrow osteoma. Following surgery, the symptoms were eradicated and the prognosis was positive during the 24-month follow-up period. Bone marrow osteoma should be considered when a patient suffers from discontinuous and unexplained limb discomfort. PMID:25364463

  9. Technetium-99m antimony colloid for bone-marrow imaging

    SciTech Connect

    Martindale, A.A.; Papadimitriou, J.M.; Turner, J.H.

    1980-11-01

    Technetium-99m antimony colloid was prepared in our laboratory for bone-marrow imaging. Optimal production of colloid particles of size range 1 to 13 nm was achieved by the use of polyvinylpyrrolidone of mol. wt. 44,000. Electron microscopy was used to size the particles. Studies in rabbits showed exclusive concentration in the subendothelial dendritic phagocytes of the bone marrow. Pseudopods from these cells were found to traverse interendothelial junctions and concentrate colloid from the sinusoids. Imaging studies of bone marrow in rabbits showed the superiority of the Tc-99m antimony colloid over the much larger colloidal particle of Tc-99m sulfur colloid. Tissue distribution studies in the rat confirmed that bone-marrow uptake of Tc-99m antimony colloid was greater than that of Tc-99m sulfur colloid, although blood clearance was much slower.

  10. CNS inflammation and bone marrow neuropathy in type 1 diabetes.

    PubMed

    Hu, Ping; Thinschmidt, Jeffrey S; Yan, Yuanqing; Hazra, Sugata; Bhatwadekar, Ashay; Caballero, Sergio; Salazar, Tatiana; Miyan, Jaleel A; Li, Wencheng; Derbenev, Andrei; Zsombok, Andrea; Tikhonenko, Maria; Dominguez, James M; McGorray, Susan P; Saban, Daniel R; Boulton, Michael E; Busik, Julia V; Raizada, Mohan K; Chan-Ling, Tailoi; Grant, Maria B

    2013-11-01

    By using pseudorabies virus expressing green fluorescence protein, we found that efferent bone marrow-neural connections trace to sympathetic centers of the central nervous system in normal mice. However, this was markedly reduced in type 1 diabetes, suggesting a significant loss of bone marrow innervation. This loss of innervation was associated with a change in hematopoiesis toward generation of more monocytes and an altered diurnal release of monocytes in rodents and patients with type 1 diabetes. In the hypothalamus and granular insular cortex of mice with type 1 diabetes, bone marrow-derived microglia/macrophages were activated and found at a greater density than in controls. Infiltration of CD45(+)/CCR2(+)/GR-1(+)/Iba-1(+) bone marrow-derived monocytes into the hypothalamus could be mitigated by treatment with minocycline, an anti-inflammatory agent capable of crossing the blood-brain barrier. Our studies suggest that targeting central inflammation may facilitate management of microvascular complications.

  11. NIH Blood and Marrow Transplant Late Effects Consensus Conference

    Cancer.gov

    This day and a half symposium will bring together experts in blood and marrow transplantation, late effects, and health care delivery to discuss current evidence and knowledge gaps, develop consensus guidelines, and inform future research in the BMT survivor population.

  12. [Bone and Stem Cells. Intravital imaging of bone marrow microenvironment].

    PubMed

    Mizuno, Hiroki; Kikuta, Junichi; Ishii, Masaru

    2014-04-01

    Various kinds of cell types, such as osteoclasts, osteoblasts, hematopoietic cells, and mesenchymal cells, have been reported to exist in the bone marrow and communicate with each other. Although there have been many previous studies about bone marrow microenvironment, most of them were analyzed by conventional methods such as histological analysis and flow cytometry. These methods could not observe the dynamic cell movement in living bone marrow. Recently rapid development of fluorescent imaging techniques enables us to understand the cellular dynamics in vivo . That's why we have originally established an advanced imaging system for visualizing living bone tissues with intravital two-photon microscopy. Here we show the latest data and the detailed methodology of intravital imaging of bone marrow microenvironment, and also discuss its further application.

  13. Understanding Bone Marrow Transplantation as a Treatment Option

    MedlinePlus

    ... you have had, and your overall health. Transplant Process A bone marrow or cord blood transplant is ... The Transplant Process . For more about the search process, HLA matching, and steps of a transplant, such ...

  14. Clonal analysis of bone marrow and macrophage cultures

    SciTech Connect

    Stewart, C.C.; Walker, E.B.; Johnson, C.; Little, R.

    1984-01-01

    To establish lineages that can be used to study their functional heterogeneity, the proliferation and differentiation of bone marrow derived mononuclear phagocytes and the lineages derived from them were studied. 28 references, 7 figures, 5 tables. (ACR)

  15. Bone marrow metastasis presenting as bicytopenia originating from hepatocellular carcinoma

    PubMed Central

    Hong, Young Mi; Yoon, Ki Tae; Cho, Mong; Kang, Dae Hwan; Kim, Hyung Wook; Choi, Cheol Woong; Park, Su Bum; Heo, Jeong; Woo, Hyun Young; Lim, Won; Bakhtiar UI Islam, SM

    2016-01-01

    The bone is a common site for metastasis in hepatocellular carcinoma (HCC). However, bone marrow metastasis from HCC is rarely reported, and its frequency is unclear. Here we report a rare case of bone marrow metastasis that presented as bicytopenia originating from HCC without bone metastasis. A 58-year-old man was admitted for investigation of a liver mass with extensive lymph node enlargement that was detected when examining his general weakness and weight loss. Laboratory findings revealed anemia, thrombocytopenia, mild elevated liver enzymes, normal prothrombin time percentage and high levels of tumor markers (α-fetoprotein and des-γ-carboxyprothrombin). Abdominal computed tomography showed multiple enhanced masses in the liver and multiple enlarged lymph nodes in the abdomen. A bone marrow biopsy revealed only a few normal hematopoietic cells and abundant tumor cells. Despite its rarity, bone marrow metastasis should always be suspected in HCC patients even if accompanied by cirrhosis. PMID:27184470

  16. Neonatal susceptibility to MHV3 infection in mice. II. Role of natural effector marrow cells in transfer of resistance

    SciTech Connect

    Tardieu, M.; H'ery, C.; Dupuy, J.M.

    1980-01-01

    Protection of newborn mice against MHV3 infection requires the transfer of several cell populations originating from adult syngeneic donors: adherent spleen cells, T lymphocytes, and a third population present in the nonadherent spleen cell fraction, in peritoneal exudates, and in bone marrow cells (M cells). M cells were found to be sensitive to short-term incubation at 37 degrees C and to preincubation with anti-bone marrow antiserum, mitomycin C, puromycin, and aggregated Ig, the latter suggesting the presence of Fc receptors. They were resistant to silica particles but were sensitive to irradiation with x-rays as well as with 89Strontium. Nonadherent spleen cells, however, behaved differently from M cells toward x-irradiation since they were radio-resistant, suggesting that M cells are precursors that require further differentiation or division to participate in MHV3 resistance. Effector M cells responsible for MHV3 resistance display, therefore, some similarities with natural killing cells. They might belong to a group of effector cells operative in regulatory processes or anti-tumor surveillance but also may be defense mechanisms against infectious diseases.

  17. Immunosuppressive Effects of Multipotent Mesenchymal Stromal Cells on Graft-Versus-Host Disease in Rats Following Allogeneic Bone Marrow Transplantation

    PubMed Central

    Nevruz, Oral; Avcu, Ferit; Ural, A. Uğur; Pekel, Aysel; Dirican, Bahar; Safalı, Mükerrem; Akdağ, Elvin; Beyzadeoğlu, Murat; İde, Tayfun; Sengül, Ali

    2013-01-01

    Objective: Graft-versus-host disease (GVHD) is a major obstacle to successful allogeneic bone marrow transplantation (allo-BMT). While multipotent mesenchymal stromal cells (MSCs) demonstrate alloresponse in vitro and in vivo, they also have clinical applications toward prevention or treatment of GVHD. The aim of this study was to investigate the ability of MSCs to prevent or treat GVHD in a rat BMT model. Materials and Methods: The GVHD model was established by transplantation of Sprague Dawley rats’ bone marrow and spleen cells into lethally irradiated (950 cGy) SDxWistar rat recipients. A total of 49 rats were randomly assigned to 4 study and 3 control groups administered different GVHD prophylactic regimens including MSCs. After transplantation, clinical GVHD scores and survival status were monitored. Results: All irradiated and untreated control mice with GVHD died. MSCs inhibited lethal GVHD as efficiently as the standard GVHD prophylactic regimen. The gross and histopathological findings of GVHD and the ratio of CD4/CD8 expression decreased. The subgroup given MSCs displayed higher in vivo proportions of CD25+ T cells and plasma interleukin-2 levels as compared to conventional GVHD treatment after allo-BMT. Conclusion: Our results suggest that clinical use of MSCs in both prophylaxis against and treatment of established GVHD is effective. This study supports the use of MSCs in the prophylaxis and treatment of GVHD after allo-BMT; however, large scale studies are needed. Conflict of interest:None declared. PMID:24385804

  18. Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients.

    PubMed Central

    Müller-Hermelink, H. K.; Sale, G. E.; Borisch, B.; Storb, R.

    1987-01-01

    A major hypothesis to explain the immunodeficiency associated with bone marrow transplantation states that thymic epithelial damage due to graft-versus-host disease (GVHD) abrogates or delays the recovery of normal immunologic function. This study evaluated the thymus glands of 36 human bone marrow transplant recipients dying between 4 and 1742 days after transplant using histology, histochemistry, and immunohistology. The observations lead to a model of thymic damage by irradiation, chemotherapy, and GVHD in which early injury by all three of these agents results in profound thymic atrophy followed by long-delayed restitution. Patients undergoing total body irradiation showed more severe damage to thymic cortical and medullary epithelium than did patients undergoing chemotherapy alone as preparation for transplantation. Patients with GVHD showed additional damage in the form of individual thymic epithelial cell death and showed HLA-DR surface protein expression on thymic epithelium during GVHD. Longer-term survivors showed a profoundly delayed restitution of normal thymic epithelium and delayed evidence of restored lymphopoiesis. A few patients dying late after transplant showed evidence of reconstitution of normal thymic structure or nodules of lymphopoiesis in focal areas of epithelial-cell reconstitution. Evidence of such lymphopoiesis was seen at times ranging between 90 and 1742 days after grafting. The data are consistent with a model of long-standing thymic damage caused by GVHD which is reversible after the development of tolerance. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:3314529

  19. [Radiobiological effects of total mice irradiation with Bragg's peak protons].

    PubMed

    Ivanov, A A; Molokanov, A G; Ushakov, I B; Bulynina, T M; Vorozhtsova, S V; Abrosimova, A N; Kryuchkova, D M; Gaevsky, V N

    2013-01-01

    Outbred CD-1 female mice were irradiated in a proton beam (171 MeV, 5 Gy) on the phasotron at the Joint Institute of Nuclear Research (Dubna, Russia). Radiation was delivered in two points of the depth dose distribution: at the beam entry and on Bragg's peak. Technical requirements for studying the effects of Bragg's peak protons on organism of experimental animals were specified. It was recognized that protons with high linear energy transfer (mean LET = 1.6 keV/microm) cause a more severe damaging effect to the hemopoietic system and cytogenetic apparatus in bone marrow cells as compared with entry protons and 60Co gamma-quanta. It was shown that recovery of the main hemopoietic organs and immunity as well as elimination of chromosomal aberrations take more time following irradiation with Bragg's peak protons but not protons with the energy of 171 MeV.

  20. A marker chromosome in post-transplant bone marrow.

    PubMed

    Morsberger, Laura; Powell, Kerry; Ning, Yi

    2016-01-01

    Detection of small supernumerary marker chromosomes in karyotype analysis represents a diagnostic challenge. While such markers are usually detected during cytogenetic studies of constitutional chromosome abnormalities, they have also been found in specimens submitted from patients with acquired malignancies. We report here the detection of a marker chromosome in a bone marrow specimen from a patient who received a bone marrow transplantation. We discuss the importance of proper characterization and interpretation of marker chromosomes in clinical practice. PMID:27252781

  1. Pathophysiology and Management of Inherited Bone Marrow Failure Syndromes

    PubMed Central

    Shimamura, Akiko; Alter, Blanche P.

    2012-01-01

    The inherited marrow failure syndromes are a diverse set of genetic disorders characterized by hematopoietic aplasia and cancer predisposition. The clinical phenotypes are highly variable and much broader than previously recognized. The medical management of the inherited marrow failure syndromes differs from that of acquired aplastic anemia or malignancies arising in the general population. Diagnostic workup, molecular pathogenesis, and clinical treatment are reviewed. PMID:20417588

  2. Selective lymphoid irradiation. I. An approach to transplantation.

    PubMed

    Hardy, M A; Fawwaz, R A; Oluwole, S; Todd, G; Nowygrod, R; Reemtsma, K

    1979-08-01

    The kinetics, distribution, and radiobiologic effects of palladium (Pd)-109-hematoporphyrin were determined in the rat. In addition, we studied the effect on rat heart allograft survival of Pd-109-hematoporphyrin, with and without antilymphocyte serum (ALS). A single sublethal dose of Pd-109-hematoporphyrin (up to 36 muCi/kg) resulted in the following: predominant concentration in lymphoid tissue and proximal bone marrow, complete central and proximal bone marrow ablation with preservation of distal bone marrow, massive depletion of lymphocytes from lymph nodes and spleen, an 80% reduction in peripheral blood lymphocytes which was completed by the addition of ALS, full recovery of lymphoid tissue and blood cellularity within 60 days of administration of radionuclide, and a 100% animal survival rate. This method of selective lymphoid irradiation (SLI) prolongs indefinitely Fisher cardiac allografts in Lewis recipients and significantly prolongs cardiac allograft survival across major histocompatibility barries (ACI to Lewis or to Fisher). Specific tolerance to donor strains was demonstrated by the acceptance of Fisher skin by Lewis recipients carrying 150-day-old Fisher hearts. Third party (ACI) skin allografts were rapidly rejected by the same animals. Further studies of SLI in larger animals are required to determine the optimal safe dose of SLI in man. PMID:380034

  3. Activation of bone marrow phagocytes following benzene treatment of mice.

    PubMed Central

    Laskin, D L; MacEachern, L; Snyder, R

    1989-01-01

    Techniques in flow cytometry/cell sorting were used to characterize the effects of benzene and its metabolites on subpopulations of bone marrow cells. Treatment of male Balb/c mice with benzene (880 mg/kg) or a combination of its metabolites, hydroquinone and phenol (50 mg/kg), resulted in a 30 to 40% decrease in bone marrow cellularity. Flow cytometric analysis revealed two subpopulations of bone marrow cells that could be distinguished by their size and density or granularity. The larger, more dense subpopulation was found to consist predominantly of macrophages and granulocytes as determined by monoclonal antibody binding and by cell sorting. Benzene treatment had no selective cytotoxic effects on subpopulations of bone marrow cells. To determine if benzene treatment activated bone marrow phagocytes, we quantified production of hydrogen peroxide by these cells using the fluorescent indicator dye, 2',7'-dichlorofluorescein diacetate. We found that macrophages and granulocytes from bone marrow of treated mice produced 50% more hydrogen peroxide in response to the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate than did cells from control animals. It is hypothesized that phagocyte activation and production of cytotoxic reactive oxygen intermediates may contribute to hematotoxicity induced by benzene. PMID:2676504

  4. Benzene toxicokinetics in humans: exposure of bone marrow to metabolites.

    PubMed Central

    Watanabe, K H; Bois, F Y; Daisey, J M; Auslander, D M; Spear, R C

    1994-01-01

    A three compartment physiologically based toxicokinetic model was fitted to human data on benzene disposition. Two separate groups of model parameter derivations were obtained, depending on which data sets were being fitted. The model was then used to simulate five environmental or occupational exposures. Predicted values of the total bone marrow exposure to benzene and cumulative quantity of metabolites produced by the bone marrow were generated for each scenario. The relation between cumulative quantity of metabolites produced by the bone marrow and continuous benzene exposure was also investigated in detail for simulated inhalation exposure concentrations ranging from 0.0039 ppm to 150 ppm. At the level of environmental exposures, no dose rate effect was found for either model. The occupational exposures led to only slight dose rate effects. A 32 ppm exposure for 15 minutes predicted consistently higher values than a 1 ppm exposure for eight hours for the total exposure of bone marrow to benzene and the cumulative quantity of metabolites produced by the bone marrow. The general relation between the cumulative quantity of metabolites produced by the bone marrow and the inhalation concentration of benzene is not linear. An inflection point exists in some cases leading to a slightly S shaped curve. At environmental levels (0.0039-10 ppm) the curve bends upward, and it saturates at high experimental exposures (greater than 100 ppm). PMID:8044234

  5. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  6. MASSIVE LEAKAGE IRRADIATOR

    DOEpatents

    Wigner, E.P.; Szilard, L.; Christy, R.F.; Friedman, F.L.

    1961-05-30

    An irradiator designed to utilize the neutrons that leak out of a reactor around its periphery is described. It avoids wasting neutron energy and reduces interference with the core flux to a minimum. This is done by surrounding all or most of the core with removable segments of the material to be irradiated within a matrix of reflecting material.

  7. Perspective on food irradiation

    SciTech Connect

    Not Available

    1987-02-01

    Recent US Food and Drug Administration approval of irradiation treatment for fruit, vegetables and pork has stimulated considerable discussion in the popular press on the safety and efficacy of irradiation processing of food. This perspective is designed to summarize the current scientific information available on this issue.

  8. Reversal of impaired wound healing in irradiated rats by platelet-derived growth factor-BB

    SciTech Connect

    Mustoe, T.A.; Purdy, J.; Gramates, P.; Deuel, T.F.; Thomason, A.; Pierce, G.F. )

    1989-10-01

    This study examined the potential influence of platelet-derived growth factor-BB homodimers (PDGF-BB) on surgical incisions in irradiated animals with depressed wound healing. Rats were irradiated with either 800 rads total body or 2,500 rads surface irradiation. Parallel dorsal skin incisions were made 2 days later, and PDGF-BB was applied topically a single time to one of two incisions. In total body-irradiated rats, bone marrow-derived elements were severely depressed, wound macrophages were virtually eliminated, and PDGF-BB treatment was ineffective. However, in surface-irradiated rats, PDGF-BB treatment recruited macrophages into wounds and partially reversed impaired healing on day 7 (p less than 0.005) and day 12 (p less than 0.001). PDGF-BB-treated wounds were 50 percent stronger than the paired control wounds. The results suggest PDGF requires bone marrow-derived cells, likely wound macrophages, for activity and that it may be useful as a topical agent in postirradiation surgical incisions.

  9. Functional hyposplenism following allogeneic bone marrow transplantation.

    PubMed Central

    Cuthbert, R J; Iqbal, A; Gates, A; Toghill, P J; Russell, N H

    1995-01-01

    AIMS--To investigate the incidence of functional hyposplenism in a group of patients who had undergone allogeneic bone marrow transplantation (BMT). METHODS--Splenic function was assessed by counting the number of gluteraldehyde fixed red blood cells containing pits or indentations as examined by interference phase microscopy. Normal values are < 2% whereas splenectomy patients have values of 25 to 40%. RESULTS--Twenty eight BMT recipients (17 men, 11 women) were studied at varying periods post-transplant and the results compared with 20 healthy volunteers and 10 patients who had undergone splenectomy or had splenic atrophy because of haematological conditions. Of the 28 BMT recipients, one had undergone a prior splenectomy; of the remaining 27 patients, four (15%) had evidence of functional hyposplenism with between 5.0 and 34.0% pitted cells. Of these four patients, one had active extensive chronic graft versus host disease (GvHD) which has been previously reported to be associated with functional hyposplenism following transplantation. Only one of the four patients had peripheral blood red cell changes typical of hyposplenism. CONCLUSION--These results confirm that extensive chronic GvHD is associated with hyposplenism. Intermediate degrees of functional hyposplenism may also occur following BMT in the absence of chronic GvHD and in the absence of haematological features of hyposplenism on routine blood films. This may be of significance in mediating the susceptibility to infection with encapsulating bacteria seen following allogeneic BMT. PMID:7730489

  10. Endocrine complications following pediatric bone marrow transplantation.

    PubMed

    Ho, Josephine; Lewis, Victor; Guilcher, Gregory M T; Stephure, David K; Pacaud, Danièle

    2011-01-01

    Pediatric bone marrow transplantation (BMT) for various diseases can lead to endocrine system dysfunction owing to preparative regimens involving chemotherapy and radiation therapy. We assessed the prevalence of post-BMT endocrine complications in children treated at the Alberta Children's Hospital (ACH) from 1991 to 2001. Time of onset of endocrine dysfunction, underlying disease processes, chemotherapy, radiation therapy and age at BMT were characterized. Subjects of <18 years of age at the time of allogeneic or autologous BMT for whom 1-year follow-up through the ACH and a chart were available for review were included in the study. Subjects with a pre-existing endocrine condition were excluded. Of the 194 pediatric BMT procedures performed at the ACH between January 1, 1991 and December 31, 2001, 150 complete charts were available for review. Sixty five subjects received follow-up care at other centers and were excluded. Therefore, a total of 85 subjects were included in the review. The prevalence of endocrine complications identified was: primary hypothyroidism 1.2%, compensated hypothyroidism 7.0%, hyperthyroidism 2.4%, hypergonadotrophic hypogonadism 22.4%, abnormal bone density 2.4%, and secondary diabetes mellitus 1.2%. These findings emphasize the need to screen for endocrine system dysfunction, particularly hypergonadotrophic hypogonadism, in children who have undergone BMT. Children need long-term follow-up so that endocrine complications can be diagnosed and treated promptly. PMID:21823531

  11. Characterization of an orthovoltage biological irradiator used for radiobiological research.

    PubMed

    Azimi, Rezvan; Alaei, Parham; Spezi, Emiliano; Hui, Susanta K

    2015-05-01

    Orthovoltage irradiators are routinely used to irradiate specimens and small animals in biological research. There are several reports on the characteristics of these units for small field irradiations. However, there is limited knowledge about use of these units for large fields, which are essential for emerging large-field irregular shape irradiations, namely total marrow irradiation used as a conditioning regimen for hematological malignancies. This work describes characterization of a self-contained Orthovoltage biological irradiator for large fields using measurements and Monte Carlo simulations that could be used to compute the dose for in vivo or in vitro studies for large-field irradiation using this or a similar unit. Percentage depth dose, profiles, scatter factors, and half-value layers were measured and analyzed. A Monte Carlo model of the unit was created and used to generate depth dose and profiles, as well as scatter factors. An ion chamber array was also used for profile measurements of flatness and symmetry. The output was determined according to AAPM Task Group 61 guidelines. The depth dose measurements compare well with published data for similar beams. The Monte Carlo-generated depth dose and profiles match our measured doses to within 2%. Scatter factor measurements indicate gradual variation of these factors with field size. Dose rate measured by placing the ion chamber atop the unit's steel plate or solid water indicate enhanced readings of 5 to 28% compared with those measured in air. The stability of output over a 5-year period is within 2% of the 5-year average. PMID:25694476

  12. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  13. MDR1 gene expression enhances long-term engraftibility of cultured bone marrow cells

    SciTech Connect

    Rentala, Satyanarayana; Sagar Balla, Murali Mohan; Khurana, Satish; Mukhopadhyay, Asok . E-mail: asok@nii.res.in

    2005-09-30

    Primitive hematopoietic stem cells are responsible for long-term engraftment in irradiated host. Here, we report that multi-drug resistance 1 (mdr1) gene expressing primitive hematopoietic cells were multiplied in ex vivo culture, with the support of extracellular matrix components and cytokines. About 20-fold expansion of total nucleated cells was achieved in a 10-day culture. Lin{sup -}Sca-1{sup +} and long-term culture-initiating cells were increased by 54- and 26-fold, respectively. Expanded cells were long-term multi-lineage engraftible in sub-lethally irradiated mice. Donor-derived peripheral blood chimerism was significantly higher (73.2 {+-} 9.1%, p < 0.01) in expanded cells than in normal and 5-flurouracil-treated bone marrow cells. Most interestingly, the expression of mdr1 gene was significantly enhanced in cultured cells than in other two sources of donor cells. The mdr1 gene was functional since expanded cells effluxed Hoechst 33342 and Rh123 dyes. These results suggest that primitive engraftible stem cells can be expanded in the presence of suitable microenvironments.

  14. Donor MHC class II antigen is essential for induction of transplantation tolerance by bone marrow cells.

    PubMed

    Umemura, A; Monaco, A P; Maki, T

    2000-05-01

    Posttransplant infusion of donor bone marrow cells (BMC) induces tolerance to allografts in adult mice, dogs, nonhuman primates, and probably humans. Here we used a mouse skin allograft model and an allogeneic radiation chimera model to examine the role of MHC Ags in tolerance induction. Infusion of MHC class II Ag-deficient (CIID) BMC failed to prolong C57BL/6 (B6) skin grafts in ALS- and rapamycin-treated B10.A mice, whereas wild-type B6 or MHC class I Ag-deficient BMC induced prolongation. Removal of class II Ag-bearing cells from donor BMC markedly reduced the tolerogenic effect compared with untreated BMC, although graft survival was significantly longer in mice given depleted BMC than that in control mice given no BMC. Infusion of CIID BMC into irradiated syngeneic B6 or allogeneic B10.A mice produced normal lymphoid cell reconstitution including CD4+ T cells except for the absence of class II Ag-positive cells. However, irradiated B10.A mice reconstituted with CIID BMC rejected all B6 and a majority of CIID skin grafts despite continued maintenance of high degree chimerism. B10.A mice reconstituted with B6 BMC maintained chimerism and accepted both B6 and CIID skin grafts. Thus, expression of MHC class II Ag on BMC is essential for allograft tolerance induction and peripheral chimerism with cells deficient in class II Ag does not guarantee allograft acceptance. PMID:10779744

  15. The effects of different schedules of total-body irradiation in heterotopic vascularized bone transplantation. An experimental study in the Lewis rat

    SciTech Connect

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J. )

    1990-12-01

    To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease in bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation.

  16. Hematological and TGF-beta variations after whole-body proton irradiation

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on five bone-marrow-derived cell types and transforming growth factor-beta 1 (TGF-beta 1) were examined and compared to the effects of photons (60Co). C57BL/6 mice were exposed to 3 Gy (0.4 Gy/min) protons at spread-out Bragg peak (SOBP), protons at entry (E), or 60Co and euthanized on days 0.5-17 thereafter. 60Co-irradiated animals had decreased erythrocytes, hemoglobin and hematocrit at 12 hours post-exposure; depression was not noted in proton (SOBP or E)-irradiated groups until day 4. Significantly decreased leukocyte counts were observed at this same time in all irradiated groups, with lymphocyte loss being greater than that of monocytes, and the depression was generally maintained. In contrast, the levels of neutrophils and thrombocytes fluctuated, especially during the first week; significant differences were noted among irradiated groups in neutrophil levels. Plasma TGF-beta 1 was elevated on day 7 in the 60Co, but not proton, irradiated mice. Collectively, the data show that dramatic and persistent changes occurred in all irradiated groups. However, few differences in assay results were seen between animals exposed to protons (SOBP or E) or photons, as well as between the groups irradiated with either of the two regions of the proton Bragg curve.

  17. Amelioration of radiation-induced oral cavity mucositis and distant bone marrow suppression in fanconi anemia Fancd2-/- (FVB/N) mice by intraoral GS-nitroxide JP4-039.

    PubMed

    Berhane, Hebist; Shinde, Ashwin; Kalash, Ronny; Xu, Karen; Epperly, Michael W; Goff, Julie; Franicola, Darcy; Zhang, Xichen; Dixon, Tracy; Shields, Donna; Wang, Hong; Wipf, Peter; Li, Song; Gao, Xiang; Greenberger, Joel S

    2014-07-01

    The altered DNA damage response pathway in patients with Fanconi anemia (FA) may increase the toxicity of clinical radiotherapy. We quantitated oral cavity mucositis in irradiated Fanconi anemia Fancd2(-/-) mice, comparing this to Fancd2(+/-) and Fancd2(+/+) mice, and we measured distant bone marrow suppression and quantitated the effect of the intraoral radioprotector GS-nitroxide, JP4-039 in F15 emulsion. We found that FA mice were more susceptible to radiation injury and that protection from radiation injury by JP4-039/F15 was observed at all radiation doses. Adult 10-12-week-old mice, of FVB/N background Fancd2(-/-), Fancd2(+/-) and Fancd2(+/+) were head and neck irradiated with 24, 26, 28 or 30 Gy (large fraction sizes typical of stereotactic radiosurgery treatments) and subgroups received intraoral JP4-039 (0.4 mg/mouse in 100 μL F15 liposome emulsion) preirradiation. On day 2 or 5 postirradiation, mice were sacrificed, tongue tissue and femur marrow were excised for quantitation of radiation-induced stress response, inflammatory and antioxidant gene transcripts, histopathology and assay for femur marrow colony-forming hematopoietic progenitor cells. Fancd2(-/-) mice had a significantly higher percentage of oral mucosal ulceration at day 5 after 26 Gy irradiation (59.4 ± 8.2%) compared to control Fancd2(+/+) mice (21.7 ± 2.9%, P = 0.0063). After 24 Gy irradiation, Fancd2(-/-) mice had a higher oral cavity percentage of tongue ulceration compared to Fancd2(+/+) mice irradiated with higher doses of 26 Gy (P = 0.0123). Baseline and postirradiation oral cavity gene transcripts were altered in Fancd2(-/-) mice compared to Fancd2(+/+) controls. Fancd2(-/-) mice had decreased baseline femur marrow CFU-GM, BFUe and CFU-GEMM, which further decreased after 24 or 26 Gy head and neck irradiation. These changes were not seen in head- and neck-irradiated Fancd2(+/+) mice. In radiosensitive Fancd2(-/-) mice, biomarkers of both local oral cavity and distant marrow

  18. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  19. Alaskan Commodities Irradiation Project

    SciTech Connect

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.; Das, D.K.; Lewis, C.E.; Workman, W.G.; Tumeo, M.A.; Hok, C.I.; Birklid, C.A.; Bennett, F.L.

    1988-12-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs.

  20. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    NASA Technical Reports Server (NTRS)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week old C57BL6/J mice were exposed to high LET (56 Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3 - 4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 micron pixel size) and marrow cell redox assessed using membrane permeable, free radical sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT PCR. Interestingly, 3 - 4 days post exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF FM Diacetate or CM H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower(24%) relative to sham irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down regulate iNOS by 0.54 - 0.58 fold

  1. Mitigating effects of hUCB-MSCs on the hematopoietic syndrome resulting from total body irradiation.

    PubMed

    Shim, Sehwan; Lee, Seung Bum; Lee, Jong-geol; Jang, Won-Suk; Lee, Sun-Joo; Park, Sunhoo; Lee, Seung-Sook

    2013-04-01

    This study evaluated the clinical and pathologic effects of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in the recovery from total body irradiation by comparing it with the effects of granulocyte-colony stimulating factor (G-CSF), an efficacious drug in the treatment of acute bone marrow radiation syndrome. BALB/c mice were treated with G-CSF or hUCB-MSCs after they were irradiated with 7 Gy cobalt-60 γ-rays. Circulating blood counts, histopathologic changes in the bone marrow, and plasma level of Flt-3L and transforming growth factor (TGF-β1) were monitored in the postirradiation period. Hematologic analysis revealed that the peripheral leukocyte counts were markedly increased in the hUCB-MSCs-treated group, whereas G-CSF-treated mice did not recover significantly. Moreover, differential counts showed that hUCB-MSC treatment has regenerative effects on white blood cells, lymphocytes, and monocytes compared with the irradiated group. Treatment with hUCB-MSCs or G-CSF significantly increased immunoreactivity of Ki-67 until 3 weeks after total body irradiation. However, at 3 weeks, the number of Ki-67 immunoreactive cells significantly increased in the hUCB-MSCs-treated group compared with the G-CSF-treated group. Furthermore, hUCB-MSC treatment significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGF-β1, whereas G-CSF treatment failed to decrease the plasma Flt-3L levels at 2 weeks after irradiation. Based on the differences in circulating blood cell reconstitution and cell density of bone marrow, the authors suggest that MSC treatment is superior to G-CSF treatment for hematopoietic reconstitution following sublethal do