Preconception Carrier Screening by Genome Sequencing: Results from the Clinical Laboratory.
Punj, Sumit; Akkari, Yassmine; Huang, Jennifer; Yang, Fei; Creason, Allison; Pak, Christine; Potter, Amiee; Dorschner, Michael O; Nickerson, Deborah A; Robertson, Peggy D; Jarvik, Gail P; Amendola, Laura M; Schleit, Jennifer; Simpson, Dana Kostiner; Rope, Alan F; Reiss, Jacob; Kauffman, Tia; Gilmore, Marian J; Himes, Patricia; Wilfond, Benjamin; Goddard, Katrina A B; Richards, C Sue
2018-06-07
Advances in sequencing technologies permit the analysis of a larger selection of genes for preconception carrier screening. The study was designed as a sequential carrier screen using genome sequencing to analyze 728 gene-disorder pairs for carrier and medically actionable conditions in 131 women and their partners (n = 71) who were planning a pregnancy. We report here on the clinical laboratory results from this expanded carrier screening program. Variants were filtered and classified using the latest American College of Medical Genetics and Genomics (ACMG) guideline; only pathogenic and likely pathogenic variants were confirmed by orthologous methods before being reported. Novel missense variants were classified as variants of uncertain significance. We reported 304 variants in 202 participants. Twelve carrier couples (12/71 couples tested) were identified for common conditions; eight were carriers for hereditary hemochromatosis. Although both known and novel variants were reported, 48% of all reported variants were missense. For novel splice-site variants, RNA-splicing assays were performed to aid in classification. We reported ten copy-number variants and five variants in non-coding regions. One novel variant was reported in F8, associated with hemophilia A; prenatal testing showed that the male fetus harbored this variant and the neonate suffered a life-threatening hemorrhage which was anticipated and appropriately managed. Moreover, 3% of participants had variants that were medically actionable. Compared with targeted mutation screening, genome sequencing improves the sensitivity of detecting clinically significant variants. While certain novel variant interpretation remains challenging, the ACMG guidelines are useful to classify variants in a healthy population. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1.
Oatts, Julius T; Duncan, Jacque L; Hoyt, Creig S; Slavotinek, Anne M; Moore, Anthony T
2017-12-01
Mutations in the BRCA1-associated protein required for the ataxia telangiectasia mutated (ATM) activation-1 (BRAT1) gene cause lethal neonatal rigidity and multifocal seizure syndrome characterized by rigidity and intractable seizures and a milder phenotype with intellectual disability, seizures, nonprogressive cerebellar ataxia or dyspraxia, and cerebellar atrophy. To date, nystagmus, cortical visual impairment, impairment of central vision, optic nerve hypoplasia, and optic atrophy have been described in this condition. This article describes the retinal findings in a patient with biallelic deleterious sequence variants in BRAT1. Case report of a child with biallelic sequence variants in the BRAT1 gene. This patient had developmental delay, microcephaly, nystagmus, and esotropia, and full-field electroretinography (ERG) revealed an inner retinal dystrophy. She was found on exome sequencing to have compound heterozygous sequence variants in the BRAT1 gene: one maternally inherited frameshift variant (c.294dupA, predicting p.Leu99Thrfs*92), which has previously been reported, and one paternally inherited novel missense variant (c.803G>A, p.Arg268His), which is likely to affect protein function. Biallelic sequence variants in BRAT1 have been reported to cause a variety of ocular and systemic manifestations, but to our knowledge, this is the first report of inner retinal dysfunction manifest as selective loss of full-field ERG scotopic and photopic b-wave amplitudes.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637
From days to hours: reporting clinically actionable variants from whole genome sequencing.
Middha, Sumit; Baheti, Saurabh; Hart, Steven N; Kocher, Jean-Pierre A
2014-01-01
As the cost of whole genome sequencing (WGS) decreases, clinical laboratories will be looking at broadly adopting this technology to screen for variants of clinical significance. To fully leverage this technology in a clinical setting, results need to be reported quickly, as the turnaround rate could potentially impact patient care. The latest sequencers can sequence a whole human genome in about 24 hours. However, depending on the computing infrastructure available, the processing of data can take several days, with the majority of computing time devoted to aligning reads to genomics regions that are to date not clinically interpretable. In an attempt to accelerate the reporting of clinically actionable variants, we have investigated the utility of a multi-step alignment algorithm focused on aligning reads and calling variants in genomic regions of clinical relevance prior to processing the remaining reads on the whole genome. This iterative workflow significantly accelerates the reporting of clinically actionable variants with no loss of accuracy when compared to genotypes obtained with the OMNI SNP platform or to variants detected with a standard workflow that combines Novoalign and GATK.
Whole-genome sequence-based analysis of thyroid function.
Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J; Traglia, Michela; Brown, Suzanne J; Mullin, Benjamin H; Shihab, Hashem A; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R; Beilby, John P; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D; Hui, Jennie; Lim, Ee M; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R B; Bell, Jordana T; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M; Naitza, Silvia; Walsh, John P; Spector, Tim; Davey Smith, George; Durbin, Richard; Richards, J Brent; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J; Wilson, Scott G
2015-03-06
Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function.
Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C
2013-01-01
The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.
Nyaku, Seloame T.; Sripathi, Venkateswara R.; Kantety, Ramesh V.; Gu, Yong Q.; Lawrence, Kathy; Sharma, Govind C.
2013-01-01
The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene. PMID:23593343
Roy, Somak; Durso, Mary Beth; Wald, Abigail; Nikiforov, Yuri E; Nikiforova, Marina N
2014-01-01
A wide repertoire of bioinformatics applications exist for next-generation sequencing data analysis; however, certain requirements of the clinical molecular laboratory limit their use: i) comprehensive report generation, ii) compatibility with existing laboratory information systems and computer operating system, iii) knowledgebase development, iv) quality management, and v) data security. SeqReporter is a web-based application developed using ASP.NET framework version 4.0. The client-side was designed using HTML5, CSS3, and Javascript. The server-side processing (VB.NET) relied on interaction with a customized SQL server 2008 R2 database. Overall, 104 cases (1062 variant calls) were analyzed by SeqReporter. Each variant call was classified into one of five report levels: i) known clinical significance, ii) uncertain clinical significance, iii) pending pathologists' review, iv) synonymous and deep intronic, and v) platform and panel-specific sequence errors. SeqReporter correctly annotated and classified 99.9% (859 of 860) of sequence variants, including 68.7% synonymous single-nucleotide variants, 28.3% nonsynonymous single-nucleotide variants, 1.7% insertions, and 1.3% deletions. One variant of potential clinical significance was re-classified after pathologist review. Laboratory information system-compatible clinical reports were generated automatically. SeqReporter also facilitated quality management activities. SeqReporter is an example of a customized and well-designed informatics solution to optimize and automate the downstream analysis of clinical next-generation sequencing data. We propose it as a model that may envisage the development of a comprehensive clinical informatics solution. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Guidelines for investigating causality of sequence variants in human disease
MacArthur, D. G.; Manolio, T. A.; Dimmock, D. P.; Rehm, H. L.; Shendure, J.; Abecasis, G. R.; Adams, D. R.; Altman, R. B.; Antonarakis, S. E.; Ashley, E. A.; Barrett, J. C.; Biesecker, L. G.; Conrad, D. F.; Cooper, G. M.; Cox, N. J.; Daly, M. J.; Gerstein, M. B.; Goldstein, D. B.; Hirschhorn, J. N.; Leal, S. M.; Pennacchio, L. A.; Stamatoyannopoulos, J. A.; Sunyaev, S. R.; Valle, D.; Voight, B. F.; Winckler, W.; Gunter, C.
2014-01-01
The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development. PMID:24759409
Guidelines for investigating causality of sequence variants in human disease.
MacArthur, D G; Manolio, T A; Dimmock, D P; Rehm, H L; Shendure, J; Abecasis, G R; Adams, D R; Altman, R B; Antonarakis, S E; Ashley, E A; Barrett, J C; Biesecker, L G; Conrad, D F; Cooper, G M; Cox, N J; Daly, M J; Gerstein, M B; Goldstein, D B; Hirschhorn, J N; Leal, S M; Pennacchio, L A; Stamatoyannopoulos, J A; Sunyaev, S R; Valle, D; Voight, B F; Winckler, W; Gunter, C
2014-04-24
The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.
Carss, Keren J; Arno, Gavin; Erwood, Marie; Stephens, Jonathan; Sanchis-Juan, Alba; Hull, Sarah; Megy, Karyn; Grozeva, Detelina; Dewhurst, Eleanor; Malka, Samantha; Plagnol, Vincent; Penkett, Christopher; Stirrups, Kathleen; Rizzo, Roberta; Wright, Genevieve; Josifova, Dragana; Bitner-Glindzicz, Maria; Scott, Richard H; Clement, Emma; Allen, Louise; Armstrong, Ruth; Brady, Angela F; Carmichael, Jenny; Chitre, Manali; Henderson, Robert H H; Hurst, Jane; MacLaren, Robert E; Murphy, Elaine; Paterson, Joan; Rosser, Elisabeth; Thompson, Dorothy A; Wakeling, Emma; Ouwehand, Willem H; Michaelides, Michel; Moore, Anthony T; Webster, Andrew R; Raymond, F Lucy
2017-01-05
Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease. Copyright © 2017. Published by Elsevier Inc.
Whole genome sequences of a male and female supercentenarian, ages greater than 114 years.
Sebastiani, Paola; Riva, Alberto; Montano, Monty; Pham, Phillip; Torkamani, Ali; Scherba, Eugene; Benson, Gary; Milton, Jacqueline N; Baldwin, Clinton T; Andersen, Stacy; Schork, Nicholas J; Steinberg, Martin H; Perls, Thomas T
2011-01-01
Supercentenarians (age 110+ years old) generally delay or escape age-related diseases and disability well beyond the age of 100 and this exceptional survival is likely to be influenced by a genetic predisposition that includes both common and rare genetic variants. In this report, we describe the complete genomic sequences of male and female supercentenarians, both age >114 years old. We show that: (1) the sequence variant spectrum of these two individuals' DNA sequences is largely comparable to existing non-supercentenarian genomes; (2) the two individuals do not appear to carry most of the well-established human longevity enabling variants already reported in the literature; (3) they have a comparable number of known disease-associated variants relative to most human genomes sequenced to-date; (4) approximately 1% of the variants these individuals possess are novel and may point to new genes involved in exceptional longevity; and (5) both individuals are enriched for coding variants near longevity-associated variants that we discovered through a large genome-wide association study. These analyses suggest that there are both common and rare longevity-associated variants that may counter the effects of disease-predisposing variants and extend lifespan. The continued analysis of the genomes of these and other rare individuals who have survived to extremely old ages should provide insight into the processes that contribute to the maintenance of health during extreme aging.
Whole Genome Sequences of a Male and Female Supercentenarian, Ages Greater than 114 Years
Sebastiani, Paola; Riva, Alberto; Montano, Monty; Pham, Phillip; Torkamani, Ali; Scherba, Eugene; Benson, Gary; Milton, Jacqueline N.; Baldwin, Clinton T.; Andersen, Stacy; Schork, Nicholas J.; Steinberg, Martin H.; Perls, Thomas T.
2012-01-01
Supercentenarians (age 110+ years old) generally delay or escape age-related diseases and disability well beyond the age of 100 and this exceptional survival is likely to be influenced by a genetic predisposition that includes both common and rare genetic variants. In this report, we describe the complete genomic sequences of male and female supercentenarians, both age >114 years old. We show that: (1) the sequence variant spectrum of these two individuals’ DNA sequences is largely comparable to existing non-supercentenarian genomes; (2) the two individuals do not appear to carry most of the well-established human longevity enabling variants already reported in the literature; (3) they have a comparable number of known disease-associated variants relative to most human genomes sequenced to-date; (4) approximately 1% of the variants these individuals possess are novel and may point to new genes involved in exceptional longevity; and (5) both individuals are enriched for coding variants near longevity-associated variants that we discovered through a large genome-wide association study. These analyses suggest that there are both common and rare longevity-associated variants that may counter the effects of disease-predisposing variants and extend lifespan. The continued analysis of the genomes of these and other rare individuals who have survived to extremely old ages should provide insight into the processes that contribute to the maintenance of health during extreme aging. PMID:22303384
Expansion of phenotype and genotypic data in CRB2-related syndrome.
Lamont, Ryan E; Tan, Wen-Hann; Innes, A Micheil; Parboosingh, Jillian S; Schneidman-Duhovny, Dina; Rajkovic, Aleksandar; Pappas, John; Altschwager, Pablo; DeWard, Stephanie; Fulton, Anne; Gray, Kathryn J; Krall, Max; Mehta, Lakshmi; Rodan, Lance H; Saller, Devereux N; Steele, Deanna; Stein, Deborah; Yatsenko, Svetlana A; Bernier, François P; Slavotinek, Anne M
2016-10-01
Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings. We ascertained five, previously unreported individuals with biallelic variants in CRB2 that were predicted to affect function. We compiled the clinical features of reported cases and reviewed available literature for cases with features suggestive of CRB2-related syndrome in order to better understand the phenotypic and genotypic manifestations. Phenotypic analyses showed that ventriculomegaly was a common clinical manifestation (9/11 confirmed cases), in contrast to the original reports, in which patients were ascertained due to renal disease. Two children had minor eye findings and one was diagnosed with a B-cell lymphoma. Further genetic analysis identified one family with two affected siblings who were both heterozygous for a variant in NPHS2 predicted to affect function and separate families with sequence variants in NPHS4 and BBS7 in addition to the CRB2 variants. Our report expands the clinical phenotype of CRB2-related syndrome and establishes ventriculomegaly and hydrocephalus as frequent manifestations. We found additional sequence variants in genes involved in kidney development and ciliopathies in patients with CRB2-related syndrome, suggesting that these variants may modify the phenotype.
Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.
Rengasamy Venugopalan, S; Farrow, E G; Lypka, M
2017-06-01
Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.
Seo, Heewon; Park, Yoomi; Min, Byung Joo; Seo, Myung Eui; Kim, Ju Han
2017-01-01
The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7%) of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit) exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.
Factors influencing success of clinical genome sequencing across a broad spectrum of disorders
Lise, Stefano; Broxholme, John; Cazier, Jean-Baptiste; Rimmer, Andy; Kanapin, Alexander; Lunter, Gerton; Fiddy, Simon; Allan, Chris; Aricescu, A. Radu; Attar, Moustafa; Babbs, Christian; Becq, Jennifer; Beeson, David; Bento, Celeste; Bignell, Patricia; Blair, Edward; Buckle, Veronica J; Bull, Katherine; Cais, Ondrej; Cario, Holger; Chapel, Helen; Copley, Richard R; Cornall, Richard; Craft, Jude; Dahan, Karin; Davenport, Emma E; Dendrou, Calliope; Devuyst, Olivier; Fenwick, Aimée L; Flint, Jonathan; Fugger, Lars; Gilbert, Rodney D; Goriely, Anne; Green, Angie; Greger, Ingo H.; Grocock, Russell; Gruszczyk, Anja V; Hastings, Robert; Hatton, Edouard; Higgs, Doug; Hill, Adrian; Holmes, Chris; Howard, Malcolm; Hughes, Linda; Humburg, Peter; Johnson, David; Karpe, Fredrik; Kingsbury, Zoya; Kini, Usha; Knight, Julian C; Krohn, Jonathan; Lamble, Sarah; Langman, Craig; Lonie, Lorne; Luck, Joshua; McCarthy, Davis; McGowan, Simon J; McMullin, Mary Frances; Miller, Kerry A; Murray, Lisa; Németh, Andrea H; Nesbit, M Andrew; Nutt, David; Ormondroyd, Elizabeth; Oturai, Annette Bang; Pagnamenta, Alistair; Patel, Smita Y; Percy, Melanie; Petousi, Nayia; Piazza, Paolo; Piret, Sian E; Polanco-Echeverry, Guadalupe; Popitsch, Niko; Powrie, Fiona; Pugh, Chris; Quek, Lynn; Robbins, Peter A; Robson, Kathryn; Russo, Alexandra; Sahgal, Natasha; van Schouwenburg, Pauline A; Schuh, Anna; Silverman, Earl; Simmons, Alison; Sørensen, Per Soelberg; Sweeney, Elizabeth; Taylor, John; Thakker, Rajesh V; Tomlinson, Ian; Trebes, Amy; Twigg, Stephen RF; Uhlig, Holm H; Vyas, Paresh; Vyse, Tim; Wall, Steven A; Watkins, Hugh; Whyte, Michael P; Witty, Lorna; Wright, Ben; Yau, Chris; Buck, David; Humphray, Sean; Ratcliffe, Peter J; Bell, John I; Wilkie, Andrew OM; Bentley, David; Donnelly, Peter; McVean, Gilean
2015-01-01
To assess factors influencing the success of whole genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases across a broad spectrum of disorders in whom prior screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritisation. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease causing variants in 21% of cases, rising to 34% (23/68) for Mendelian disorders and 57% (8/14) in trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, though only four were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis, but also highlight many outstanding challenges. PMID:25985138
Pillai, Suja; Gopalan, Vinod; Lo, Chung Y; Liew, Victor; Smith, Robert A; Lam, Alfred King Y
2017-02-01
The goal of this pilot study was to develop a customized, cost-effective amplicon panel (Ampliseq) for target sequencing in a cohort of patients with sporadic phaeochromocytoma/paraganglioma. Phaeochromocytoma/paragangliomas from 25 patients were analysed by targeted next-generation sequencing approach using an Ion Torrent PGM instrument. Primers for 15 target genes (NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX, MEN1, KIF1Bβ, EPAS1, CDKN2 & PHD2) were designed using ion ampliseq designer. Ion Reporter software and Ingenuity® Variant Analysis™ software (www.ingenuity.com/variants) from Ingenuity Systems were used to analysis these results. Overall, 713 variants were identified. The variants identified from the Ion Reporter ranged from 64 to 161 per patient. Single nucleotide variants (SNV) were the most common. Further annotation with the help of Ingenuity variant analysis revealed 29 of these 713variants were deletions. Of these, six variants were non-pathogenic and four were likely to be pathogenic. The remaining 19 variants were of uncertain significance. The most frequently altered gene in the cohort was KIF1B followed by NF1. Novel KIF1B pathogenic variant c.3375+1G>A was identified. The mutation was noted in a patient with clinically confirmed neurofibromatosis. Chromosome 1 showed the presence of maximum number of variants. Use of targeted next-generation sequencing is a sensitive method for the detecting genetic changes in patients with phaeochromocytoma/paraganglioma. The precise detection of these genetic changes helps in understanding the pathogenesis of these tumours. Copyright © 2016 Elsevier Inc. All rights reserved.
Staab, A.; Plaut, R. D.; Pratt, C.; Lovett, S. P.; Wiley, M. R.; Biggs, T. D.; Bernhards, R. C.; Beck, L. C.; Palacios, G. F.; Stibitz, S.; Jones, K. L.; Goodwin, B. G.; Smith, M. A.
2017-01-01
ABSTRACT Here, we report the draft genome sequences of three laboratory variants of Bacillus anthracis Sterne and their double (Δlef Δcya) and triple (Δpag Δlef Δcya) toxin gene deletion derivatives. PMID:29122874
Al-Bustan, Suzanne A; Al-Serri, Ahmad; Annice, Babitha G; Alnaqeeb, Majed A; Al-Kandari, Wafa Y; Dashti, Mohammed
2018-01-01
The role interethnic genetic differences play in plasma lipid level variation across populations is a global health concern. Several genes involved in lipid metabolism and transport are strong candidates for the genetic association with lipid level variation especially lipoprotein lipase (LPL). The objective of this study was to re-sequence the full LPL gene in Kuwaiti Arabs, analyse the sequence variation and identify variants that could attribute to variation in plasma lipid levels for further genetic association. Samples (n = 100) of an Arab ethnic group from Kuwait were analysed for sequence variation by Sanger sequencing across the 30 Kb LPL gene and its flanking sequences. A total of 293 variants including 252 single nucleotide polymorphisms (SNPs) and 39 insertions/deletions (InDels) were identified among which 47 variants (32 SNPs and 15 InDels) were novel to Kuwaiti Arabs. This study is the first to report sequence data and analysis of frequencies of variants at the LPL gene locus in an Arab ethnic group with a novel "rare" variant (LPL:g.18704C>A) significantly associated to HDL (B = -0.181; 95% CI (-0.357, -0.006); p = 0.043), TG (B = 0.134; 95% CI (0.004-0.263); p = 0.044) and VLDL (B = 0.131; 95% CI (-0.001-0.263); p = 0.043) levels. Sequence variation in Kuwaiti Arabs was compared to other populations and was found to be similar with regards to the number of SNPs, InDels and distribution of the number of variants across the LPL gene locus and minor allele frequency (MAF). Moreover, comparison of the identified variants and their MAF with other reports provided a list of 46 potential variants across the LPL gene to be considered for future genetic association studies. The findings warrant further investigation into the association of g.18704C>A with lipid levels in other ethnic groups and with clinical manifestations of dyslipidemia.
Al-Serri, Ahmad; Annice, Babitha G.; Alnaqeeb, Majed A.; Al-Kandari, Wafa Y.; Dashti, Mohammed
2018-01-01
The role interethnic genetic differences play in plasma lipid level variation across populations is a global health concern. Several genes involved in lipid metabolism and transport are strong candidates for the genetic association with lipid level variation especially lipoprotein lipase (LPL). The objective of this study was to re-sequence the full LPL gene in Kuwaiti Arabs, analyse the sequence variation and identify variants that could attribute to variation in plasma lipid levels for further genetic association. Samples (n = 100) of an Arab ethnic group from Kuwait were analysed for sequence variation by Sanger sequencing across the 30 Kb LPL gene and its flanking sequences. A total of 293 variants including 252 single nucleotide polymorphisms (SNPs) and 39 insertions/deletions (InDels) were identified among which 47 variants (32 SNPs and 15 InDels) were novel to Kuwaiti Arabs. This study is the first to report sequence data and analysis of frequencies of variants at the LPL gene locus in an Arab ethnic group with a novel “rare” variant (LPL:g.18704C>A) significantly associated to HDL (B = -0.181; 95% CI (-0.357, -0.006); p = 0.043), TG (B = 0.134; 95% CI (0.004–0.263); p = 0.044) and VLDL (B = 0.131; 95% CI (-0.001–0.263); p = 0.043) levels. Sequence variation in Kuwaiti Arabs was compared to other populations and was found to be similar with regards to the number of SNPs, InDels and distribution of the number of variants across the LPL gene locus and minor allele frequency (MAF). Moreover, comparison of the identified variants and their MAF with other reports provided a list of 46 potential variants across the LPL gene to be considered for future genetic association studies. The findings warrant further investigation into the association of g.18704C>A with lipid levels in other ethnic groups and with clinical manifestations of dyslipidemia. PMID:29438437
Plon, Sharon E.; Eccles, Diana M.; Easton, Douglas; Foulkes, William D.; Genuardi, Maurizio; Greenblatt, Marc S.; Hogervorst, Frans B.L.; Hoogerbrugge, Nicoline; Spurdle, Amanda B.; Tavtigian, Sean
2011-01-01
Genetic testing of cancer susceptibility genes is now widely applied in clinical practice to predict risk of developing cancer. In general, sequence-based testing of germline DNA is used to determine whether an individual carries a change that is clearly likely to disrupt normal gene function. Genetic testing may detect changes that are clearly pathogenic, clearly neutral or variants of unclear clinical significance. Such variants present a considerable challenge to the diagnostic laboratory and the receiving clinician in terms of interpretation and clear presentation of the implications of the result to the patient. There does not appear to be a consistent approach to interpreting and reporting the clinical significance of variants either among genes or among laboratories. The potential for confusion among clinicians and patients is considerable and misinterpretation may lead to inappropriate clinical consequences. In this article we review the current state of sequence-based genetic testing, describe other standardized reporting systems used in oncology and propose a standardized classification system for application to sequence based results for cancer predisposition genes. We suggest a system of five classes of variants based on the degree of likelihood of pathogenicity. Each class is associated with specific recommendations for clinical management of at-risk relatives that will depend on the syndrome. We propose that panels of experts on each cancer predisposition syndrome facilitate the classification scheme and designate appropriate surveillance and cancer management guidelines. The international adoption of a standardized reporting system should improve the clinical utility of sequence-based genetic tests to predict cancer risk. PMID:18951446
Clinical analysis of genome next-generation sequencing data using the Omicia platform
Coonrod, Emily M; Margraf, Rebecca L; Russell, Archie; Voelkerding, Karl V; Reese, Martin G
2013-01-01
Aims Next-generation sequencing is being implemented in the clinical laboratory environment for the purposes of candidate causal variant discovery in patients affected with a variety of genetic disorders. The successful implementation of this technology for diagnosing genetic disorders requires a rapid, user-friendly method to annotate variants and generate short lists of clinically relevant variants of interest. This report describes Omicia’s Opal platform, a new software tool designed for variant discovery and interpretation in a clinical laboratory environment. The software allows clinical scientists to process, analyze, interpret and report on personal genome files. Materials & Methods To demonstrate the software, the authors describe the interactive use of the system for the rapid discovery of disease-causing variants using three cases. Results & Conclusion Here, the authors show the features of the Opal system and their use in uncovering variants of clinical significance. PMID:23895124
Byers, Helen; Wallis, Yvonne; van Veen, Elke M; Lalloo, Fiona; Reay, Kim; Smith, Philip; Wallace, Andrew J; Bowers, Naomi; Newman, William G; Evans, D Gareth
2016-11-01
The sensitivity of testing BRCA1 and BRCA2 remains unresolved as the frequency of deep intronic splicing variants has not been defined in high-risk familial breast/ovarian cancer families. This variant category is reported at significant frequency in other tumour predisposition genes, including NF1 and MSH2. We carried out comprehensive whole gene RNA analysis on 45 high-risk breast/ovary and male breast cancer families with no identified pathogenic variant on exonic sequencing and copy number analysis of BRCA1/2. In addition, we undertook variant screening of a 10-gene high/moderate risk breast/ovarian cancer panel by next-generation sequencing. DNA testing identified the causative variant in 50/56 (89%) breast/ovarian/male breast cancer families with Manchester scores of ≥50 with two variants being confirmed to affect splicing on RNA analysis. RNA sequencing of BRCA1/BRCA2 on 45 individuals from high-risk families identified no deep intronic variants and did not suggest loss of RNA expression as a cause of lost sensitivity. Panel testing in 42 samples identified a known RAD51D variant, a high-risk ATM variant in another breast ovary family and a truncating CHEK2 mutation. Current exonic sequencing and copy number analysis variant detection methods of BRCA1/2 have high sensitivity in high-risk breast/ovarian cancer families. Sequence analysis of RNA does not identify any variants undetected by current analysis of BRCA1/2. However, RNA analysis clarified the pathogenicity of variants of unknown significance detected by current methods. The low diagnostic uplift achieved through sequence analysis of the other known breast/ovarian cancer susceptibility genes indicates that further high-risk genes remain to be identified.
Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset.
Nichols, W C; Pankratz, N; Marek, D K; Pauciulo, M W; Elsaesser, V E; Halter, C A; Rudolph, A; Wojcieszek, J; Pfeiffer, R F; Foroud, T
2009-01-27
To characterize sequence variation within the glucocerebrosidase (GBA) gene in a select subset of our sample of patients with familial Parkinson disease (PD) and then to test in our full sample whether these sequence variants increased the risk for PD and were associated with an earlier onset of disease. We performed a comprehensive study of all GBA exons in one patient with PD from each of 96 PD families, selected based on the family-specific lod scores at the GBA locus. Identified GBA variants were subsequently screened in all 1325 PD cases from 566 multiplex PD families and in 359 controls. Nine different GBA variants, five previously reported, were identified in 21 of the 96 PD cases sequenced. Screening for these variants in the full sample identified 161 variant carriers (12.2%) in 99 different PD families. An unbiased estimate of the frequency of the five previously reported GBA variants in the familial PD sample was 12.6% and in the control sample was 5.3% (odds ratio 2.6; 95% confidence interval 1.5-4.4). Presence of a GBA variant was associated with an earlier age at onset (p = 0.0001). On average, those patients carrying a GBA variant had onset with PD 6.04 years earlier than those without a GBA variant. This study suggests that GBA is a susceptibility gene for familial Parkinson disease (PD) and patients with GBA variants have an earlier age at onset than patients with PD without GBA variants.
Wu, Lucia R.; Chen, Sherry X.; Wu, Yalei; Patel, Abhijit A.; Zhang, David Yu
2018-01-01
Rare DNA-sequence variants hold important clinical and biological information, but existing detection techniques are expensive, complex, allele-specific, or don’t allow for significant multiplexing. Here, we report a temperature-robust polymerase-chain-reaction method, which we term blocker displacement amplification (BDA), that selectively amplifies all sequence variants, including single-nucleotide variants (SNVs), within a roughly 20-nucleotide window by 1,000-fold over wild-type sequences. This allows for easy detection and quantitation of hundreds of potential variants originally at ≤0.1% in allele frequency. BDA is compatible with inexpensive thermocycler instrumentation and employs a rationally designed competitive hybridization reaction to achieve comparable enrichment performance across annealing temperatures ranging from 56 °C to 64 °C. To show the sequence generality of BDA, we demonstrate enrichment of 156 SNVs and the reliable detection of single-digit copies. We also show that the BDA detection of rare driver mutations in cell-free DNA samples extracted from the blood plasma of lung-cancer patients is highly consistent with deep sequencing using molecular lineage tags, with a receiver operator characteristic accuracy of 95%. PMID:29805844
Santos, Regie Lyn P.; El-Shanti, Hatem; Sikandar, Shaheen; Lee, Kwanghyuk; Bhatti, Attya; Yan, Kai; Chahrour, Maria H.; McArthur, Nathan; Pham, Thanh L.; Mahasneh, Amjad Abdullah; Ahmad, Wasim
2010-01-01
To date, 37 genes have been identified for nonsyndromic hearing impairment (NSHI). Identifying the functional sequence variants within these genes and knowing their population-specific frequencies is of public health value, in particular for genetic screening for NSHI. To determine putatively functional sequence variants in the transmembrane inner ear (TMIE) gene in Pakistani and Jordanian families with autosomal recessive (AR) NSHI, four Jordanian and 168 Pakistani families with ARNSHI that is not due to GJB2 (CX26) were submitted to a genome scan. Two-point and multipoint parametric linkage analyses were performed, and families with logarithmic odds (LOD) scores of 1.0 or greater within the TMIE region underwent further DNA sequencing. The evolutionary conservation and location in predicted protein domains of amino acid residues where sequence variants occurred were studied to elucidate the possible effects of these sequence variants on function. Of seven families that were screened for TMIE, putatively functional sequence variants were found to segregate with hearing impairment in four families but were not seen in not less than 110 ethnically matched control chromosomes. The previously reported c.241C>T (p.R81C) variant was observed in two Pakistani families. Two novel variants, c.92A>G (p.E31G) and the splice site mutation c.212–2A>C, were identified in one Pakistani and one Jordanian family, respectively. The c.92A>G (p.E31G) variant occurred at a residue that is conserved in the mouse and is predicted to be extracellular. Conservation and potential functionality of previously published mutations were also examined. The prevalence of functional TMIE variants in Pakistani families is 1.7% [95% confidence interval (CI) 0.3–4.8]. Further studies on the spectrum, prevalence rates, and functional effect of sequence variants in the TMIE gene in other populations should demonstrate the true importance of this gene as a cause of hearing impairment. PMID:16389551
Yousri, Noha A; Fakhro, Khalid A; Robay, Amal; Rodriguez-Flores, Juan L; Mohney, Robert P; Zeriri, Hassina; Odeh, Tala; Kader, Sara Abdul; Aldous, Eman K; Thareja, Gaurav; Kumar, Manish; Al-Shakaki, Alya; Chidiac, Omar M; Mohamoud, Yasmin A; Mezey, Jason G; Malek, Joel A; Crystal, Ronald G; Suhre, Karsten
2018-01-23
Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.
van den Akker, Jeroen; Mishne, Gilad; Zimmer, Anjali D; Zhou, Alicia Y
2018-04-17
Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based model to differentiate between these two types of variant calls: those that do not require confirmation using an orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that require orthogonal confirmation. We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives, defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high accuracy: 99.4% (95% confidence interval: +/- 0.03%). It categorized 92.2% (6622/7179) of the variants as high confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were found to be not present by Sanger sequencing. This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to differentiate low from high confidence variants. Additionally, it reveals the importance of incorporating site-specific features as well as variant call features in such a model.
Armstrong, Miles R; Husmeier, Dirk; Phillips, Mark S; Blok, Vivian C
2007-06-01
The discovery that the potato cyst nematode Globodera pallida has a multipartite mitochondrial DNA (mtDNA) composed, at least in part, of six small circular mtDNAs (scmtDNAs) raised a number of questions concerning the population-level processes that might act on such a complex genome. Here we report our observations on the distribution of some scmtDNAs among a sample of European and South American G. pallida populations. The occurrence of sequence variants of scmtDNA IV in population P4A from South America, and that particular sequence variants are common to the individuals within a single cyst, is described. Evidence for recombination of sequence variants of scmtDNA IV in P4A is also reported. The mosaic structure of P4A scmtDNA IV sequences was revealed using several detection methods and recombination breakpoints were independently detected by maximum likelihood and Bayesian MCMC methods.
Investigation of the role of TCF4 rare sequence variants in schizophrenia.
Basmanav, F Buket; Forstner, Andreas J; Fier, Heide; Herms, Stefan; Meier, Sandra; Degenhardt, Franziska; Hoffmann, Per; Barth, Sandra; Fricker, Nadine; Strohmaier, Jana; Witt, Stephanie H; Ludwig, Michael; Schmael, Christine; Moebus, Susanne; Maier, Wolfgang; Mössner, Rainald; Rujescu, Dan; Rietschel, Marcella; Lange, Christoph; Nöthen, Markus M; Cichon, Sven
2015-07-01
Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations. © 2015 Wiley Periodicals, Inc.
Matheus, Séverine; Lavergne, Anne; de Thoisy, Benoît; Dussart, Philippe
2012-01-01
We report the first complete genome sequence of Maripa virus identified in 2009 from a patient with hantavirus pulmonary syndrome in French Guiana. Maripa virus corresponds to a new variant of the Rio Mamoré virus species in the Bunyaviridae family, genus Hantavirus. PMID:22492924
Liu, Qing; Zhu, Shenghua; Mizuno, Sahoko; Kimura, Masatsugu; Liu, Peina; Isomura, Shin; Wang, Xingzhen; Kawamoto, Fumihiko
1998-01-01
By two PCR-based diagnostic methods, Plasmodium malariae infections have been rediscovered at two foci in the Sichuan province of China, a region where no cases of P. malariae have been officially reported for the last 2 decades. In addition, a variant form of P. malariae which has a deletion of 19 bp and seven substitutions of base pairs in the target sequence of the small-subunit (SSU) rRNA gene was detected with high frequency. Alignment analysis of Plasmodium sp. SSU rRNA gene sequences revealed that the 5′ region of the variant sequence is identical to that of P. vivax or P. knowlesi and its 3′ region is identical to that of P. malariae. The same sequence variations were also found in P. malariae isolates collected along the Thai-Myanmar border, suggesting a wide distribution of this variant form from southern China to Southeast Asia. PMID:9774600
Screening of the Filamin C Gene in a Large Cohort of Hypertrophic Cardiomyopathy Patients.
Gómez, Juan; Lorca, Rebeca; Reguero, Julian R; Morís, César; Martín, María; Tranche, Salvador; Alonso, Belén; Iglesias, Sara; Alvarez, Victoria; Díaz-Molina, Beatriz; Avanzas, Pablo; Coto, Eliecer
2017-04-01
Recent exome sequencing studies identified filamin C ( FLNC ) as a candidate gene for hypertrophic cardiomyopathy (HCM). Our aim was to determine the rate of FLNC candidate variants in a large cohort of HCM patients who were also sequenced for the main sarcomere genes. A total of 448 HCM patients were next generation-sequenced (semiconductor chip technology) for the MYH7, MYBPC3 , TNNT2 , TNNI3 , ACTC1 , TNNC1 , MYL2 , MYL3 , TPM1 , and FLNC genes. We also sequenced 450 healthy controls from the same population. Based on the reported population frequencies, bioinformatic criteria, and familial segregation, we identified 20 FLNC candidate variants (13 new; 1 nonsense; and 19 missense) in 22 patients. Compared with the patients, only 1 of the control's missense variants was nonreported ( P =0.007; Fisher exact probability test). Based on the familial segregation and the reported functional studies, 6 of the candidate variants (in 7 patients) were finally classified as likely pathogenic, 10 as variants of uncertain significance, and 4 as likely benign. We provide a compelling evidence of the involvement of FLNC in the development of HCM. Most of the FLNC variants were associated with mild forms of HCM and a reduced penetrance, with few affected in the families to confirm the segregation. Our work, together with others who found FLNC variants among patients with dilated and restrictive cardiomyopathies, pointed to this gene as an important cause of structural cardiomyopathies. © 2017 American Heart Association, Inc.
Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun
2017-01-03
Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.
Mu, Wenbo; Lu, Hsiao-Mei; Chen, Jefferey; Li, Shuwei; Elliott, Aaron M
2016-11-01
Next-generation sequencing (NGS) has rapidly replaced Sanger sequencing as the method of choice for diagnostic gene-panel testing. For hereditary-cancer testing, the technical sensitivity and specificity of the assay are paramount as clinicians use results to make important clinical management and treatment decisions. There is significant debate within the diagnostics community regarding the necessity of confirming NGS variant calls by Sanger sequencing, considering that numerous laboratories report having 100% specificity from the NGS data alone. Here we report our results from 20,000 hereditary-cancer NGS panels spanning 47 genes, in which all 7845 nonpolymorphic variants were Sanger- sequenced. Of these, 98.7% were concordant between NGS and Sanger sequencing and 1.3% were identified as NGS false-positives, located mainly in complex genomic regions (A/T-rich regions, G/C-rich regions, homopolymer stretches, and pseudogene regions). Simulating a false-positive rate of zero by adjusting the variant-calling quality-score thresholds decreased the sensitivity of the assay from 100% to 97.8%, resulting in the missed detection of 176 Sanger-confirmed variants, the majority in complex genomic regions (n = 114) and mosaic mutations (n = 7). The data illustrate the importance of setting quality thresholds for panel testing only after thousands of samples have been processed and the necessity of Sanger confirmation of NGS variants to maintain the highest possible sensitivity. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Zoledziewska, Magdalena; Mulas, Antonella; Pistis, Giorgio; Steri, Maristella; Danjou, Fabrice; Kwong, Alan; Ortega del Vecchyo, Vicente Diego; Chiang, Charleston W. K.; Bragg-Gresham, Jennifer; Pitzalis, Maristella; Nagaraja, Ramaiah; Tarrier, Brendan; Brennan, Christine; Uzzau, Sergio; Fuchsberger, Christian; Atzeni, Rossano; Reinier, Frederic; Berutti, Riccardo; Huang, Jie; Timpson, Nicholas J; Toniolo, Daniela; Gasparini, Paolo; Malerba, Giovanni; Dedoussis, George; Zeggini, Eleftheria; Soranzo, Nicole; Jones, Chris; Lyons, Robert; Angius, Andrea; Kang, Hyun M.; Novembre, John; Sanna, Serena; Schlessinger, David; Cucca, Francesco; Abecasis, Gonçalo R
2015-01-01
We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior sequencing-based compilations and enriched for predicted functional consequence. Furthermore, ~76K variants common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. Fourteen signals, including two major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale sequencing in this founder population. PMID:26366554
Auer, Paul L.; Johnsen, Jill M.; Johnson, Andrew D.; Logsdon, Benjamin A.; Lange, Leslie A.; Nalls, Michael A.; Zhang, Guosheng; Franceschini, Nora; Fox, Keolu; Lange, Ethan M.; Rich, Stephen S.; O’Donnell, Christopher J.; Jackson, Rebecca D.; Wallace, Robert B.; Chen, Zhao; Graubert, Timothy A.; Wilson, James G.; Tang, Hua; Lettre, Guillaume; Reiner, Alex P.; Ganesh, Santhi K.; Li, Yun
2012-01-01
Researchers have successfully applied exome sequencing to discover causal variants in selected individuals with familial, highly penetrant disorders. We demonstrate the utility of exome sequencing followed by imputation for discovering low-frequency variants associated with complex quantitative traits. We performed exome sequencing in a reference panel of 761 African Americans and then imputed newly discovered variants into a larger sample of more than 13,000 African Americans for association testing with the blood cell traits hemoglobin, hematocrit, white blood count, and platelet count. First, we illustrate the feasibility of our approach by demonstrating genome-wide-significant associations for variants that are not covered by conventional genotyping arrays; for example, one such association is that between higher platelet count and an MPL c.117G>T (p.Lys39Asn) variant encoding a p.Lys39Asn amino acid substitution of the thrombpoietin receptor gene (p = 1.5 × 10−11). Second, we identified an association between missense variants of LCT and higher white blood count (p = 4 × 10−13). Third, we identified low-frequency coding variants that might account for allelic heterogeneity at several known blood cell-associated loci: MPL c.754T>C (p.Tyr252His) was associated with higher platelet count; CD36 c.975T>G (p.Tyr325∗) was associated with lower platelet count; and several missense variants at the α-globin gene locus were associated with lower hemoglobin. By identifying low-frequency missense variants associated with blood cell traits not previously reported by genome-wide association studies, we establish that exome sequencing followed by imputation is a powerful approach to dissecting complex, genetically heterogeneous traits in large population-based studies. PMID:23103231
Cady, Janet; Allred, Peggy; Bali, Taha; Pestronk, Alan; Goate, Alison; Miller, Timothy M; Mitra, Robi D; Ravits, John; Harms, Matthew B; Baloh, Robert H
2015-01-01
To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the contribution of possible oligogenic inheritance, we aimed to comprehensively sequence 17 known ALS genes in 391 ALS patients from the United States. Targeted pooled-sample sequencing was used to identify variants in 17 ALS genes. Fragment size analysis was used to define ATXN2 and C9ORF72 expansion sizes. Genotype-phenotype correlations were made with individual variants and total burden of variants. Rare variant associations for risk of ALS were investigated at both the single variant and gene level. A total of 64.3% of familial and 27.8% of sporadic subjects carried potentially pathogenic novel or rare coding variants identified by sequencing or an expanded repeat in C9ORF72 or ATXN2; 3.8% of subjects had variants in >1 ALS gene, and these individuals had disease onset 10 years earlier (p = 0.0046) than subjects with variants in a single gene. The number of potentially pathogenic coding variants did not influence disease duration or site of onset. Rare and potentially pathogenic variants in known ALS genes are present in >25% of apparently sporadic and 64% of familial patients, significantly higher than previous reports using less comprehensive sequencing approaches. A significant number of subjects carried variants in >1 gene, which influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease pathogenesis. © 2014 American Neurological Association.
BEST1 sequence variants in Italian patients with vitelliform macular dystrophy
Sodi, Andrea; Passerini, Ilaria; Caputo, Roberto; Bacci, Giacomo Maria; Bodoj, Mirela; Torricelli, Francesca; Menchini, Ugo
2012-01-01
Purpose To analyze the spectrum of sequence variants in the BEST1 gene in a group of Italian patients affected by Best vitelliform macular dystrophy (VMD). Methods Thirty Italian patients with a diagnosis of VMD and 20 clinically healthy relatives were recruited. They belonged to 19 Italian families predominantly originating from central Italy. They received a standard ophthalmologic examination, OCT scan, and electrophysiological tests (ERG and EOG). Fluorescein and ICG angiographies and fundus autofluorescence imaging were performed in selected cases. DNA samples were analyzed for sequence variants of the BEST1 gene by direct sequencing techniques. Results Nine missense variants and one deletion were found in the affected patients; each patient carried one mutation. Five variants [c.73C>T (p.Arg25Trp), c.652C>T (p.Arg218Cys), c.652C>G (p.Arg218Gly), c.728C>T (p.Ala243Val), c.893T>C (p.Phe298Ser)] have already been described in literature while another five variants [c.217A>C (p.Ile73Leu), c.239T>G (p.Phe80Cys), c.883_885del (p.Ile295del), c.907G>A (p.Asp303Asn), c.911A>G (p.Asp304Gly)] had not previously been reported. Affected patients, sometimes even from the same family, occasionally showed variable phenotypes. One heterozygous variant was also found in five clinically healthy relatives with normal fundus, visual acuity and ERG but with abnormal EOG. Conclusions Ten variants in the BEST1 gene were detected in a group of individuals with clinically apparent VMD, and in some clinically normal individuals with an abnormal EOG. The high prevalence of novel variants and the frequent report of a specific variant (p.Arg25Trp) that has rarely been described in other ethnic groups suggests a distribution of BEST1 variants peculiar to Italian VMD patients. PMID:23213274
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer
High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less
Two Novel Variants Affecting CDKL5 Transcript Associated with Epileptic Encephalopathy.
Neupauerová, Jana; Štěrbová, Katalin; Vlčková, Markéta; Sebroňová, Věra; Maříková, Tat'ána; Krůtová, Marcela; David, Staněk; Kršek, Pavel; Žaliová, Markéta; Seeman, Pavel; Laššuthová, Petra
2017-10-01
Variants in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been reported as being etiologically associated with early infantile epileptic encephalopathy type 2 (EIEE2). We report on two patients, a boy and a girl, with EIEE2 that present with early onset epilepsy, hypotonia, severe intellectual disability, and poor eye contact. Massively parallel sequencing (MPS) of a custom-designed gene panel for epilepsy and epileptic encephalopathy containing 112 epilepsy-related genes was performed. Sanger sequencing was used to confirm the novel variants. For confirmation of the functional consequence of an intronic CDKL5 variant in patient 2, an RNA study was done. DNA sequencing revealed de novo variants in CDKL5, a c.2578C>T (p. Gln860*) present in a hemizygous state in a 3-year-old boy, and a potential splice site variant c.463+5G>A in heterozygous state in a 5-year-old girl. Multiple in silico splicing algorithms predicted a highly reduced splice site score for c.463+5G>A. A subsequent mRNA study confirmed an aberrant shorter transcript lacking exon 7. Our data confirmed that variants in the CDKL5 are associated with EIEE2. There is credible evidence that the novel identified variants are pathogenic and, therefore, are likely the cause of the disease in the presented patients. In one of the patients a stop codon variant is predicted to produce a truncated protein, and in the other patient an intronic variant results in aberrant splicing.
Gudmundsson, Julius; Sulem, Patrick; Gudbjartsson, Daniel F.; Masson, Gisli; Agnarsson, Bjarni A.; Benediktsdottir, Kristrun R.; Sigurdsson, Asgeir; Magnusson, Olafur Th.; Gudjonsson, Sigurjon A.; Magnusdottir, Droplaug N.; Johannsdottir, Hrefna; Helgadottir, Hafdis Th.; Stacey, Simon N.; Jonasdottir, Adalbjorg; Olafsdottir, Stefania B.; Thorleifsson, Gudmar; Jonasson, Jon G.; Tryggvadottir, Laufey; Navarrete, Sebastian; Fuertes, Fernando; Helfand, Brian T.; Hu, Qiaoyan; Csiki, Irma E.; Mates, Ioan N.; Jinga, Viorel; Aben, Katja K. H.; van Oort, Inge M.; Vermeulen, Sita H.; Donovan, Jenny L.; Hamdy, Freddy C.; Ng, Chi-Fai; Chiu, Peter K.F.; Lau, Kin-Mang; Ng, Maggie C.Y.; Gulcher, Jeffrey R.; Kong, Augustine; Catalona, William J.; Mayordomo, Jose I.; Einarsson, Gudmundur V.; Barkardottir, Rosa B.; Jonsson, Eirikur; Mates, Dana; Neal, David E.; Kiemeney, Lambertus A.; Thorsteinsdottir, Unnur; Rafnar, Thorunn; Stefansson, Kari
2013-01-01
Western countries, prostate cancer is the most prevalent cancer of men, and one of the leading causes of cancer-related death in men. Several genome-wide association studies have yielded numerous common variants conferring risk of prostate cancer. In the present study we analyzed 32.5 million variants discovered by whole-genome sequencing 1,795 Icelanders. One variant was found to be associated with prostate cancer in European populations: rs188140481[A] (OR = 2.90, Pcomb = 6.2×10−34) located on 8q24, with an average risk allele control frequency of 0.54%. This variant is only very weakly correlated (r2 ≤ 0.06) with previously reported risk variants on 8q24, and remains significant after adjustment for all of them. Carriers of rs188140481[A] were diagnosed with prostate cancer 1.26 years younger than non-carriers (P = 0.0059). We also report results for the previously described HOXB13 mutation (rs138213197[T]), confirming it as prostate cancer risk variant in populations from all over Europe. PMID:23104005
Rudkin, Adam K.; Dubowsky, Andrew; Casson, Robert J.; Muecke, James S.; Mancel, Erica; Whiting, Mark; Mills, Richard A.D.; Burdon, Kathryn P.; Craig, Jamie E.
2018-01-01
Purpose Aniridia is a congenital disorder caused by variants in the PAX6 gene. In this study, we assessed the involvement of PAX6 in patients with aniridia from Australasia and Southeast Asia. Methods Twenty-nine individuals with aniridia from 18 families originating from Australia, New Caledonia, Cambodia, Sri Lanka, and Bhutan were included. The PAX6 gene was investigated for sequence variants and analyzed for deletions with multiplex ligation-dependent probe amplification. Results We identified 11 sequence variants and six chromosomal deletions, including one in mosaic. Four deleterious sequence variants were novel: p.(Pro81HisfsTer12), p.(Gln274Ter), p.(Ile29Thr), and p.(Met1?). Ocular complications were associated with a progressive loss of visual function as shown by a visual acuity ≤ 1.00 logMAR reported in 65% of eyes. The prevalence of keratopathy was statistically significantly higher in the Australasian cohort (78.6%) compared with the Southeast Asian cohort (9.1%, p=0.002). Variants resulting in protein truncating codons displayed limited genotype–phenotype correlations compared with other variants. Conclusions PAX6 variants and deletions were identified in 94% of patients with aniridia from Australasia and Southeast Asia. This study is the first report of aniridia and variations in PAX6 in individuals from Cambodia, Sri Lanka, Bhutan, and New Caledonia, and the largest cohort from Australia. PMID:29618921
A survey of tools for variant analysis of next-generation genome sequencing data
Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes
2014-01-01
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494
Johnson, Ben; Lowe, Gillian C.; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A.; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J.; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula HB; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E.; Watson, Steve P.; Morgan, Neil V.
2016-01-01
Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×109/L to 186×109/L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified “pathogenic” or “likely pathogenic” variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. PMID:27479822
Mu, John C.; Tootoonchi Afshar, Pegah; Mohiyuddin, Marghoob; Chen, Xi; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B.; Wong, Wing H.; Lam, Hugo Y. K.
2015-01-01
A high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms. It was a necessary effort to completely reanalyze the HuRef genome as its previously published variants were mostly reported five years ago, suffering from compatibility, organization, and accuracy issues that prevent their direct use in benchmarking. Our extensive analysis and validation resulted in a gold set with high specificity and sensitivity. In contrast to the current gold sets of the NA12878 or HS1011 genomes, our gold set is the first that includes small variants, deletion SVs and insertion SVs up to a hundred thousand base-pairs. We demonstrate the utility of our HuRef gold set to benchmark several published SV detection tools. PMID:26412485
Small Deletion Variants Have Stable Breakpoints Commonly Associated with Alu Elements
Coin, Lachlan J. M.; Steinfeld, Israel; Yakhini, Zohar; Sladek, Rob; Froguel, Philippe; Blakemore, Alexandra I. F.
2008-01-01
Copy number variants (CNVs) contribute significantly to human genomic variation, with over 5000 loci reported, covering more than 18% of the euchromatic human genome. Little is known, however, about the origin and stability of variants of different size and complexity. We investigated the breakpoints of 20 small, common deletions, representing a subset of those originally identified by array CGH, using Agilent microarrays, in 50 healthy French Caucasian subjects. By sequencing PCR products amplified using primers designed to span the deleted regions, we determined the exact size and genomic position of the deletions in all affected samples. For each deletion studied, all individuals carrying the deletion share identical upstream and downstream breakpoints at the sequence level, suggesting that the deletion event occurred just once and later became common in the population. This is supported by linkage disequilibrium (LD) analysis, which has revealed that most of the deletions studied are in moderate to strong LD with surrounding SNPs, and have conserved long-range haplotypes. Analysis of the sequences flanking the deletion breakpoints revealed an enrichment of microhomology at the breakpoint junctions. More significantly, we found an enrichment of Alu repeat elements, the overwhelming majority of which intersected deletion breakpoints at their poly-A tails. We found no enrichment of LINE elements or segmental duplications, in contrast to other reports. Sequence analysis revealed enrichment of a conserved motif in the sequences surrounding the deletion breakpoints, although whether this motif has any mechanistic role in the formation of some deletions has yet to be determined. Considered together with existing information on more complex inherited variant regions, and reports of de novo variants associated with autism, these data support the presence of different subgroups of CNV in the genome which may have originated through different mechanisms. PMID:18769679
Ramas, Viviana; Mirazo, Santiago; Bonilla, Sylvia; Ruchansky, Dora; Arbiza, Juan
2018-05-15
This study aims to investigate the HPV16 variant distribution by sequence analyses of E6, E7 oncogenes and the Long Control Region (LCR), from cervical cells collected from Uruguayan women, and to reconstruct the phylogenetic relationships among variants. Forty-seven HPV16 variants, obtained from women with HSIL, LSIL, ASCUS and NILM cytological classes were analyzed for LCR and 12 were further studied for E6 and E7. Detailed sequence comparison, genetic heterogeneity analyses and phylogenetic reconstruction were performed. A high variability was observed among LCR sequences, which were distributed in 18 different variants. E6 and E7 sequences exhibited novel non-synonymous substitutions. Uruguayan sequences mainly belonged to the European lineage, and only 5 sequences clustered in non-European branches; 3 of them in the Asian-American and North-American linage and 2 in an African branch. Additionally, 6 new variants from European and African clusters were identified. HPV16 isolates mainly belonged to the European lineage, though strains from African and Asian-American lineages were also identified. Herein is reported for the first time the distribution and molecular characterization of HPV16 variants from Uruguay, providing novel insights on the molecular epidemiology of this infectious disease in the South America. A high variability among HPV 16 isolates mainly belonged to European lineage, provides an extensive sequence dataset from a country with high burden of cervical cancer. Copyright © 2018 Elsevier B.V. All rights reserved.
Hart, Reece K; Rico, Rudolph; Hare, Emily; Garcia, John; Westbrook, Jody; Fusaro, Vincent A
2015-01-15
Biological sequence variants are commonly represented in scientific literature, clinical reports and databases of variation using the mutation nomenclature guidelines endorsed by the Human Genome Variation Society (HGVS). Despite the widespread use of the standard, no freely available and comprehensive programming libraries are available. Here we report an open-source and easy-to-use Python library that facilitates the parsing, manipulation, formatting and validation of variants according to the HGVS specification. The current implementation focuses on the subset of the HGVS recommendations that precisely describe sequence-level variation relevant to the application of high-throughput sequencing to clinical diagnostics. The package is released under the Apache 2.0 open-source license. Source code, documentation and issue tracking are available at http://bitbucket.org/hgvs/hgvs/. Python packages are available at PyPI (https://pypi.python.org/pypi/hgvs). Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Hart, Reece K.; Rico, Rudolph; Hare, Emily; Garcia, John; Westbrook, Jody; Fusaro, Vincent A.
2015-01-01
Summary: Biological sequence variants are commonly represented in scientific literature, clinical reports and databases of variation using the mutation nomenclature guidelines endorsed by the Human Genome Variation Society (HGVS). Despite the widespread use of the standard, no freely available and comprehensive programming libraries are available. Here we report an open-source and easy-to-use Python library that facilitates the parsing, manipulation, formatting and validation of variants according to the HGVS specification. The current implementation focuses on the subset of the HGVS recommendations that precisely describe sequence-level variation relevant to the application of high-throughput sequencing to clinical diagnostics. Availability and implementation: The package is released under the Apache 2.0 open-source license. Source code, documentation and issue tracking are available at http://bitbucket.org/hgvs/hgvs/. Python packages are available at PyPI (https://pypi.python.org/pypi/hgvs). Contact: reecehart@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25273102
Ahmad, Farooq; Nasir, Abdul; Thiele, Holger; Umair, Muhammad; Borck, Guntram; Ahmad, Wasim
2018-02-12
Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4-related clinical characterization. © 2018 John Wiley & Sons Ltd/University College London.
Jasim, Anfal A.; Al-Bustan, Suzanne A.; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda
2018-01-01
Common variants of Apolipoprotein A5 (APOA5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3′ UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism. PMID:29686695
Jasim, Anfal A; Al-Bustan, Suzanne A; Al-Kandari, Wafa; Al-Serri, Ahmad; AlAskar, Huda
2018-01-01
Common variants of Apolipoprotein A5 ( APOA 5) have been associated with lipid levels yet very few studies have reported full sequence data from various ethnic groups. The purpose of this study was to analyse the full APOA5 gene sequence to identify variants in 100 healthy Kuwaitis of Arab ethnicities and assess their association with variation in lipid levels in a cohort of 733 samples. Sanger method was used in the direct sequencing of the full 3.7 Kb APOA5 and multiple sequence alignment was used to identify variants. The complete APOA5 sequence in Kuwaiti Arabs has been deposited in GenBank (KJ401315). A total of 20 reported single nucleotide polymorphisms (SNPs) were identified. Two novel SNPs were also identified: a synonymous 2197G>A polymorphism at genomic position 116661525 and a 3' UTR 3222 C>T polymorphism at genomic position 116660500 based on human genome assembly GRCh37/hg:19. Five SNPs along with the two novel SNPs were selected for validation in the cohort. Association of those SNPs with lipid levels was tested and minor alleles of three SNPs (rs2072560, rs2266788, and rs662799) were found significantly associated with TG and VLDL levels. This is the first study to report the full APOA5 sequence and SNPs in an Arab ethnic group. Analysis of the variants identified and comparison to other populations suggests a distinctive genetic component in Arabs. The positive association observed for rs2072560 and rs2266788 with TG and VLDL levels confirms their role in lipid metabolism.
Pausch, Hubert; Wurmser, Christine; Reinhardt, Friedrich; Emmerling, Reiner; Fries, Ruedi
2015-06-01
Most association studies for pinpointing trait-associated variants are performed within breed. The availability of sequence data from key ancestors of several cattle breeds now enables immediate assessment of the frequency of trait-associated variants in populations different from the mapping population and their imputation into large validation populations. The objective of this study was to validate the effects of 4 putatively causative variants on milk production traits, male fertility, and stature in German Fleckvieh and Holstein-Friesian animals using targeted sequence imputation. We used whole-genome sequence data of 456 animals to impute 4 missense mutations in DGAT1, GHR, PRLR, and PROP1 into 10,363 Fleckvieh and 8,812 Holstein animals. The accuracy of the imputed genotypes exceeded 95% for all variants. Association testing with imputed variants revealed consistent antagonistic effects of the DGAT1 p.A232K and GHR p.F279Y variants on milk yield and protein and fat contents, respectively, in both breeds. The allele frequency of both polymorphisms has changed considerably in the past 20 yr, indicating that they were targets of recent selection for milk production traits. The PRLR p.S18N variant was associated with yield traits in Fleckvieh but not in Holstein, suggesting that it may be in linkage disequilibrium with a mutation affecting yield traits rather than being causal. The reported effects of the PROP1 p.H173R variant on milk production, male fertility, and stature could not be confirmed. Our results demonstrate that population-wide imputation of candidate causal variants from sequence data is feasible, enabling their rapid validation in large independent populations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
HGVS Recommendations for the Description of Sequence Variants: 2016 Update.
den Dunnen, Johan T; Dalgleish, Raymond; Maglott, Donna R; Hart, Reece K; Greenblatt, Marc S; McGowan-Jordan, Jean; Roux, Anne-Francoise; Smith, Timothy; Antonarakis, Stylianos E; Taschner, Peter E M
2016-06-01
The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen. © 2016 WILEY PERIODICALS, INC.
Southam, Lorraine; Gilly, Arthur; Süveges, Dániel; Farmaki, Aliki-Eleni; Schwartzentruber, Jeremy; Tachmazidou, Ioanna; Matchan, Angela; Rayner, Nigel W.; Tsafantakis, Emmanouil; Karaleftheri, Maria; Xue, Yali; Dedoussis, George; Zeggini, Eleftheria
2017-01-01
Next-generation association studies can be empowered by sequence-based imputation and by studying founder populations. Here we report ∼9.5 million variants from whole-genome sequencing (WGS) of a Cretan-isolated population, and show enrichment of rare and low-frequency variants with predicted functional consequences. We use a WGS-based imputation approach utilizing 10,422 reference haplotypes to perform genome-wide association analyses and observe 17 genome-wide significant, independent signals, including replicating evidence for association at eight novel low-frequency variant signals. Two novel cardiometabolic associations are at lead variants unique to the founder population sequences: chr16:70790626 (high-density lipoprotein levels beta −1.71 (SE 0.25), P=1.57 × 10−11, effect allele frequency (EAF) 0.006); and rs145556679 (triglycerides levels beta −1.13 (SE 0.17), P=2.53 × 10−11, EAF 0.013). Our findings add empirical support to the contribution of low-frequency variants in complex traits, demonstrate the advantage of including population-specific sequences in imputation panels and exemplify the power gains afforded by population isolates. PMID:28548082
Leung, Ross Ka-Kit; Dong, Zhi Qiang; Sa, Fei; Chong, Cheong Meng; Lei, Si Wan; Tsui, Stephen Kwok-Wing; Lee, Simon Ming-Yuen
2014-02-01
Minor variants have significant implications in quasispecies evolution, early cancer detection and non-invasive fetal genotyping but their accurate detection by next-generation sequencing (NGS) is hampered by sequencing errors. We generated sequencing data from mixtures at predetermined ratios in order to provide insight into sequencing errors and variations that can arise for which simulation cannot be performed. The information also enables better parameterization in depth of coverage, read quality and heterogeneity, library preparation techniques, technical repeatability for mathematical modeling, theory development and simulation experimental design. We devised minor variant authentication rules that achieved 100% accuracy in both testing and validation experiments. The rules are free from tedious inspection of alignment accuracy, sequencing read quality or errors introduced by homopolymers. The authentication processes only require minor variants to: (1) have minimum depth of coverage larger than 30; (2) be reported by (a) four or more variant callers, or (b) DiBayes or LoFreq, plus SNVer (or BWA when no results are returned by SNVer), and with the interassay coefficient of variation (CV) no larger than 0.1. Quantification accuracy undermined by sequencing errors could neither be overcome by ultra-deep sequencing, nor recruiting more variant callers to reach a consensus, such that consistent underestimation and overestimation (i.e. low CV) were observed. To accommodate stochastic error and adjust the observed ratio within a specified accuracy, we presented a proof of concept for the use of a double calibration curve for quantification, which provides an important reference towards potential industrial-scale fabrication of calibrants for NGS.
Våge, D I; Nieminen, M; Anderson, D G; Røed, K H
2014-10-01
The protein-coding region of melanocortin 1 receptor (MC1R) was sequenced to identify potential variation affecting coat color in reindeer (Rangifer tarandus). A T→C sequence variation at nucleotide position 218 (c.218T>C) causing an amino acid (aa) change from methionine to threonine at aa position 73 (p.Met73Thr) was identified. In addition, a T→G sequence variation was found at nucleotide position 839 (c.839T>G), causing phenylalanine to be exchanged by cysteine at aa position 280 (p.Phe280Cys). The two sequence variants (c.218C and c.839G) were found to be closely associated with a darker belly coat compared with animals not having any of these two variants. The aa acid change p.Met73Thr affects the same position as p.Met73Lys previously reported to give constitutive activation of MC1R in black sheep (Ovis aries), whereas p.Phe280Cys is identical to one of two variants previously reported to be associated with dark coat color in Arctic fox (Alopex lagopus), supporting that the two variants found in reindeer are functional. The complete absence of Thr73 and Cys280 among the 51 wild reindeer analyzed provides some evidence that these variants are more common in the domestic herds. © 2014 Stichting International Foundation for Animal Genetics.
Johnsen, Jill M.; Fletcher, Shelley N.; Huston, Haley; Roberge, Sarah; Martin, Beth K.; Kircher, Martin; Josephson, Neil C.; Shendure, Jay; Ruuska, Sarah; Koerper, Marion A.; Morales, Jaime; Pierce, Glenn F.; Aschman, Diane J.
2017-01-01
Hemophilia A and B are rare, X-linked bleeding disorders. My Life, Our Future (MLOF) is a collaborative project established to genotype and study hemophilia. Patients were enrolled at US hemophilia treatment centers (HTCs). Genotyping was performed centrally using next-generation sequencing (NGS) with an approach that detected common F8 gene inversions simultaneously with F8 and F9 gene sequencing followed by confirmation using standard genotyping methods. Sixty-nine HTCs enrolled the first 3000 patients in under 3 years. Clinically reportable DNA variants were detected in 98.1% (2357/2401) of hemophilia A and 99.3% (595/599) of hemophilia B patients. Of the 924 unique variants found, 285 were novel. Predicted gene-disrupting variants were common in severe disease; missense variants predominated in mild–moderate disease. Novel DNA variants accounted for ∼30% of variants found and were detected continuously throughout the project, indicating that additional variation likely remains undiscovered. The NGS approach detected >1 reportable variants in 36 patients (10 females), a finding with potential clinical implications. NGS also detected incidental variants unlikely to cause disease, including 11 variants previously reported in hemophilia. Although these genes are thought to be conserved, our findings support caution in interpretation of new variants. In summary, MLOF has contributed significantly toward variant annotation in the F8 and F9 genes. In the near future, investigators will be able to access MLOF data and repository samples for research to advance our understanding of hemophilia. PMID:29296726
VarBin, a novel method for classifying true and false positive variants in NGS data
2013-01-01
Background Variant discovery for rare genetic diseases using Illumina genome or exome sequencing involves screening of up to millions of variants to find only the one or few causative variant(s). Sequencing or alignment errors create "false positive" variants, which are often retained in the variant screening process. Methods to remove false positive variants often retain many false positive variants. This report presents VarBin, a method to prioritize variants based on a false positive variant likelihood prediction. Methods VarBin uses the Genome Analysis Toolkit variant calling software to calculate the variant-to-wild type genotype likelihood ratio at each variant change and position divided by read depth. The resulting Phred-scaled, likelihood-ratio by depth (PLRD) was used to segregate variants into 4 Bins with Bin 1 variants most likely true and Bin 4 most likely false positive. PLRD values were calculated for a proband of interest and 41 additional Illumina HiSeq, exome and whole genome samples (proband's family or unrelated samples). At variant sites without apparent sequencing or alignment error, wild type/non-variant calls cluster near -3 PLRD and variant calls typically cluster above 10 PLRD. Sites with systematic variant calling problems (evident by variant quality scores and biases as well as displayed on the iGV viewer) tend to have higher and more variable wild type/non-variant PLRD values. Depending on the separation of a proband's variant PLRD value from the cluster of wild type/non-variant PLRD values for background samples at the same variant change and position, the VarBin method's classification is assigned to each proband variant (Bin 1 to Bin 4). Results To assess VarBin performance, Sanger sequencing was performed on 98 variants in the proband and background samples. True variants were confirmed in 97% of Bin 1 variants, 30% of Bin 2, and 0% of Bin 3/Bin 4. Conclusions These data indicate that VarBin correctly classifies the majority of true variants as Bin 1 and Bin 3/4 contained only false positive variants. The "uncertain" Bin 2 contained both true and false positive variants. Future work will further differentiate the variants in Bin 2. PMID:24266885
Johnson, Ben; Lowe, Gillian C; Futterer, Jane; Lordkipanidzé, Marie; MacDonald, David; Simpson, Michael A; Sanchez-Guiú, Isabel; Drake, Sian; Bem, Danai; Leo, Vincenzo; Fletcher, Sarah J; Dawood, Ban; Rivera, José; Allsup, David; Biss, Tina; Bolton-Maggs, Paula Hb; Collins, Peter; Curry, Nicola; Grimley, Charlotte; James, Beki; Makris, Mike; Motwani, Jayashree; Pavord, Sue; Talks, Katherine; Thachil, Jecko; Wilde, Jonathan; Williams, Mike; Harrison, Paul; Gissen, Paul; Mundell, Stuart; Mumford, Andrew; Daly, Martina E; Watson, Steve P; Morgan, Neil V
2016-10-01
Inherited thrombocytopenias are a heterogeneous group of disorders characterized by abnormally low platelet counts which can be associated with abnormal bleeding. Next-generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease-causing genes. However its full potential has not yet been exploited. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown etiology with platelet counts varying from 11×10 9 /L to 186×10 9 /L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified "pathogenic" or "likely pathogenic" variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases, including novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia. Copyright© Ferrata Storti Foundation.
Kim, Sang Jin; Lee, Seungbok; Park, Changho; Seo, Jeong-Sun; Kim, Jong-Il; Yu, Hyeong Gon
2013-10-18
Behçet's disease (BD) is a chronic systemic inflammatory disorder characterized by four major manifestations: recurrent uveitis, oral and genital ulcers and skin lesions. To identify some pathogenic variants associated with severe Behçet's uveitis, we used targeted and massively parallel sequencing methods to explore the genetic diversity of target regions. A solution-based target enrichment kit was designed to capture whole-exonic regions of 132 candidate genes. Using a multiplexing strategy, 32 samples from patients with a severe type of Behçet's uveitis were sequenced with a Genome Analyzer IIx. We compared the frequency of each variant with that of 59 normal Korean controls, and selected five rare and eight common single-nucleotide variants as the candidates for a replication study. The selected variants were genotyped in 61 cases and 320 controls and, as a result, two rare and seven common variants showed significant associations with severe Behçet's uveitis (P<0.05). Some of these, including rs199955684 in KIR3DL3, rs1801133 in MTHFR, rs1051790 in MICA and rs1051456 in KIR2DL4, were predicted to be damaging by either the PolyPhen-2 or SIFT prediction program. Variants on FCGR3A (rs396991) and ICAM1 (rs5498) have been previously reported as susceptibility loci of this disease, and those on IFNAR1, MTFHR and MICA also replicated the previous reports at the gene level. The KIR3DL3 and KIR2DL4 genes are novel susceptibility genes that have not been reported in association with BD. In conclusion, this study showed that target enrichment and next-generation sequencing technologies can provide valuable information on the genetic predisposition for Behçet's uveitis.
Márki-Zay, János; Klein, Christoph L; Gancberg, David; Schimmel, Heinz G; Dux, László
2009-04-01
Depending on the method used, rare sequence variants adjacent to the single nucleotide polymorphism (SNP) of interest may cause unusual or erroneous genotyping results. Because such rare variants are known for many genes commonly tested in diagnostic laboratories, we organized a proficiency study to assess their influence on the accuracy of reported laboratory results. Four external quality control materials were processed and sent to 283 laboratories through 3 EQA organizers for analysis of the prothrombin 20210G>A mutation. Two of these quality control materials contained sequence variants introduced by site-directed mutagenesis. One hundred eighty-nine laboratories participated in the study. When samples gave a usual result with the method applied, the error rate was 5.1%. Detailed analysis showed that more than 70% of the failures were reported from only 9 laboratories. Allele-specific amplification-based PCR had a much higher error rate than other methods (18.3% vs 2.9%). The variants 20209C>T and [20175T>G; 20179_20180delAC] resulted in unusual genotyping results in 67 and 85 laboratories, respectively. Eighty-three (54.6%) of these unusual results were not recognized, 32 (21.1%) were attributed to technical issues, and only 37 (24.3%) were recognized as another sequence variant. Our findings revealed that some of the participating laboratories were not able to recognize and correctly interpret unusual genotyping results caused by rare SNPs. Our study indicates that the majority of the failures could be avoided by improved training and careful selection and validation of the methods applied.
New genetic variants of LATS1 detected in urinary bladder and colon cancer.
Saadeldin, Mona K; Shawer, Heba; Mostafa, Ahmed; Kassem, Neemat M; Amleh, Asma; Siam, Rania
2014-01-01
LATS1, the large tumor suppressor 1 gene, encodes for a serine/threonine kinase protein and is implicated in cell cycle progression. LATS1 is down-regulated in various human cancers, such as breast cancer, and astrocytoma. Point mutations in LATS1 were reported in human sarcomas. Additionally, loss of heterozygosity of LATS1 chromosomal region predisposes to breast, ovarian, and cervical tumors. In the current study, we investigated LATS1 genetic variations including single nucleotide polymorphisms (SNPs), in 28 Egyptian patients with either urinary bladder or colon cancers. The LATS1 gene was amplified and sequenced and the expression of LATS1 at the RNA level was assessed in 12 urinary bladder cancer samples. We report, the identification of a total of 29 variants including previously identified SNPs within LATS1 coding and non-coding sequences. A total of 18 variants were novel. Majority of the novel variants, 13, were mapped to intronic sequences and un-translated regions of the gene. Four of the five novel variants located in the coding region of the gene, represented missense mutations within the serine/threonine kinase catalytic domain. Interestingly, LATS1 RNA steady state levels was lost in urinary bladder cancerous tissue harboring four specific SNPs (16045 + 41736 + 34614 + 56177) positioned in the 5'UTR, intron 6, and two silent mutations within exon 4 and exon 8, respectively. This study identifies novel single-base-sequence alterations in the LATS1 gene. These newly identified variants could potentially be used as novel diagnostic or prognostic tools in cancer.
Hirvonen, Elina A M; Pitkänen, Esa; Hemminki, Kari; Aaltonen, Lauri A; Kilpivaara, Outi
2017-04-20
Polycythemia vera (PV), characterized by massive production of erythrocytes, is one of the myeloproliferative neoplasms. Most patients carry a somatic gain-of-function mutation in JAK2, c.1849G > T (p.Val617Phe), leading to constitutive activation of JAK-STAT signaling pathway. Familial clustering is also observed occasionally, but high-penetrance predisposition genes to PV have remained unidentified. We studied the predisposition to PV by exome sequencing (three cases) in a Finnish PV family with four patients. The 12 shared variants (maximum allowed minor allele frequency <0.001 in Finnish population in ExAC database) predicted damaging in silico and absent in an additional control set of over 500 Finns were further validated by Sanger sequencing in a fourth affected family member. Three novel predisposition candidate variants were identified: c.1254C > G (p.Phe418Leu) in ZXDC, c.1931C > G (p.Pro644Arg) in ATN1, and c.701G > A (p.Arg234Gln) in LRRC3. We also observed a rare, predicted benign germline variant c.2912C > G (p.Ala971Gly) in BCORL1 in all four patients. Somatic mutations in BCORL1 have been reported in myeloid malignancies. We further screened the variants in eight PV patients in six other Finnish families, but no other carriers were found. Exome sequencing provides a powerful tool for the identification of novel variants, and understanding the familial predisposition of diseases. This is the first report on Finnish familial PV cases, and we identified three novel candidate variants that may predispose to the disease.
Kuhn, Jens H.; Andersen, Kristian G.; Bào, Yīmíng; Bavari, Sina; Becker, Stephan; Bennett, Richard S.; Bergman, Nicholas H.; Blinkova, Olga; Bradfute, Steven; Brister, J. Rodney; Bukreyev, Alexander; Chandran, Kartik; Chepurnov, Alexander A.; Davey, Robert A.; Dietzgen, Ralf G.; Doggett, Norman A.; Dolnik, Olga; Dye, John M.; Enterlein, Sven; Fenimore, Paul W.; Formenty, Pierre; Freiberg, Alexander N.; Garry, Robert F.; Garza, Nicole L.; Gire, Stephen K.; Gonzalez, Jean-Paul; Griffiths, Anthony; Happi, Christian T.; Hensley, Lisa E.; Herbert, Andrew S.; Hevey, Michael C.; Hoenen, Thomas; Honko, Anna N.; Ignatyev, Georgy M.; Jahrling, Peter B.; Johnson, Joshua C.; Johnson, Karl M.; Kindrachuk, Jason; Klenk, Hans-Dieter; Kobinger, Gary; Kochel, Tadeusz J.; Lackemeyer, Matthew G.; Lackner, Daniel F.; Leroy, Eric M.; Lever, Mark S.; Mühlberger, Elke; Netesov, Sergey V.; Olinger, Gene G.; Omilabu, Sunday A.; Palacios, Gustavo; Panchal, Rekha G.; Park, Daniel J.; Patterson, Jean L.; Paweska, Janusz T.; Peters, Clarence J.; Pettitt, James; Pitt, Louise; Radoshitzky, Sheli R.; Ryabchikova, Elena I.; Saphire, Erica Ollmann; Sabeti, Pardis C.; Sealfon, Rachel; Shestopalov, Aleksandr M.; Smither, Sophie J.; Sullivan, Nancy J.; Swanepoel, Robert; Takada, Ayato; Towner, Jonathan S.; van der Groen, Guido; Volchkov, Viktor E.; Volchkova, Valentina A.; Wahl-Jensen, Victoria; Warren, Travis K.; Warfield, Kelly L.; Weidmann, Manfred; Nichol, Stuart T.
2014-01-01
Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [
Genetic Misdiagnoses and the Potential for Health Disparities.
Manrai, Arjun K; Funke, Birgit H; Rehm, Heidi L; Olesen, Morten S; Maron, Bradley A; Szolovits, Peter; Margulies, David M; Loscalzo, Joseph; Kohane, Isaac S
2016-08-18
For more than a decade, risk stratification for hypertrophic cardiomyopathy has been enhanced by targeted genetic testing. Using sequencing results, clinicians routinely assess the risk of hypertrophic cardiomyopathy in a patient's relatives and diagnose the condition in patients who have ambiguous clinical presentations. However, the benefits of genetic testing come with the risk that variants may be misclassified. Using publicly accessible exome data, we identified variants that have previously been considered causal in hypertrophic cardiomyopathy and that are overrepresented in the general population. We studied these variants in diverse populations and reevaluated their initial ascertainments in the medical literature. We reviewed patient records at a leading genetic-testing laboratory for occurrences of these variants during the near-decade-long history of the laboratory. Multiple patients, all of whom were of African or unspecified ancestry, received positive reports, with variants misclassified as pathogenic on the basis of the understanding at the time of testing. Subsequently, all reported variants were recategorized as benign. The mutations that were most common in the general population were significantly more common among black Americans than among white Americans (P<0.001). Simulations showed that the inclusion of even small numbers of black Americans in control cohorts probably would have prevented these misclassifications. We identified methodologic shortcomings that contributed to these errors in the medical literature. The misclassification of benign variants as pathogenic that we found in our study shows the need for sequencing the genomes of diverse populations, both in asymptomatic controls and the tested patient population. These results expand on current guidelines, which recommend the use of ancestry-matched controls to interpret variants. As additional populations of different ancestry backgrounds are sequenced, we expect variant reclassifications to increase, particularly for ancestry groups that have historically been less well studied. (Funded by the National Institutes of Health.).
Bhatia, Shipra; Gordon, Christopher T.; Foster, Robert G.; Melin, Lucie; Abadie, Véronique; Baujat, Geneviève; Vazquez, Marie-Paule; Amiel, Jeanne; Lyonnet, Stanislas; van Heyningen, Veronica; Kleinjan, Dirk A.
2015-01-01
Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. PMID:26030420
Liao, Hsiao-Mei; Liu, Hebing; Lei, Heiyan; Li, Bingjie; Chin, Pei-Ju; Tsai, Shien; Bhatia, Kishor; Gutierrez, Marina; Epelman, Sidnei; Biggar, Robert J; Nkrumah, Francis; Neequaye, Janet; Ogwang, Martin D; Reynolds, Steven J; Lo, Shyh-Ching; Mbulaiteye, Sam M
2018-06-02
Epstein-Barr virus (EBV) is linked to several cancers, including endemic Burkitt lymphoma (eBL), but causal variants are unknown. We recently reported novel sequence variants in the LMP-1 gene and promoter in EBV genomes sequenced from 13 of 14 BL biopsies. Alignments of the novel sequence variants for 114 published EBV genomes, including 27 from BL cases, revealed four LMP-1 variant patterns, designated A to D. Pattern A variant was found in 48% of BL EBV genomes. Here, we used PCR-Sanger sequencing to evaluate 50 additional BL biopsies from Ghana, Brazil, and Argentina, and peripheral blood samples from 113 eBL cases and 115 controls in Uganda. Pattern A was found in 60.9% of 64 BL biopsies evaluated. Compared to PCR-negative subjects in Uganda, detection of Pattern A in peripheral blood was associated with eBL case status (odds ratio [OR] 31.7, 95% confidence interval: 6.8⁻149), controlling for relevant confounders. Variant Pattern A and Pattern D were associated with eBL case status, but with lower ORs (9.7 and 13.6, respectively). Our results support the hypothesis that EBV LMP-1 Pattern A may be associated with eBL, but it is not the sole associated variant. Further research is needed to replicate and elucidate our findings.
Farlow, Janice L; Lin, Hai; Sauerbeck, Laura; Lai, Dongbing; Koller, Daniel L; Pugh, Elizabeth; Hetrick, Kurt; Ling, Hua; Kleinloog, Rachel; van der Vlies, Pieter; Deelen, Patrick; Swertz, Morris A; Verweij, Bon H; Regli, Luca; Rinkel, Gabriel J E; Ruigrok, Ynte M; Doheny, Kimberly; Liu, Yunlong; Broderick, Joseph; Foroud, Tatiana
2015-01-01
Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.
Whole-Exome Sequencing of 10 Scientists: Evaluation of the Process and Outcomes.
Lindor, Noralane M; Schahl, Kimberly A; Johnson, Kiley J; Hunt, Katherine S; Mensink, Kara A; Wieben, Eric D; Klee, Eric; Black, John L; Highsmith, W Edward; Thibodeau, Stephen N; Ferber, Matthew J; Aypar, Umut; Ji, Yuan; Graham, Rondell P; Fiksdal, Alexander S; Sarangi, Vivek; Ormond, Kelly E; Riegert-Johnson, Douglas L; McAllister, Tammy M; Farrugia, Gianrico; McCormick, Jennifer B
2015-10-01
To understand motivations, educational needs, and concerns of individuals contemplating whole-exome sequencing (WES) and determine what amount of genetic information might be obtained by sequencing a generally healthy cohort so as to more effectively counsel future patients. From 2012 to 2014, 40 medically educated, generally healthy scientists at Mayo Clinic were invited to have WES conducted on a research basis; 26 agreed to be in a drawing from which 10 participants were selected. The study involved pre- and posttest genetic counseling and completion of 4 surveys related to the experience and outcomes. Whole-exome sequencing was conducted on DNA from blood from each person. Most variants (76,305 per person; range, 74,505-77,387) were known benign allelic variants, variants in genes of unknown function, or variants of uncertain significance in genes of known function. The results of suspected pathogenic/pathogenic variants in Mendelian disorders and pharmacogenomic variants were disclosed. The mean number of suspected pathogenic/pathogenic variants was 2.2 per person (range, 1-4). Four pharmacogenomic genes were included for reporting; variants were found in 9 of 10 participants. This study provides data that may be useful in establishing reality-based patient expectations, outlines specific points to cover during counseling, and increases confidence in the feasibility of providing adequate preparation and counseling for WES in generally healthy individuals. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Novel heterozygous NOTCH3 pathogenic variant found in two Chinese patients with CADASIL.
Li, Shufeng; Chen, Yifan; Shan, Haitao; Ma, Fang; Shi, Minke; Xue, Jun
2017-12-01
NOTCH3 mutations have been described to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Here, we report 2 CADASIL patients from a Chinese family. Whole genome sequencing was performed on the two CADASIL patients. The novel variant c.128G>C in exon 2 of NOTCH3 was identified and confirmed through PCR-Sanger sequencing (Human Genome Variation Society nomenclature: HGVS: NOTCH3 c.128G>C; p.Cys43Ser). The heterozygous NOTCH3 variant cause a cysteine to serine substitution at codon 43. According to the variant interpretation guideline of American College of Medical Genetics and Genomics (ACMG), this variant was classified as "pathogenic". Other variants in HTRA1, COL4A1 and COL4A2 were also found, they were classified as "benign". Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo
2017-11-01
Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.
Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease
Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo
2017-01-01
Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643
Koko, Mahmoud; Abdallah, Mohammed O E; Amin, Mutaz; Ibrahim, Muntaser
2018-01-15
The conventional variant calling of pathogenic alleles in exome and genome sequencing requires the presence of the non-pathogenic alleles as genome references. This hinders the correct identification of variants with minor and/or pathogenic reference alleles warranting additional approaches for variant calling. More than 26,000 Exome Aggregation Consortium (ExAC) variants have a minor reference allele including variants with known ClinVar disease alleles. For instance, in a number of variants related to clotting disorders, the phenotype-associated allele is a human genome reference allele (rs6025, rs6003, rs1799983, and rs2227564 using the assembly hg19). We highlighted how the current variant calling standards miss homozygous reference disease variants in these sites and provided a bioinformatic panel that can be used to screen these variants using commonly available variant callers. We present exome sequencing results from an individual with venous thrombosis to emphasize how pathogenic alleles in clinically relevant variants escape variant calling while non-pathogenic alleles are detected. This article highlights the importance of specialized variant calling strategies in clinical variants with minor reference alleles especially in the context of personal genomes and exomes. We provide here a simple strategy to screen potential disease-causing variants when present in homozygous reference state.
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-01-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield. PMID:25333064
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-09-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.
Mubiru, James N; Yang, Alice S; Olsen, Christian; Nayak, Sudhir; Livi, Carolina B; Dick, Edward J; Owston, Michael; Garcia-Forey, Magdalena; Shade, Robert E; Rogers, Jeffrey
2014-01-01
The function of prostate-specific antigen (PSA) is to liquefy the semen coagulum so that the released sperm can fuse with the ovum. Fifteen spliced variants of the PSA gene have been reported in humans, but little is known about alternative splicing in nonhuman primates. Positive selection has been reported in sex- and reproductive-related genes from sea urchins to Drosophila to humans; however, there are few studies of adaptive evolution of the PSA gene. Here, using polymerase chain reaction (PCR) product cloning and sequencing, we study PSA transcript variant heterogeneity in the prostates of chimpanzees (Pan troglodytes), cynomolgus monkeys (Macaca fascicularis), baboons (Papio hamadryas anubis), and African green monkeys (Chlorocebus aethiops). Six PSA variants were identified in the chimpanzee prostate, but only two variants were found in cynomolgus monkeys, baboons, and African green monkeys. In the chimpanzee the full-length transcript is expressed at the same magnitude as the transcripts that retain intron 3. We have found previously unidentified splice variants of the PSA gene, some of which might be linked to disease conditions. Selection on the PSA gene was studied in 11 primate species by computational methods using the sequences reported here for African green monkey, cynomolgus monkey, baboon, and chimpanzee and other sequences available in public databases. A codon-based analysis (dN/dS) of the PSA gene identified potential adaptive evolution at five residue sites (Arg45, Lys70, Gln144, Pro189, and Thr203).
Li, Zhongshan; Liu, Zhenwei; Jiang, Yi; Chen, Denghui; Ran, Xia; Sun, Zhong Sheng; Wu, Jinyu
2017-01-01
Exome sequencing has been widely used to identify the genetic variants underlying human genetic disorders for clinical diagnoses, but the identification of pathogenic sequence variants among the huge amounts of benign ones is complicated and challenging. Here, we describe a new Web server named mirVAFC for pathogenic sequence variants prioritizations from clinical exome sequencing (CES) variant data of single individual or family. The mirVAFC is able to comprehensively annotate sequence variants, filter out most irrelevant variants using custom criteria, classify variants into different categories as for estimated pathogenicity, and lastly provide pathogenic variants prioritizations based on classifications and mutation effects. Case studies using different types of datasets for different diseases from publication and our in-house data have revealed that mirVAFC can efficiently identify the right pathogenic candidates as in original work in each case. Overall, the Web server mirVAFC is specifically developed for pathogenic sequence variant identifications from family-based CES variants using classification-based prioritizations. The mirVAFC Web server is freely accessible at https://www.wzgenomics.cn/mirVAFC/. © 2016 WILEY PERIODICALS, INC.
Validation of a next-generation sequencing assay for clinical molecular oncology.
Cottrell, Catherine E; Al-Kateb, Hussam; Bredemeyer, Andrew J; Duncavage, Eric J; Spencer, David H; Abel, Haley J; Lockwood, Christina M; Hagemann, Ian S; O'Guin, Stephanie M; Burcea, Lauren C; Sawyer, Christopher S; Oschwald, Dayna M; Stratman, Jennifer L; Sher, Dorie A; Johnson, Mark R; Brown, Justin T; Cliften, Paul F; George, Bijoy; McIntosh, Leslie D; Shrivastava, Savita; Nguyen, Tudung T; Payton, Jacqueline E; Watson, Mark A; Crosby, Seth D; Head, Richard D; Mitra, Robi D; Nagarajan, Rakesh; Kulkarni, Shashikant; Seibert, Karen; Virgin, Herbert W; Milbrandt, Jeffrey; Pfeifer, John D
2014-01-01
Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Next-generation sequencing for genetic testing of familial colorectal cancer syndromes.
Simbolo, Michele; Mafficini, Andrea; Agostini, Marco; Pedrazzani, Corrado; Bedin, Chiara; Urso, Emanuele D; Nitti, Donato; Turri, Giona; Scardoni, Maria; Fassan, Matteo; Scarpa, Aldo
2015-01-01
Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve homopolymeric DNA regions not adequately assessed by NGS. The implementation of NGS approaches in routine diagnostics of familial CRC is cost-effective and significantly reduces diagnostic turnaround times.
REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants.
Ioannidis, Nilah M; Rothstein, Joseph H; Pejaver, Vikas; Middha, Sumit; McDonnell, Shannon K; Baheti, Saurabh; Musolf, Anthony; Li, Qing; Holzinger, Emily; Karyadi, Danielle; Cannon-Albright, Lisa A; Teerlink, Craig C; Stanford, Janet L; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan M; Schleutker, Johanna; Carpten, John D; Powell, Isaac J; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William D; Mandal, Diptasri; Eeles, Rosalind A; Kote-Jarai, Zsofia; Bustamante, Carlos D; Schaid, Daniel J; Hastie, Trevor; Ostrander, Elaine A; Bailey-Wilson, Joan E; Radivojac, Predrag; Thibodeau, Stephen N; Whittemore, Alice S; Sieh, Weiva
2016-10-06
The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10 -12 ) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046-0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027-0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale. Copyright © 2016 American Society of Human Genetics. All rights reserved.
Tareb, R.; Bernardeau, M.
2015-01-01
The probiotic Lactobacillus farciminis CNCM-I-3699 is a pleomorphic strain exhibiting smooth and rough variants. We report their complete genomes consisting of a chromosome of 2, 4 Mb and a plasmid of 6,417 bp. The smooth variant differs by the presence of an additional plasmid of 35,418 bp. PMID:26383668
Chou, A; Burke, J
1999-05-01
DNA sequence clustering has become a valuable method in support of gene discovery and gene expression analysis. Our interest lies in leveraging the sequence diversity within clusters of expressed sequence tags (ESTs) to model gene structure for the study of gene variants that arise from, among other things, alternative mRNA splicing, polymorphism, and divergence after gene duplication, fusion, and translocation events. In previous work, CRAW was developed to discover gene variants from assembled clusters of ESTs. Most importantly, novel gene features (the differing units between gene variants, for example alternative exons, polymorphisms, transposable elements, etc.) that are specialized to tissue, disease, population, or developmental states can be identified when these tools collate DNA source information with gene variant discrimination. While the goal is complete automation of novel feature and gene variant detection, current methods are far from perfect and hence the development of effective tools for visualization and exploratory data analysis are of paramount importance in the process of sifting through candidate genes and validating targets. We present CRAWview, a Java based visualization extension to CRAW. Features that vary between gene forms are displayed using an automatically generated color coded index. The reporting format of CRAWview gives a brief, high level summary report to display overlap and divergence within clusters of sequences as well as the ability to 'drill down' and see detailed information concerning regions of interest. Additionally, the alignment viewing and editing capabilities of CRAWview make it possible to interactively correct frame-shifts and otherwise edit cluster assemblies. We have implemented CRAWview as a Java application across windows NT/95 and UNIX platforms. A beta version of CRAWview will be freely available to academic users from Pangea Systems (http://www.pangeasystems.com). Contact :
Keel, B N; Nonneman, D J; Rohrer, G A
2017-08-01
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Clinical Interpretation and Implications of Whole-Genome Sequencing
Dewey, Frederick E.; Grove, Megan E.; Pan, Cuiping; Goldstein, Benjamin A.; Bernstein, Jonathan A.; Chaib, Hassan; Merker, Jason D.; Goldfeder, Rachel L.; Enns, Gregory M.; David, Sean P.; Pakdaman, Neda; Ormond, Kelly E.; Caleshu, Colleen; Kingham, Kerry; Klein, Teri E.; Whirl-Carrillo, Michelle; Sakamoto, Kenneth; Wheeler, Matthew T.; Butte, Atul J.; Ford, James M.; Boxer, Linda; Ioannidis, John P. A.; Yeung, Alan C.; Altman, Russ B.; Assimes, Themistocles L.; Snyder, Michael; Ashley, Euan A.; Quertermous, Thomas
2014-01-01
IMPORTANCE Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95%CI, 0.40-0.64), and reclassified 69%of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine. PMID:24618965
Novel rare variations of the oxytocin receptor (OXTR) gene in autism spectrum disorder individuals.
Liu, Xiaoxi; Kawashima, Minae; Miyagawa, Taku; Otowa, Takeshi; Latt, Khun Zaw; Thiri, Myo; Nishida, Hisami; Sugiyama, Toshiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Mabuchi, Akihiko; Tokunaga, Katsushi; Sasaki, Tsukasa
2015-01-01
The oxytocin receptor (OXTR) gene has been implicated as a risk gene for autism spectrum disorder (ASD)-a neurodevelopmental disorder with essential features of impairments in social communication and reciprocal interaction. The genetic associations between common variations in OXTR and ASD have been reported in multiple ethnic populations. However, little is known about the distribution of rare variations within OXTR in ASD patients. In this study, we resequenced the full length of OXTR in 105 ASD individuals using an approach that combined the power of next-generation sequencing technology, long-range PCR and DNA pooling. We demonstrated that rare variants with minor allele frequency as low as 0.05% could be reliably detected by our method. We identified 28 novel variants including potential functional variants in the intron region and one rare missense variant (R150S). We subsequently performed Sanger sequencing and validated five novel variants located in previously suggested candidate regions in ASD individuals. Further sequencing of 312 healthy subjects showed that the burden of rare variants is significantly higher in ASDs compared with healthy individuals. Our results support that the rare variation in OXTR gene might be involved in ASD.
Mass Spectrometric Determination of ILPR G-quadruplex Binding Sites in Insulin and IGF-2
Xiao, JunFeng
2009-01-01
The insulin-linked polymorphic region (ILPR) of the human insulin gene promoter region forms G-quadruplex structures in vitro. Previous studies show that insulin and insulin-like growth factor-2 (IGF-2) exhibit high affinity binding in vitro to 2-repeat sequences of ILPR variants a and h, but negligible binding to variant i. Two-repeat sequences of variants a and h form intramolecular G-quadruplex structures that are not evidenced for variant i. Here we report on the use of protein digestion combined with affinity capture and MALDI-MS detection to pinpoint ILPR binding sites in insulin and IGF-2. Peptides captured by ILPR variants a and h were sequenced by MALDI-MS/MS, LC-MS and in silico digestion. On-bead digestion of insulin-ILPR variant a complexes supported the conclusions. The results indicate that the sequence VCG(N)RGF is generally present in the captured peptides and is likely involved in the affinity binding interactions of the proteins with the ILPR G-quadruplexes. The significance of arginine in the interactions was studied by comparing the affinities of synthesized peptides VCGERGF and VCGEAGF with ILPR variant a. Peptides from other regions of the proteins that are connected through disulfide linkages were also detected in some capture experiments. Identification of binding sites could facilitate design of DNA binding ligands for capture and detection of insulin and IGF-2. The interactions may have biological significance as well. PMID:19747845
Al Eissa, Mariam M.; Fiorentino, Alessia; Sharp, Sally I.; O'Brien, Niamh L.; Wolfe, Kate; Giaroli, Giovanni; Curtis, David; Bass, Nicholas J.
2017-01-01
Summary Schizophrenia (SCZ) is a severe, highly heritable psychiatric disorder. Elucidation of the genetic architecture of the disorder will facilitate greater understanding of the altered underlying neurobiological mechanisms. The aim of this study was to identify likely aetiological variants in subjects affected with SCZ. Exome sequence data from a SCZ cas–control sample from Sweden was analysed for likely aetiological variants using a weighted burden test. Suggestive evidence implicated the UNC‐51‐like kinase (ULK1) gene, and it was observed that four rare variants that were more common in the Swedish SCZ cases were also more common in UK10K SCZ cases, as compared to obesity cases. These three missense variants and one intronic variant were genotyped in the University College London cohort of 1304 SCZ cases and 1348 ethnically matched controls. All four variants were more common in the SCZ cases than controls and combining them produced a result significant at P = 0.02. The results presented here demonstrate the importance of following up exome sequencing studies using additional datasets. The roles of ULK1 in autophagy and mTOR signalling strengthen the case that these pathways may be important in the pathophysiology of SCZ. The findings reported here await independent replication. PMID:29148569
Buitrago, Lorena; Rendon, Augusto; Liang, Yupu; Simeoni, Ilenia; Negri, Ana; Filizola, Marta; Ouwehand, Willem H.; Coller, Barry S.; Alessi, Marie-Christine; Ballmaier, Matthias; Bariana, Tadbir; Bellissimo, Daniel; Bertoli, Marta; Bray, Paul; Bury, Loredana; Carrell, Robin; Cattaneo, Marco; Collins, Peter; French, Deborah; Favier, Remi; Freson, Kathleen; Furie, Bruce; Germeshausen, Manuela; Ghevaert, Cedric; Gomez, Keith; Goodeve, Anne; Gresele, Paolo; Guerrero, Jose; Hampshire, Dan J.; Hadinnapola, Charaka; Heemskerk, Johan; Henskens, Yvonne; Hill, Marian; Hogg, Nancy; Johnsen, Jill; Kahr, Walter; Kerr, Ron; Kunishima, Shinji; Laffan, Michael; Natwani, Amit; Neerman-Arbez, Marguerite; Nurden, Paquita; Nurden, Alan; Ormiston, Mark; Othman, Maha; Ouwehand, Willem; Perry, David; Vilk, Shoshana Ravel; Reitsma, Pieter; Rondina, Matthew; Simeoni, Ilenia; Smethurst, Peter; Stephens, Jonathan; Stevenson, William; Szkotak, Artur; Turro, Ernest; Van Geet, Christel; Vries, Minka; Ward, June; Waye, John; Westbury, Sarah; Whiteheart, Sidney; Wilcox, David; Zhang, Bi
2015-01-01
Next-generation sequencing is transforming our understanding of human genetic variation but assessing the functional impact of novel variants presents challenges. We analyzed missense variants in the integrin αIIbβ3 receptor subunit genes ITGA2B and ITGB3 identified by whole-exome or -genome sequencing in the ThromboGenomics project, comprising ∼32,000 alleles from 16,108 individuals. We analyzed the results in comparison with 111 missense variants in these genes previously reported as being associated with Glanzmann thrombasthenia (GT), 20 associated with alloimmune thrombocytopenia, and 5 associated with aniso/macrothrombocytopenia. We identified 114 novel missense variants in ITGA2B (affecting ∼11% of the amino acids) and 68 novel missense variants in ITGB3 (affecting ∼9% of the amino acids). Of the variants, 96% had minor allele frequencies (MAF) < 0.1%, indicating their rarity. Based on sequence conservation, MAF, and location on a complete model of αIIbβ3, we selected three novel variants that affect amino acids previously associated with GT for expression in HEK293 cells. αIIb P176H and β3 C547G severely reduced αIIbβ3 expression, whereas αIIb P943A partially reduced αIIbβ3 expression and had no effect on fibrinogen binding. We used receiver operating characteristic curves of combined annotation-dependent depletion, Polyphen 2-HDIV, and sorting intolerant from tolerant to estimate the percentage of novel variants likely to be deleterious. At optimal cut-off values, which had 69–98% sensitivity in detecting GT mutations, between 27% and 71% of the novel αIIb or β3 missense variants were predicted to be deleterious. Our data have implications for understanding the evolutionary pressure on αIIbβ3 and highlight the challenges in predicting the clinical significance of novel missense variants. PMID:25827233
A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans.
Timpson, Nicholas J; Walter, Klaudia; Min, Josine L; Tachmazidou, Ioanna; Malerba, Giovanni; Shin, So-Youn; Chen, Lu; Futema, Marta; Southam, Lorraine; Iotchkova, Valentina; Cocca, Massimiliano; Huang, Jie; Memari, Yasin; McCarthy, Shane; Danecek, Petr; Muddyman, Dawn; Mangino, Massimo; Menni, Cristina; Perry, John R B; Ring, Susan M; Gaye, Amadou; Dedoussis, George; Farmaki, Aliki-Eleni; Burton, Paul; Talmud, Philippa J; Gambaro, Giovanni; Spector, Tim D; Smith, George Davey; Durbin, Richard; Richards, J Brent; Humphries, Steve E; Zeggini, Eleftheria; Soranzo, Nicole
2014-09-16
The analysis of rich catalogues of genetic variation from population-based sequencing provides an opportunity to screen for functional effects. Here we report a rare variant in APOC3 (rs138326449-A, minor allele frequency ~0.25% (UK)) associated with plasma triglyceride (TG) levels (-1.43 s.d. (s.e.=0.27 per minor allele (P-value=8.0 × 10(-8))) discovered in 3,202 individuals with low read-depth, whole-genome sequence. We replicate this in 12,831 participants from five additional samples of Northern and Southern European origin (-1.0 s.d. (s.e.=0.173), P-value=7.32 × 10(-9)). This is consistent with an effect between 0.5 and 1.5 mmol l(-1) dependent on population. We show that a single predicted splice donor variant is responsible for association signals and is independent of known common variants. Analyses suggest an independent relationship between rs138326449 and high-density lipoprotein (HDL) levels. This represents one of the first examples of a rare, large effect variant identified from whole-genome sequencing at a population scale.
A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma
Yokoyama, Satoru; Woods, Susan L.; Boyle, Glen M.; Aoude, Lauren G.; MacGregor, Stuart; Zismann, Victoria; Gartside, Michael; Cust, Anne E.; Haq, Rizwan; Harland, Mark; Taylor, John C.; Duffy, David L.; Holohan, Kelly; Dutton-Regester, Ken; Palmer, Jane M.; Bonazzi, Vanessa; Stark, Mitchell S.; Symmons, Judith; Law, Matthew H.; Schmidt, Christopher; Lanagan, Cathy; O’Connor, Linda; Holland, Elizabeth A.; Schmid, Helen; Maskiell, Judith A.; Jetann, Jodie; Ferguson, Megan; Jenkins, Mark A.; Kefford, Richard F.; Giles, Graham G.; Armstrong, Bruce K.; Aitken, Joanne F.; Hopper, John L.; Whiteman, David C.; Pharoah, Paul D.; Easton, Douglas F.; Dunning, Alison M.; Newton-Bishop, Julia A.; Montgomery, Grant W.; Martin, Nicholas G.; Mann, Graham J.; Bishop, D. Timothy; Tsao, Hensin; Trent, Jeffrey M.; Fisher, David E.; Hayward, Nicholas K.; Brown, Kevin M.
2012-01-01
So far, two familial melanoma genes have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases1, and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds2. To identify other familial melanoma genes, here we conducted whole-genome sequencing of probands from several melanoma families, identifying one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log odds ratio (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case–control sample. Likewise, it was similarly associated in an independent case–control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility. PMID:22080950
Valine/isoleucine variants drive selective pressure in the VP1 sequence of EV-A71 enteroviruses.
Duy, Nghia Ngu; Huong, Le Thi Thanh; Ravel, Patrice; Huong, Le Thi Song; Dwivedi, Ankit; Sessions, October Michael; Hou, Yan'An; Chua, Robert; Kister, Guilhem; Afelt, Aneta; Moulia, Catherine; Gubler, Duane J; Thiem, Vu Dinh; Thanh, Nguyen Thi Hien; Devaux, Christian; Duong, Tran Nhu; Hien, Nguyen Tran; Cornillot, Emmanuel; Gavotte, Laurent; Frutos, Roger
2017-05-08
In 2011-2012, Northern Vietnam experienced its first large scale hand foot and mouth disease (HFMD) epidemic. In 2011, a major HFMD epidemic was also reported in South Vietnam with fatal cases. This 2011-2012 outbreak was the first one to occur in North Vietnam providing grounds to study the etiology, origin and dynamic of the disease. We report here the analysis of the VP1 gene of strains isolated throughout North Vietnam during the 2011-2012 outbreak and before. The VP1 gene of 106 EV-A71 isolates from North Vietnam and 2 from Central Vietnam were sequenced. Sequence alignments were analyzed at the nucleic acid and protein level. Gene polymorphism was also analyzed. A Factorial Correspondence Analysis was performed to correlate amino acid mutations with clinical parameters. The sequences were distributed into four phylogenetic clusters. Three clusters corresponded to the subgenogroup C4 and the last one corresponded to the subgenogroup C5. Each cluster displayed different polymorphism characteristics. Proteins were highly conserved but three sites bearing only Isoleucine (I) or Valine (V) were characterized. The isoleucine/valine variability matched the clusters. Spatiotemporal analysis of the I/V variants showed that all variants which emerged in 2011 and then in 2012 were not the same but were all present in the region prior to the 2011-2012 outbreak. Some correlation was found between certain I/V variants and ethnicity and severity. The 2011-2012 outbreak was not caused by an exogenous strain coming from South Vietnam or elsewhere but by strains already present and circulating at low level in North Vietnam. However, what triggered the outbreak remains unclear. A selective pressure is applied on I/V variants which matches the genetic clusters. I/V variants were shown on other viruses to correlate with pathogenicity. This should be investigated in EV-A71. I/V variants are an easy and efficient way to survey and identify circulating EV-A71 strains.
Tareb, R; Bernardeau, M; Vernoux, J P
2015-09-17
The probiotic Lactobacillus farciminis CNCM-I-3699 is a pleomorphic strain exhibiting smooth and rough variants. We report their complete genomes consisting of a chromosome of 2, 4 Mb and a plasmid of 6,417 bp. The smooth variant differs by the presence of an additional plasmid of 35,418 bp. Copyright © 2015 Tareb et al.
A Case of KCNQ2-Associated Movement Disorder Triggered by Fever.
Dhamija, Radhika; Goodkin, Howard P; Bailey, Russell; Chambers, Chelsea; Brenton, J Nicholas
2017-12-01
The differential diagnosis of fever-induced movement disorders in childhood is broad. Whole exome sequencing has yielded new insights into those cases with a suspected genetic basis. We report the case of an 8-year-old boy with a history of neonatal seizures who presented with near-continuous hyperkinetic movements of his limbs during a febrile illness. Initial diagnostic testing did not explain his abnormalities; however, given the suspicion for a channelopathy, whole exome sequencing was performed and it demonstrated a de novo pathogenic heterozygous variant in KCNQ2. There is an expanding phenotypic spectrum of heterozygous alterations in KCNQ2; however, this report provides the first description of a pathogenic KCNQ2 variant fever-induced hyperkinetic movement disorder in childhood. We also review the literature of cases previously published with the same pathogenic variant.
Verbist, Bie M P; Thys, Kim; Reumers, Joke; Wetzels, Yves; Van der Borght, Koen; Talloen, Willem; Aerssens, Jeroen; Clement, Lieven; Thas, Olivier
2015-01-01
In virology, massively parallel sequencing (MPS) opens many opportunities for studying viral quasi-species, e.g. in HIV-1- and HCV-infected patients. This is essential for understanding pathways to resistance, which can substantially improve treatment. Although MPS platforms allow in-depth characterization of sequence variation, their measurements still involve substantial technical noise. For Illumina sequencing, single base substitutions are the main error source and impede powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores (Qs) that are useful for differentiating errors from the real low-frequency mutations. A variant calling tool, Q-cpileup, is proposed, which exploits the Qs of nucleotides in a filtering strategy to increase specificity. The tool is imbedded in an open-source pipeline, VirVarSeq, which allows variant calling starting from fastq files. Using both plasmid mixtures and clinical samples, we show that Q-cpileup is able to reduce the number of false-positive findings. The filtering strategy is adaptive and provides an optimized threshold for individual samples in each sequencing run. Additionally, linkage information is kept between single-nucleotide polymorphisms as variants are called at the codon level. This enables virologists to have an immediate biological interpretation of the reported variants with respect to their antiviral drug responses. A comparison with existing SNP caller tools reveals that calling variants at the codon level with Q-cpileup results in an outstanding sensitivity while maintaining a good specificity for variants with frequencies down to 0.5%. The VirVarSeq is available, together with a user's guide and test data, at sourceforge: http://sourceforge.net/projects/virtools/?source=directory. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fast single-pass alignment and variant calling using sequencing data
USDA-ARS?s Scientific Manuscript database
Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...
Pettigrew, Christopher; Wayte, Nicola; Lovelock, Paul K; Tavtigian, Sean V; Chenevix-Trench, Georgia; Spurdle, Amanda B; Brown, Melissa A
2005-01-01
Introduction Aberrant pre-mRNA splicing can be more detrimental to the function of a gene than changes in the length or nature of the encoded amino acid sequence. Although predicting the effects of changes in consensus 5' and 3' splice sites near intron:exon boundaries is relatively straightforward, predicting the possible effects of changes in exonic splicing enhancers (ESEs) remains a challenge. Methods As an initial step toward determining which ESEs predicted by the web-based tool ESEfinder in the breast cancer susceptibility gene BRCA1 are likely to be functional, we have determined their evolutionary conservation and compared their location with known BRCA1 sequence variants. Results Using the default settings of ESEfinder, we initially detected 669 potential ESEs in the coding region of the BRCA1 gene. Increasing the threshold score reduced the total number to 464, while taking into consideration the proximity to splice donor and acceptor sites reduced the number to 211. Approximately 11% of these ESEs (23/211) either are identical at the nucleotide level in human, primates, mouse, cow, dog and opossum Brca1 (conserved) or are detectable by ESEfinder in the same position in the Brca1 sequence (shared). The frequency of conserved and shared predicted ESEs between human and mouse is higher in BRCA1 exons (2.8 per 100 nucleotides) than in introns (0.6 per 100 nucleotides). Of conserved or shared putative ESEs, 61% (14/23) were predicted to be affected by sequence variants reported in the Breast Cancer Information Core database. Applying the filters described above increased the colocalization of predicted ESEs with missense changes, in-frame deletions and unclassified variants predicted to be deleterious to protein function, whereas they decreased the colocalization with known polymorphisms or unclassified variants predicted to be neutral. Conclusion In this report we show that evolutionary conservation analysis may be used to improve the specificity of an ESE prediction tool. This is the first report on the prediction of the frequency and distribution of ESEs in the BRCA1 gene, and it is the first reported attempt to predict which ESEs are most likely to be functional and therefore which sequence variants in ESEs are most likely to be pathogenic. PMID:16280041
Hehir-Kwa, Jayne Y; Marschall, Tobias; Kloosterman, Wigard P; Francioli, Laurent C; Baaijens, Jasmijn A; Dijkstra, Louis J; Abdellaoui, Abdel; Koval, Vyacheslav; Thung, Djie Tjwan; Wardenaar, René; Renkens, Ivo; Coe, Bradley P; Deelen, Patrick; de Ligt, Joep; Lameijer, Eric-Wubbo; van Dijk, Freerk; Hormozdiari, Fereydoun; Uitterlinden, André G; van Duijn, Cornelia M; Eichler, Evan E; de Bakker, Paul I W; Swertz, Morris A; Wijmenga, Cisca; van Ommen, Gert-Jan B; Slagboom, P Eline; Boomsma, Dorret I; Schönhuth, Alexander; Ye, Kai; Guryev, Victor
2016-10-06
Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.
Identification of rare paired box 3 variant in strabismus by whole exome sequencing
Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang
2017-01-01
AIM To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. METHODS A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. RESULTS Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. CONCLUSION Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder. PMID:28861346
Identification of rare paired box 3 variant in strabismus by whole exome sequencing.
Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang
2017-01-01
To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.
Kumar, Akash; Dougherty, Max; Findlay, Gregory M; Geisheker, Madeleine; Klein, Jason; Lazar, John; Machkovech, Heather; Resnick, Jesse; Resnick, Rebecca; Salter, Alexander I; Talebi-Liasi, Faezeh; Arakawa, Christopher; Baudin, Jacob; Bogaard, Andrew; Salesky, Rebecca; Zhou, Qian; Smith, Kelly; Clark, John I; Shendure, Jay; Horwitz, Marshall S
2014-01-01
Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.
Luo, Ruibang; Wong, Yiu-Lun; Law, Wai-Chun; Lee, Lap-Kei; Cheung, Jeanno; Liu, Chi-Man; Lam, Tak-Wah
2014-01-01
This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels), BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome sequencing. BALSA's speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa.
Winbo, Annika; Stattin, Eva-Lena; Westin, Ida Maria; Norberg, Anna; Persson, Johan; Jensen, Steen M; Rydberg, Annika
2017-07-18
Sequence variants in the NOS1AP gene have repeatedly been reported to influence QTc, albeit with moderate effect sizes. In the long QT syndrome (LQTS), this may contribute to the substantial QTc variance seen among carriers of identical pathogenic sequence variants. Here we assess three non-coding NOS1AP sequence variants, chosen for their previously reported strong association with QTc in normal and LQTS populations, for association with QTc in two Swedish LQT1 founder populations. This study included 312 individuals (58% females) from two LQT1 founder populations, whereof 227 genotype positive segregating either Y111C (n = 148) or R518* (n = 79) pathogenic sequence variants in the KCNQ1 gene, and 85 genotype negatives. All were genotyped for NOS1AP sequence variants rs12143842, rs16847548 and rs4657139, and tested for association with QTc length (effect size presented as mean difference between derived and wildtype, in ms), using a pedigree-based measured genotype association analysis. Mean QTc was obtained by repeated manual measurement (preferably in lead II) by one observer using coded 50 mm/s standard 12-lead ECGs. A substantial variance in mean QTc was seen in genotype positives 476 ± 36 ms (Y111C 483 ± 34 ms; R518* 462 ± 34 ms) and genotype negatives 433 ± 24 ms. Female sex was significantly associated with QTc prolongation in all genotype groups (p < 0.001). In a multivariable analysis including the entire study population and adjusted for KCNQ1 genotype, sex and age, NOS1AP sequence variants rs12143842 and rs16847548 (but not rs4657139) were significantly associated with QT prolongation, +18 ms (p = 0.0007) and +17 ms (p = 0.006), respectively. Significant sex-interactions were detected for both sequent variants (interaction term r = 0.892, p < 0.001 and r = 0.944, p < 0.001, respectively). Notably, across the genotype groups, when stratified by sex neither rs12143842 nor rs16847548 were significantly associated with QTc in females (both p = 0.16) while in males, a prolongation of +19 ms and +8 ms (p = 0.002 and p = 0.02) was seen in multivariable analysis, explaining up to 23% of QTc variance in all males. Sex was identified as a moderator of the association between NOS1AP sequence variants and QTc in two LQT1 founder populations. This finding may contribute to QTc sex differences and affect the usefulness of NOS1AP as a marker for clinical risk stratification in LQTS.
Klaassens, Merel; Morrogh, Deborah; Rosser, Elisabeth M; Jaffer, Fatima; Vreeburg, Maaike; Bok, Levinus A; Segboer, Tim; van Belzen, Martine; Quinlivan, Ros M; Kumar, Ajith; Hurst, Jane A; Scott, Richard H
2015-05-01
De novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall-Smith syndrome. We report six additional patients with Malan syndrome and de novo NFIX deletions or sequence variants and review the 20 patients now reported. The phenotype is characterised by moderate postnatal overgrowth and macrocephaly. Median height and head circumference in childhood are 2.0 and 2.3 standard deviations (SD) above the mean, respectively. There is overlap of the facial phenotype with NSD1-positive Sotos syndrome in some cases including a prominent forehead, high anterior hairline, downslanting palpebral fissures and prominent chin. Neonatal feeding difficulties and/or hypotonia have been reported in 30% of patients. Developmental delay/learning disability have been reported in all cases and are typically moderate. Ocular phenotypes are common, including strabismus (65%), nystagmus (25% ) and optic disc pallor/hypoplasia (25%). Other recurrent features include pectus excavatum (40%) and scoliosis (25%). Eight reported patients have a deletion also encompassing CACNA1A, haploinsufficiency of which causes episodic ataxia type 2 or familial hemiplegic migraine. One previous case had episodic ataxia and one case we report has had cyclical vomiting responsive to pizotifen. In individuals with this contiguous gene deletion syndrome, awareness of possible later neurological manifestations is important, although their penetrance is not yet clear.
Wu, Y H; Cheong, L C; Meon, S; Lau, W H; Kong, L L; Joseph, H; Vadamalai, G
2013-06-01
A 246-nt variant of Coconut cadang-cadang viroid (CCCVd) has been identified and described from oil palms with orange spotting symptoms in Malaysia. Compared with the 246-nt form of CCCVd from coconut, the oil palm variant substituted C(31)→U in the pathogenicity domain and G(70)→C in the central conserved domain. This is the first sequence reported for a 246-nt variant of CCCVd in oil palms expressing orange spotting symptoms.
Ito, Hidetaka; Miura, Asuka; Takashima, Kazuya; Kakutani, Tetsuji
2007-01-01
Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.
A global reference for human genetic variation
2016-01-01
The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleyl, S.B.; Moshrefi, A.; Shaw, G.M.
2007-05-11
Congenital diaphragmatic hernia (CDH) is a common, lifethreatening birth defect. Although there is strong evidence implicatinggenetic factors in its pathogenesis, few causative genes have beenidentified, and in isolated CDH, only one de novo, nonsense mutation hasbeen reported in FOG2 in a female with posterior diaphragmaticeventration. We report here that the homozygous null mouse for the Pdgfragene has posterolateral diaphragmatic defects and thus is a model forhuman CDH. We hypothesized that mutations in this gene could cause humanCDH. We sequenced PDGFRa and FOG2 in 96 patients with CDH, of which 53had isolated CDH (55.2 percent), 36 had CDH and additional anomalies(37.5more » percent), and 7 had CDH and known chromosome aberrations (7.3percent). For FOG2, we identified novel sequence alterations predictingp.M703L and p.T843A in two patients with isolated CDH that were absent in526 and 564 control chromosomes respectively. These altered amino acidswere highly conserved. However, due to the lack of available parental DNAsamples we were not able to determine if the sequence alterations were denovo. For PDGFRa, we found a single variant predicting p.L967V in apatient with CDH and multiple anomalies that was absent in 768 controlchromosomes. This patient also had one cell with trisomy 15 on skinfibroblast culture, a finding of uncertain significance. Although ourstudy identified sequence variants in FOG2 and PDGFRa, we have notdefinitively established the variants as mutations and we found noevidence that CDH commonly results from mutations in thesegenes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, P.J.; Coulter-Mackie, M.B.
1992-10-01
The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[submore » 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.« less
Mutation Update for GNE Gene Variants Associated with GNE Myopathy
Celeste, Frank V.; Vilboux, Thierry; Ciccone, Carla; de Dios, John Karl; Malicdan, May Christine V.; Leoyklang, Petcharat; McKew, John C.; Gahl, William A.; Carrillo-Carrasco, Nuria; Huizing, Marjan
2014-01-01
The GNE gene encodes the rate-limiting, bifunctional enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult-onset progressive myopathy. GNE myopathy-associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions and 7 intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants as well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world-wide prevalence of GNE myopathy to be ~ 4–21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorder’s pathomechanism and for the success of ongoing treatment trials. PMID:24796702
Lin, Pengfei; Zhang, Dong; Xu, Guangrun; Yan, Chuanzhu
2018-04-01
Spinocerebellar ataxias (SCAs) are a group of autosomal dominant, clinically heterogeneous neurodegenerative disorders. SCA18 is a rare autosomal dominant sensory/motor neuropathy with ataxia (OMIM#607458) associated with a single missense variant c.514 A>G in the interferon related developmental regulator 1 (IFRD1) gene previously reported in a five-generation American family of Irish origin. However, to date, there have been no other reports of the IFRD1 mutation to confirm its role in SCA. Here, we report a Han Chinese family with SCA18; the family members presented with a slowly progressing gait ataxia, pyramidal tract signs, and peripheral neuropathy. We identified a missense variant (c.514 A>G, p.I172V) in IFRD1 gene in the family using targeted next-generation sequencing and Sanger direct sequencing with specific primers. Our results suggest that the IFRD1 gene may be the causative allele for SCA18.
Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.
Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing
2015-08-05
To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing.
SeqMule: automated pipeline for analysis of human exome/genome sequencing data.
Guo, Yunfei; Ding, Xiaolei; Shen, Yufeng; Lyon, Gholson J; Wang, Kai
2015-09-18
Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.
Kohmoto, Tomohiro; Masuda, Kiyoshi; Naruto, Takuya; Tange, Shoichiro; Shoda, Katsutoshi; Hamada, Junichi; Saito, Masako; Ichikawa, Daisuke; Tajima, Atsushi; Otsuji, Eigo; Imoto, Issei
2017-01-01
High-throughput next-generation sequencing is a powerful tool to identify the genotypic landscapes of somatic variants and therapeutic targets in various cancers including gastric cancer, forming the basis for personalized medicine in the clinical setting. Although the advent of many computational algorithms leads to higher accuracy in somatic variant calling, no standard method exists due to the limitations of each method. Here, we constructed a new pipeline. We combined two different somatic variant callers with different algorithms, Strelka and VarScan 2, and evaluated performance using whole exome sequencing data obtained from 19 Japanese cases with gastric cancer (GC); then, we characterized these tumors based on identified driver molecular alterations. More single nucleotide variants (SNVs) and small insertions/deletions were detected by Strelka and VarScan 2, respectively. SNVs detected by both tools showed higher accuracy for estimating somatic variants compared with those detected by only one of the two tools and accurately showed the mutation signature and mutations of driver genes reported for GC. Our combinatorial pipeline may have an advantage in detection of somatic mutations in GC and may be useful for further genomic characterization of Japanese patients with GC to improve the efficacy of GC treatments. J. Med. Invest. 64: 233-240, August, 2017.
Chen, Tai-Di; Chen, Ding-Ping; Wang, Wei-Ting; Sun, Chien-Feng
2014-01-01
Background Glycophorin variants of the MNSs blood group are important in Taiwan. For more than 20 years, screening for the most frequent irregular antibody, anti-‘Mia’, has been conducted by using ‘Mia’(+) RBCs, with a significant success. However, the sensitivity and the specificity of this screening strategy have never been validated, and the true incidences of different glycophorin variants in Taiwan have been in controversy. Also, the significance of another less frequent and usually separately reported variant, Sta, has never been evaluated. Methodology/Principal Findings We ran a population-based screening (from unselected patients in our hospital) for MNSs blood group glycophorin variants by PCR-sequencing method. GP.Mur (Mil.III) was confirmed by sequence from 57 out of 1027 samples (5.6%), and there was no other Miltenberger subtype glycophorin variant found. Glycophorin variant Sta was found from 35 out of 1027 samples (3.4%). In contrast to anti-‘Mia’, which is the most frequently identified irregular antibody in Taiwan, the prevalence of anti-Sta was only 0.13% as determined by serologic method. In addition, two new alleles for Sta were found and reported. Conclusion/Significance We confirm the long-standing assumption that GP.Mur is the only prevalent Miltenberger subtype in Taiwan. The current anti-‘Mia’ screening method used in Taiwan, although neither sensitive nor specific, is still a suitable practice. Although Sta antigen has a high prevalence in Taiwan, routine screening for anti-Sta is not warranted based on current evidence. PMID:24858913
Poulter, James A; El-Sayed, Walid; Shore, Roger C; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J
2014-01-01
The conventional approach to identifying the defective gene in a family with an inherited disease is to find the disease locus through family studies. However, the rapid development and decreasing cost of next generation sequencing facilitates a more direct approach. Here, we report the identification of a frameshift mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta (AI). Whole-exome sequencing of three affected family members and subsequent filtering of shared variants, without prior genetic linkage, sufficed to identify the pathogenic variant. Simultaneous analysis of multiple family members confirms segregation, enhancing the power to filter the genetic variation found and leading to rapid identification of the pathogenic variant. LAMB3 encodes a subunit of Laminin-5, one of a family of basement membrane proteins with essential functions in cell growth, movement and adhesion. Homozygous LAMB3 mutations cause junctional epidermolysis bullosa (JEB) and enamel defects are seen in JEB cases. However, to our knowledge, this is the first report of dominant AI due to a LAMB3 mutation in the absence of JEB.
Positional bias in variant calls against draft reference assemblies.
Briskine, Roman V; Shimizu, Kentaro K
2017-03-28
Whole genome resequencing projects may implement variant calling using draft reference genomes assembled de novo from short-read libraries. Despite lower quality of such assemblies, they allowed researchers to extend a wide range of population genetic and genome-wide association analyses to non-model species. As the variant calling pipelines are complex and involve many software packages, it is important to understand inherent biases and limitations at each step of the analysis. In this article, we report a positional bias present in variant calling performed against draft reference assemblies constructed from de Bruijn or string overlap graphs. We assessed how frequently variants appeared at each position counted from ends of a contig or scaffold sequence, and discovered unexpectedly high number of variants at the positions related to the length of either k-mers or reads used for the assembly. We detected the bias in both publicly available draft assemblies from Assemblathon 2 competition as well as in the assemblies we generated from our simulated short-read data. Simulations confirmed that the bias causing variants are predominantly false positives induced by reads from spatially distant repeated sequences. The bias is particularly strong in contig assemblies. Scaffolding does not eliminate the bias but tends to mitigate it because of the changes in variants' relative positions and alterations in read alignments. The bias can be effectively reduced by filtering out the variants that reside in repetitive elements. Draft genome sequences generated by several popular assemblers appear to be susceptible to the positional bias potentially affecting many resequencing projects in non-model species. The bias is inherent to the assembly algorithms and arises from their particular handling of repeated sequences. It is recommended to reduce the bias by filtering especially if higher-quality genome assembly cannot be achieved. Our findings can help other researchers to improve the quality of their variant data sets and reduce artefactual findings in downstream analyses.
Gusev, A.; Shah, M. J.; Kenny, E. E.; Ramachandran, A.; Lowe, J. K.; Salit, J.; Lee, C. C.; Levandowsky, E. C.; Weaver, T. N.; Doan, Q. C.; Peckham, H. E.; McLaughlin, S. F.; Lyons, M. R.; Sheth, V. N.; Stoffel, M.; De La Vega, F. M.; Friedman, J. M.; Breslow, J. L.
2012-01-01
Whole-genome sequencing in an isolated population with few founders directly ascertains variants from the population bottleneck that may be rare elsewhere. In such populations, shared haplotypes allow imputation of variants in unsequenced samples without resorting to complex statistical methods as in studies of outbred cohorts. We focus on an isolated population cohort from the Pacific Island of Kosrae, Micronesia, where we previously collected SNP array and rich phenotype data for the majority of the population. We report identification of long regions with haplotypes co-inherited between pairs of individuals and methodology to leverage such shared genetic content for imputation. Our estimates show that sequencing as few as 40 personal genomes allows for inference in up to 60% of the 3000-person cohort at the average locus. We ascertained a pilot data set of whole-genome sequences from seven Kosraean individuals, with average 5× coverage. This assay identified 5,735,306 unique sites of which 1,212,831 were previously unknown. Additionally, these variants are unusually enriched for alleles that are rare in other populations when compared to geographic neighbors (published Korean genome SJK). We used the presence of shared haplotypes between the seven Kosraen individuals to estimate expected imputation accuracy of known and novel homozygous variants at 99.6% and 97.3%, respectively. This study presents whole-genome analysis of a homogenous isolate population with emphasis on optimal rare variant inference. PMID:22135348
Döcker, Dennis; Schubach, Max; Menzel, Moritz; Spaich, Christiane; Gabriel, Heinz-Dieter; Zenker, Martin; Bartholdi, Deborah; Biskup, Saskia
2015-01-01
Megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth syndrome that is diagnosed by clinical criteria. Recently, somatic and germline variants in genes that are involved in the PI3K-AKT pathway (AKT3, PIK3R2 and PIK3CA) have been described to be associated with MCAP and/or other related megalencephaly syndromes. We performed trio-exome sequencing in a 6-year-old boy and his healthy parents. Clinical features were macrocephaly, cutis marmorata, angiomata, asymmetric overgrowth, developmental delay, discrete midline facial nevus flammeus, toe syndactyly and postaxial polydactyly—thus, clearly an MCAP phenotype. Exome sequencing revealed a pathogenic de novo germline variant in the PTPN11 gene (c.1529A>G; p.(Gln510Arg)), which has so far been associated with Noonan, as well as LEOPARD syndrome. Whole-exome sequencing (>100 × coverage) did not reveal any alteration in the known megalencephaly genes. However, ultra-deep sequencing results from saliva (>1000 × coverage) revealed a 22% mosaic variant in PIK3CA (c.2740G>A; p.(Gly914Arg)). To our knowledge, this report is the first description of a PTPN11 germline variant in an MCAP patient. Data from experimental studies show a complex interaction of SHP2 (gene product of PTPN11) and the PI3K-AKT pathway. We hypothesize that certain PTPN11 germline variants might drive toward additional second-hit alterations. PMID:24939587
Döcker, Dennis; Schubach, Max; Menzel, Moritz; Spaich, Christiane; Gabriel, Heinz-Dieter; Zenker, Martin; Bartholdi, Deborah; Biskup, Saskia
2015-03-01
Megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth syndrome that is diagnosed by clinical criteria. Recently, somatic and germline variants in genes that are involved in the PI3K-AKT pathway (AKT3, PIK3R2 and PIK3CA) have been described to be associated with MCAP and/or other related megalencephaly syndromes. We performed trio-exome sequencing in a 6-year-old boy and his healthy parents. Clinical features were macrocephaly, cutis marmorata, angiomata, asymmetric overgrowth, developmental delay, discrete midline facial nevus flammeus, toe syndactyly and postaxial polydactyly--thus, clearly an MCAP phenotype. Exome sequencing revealed a pathogenic de novo germline variant in the PTPN11 gene (c.1529A>G; p.(Gln510Arg)), which has so far been associated with Noonan, as well as LEOPARD syndrome. Whole-exome sequencing (>100 × coverage) did not reveal any alteration in the known megalencephaly genes. However, ultra-deep sequencing results from saliva (>1000 × coverage) revealed a 22% mosaic variant in PIK3CA (c.2740G>A; p.(Gly914Arg)). To our knowledge, this report is the first description of a PTPN11 germline variant in an MCAP patient. Data from experimental studies show a complex interaction of SHP2 (gene product of PTPN11) and the PI3K-AKT pathway. We hypothesize that certain PTPN11 germline variants might drive toward additional second-hit alterations.
Whole-Genome Sequencing of the World’s Oldest People
Gierman, Hinco J.; Fortney, Kristen; Roach, Jared C.; Coles, Natalie S.; Li, Hong; Glusman, Gustavo; Markov, Glenn J.; Smith, Justin D.; Hood, Leroy; Coles, L. Stephen; Kim, Stuart K.
2014-01-01
Supercentenarians (110 years or older) are the world’s oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies. PMID:25390934
Whole-genome sequencing of the world's oldest people.
Gierman, Hinco J; Fortney, Kristen; Roach, Jared C; Coles, Natalie S; Li, Hong; Glusman, Gustavo; Markov, Glenn J; Smith, Justin D; Hood, Leroy; Coles, L Stephen; Kim, Stuart K
2014-01-01
Supercentenarians (110 years or older) are the world's oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.
Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression.
Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason W H; Sloane, Mathew A; Ward, Robyn L
2015-06-01
Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5'untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5'UTR in the pathogenesis of Lynch syndrome. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
Lynch Syndrome Associated with Two MLH1 Promoter Variants and Allelic Imbalance of MLH1 Expression
Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason WH; Sloane, Mathew A; Ward, Robyn L
2015-01-01
Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5′untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5′UTR in the pathogenesis of Lynch syndrome. PMID:25762362
Mensa-Vilaro, Anna; Teresa Bosque, María; Magri, Giuliana; Honda, Yoshitaka; Martínez-Banaclocha, Helios; Casorran-Berges, Marta; Sintes, Jordi; González-Roca, Eva; Ruiz-Ortiz, Estibaliz; Heike, Toshio; Martínez-Garcia, Juan J; Baroja-Mazo, Alberto; Cerutti, Andrea; Nishikomori, Ryuta; Yagüe, Jordi; Pelegrín, Pablo; Delgado-Beltran, Concha; Aróstegui, Juan I
2016-12-01
Gain-of-function NLRP3 mutations cause cryopyrin-associated periodic syndrome (CAPS), with gene mosaicism playing a relevant role in the pathogenesis. This study was undertaken to characterize the genetic cause underlying late-onset but otherwise typical CAPS. We studied a 64-year-old patient who presented with recurrent episodes of urticaria-like rash, fever, conjunctivitis, and oligoarthritis at age 56 years. DNA was extracted from both unfractionated blood and isolated leukocyte and CD34+ subpopulations. Genetic studies were performed using both the Sanger method of DNA sequencing and next-generation sequencing (NGS) methods. In vitro and ex vivo analyses were performed to determine the consequences that the presence of the variant have in the normal structure or function of the protein of the detected variant. NGS analyses revealed the novel p.Gln636Glu NLRP3 variant in unfractionated blood, with an allele frequency (18.4%) compatible with gene mosaicism. Sanger sequence chromatograms revealed a small peak corresponding to the variant allele. Amplicon-based deep sequencing revealed somatic NLRP3 mosaicism restricted to myeloid cells (31.8% in monocytes, 24.6% in neutrophils, and 11.2% in circulating CD34+ common myeloid progenitor cells) and its complete absence in lymphoid cells. Functional analyses confirmed the gain-of-function behavior of the gene variant and hyperactivity of the NLRP3 inflammasome in the patient. Treatment with anakinra resulted in good control of the disease. We identified the novel gain-of-function p.Gln636Glu NLRP3 mutation, which was detected as a somatic mutation restricted to myeloid cells, as the cause of late-onset but otherwise typical CAPS. Our results expand the diversity of CAPS toward milder phenotypes than previously reported, including those starting during adulthood. © 2016, American College of Rheumatology.
de Vries, Tamar I; Monroe, Glen R; van Belzen, Martine J; van der Lans, Christian A; Savelberg, Sanne Mc; Newman, William G; van Haaften, Gijs; Nievelstein, Rutger A; van Haelst, Mieke M
2016-08-01
Rubinstein-Taybi syndrome (RTS, OMIM 180849) and Filippi syndrome (FLPIS, OMIM 272440) are both rare syndromes, with multiple congenital anomalies and intellectual deficit (MCA/ID). We present a patient with intellectual deficit, short stature, bilateral syndactyly of hands and feet, broad thumbs, ocular abnormalities, and dysmorphic facial features. These clinical features suggest both RTS and FLPIS. Initial DNA analysis of DNA isolated from blood did not identify variants to confirm either of these syndrome diagnoses. Whole-exome sequencing identified a homozygous variant in C9orf173, which was novel at the time of analysis. Further Sanger sequencing analysis of FLPIS cases tested negative for CKAP2L variants did not, however, reveal any further variants. Subsequent analysis using DNA isolated from buccal mucosa revealed a mosaic variant in CREBBP. This report highlights the importance of excluding mosaic variants in patients with a strong but atypical clinical presentation of a MCA/ID syndrome if no disease-causing variants can be detected in DNA isolated from blood samples. As the striking syndactyly observed in the present case is typical for FLPIS, we suggest CREBBP analysis in saliva samples for FLPIS syndrome cases in which no causal CKAP2L variant is detected.
Whole genome sequencing and bioinformatics analysis of two Egyptian genomes.
ElHefnawi, Mahmoud; Jeon, Sungwon; Bhak, Youngjune; ElFiky, Asmaa; Horaiz, Ahmed; Jun, JeHoon; Kim, Hyunho; Bhak, Jong
2018-05-15
We report two Egyptian male genomes (EGP1 and EGP2) sequenced at ~ 30× sequencing depths. EGP1 had 4.7 million variants, where 198,877 were novel variants while EGP2 had 209,109 novel variants out of 4.8 million variants. The mitochondrial haplogroup of the two individuals were identified to be H7b1 and L2a1c, respectively. We also identified the Y haplogroup of EGP1 (R1b) and EGP2 (J1a2a1a2 > P58 > FGC11). EGP1 had a mutation in the NADH gene of the mitochondrial genome ND4 (m.11778 G > A) that causes Leber's hereditary optic neuropathy. Some SNPs shared by the two genomes were associated with an increased level of cholesterol and triglycerides, probably related with Egyptians obesity. Comparison of these genomes with African and Western-Asian genomes can provide insights on Egyptian ancestry and genetic history. This resource can be used to further understand genomic diversity and functional classification of variants as well as human migration and evolution across Africa and Western-Asia. Copyright © 2017. Published by Elsevier B.V.
A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans
Timpson, Nicholas J.; Walter, Klaudia; Min, Josine L.; Tachmazidou, Ioanna; Malerba, Giovanni; Shin, So-Youn; Chen, Lu; Futema, Marta; Southam, Lorraine; Iotchkova, Valentina; Cocca, Massimiliano; Huang, Jie; Memari, Yasin; McCarthy, Shane; Danecek, Petr; Muddyman, Dawn; Mangino, Massimo; Menni, Cristina; Perry, John R. B.; Ring, Susan M.; Gaye, Amadou; Dedoussis, George; Farmaki, Aliki-Eleni; Burton, Paul; Talmud, Philippa J.; Gambaro, Giovanni; Spector, Tim D.; Smith, George Davey; Durbin, Richard; Richards, J Brent; Humphries, Steve E.; Zeggini, Eleftheria; Soranzo, Nicole; Al Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Soler Artigas, Maria; Ayub, Muhammad; Balasubramaniam, Senduran; Barrett, Jeffrey C.; Barroso, Inês; Beales, Phil; Bentham, Jamie; Bhattacharya, Shoumo; Birney, Ewan; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Bounds, Rebecca; Boustred, Chris; Breen, Gerome; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Ciampi, Antonio; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Danecek, Petr; Davey Smith, George; Day-Williams, Aaron; Day, Ian N. M.; Down, Thomas; Du, Yuanping; Dunham, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Faroogi, Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David R.; Flicek, Paul; Flyod, James; Foley, A Reghan; Franklin, Christopher S; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geihs, Matthias; Geschwind, Daniel; Greenwood, Celia; Griffin, Heather; Grozeva, Detelina; Guo, Xueqin; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Howie, Bryan; Huang, Jie; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro; Jackson, David K.; Jamshidi, Yalda; Jing, Tian; Joyce, Chris; Kaye, Jane; Keane, Thomas; Keogh, Julia; Kemp, John; Kennedy, Karen; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Liang, Jieqin; Lin, Hong; Li, Rui; Li, Yingrui; Liu, Ryan; Lönnqvist, Jouko; Lopes, Margarida; Lotchkova, Valentina; MacArthur, Daniel; Marchini, Jonathan; Maslen, John; Massimo, Mangino; Mathieson, Iain; Marenne, Gaëlle; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew G.; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Mitchison, Hannah; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donnovan, Michael; Onoufriadis, Alexandros; O'Rahilly, Stephen; Oualkacha, Karim; Owen, Michael J.; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quaye, Lydia; Quail, Michael A.; Raymond, Lucy; Rehnström, Karola; Richards, Brent; Ring, Susan; Ritchie, Graham R. S.; Roberts, Nicola; Savage, David B.; Scambler, Peter; Schiffels, Stephen; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shihab, Hasheem; Shin, So-Youn; Skuse, David; Small, Kerrin; Soranzo, Nicole; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Tim; St Clair, David; Stalker, Jim; Stevens, Elizabeth; St Pourcian, Beate; Sun, Jianping; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ionna; Timpson, Nicholas; Tobin, Martin D.; Valdes, Ana; Van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walter, Klaudia; Walters, James T. R.; Wang, Guangbiao; Wang, Jun; Wang, Yu; Ward, Kirsten; Wheeler, Elanor; Whyte, Tamieka; Williams, Hywel; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, ChangJiang; Yang, Jian; Zeggini, Eleftheria; Zhang, Fend; Zhang, Pingbo; Zheng, Hou-Feng
2014-01-01
The analysis of rich catalogues of genetic variation from population-based sequencing provides an opportunity to screen for functional effects. Here we report a rare variant in APOC3 (rs138326449-A, minor allele frequency ~0.25% (UK)) associated with plasma triglyceride (TG) levels (−1.43 s.d. (s.e.=0.27 per minor allele (P-value=8.0 × 10−8)) discovered in 3,202 individuals with low read-depth, whole-genome sequence. We replicate this in 12,831 participants from five additional samples of Northern and Southern European origin (−1.0 s.d. (s.e.=0.173), P-value=7.32 × 10−9). This is consistent with an effect between 0.5 and 1.5 mmol l−1 dependent on population. We show that a single predicted splice donor variant is responsible for association signals and is independent of known common variants. Analyses suggest an independent relationship between rs138326449 and high-density lipoprotein (HDL) levels. This represents one of the first examples of a rare, large effect variant identified from whole-genome sequencing at a population scale. PMID:25225788
Feline hypersomatotropism and acromegaly tumorigenesis: a potential role for the AIP gene.
Scudder, C J; Niessen, S J; Catchpole, B; Fowkes, R C; Church, D B; Forcada, Y
2017-04-01
Acromegaly in humans is usually sporadic, however up to 20% of familial isolated pituitary adenomas are caused by germline sequence variants of the aryl-hydrocarbon-receptor interacting protein (AIP) gene. Feline acromegaly has similarities to human acromegalic families with AIP mutations. The aim of this study was to sequence the feline AIP gene, identify sequence variants and compare the AIP gene sequence between feline acromegalic and control cats, and in acromegalic siblings. The feline AIP gene was amplified through PCR using whole blood genomic DNA from 10 acromegalic and 10 control cats, and 3 sibling pairs affected by acromegaly. PCR products were sequenced and compared with the published predicted feline AIP gene. A single nonsynonymous SNP was identified in exon 1 (AIP:c.9T > G) of two acromegalic cats and none of the control cats, as well as both members of one sibling pair. The region of this SNP is considered essential for the interaction of the AIP protein with its receptor. This sequence variant has not previously been reported in humans. Two additional synonymous sequence variants were identified (AIP:c.481C > T and AIP:c.826C > T). This is the first molecular study to investigate a potential genetic cause of feline acromegaly and identified a nonsynonymous AIP single nucleotide polymorphism in 20% of the acromegalic cat population evaluated, as well as in one of the sibling pairs evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.
Auer, Paul L; Nalls, Mike; Meschia, James F; Worrall, Bradford B; Longstreth, W T; Seshadri, Sudha; Kooperberg, Charles; Burger, Kathleen M; Carlson, Christopher S; Carty, Cara L; Chen, Wei-Min; Cupples, L Adrienne; DeStefano, Anita L; Fornage, Myriam; Hardy, John; Hsu, Li; Jackson, Rebecca D; Jarvik, Gail P; Kim, Daniel S; Lakshminarayan, Kamakshi; Lange, Leslie A; Manichaikul, Ani; Quinlan, Aaron R; Singleton, Andrew B; Thornton, Timothy A; Nickerson, Deborah A; Peters, Ulrike; Rich, Stephen S
2015-07-01
Stroke is the second leading cause of death and the third leading cause of years of life lost. Genetic factors contribute to stroke prevalence, and candidate gene and genome-wide association studies (GWAS) have identified variants associated with ischemic stroke risk. These variants often have small effects without obvious biological significance. Exome sequencing may discover predicted protein-altering variants with a potentially large effect on ischemic stroke risk. To investigate the contribution of rare and common genetic variants to ischemic stroke risk by targeting the protein-coding regions of the human genome. The National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP) analyzed approximately 6000 participants from numerous cohorts of European and African ancestry. For discovery, 365 cases of ischemic stroke (small-vessel and large-vessel subtypes) and 809 European ancestry controls were sequenced; for replication, 47 affected sibpairs concordant for stroke subtype and an African American case-control series were sequenced, with 1672 cases and 4509 European ancestry controls genotyped. The ESP's exome sequencing and genotyping started on January 1, 2010, and continued through June 30, 2012. Analyses were conducted on the full data set between July 12, 2012, and July 13, 2013. Discovery of new variants or genes contributing to ischemic stroke risk and subtype (primary analysis) and determination of support for protein-coding variants contributing to risk in previously published candidate genes (secondary analysis). We identified 2 novel genes associated with an increased risk of ischemic stroke: a protein-coding variant in PDE4DIP (rs1778155; odds ratio, 2.15; P = 2.63 × 10(-8)) with an intracellular signal transduction mechanism and in ACOT4 (rs35724886; odds ratio, 2.04; P = 1.24 × 10(-7)) with a fatty acid metabolism; confirmation of PDE4DIP was observed in affected sibpair families with large-vessel stroke subtype and in African Americans. Replication of protein-coding variants in candidate genes was observed for 2 previously reported GWAS associations: ZFHX3 (cardioembolic stroke) and ABCA1 (large-vessel stroke). Exome sequencing discovered 2 novel genes and mechanisms, PDE4DIP and ACOT4, associated with increased risk for ischemic stroke. In addition, ZFHX3 and ABCA1 were discovered to have protein-coding variants associated with ischemic stroke. These results suggest that genetic variation in novel pathways contributes to ischemic stroke risk and serves as a target for prediction, prevention, and therapy.
Novel variants of the 5S rRNA genes in Eruca sativa.
Singh, K; Bhatia, S; Lakshmikumaran, M
1994-02-01
The 5S ribosomal RNA (rRNA) genes of Eruca sativa were cloned and characterized. They are organized into clusters of tandemly repeated units. Each repeat unit consists of a 119-bp coding region followed by a noncoding spacer region that separates it from the coding region of the next repeat unit. Our study reports novel gene variants of the 5S rRNA genes in plants. Two families of the 5S rDNA, the 0.5-kb size family and the 1-kb size family, coexist in the E. sativa genome. The 0.5-kb size family consists of the 5S rRNA genes (S4) that have coding regions similar to those of other reported plant 5S rDNA sequences, whereas the 1-kb size family consists of the 5S rRNA gene variants (S1) that exist as 1-kb BamHI tandem repeats. S1 is made up of two variant units (V1 and V2) of 5S rDNA where the BamHI site between the two units is mutated. Sequence heterogeneity among S4, V1, and V2 units exists throughout the sequence and is not limited to the noncoding spacer region only. The coding regions of V1 and V2 show approximately 20% dissimilarity to the coding regions of S4 and other reported plant 5S rDNA sequences. Such a large variation in the coding regions of the 5S rDNA units within the same plant species has been observed for the first time. Restriction site variation is observed between the two size classes of 5S rDNA in E. sativa.(ABSTRACT TRUNCATED AT 250 WORDS)
Lorenzetti, Mario Alejandro; Gantuz, Magdalena; Altcheh, Jaime; De Matteo, Elena; Chabay, Paola Andrea; Preciado, María Victoria
2012-03-01
The ubiquitous Epstein-Barr virus (EBV) is related to the development of lymphoma and is also the etiological agent for infectious mononucleosis (IM). Sequence variations in the gene encoding LMP1 have been deeply studied in different pathologies and geographic regions. Controversial results propose the existence of tumor-related variants, while others argued in favor of a geographical distribution of these variants. Reports assessing EBV variants in IM were performed in adult patients who displayed multiple variant infections. In the present study, LMP1 variants in 15 pediatric patients with IM and 20 pediatric patients with EBV-associated lymphomas from Argentina were analyzed as representatives of benign and malignant infections in children, respectively. A 3-month follow-up study of LMP1 variants in peripheral blood cells and in oral secretions of patients with IM was performed. Moreover, an integrated linkage analysis was performed with variants of EBNA1 and the promoter region of BZLF1. Similar sequence polymorphisms were detected in both pathological conditions, IM and lymphoma, but these differ from those previously described in healthy donors from Argentina and Brazil. The results suggest that certain LMP1 polymorphisms, namely, the 30-bp deletion and high copy number of the 33-bp repeats, are associated with EBV-related pathologies, either benign or malignant, instead of just being tumor related. Additionally, this is the first study to describe the Alaskan variant in EBV-related lymphomas that previously was restricted to nasopharyngeal carcinomas from North America.
Gantuz, Magdalena; Altcheh, Jaime; De Matteo, Elena; Chabay, Paola Andrea; Preciado, María Victoria
2012-01-01
The ubiquitous Epstein-Barr virus (EBV) is related to the development of lymphoma and is also the etiological agent for infectious mononucleosis (IM). Sequence variations in the gene encoding LMP1 have been deeply studied in different pathologies and geographic regions. Controversial results propose the existence of tumor-related variants, while others argued in favor of a geographical distribution of these variants. Reports assessing EBV variants in IM were performed in adult patients who displayed multiple variant infections. In the present study, LMP1 variants in 15 pediatric patients with IM and 20 pediatric patients with EBV-associated lymphomas from Argentina were analyzed as representatives of benign and malignant infections in children, respectively. A 3-month follow-up study of LMP1 variants in peripheral blood cells and in oral secretions of patients with IM was performed. Moreover, an integrated linkage analysis was performed with variants of EBNA1 and the promoter region of BZLF1. Similar sequence polymorphisms were detected in both pathological conditions, IM and lymphoma, but these differ from those previously described in healthy donors from Argentina and Brazil. The results suggest that certain LMP1 polymorphisms, namely, the 30-bp deletion and high copy number of the 33-bp repeats, are associated with EBV-related pathologies, either benign or malignant, instead of just being tumor related. Additionally, this is the first study to describe the Alaskan variant in EBV-related lymphomas that previously was restricted to nasopharyngeal carcinomas from North America. PMID:22205789
Balasubramanian, M; Lord, H; Levesque, S; Guturu, H; Thuriot, F; Sillon, G; Wenger, A M; Sureka, D L; Lester, T; Johnson, D S; Bowen, J; Calhoun, A R; Viskochil, D H; Bejerano, G; Bernstein, J A; Chitayat, D
2017-03-01
In 1993, Chitayat et al. , reported a newborn with hyperphalangism, facial anomalies, and bronchomalacia. We identified three additional families with similar findings. Features include bilateral accessory phalanx resulting in shortened index fingers; hallux valgus; distinctive face; respiratory compromise. To identify the genetic aetiology of Chitayat syndrome and identify a unifying cause for this specific form of hyperphalangism. Through ongoing collaboration, we had collected patients with strikingly-similar phenotype. Trio-based exome sequencing was first performed in Patient 2 through Deciphering Developmental Disorders study. Proband-only exome sequencing had previously been independently performed in Patient 4. Following identification of a candidate gene variant in Patient 2, the same variant was subsequently confirmed from exome data in Patient 4. Sanger sequencing was used to validate this variant in Patients 1, 3; confirm paternal inheritance in Patient 5. A recurrent, novel variant NM_006494.2:c.266A>G p.(Tyr89Cys) in ERF was identified in five affected individuals: de novo (patient 1, 2 and 3) and inherited from an affected father (patient 4 and 5). p.Tyr89Cys is an aromatic polar neutral to polar neutral amino acid substitution, at a highly conserved position and lies within the functionally important ETS-domain of the protein. The recurrent ERF c.266A>C p.(Tyr89Cys) variant causes Chitayat syndrome. ERF variants have previously been associated with complex craniosynostosis. In contrast, none of the patients with the c.266A>G p.(Tyr89Cys) variant have craniosynostosis. We report the molecular aetiology of Chitayat syndrome and discuss potential mechanisms for this distinctive phenotype associated with the p.Tyr89Cys substitution in ERF . Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Standard Mutation Nomenclature in Molecular Diagnostics
Ogino, Shuji; Gulley, Margaret L.; den Dunnen, Johan T.; Wilson, Robert B.
2007-01-01
To translate basic research findings into clinical practice, it is essential that information about mutations and variations in the human genome are communicated easily and unequivocally. Unfortunately, there has been much confusion regarding the description of genetic sequence variants. This is largely because research articles that first report novel sequence variants do not often use standard nomenclature, and the final genomic sequence is compiled over many separate entries. In this article, we discuss issues crucial to clear communication, using examples of genes that are commonly assayed in clinical laboratories. Although molecular diagnostics is a dynamic field, this should not inhibit the need for and movement toward consensus nomenclature for accurate reporting among laboratories. Our aim is to alert laboratory scientists and other health care professionals to the important issues and provide a foundation for further discussions that will ultimately lead to solutions. PMID:17251329
Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.
Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto
2015-10-01
CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Quail, Michael A; Smith, Miriam; Coupland, Paul; Otto, Thomas D; Harris, Simon R; Connor, Thomas R; Bertoni, Anna; Swerdlow, Harold P; Gu, Yong
2012-07-24
Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.
Wala, Jeremiah; Zhang, Cheng-Zhong; Meyerson, Matthew; Beroukhim, Rameen
2016-07-01
We developed VariantBam, a C ++ read filtering and profiling tool for use with BAM, CRAM and SAM sequencing files. VariantBam provides a flexible framework for extracting sequencing reads or read-pairs that satisfy combinations of rules, defined by any number of genomic intervals or variant sites. We have implemented filters based on alignment data, sequence motifs, regional coverage and base quality. For example, VariantBam achieved a median size reduction ratio of 3.1:1 when applied to 10 lung cancer whole genome BAMs by removing large tags and selecting for only high-quality variant-supporting reads and reads matching a large dictionary of sequence motifs. Thus VariantBam enables efficient storage of sequencing data while preserving the most relevant information for downstream analysis. VariantBam and full documentation are available at github.com/jwalabroad/VariantBam rameen@broadinstitute.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes
2014-10-01
It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.
Racsa, Lori D; Luu, Hung S; Park, Jason Y; Mitui, Midori; Timmons, Charles F
2014-06-01
Hemoglobin (Hb) Austin was defined in 1977, using amino acid sequencing of samples from 3 unrelated Mexican-Americans, as a substitution of serine for arginine at position 40 of the β-globin chain (Arg40Ser). Its electrophoretic migration on both cellulose acetate (pH 8.4) and citrate agar (pH 6.2) was reported between Hb F and Hb A, and this description persists in reference literature. OBJECTIVES.-To review the clinical features and redefine the diagnostic characteristics of Hb Austin. Eight samples from 6 unrelated individuals and 2 siblings, all with Hispanic surnames, were submitted for abnormal Hb identification between June 2010 and September 2011. High-performance liquid chromatography, isoelectric focusing (IEF), citrate agar electrophoresis, and bidirectional DNA sequencing of the entire β-globin gene were performed. DNA sequencing confirmed all 8 individuals to be heterozygous for Hb Austin (Arg40Ser). Retention time on high-performance liquid chromatography and migration on citrate agar electrophoresis were consistent with that identification. Migration on IEF, however, was not between Hb F and Hb A, as predicted from the report of cellulose acetate electrophoresis. By IEF, Hb Austin migrated anodal to ("faster than") Hb A. Hemoglobin Austin (Arg40Ser) appears on IEF as a "fast," anodally migrating, Hb variant, just as would be expected from its amino acid substitution. The cited historic report is, at best, not applicable to IEF and is probably erroneous. Our observation of 8 cases in 16 months suggests that this variant may be relatively common in some Hispanic populations, making its recognition important. Furthermore, gene sequencing is proving itself a powerful and reliable tool for definitive identification of Hb variants.
Sharma, Neeraj; Sosnay, Patrick R.; Ramalho, Anabela S.; Douville, Christopher; Franca, Arianna; Gottschalk, Laura B.; Park, Jeenah; Lee, Melissa; Vecchio-Pagan, Briana; Raraigh, Karen S.; Amaral, Margarida D.; Karchin, Rachel; Cutting, Garry R.
2015-01-01
Assessment of the functional consequences of variants near splice sites is a major challenge in the diagnostic laboratory. To address this issue, we created expression minigenes (EMGs) to determine the RNA and protein products generated by splice site variants (n = 10) implicated in cystic fibrosis (CF). Experimental results were compared with the splicing predictions of eight in silico tools. EMGs containing the full-length Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) coding sequence and flanking intron sequences generated wild-type transcript and fully processed protein in Human Embryonic Kidney (HEK293) and CF bronchial epithelial (CFBE41o-) cells. Quantification of variant induced aberrant mRNA isoforms was concordant using fragment analysis and pyrosequencing. The splicing patterns of c.1585−1G>A and c.2657+5G>A were comparable to those reported in primary cells from individuals bearing these variants. Bioinformatics predictions were consistent with experimental results for 9/10 variants (MES), 8/10 variants (NNSplice), and 7/10 variants (SSAT and Sroogle). Programs that estimate the consequences of mis-splicing predicted 11/16 (HSF and ASSEDA) and 10/16 (Fsplice and SplicePort) experimentally observed mRNA isoforms. EMGs provide a robust experimental approach for clinical interpretation of splice site variants and refinement of in silico tools. PMID:25066652
Gourh, Pravitt; Remmers, Elaine F; Boyden, Steven E; Alexander, Theresa; Morgan, Nadia D; Shah, Ami A; Mayes, Maureen D; Doumatey, Ayo; Bentley, Amy R; Shriner, Daniel; Domsic, Robyn T; Medsger, Thomas A; Steen, Virginia D; Ramos, Paula S; Silver, Richard M; Korman, Benjamin; Varga, John; Schiopu, Elena; Khanna, Dinesh; Hsu, Vivien; Gordon, Jessica K; Saketkoo, Lesley Ann; Gladue, Heather; Kron, Brynn; Criswell, Lindsey A; Derk, Chris T; Bridges, S Louis; Shanmugam, Victoria K; Kolstad, Kathleen D; Chung, Lorinda; Jan, Reem; Bernstein, Elana J; Goldberg, Avram; Trojanowski, Marcin; Kafaja, Suzanne; Maksimowicz-McKinnon, Kathleen M; Mullikin, James C; Adeyemo, Adebowale; Rotimi, Charles; Boin, Francesco; Kastner, Daniel L; Wigley, Fredrick M
2018-05-06
Whole-exome sequencing (WES) studies in systemic sclerosis (SSc) patients of European American (EA) ancestry have identified variants in the ATP8B4 gene and enrichment of variants in genes in the extracellular matrix (ECM)-related pathway increasing SSc susceptibility. Our goal was to evaluate the association of the ATP8B4 gene and the ECM-related pathway with SSc in a cohort of African Americans (AA). SSc patients of AA ancestry were enrolled from 23 academic centers across the United States under the Genome Research in African American Scleroderma Patients (GRASP) consortium. Unrelated AA individuals without serological evidence of autoimmunity enrolled in the Howard University Family Study were used as unaffected controls. Functional variants in genes reported in the two WES studies in EA SSc were selected for gene association testing using the optimized sequence kernel association test (SKAT-O) and pathway analysis by Ingenuity pathway analysis in 379 patients and 411 controls. Principal components analysis demonstrated that the patients and controls had similar ancestral backgrounds with about equal proportions of mean European admixture. Using SKAT-O, we examined the association of individual genes that were previously reported in EAs, and none remained significant including ATP8B4 (P U nCorr =0.98). However, we confirm the previously reported association of the ECM-related pathway with enrichment of variants within the COL13A1, COL18A1, COL22A1, COL4A3, COL4A4, COL5A2, PROK1, and SERPINE1 genes (P C orr =1.95×10 -4 ). This is the largest genetic study in AAs with SSc to date, corroborating the role of functional variants aggregating in a fibrotic pathway and increasing SSc susceptibility. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
BlackOPs: increasing confidence in variant detection through mappability filtering.
Cabanski, Christopher R; Wilkerson, Matthew D; Soloway, Matthew; Parker, Joel S; Liu, Jinze; Prins, Jan F; Marron, J S; Perou, Charles M; Hayes, D Neil
2013-10-01
Identifying variants using high-throughput sequencing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical artifact results from incorrectly aligning experimentally observed sequences to their true genomic origin ('mismapping') and inferring differences in mismapped sequences to be true variants. We developed BlackOPs, an open-source tool that simulates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklists contain thousands of artifact variants that are indistinguishable from true variants and, for a given sample, are expected to be almost completely false positives. We show that these blacklist positions are specific to the alignment algorithm and read length used, and BlackOPs allows users to generate a blacklist specific to their experimental setup. We queried the dbSNP and COSMIC variant databases and found numerous variants indistinguishable from mapping errors. We demonstrate how filtering against blacklist positions reduces the number of potential false variants using an RNA-seq glioblastoma cell line data set. In summary, accounting for mapping-caused variants tuned to experimental setups reduces false positives and, therefore, improves genome characterization by high-throughput sequencing.
Xue, Yuan; Schoser, Benedikt; Rao, Aliz R; Quadrelli, Roberto; Vaglio, Alicia; Rupp, Verena; Beichler, Christine; Nelson, Stanley F; Schapacher-Tilp, Gudrun; Windpassinger, Christian; Wilcox, William R
2016-04-01
Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies. © 2016 American Heart Association, Inc.
Jang, Mi-Ae; Lee, Taeheon; Lee, Junnam; Cho, Eun-Hae; Ki, Chang-Seok
2015-05-01
Waardenburg syndrome (WS) is a clinically and genetically heterogeneous hereditary auditory pigmentary disorder characterized by congenital sensorineural hearing loss and iris discoloration. Many genes have been linked to WS, including PAX3, MITF, SNAI2, EDNRB, EDN3, and SOX10, and many additional genes have been associated with disorders with phenotypic overlap with WS. To screen all possible genes associated with WS and congenital deafness simultaneously, we performed diagnostic exome sequencing (DES) in a male patient with clinical features consistent with WS. Using DES, we identified a novel missense variant (c.220C>G; p.Arg74Gly) in exon 2 of the PAX3 gene in the patient. Further analysis by Sanger sequencing of the patient and his parents revealed a de novo occurrence of the variant. Our findings show that DES can be a useful tool for the identification of pathogenic gene variants in WS patients and for differentiation between WS and similar disorders. To the best of our knowledge, this is the first report of genetically confirmed WS in Korea.
Fernandez-San Jose, Patricia; Liu, Yichuan; March, Michael; Pellegrino, Renata; Golhar, Ryan; Corton, Marta; Blanco-Kelly, Fiona; López-Molina, Maria Isabel; García-Sandoval, Blanca; Guo, Yiran; Tian, Lifeng; Liu, Xuanzhu; Guan, Liping; Zhang, Jianguo; Keating, Brendan; Xu, Xun
2015-01-01
This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies. PMID:26197217
la Torre, David De; Mafla, Eulalia; Puga, Byron; Erazo, Linda; Astolfi-Ferreira, Claudete; Ferreira, Antonio Piantino
2018-04-01
The objective of this study was to determine the presence of the variants of canine parvovirus (CPV)-2 in the city of Quito, Ecuador, due to the high domestic and street-type canine population, and to identify possible mutations at a genetic level that could be causing structural changes in the virus with a consequent influence on the immune response of the hosts. Thirty-five stool samples from different puppies with characteristic signs of the disease and positives for CPV through immunochromatography kits were collected from different veterinarian clinics of the city. Polymerase chain reaction and DNA sequencing were used to determine the mutations in residue 426 of the VP2 gene, which determines the variants of CPV-2; in addition, four samples were chosen for complete sequencing of the VP2 gene to identify all possible mutations in the circulating strains in this region of the country. The results revealed the presence of the three variants of CPV-2 with a prevalence of 57.1% (20/35) for CPV-2a, 8.5% (3/35) for CPV-2b, and 34.3% (12/35) for CPV-2c. In addition, complete sequencing of the VP2 gene showed amino acid substitutions in residues 87, 101, 139, 219, 297, 300, 305, 322, 324, 375, 386, 426, 440, and 514 of the three Ecuadorian variants when compared with the original CPV-2 sequence. This study describes the detection of CPV variants in the city of Quito, Ecuador. Variants of CPV-2 (2a, 2b, and 2c) have been reported in South America, and there are cases in Ecuador where CVP-2 is affecting even vaccinated puppies.
Brownstein, Catherine A; Beggs, Alan H; Homer, Nils; Merriman, Barry; Yu, Timothy W; Flannery, Katherine C; DeChene, Elizabeth T; Towne, Meghan C; Savage, Sarah K; Price, Emily N; Holm, Ingrid A; Luquette, Lovelace J; Lyon, Elaine; Majzoub, Joseph; Neupert, Peter; McCallie, David; Szolovits, Peter; Willard, Huntington F; Mendelsohn, Nancy J; Temme, Renee; Finkel, Richard S; Yum, Sabrina W; Medne, Livija; Sunyaev, Shamil R; Adzhubey, Ivan; Cassa, Christopher A; de Bakker, Paul I W; Duzkale, Hatice; Dworzyński, Piotr; Fairbrother, William; Francioli, Laurent; Funke, Birgit H; Giovanni, Monica A; Handsaker, Robert E; Lage, Kasper; Lebo, Matthew S; Lek, Monkol; Leshchiner, Ignaty; MacArthur, Daniel G; McLaughlin, Heather M; Murray, Michael F; Pers, Tune H; Polak, Paz P; Raychaudhuri, Soumya; Rehm, Heidi L; Soemedi, Rachel; Stitziel, Nathan O; Vestecka, Sara; Supper, Jochen; Gugenmus, Claudia; Klocke, Bernward; Hahn, Alexander; Schubach, Max; Menzel, Mortiz; Biskup, Saskia; Freisinger, Peter; Deng, Mario; Braun, Martin; Perner, Sven; Smith, Richard J H; Andorf, Janeen L; Huang, Jian; Ryckman, Kelli; Sheffield, Val C; Stone, Edwin M; Bair, Thomas; Black-Ziegelbein, E Ann; Braun, Terry A; Darbro, Benjamin; DeLuca, Adam P; Kolbe, Diana L; Scheetz, Todd E; Shearer, Aiden E; Sompallae, Rama; Wang, Kai; Bassuk, Alexander G; Edens, Erik; Mathews, Katherine; Moore, Steven A; Shchelochkov, Oleg A; Trapane, Pamela; Bossler, Aaron; Campbell, Colleen A; Heusel, Jonathan W; Kwitek, Anne; Maga, Tara; Panzer, Karin; Wassink, Thomas; Van Daele, Douglas; Azaiez, Hela; Booth, Kevin; Meyer, Nic; Segal, Michael M; Williams, Marc S; Tromp, Gerard; White, Peter; Corsmeier, Donald; Fitzgerald-Butt, Sara; Herman, Gail; Lamb-Thrush, Devon; McBride, Kim L; Newsom, David; Pierson, Christopher R; Rakowsky, Alexander T; Maver, Aleš; Lovrečić, Luca; Palandačić, Anja; Peterlin, Borut; Torkamani, Ali; Wedell, Anna; Huss, Mikael; Alexeyenko, Andrey; Lindvall, Jessica M; Magnusson, Måns; Nilsson, Daniel; Stranneheim, Henrik; Taylan, Fulya; Gilissen, Christian; Hoischen, Alexander; van Bon, Bregje; Yntema, Helger; Nelen, Marcel; Zhang, Weidong; Sager, Jason; Zhang, Lu; Blair, Kathryn; Kural, Deniz; Cariaso, Michael; Lennon, Greg G; Javed, Asif; Agrawal, Saloni; Ng, Pauline C; Sandhu, Komal S; Krishna, Shuba; Veeramachaneni, Vamsi; Isakov, Ofer; Halperin, Eran; Friedman, Eitan; Shomron, Noam; Glusman, Gustavo; Roach, Jared C; Caballero, Juan; Cox, Hannah C; Mauldin, Denise; Ament, Seth A; Rowen, Lee; Richards, Daniel R; San Lucas, F Anthony; Gonzalez-Garay, Manuel L; Caskey, C Thomas; Bai, Yu; Huang, Ying; Fang, Fang; Zhang, Yan; Wang, Zhengyuan; Barrera, Jorge; Garcia-Lobo, Juan M; González-Lamuño, Domingo; Llorca, Javier; Rodriguez, Maria C; Varela, Ignacio; Reese, Martin G; De La Vega, Francisco M; Kiruluta, Edward; Cargill, Michele; Hart, Reece K; Sorenson, Jon M; Lyon, Gholson J; Stevenson, David A; Bray, Bruce E; Moore, Barry M; Eilbeck, Karen; Yandell, Mark; Zhao, Hongyu; Hou, Lin; Chen, Xiaowei; Yan, Xiting; Chen, Mengjie; Li, Cong; Yang, Can; Gunel, Murat; Li, Peining; Kong, Yong; Alexander, Austin C; Albertyn, Zayed I; Boycott, Kym M; Bulman, Dennis E; Gordon, Paul M K; Innes, A Micheil; Knoppers, Bartha M; Majewski, Jacek; Marshall, Christian R; Parboosingh, Jillian S; Sawyer, Sarah L; Samuels, Mark E; Schwartzentruber, Jeremy; Kohane, Isaac S; Margulies, David M
2014-03-25
There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
2014-01-01
Background There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups. PMID:24667040
Selecting sequence variants to improve genomic predictions for dairy cattle
USDA-ARS?s Scientific Manuscript database
Millions of genetic variants have been identified by population-scale sequencing projects, but subsets are needed for routine genomic predictions or to include on genotyping arrays. Methods of selecting sequence variants were compared using both simulated sequence genotypes and actual data from run ...
Nho, Kwangsik; Kim, Sungeun; Horgusluoglu, Emrin; Risacher, Shannon L; Shen, Li; Kim, Dokyoon; Lee, Seunggeun; Foroud, Tatiana; Shaw, Leslie M; Trojanowski, John Q; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Weiner, Michael W; Green, Robert C; Toga, Arthur W; Saykin, Andrew J
2017-05-24
The APOE ε4 allele is the most significant common genetic risk factor for late-onset Alzheimer's disease (LOAD). The region surrounding APOE on chromosome 19 has also shown consistent association with LOAD. However, no common variants in the region remain significant after adjusting for APOE genotype. We report a rare variant association analysis of genes in the vicinity of APOE with cerebrospinal fluid (CSF) and neuroimaging biomarkers of LOAD. Whole genome sequencing (WGS) was performed on 817 blood DNA samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sequence data from 757 non-Hispanic Caucasian participants was used in the present analysis. We extracted all rare variants (MAF (minor allele frequency) < 0.05) within a 312 kb window in APOE's vicinity encompassing 12 genes. We assessed CSF and neuroimaging (MRI and PET) biomarkers as LOAD-related quantitative endophenotypes. Gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). A total of 3,334 rare variants (MAF < 0.05) were found within the APOE region. Among them, 72 rare non-synonymous variants were observed. Eight genes spanning the APOE region were significantly associated with CSF Aβ 1-42 (p < 1.0 × 10 -3 ). After controlling for APOE genotype and adjusting for multiple comparisons, 4 genes (CBLC, BCAM, APOE, and RELB) remained significant. Whole-brain surface-based analysis identified highly significant clusters associated with rare variants of CBLC in the temporal lobe region including the entorhinal cortex, as well as frontal lobe regions. Whole-brain voxel-wise analysis of amyloid PET identified significant clusters in the bilateral frontal and parietal lobes showing associations of rare variants of RELB with cortical amyloid burden. Rare variants within genes spanning the APOE region are significantly associated with LOAD-related CSF Aβ 1-42 and neuroimaging biomarkers after adjusting for APOE genotype. These findings warrant further investigation and illustrate the role of next generation sequencing and quantitative endophenotypes in assessing rare variants which may help explain missing heritability in AD and other complex diseases.
A novel EML4-ALK variant: exon 6 of EML4 fused to exon 19 of ALK.
Penzel, Roland; Schirmacher, Peter; Warth, Arne
2012-07-01
Cytotoxic chemotherapy remains the mainstay of treatment for most patients with advanced disease. Recently, anaplastic lymphoma kinase (ALK) expression as a major target for successful treatment with ALK inhibitors was detected in a subset of non-small-cell lung carcinomas, usually as a result of echinoderm microtubule-associated protein-like 4 (EML4)-ALK rearrangements. Although the chromosomal breakpoint within the EML4 gene varied, the breakpoint within ALK was most frequently reported within intron 19 or rarely in exon 20. Therefore, the different EML4-ALK variants so far contain the same 3' portion of ALK starting with exon 20. Here, we report a novel EML4-ALK variant detected by reverse transcription polymerase chain reaction analysis. Subsequent sequencing revealed an EML4-ALK fusion variant in which exon 6 of EML4 was fused to exon 19 of ALK. It occurred in a predominant solid pulmonary adenocarcinoma of a 65-year-old woman with a clear split signal of ALK in fluorescence in situ hybridization analysis and a weakly homogeneous ALK expression in immunohistochemical staining. Because of the growing number of fusion variants a primary reverse transcription polymerase chain reaction-based screening for ALK-positive non-small-cell lung carcinoma patients may not be sufficient for predictive diagnostics but transcript-based approaches and sequencing of ALK fusion variants might finally contribute to an optimized selection of patients.
Huszar, Tunde I; Jobling, Mark A; Wetton, Jon H
2018-04-12
Short tandem repeats on the male-specific region of the Y chromosome (Y-STRs) are permanently linked as haplotypes, and therefore Y-STR sequence diversity can be considered within the robust framework of a phylogeny of haplogroups defined by single nucleotide polymorphisms (SNPs). Here we use massively parallel sequencing (MPS) to analyse the 23 Y-STRs in Promega's prototype PowerSeq™ Auto/Mito/Y System kit (containing the markers of the PowerPlex® Y23 [PPY23] System) in a set of 100 diverse Y chromosomes whose phylogenetic relationships are known from previous megabase-scale resequencing. Including allele duplications and alleles resulting from likely somatic mutation, we characterised 2311 alleles, demonstrating 99.83% concordance with capillary electrophoresis (CE) data on the same sample set. The set contains 267 distinct sequence-based alleles (an increase of 58% compared to the 169 detectable by CE), including 60 novel Y-STR variants phased with their flanking sequences which have not been reported previously to our knowledge. Variation includes 46 distinct alleles containing non-reference variants of SNPs/indels in both repeat and flanking regions, and 145 distinct alleles containing repeat pattern variants (RPV). For DYS385a,b, DYS481 and DYS390 we observed repeat count variation in short flanking segments previously considered invariable, and suggest new MPS-based structural designations based on these. We considered the observed variation in the context of the Y phylogeny: several specific haplogroup associations were observed for SNPs and indels, reflecting the low mutation rates of such variant types; however, RPVs showed less phylogenetic coherence and more recurrence, reflecting their relatively high mutation rates. In conclusion, our study reveals considerable additional diversity at the Y-STRs of the PPY23 set via MPS analysis, demonstrates high concordance with CE data, facilitates nomenclature standardisation, and places Y-STR sequence variants in their phylogenetic context. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Actionable exomic incidental findings in 6503 participants: challenges of variant classification
Amendola, Laura M.; Dorschner, Michael O.; Robertson, Peggy D.; Salama, Joseph S.; Hart, Ragan; Shirts, Brian H.; Murray, Mitzi L.; Tokita, Mari J.; Gallego, Carlos J.; Kim, Daniel Seung; Bennett, James T.; Crosslin, David R.; Ranchalis, Jane; Jones, Kelly L.; Rosenthal, Elisabeth A.; Jarvik, Ella R.; Itsara, Andy; Turner, Emily H.; Herman, Daniel S.; Schleit, Jennifer; Burt, Amber; Jamal, Seema M.; Abrudan, Jenica L.; Johnson, Andrew D.; Conlin, Laura K.; Dulik, Matthew C.; Santani, Avni; Metterville, Danielle R.; Kelly, Melissa; Foreman, Ann Katherine M.; Lee, Kristy; Taylor, Kent D.; Guo, Xiuqing; Crooks, Kristy; Kiedrowski, Lesli A.; Raffel, Leslie J.; Gordon, Ora; Machini, Kalotina; Desnick, Robert J.; Biesecker, Leslie G.; Lubitz, Steven A.; Mulchandani, Surabhi; Cooper, Greg M.; Joffe, Steven; Richards, C. Sue; Yang, Yaoping; Rotter, Jerome I.; Rich, Stephen S.; O’Donnell, Christopher J.; Berg, Jonathan S.; Spinner, Nancy B.; Evans, James P.; Fullerton, Stephanie M.; Leppig, Kathleen A.; Bennett, Robin L.; Bird, Thomas; Sybert, Virginia P.; Grady, William M.; Tabor, Holly K.; Kim, Jerry H.; Bamshad, Michael J.; Wilfond, Benjamin; Motulsky, Arno G.; Scott, C. Ronald; Pritchard, Colin C.; Walsh, Tom D.; Burke, Wylie; Raskind, Wendy H.; Byers, Peter; Hisama, Fuki M.; Rehm, Heidi; Nickerson, Debbie A.; Jarvik, Gail P.
2015-01-01
Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base. PMID:25637381
Loconsole, Giuliana; Onelge, Nuket; Yokomi, Raymond K; Kubaa, Raied Abou; Savino, Vito; Saponari, Maria
2013-01-01
The RNA genome of pathogenic and non-pathogenic variants of citrus Hop stunt viroid (HSVd) differ by five to six nucleotides located within the variable (V) domain referred to as the "cachexia expression motif". Sensitive hosts such as mandarin and its hybrids are seriously affected by cachexia disease. Current methods to differentiate HSVd variants rely on lengthy greenhouse biological indexing on Parson's Special mandarin and/or direct nucleotide sequence analysis of amplicons from RT-PCR of HSVd-infected plants. Two independent high throughput assays to segregate HSVd variants by real-time RT-PCR and High-Resolution Melting Temperature (HRM) analysis were developed: one based on EVAGreen dye; the other based on TaqMan probes. Primers for both assays targeted three differentiating nucleotides in the V domain which separated HSVd variants into three clusters by distinct melting temperatures with a confidence level higher than 98%. The accuracy of the HRM assays were validated by nucleotide sequencing of representative samples within each HRM cluster and by testing 45 HSVd-infected field trees from California, Italy, Spain, Syria and Turkey. To our knowledge, this is the first report of a rapid and sensitive approach to detect and differentiate HSVd variants associated with different biological behaviors. Although, HSVd is found in several crops including citrus, cachexia variants are restricted to some citrus-growing areas, particularly the Mediterranean Region. Rapid diagnosis for cachexia and non-cachexia variants is, thus, important for the management of HSVd in citrus and reduces the need for bioindexing and sequencing analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Horai, Makiko; Mishima, Hiroyuki; Hayashida, Chisa; Kinoshita, Akira; Nakane, Yoshibumi; Matsuo, Tatsuki; Tsuruda, Kazuto; Yanagihara, Katsunori; Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Miyazaki, Yasushi; Yoshiura, Koh-Ichiro
2018-03-01
Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.
Whole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections.
van der Weele, Pascal; Meijer, Chris J L M; King, Audrey J
2017-10-01
Human papillomavirus (HPV) is a strongly conserved DNA virus, high-risk types of which can cause cervical cancer in persistent infections. The most common type found in HPV-attributable cancer is HPV16, which can be subdivided into four lineages (A to D) with different carcinogenic properties. Studies have shown HPV16 sequence diversity in different geographical areas, but only limited information is available regarding HPV16 diversity within a population, especially at the whole-genome level. We analyzed HPV16 major variant diversity and conservation in persistent infections and performed a single nucleotide polymorphism (SNP) comparison between persistent and clearing infections. Materials were obtained in the Netherlands from a cohort study with longitudinal follow-up for up to 3 years. Our analysis shows a remarkably large variant diversity in the population. Whole-genome sequences were obtained for 57 persistent and 59 clearing HPV16 infections, resulting in 109 unique variants. Interestingly, persistent infections were completely conserved through time. One reinfection event was identified where the initial and follow-up samples clustered differently. Non-A1/A2 variants seemed to clear preferentially ( P = 0.02). Our analysis shows that population-wide HPV16 sequence diversity is very large. In persistent infections, the HPV16 sequence was fully conserved. Sequencing can identify HPV16 reinfections, although occurrence is rare. SNP comparison identified no strongly acting effect of the viral genome affecting HPV16 infection clearance or persistence in up to 3 years of follow-up. These findings suggest the progression of an early HPV16 infection could be host related. IMPORTANCE Human papillomavirus 16 (HPV16) is the predominant type found in cervical cancer. Progression of initial infection to cervical cancer has been linked to sequence properties; however, knowledge of variants circulating in European populations, especially with longitudinal follow-up, is limited. By sequencing a number of infections with known follow-up for up to 3 years, we gained initial insights into the genetic diversity of HPV16 and the effects of the viral genome on the persistence of infections. A SNP comparison between sequences obtained from clearing and persistent infections did not identify strongly acting DNA variations responsible for these infection outcomes. In addition, we identified an HPV16 reinfection event where sequencing of initial and follow-up samples showed different HPV16 variants. Based on conventional genotyping, this infection would incorrectly be considered a persistent HPV16 infection. In the context of vaccine efficacy and monitoring studies, such infections could potentially cause reduced reported efficacy or efficiency. Copyright © 2017 van der Weele et al.
Johnsen, Jill M; Auer, Paul L; Morrison, Alanna C; Jiao, Shuo; Wei, Peng; Haessler, Jeffrey; Fox, Keolu; McGee, Sean R; Smith, Joshua D; Carlson, Christopher S; Smith, Nicholas; Boerwinkle, Eric; Kooperberg, Charles; Nickerson, Deborah A; Rich, Stephen S; Green, David; Peters, Ulrike; Cushman, Mary; Reiner, Alex P
2013-07-25
Several rare European von Willebrand disease missense variants of VWF (including p.Arg2185Gln and p.His817Gln) were recently reported to be common in apparently healthy African Americans (AAs). Using data from the NHLBI Exome Sequencing Project, we assessed the association of these and other VWF coding variants with von Willebrand factor (VWF) and factor VIII (FVIII) levels in 4468 AAs. Of 30 nonsynonymous VWF variants, 6 were significantly and independently associated (P < .001) with levels of VWF and/or FVIII. Each additional copy of the common VWF variants encoding p.Thr789Ala or p.Asp1472His was associated with 6 to 8 IU/dL higher VWF levels. The VWF variant encoding p.Arg2185Gln was associated with 7 to 13 IU/dL lower VWF and FVIII levels. The type 2N-related VWF variant encoding p.His817Gln was associated with 17 IU/dL lower FVIII level but normal VWF level. A novel, rare missense VWF variant that predicts disruption of an O-glycosylation site (p.Ser1486Leu) and a rare variant encoding p.Arg2287Trp were each associated with 30 to 40 IU/dL lower VWF level (P < .001). In summary, several common and rare VWF missense variants contribute to phenotypic differences in VWF and FVIII among AAs.
Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech.
Worthey, Elizabeth A; Raca, Gordana; Laffin, Jennifer J; Wilk, Brandon M; Harris, Jeremy M; Jakielski, Kathy J; Dimmock, David P; Strand, Edythe A; Shriberg, Lawrence D
2013-10-02
Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker's speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.
Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.
Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V
2012-02-17
The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.
Morgan, Andrew P.; Didion, John P.; Doran, Anthony G.; Holt, James M.; McMillan, Leonard; Keane, Thomas M.; de Villena, Fernando Pardo-Manuel
2016-01-01
Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction. PMID:27765810
Pathogenic Anti-Müllerian Hormone Variants in Polycystic Ovary Syndrome.
Gorsic, Lidija K; Kosova, Gulum; Werstein, Brian; Sisk, Ryan; Legro, Richard S; Hayes, M Geoffrey; Teixeira, Jose M; Dunaif, Andrea; Urbanek, Margrit
2017-08-01
Polycystic ovary syndrome (PCOS), a common endocrine condition, is the leading cause of anovulatory infertility. Given that common disease-susceptibility variants account for only a small percentage of the estimated PCOS heritability, we tested the hypothesis that rare variants contribute to this deficit in heritability. Unbiased whole-genome sequencing (WGS) of 80 patients with PCOS and 24 reproductively normal control subjects identified potentially deleterious variants in AMH, the gene encoding anti-Müllerian hormone (AMH). Targeted sequencing of AMH of 643 patients with PCOS and 153 control patients was used to replicate WGS findings. Dual luciferase reporter assays measured the impact of the variants on downstream AMH signaling. We found 24 rare (minor allele frequency < 0.01) AMH variants in patients with PCOS and control subjects; 18 variants were specific to women with PCOS. Seventeen of 18 (94%) PCOS-specific variants had significantly reduced AMH signaling, whereas none of 6 variants observed in control subjects showed significant defects in signaling. Thus, we identified rare AMH coding variants that reduced AMH-mediated signaling in a subset of patients with PCOS. To our knowledge, this study is the first to identify rare genetic variants associated with a common PCOS phenotype. Our findings suggest decreased AMH signaling as a mechanism for the pathogenesis of PCOS. AMH decreases androgen biosynthesis by inhibiting CYP17 activity; a potential mechanism of action for AMH variants in PCOS, therefore, is to increase androgen biosynthesis due to decreased AMH-mediated inhibition of CYP17 activity. Copyright © 2017 Endocrine Society
de Vries, Tamar I; R Monroe, Glen; van Belzen, Martine J; van der Lans, Christian A; Savelberg, Sanne MC; Newman, William G; van Haaften, Gijs; Nievelstein, Rutger A; van Haelst, Mieke M
2016-01-01
Rubinstein–Taybi syndrome (RTS, OMIM 180849) and Filippi syndrome (FLPIS, OMIM 272440) are both rare syndromes, with multiple congenital anomalies and intellectual deficit (MCA/ID). We present a patient with intellectual deficit, short stature, bilateral syndactyly of hands and feet, broad thumbs, ocular abnormalities, and dysmorphic facial features. These clinical features suggest both RTS and FLPIS. Initial DNA analysis of DNA isolated from blood did not identify variants to confirm either of these syndrome diagnoses. Whole-exome sequencing identified a homozygous variant in C9orf173, which was novel at the time of analysis. Further Sanger sequencing analysis of FLPIS cases tested negative for CKAP2L variants did not, however, reveal any further variants. Subsequent analysis using DNA isolated from buccal mucosa revealed a mosaic variant in CREBBP. This report highlights the importance of excluding mosaic variants in patients with a strong but atypical clinical presentation of a MCA/ID syndrome if no disease-causing variants can be detected in DNA isolated from blood samples. As the striking syndactyly observed in the present case is typical for FLPIS, we suggest CREBBP analysis in saliva samples for FLPIS syndrome cases in which no causal CKAP2L variant is detected. PMID:26956253
Cicek, Aysegul Copur; Duzgun, Azer Ozad; Saral, Aysegul; Sandalli, Cemal
2014-10-01
Proteus mirabilis (P. mirabilis) is one of Gram-negative pathogens encountered in clinical specimens. A clinical isolate (TRP41) of P. mirabilis was isolated from a Turkish patient in Turkey. The isolate was identified using the API 32GN system and 16S rRNA gene sequencing and it was found resistant to ampicillin/sulbactam, piperacillin, tetracycline, and trimethoprim/sulfamethoxazole. This isolate was harboring a Class 1 integron gene cassette and its DNA sequence analysis revealed a novel blaOXA variant exhibiting one amino acid substitution (Asn266Ile) from blaOXA-1 . This new variant of OXA was located on Class 1 integron together with aadA1 gene encoding aminoglycoside-modifying enzymes. According to sequence records, the new variant was named as blaOXA-320 . Cassette array and size of integron were found as blaOXA-320 -aadA1 and 2086 bp, respectively. The blaOXA-320 gene is not transferable according to conjugation experiment. In this study, we report the first identification of blaOXA-320 -aadA1 gene cassette, a novel variant of Class D β-lactamase, in P. mirabilis from Turkey. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gupta, N; Shastri, S; Singh, P K; Jana, M; Mridha, A; Verma, G; Kabra, M
2016-11-01
An association of congenital diaphragmatic hernia, dandy walker malformation and nasopharyngeal teratoma is very rare. Here, we report a fourth case with this association where chromosomal microarray and whole exome sequencing (WES) was performed to understand the underlying genetic basis. Findings of few variants especially a novel variation in HIRA provided some insights. An association of congenital diaphragmatic hernia, dandy walker malformation and nasopharyngeal teratoma is very rare. Here, we report a fourth case with this association where chromosomal microarray and whole exome sequencing (WES) was performed to understand the underlying genetic basis. Findings of few variants especially a novel variation in HIRA provided some insights. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A FRMD7 variant in a Japanese family causes congenital nystagmus.
Kohmoto, Tomohiro; Okamoto, Nana; Satomura, Shigeko; Naruto, Takuya; Komori, Takahide; Hashimoto, Toshiaki; Imoto, Issei
2015-01-01
Idiopathic congenital nystagmus (ICN) is a genetically heterogeneous eye movement disorder that causes a large proportion of childhood visual impairment. Here we describe a missense variant (p.L292P) within a mutation-rich region of FRMD7 detected in three affected male siblings in a Japanese family with X-linked ICN. Combining sequence analysis and results from structural and functional predictions, we report p.L292P as a variant potentially disrupting FRMD7 function associated with X-linked ICN.
A FRMD7 variant in a Japanese family causes congenital nystagmus
Kohmoto, Tomohiro; Okamoto, Nana; Satomura, Shigeko; Naruto, Takuya; Komori, Takahide; Hashimoto, Toshiaki; Imoto, Issei
2015-01-01
Idiopathic congenital nystagmus (ICN) is a genetically heterogeneous eye movement disorder that causes a large proportion of childhood visual impairment. Here we describe a missense variant (p.L292P) within a mutation-rich region of FRMD7 detected in three affected male siblings in a Japanese family with X-linked ICN. Combining sequence analysis and results from structural and functional predictions, we report p.L292P as a variant potentially disrupting FRMD7 function associated with X-linked ICN. PMID:27081518
A Window Into Clinical Next-Generation Sequencing-Based Oncology Testing Practices.
Nagarajan, Rakesh; Bartley, Angela N; Bridge, Julia A; Jennings, Lawrence J; Kamel-Reid, Suzanne; Kim, Annette; Lazar, Alexander J; Lindeman, Neal I; Moncur, Joel; Rai, Alex J; Routbort, Mark J; Vasalos, Patricia; Merker, Jason D
2017-12-01
- Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.
Patel, Ronak Y; Shah, Neethu; Jackson, Andrew R; Ghosh, Rajarshi; Pawliczek, Piotr; Paithankar, Sameer; Baker, Aaron; Riehle, Kevin; Chen, Hailin; Milosavljevic, Sofia; Bizon, Chris; Rynearson, Shawn; Nelson, Tristan; Jarvik, Gail P; Rehm, Heidi L; Harrison, Steven M; Azzariti, Danielle; Powell, Bradford; Babb, Larry; Plon, Sharon E; Milosavljevic, Aleksandar
2017-01-12
The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http://calculator.clinicalgenome.org . By enabling evidence-based reasoning about the pathogenicity of genetic variants and by documenting supporting evidence, the Calculator contributes toward the creation of a knowledge commons and more accurate interpretation of sequence variants in research and clinical care.
Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population.
Lee, Sangmoon; Seo, Jihae; Park, Jinman; Nam, Jae-Yong; Choi, Ahyoung; Ignatius, Jason S; Bjornson, Robert D; Chae, Jong-Hee; Jang, In-Jin; Lee, Sanghyuk; Park, Woong-Yang; Baek, Daehyun; Choi, Murim
2017-06-27
Despite efforts to interrogate human genome variation through large-scale databases, systematic preference toward populations of Caucasian descendants has resulted in unintended reduction of power in studying non-Caucasians. Here we report a compilation of coding variants from 1,055 healthy Korean individuals (KOVA; Korean Variant Archive). The samples were sequenced to a mean depth of 75x, yielding 101 singleton variants per individual. Population genetics analysis demonstrates that the Korean population is a distinct ethnic group comparable to other discrete ethnic groups in Africa and Europe, providing a rationale for such independent genomic datasets. Indeed, KOVA conferred 22.8% increased variant filtering power in addition to Exome Aggregation Consortium (ExAC) when used on Korean exomes. Functional assessment of nonsynonymous variant supported the presence of purifying selection in Koreans. Analysis of copy number variants detected 5.2 deletions and 10.3 amplifications per individual with an increased fraction of novel variants among smaller and rarer copy number variable segments. We also report a list of germline variants that are associated with increased tumor susceptibility. This catalog can function as a critical addition to the pre-existing variant databases in pursuing genetic studies of Korean individuals.
Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min
2015-06-01
The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.
Using ClinVar as a Resource to Support Variant Interpretations
Harrison, Steven M.; Riggs, Erin R.; Maglott, Donna R.; Lee, Jennifer M.; Azzariti, Danielle R.; Niehaus, Annie; Ramos, Erin M.; Martin, Christa L.; Landrum, Melissa J.; Rehm, Heidi L.
2016-01-01
ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar with by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation. PMID:27037489
Lubin, Ira M; Aziz, Nazneen; Babb, Lawrence J; Ballinger, Dennis; Bisht, Himani; Church, Deanna M; Cordes, Shaun; Eilbeck, Karen; Hyland, Fiona; Kalman, Lisa; Landrum, Melissa; Lockhart, Edward R; Maglott, Donna; Marth, Gabor; Pfeifer, John D; Rehm, Heidi L; Roy, Somak; Tezak, Zivana; Truty, Rebecca; Ullman-Cullere, Mollie; Voelkerding, Karl V; Worthey, Elizabeth A; Zaranek, Alexander W; Zook, Justin M
2017-05-01
A national workgroup convened by the Centers for Disease Control and Prevention identified principles and made recommendations for standardizing the description of sequence data contained within the variant file generated during the course of clinical next-generation sequence analysis for diagnosing human heritable conditions. The specifications for variant files were initially developed to be flexible with regard to content representation to support a variety of research applications. This flexibility permits variation with regard to how sequence findings are described and this depends, in part, on the conventions used. For clinical laboratory testing, this poses a problem because these differences can compromise the capability to compare sequence findings among laboratories to confirm results and to query databases to identify clinically relevant variants. To provide for a more consistent representation of sequence findings described within variant files, the workgroup made several recommendations that considered alignment to a common reference sequence, variant caller settings, use of genomic coordinates, and gene and variant naming conventions. These recommendations were considered with regard to the existing variant file specifications presently used in the clinical setting. Adoption of these recommendations is anticipated to reduce the potential for ambiguity in describing sequence findings and facilitate the sharing of genomic data among clinical laboratories and other entities. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.
Flannick, Jason; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M; Agarwala, Vineeta; Gaulton, Kyle J; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J; Rivas, Manuel A; Perry, John R B; Sim, Xueling; Blackwell, Thomas W; Robertson, Neil R; Rayner, N William; Cingolani, Pablo; Locke, Adam E; Tajes, Juan Fernandez; Highland, Heather M; Dupuis, Josee; Chines, Peter S; Lindgren, Cecilia M; Hartl, Christopher; Jackson, Anne U; Chen, Han; Huyghe, Jeroen R; van de Bunt, Martijn; Pearson, Richard D; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M; Gamazon, Eric R; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A; Below, Jennifer E; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L; Pasko, Dorota; Parker, Stephen C J; Varga, Tibor V; Green, Todd; Beer, Nicola L; Day-Williams, Aaron G; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F; Han, Bok-Ghee; Jenkinson, Christopher P; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C Y; Palmer, Nicholette D; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D; Neale, Benjamin M; Purcell, Shaun; Butterworth, Adam S; Howson, Joanna M M; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K L; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H T; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E; Rybin, Dennis; Farook, Vidya S; Fowler, Sharon P; Freedman, Barry I; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K; Puppala, Sobha; Scott, William R; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C; Mangino, Massimo; Bonnycastle, Lori L; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L; Herder, Christian; Groves, Christopher J; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A; Doney, Alex S F; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H; Stirrups, Kathleen; Wood, Andrew R; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N A; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M; Syvänen, Ann-Christine; Bergman, Richard N; Bharadwaj, Dwaipayan; Bottinger, Erwin P; Cho, Yoon Shin; Chandak, Giriraj R; Chan, Juliana Cn; Chia, Kee Seng; Daly, Mark J; Ebrahim, Shah B; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A; Lehman, Donna M; Jia, Weiping; Ma, Ronald C W; Pollin, Toni I; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J F; Small, Kerrin S; Ried, Janina S; DeFronzo, Ralph A; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R; Gloyn, Anna L; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D; Hattersley, Andrew T; Bowden, Donald W; Collins, Francis S; Atzmon, Gil; Chambers, John C; Spector, Timothy D; Laakso, Markku; Strom, Tim M; Bell, Graeme I; Blangero, John; Duggirala, Ravindranath; Tai, E Shyong; McVean, Gilean; Hanis, Craig L; Wilson, James G; Seielstad, Mark; Frayling, Timothy M; Meigs, James B; Cox, Nancy J; Sladek, Rob; Lander, Eric S; Gabriel, Stacey; Mohlke, Karen L; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J; Morris, Andrew P; Kang, Hyun Min; Altshuler, David; Burtt, Noël P; Florez, Jose C; Boehnke, Michael; McCarthy, Mark I
2017-12-19
To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
Jason, Flannick; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M.; Agarwala, Vineeta; Gaulton, Kyle J.; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J.; Rivas, Manuel A.; Perry, John R. B.; Sim, Xueling; Blackwell, Thomas W.; Robertson, Neil R.; Rayner, N William; Cingolani, Pablo; Locke, Adam E.; Tajes, Juan Fernandez; Highland, Heather M.; Dupuis, Josee; Chines, Peter S.; Lindgren, Cecilia M.; Hartl, Christopher; Jackson, Anne U.; Chen, Han; Huyghe, Jeroen R.; van de Bunt, Martijn; Pearson, Richard D.; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M.; Gamazon, Eric R.; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A.; Below, Jennifer E.; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L.; Pasko, Dorota; Parker, Stephen C. J.; Varga, Tibor V.; Green, Todd; Beer, Nicola L.; Day-Williams, Aaron G.; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J.; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P.; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F.; Han, Bok-Ghee; Jenkinson, Christopher P.; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C. Y.; Palmer, Nicholette D.; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E.; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D.; Neale, Benjamin M.; Purcell, Shaun; Butterworth, Adam S.; Howson, Joanna M. M.; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K. L.; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H. T.; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E.; Rybin, Dennis; Farook, Vidya S.; Fowler, Sharon P.; Freedman, Barry I.; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J.; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K.; Puppala, Sobha; Scott, William R.; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A.; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C.; Mangino, Massimo; Bonnycastle, Lori L.; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L.; Herder, Christian; Groves, Christopher J.; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A.; Doney, Alex S. F.; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J.; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E.; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H.; Stirrups, Kathleen; Wood, Andrew R.; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O.; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P.; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B.; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N. A.; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M.; Syvänen, Ann-Christine; Bergman, Richard N.; Bharadwaj, Dwaipayan; Bottinger, Erwin P.; Cho, Yoon Shin; Chandak, Giriraj R.; Chan, Juliana CN; Chia, Kee Seng; Daly, Mark J.; Ebrahim, Shah B.; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A.; Lehman, Donna M.; Jia, Weiping; Ma, Ronald C. W.; Pollin, Toni I.; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J. F.; Small, Kerrin S.; Ried, Janina S.; DeFronzo, Ralph A.; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J.; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W.; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R.; Gloyn, Anna L.; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D.; Hattersley, Andrew T.; Bowden, Donald W.; Collins, Francis S.; Atzmon, Gil; Chambers, John C.; Spector, Timothy D.; Laakso, Markku; Strom, Tim M.; Bell, Graeme I.; Blangero, John; Duggirala, Ravindranath; Tai, E. Shyong; McVean, Gilean; Hanis, Craig L.; Wilson, James G.; Seielstad, Mark; Frayling, Timothy M.; Meigs, James B.; Cox, Nancy J.; Sladek, Rob; Lander, Eric S.; Gabriel, Stacey; Mohlke, Karen L.; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J.; Morris, Andrew P.; Kang, Hyun Min; Altshuler, David; Burtt, Noël P.; Florez, Jose C.; Boehnke, Michael; McCarthy, Mark I.
2017-01-01
To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1–5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D. PMID:29257133
Verbist, Bie; Clement, Lieven; Reumers, Joke; Thys, Kim; Vapirev, Alexander; Talloen, Willem; Wetzels, Yves; Meys, Joris; Aerssens, Jeroen; Bijnens, Luc; Thas, Olivier
2015-02-22
Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a quadruplet of intensities, one channel for each nucleotide type for Illumina sequencing. The highest intensity of the four channels determines the base that is called. Mismatch bases can often be corrected by the second best base, i.e. the base with the second highest intensity in the quadruplet. A virus variant model-based clustering method, ViVaMBC, is presented that explores quality scores and second best base calls for identifying and quantifying viral variants. ViVaMBC is optimized to call variants at the codon level (nucleotide triplets) which enables immediate biological interpretation of the variants with respect to their antiviral drug responses. Using mixtures of HCV plasmids we show that our method accurately estimates frequencies down to 0.5%. The estimates are unbiased when average coverages of 25,000 are reached. A comparison with the SNP-callers V-Phaser2, ShoRAH, and LoFreq shows that ViVaMBC has a superb sensitivity and specificity for variants with frequencies above 0.4%. Unlike the competitors, ViVaMBC reports a higher number of false-positive findings with frequencies below 0.4% which might partially originate from picking up artificial variants introduced by errors in the sample and library preparation step. ViVaMBC is the first method to call viral variants directly at the codon level. The strength of the approach lies in modeling the error probabilities based on the quality scores. Although the use of second best base calls appeared very promising in our data exploration phase, their utility was limited. They provided a slight increase in sensitivity, which however does not warrant the additional computational cost of running the offline base caller. Apparently a lot of information is already contained in the quality scores enabling the model based clustering procedure to adjust the majority of the sequencing errors. Overall the sensitivity of ViVaMBC is such that technical constraints like PCR errors start to form the bottleneck for low frequency variant detection.
Kimble, Danielle C; Lach, Francis P; Gregg, Siobhan Q; Donovan, Frank X; Flynn, Elizabeth K; Kamat, Aparna; Young, Alice; Vemulapalli, Meghana; Thomas, James W; Mullikin, James C; Auerbach, Arleen D; Smogorzewska, Agata; Chandrasekharappa, Settara C
2018-02-01
Fanconi anemia (FA) is a rare recessive DNA repair deficiency resulting from mutations in one of at least 22 genes. Two-thirds of FA families harbor mutations in FANCA. To genotype patients in the International Fanconi Anemia Registry (IFAR) we employed multiple methodologies, screening 216 families for FANCA mutations. We describe identification of 57 large deletions and 261 sequence variants, in 159 families. All but seven families harbored distinct combinations of two mutations demonstrating high heterogeneity. Pathogenicity of the 18 novel missense variants was analyzed functionally by determining the ability of the mutant cDNA to improve the survival of a FANCA-null cell line when treated with MMC. Overexpressed pathogenic missense variants were found to reside in the cytoplasm, and nonpathogenic in the nucleus. RNA analysis demonstrated that two variants (c.522G > C and c.1565A > G), predicted to encode missense variants, which were determined to be nonpathogenic by a functional assay, caused skipping of exons 5 and 16, respectively, and are most likely pathogenic. We report 48 novel FANCA sequence variants. Defining both variants in a large patient cohort is a major step toward cataloging all FANCA variants, and permitting studies of genotype-phenotype correlations. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
A statistical method for the detection of variants from next-generation resequencing of DNA pools.
Bansal, Vikas
2010-06-15
Next-generation sequencing technologies have enabled the sequencing of several human genomes in their entirety. However, the routine resequencing of complete genomes remains infeasible. The massive capacity of next-generation sequencers can be harnessed for sequencing specific genomic regions in hundreds to thousands of individuals. Sequencing-based association studies are currently limited by the low level of multiplexing offered by sequencing platforms. Pooled sequencing represents a cost-effective approach for studying rare variants in large populations. To utilize the power of DNA pooling, it is important to accurately identify sequence variants from pooled sequencing data. Detection of rare variants from pooled sequencing represents a different challenge than detection of variants from individual sequencing. We describe a novel statistical approach, CRISP [Comprehensive Read analysis for Identification of Single Nucleotide Polymorphisms (SNPs) from Pooled sequencing] that is able to identify both rare and common variants by using two approaches: (i) comparing the distribution of allele counts across multiple pools using contingency tables and (ii) evaluating the probability of observing multiple non-reference base calls due to sequencing errors alone. Information about the distribution of reads between the forward and reverse strands and the size of the pools is also incorporated within this framework to filter out false variants. Validation of CRISP on two separate pooled sequencing datasets generated using the Illumina Genome Analyzer demonstrates that it can detect 80-85% of SNPs identified using individual sequencing while achieving a low false discovery rate (3-5%). Comparison with previous methods for pooled SNP detection demonstrates the significantly lower false positive and false negative rates for CRISP. Implementation of this method is available at http://polymorphism.scripps.edu/~vbansal/software/CRISP/.
Whole exome sequencing for familial bicuspid aortic valve identifies putative variants.
Martin, Lisa J; Pilipenko, Valentina; Kaufman, Kenneth M; Cripe, Linda; Kottyan, Leah C; Keddache, Mehdi; Dexheimer, Phillip; Weirauch, Matthew T; Benson, D Woodrow
2014-10-01
Bicuspid aortic valve (BAV) is the most common congenital cardiovascular malformation. Although highly heritable, few causal variants have been identified. The purpose of this study was to identify genetic variants underlying BAV by whole exome sequencing a multiplex BAV kindred. Whole exome sequencing was performed on 17 individuals from a single family (BAV=3; other cardiovascular malformation, 3). Postvariant calling error control metrics were established after examining the relationship between Mendelian inheritance error rate and coverage, quality score, and call rate. To determine the most effective approach to identifying susceptibility variants from among 54 674 variants passing error control metrics, we evaluated 3 variant selection strategies frequently used in whole exome sequencing studies plus extended family linkage. No putative rare, high-effect variants were identified in all affected but no unaffected individuals. Eight high-effect variants were identified by ≥2 of the commonly used selection strategies; however, these were either common in the general population (>10%) or present in the majority of the unaffected family members. However, using extended family linkage, 3 synonymous variants were identified; all 3 variants were identified by at least one other strategy. These results suggest that traditional whole exome sequencing approaches, which assume causal variants alter coding sense, may be insufficient for BAV and other complex traits. Identification of disease-associated variants is facilitated by the use of segregation within families. © 2014 American Heart Association, Inc.
Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.
Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M
2017-08-16
High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.
Meric-Bernstam, F; Brusco, L; Daniels, M; Wathoo, C; Bailey, A M; Strong, L; Shaw, K; Lu, K; Qi, Y; Zhao, H; Lara-Guerra, H; Litton, J; Arun, B; Eterovic, A K; Aytac, U; Routbort, M; Subbiah, V; Janku, F; Davies, M A; Kopetz, S; Mendelsohn, J; Mills, G B; Chen, K
2016-05-01
Next-generation sequencing in cancer research may reveal germline variants of clinical significance. We report patient preferences for return of results and the prevalence of incidental pathogenic germline variants (PGVs). Targeted exome sequencing of 202 genes was carried out in 1000 advanced cancers using tumor and normal DNA in a research laboratory. Pathogenic variants in 18 genes, recommended for return by The American College of Medical Genetics and Genomics, as well as PALB2, were considered actionable. Patient preferences of return of incidental germline results were collected. Return of results was initiated with genetic counseling and repeat CLIA testing. Of the 1000 patients who underwent sequencing, 43 had likely PGVs: APC (1), BRCA1 (11), BRCA2 (10), TP53 (10), MSH2 (1), MSH6 (4), PALB2 (2), PTEN (2), TSC2 (1), and RB1 (1). Twenty (47%) of 43 variants were previously known based on clinical genetic testing. Of the 1167 patients who consented for a germline testing protocol, 1157 (99%) desired to be informed of incidental results. Twenty-three previously unrecognized mutations identified in the research environment were confirmed with an orthogonal CLIA platform. All patients approached decided to proceed with formal genetic counseling; in all cases where formal genetic testing was carried out, the germline variant of concern validated with clinical genetic testing. In this series, 2.3% patients had previously unrecognized pathogenic germline mutations in 19 cancer-related genes. Thus, genomic sequencing must be accompanied by a plan for return of germline results, in partnership with genetic counseling. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Christensen, Paul A.; Ni, Yunyun; Bao, Feifei; Hendrickson, Heather L.; Greenwood, Michael; Thomas, Jessica S.; Long, S. Wesley; Olsen, Randall J.
2017-01-01
Introduction: Next-generation-sequencing (NGS) is increasingly used in clinical and research protocols for patients with cancer. NGS assays are routinely used in clinical laboratories to detect mutations bearing on cancer diagnosis, prognosis and personalized therapy. A typical assay may interrogate 50 or more gene targets that encompass many thousands of possible gene variants. Analysis of NGS data in cancer is a labor-intensive process that can become overwhelming to the molecular pathologist or research scientist. Although commercial tools for NGS data analysis and interpretation are available, they are often costly, lack key functionality or cannot be customized by the end user. Methods: To facilitate NGS data analysis in our clinical molecular diagnostics laboratory, we created a custom bioinformatics tool termed Houston Methodist Variant Viewer (HMVV). HMVV is a Java-based solution that integrates sequencing instrument output, bioinformatics analysis, storage resources and end user interface. Results: Compared to the predicate method used in our clinical laboratory, HMVV markedly simplifies the bioinformatics workflow for the molecular technologist and facilitates the variant review by the molecular pathologist. Importantly, HMVV reduces time spent researching the biological significance of the variants detected, standardizes the online resources used to perform the variant investigation and assists generation of the annotated report for the electronic medical record. HMVV also maintains a searchable variant database, including the variant annotations generated by the pathologist, which is useful for downstream quality improvement and research projects. Conclusions: HMVV is a clinical grade, low-cost, feature-rich, highly customizable platform that we have made available for continued development by the pathology informatics community. PMID:29226007
Luo, Li; Zhu, Yun
2012-01-01
Abstract The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T2, collapsing method, multivariate and collapsing (CMC) method, individual χ2 test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets. PMID:22651812
Luo, Li; Zhu, Yun; Xiong, Momiao
2012-06-01
The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.
Actionable exomic incidental findings in 6503 participants: challenges of variant classification.
Amendola, Laura M; Dorschner, Michael O; Robertson, Peggy D; Salama, Joseph S; Hart, Ragan; Shirts, Brian H; Murray, Mitzi L; Tokita, Mari J; Gallego, Carlos J; Kim, Daniel Seung; Bennett, James T; Crosslin, David R; Ranchalis, Jane; Jones, Kelly L; Rosenthal, Elisabeth A; Jarvik, Ella R; Itsara, Andy; Turner, Emily H; Herman, Daniel S; Schleit, Jennifer; Burt, Amber; Jamal, Seema M; Abrudan, Jenica L; Johnson, Andrew D; Conlin, Laura K; Dulik, Matthew C; Santani, Avni; Metterville, Danielle R; Kelly, Melissa; Foreman, Ann Katherine M; Lee, Kristy; Taylor, Kent D; Guo, Xiuqing; Crooks, Kristy; Kiedrowski, Lesli A; Raffel, Leslie J; Gordon, Ora; Machini, Kalotina; Desnick, Robert J; Biesecker, Leslie G; Lubitz, Steven A; Mulchandani, Surabhi; Cooper, Greg M; Joffe, Steven; Richards, C Sue; Yang, Yaoping; Rotter, Jerome I; Rich, Stephen S; O'Donnell, Christopher J; Berg, Jonathan S; Spinner, Nancy B; Evans, James P; Fullerton, Stephanie M; Leppig, Kathleen A; Bennett, Robin L; Bird, Thomas; Sybert, Virginia P; Grady, William M; Tabor, Holly K; Kim, Jerry H; Bamshad, Michael J; Wilfond, Benjamin; Motulsky, Arno G; Scott, C Ronald; Pritchard, Colin C; Walsh, Tom D; Burke, Wylie; Raskind, Wendy H; Byers, Peter; Hisama, Fuki M; Rehm, Heidi; Nickerson, Debbie A; Jarvik, Gail P
2015-03-01
Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base. © 2015 Amendola et al.; Published by Cold Spring Harbor Laboratory Press.
Rozman, Vita; Kunej, Tanja
2018-05-10
Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).
Variants in the PRPF8 Gene are Associated with Glaucoma.
Micheal, Shazia; Hogewind, Barend F; Khan, Muhammad Imran; Siddiqui, Sorath Noorani; Zafar, Saemah Nuzhat; Akhtar, Farah; Qamar, Raheel; Hoyng, Carel B; den Hollander, Anneke I
2018-05-01
Glaucoma is the cause of irreversible blindness worldwide. Mutations in six genes have been associated with juvenile- and adult-onset familial primary open angle glaucoma (POAG) prior to this report but they explain only a small proportion of the genetic load. The aim of the study is to identify the novel genetic cause of the POAG in the families with adult-onset glaucoma. Whole exome sequencing (WES) was performed on DNA of two affected individuals, and predicted pathogenic variants were evaluated for segregation in four affected and three unaffected Dutch family members by Sanger sequencing. We identified a pathogenic variant (p.Val956Gly) in the PRPF8 gene, which segregates with the disease in Dutch family. Targeted Sanger sequencing of PRPF8 in a panel of 40 POAG families (18 Pakistani and 22 Dutch) revealed two additional nonsynonymous variants (p.Pro13Leu and p.Met25Thr), which segregate with the disease in two other Pakistani families. Both variants were then analyzed in a case-control cohort consisting of Pakistani 320 POAG cases and 250 matched controls. The p.Pro13Leu and p.Met25Thr variants were identified in 14 and 20 cases, respectively, while they were not detected in controls (p values 0.0004 and 0.0001, respectively). Previously, PRPF8 mutations have been associated with autosomal dominant retinitis pigmentosa (RP). The PRPF8 variants associated with POAG are located at the N-terminus, while all RP-associated mutations cluster at the C-terminus, dictating a clear genotype-phenotype correlation.
The expanding spectrum of COL2A1 gene variants IN 136 patients with a skeletal dysplasia phenotype
Barat-Houari, Mouna; Dumont, Bruno; Fabre, Aurélie; Them, Frédéric TM; Alembik, Yves; Alessandri, Jean-Luc; Amiel, Jeanne; Audebert, Séverine; Baumann-Morel, Clarisse; Blanchet, Patricia; Bieth, Eric; Brechard, Marie; Busa, Tiffany; Calvas, Patrick; Capri, Yline; Cartault, François; Chassaing, Nicolas; Ciorca, Vidrica; Coubes, Christine; David, Albert; Delezoide, Anne-Lise; Dupin-Deguine, Delphine; El Chehadeh, Salima; Faivre, Laurence; Giuliano, Fabienne; Goldenberg, Alice; Isidor, Bertrand; Jacquemont, Marie-Line; Julia, Sophie; Kaplan, Josseline; Lacombe, Didier; Lebrun, Marine; Marlin, Sandrine; Martin-Coignard, Dominique; Martinovic, Jelena; Masurel, Alice; Melki, Judith; Mozelle-Nivoix, Monique; Nguyen, Karine; Odent, Sylvie; Philip, Nicole; Pinson, Lucile; Plessis, Ghislaine; Quélin, Chloé; Shaeffer, Elise; Sigaudy, Sabine; Thauvin, Christel; Till, Marianne; Touraine, Renaud; Vigneron, Jacqueline; Baujat, Geneviève; Cormier-Daire, Valérie; Le Merrer, Martine; Geneviève, David; Touitou, Isabelle
2016-01-01
Heterozygous COL2A1 variants cause a wide spectrum of skeletal dysplasia termed type II collagenopathies. We assessed the impact of this gene in our French series. A decision tree was applied to select 136 probands (71 Stickler cases, 21 Spondyloepiphyseal dysplasia congenita cases, 11 Kniest dysplasia cases, and 34 other dysplasia cases) before molecular diagnosis by Sanger sequencing. We identified 66 different variants among the 71 positive patients. Among those patients, 18 belonged to multiplex families and 53 were sporadic. Most variants (38/44, 86%) were located in the triple helical domain of the collagen chain and glycine substitutions were mainly observed in severe phenotypes, whereas arginine to cysteine changes were more often encountered in moderate phenotypes. This series of skeletal dysplasia is one of the largest reported so far, adding 44 novel variants (15%) to published data. We have confirmed that about half of our Stickler patients (46%) carried a COL2A1 variant, and that the molecular spectrum was different across the phenotypes. To further address the question of genotype–phenotype correlation, we plan to screen our patients for other candidate genes using a targeted next-generation sequencing approach. PMID:26626311
The expanding spectrum of COL2A1 gene variants IN 136 patients with a skeletal dysplasia phenotype.
Barat-Houari, Mouna; Dumont, Bruno; Fabre, Aurélie; Them, Frédéric Tm; Alembik, Yves; Alessandri, Jean-Luc; Amiel, Jeanne; Audebert, Séverine; Baumann-Morel, Clarisse; Blanchet, Patricia; Bieth, Eric; Brechard, Marie; Busa, Tiffany; Calvas, Patrick; Capri, Yline; Cartault, François; Chassaing, Nicolas; Ciorca, Vidrica; Coubes, Christine; David, Albert; Delezoide, Anne-Lise; Dupin-Deguine, Delphine; El Chehadeh, Salima; Faivre, Laurence; Giuliano, Fabienne; Goldenberg, Alice; Isidor, Bertrand; Jacquemont, Marie-Line; Julia, Sophie; Kaplan, Josseline; Lacombe, Didier; Lebrun, Marine; Marlin, Sandrine; Martin-Coignard, Dominique; Martinovic, Jelena; Masurel, Alice; Melki, Judith; Mozelle-Nivoix, Monique; Nguyen, Karine; Odent, Sylvie; Philip, Nicole; Pinson, Lucile; Plessis, Ghislaine; Quélin, Chloé; Shaeffer, Elise; Sigaudy, Sabine; Thauvin, Christel; Till, Marianne; Touraine, Renaud; Vigneron, Jacqueline; Baujat, Geneviève; Cormier-Daire, Valérie; Le Merrer, Martine; Geneviève, David; Touitou, Isabelle
2016-07-01
Heterozygous COL2A1 variants cause a wide spectrum of skeletal dysplasia termed type II collagenopathies. We assessed the impact of this gene in our French series. A decision tree was applied to select 136 probands (71 Stickler cases, 21 Spondyloepiphyseal dysplasia congenita cases, 11 Kniest dysplasia cases, and 34 other dysplasia cases) before molecular diagnosis by Sanger sequencing. We identified 66 different variants among the 71 positive patients. Among those patients, 18 belonged to multiplex families and 53 were sporadic. Most variants (38/44, 86%) were located in the triple helical domain of the collagen chain and glycine substitutions were mainly observed in severe phenotypes, whereas arginine to cysteine changes were more often encountered in moderate phenotypes. This series of skeletal dysplasia is one of the largest reported so far, adding 44 novel variants (15%) to published data. We have confirmed that about half of our Stickler patients (46%) carried a COL2A1 variant, and that the molecular spectrum was different across the phenotypes. To further address the question of genotype-phenotype correlation, we plan to screen our patients for other candidate genes using a targeted next-generation sequencing approach.
Fernández, Cecilia S; Bruque, Carlos D; Taboas, Melisa; Buzzalino, Noemí D; Espeche, Lucia D; Pasqualini, Titania; Charreau, Eduardo H; Alba, Liliana G; Ghiringhelli, Pablo D; Dain, Liliana
2015-09-01
The aim of the current study was to search for the presence of genetic variants in the CYP21A2 Z promoter regulatory region in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Screening of the 10 most frequent pseudogene-derived mutations was followed by direct sequencing of the entire coding sequence, the proximal promoter, and a distal regulatory region in DNA samples from patients with at least one non-determined allele. We report three non-classical patients that presented a novel genetic variant-g.15626A>G-within the Z promoter regulatory region. In all the patients, the novel variant was found in cis with the mild, less frequent, p.P482S mutation located in the exon 10 of the CYP21A2 gene. The putative pathogenic implication of the novel variant was assessed by in silico analyses and in vitro assays. Topological analyses showed differences in the curvature and bendability of the DNA region bearing the novel variant. By performing functional studies, a significantly decreased activity of a reporter gene placed downstream from the regulatory region was found by the G transition. Our results may suggest that the activity of an allele bearing the p.P482S mutation may be influenced by the misregulated CYP21A2 transcriptional activity exerted by the Z promoter A>G variation.
Variant calling in low-coverage whole genome sequencing of a Native American population sample.
Bizon, Chris; Spiegel, Michael; Chasse, Scott A; Gizer, Ian R; Li, Yun; Malc, Ewa P; Mieczkowski, Piotr A; Sailsbery, Josh K; Wang, Xiaoshu; Ehlers, Cindy L; Wilhelmsen, Kirk C
2014-01-30
The reduction in the cost of sequencing a human genome has led to the use of genotype sampling strategies in order to impute and infer the presence of sequence variants that can then be tested for associations with traits of interest. Low-coverage Whole Genome Sequencing (WGS) is a sampling strategy that overcomes some of the deficiencies seen in fixed content SNP array studies. Linkage-disequilibrium (LD) aware variant callers, such as the program Thunder, may provide a calling rate and accuracy that makes a low-coverage sequencing strategy viable. We examined the performance of an LD-aware variant calling strategy in a population of 708 low-coverage whole genome sequences from a community sample of Native Americans. We assessed variant calling through a comparison of the sequencing results to genotypes measured in 641 of the same subjects using a fixed content first generation exome array. The comparison was made using the variant calling routines GATK Unified Genotyper program and the LD-aware variant caller Thunder. Thunder was found to improve concordance in a coverage dependent fashion, while correctly calling nearly all of the common variants as well as a high percentage of the rare variants present in the sample. Low-coverage WGS is a strategy that appears to collect genetic information intermediate in scope between fixed content genotyping arrays and deep-coverage WGS. Our data suggests that low-coverage WGS is a viable strategy with a greater chance of discovering novel variants and associations than fixed content arrays for large sample association analyses.
Bodini, Margherita; Ronchini, Chiara; Giacò, Luciano; Russo, Anna; Melloni, Giorgio E. M.; Luzi, Lucilla; Sardella, Domenico; Volorio, Sara; Hasan, Syed K.; Ottone, Tiziana; Lavorgna, Serena; Lo-Coco, Francesco; Candoni, Anna; Fanin, Renato; Toffoletti, Eleonora; Iacobucci, Ilaria; Martinelli, Giovanni; Cignetti, Alessandro; Tarella, Corrado; Bernard, Loris; Pelicci, Pier Giuseppe
2015-01-01
The analyses carried out using 2 different bioinformatics pipelines (SomaticSniper and MuTect) on the same set of genomic data from 133 acute myeloid leukemia (AML) patients, sequenced inside the Cancer Genome Atlas project, gave discrepant results. We subsequently tested these 2 variant-calling pipelines on 20 leukemia samples from our series (19 primary AMLs and 1 secondary AML). By validating many of the predicted somatic variants (variant allele frequencies ranging from 100% to 5%), we observed significantly different calling efficiencies. In particular, despite relatively high specificity, sensitivity was poor in both pipelines resulting in a high rate of false negatives. Our findings raise the possibility that landscapes of AML genomes might be more complex than previously reported and characterized by the presence of hundreds of genes mutated at low variant allele frequency, suggesting that the application of genome sequencing to the clinic requires a careful and critical evaluation. We think that improvements in technology and workflow standardization, through the generation of clear experimental and bioinformatics guidelines, are fundamental to translate the use of next-generation sequencing from research to the clinic and to transform genomic information into better diagnosis and outcomes for the patient. PMID:25499761
Jang, Mi-Ae; Lee, Taeheon; Lee, Junnam
2015-01-01
Waardenburg syndrome (WS) is a clinically and genetically heterogeneous hereditary auditory pigmentary disorder characterized by congenital sensorineural hearing loss and iris discoloration. Many genes have been linked to WS, including PAX3, MITF, SNAI2, EDNRB, EDN3, and SOX10, and many additional genes have been associated with disorders with phenotypic overlap with WS. To screen all possible genes associated with WS and congenital deafness simultaneously, we performed diagnostic exome sequencing (DES) in a male patient with clinical features consistent with WS. Using DES, we identified a novel missense variant (c.220C>G; p.Arg74Gly) in exon 2 of the PAX3 gene in the patient. Further analysis by Sanger sequencing of the patient and his parents revealed a de novo occurrence of the variant. Our findings show that DES can be a useful tool for the identification of pathogenic gene variants in WS patients and for differentiation between WS and similar disorders. To the best of our knowledge, this is the first report of genetically confirmed WS in Korea. PMID:25932447
Nishio, Shin-Ya; Usami, Shin-Ichi
2017-03-01
Recent advances in next-generation sequencing (NGS) have given rise to new challenges due to the difficulties in variant pathogenicity interpretation and large dataset management, including many kinds of public population databases as well as public or commercial disease-specific databases. Here, we report a new database development tool, named the "Clinical NGS Database," for improving clinical NGS workflow through the unified management of variant information and clinical information. This database software offers a two-feature approach to variant pathogenicity classification. The first of these approaches is a phenotype similarity-based approach. This database allows the easy comparison of the detailed phenotype of each patient with the average phenotype of the same gene mutation at the variant or gene level. It is also possible to browse patients with the same gene mutation quickly. The other approach is a statistical approach to variant pathogenicity classification based on the use of the odds ratio for comparisons between the case and the control for each inheritance mode (families with apparently autosomal dominant inheritance vs. control, and families with apparently autosomal recessive inheritance vs. control). A number of case studies are also presented to illustrate the utility of this database. © 2016 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
Expanding the mutational spectrum of LZTR1 in schwannomatosis.
Paganini, Irene; Chang, Vivian Y; Capone, Gabriele L; Vitte, Jeremie; Benelli, Matteo; Barbetti, Lorenzo; Sestini, Roberta; Trevisson, Eva; Hulsebos, Theo Jm; Giovannini, Marco; Nelson, Stanley F; Papi, Laura
2015-07-01
Schwannomatosis is characterized by the development of multiple non-vestibular, non-intradermal schwannomas. Constitutional inactivating variants in two genes, SMARCB1 and, very recently, LZTR1, have been reported. We performed exome sequencing of 13 schwannomatosis patients from 11 families without SMARCB1 deleterious variants. We identified four individuals with heterozygous loss-of-function variants in LZTR1. Sequencing of the germline of 60 additional patients identified 18 additional heterozygous variants in LZTR1. We identified LZTR1 variants in 43% and 30% of familial (three of the seven families) and sporadic patients, respectively. In addition, we tested LZTR1 protein immunostaining in 22 tumors from nine unrelated patients with and without LZTR1 deleterious variants. Tumors from individuals with LZTR1 variants lost the protein expression in at least a subset of tumor cells, consistent with a tumor suppressor mechanism. In conclusion, our study demonstrates that molecular analysis of LZTR1 may contribute to the molecular characterization of schwannomatosis patients, in addition to NF2 mutational analysis and the detection of chromosome 22 losses in tumor tissue. It will be especially useful in differentiating schwannomatosis from mosaic Neurofibromatosis type 2 (NF2). However, the role of LZTR1 in the pathogenesis of schwannomatosis needs further elucidation.
Expanding the mutational spectrum of LZTR1 in schwannomatosis
Paganini, Irene; Chang, Vivian Y; Capone, Gabriele L; Vitte, Jeremie; Benelli, Matteo; Barbetti, Lorenzo; Sestini, Roberta; Trevisson, Eva; Hulsebos, Theo JM; Giovannini, Marco; Nelson, Stanley F; Papi, Laura
2015-01-01
Schwannomatosis is characterized by the development of multiple non-vestibular, non-intradermal schwannomas. Constitutional inactivating variants in two genes, SMARCB1 and, very recently, LZTR1, have been reported. We performed exome sequencing of 13 schwannomatosis patients from 11 families without SMARCB1 deleterious variants. We identified four individuals with heterozygous loss-of-function variants in LZTR1. Sequencing of the germline of 60 additional patients identified 18 additional heterozygous variants in LZTR1. We identified LZTR1 variants in 43% and 30% of familial (three of the seven families) and sporadic patients, respectively. In addition, we tested LZTR1 protein immunostaining in 22 tumors from nine unrelated patients with and without LZTR1 deleterious variants. Tumors from individuals with LZTR1 variants lost the protein expression in at least a subset of tumor cells, consistent with a tumor suppressor mechanism. In conclusion, our study demonstrates that molecular analysis of LZTR1 may contribute to the molecular characterization of schwannomatosis patients, in addition to NF2 mutational analysis and the detection of chromosome 22 losses in tumor tissue. It will be especially useful in differentiating schwannomatosis from mosaic Neurofibromatosis type 2 (NF2). However, the role of LZTR1 in the pathogenesis of schwannomatosis needs further elucidation. PMID:25335493
A candidate gene for autoimmune myasthenia gravis
Landouré, Guida; Knight, Melanie A.; Stanescu, Horia; Taye, Addis A.; Shi, Yijun; Diallo, Oumarou; Johnson, Janel O.; Hernandez, Dena; Traynor, Bryan J.; Biesecker, Leslie G.; Elkahloun, Abdel; Rinaldi, Carlo; Vincent, Angela; Willcox, Nick; Kleta, Robert; Fischbeck, Kenneth H.
2012-01-01
Objective: We sought to identify a causative mutation in a previously reported kindred with parental consanguinity and 5 of 10 siblings with adult-onset autoimmune myasthenia gravis. Methods: We performed genome-wide homozygosity mapping, and sequenced all known genes in the one region of extended homozygosity. Quantitative and allele-specific reverse transcriptase PCR (RT-PCR) were performed on a candidate gene to determine the RNA expression level in affected siblings and controls and the relative abundance of the wild-type and mutant alleles in a heterozygote. Results: A region of shared homozygosity at chromosome 13q13.3–13q14.11 was found in 4 affected siblings and 1 unaffected sibling. A homozygous single nucleotide variant was found in the 3′-untranslated region of the ecto-NADH oxidase 1 gene (ENOX1). No other variants likely to be pathogenic were found in genes in this region or elsewhere. The ENOX1 sequence variant was not found in 764 controls. Quantitative RT-PCR showed that expression of ENOX1 decreased to about 20% of normal levels in lymphoblastoid cells from individuals homozygous for the variant and to about 50% in 2 unaffected heterozygotes. Allele-specific RT-PCR showed a 55%–60% reduction in the level of the variant transcript in heterozygous cells due to reduced mRNA stability. Conclusion: These results indicate that this sequence variant in ENOX1 may contribute to the familial autoimmune myasthenia in these patients. PMID:22744667
Fonseca, Dora Janeth; Ortega-Recalde, Oscar; Esteban-Perez, Clara; Moreno-Ortiz, Harold; Patiño, Liliana Catherine; Bermúdez, Olga María; Ortiz, Angela María; Restrepo, Carlos M; Lucena, Elkin; Laissue, Paul
2014-11-01
BMP15 has drawn particular attention in the pathophysiology of reproduction, as its mutations in mammalian species have been related to different reproductive phenotypes. In humans, BMP15 coding regions have been sequenced in large panels of women with premature ovarian failure (POF), but only some mutations have been definitely validated as causing the phenotype. A functional association between the BMP15 c.-9C>G promoter polymorphism and cause of POF have been reported. The aim of this study was to determine the potential functional effect of this sequence variant on specific BMP15 promoter transactivation disturbances. Bioinformatics was used to identify transcription factor binding sites located on the promoter region of BMP15. Reverse transcription polymerase chain reaction was used to study specific gene expression in ovarian tissue. Luciferase reporter assays were used to establish transactivation disturbances caused by the BMP15 c.-9C>G variant. The c.-9C>G variant was found to modify the PITX1 transcription factor binding site. PITX1 and BMP15 co-expressed in human and mouse ovarian tissue, and PITX1 transactivated both BMP15 promoter versions (-9C and -9G). It was found that the BMP15 c.-9G allele was related to BMP15 increased transcription, supporting c.-9C>G as a causal agent of POF. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent
2016-01-01
SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population. PMID:26367794
Bosch, Jason; Noubiap, Jean Jacques N; Dandara, Collet; Makubalo, Nomlindo; Wright, Galen; Entfellner, Jean-Baka Domelevo; Tiffin, Nicki; Wonkam, Ambroise
2014-11-01
Mutations in the GJB2 gene, encoding connexin 26, could account for 50% of congenital, nonsyndromic, recessive deafness cases in some Caucasian/Asian populations. There is a scarcity of published data in sub-Saharan Africans. We Sanger sequenced the coding region of the GJB2 gene in 205 Cameroonian and Xhosa South Africans with congenital, nonsyndromic deafness; and performed bioinformatic analysis of variations in the GJB2 gene, incorporating data from the 1000 Genomes Project. Amongst Cameroonian patients, 26.1% were familial. The majority of patients (70%) suffered from sensorineural hearing loss. Ten GJB2 genetic variants were detected by sequencing. A previously reported pathogenic mutation, g.3741_3743delTTC (p.F142del), and a putative pathogenic mutation, g.3816G>A (p.V167M), were identified in single heterozygous samples. Amongst eight the remaining variants, two novel variants, g.3318-41G>A and g.3332G>A, were reported. There were no statistically significant differences in allele frequencies between cases and controls. Principal Components Analyses differentiated between Africans, Asians, and Europeans, but only explained 40% of the variation. The present study is the first to compare African GJB2 sequences with the data from the 1000 Genomes Project and have revealed the low variation between population groups. This finding has emphasized the hypothesis that the prevalence of mutations in GJB2 in nonsyndromic deafness amongst European and Asian populations is due to founder effects arising after these individuals migrated out of Africa, and not to a putative "protective" variant in the genomic structure of GJB2 in Africans. Our results confirm that mutations in GJB2 are not associated with nonsyndromic deafness in Africans.
Exome sequencing reveals novel genetic loci influencing obesity-related traits in Hispanic children
USDA-ARS?s Scientific Manuscript database
To perform whole exome sequencing in 928 Hispanic children and identify variants and genes associated with childhood obesity.Single-nucleotide variants (SNVs) were identified from Illumina whole exome sequencing data using integrated read mapping, variant calling, and an annotation pipeline (Mercury...
Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo
2016-04-01
Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Spurdle, Amanda B
2010-06-01
Multifactorial models developed for BRCA1/2 variant classification have proved very useful for delineating BRCA1/2 variants associated with very high risk of cancer, or with little clinical significance. Recent linkage of this quantitative assessment of risk to clinical management guidelines has provided a basis to standardize variant reporting, variant classification and management of families with such variants, and can theoretically be applied to any disease gene. As proof of principle, the multifactorial approach already shows great promise for application to the evaluation of mismatch repair gene variants identified in families with suspected Lynch syndrome. However there is need to be cautious of the noted limitations and caveats of the current model, some of which may be exacerbated by differences in ascertainment and biological pathways to disease for different cancer syndromes.
Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof
Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter
2016-02-16
The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having beta-glucosidase activity and uses thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well asmore » the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.« less
Polypeptide having swollenin activity and uses thereof
Schoonneveld-Bergmans, Margot Elizabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica D; Damveld, Robbertus Antonius
2015-11-04
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having beta-glucosidase activity and uses thereof
Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius
2015-09-01
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having cellobiohydrolase activity and uses thereof
Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter
2015-09-15
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having acetyl xylan esterase activity and uses thereof
Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter
2015-10-20
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Polypeptide having carbohydrate degrading activity and uses thereof
Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica Diana; Damveld, Robbertus Antonius
2015-08-18
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis.
Dinckan, N; Du, R; Petty, L E; Coban-Akdemir, Z; Jhangiani, S N; Paine, I; Baugh, E H; Erdem, A P; Kayserili, H; Doddapaneni, H; Hu, J; Muzny, D M; Boerwinkle, E; Gibbs, R A; Lupski, J R; Uyguner, Z O; Below, J E; Letra, A
2018-01-01
Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.
Best practices for evaluating single nucleotide variant calling methods for microbial genomics
Olson, Nathan D.; Lund, Steven P.; Colman, Rebecca E.; Foster, Jeffrey T.; Sahl, Jason W.; Schupp, James M.; Keim, Paul; Morrow, Jayne B.; Salit, Marc L.; Zook, Justin M.
2015-01-01
Innovations in sequencing technologies have allowed biologists to make incredible advances in understanding biological systems. As experience grows, researchers increasingly recognize that analyzing the wealth of data provided by these new sequencing platforms requires careful attention to detail for robust results. Thus far, much of the scientific Communit’s focus for use in bacterial genomics has been on evaluating genome assembly algorithms and rigorously validating assembly program performance. Missing, however, is a focus on critical evaluation of variant callers for these genomes. Variant calling is essential for comparative genomics as it yields insights into nucleotide-level organismal differences. Variant calling is a multistep process with a host of potential error sources that may lead to incorrect variant calls. Identifying and resolving these incorrect calls is critical for bacterial genomics to advance. The goal of this review is to provide guidance on validating algorithms and pipelines used in variant calling for bacterial genomics. First, we will provide an overview of the variant calling procedures and the potential sources of error associated with the methods. We will then identify appropriate datasets for use in evaluating algorithms and describe statistical methods for evaluating algorithm performance. As variant calling moves from basic research to the applied setting, standardized methods for performance evaluation and reporting are required; it is our hope that this review provides the groundwork for the development of these standards. PMID:26217378
Schäfgen, Johanna; Cremer, Kirsten; Becker, Jessica; Wieland, Thomas; Zink, Alexander M; Kim, Sarah; Windheuser, Isabelle C; Kreiß, Martina; Aretz, Stefan; Strom, Tim M; Wieczorek, Dagmar; Engels, Hartmut
2016-12-01
Recently, germline variants of the transcriptional co-regulator gene TCF20 have been implicated in the aetiology of autism spectrum disorders (ASD). However, the knowledge about the associated clinical picture remains fragmentary. In this study, two individuals with de novo TCF20 sequence variants were identified in a cohort of 313 individuals with intellectual disability of unknown aetiology, which was analysed by whole exome sequencing using a child-parent trio design. Both detected variants - one nonsense and one frameshift variant - were truncating. A comprehensive clinical characterisation of the patients yielded mild intellectual disability, postnatal tall stature and macrocephaly, obesity and muscular hypotonia as common clinical signs while ASD was only present in one proband. The present report begins to establish the clinical picture of individuals with de novo nonsense and frameshift variants of TCF20 which includes features such as proportionate overgrowth and muscular hypotonia. Furthermore, intellectual disability/developmental delay seems to be fully penetrant amongst known individuals with de novo nonsense and frameshift variants of TCF20, whereas ASD is shown to be incompletely penetrant. The transcriptional co-regulator gene TCF20 is hereby added to the growing number of genes implicated in the aetiology of both ASD and intellectual disability. Furthermore, such de novo variants of TCF20 may represent a novel differential diagnosis in the overgrowth syndrome spectrum.
Biallelic variants in the ciliary gene TMEM67 cause RHYNS syndrome.
Brancati, Francesco; Camerota, Letizia; Colao, Emma; Vega-Warner, Virginia; Zhao, Xiangzhong; Zhang, Ruixiao; Bottillo, Irene; Castori, Marco; Caglioti, Alfredo; Sangiuolo, Federica; Novelli, Giuseppe; Perrotti, Nicola; Otto, Edgar A
2018-06-11
A rare syndrome was first described in 1997 in a 17-year-old male patient presenting with Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and Skeletal dysplasia (RHYNS). In the single reported familial case, two brothers were affected, arguing for X-linked or recessive mode of inheritance. Up to now, the underlying genetic basis of RHYNS syndrome remains unknown. Here we applied whole-exome sequencing in the originally described family with RHYNS to identify compound heterozygous variants in the ciliary gene TMEM67. Sanger sequencing confirmed a paternally inherited nonsense c.622A > T, p.(Arg208*) and a maternally inherited missense variant c.1289A > G, p.(Asp430Gly), which perturbs the correct splicing of exon 13. Overall, TMEM67 showed one of the widest clinical continuum observed in ciliopathies ranging from early lethality to adults with liver fibrosis. Our findings extend the spectrum of phenotypes/syndromes resulting from biallelic TMEM67 variants to now eight distinguishable clinical conditions including RHYNS syndrome.
Norton, Nadine; Li, Duanxiang; Rampersaud, Evadnie; Morales, Ana; Martin, Eden R; Zuchner, Stephan; Guo, Shengru; Gonzalez, Michael; Hedges, Dale J; Robertson, Peggy D; Krumm, Niklas; Nickerson, Deborah A; Hershberger, Ray E
2013-04-01
BACKGROUND- Familial dilated cardiomyopathy (DCM) is a genetically heterogeneous disease with >30 known genes. TTN truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic DCM cases. METHODS AND RESULTS- We used an unbiased genome-wide approach using both linkage analysis and variant filtering across the exome sequences of 48 individuals affected with DCM from 17 families to identify genetic cause. Linkage analysis ranked the TTN region as falling under the second highest genome-wide multipoint linkage peak, multipoint logarithm of odds, 1.59. We identified 6 TTN truncating variants carried by individuals affected with DCM in 7 of 17 DCM families (logarithm of odds, 2.99); 2 of these 7 families also had novel missense variants that segregated with disease. Two additional novel truncating TTN variants did not segregate with DCM. Nucleotide diversity at the TTN locus, including missense variants, was comparable with 5 other known DCM genes. The average number of missense variants in the exome sequences from the DCM cases or the ≈5400 cases from the Exome Sequencing Project was ≈23 per individual. The average number of TTN truncating variants in the Exome Sequencing Project was 0.014 per individual. We also identified a region (chr9q21.11-q22.31) with no known DCM genes with a maximum heterogeneity logarithm of odds score of 1.74. CONCLUSIONS- These data suggest that TTN truncating variants contribute to DCM cause. However, the lack of segregation of all identified TTN truncating variants illustrates the challenge of determining variant pathogenicity even with full exome sequencing.
USDA-ARS?s Scientific Manuscript database
Citrus viroid VI (CVd-VI) was originally found from citrus and persimmon in Japan. We report here the identification and molecular characterization of CVd-VI from four production regions of China. A total of 90 cDNA clones from nine infected citrus cultivars were sequenced. The sequence homologies o...
Li, Lin; Zhou, Xueya; Wang, Xi; Wang, Jing; Zhang, Wei; Wang, Binbin; Cao, Yunxia; Kee, Kehkooi
2016-09-01
Does a heterozygous mutation in AMHR2, identified in whole-exome sequencings (WES) of patients with primary ovarian insufficiency (POI), cause a defect in anti-Müllerian hormone (AMH) signaling? The I209N mutation at the adenosine triphosphate binding domain of AMHR2 exerts dominant negative defects in the AMH signaling pathway. Previous studies have demonstrated the associations of several sequence variants in AMH or AMHR2 with POI, but no functional assay has been performed to verify whether there was any defect on AMH signaling. Ninety-six unrelated female Chinese Han patients were diagnosed with idiopathic POI and subjected to WES. In silico analysis was done for the sequence variants followed by molecular assays to examine the functional effects of the sequence variants in human granulosa cells. In silico analysis, immunostaining, Western analysis, genome-wide expression analysis, quantitatively polymerase chain reaction were applied to the characterization of the sequence variants. We identified one novel heterozygous missense variant, p.Ala17Glu (A17E), in AMHR2. Subsequently, A17E and two independently reported missense variants, p.Ile209Asn (I209N) and p.Leu354Phe (L354F), were evaluated for effects on the AMH signaling pathway. In silico analysis predicted that all three variants may be deleterious. However, only one variant, I209N, showed severe defects in transducing the AMH signal as well as impaired SMAD1/5/8 phosphorylation. Furthermore, using genome-wide gene expression analysis, we identified genes whose expression was affected by the mutation, these included genes previously reported to participate in AMH signaling as well as newly identified genes. They are EMILIN2, FAM155A, GATA2, HES5, ID1, ID2, RLTPR, SMAD7, CBL, MALAT1 and SMARCA2. None. Although the in vitro assays demonstrated the causative effect of I209N on AMH signaling, further studies need to validate its long-term effects on folliculogenesis and POI. These results will aid both researchers and clinicians in understanding the molecular pathology of AMH signaling and POI to develop diagnostic assays or therapeutics approaches. Research funding is provided by the Ministry of Science and Technology of China [2012CB944704; 2012CB966702], and the National Natural Science Foundation of China [Grant number: 31171429]. The authors declare no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Metzger, Julia; Tonda, Raul; Beltran, Sergi; Agueda, Lídia; Gut, Marta; Distl, Ottmar
2014-07-04
Domestication has shaped the horse and lead to a group of many different types. Some have been under strong human selection while others developed in close relationship with nature. The aim of our study was to perform next generation sequencing of breed and non-breed horses to provide an insight into genetic influences on selective forces. Whole genome sequencing of five horses of four different populations revealed 10,193,421 single nucleotide polymorphisms (SNPs) and 1,361,948 insertion/deletion polymorphisms (indels). In comparison to horse variant databases and previous reports, we were able to identify 3,394,883 novel SNPs and 868,525 novel indels. We analyzed the distribution of individual variants and found significant enrichment of private mutations in coding regions of genes involved in primary metabolic processes, anatomical structures, morphogenesis and cellular components in non-breed horses and in contrast to that private mutations in genes affecting cell communication, lipid metabolic process, neurological system process, muscle contraction, ion transport, developmental processes of the nervous system and ectoderm in breed horses. Our next generation sequencing data constitute an important first step for the characterization of non-breed in comparison to breed horses and provide a large number of novel variants for future analyses. Functional annotations suggest specific variants that could play a role for the characterization of breed or non-breed horses.
Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji
2010-07-01
We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.
la Torre, David De; Mafla, Eulalia; Puga, Byron; Erazo, Linda; Astolfi-Ferreira, Claudete; Ferreira, Antonio Piantino
2018-01-01
Aim The objective of this study was to determine the presence of the variants of canine parvovirus (CPV)-2 in the city of Quito, Ecuador, due to the high domestic and street-type canine population, and to identify possible mutations at a genetic level that could be causing structural changes in the virus with a consequent influence on the immune response of the hosts. Materials and Methods Thirty-five stool samples from different puppies with characteristic signs of the disease and positives for CPV through immunochromatography kits were collected from different veterinarian clinics of the city. Polymerase chain reaction and DNA sequencing were used to determine the mutations in residue 426 of the VP2 gene, which determines the variants of CPV-2; in addition, four samples were chosen for complete sequencing of the VP2 gene to identify all possible mutations in the circulating strains in this region of the country. Results The results revealed the presence of the three variants of CPV-2 with a prevalence of 57.1% (20/35) for CPV-2a, 8.5% (3/35) for CPV-2b, and 34.3% (12/35) for CPV-2c. In addition, complete sequencing of the VP2 gene showed amino acid substitutions in residues 87, 101, 139, 219, 297, 300, 305, 322, 324, 375, 386, 426, 440, and 514 of the three Ecuadorian variants when compared with the original CPV-2 sequence. Conclusion This study describes the detection of CPV variants in the city of Quito, Ecuador. Variants of CPV-2 (2a, 2b, and 2c) have been reported in South America, and there are cases in Ecuador where CVP-2 is affecting even vaccinated puppies. PMID:29805214
Canary: an atomic pipeline for clinical amplicon assays.
Doig, Kenneth D; Ellul, Jason; Fellowes, Andrew; Thompson, Ella R; Ryland, Georgina; Blombery, Piers; Papenfuss, Anthony T; Fox, Stephen B
2017-12-15
High throughput sequencing requires bioinformatics pipelines to process large volumes of data into meaningful variants that can be translated into a clinical report. These pipelines often suffer from a number of shortcomings: they lack robustness and have many components written in multiple languages, each with a variety of resource requirements. Pipeline components must be linked together with a workflow system to achieve the processing of FASTQ files through to a VCF file of variants. Crafting these pipelines requires considerable bioinformatics and IT skills beyond the reach of many clinical laboratories. Here we present Canary, a single program that can be run on a laptop, which takes FASTQ files from amplicon assays through to an annotated VCF file ready for clinical analysis. Canary can be installed and run with a single command using Docker containerization or run as a single JAR file on a wide range of platforms. Although it is a single utility, Canary performs all the functions present in more complex and unwieldy pipelines. All variants identified by Canary are 3' shifted and represented in their most parsimonious form to provide a consistent nomenclature, irrespective of sequencing variation. Further, proximate in-phase variants are represented as a single HGVS 'delins' variant. This allows for correct nomenclature and consequences to be ascribed to complex multi-nucleotide polymorphisms (MNPs), which are otherwise difficult to represent and interpret. Variants can also be annotated with hundreds of attributes sourced from MyVariant.info to give up to date details on pathogenicity, population statistics and in-silico predictors. Canary has been used at the Peter MacCallum Cancer Centre in Melbourne for the last 2 years for the processing of clinical sequencing data. By encapsulating clinical features in a single, easily installed executable, Canary makes sequencing more accessible to all pathology laboratories. Canary is available for download as source or a Docker image at https://github.com/PapenfussLab/Canary under a GPL-3.0 License.
Ataxia telangiectasia presenting as dopa-responsive cervical dystonia
Mohire, Mahavir D.; Schneider, Susanne A.; Stamelou, Maria; Wood, Nicholas W.; Bhatia, Kailash P.
2013-01-01
Objective: To identify the cause of cervical dopa-responsive dystonia (DRD) in a Muslim Indian family inherited in an apparently autosomal recessive fashion, as previously described in this journal. Methods: Previous testing for mutations in the genes known to cause DRD (GCH1, TH, and SPR) had been negative. Whole exome sequencing was performed on all 3 affected individuals for whom DNA was available to identify potentially pathogenic shared variants. Genotyping data obtained for all 3 affected individuals using the OmniExpress single nucleotide polymorphism chip (Illumina, San Diego, CA) were used to perform linkage analysis, autozygosity mapping, and copy number variation analysis. Sanger sequencing was used to confirm all variants. Results: After filtering of the variants, exome sequencing revealed 2 genes harboring potentially pathogenic compound heterozygous variants (ATM and LRRC16A). Of these, the variants in ATM segregated perfectly with the cervical DRD. Both mutations detected in ATM have been shown to be pathogenic, and α-fetoprotein, a marker of ataxia telangiectasia, was increased in all affected individuals. Conclusion: Biallelic mutations in ATM can cause DRD, and mutations in this gene should be considered in the differential diagnosis of unexplained DRD, particularly if the dystonia is cervical and if there is a recessive family history. ATM has previously been reported to cause isolated cervical dystonia, but never, to our knowledge, DRD. Individuals with dystonia related to ataxia telangiectasia may benefit from a trial of levodopa. PMID:23946315
VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research
Lai, Zhongwu; Markovets, Aleksandra; Ahdesmaki, Miika; Chapman, Brad; Hofmann, Oliver; McEwen, Robert; Johnson, Justin; Dougherty, Brian; Barrett, J. Carl; Dry, Jonathan R.
2016-01-01
Abstract Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research. PMID:27060149
Ganster, Christina; Wernstedt, Annekatrin; Kehrer-Sawatzki, Hildegard; Messiaen, Ludwine; Schmidt, Konrad; Rahner, Nils; Heinimann, Karl; Fonatsch, Christa; Zschocke, Johannes; Wimmer, Katharina
2012-01-01
Sequence exchange between PMS2 and its pseudogene PMS2CL, embedded in an inverted duplication on chromosome 7p22, has been reported to be an ongoing process that leads to functional PMS2 hybrid alleles containing PMS2- and PMS2CL-specific sequence variants at the 5′-and the 3′-end, respectively. The frequency of PMS2 hybrid alleles, their biological significance, and the mechanisms underlying their formation are largely unknown. Here we show that overall hybrid alleles account for one-third of 384 PMS2 alleles analyzed in individuals of different ethnic backgrounds. Depending on the population, 14–60% of hybrid alleles carry PMS2CL-specific sequences in exons 13–15, the remainder only in exon 15. We show that exons 13–15 hybrid alleles, named H1 hybrid alleles, constitute different haplotypes but trace back to a single ancient intrachromosomal recombination event with crossover. Taking advantage of an ancestral sequence variant specific for all H1 alleles we developed a simple gDNA-based polymerase chain reaction (PCR) assay that can be used to identify H1-allele carriers with high sensitivity and specificity (100 and 99%, respectively). Because H1 hybrid alleles harbor missense variant p.N775S of so far unknown functional significance, we assessed the H1-carrier frequency in 164 colorectal cancer patients. So far, we found no indication that the variant plays a major role with regard to cancer susceptibility. PMID:20186689
Ganster, Christina; Wernstedt, Annekatrin; Kehrer-Sawatzki, Hildegard; Messiaen, Ludwine; Schmidt, Konrad; Rahner, Nils; Heinimann, Karl; Fonatsch, Christa; Zschocke, Johannes; Wimmer, Katharina
2010-05-01
Sequence exchange between PMS2 and its pseudogene PMS2CL, embedded in an inverted duplication on chromosome 7p22, has been reported to be an ongoing process that leads to functional PMS2 hybrid alleles containing PMS2- and PMS2CL-specific sequence variants at the 5'-and the 3'-end, respectively. The frequency of PMS2 hybrid alleles, their biological significance, and the mechanisms underlying their formation are largely unknown. Here we show that overall hybrid alleles account for one-third of 384 PMS2 alleles analyzed in individuals of different ethnic backgrounds. Depending on the population, 14-60% of hybrid alleles carry PMS2CL-specific sequences in exons 13-15, the remainder only in exon 15. We show that exons 13-15 hybrid alleles, named H1 hybrid alleles, constitute different haplotypes but trace back to a single ancient intrachromosomal recombination event with crossover. Taking advantage of an ancestral sequence variant specific for all H1 alleles we developed a simple gDNA-based polymerase chain reaction (PCR) assay that can be used to identify H1-allele carriers with high sensitivity and specificity (100 and 99%, respectively). Because H1 hybrid alleles harbor missense variant p.N775S of so far unknown functional significance, we assessed the H1-carrier frequency in 164 colorectal cancer patients. So far, we found no indication that the variant plays a major role with regard to cancer susceptibility. (c) 2010 Wiley-Liss, Inc.
2013-01-01
Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software tools. Conclusions FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes of sequencing data for the study of rare genetic variants and their influence on phenotypes. PMID:23441864
Fisher, Kevin E.; Zhang, Linsheng; Wang, Jason; Smith, Geoffrey H.; Newman, Scott; Schneider, Thomas M.; Pillai, Rathi N.; Kudchadkar, Ragini R.; Owonikoko, Taofeek K.; Ramalingam, Suresh S.; Lawson, David H.; Delman, Keith A.; El-Rayes, Bassel F.; Wilson, Malania M.; Sullivan, H. Clifford; Morrison, Annie S.; Balci, Serdar; Adsay, N. Volkan; Gal, Anthony A.; Sica, Gabriel L.; Saxe, Debra F.; Mann, Karen P.; Hill, Charles E.; Khuri, Fadlo R.; Rossi, Michael R.
2017-01-01
We tested and clinically validated a targeted next-generation sequencing (NGS) mutation panel using 80 formalin-fixed, paraffin-embedded (FFPE) tumor samples. Forty non-small cell lung carcinoma (NSCLC), 30 melanoma, and 30 gastrointestinal (12 colonic, 10 gastric, and 8 pancreatic adenocarcinoma) FFPE samples were selected from laboratory archives. After appropriate specimen and nucleic acid quality control, 80 NGS libraries were prepared using the Illumina TruSight tumor (TST) kit and sequenced on the Illumina MiSeq. Sequence alignment, variant calling, and sequencing quality control were performed using vendor software and laboratory-developed analysis workflows. TST generated ≥500× coverage for 98.4% of the 13,952 targeted bases. Reproducible and accurate variant calling was achieved at ≥5% variant allele frequency with 8 to 12 multiplexed samples per MiSeq flow cell. TST detected 112 variants overall, and confirmed all known single-nucleotide variants (n = 27), deletions (n = 5), insertions (n = 3), and multinucleotide variants (n = 3). TST detected at least one variant in 85.0% (68/80), and two or more variants in 36.2% (29/80), of samples. TP53 was the most frequently mutated gene in NSCLC (13 variants; 13/32 samples), gastrointestinal malignancies (15 variants; 13/25 samples), and overall (30 variants; 28/80 samples). BRAF mutations were most common in melanoma (nine variants; 9/23 samples). Clinically relevant NGS data can be obtained from routine clinical FFPE solid tumor specimens using TST, benchtop instruments, and vendor-supplied bioinformatics pipelines. PMID:26801070
Schmidt, S; Pericak-Vance, M A; Sawcer, S; Barcellos, L F; Hart, J; Sims, J; Prokop, A M; van der Walt, J; DeLoa, C; Lincoln, R R; Oksenberg, J R; Compston, A; Hauser, S L; Haines, J L; Gregory, S G
2006-07-01
Discrepant findings have been reported regarding an association of the apolipoprotein E (APOE) gene with the clinical course of multiple sclerosis (MS). To resolve these discrepancies, we examined common sequence variation in six candidate genes residing in a 380-kb genomic region surrounding and including the APOE locus for an association with MS severity. We genotyped at least three polymorphisms in each of six candidate genes in 1,540 Caucasian MS families (729 single-case and multiple-case families from the United States, 811 single-case families from the UK). By applying the quantitative transmission/disequilibrium test to a recently proposed MS severity score, the only statistically significant (P=0.003) association with MS severity was found for an intronic variant in the Herpes Virus Entry Mediator-B Gene PVRL2. Additional genotyping extended the association to a 16.6 kb block spanning intron 1 to intron 2 of the gene. Sequencing of PVRL2 failed to identify variants with an obvious functional role. In conclusion, the analysis of a very large data set suggests that genetic polymorphisms in PVRL2 may influence MS severity and supports the possibility that viral factors may contribute to the clinical course of MS, consistent with previous reports.
Thorell, Kaisa; Hosseini, Shaghayegh; Palacios Gonzales, Reyna Victoria Palacios; ...
2016-02-29
In this study, Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk. The complete genomes ofmore » fifty-two Nicaraguan H. pylorii isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed. The Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South-and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates. In conclusion, the discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.« less
Mitochondrial targeting sequence variants of the CHCHD2 gene are a risk for Lewy body disorders
Ogaki, Kotaro; Koga, Shunsuke; Heckman, Michael G.; Fiesel, Fabienne C.; Ando, Maya; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Moussaud-Lamodière, Elisabeth L.; Soto-Ortolaza, Alexandra I.; Walton, Ronald L.; Strongosky, Audrey J.; Uitti, Ryan J.; McCarthy, Allan; Lynch, Timothy; Siuda, Joanna; Opala, Grzegorz; Rudzinska, Monika; Krygowska-Wajs, Anna; Barcikowska, Maria; Czyzewski, Krzysztof; Puschmann, Andreas; Nishioka, Kenya; Funayama, Manabu; Hattori, Nobutaka; Parisi, Joseph E.; Petersen, Ronald C.; Graff-Radford, Neill R.; Boeve, Bradley F.; Springer, Wolfdieter; Wszolek, Zbigniew K.; Dickson, Dennis W.
2015-01-01
Objective: To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and Lewy body disease (LBD) in Caucasian populations. Methods: All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in an Irish series (355 PD and 365 controls) and a Polish series (394 PD and 350 controls). Immunohistochemistry and immunofluorescence studies were performed on pathologic LBD cases with rare CHCHD2 variants. Results: We identified 9 rare exonic variants of unknown significance. These variants were more frequent in the combined group of PD and LBD patients compared to controls (0.6% vs 0.1%, p = 0.013). In addition, the presence of any rare variant was more common in patients with LBD (2.5% vs 1.0%, p = 0.050) compared to controls. Eight of these 9 variants were located within the gene's mitochondrial targeting sequence. Conclusions: Although the role of variants of the CHCHD2 gene in PD and LBD remains to be further elucidated, the rare variants in the mitochondrial targeting sequence may be a risk factor for Lewy body disorders, which may link CHCHD2 to other genetic forms of parkinsonism with mitochondrial dysfunction. PMID:26561290
Jin, Sheng Chih; Benitez, Bruno A; Deming, Yuetiva; Cruchaga, Carlos
2016-01-01
Analyses of genome-wide association studies (GWAS) for complex disorders usually identify common variants with a relatively small effect size that only explain a small proportion of phenotypic heritability. Several studies have suggested that a significant fraction of heritability may be explained by low-frequency (minor allele frequency (MAF) of 1-5 %) and rare-variants that are not contained in the commercial GWAS genotyping arrays (Schork et al., Curr Opin Genet Dev 19:212, 2009). Rare variants can also have relatively large effects on risk for developing human diseases or disease phenotype (Cruchaga et al., PLoS One 7:e31039, 2012). However, it is necessary to perform next-generation sequencing (NGS) studies in a large population (>4,000 samples) to detect a significant rare-variant association. Several NGS methods, such as custom capture sequencing and amplicon-based sequencing, are designed to screen a small proportion of the genome, but most of these methods are limited in the number of samples that can be multiplexed (i.e. most sequencing kits only provide 96 distinct index). Additionally, the sequencing library preparation for 4,000 samples remains expensive and thus conducting NGS studies with the aforementioned methods are not feasible for most research laboratories.The need for low-cost large scale rare-variant detection makes pooled-DNA sequencing an ideally efficient and cost-effective technique to identify rare variants in target regions by sequencing hundreds to thousands of samples. Our recent work has demonstrated that pooled-DNA sequencing can accurately detect rare variants in targeted regions in multiple DNA samples with high sensitivity and specificity (Jin et al., Alzheimers Res Ther 4:34, 2012). In these studies we used a well-established pooled-DNA sequencing approach and a computational package, SPLINTER (short indel prediction by large deviation inference and nonlinear true frequency estimation by recursion) (Vallania et al., Genome Res 20:1711, 2010), for accurate identification of rare variants in large DNA pools. Given an average sequencing coverage of 30× per haploid genome, SPLINTER can detect rare variants and short indels up to 4 base pairs (bp) with high sensitivity and specificity (up to 1 haploid allele in a pool as large as 500 individuals). Step-by-step instructions on how to conduct pooled-DNA sequencing experiments and data analyses are described in this chapter.
In silico study of breast cancer associated gene 3 using LION Target Engine and other tools.
León, Darryl A; Cànaves, Jaume M
2003-12-01
Sequence analysis of individual targets is an important step in annotation and validation. As a test case, we investigated human breast cancer associated gene 3 (BCA3) with LION Target Engine and with other bioinformatics tools. LION Target Engine confirmed that the BCA3 gene is located on 11p15.4 and that the two most likely splice variants (lacking exon 3 and exons 3 and 5, respectively) exist. Based on our manual curation of sequence data, it is proposed that an additional variant (missing only exon 5) published in a public sequence repository, is a prediction artifact. A significant number of new orthologs were also identified, and these were the basis for a high-quality protein secondary structure prediction. Moreover, our research confirmed several distinct functional domains as described in earlier reports. Sequence conservation from multiple sequence alignments, splice variant identification, secondary structure predictions, and predicted phosphorylation sites suggest that the removal of interaction sites through alternative splicing might play a modulatory role in BCA3. This in silico approach shows the depth and relevance of an analysis that can be accomplished by including a variety of publicly available tools with an integrated and customizable life science informatics platform.
Prchalova, Darina; Havlovicova, Marketa; Sterbova, Katalin; Stranecky, Viktor; Hancarova, Miroslava; Sedlacek, Zdenek
2017-06-02
Whole exome sequencing is a powerful tool for the analysis of genetically heterogeneous conditions. The prioritization of variants identified often focuses on nonsense, frameshift and canonical splice site mutations, and highly deleterious missense variants, although other defects can also play a role. The definition of the phenotype range and course of rare genetic conditions requires long-term clinical follow-up of patients. We report an adult female patient with severe intellectual disability, severe speech delay, epilepsy, autistic features, aggressiveness, sleep problems, broad-based clumsy gait and constipation. Whole exome sequencing identified a de novo mutation in the SYNGAP1 gene. The variant was located in the broader splice donor region of intron 10 and replaced G by A at position +5 of the splice site. The variant was predicted in silico and shown experimentally to abolish the regular splice site and to activate a cryptic donor site within exon 10, causing frameshift and premature termination. The overall clinical picture of the patient corresponded well with the characteristic SYNGAP1-associated phenotype observed in previously reported patients. However, our patient was 31 years old which contrasted with most other published SYNGAP1 cases who were much younger. Our patient had a significant growth delay and microcephaly. Both features normalised later, although the head circumference stayed only slightly above the lower limit of the norm. The patient had a delayed puberty. Her cognitive and language performance remained at the level of a one-year-old child even in adulthood and showed a slow decline. Myopathic facial features and facial dysmorphism became more pronounced with age. Although the gait of the patient was unsteady in childhood, more severe gait problems developed in her teens. While the seizures remained well-controlled, her aggressive behaviour worsened with age and required extensive medication. The finding in our patient underscores the notion that the interpretation of variants identified using whole exome sequencing should focus not only on variants in the canonical splice dinucleotides GT and AG, but also on broader splice regions. The long-term clinical follow-up of our patient contributes to the knowledge of the developmental trajectory in individuals with SYNGAP1 gene defects.
Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.
Lal, Dennis; Reinthaler, Eva M; Dejanovic, Borislav; May, Patrick; Thiele, Holger; Lehesjoki, Anna-Elina; Schwarz, Günter; Riesch, Erik; Ikram, M Arfan; van Duijn, Cornelia M; Uitterlinden, Andre G; Hofman, Albert; Steinböck, Hannelore; Gruber-Sedlmayr, Ursula; Neophytou, Birgit; Zara, Federico; Hahn, Andreas; Gormley, Padhraig; Becker, Felicitas; Weber, Yvonne G; Cilio, Maria Roberta; Kunz, Wolfram S; Krause, Roland; Zimprich, Fritz; Lemke, Johannes R; Nürnberg, Peter; Sander, Thomas; Lerche, Holger; Neubauer, Bernd A
2016-01-01
The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10-4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.
Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes
May, Patrick; Thiele, Holger; Lehesjoki, Anna-Elina; Schwarz, Günter; Riesch, Erik; Ikram, M. Arfan; van Duijn, Cornelia M.; Uitterlinden, Andre G.; Hofman, Albert; Steinböck, Hannelore; Gruber-Sedlmayr, Ursula; Neophytou, Birgit; Zara, Federico; Hahn, Andreas; Gormley, Padhraig; Becker, Felicitas; Weber, Yvonne G.; Cilio, Maria Roberta; Kunz, Wolfram S.; Krause, Roland; Zimprich, Fritz; Lemke, Johannes R.; Nürnberg, Peter; Sander, Thomas; Lerche, Holger; Neubauer, Bernd A.
2016-01-01
Objective The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10−4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions. PMID:26990884
Ulusal, SD; Gürkan, H; Atlı, E; Özal, SA; Çiftdemir, M; Tozkır, H; Karal, Y; Güçlü, H; Eker, D; Görker, I
2017-01-01
Abstract Neurofibromatosis Type I (NF1) is a multi systemic autosomal dominant neurocutaneous disorder predisposing patients to have benign and/or malignant lesions predominantly of the skin, nervous system and bone. Loss of function mutations or deletions of the NF1 gene is responsible for NF1 disease. Involvement of various pathogenic variants, the size of the gene and presence of pseudogenes makes it difficult to analyze. We aimed to report the results of 2 years of multiplex ligation-dependent probe amplification (MLPA) and next generation sequencing (NGS) for genetic diagnosis of NF1 applied at our genetic diagnosis center. The MLPA, semiconductor sequencing and Sanger sequencing were performed in genomic DNA samples from 24 unrelated patients and their affected family members referred to our center suspected of having NF1. In total, three novel and 12 known pathogenic variants and a whole gene deletion were determined. We suggest that next generation sequencing is a practical tool for genetic analysis of NF1. Deletion/duplication analysis with MLPA may also be helpful for patients clinically diagnosed to carry NF1 but do not have a detectable mutation in NGS. PMID:28924536
High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic.
Sealfon, Rachel; Gire, Stephen; Ellis, Crystal; Calderwood, Stephen; Qadri, Firdausi; Hensley, Lisa; Kellis, Manolis; Ryan, Edward T; LaRocque, Regina C; Harris, Jason B; Sabeti, Pardis C
2012-09-11
Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x); four of the seven isolates were previously sequenced. Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961), 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.
Tzou, Philip L; Ariyaratne, Pramila; Varghese, Vici; Lee, Charlie; Rakhmanaliev, Elian; Villy, Carolin; Yee, Meiqi; Tan, Kevin; Michel, Gerd; Pinsky, Benjamin A; Shafer, Robert W
2018-06-01
The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy. Copyright © 2018 American Society for Microbiology.
Who decides and what are people willing-to-pay for whole genome sequencing information?
Marshall, DA; Gonzalez, JM; Johnson, FR; MacDonald, KV; Pugh, A; Douglas, MP; Phillips, KA
2016-01-01
PURPOSE Whole genome sequencing (WGS) can be used as a powerful diagnostic tool which could also be used for screening but may generate anxiety, unnecessary testing and overtreatment. Current guidelines suggest reporting clinically actionable secondary findings when diagnostic testing is performed. We estimated preferences for receiving WGS results. METHODS A US nationally representative survey (n=410 adults) was used to rank preferences for who decides (expert panel, your doctor, you) which WGS results are reported. We estimated the value of information about variants with varying levels of clinical usefulness using willingness-to-pay contingent valuation questions. RESULTS 43% preferred to decide themselves what information is included in the WGS report. 38% (95% CI:33–43%) would not pay for actionable variants, and 3% (95% CI:1–5%) would pay more than $1000. 55% (95% CI:50–60%) would not pay for variants in which medical treatment is currently unclear, and 7% (95% CI:5–9%) would pay more than $400. CONCLUSION Most people prefer to decide what WGS results are reported. Despite valuing actionable information more, some respondents perceive that genetic information could negatively impact them. Preference heterogeneity for WGS information should be considered in the development of policies, particularly to integrate patient preferences with personalized medicine and shared decision making. PMID:27253734
Zernant, Jana; Lee, Winston; Nagasaki, Takayuki; Collison, Frederick T; Fishman, Gerald A; Bertelsen, Mette; Rosenberg, Thomas; Gouras, Peter; Tsang, Stephen H; Allikmets, Rando
2018-05-30
Autosomal recessive Stargardt disease (STGD1, MIM 248200) is caused by mutations in the ABCA4 gene. Complete sequencing of the ABCA4 locus in STGD1 patients identifies two expected disease-causing alleles in ~75% of patients and only one mutation in ~15% of patients. Recently, many possibly pathogenic variants in deep intronic sequences of ABCA4 have been identified in the latter group. We extended our analyses of deep intronic ABCA4 variants and determined that one of these, c.4253+43G>A (rs61754045), is present in 29/1155 (2.6%) of STGD1 patients. The variant is found at statistically significantly higher frequency in patients with only one pathogenic ABCA4 allele, 23/160 (14.38%), MAF=0.072, compared to MAF=0.013 in all STGD1 cases and MAF=0.006 in the matching general population (P<1x10-7). The variant, which is not predicted to have any effect on splicing, is the first reported intronic "extremely hypomorphic allele" in the ABCA4 locus; i.e., it is pathogenic only when in trans with a loss-of-function ABCA4 allele. It results in a distinct clinical phenotype characterized by late-onset of symptoms and foveal sparing. In ~70% of cases the variant was allelic with the c.6006-609T>A (rs575968112) variant, which was deemed non-pathogenic. Another rare deep intronic variant, c.5196+1056A>G (rs886044749), found in 5/834 (0.6%) of STGD1 cases is, conversely, a severe allele. This study determines pathogenicity for three non-coding variants in STGD1 patients of European descent accounting for ~3% of the disease. Defining disease-associated alleles in the non-coding sequences of the ABCA4 locus can be accomplished by integrated clinical and genetic analyses. Cold Spring Harbor Laboratory Press.
Wright, Caroline F; Fitzgerald, Tomas W; Jones, Wendy D; Clayton, Stephen; McRae, Jeremy F; van Kogelenberg, Margriet; King, Daniel A; Ambridge, Kirsty; Barrett, Daniel M; Bayzetinova, Tanya; Bevan, A Paul; Bragin, Eugene; Chatzimichali, Eleni A; Gribble, Susan; Jones, Philip; Krishnappa, Netravathi; Mason, Laura E; Miller, Ray; Morley, Katherine I; Parthiban, Vijaya; Prigmore, Elena; Rajan, Diana; Sifrim, Alejandro; Swaminathan, G Jawahar; Tivey, Adrian R; Middleton, Anna; Parker, Michael; Carter, Nigel P; Barrett, Jeffrey C; Hurles, Matthew E; FitzPatrick, David R; Firth, Helen V
2015-04-04
Human genome sequencing has transformed our understanding of genomic variation and its relevance to health and disease, and is now starting to enter clinical practice for the diagnosis of rare diseases. The question of whether and how some categories of genomic findings should be shared with individual research participants is currently a topic of international debate, and development of robust analytical workflows to identify and communicate clinically relevant variants is paramount. The Deciphering Developmental Disorders (DDD) study has developed a UK-wide patient recruitment network involving over 180 clinicians across all 24 regional genetics services, and has performed genome-wide microarray and whole exome sequencing on children with undiagnosed developmental disorders and their parents. After data analysis, pertinent genomic variants were returned to individual research participants via their local clinical genetics team. Around 80,000 genomic variants were identified from exome sequencing and microarray analysis in each individual, of which on average 400 were rare and predicted to be protein altering. By focusing only on de novo and segregating variants in known developmental disorder genes, we achieved a diagnostic yield of 27% among 1133 previously investigated yet undiagnosed children with developmental disorders, whilst minimising incidental findings. In families with developmentally normal parents, whole exome sequencing of the child and both parents resulted in a 10-fold reduction in the number of potential causal variants that needed clinical evaluation compared to sequencing only the child. Most diagnostic variants identified in known genes were novel and not present in current databases of known disease variation. Implementation of a robust translational genomics workflow is achievable within a large-scale rare disease research study to allow feedback of potentially diagnostic findings to clinicians and research participants. Systematic recording of relevant clinical data, curation of a gene-phenotype knowledge base, and development of clinical decision support software are needed in addition to automated exclusion of almost all variants, which is crucial for scalable prioritisation and review of possible diagnostic variants. However, the resource requirements of development and maintenance of a clinical reporting system within a research setting are substantial. Health Innovation Challenge Fund, a parallel funding partnership between the Wellcome Trust and the UK Department of Health. Copyright © 2015 Wright et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd. All rights reserved.
Wright, Caroline F; Fitzgerald, Tomas W; Jones, Wendy D; Clayton, Stephen; McRae, Jeremy F; van Kogelenberg, Margriet; King, Daniel A; Ambridge, Kirsty; Barrett, Daniel M; Bayzetinova, Tanya; Bevan, A Paul; Bragin, Eugene; Chatzimichali, Eleni A; Gribble, Susan; Jones, Philip; Krishnappa, Netravathi; Mason, Laura E; Miller, Ray; Morley, Katherine I; Parthiban, Vijaya; Prigmore, Elena; Rajan, Diana; Sifrim, Alejandro; Swaminathan, G Jawahar; Tivey, Adrian R; Middleton, Anna; Parker, Michael; Carter, Nigel P; Barrett, Jeffrey C; Hurles, Matthew E; FitzPatrick, David R; Firth, Helen V
2015-01-01
Summary Background Human genome sequencing has transformed our understanding of genomic variation and its relevance to health and disease, and is now starting to enter clinical practice for the diagnosis of rare diseases. The question of whether and how some categories of genomic findings should be shared with individual research participants is currently a topic of international debate, and development of robust analytical workflows to identify and communicate clinically relevant variants is paramount. Methods The Deciphering Developmental Disorders (DDD) study has developed a UK-wide patient recruitment network involving over 180 clinicians across all 24 regional genetics services, and has performed genome-wide microarray and whole exome sequencing on children with undiagnosed developmental disorders and their parents. After data analysis, pertinent genomic variants were returned to individual research participants via their local clinical genetics team. Findings Around 80 000 genomic variants were identified from exome sequencing and microarray analysis in each individual, of which on average 400 were rare and predicted to be protein altering. By focusing only on de novo and segregating variants in known developmental disorder genes, we achieved a diagnostic yield of 27% among 1133 previously investigated yet undiagnosed children with developmental disorders, whilst minimising incidental findings. In families with developmentally normal parents, whole exome sequencing of the child and both parents resulted in a 10-fold reduction in the number of potential causal variants that needed clinical evaluation compared to sequencing only the child. Most diagnostic variants identified in known genes were novel and not present in current databases of known disease variation. Interpretation Implementation of a robust translational genomics workflow is achievable within a large-scale rare disease research study to allow feedback of potentially diagnostic findings to clinicians and research participants. Systematic recording of relevant clinical data, curation of a gene–phenotype knowledge base, and development of clinical decision support software are needed in addition to automated exclusion of almost all variants, which is crucial for scalable prioritisation and review of possible diagnostic variants. However, the resource requirements of development and maintenance of a clinical reporting system within a research setting are substantial. Funding Health Innovation Challenge Fund, a parallel funding partnership between the Wellcome Trust and the UK Department of Health. PMID:25529582
RNA-ID, a Powerful Tool for Identifying and Characterizing Regulatory Sequences.
Brule, C E; Dean, K M; Grayhack, E J
2016-01-01
The identification and analysis of sequences that regulate gene expression is critical because regulated gene expression underlies biology. RNA-ID is an efficient and sensitive method to discover and investigate regulatory sequences in the yeast Saccharomyces cerevisiae, using fluorescence-based assays to detect green fluorescent protein (GFP) relative to a red fluorescent protein (RFP) control in individual cells. Putative regulatory sequences can be inserted either in-frame or upstream of a superfolder GFP fusion protein whose expression, like that of RFP, is driven by the bidirectional GAL1,10 promoter. In this chapter, we describe the methodology to identify and study cis-regulatory sequences in the RNA-ID system, explaining features and variations of the RNA-ID reporter, as well as some applications of this system. We describe in detail the methods to analyze a single regulatory sequence, from construction of a single GFP variant to assay of variants by flow cytometry, as well as modifications required to screen libraries of different strains simultaneously. We also describe subsequent analyses of regulatory sequences. © 2016 Elsevier Inc. All rights reserved.
Uehara, Tomoko; Hosogaya, Naoki; Matsuo, Nobutake; Kosaki, Kenjiro
2018-05-07
Systemic lupus erythematosus (SLE) has been reported among patients with RASopathy. Five patients have been reported: three with SHOC2 variants, one with a PTPN11 variant, and one with a KRAS variant. SHOC2 variant might represent a relatively common predisposing factor for SLE among the RASopathy genes. However, the clinical details were only reported for two patients, while information on the remaining patient appeared only in a tabular format with minimal clinical description. Here, we report a patient with a SHOC2 variant and SLE. The proband was a 28-year-old male patient with intellectual disabilities, a short stature, dysmorphic facial features, and thin hair. He developed hypertrophic cardiomyopathy and afebrile generalized seizures at the ages of 7 and 18 years, respectively. At the age of 24 years, he presented with a 3-day history of intermittent fever accompanied by right chest pain and a malar butterfly rash. He fulfilled both the American College of Rheumatology (ACR) criteria and the Systemic Lupus International Collaborating Clinics (SLICC) criteria for SLE and was successfully treated with prednisolone. Medical exome sequencing identified a de novo SHOC2 variant (c.4A > G, p.S2G). The present report of a second patient who fulfills both the ACR criteria and the SLICC criteria of SLE. We suggest that the association between SHOC2 variant and SLE represents more than a chance association. In the event of fever of unknown origin in patients with constitutional SHOC2 pathogenic variant, SLE should be suspected. © 2018 Wiley Periodicals, Inc.
Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.
2015-01-01
This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030
Gram-scale production of a basidiomycetous laccase in Aspergillus niger.
Mekmouche, Yasmina; Zhou, Simeng; Cusano, Angela M; Record, Eric; Lomascolo, Anne; Robert, Viviane; Simaan, A Jalila; Rousselot-Pailley, Pierre; Ullah, Sana; Chaspoul, Florence; Tron, Thierry
2014-01-01
We report on the expression in Aspergillus niger of a laccase gene we used to produce variants in Saccharomyces cerevisiae. Grams of recombinant enzyme can be easily obtained. This highlights the potential of combining this generic laccase sequence to the yeast and fungal expression systems for large-scale productions of variants. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Veerkamp, Roel F; Bouwman, Aniek C; Schrooten, Chris; Calus, Mario P L
2016-12-01
Whole-genome sequence data is expected to capture genetic variation more completely than common genotyping panels. Our objective was to compare the proportion of variance explained and the accuracy of genomic prediction by using imputed sequence data or preselected SNPs from a genome-wide association study (GWAS) with imputed whole-genome sequence data. Phenotypes were available for 5503 Holstein-Friesian bulls. Genotypes were imputed up to whole-genome sequence (13,789,029 segregating DNA variants) by using run 4 of the 1000 bull genomes project. The program GCTA was used to perform GWAS for protein yield (PY), somatic cell score (SCS) and interval from first to last insemination (IFL). From the GWAS, subsets of variants were selected and genomic relationship matrices (GRM) were used to estimate the variance explained in 2087 validation animals and to evaluate the genomic prediction ability. Finally, two GRM were fitted together in several models to evaluate the effect of selected variants that were in competition with all the other variants. The GRM based on full sequence data explained only marginally more genetic variation than that based on common SNP panels: for PY, SCS and IFL, genomic heritability improved from 0.81 to 0.83, 0.83 to 0.87 and 0.69 to 0.72, respectively. Sequence data also helped to identify more variants linked to quantitative trait loci and resulted in clearer GWAS peaks across the genome. The proportion of total variance explained by the selected variants combined in a GRM was considerably smaller than that explained by all variants (less than 0.31 for all traits). When selected variants were used, accuracy of genomic predictions decreased and bias increased. Although 35 to 42 variants were detected that together explained 13 to 19% of the total variance (18 to 23% of the genetic variance) when fitted alone, there was no advantage in using dense sequence information for genomic prediction in the Holstein data used in our study. Detection and selection of variants within a single breed are difficult due to long-range linkage disequilibrium. Stringent selection of variants resulted in more biased genomic predictions, although this might be due to the training population being the same dataset from which the selected variants were identified.
Song, Dandan; Li, Ning; Liao, Lejian
2015-01-01
Due to the generation of enormous amounts of data at both lower costs as well as in shorter times, whole-exome sequencing technologies provide dramatic opportunities for identifying disease genes implicated in Mendelian disorders. Since upwards of thousands genomic variants can be sequenced in each exome, it is challenging to filter pathogenic variants in protein coding regions and reduce the number of missing true variants. Therefore, an automatic and efficient pipeline for finding disease variants in Mendelian disorders is designed by exploiting a combination of variants filtering steps to analyze the family-based exome sequencing approach. Recent studies on the Freeman-Sheldon disease are revisited and show that the proposed method outperforms other existing candidate gene identification methods.
Effect of Next-Generation Exome Sequencing Depth for Discovery of Diagnostic Variants.
Kim, Kyung; Seong, Moon-Woo; Chung, Won-Hyong; Park, Sung Sup; Leem, Sangseob; Park, Won; Kim, Jihyun; Lee, KiYoung; Park, Rae Woong; Kim, Namshin
2015-06-01
Sequencing depth, which is directly related to the cost and time required for the generation, processing, and maintenance of next-generation sequencing data, is an important factor in the practical utilization of such data in clinical fields. Unfortunately, identifying an exome sequencing depth adequate for clinical use is a challenge that has not been addressed extensively. Here, we investigate the effect of exome sequencing depth on the discovery of sequence variants for clinical use. Toward this, we sequenced ten germ-line blood samples from breast cancer patients on the Illumina platform GAII(x) at a high depth of ~200×. We observed that most function-related diverse variants in the human exonic regions could be detected at a sequencing depth of 120×. Furthermore, investigation using a diagnostic gene set showed that the number of clinical variants identified using exome sequencing reached a plateau at an average sequencing depth of about 120×. Moreover, the phenomena were consistent across the breast cancer samples.
Carbohydrate degrading polypeptide and uses thereof
Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter
2015-10-20
The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Cheng, Linzhao; Hansen, Nancy F.; Zhao, Ling; Du, Yutao; Zou, Chunlin; Donovan, Frank X.; Chou, Bin-Kuan; Zhou, Guangyu; Li, Shijie; Dowey, Sarah N.; Ye, Zhaohui; Chandrasekharappa, Settara C.; Yang, Huanming; Mullikin, James C.; Liu, P. Paul
2012-01-01
Summary The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1058–1808 heterozygous single nucleotide variants (SNVs), but no copy number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction. PMID:22385660
The GENCODE exome: sequencing the complete human exome
Coffey, Alison J; Kokocinski, Felix; Calafato, Maria S; Scott, Carol E; Palta, Priit; Drury, Eleanor; Joyce, Christopher J; LeProust, Emily M; Harrow, Jen; Hunt, Sarah; Lehesjoki, Anna-Elina; Turner, Daniel J; Hubbard, Tim J; Palotie, Aarno
2011-01-01
Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing. PMID:21364695
USDA-ARS?s Scientific Manuscript database
A recent outbreak of particularly virulent disease caused by porcine reproductive and respiratory syndrome virus has occurred in swine herds across the United States. We report here the complete genome sequence of eight viral isolates from four Nebraska herds experiencing an outbreak of severe dise...
Ye, Zhan; Kadolph, Christopher; Strenn, Robert; Wall, Daniel; McPherson, Elizabeth; Lin, Simon
2015-01-01
Background Identification and evaluation of incidental findings in patients following whole exome (WGS) or whole genome sequencing (WGS) is challenging for both practicing physicians and researchers. The American College of Medical Genetics and Genomics (ACMG) recently recommended a list of reportable incidental genetic findings. However, no informatics tools are currently available to support evaluation of incidental findings in next-generation sequencing data. Methods The Wisconsin Hierarchical Analysis Tool for Incidental Findings (WHATIF), was developed as a stand-alone Windows-based desktop executable, to support the interactive analysis of incidental findings in the context of the ACMG recommendations. WHATIF integrates the European Bioinformatics Institute Variant Effect Predictor (VEP) tool for biological interpretation and the National Center for Biotechnology Information ClinVar tool for clinical interpretation. Results An open-source desktop program was created to annotate incidental findings and present the results with a user-friendly interface. Further, a meaningful index (WHATIF Index) was devised for each gene to facilitate ranking of the relative importance of the variants and estimate the potential workload associated with further evaluation of the variants. Our WHATIF application is available at: http://tinyurl.com/WHATIF-SOFTWARE Conclusions The WHATIF application offers a user-friendly interface and allows users to investigate the extracted variant information efficiently and intuitively while always accessing the up to date information on variants via application programming interfaces (API) connections. WHATIF’s highly flexible design and straightforward implementation aids users in customizing the source code to meet their own special needs. PMID:25890833
Ciavarella, Michele; Miccoli, Sara; Prossomariti, Anna; Pippucci, Tommaso; Bonora, Elena; Buscherini, Francesco; Palombo, Flavia; Zuntini, Roberta; Balbi, Tiziana; Ceccarelli, Claudio; Bazzoli, Franco; Ricciardiello, Luigi; Turchetti, Daniela; Piazzi, Giulia
2018-03-01
Germline variants in the APC gene cause familial adenomatous polyposis. Inherited variants in MutYH, POLE, POLD1, NTHL1, and MSH3 genes and somatic APC mosaicism have been reported as alternative causes of polyposis. However, ~30-50% of cases of polyposis remain genetically unsolved. Thus, the aim of this study was to investigate the genetic causes of unexplained adenomatous polyposis. Eight sporadic cases with >20 adenomatous polyps by 35 years of age or >50 adenomatous polyps by 55 years of age, and no causative germline variants in APC and/or MutYH, were enrolled from a cohort of 56 subjects with adenomatous colorectal polyposis. APC gene mosaicism was investigated on DNA from colonic adenomas by Sanger sequencing or Whole Exome Sequencing (WES). Mosaicism extension to other tissues (peripheral blood, saliva, hair follicles) was evaluated using Sanger sequencing and/or digital PCR. APC second hit was investigated in adenomas from mosaic patients. WES was performed on DNA from peripheral blood to identify additional polyposis candidate variants. We identified APC mosaicism in 50% of patients. In three cases mosaicism was restricted to the colon, while in one it also extended to the duodenum and saliva. One patient without APC mosaicism, carrying an APC in-frame deletion of uncertain significance, was found to harbor rare germline variants in OGG1, POLQ, and EXO1 genes. In conclusion, our restrictive selection criteria improved the detection of mosaic APC patients. In addition, we showed for the first time that an oligogenic inheritance of rare variants might have a cooperative role in sporadic colorectal polyposis onset.
Jarvi, S.I.; Farias, M.E.; Lapointe, D.A.; Belcaid, M.; Atkinson, C.T.
2013-01-01
Next-generation 454 sequencing techniques were used to re-examine diversity of mitochondrial cytochrome b lineages of avian malaria (Plasmodium relictum) in Hawaii. We document a minimum of 23 variant lineages of the parasite based on single nucleotide transitional changes, in addition to the previously reported single lineage (GRW4). A new, publicly available portal (Integroomer) was developed for initial parsing of 454 datasets. Mean variant prevalence and frequency was higher in low elevation Hawaii Amakihi (Hemignathus virens) with Avipoxvirus-like lesions (P = 0·001), suggesting that the variants may be biologically distinct. By contrast, variant prevalence and frequency did not differ significantly among mid-elevation Apapane (Himatione sanguinea) with or without lesions (P = 0·691). The low frequency and the lack of detection of variants independent of GRW4 suggest that multiple independent introductions of P. relictum to Hawaii are unlikely. Multiple variants may have been introduced in heteroplasmy with GRW4 or exist within the tandem repeat structure of the mitochondrial genome. The discovery of multiple mitochondrial lineages of P. relictum in Hawaii provides a measure of genetic diversity within a geographically isolated population of this parasite and suggests the origins and evolution of parasite diversity may be more complicated than previously recognized.
Jarvi, S I; Farias, M E; Lapointe, D A; Belcaid, M; Atkinson, C T
2013-12-01
Next-generation 454 sequencing techniques were used to re-examine diversity of mitochondrial cytochrome b lineages of avian malaria (Plasmodium relictum) in Hawaii. We document a minimum of 23 variant lineages of the parasite based on single nucleotide transitional changes, in addition to the previously reported single lineage (GRW4). A new, publicly available portal (Integroomer) was developed for initial parsing of 454 datasets. Mean variant prevalence and frequency was higher in low elevation Hawaii Amakihi (Hemignathus virens) with Avipoxvirus-like lesions (P = 0·001), suggesting that the variants may be biologically distinct. By contrast, variant prevalence and frequency did not differ significantly among mid-elevation Apapane (Himatione sanguinea) with or without lesions (P = 0·691). The low frequency and the lack of detection of variants independent of GRW4 suggest that multiple independent introductions of P. relictum to Hawaii are unlikely. Multiple variants may have been introduced in heteroplasmy with GRW4 or exist within the tandem repeat structure of the mitochondrial genome. The discovery of multiple mitochondrial lineages of P. relictum in Hawaii provides a measure of genetic diversity within a geographically isolated population of this parasite and suggests the origins and evolution of parasite diversity may be more complicated than previously recognized.
Shin, Saeam; Kim, Yoonjung; Chul Oh, Seoung; Yu, Nae; Lee, Seung-Tae; Rak Choi, Jong; Lee, Kyung-A
2017-05-23
In this study, we validated the analytical performance of BRCA1/2 sequencing using Ion Torrent's new bench-top sequencer with amplicon panel with optimized bioinformatics pipelines. Using 43 samples that were previously validated by Illumina's MiSeq platform and/or by Sanger sequencing/multiplex ligation-dependent probe amplification, we amplified the target with the Oncomine™ BRCA Research Assay and sequenced on Ion Torrent S5 XL (Thermo Fisher Scientific, Waltham, MA, USA). We compared two bioinformatics pipelines for optimal processing of S5 XL sequence data: the Torrent Suite with a plug-in Torrent Variant Caller (Thermo Fisher Scientific), and commercial NextGENe software (Softgenetics, State College, PA, USA). All expected 681 single nucleotide variants, 15 small indels, and three copy number variants were correctly called, except one common variant adjacent to a rare variant on the primer-binding site. The sensitivity, specificity, false positive rate, and accuracy for detection of single nucleotide variant and small indels of S5 XL sequencing were 99.85%, 100%, 0%, and 99.99% for the Torrent Variant Caller and 99.85%, 99.99%, 0.14%, and 99.99% for NextGENe, respectively. The reproducibility of variant calling was 100%, and the precision of variant frequency also showed good performance with coefficients of variation between 0.32 and 5.29%. We obtained highly accurate data through uniform and sufficient coverage depth over all target regions and through optimization of the bioinformatics pipeline. We confirmed that our platform is accurate and practical for diagnostic BRCA1/2 testing in a clinical laboratory.
Chandrasekharappa, Settara C; Chinn, Steven B; Donovan, Frank X; Chowdhury, Naweed I; Kamat, Aparna; Adeyemo, Adebowale A; Thomas, James W; Vemulapalli, Meghana; Hussey, Caroline S; Reid, Holly H; Mullikin, James C; Wei, Qingyi; Sturgis, Erich M
2017-10-15
Patients with Fanconi anemia (FA) have an increased risk for head and neck squamous cell carcinoma (HNSCC). The authors sought to determine the prevalence of undiagnosed FA and FA carriers among patients with HNSCC as well as an age cutoff for FA genetic screening. Germline DNA samples from 417 patients with HNSCC aged <50 years were screened for sequence variants by targeted next-generation sequencing of the entire length of 16 FA genes. The sequence revealed 194 FA gene variants in 185 patients (44%). The variant spectrum was comprised of 183 nonsynonymous point mutations, 9 indels, 1 large deletion, and 1 synonymous variant that was predicted to effect splicing. One hundred eight patients (26%) had at least 1 rare variant that was predicted to be damaging, and 57 (14%) had at least 1 rare variant that was predicted to be damaging and had been previously reported. Fifteen patients carried 2 rare variants or an X-linked variant in an FA gene. Overall, an age cutoff for FA screening was not identified among young patients with HNSCC, because there were no significant differences in mutation rates when patients were stratified by age, tumor site, ethnicity, smoking status, or human papillomavirus status. However, an increased burden, or mutation load, of FA gene variants was observed in carriers of the genes FA complementation group D2 (FANCD2), FANCE, and FANCL in the HNSCC patient cohort relative to the 1000 Genomes population. FA germline functional variants offer a novel area of study in HNSCC tumorigenesis. FANCE and FANCL, which are components of the core complex, are known to be responsible for the recruitment and ubiquitination, respectively, of FANCD2, a critical step in the FA DNA repair pathway. In the current cohort, the increased mutation load of FANCD2, FANCE, and FANCL variants among younger patients with HNSCC indicates the importance of the FA pathway in HNSCC. Cancer 2017;123:3943-54. © 2017 American Cancer Society. © 2017 American Cancer Society.
Oliveira, Jorge; Negrão, Luís; Fineza, Isabel; Taipa, Ricardo; Melo-Pires, Manuel; Fortuna, Ana Maria; Gonçalves, Ana Rita; Froufe, Hugo; Egas, Conceição; Santos, Rosário; Sousa, Mário
2015-06-01
Muscular dystrophies (MDs) are a group of hereditary muscle disorders that include two particularly heterogeneous subgroups: limb-girdle MD and congenital MD, linked to 52 different genes (seven common to both subgroups). Massive parallel sequencing technology may avoid the usual stepwise gene-by-gene analysis. We report the whole-exome sequencing (WES) analysis of a patient with childhood-onset progressive MD, also presenting mental retardation and dilated cardiomyopathy. Conventional sequencing had excluded eight candidate genes. WES of the trio (patient and parents) was performed using the ion proton sequencing system. Data analysis resorted to filtering steps using the GEMINI software revealed a novel silent variant in the choline kinase beta (CHKB) gene. Inspection of sequence alignments ultimately identified the causal variant (CHKB:c.1031+3G>C). This splice site mutation was confirmed using Sanger sequencing and its effect was further evaluated with gene expression analysis. On reassessment of the muscle biopsy, typical abnormal mitochondrial oxidative changes were observed. Mutations in CHKB have been shown to cause phosphatidylcholine deficiency in myofibers, causing a rare form of CMD (only 21 patients reported). Notwithstanding interpretative difficulties that need to be overcome before the integration of WES in the diagnostic workflow, this work corroborates its utility in solving cases from highly heterogeneous groups of diseases, in which conventional diagnostic approaches fail to provide a definitive diagnosis.
Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic
Foley, Samantha B.; Rios, Jonathan J.; Mgbemena, Victoria E.; Robinson, Linda S.; Hampel, Heather L.; Toland, Amanda E.; Durham, Leslie; Ross, Theodora S.
2014-01-01
Despite the potential of whole-genome sequencing (WGS) to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176) and those without (n = 82). Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500) in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS). Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF) variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks. PMID:26023681
Thorleifsson, Gudmar; Ahluwalia, Tarunveer S.; Steinthorsdottir, Valgerdur; Bjarnason, Helgi; Gudbjartsson, Daniel F.; Magnusson, Olafur T.; Sparsø, Thomas; Albrechtsen, Anders; Kong, Augustine; Masson, Gisli; Tian, Geng; Cao, Hongzhi; Nie, Chao; Kristiansen, Karsten; Husemoen, Lise Lotte; Thuesen, Betina; Li, Yingrui; Nielsen, Rasmus; Linneberg, Allan; Olafsson, Isleifur; Eyjolfsson, Gudmundur I.; Jørgensen, Torben; Wang, Jun; Hansen, Torben; Thorsteinsdottir, Unnur; Stefánsson, Kari; Pedersen, Oluf
2013-01-01
Genome-wide association studies have mainly relied on common HapMap sequence variations. Recently, sequencing approaches have allowed analysis of low frequency and rare variants in conjunction with common variants, thereby improving the search for functional variants and thus the understanding of the underlying biology of human traits and diseases. Here, we used a large Icelandic whole genome sequence dataset combined with Danish exome sequence data to gain insight into the genetic architecture of serum levels of vitamin B12 (B12) and folate. Up to 22.9 million sequence variants were analyzed in combined samples of 45,576 and 37,341 individuals with serum B12 and folate measurements, respectively. We found six novel loci associating with serum B12 (CD320, TCN2, ABCD4, MMAA, MMACHC) or folate levels (FOLR3) and confirmed seven loci for these traits (TCN1, FUT6, FUT2, CUBN, CLYBL, MUT, MTHFR). Conditional analyses established that four loci contain additional independent signals. Interestingly, 13 of the 18 identified variants were coding and 11 of the 13 target genes have known functions related to B12 and folate pathways. Contrary to epidemiological studies we did not find consistent association of the variants with cardiovascular diseases, cancers or Alzheimer's disease although some variants demonstrated pleiotropic effects. Although to some degree impeded by low statistical power for some of these conditions, these data suggest that sequence variants that contribute to the population diversity in serum B12 or folate levels do not modify the risk of developing these conditions. Yet, the study demonstrates the value of combining whole genome and exome sequencing approaches to ascertain the genetic and molecular architectures underlying quantitative trait associations. PMID:23754956
Exome Sequence Analysis of 14 Families With High Myopia.
Kloss, Bethany A; Tompson, Stuart W; Whisenhunt, Kristina N; Quow, Krystina L; Huang, Samuel J; Pavelec, Derek M; Rosenberg, Thomas; Young, Terri L
2017-04-01
To identify causal gene mutations in 14 families with autosomal dominant (AD) high myopia using exome sequencing. Select individuals from 14 large Caucasian families with high myopia were exome sequenced. Gene variants were filtered to identify potential pathogenic changes. Sanger sequencing was used to confirm variants in original DNA, and to test for disease cosegregation in additional family members. Candidate genes and chromosomal loci previously associated with myopic refractive error and its endophenotypes were comprehensively screened. In 14 high myopia families, we identified 73 rare and 31 novel gene variants as candidates for pathogenicity. In seven of these families, two of the novel and eight of the rare variants were within known myopia loci. A total of 104 heterozygous nonsynonymous rare variants in 104 genes were identified in 10 out of 14 probands. Each variant cosegregated with affection status. No rare variants were identified in genes known to cause myopia or in genes closest to published genome-wide association study association signals for refractive error or its endophenotypes. Whole exome sequencing was performed to determine gene variants implicated in the pathogenesis of AD high myopia. This study provides new genes for consideration in the pathogenesis of high myopia, and may aid in the development of genetic profiling of those at greatest risk for attendant ocular morbidities of this disorder.
Yan, Song; Li, Yun
2014-02-15
Despite its great capability to detect rare variant associations, next-generation sequencing is still prohibitively expensive when applied to large samples. In case-control studies, it is thus appealing to sequence only a subset of cases to discover variants and genotype the identified variants in controls and the remaining cases under the reasonable assumption that causal variants are usually enriched among cases. However, this approach leads to inflated type-I error if analyzed naively for rare variant association. Several methods have been proposed in recent literature to control type-I error at the cost of either excluding some sequenced cases or correcting the genotypes of discovered rare variants. All of these approaches thus suffer from certain extent of information loss and thus are underpowered. We propose a novel method (BETASEQ), which corrects inflation of type-I error by supplementing pseudo-variants while keeps the original sequence and genotype data intact. Extensive simulations and real data analysis demonstrate that, in most practical situations, BETASEQ leads to higher testing powers than existing approaches with guaranteed (controlled or conservative) type-I error. BETASEQ and associated R files, including documentation, examples, are available at http://www.unc.edu/~yunmli/betaseq
Using whole-exome sequencing to identify variants inherited from mosaic parents
Rios, Jonathan J; Delgado, Mauricio R
2015-01-01
Whole-exome sequencing (WES) has allowed the discovery of genes and variants causing rare human disease. This is often achieved by comparing nonsynonymous variants between unrelated patients, and particularly for sporadic or recessive disease, often identifies a single or few candidate genes for further consideration. However, despite the potential for this approach to elucidate the genetic cause of rare human disease, a majority of patients fail to realize a genetic diagnosis using standard exome analysis methods. Although genetic heterogeneity contributes to the difficulty of exome sequence analysis between patients, it remains plausible that rare human disease is not caused by de novo or recessive variants. Multiple human disorders have been described for which the variant was inherited from a phenotypically normal mosaic parent. Here we highlight the potential for exome sequencing to identify a reasonable number of candidate genes when dominant disease variants are inherited from a mosaic parent. We show the power of WES to identify a limited number of candidate genes using this disease model and how sequence coverage affects identification of mosaic variants by WES. We propose this analysis as an alternative to discover genetic causes of rare human disorders for which typical WES approaches fail to identify likely pathogenic variants. PMID:24986828
Lee, Michael; Hills, Mark; Conomos, Dimitri; Stutz, Michael D.; Dagg, Rebecca A.; Lau, Loretta M.S.; Reddel, Roger R.; Pickett, Hilda A.
2014-01-01
Telomeres are terminal repetitive DNA sequences on chromosomes, and are considered to comprise almost exclusively hexameric TTAGGG repeats. We have evaluated telomere sequence content in human cells using whole-genome sequencing followed by telomere read extraction in a panel of mortal cell strains and immortal cell lines. We identified a wide range of telomere variant repeats in human cells, and found evidence that variant repeats are generated by mechanistically distinct processes during telomerase- and ALT-mediated telomere lengthening. Telomerase-mediated telomere extension resulted in biased repeat synthesis of variant repeats that differed from the canonical sequence at positions 1 and 3, but not at positions 2, 4, 5 or 6. This indicates that telomerase is most likely an error-prone reverse transcriptase that misincorporates nucleotides at specific positions on the telomerase RNA template. In contrast, cell lines that use the ALT pathway contained a large range of variant repeats that varied greatly between lines. This is consistent with variant repeats spreading from proximal telomeric regions throughout telomeres in a stochastic manner by recombination-mediated templating of DNA synthesis. The presence of unexpectedly large numbers of variant repeats in cells utilizing either telomere maintenance mechanism suggests a conserved role for variant sequences at human telomeres. PMID:24225324
Lim, Eileen C P; Brett, Maggie; Lai, Angeline H M; Lee, Siew-Peng; Tan, Ee-Shien; Jamuar, Saumya S; Ng, Ivy S L; Tan, Ene-Choo
2015-12-14
Next-generation sequencing (NGS) has revolutionized genetic research and offers enormous potential for clinical application. Sequencing the exome has the advantage of casting the net wide for all known coding regions while targeted gene panel sequencing provides enhanced sequencing depths and can be designed to avoid incidental findings in adult-onset conditions. A HaloPlex panel consisting of 180 genes within commonly altered chromosomal regions is available for use on both the Ion Personal Genome Machine (PGM) and MiSeq platforms to screen for causative mutations in these genes. We used this Haloplex ICCG panel for targeted sequencing of 15 patients with clinical presentations indicative of an abnormality in one of the 180 genes. Sequencing runs were done using the Ion 318 Chips on the Ion Torrent PGM. Variants were filtered for known polymorphisms and analysis was done to identify possible disease-causing variants before validation by Sanger sequencing. When possible, segregation of variants with phenotype in family members was performed to ascertain the pathogenicity of the variant. More than 97% of the target bases were covered at >20×. There was an average of 9.6 novel variants per patient. Pathogenic mutations were identified in five genes for six patients, with two novel variants. There were another five likely pathogenic variants, some of which were unreported novel variants. In a cohort of 15 patients, we were able to identify a likely genetic etiology in six patients (40%). Another five patients had candidate variants for which further evaluation and segregation analysis are ongoing. Our results indicate that the HaloPlex ICCG panel is useful as a rapid, high-throughput and cost-effective screening tool for 170 of the 180 genes. There is low coverage for some regions in several genes which might have to be supplemented by Sanger sequencing. However, comparing the cost, ease of analysis, and shorter turnaround time, it is a good alternative to exome sequencing for patients whose features are suggestive of a genetic etiology involving one of the genes in the panel.
López-Revilla, Rubén; Pineda, Marco A; Ortiz-Valdez, Julio; Sánchez-Garza, Mireya; Riego, Lina
2009-01-01
Background In San Luis Potosí City cervical infection by human papillomavirus type 16 (HPV16) associated to dysplastic lesions is more prevalent in younger women. In this work HPV16 subtypes and variants associated to low-grade intraepithelial lesions (LSIL), high-grade intraepithelial lesions (HSIL) and invasive cervical cancer (ICC) of 38 women residing in San Luis Potosí City were identified by comparing their E6 open reading frame sequences. Results Three European (E) variants (E-P, n = 27; E-T350G, n = 7; E-C188G, n = 2) and one AA-a variant (n = 2) were identified among the 38 HPV16 sequences analyzed. E-P variant sequences contained 23 single nucleotide changes, two of which (A334G, A404T) had not been described before and allowed the phylogenetic separation from the other variants. E-P A334G sequences were the most prevalent (22 cases, 57.9%), followed by the E-P Ref prototype (8 cases, 21.1%) and E-P A404T (1 case, 2.6%) sequences. The HSIL + ICC fraction was 0.21 for the E-P A334G variants and 0.00 for the E-P Ref variants. Conclusion We conclude that in the women included in this study the HPV16 E subtype is 19 times more frequent than the AA subtype; that the circulating E variants are E-P (71.1%) > E-T350G (18.4%) > E-C188G (5.3%); that 71.0% of the E-P sequences carry the A334G single nucleotide change and appear to correspond to a HPV16 variant characteristic of San Luis Potosi City more oncogenic than the E-P Ref prototype. PMID:19216802
Development of a molecular diagnostic test for Retinitis Pigmentosa in the Japanese population.
Maeda, Akiko; Yoshida, Akiko; Kawai, Kanako; Arai, Yuki; Akiba, Ryutaro; Inaba, Akira; Takagi, Seiji; Fujiki, Ryoji; Hirami, Yasuhiko; Kurimoto, Yasuo; Ohara, Osamu; Takahashi, Masayo
2018-05-21
Retinitis Pigmentosa (RP) is the most common form of inherited retinal dystrophy caused by different genetic variants. More than 60 causative genes have been identified to date. The establishment of cost-effective molecular diagnostic tests with high sensitivity and specificity can be beneficial for patients and clinicians. Here, we developed a clinical diagnostic test for RP in the Japanese population. Evaluation of diagnostic technology, Prospective, Clinical and experimental study. A panel of 39 genes reported to cause RP in Japanese patients was established. Next generation sequence (NGS) technology was applied for the analyses of 94 probands with RP and RP-related diseases. After interpretation of detected genetic variants, molecular diagnosis based on a study of the genetic variants and a clinical phenotype was made by a multidisciplinary team including clinicians, researchers and genetic counselors. NGS analyses found 14,343 variants from 94 probands. Among them, 189 variants in 83 probands (88.3% of all cases) were selected as pathogenic variants and 64 probands (68.1%) have variants which can cause diseases. After the deliberation of these 64 cases, molecular diagnosis was made in 43 probands (45.7%). The final molecular diagnostic rate with the current system combining supplemental Sanger sequencing was 47.9% (45 of 94 cases). The RP panel provides the significant advantage of detecting genetic variants with a high molecular diagnostic rate. This type of race-specific high-throughput genotyping allows us to conduct a cost-effective and clinically useful genetic diagnostic test.
Wang, Jingwen; Skoog, Tiina; Einarsdottir, Elisabet; Kaartokallio, Tea; Laivuori, Hannele; Grauers, Anna; Gerdhem, Paul; Hytönen, Marjo; Lohi, Hannes; Kere, Juha; Jiao, Hong
2016-01-01
High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies. PMID:27633116
Hesse, Andrew N; Bevilacqua, Jennifer; Shankar, Kritika; Reddi, Honey V
2018-05-16
Epilepsy is a diverse neurological condition with extreme genetic and phenotypic heterogeneity. The introduction of next-generation sequencing into the clinical laboratory has made it possible to investigate hundreds of associated genes simultaneously for a patient, even in the absence of a clearly defined syndrome. This has resulted in the detection of rare and novel mutations at a rate well beyond our ability to characterize their effects. This retrospective study reviews genotype data in the context of available phenotypic information on 305 patients spanning the epileptic spectrum to identify established and novel patterns of correlation. Our epilepsy panel comprising 377 genes was used to sequence 305 patients referred for genetic testing. Qualifying variants were annotated with phenotypic data obtained from either the test requisition form or supporting clinical documentation. Observed phenotypes were compared with established phenotypes in OMIM, published literature and the ILAEs 2010 report on genetic testing to assess congruity with known gene aberrations. We identified a number of novel and recognized genetic variants consistent with established epileptic phenotypes. Forty-one pathogenic or predicted deleterious variants were detected in 39 patients with accompanying clinical documentation. Twenty-five of these variants across 15 genes were novel. Furthermore, evaluation of phenotype data for 194 patients with variants of unknown significance in genes with autosomal dominant and X-linked disease inheritance elucidated potentially disease-causing variants that were not currently characterized in the literature. Assessment of key genotype-phenotype correlations from our cohort provide insight into variant classification, as well as the importance of including ILAE recommended genes as part of minimum panel content for comprehensive epilepsy tests. Many of the reported VUSs are likely genuine pathogenic variants driving the observed phenotypes, but not enough evidence is available for assertive classifications. Similar studies will provide more utility via mounting independent genotype-phenotype data from unrelated patients. The possible outcome would be a better molecular diagnostic product, with fewer indeterminate reports containing only VUSs. Copyright © 2018. Published by Elsevier B.V.
Fernández-Lainez, Cynthia; Aláez-Verson, Carmen; Ibarra-González, Isabel; Enríquez-Flores, Sergio; Carrillo-Sanchez, Karol; Flores-Lagunes, Leonardo; Guillén-López, Sara; Belmont-Martínez, Leticia; Vela-Amieva, Marcela
2018-04-16
Maple syrup urine disease (MSUD) is a metabolic disorder caused by mutations in three of the branched-chain α-keto acid dehydrogenase complex (BCKDC) genes. Classical MSUD symptom can be observed immediately after birth and include ketoacidosis, irritability, lethargy, and coma, which can lead to death or irreversible neurodevelopmental delay in survivors. The molecular diagnosis of MSUD can be time-consuming and difficult to establish using conventional Sanger sequencing because it could be due to pathogenic variants of any of the BCKDC genes. Next-generation sequencing-based methodologies have revolutionized the molecular diagnosis of inborn errors in metabolism and offer a superior approach for genotyping these patients. Here, we report an MSUD case whose molecular diagnosis was performed by clinical exome sequencing (CES), and the possible structural pathogenic effect of a novel E1α subunit pathogenic variant was analyzed using in silico analysis of α and β subunit crystallographic structure. Molecular analysis revealed a new homozygous non-sense c.1267C>T or p.Gln423Ter variant of BCKDHA. The novel BCKDHA variant is considered pathogenic because it caused a premature stop codon that probably led to the loss of the last 22 amino acid residues of the E1α subunit C-terminal end. In silico analysis of this region showed that it is in contact with several residues of the E1β subunit mainly through polar contacts, hydrogen bonds, and hydrophobic interactions. CES strategy could benefit the patients and families by offering precise and prompt diagnosis and better genetic counseling. Copyright © 2018 Elsevier B.V. All rights reserved.
Ramos, Enrique; Levinson, Benjamin T; Chasnoff, Sara; Hughes, Andrew; Young, Andrew L; Thornton, Katherine; Li, Allie; Vallania, Francesco L M; Province, Michael; Druley, Todd E
2012-12-06
Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1) create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2) expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence. These results were obtained aligning raw reads against the entire genome using Novoalign followed by variant calling of non-indexed pools using SPLINTER or SAMtools for indexed samples. With these pipelines, we find sensitivity and specificity of 99.4% and 99.7% for pooled exome sequencing. Sensitivity, and to a lesser degree specificity, proved to be a function of coverage. For rare variants (≤2% minor allele frequency), we achieved sensitivity and specificity of ≥94.9% and ≥99.99% for custom capture of 2.5 Mb in multiplexed libraries of 22-48 individuals with only ≥5-fold coverage/chromosome, but these parameters improved to ≥98.7 and 100% with 20-fold coverage/chromosome. This highly scalable methodology enables accurate rare variant detection, with or without individual DNA sample indexing, while reducing the amount of required source DNA and total costs through less hybridization reagent consumption, multi-sample sonication in a standard PCR plate, multiplexed pre-enrichment pooling with a single hybridization and lesser sequencing coverage required to obtain high sensitivity.
Kim, Yoonhee; Suktitipat, Bhoom; Yanek, Lisa R.; Faraday, Nauder; Wilson, Alexander F.; Becker, Diane M.; Becker, Lewis C.; Mathias, Rasika A.
2013-01-01
Platelet aggregation is heritable, and genome-wide association studies have detected strong associations with a common intronic variant of the platelet endothelial aggregation receptor1 (PEAR1) gene both in African American and European American individuals. In this study, we used a sequencing approach to identify additional exonic variants in PEAR1 that may also determine variability in platelet aggregation in the GeneSTAR Study. A 0.3 Mb targeted region on chromosome 1q23.1 including the entire PEAR1 gene was Sanger sequenced in 104 subjects (45% male, 49% African American, age = 52±13) selected on the basis of hyper- and hypo- aggregation across three different agonists (collagen, epinephrine, and adenosine diphosphate). Single-variant and multi-variant burden tests for association were performed. Of the 235 variants identified through sequencing, 61 were novel, and three of these were missense variants. More rare variants (MAF<5%) were noted in African Americans compared to European Americans (108 vs. 45). The common intronic GWAS-identified variant (rs12041331) demonstrated the most significant association signal in African Americans (p = 4.020×10−4); no association was seen for additional exonic variants in this group. In contrast, multi-variant burden tests indicated that exonic variants play a more significant role in European Americans (p = 0.0099 for the collective coding variants compared to p = 0.0565 for intronic variant rs12041331). Imputation of the individual exonic variants in the rest of the GeneSTAR European American cohort (N = 1,965) supports the results noted in the sequenced discovery sample: p = 3.56×10−4, 2.27×10−7, 5.20×10−5 for coding synonymous variant rs56260937 and collagen, epinephrine and adenosine diphosphate induced platelet aggregation, respectively. Sequencing approaches confirm that a common intronic variant has the strongest association with platelet aggregation in African Americans, and show that exonic variants play an additional role in platelet aggregation in European Americans. PMID:23704978
Uptake, Results, and Outcomes of Germline Multiple-Gene Sequencing After Diagnosis of Breast Cancer.
Kurian, Allison W; Ward, Kevin C; Hamilton, Ann S; Deapen, Dennis M; Abrahamse, Paul; Bondarenko, Irina; Li, Yun; Hawley, Sarah T; Morrow, Monica; Jagsi, Reshma; Katz, Steven J
2018-05-10
Low-cost sequencing of multiple genes is increasingly available for cancer risk assessment. Little is known about uptake or outcomes of multiple-gene sequencing after breast cancer diagnosis in community practice. To examine the effect of multiple-gene sequencing on the experience and treatment outcomes for patients with breast cancer. For this population-based retrospective cohort study, patients with breast cancer diagnosed from January 2013 to December 2015 and accrued from SEER registries across Georgia and in Los Angeles, California, were surveyed (n = 5080, response rate = 70%). Responses were merged with SEER data and results of clinical genetic tests, either BRCA1 and BRCA2 (BRCA1/2) sequencing only or including additional other genes (multiple-gene sequencing), provided by 4 laboratories. Type of testing (multiple-gene sequencing vs BRCA1/2-only sequencing), test results (negative, variant of unknown significance, or pathogenic variant), patient experiences with testing (timing of testing, who discussed results), and treatment (strength of patient consideration of, and surgeon recommendation for, prophylactic mastectomy), and prophylactic mastectomy receipt. We defined a patient subgroup with higher pretest risk of carrying a pathogenic variant according to practice guidelines. Among 5026 patients (mean [SD] age, 59.9 [10.7]), 1316 (26.2%) were linked to genetic results from any laboratory. Multiple-gene sequencing increasingly replaced BRCA1/2-only testing over time: in 2013, the rate of multiple-gene sequencing was 25.6% and BRCA1/2-only testing, 74.4%;in 2015 the rate of multiple-gene sequencing was 66.5% and BRCA1/2-only testing, 33.5%. Multiple-gene sequencing was more often ordered by genetic counselors (multiple-gene sequencing, 25.5% and BRCA1/2-only testing, 15.3%) and delayed until after surgery (multiple-gene sequencing, 32.5% and BRCA1/2-only testing, 19.9%). Multiple-gene sequencing substantially increased rate of detection of any pathogenic variant (multiple-gene sequencing: higher-risk patients, 12%; average-risk patients, 4.2% and BRCA1/2-only testing: higher-risk patients, 7.8%; average-risk patients, 2.2%) and variants of uncertain significance, especially in minorities (multiple-gene sequencing: white patients, 23.7%; black patients, 44.5%; and Asian patients, 50.9% and BRCA1/2-only testing: white patients, 2.2%; black patients, 5.6%; and Asian patients, 0%). Multiple-gene sequencing was not associated with an increase in the rate of prophylactic mastectomy use, which was highest with pathogenic variants in BRCA1/2 (BRCA1/2, 79.0%; other pathogenic variant, 37.6%; variant of uncertain significance, 30.2%; negative, 35.3%). Multiple-gene sequencing rapidly replaced BRCA1/2-only testing for patients with breast cancer in the community and enabled 2-fold higher detection of clinically relevant pathogenic variants without an associated increase in prophylactic mastectomy. However, important targets for improvement in the clinical utility of multiple-gene sequencing include postsurgical delay and racial/ethnic disparity in variants of uncertain significance.
Systematic comparison of variant calling pipelines using gold standard personal exome variants
Hwang, Sohyun; Kim, Eiru; Lee, Insuk; Marcotte, Edward M.
2015-01-01
The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2, and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes. PMID:26639839
Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.
Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K
2011-01-01
Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.
Davidson, Alice E; Borasio, Edmondo; Liskova, Petra; Khan, Arif O; Hassan, Hala; Cheetham, Michael E; Plagnol, Vincent; Alkuraya, Fowzan S; Tuft, Stephen J; Hardcastle, Alison J
2015-01-06
Brittle cornea syndrome 1 (BCS1) is a rare recessive condition characterized by extreme thinning of the cornea and sclera, caused by mutations in ZNF469. Keratoconus is a relatively common disease characterized by progressive thinning and ectasia of the cornea. The etiology of keratoconus is complex and not yet understood, but rare ZNF469 variants have recently been associated with disease. We investigated the phenotype of BCS1 carriers with known pathogenic ZNF469 mutations, and recruited families in which aggregation of keratoconus was observed to establish if rare variants in ZNF469 segregated with disease. Patients and family members were recruited and underwent comprehensive anterior segment examination, including corneal topography. Blood samples were donated and genomic DNA was extracted. The coding sequence and splice sites of ZNF469 were PCR amplified and Sanger sequenced. Four carriers of three BCS1-associated ZNF469 loss-of-function mutations (p.[Glu1392Ter], p.[Gln1930Argfs*6], p.[Gln1930fs*133]) were examined and none had keratoconus. One carrier had partially penetrant features of BCS1, including joint hypermobility. ZNF469 sequencing in 11 keratoconus families identified 9 rare (minor allele frequency [MAF] ≤ 0.025) variants predicted to be potentially damaging. However, in each instance the rare variant(s) identified, including two previously reported as potentially keratoconus-associated, did not segregate with the disease. The presence of heterozygous loss-of-function alleles in the ZNF469 gene did not cause keratoconus in the individuals examined. None of the rare nonsynonymous ZNF469 variants identified in the familial cohort conferred a high risk of keratoconus; therefore, genetic variants contributing to disease pathogenesis in these 11 families remain to be identified. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Diroma, Maria Angela; Lubisco, Paolo; Attimonelli, Marcella
2016-11-08
The abundance of biological data characterizing the genomics era is contributing to a comprehensive understanding of human mitochondrial genetics. Nevertheless, many aspects are still unclear, specifically about the variability of the 22 human mitochondrial transfer RNA (tRNA) genes and their involvement in diseases. The complex enrichment and isolation of tRNAs in vitro leads to an incomplete knowledge of their post-transcriptional modifications and three-dimensional folding, essential for correct tRNA functioning. An accurate annotation of mitochondrial tRNA variants would be definitely useful and appreciated by mitochondrial researchers and clinicians since the most of bioinformatics tools for variant annotation and prioritization available so far cannot shed light on the functional role of tRNA variations. To this aim, we updated our MToolBox pipeline for mitochondrial DNA analysis of high throughput and Sanger sequencing data by integrating tRNA variant annotations in order to identify and characterize relevant variants not only in protein coding regions, but also in tRNA genes. The annotation step in the pipeline now provides detailed information for variants mapping onto the 22 mitochondrial tRNAs. For each mt-tRNA position along the entire genome, the relative tRNA numbering, tRNA type, cloverleaf secondary domains (loops and stems), mature nucleotide and interactions in the three-dimensional folding were reported. Moreover, pathogenicity predictions for tRNA and rRNA variants were retrieved from the literature and integrated within the annotations provided by MToolBox, both in the stand-alone version and web-based tool at the Mitochondrial Disease Sequence Data Resource (MSeqDR) website. All the information available in the annotation step of MToolBox were exploited to generate custom tracks which can be displayed in the GBrowse instance at MSeqDR website. To the best of our knowledge, specific data regarding mitochondrial variants in tRNA genes were introduced for the first time in a tool for mitochondrial genome analysis, supporting the interpretation of genetic variants in specific genomic contexts.
Kim, Haeyoung; Cho, Dae-Yeon; Choi, Doo Ho; Oh, Mijin; Shin, Inkyung; Park, Won; Huh, Seung Jae; Nam, Seok Jin; Lee, Jeong Eon; Kim, Seok Won
2017-01-01
This study was performed to evaluate the frequency of mutations in CHEK2, PALB2, MRE11, and RAD50 among Korean patients at high risk for hereditary breast cancer. A total of 235 Korean patients with hereditary breast cancer who tested negative for BRCA1/2 mutation were enrolled to this study. Entire coding regions of CHEK2, PALB2, MRE11, and RAD50 were analyzed using massively parallel sequencing (MPS). Sequence variants detected by MPS were confirmed by Sanger sequencing. Six patients (2.5 %) were found to have pathogenic variants in CHEK2 (n = 1), PALB2 (n = 2), MRE11 (n = 1), and RAD50 (n = 2). Among the pathogenic variants, PALB2 c.2257C>T was previously reported in other studies, while CHEK2 c.1245dupC, PALB2 c.1048C>T, MRE11 c.1773_1774delAA, RAD50 c.1276C>T, and RAD50 c.3811_3813delGAA were newly identified in this study. A total of 15 missense variants were found in the four genes among 26 patients; 7 patients had a variant in CHEK2, 11 in PALB2, 2 in MRE11, and 6 in RAD50. When in silico analyses were performed to the 15 missense variants, six variants (CHEK2 c.686A>G, PALB2 c.1492G>T, PALB2 c.3054G>C, MRE11 c.140C>T, RAD50 c.1456C>T, and RAD50 c.3790C>T) were predicted to be deleterious. Pathogenic variants in CHEK2, PALB2, MRE11, and RAD50 were detected in a small proportion of Korean patients with features of hereditary breast cancer.
Zhang, Jimmy F; James, Francis; Shukla, Anju; Girisha, Katta M; Paciorkowski, Alex R
2017-06-27
We built India Allele Finder, an online searchable database and command line tool, that gives researchers access to variant frequencies of Indian Telugu individuals, using publicly available fastq data from the 1000 Genomes Project. Access to appropriate population-based genomic variant annotation can accelerate the interpretation of genomic sequencing data. In particular, exome analysis of individuals of Indian descent will identify population variants not reflected in European exomes, complicating genomic analysis for such individuals. India Allele Finder offers improved ease-of-use to investigators seeking to identify and annotate sequencing data from Indian populations. We describe the use of India Allele Finder to identify common population variants in a disease quartet whole exome dataset, reducing the number of candidate single nucleotide variants from 84 to 7. India Allele Finder is freely available to investigators to annotate genomic sequencing data from Indian populations. Use of India Allele Finder allows efficient identification of population variants in genomic sequencing data, and is an example of a population-specific annotation tool that simplifies analysis and encourages international collaboration in genomics research.
Wyllie, David H; Sanderson, Nicholas; Myers, Richard; Peto, Tim; Robinson, Esther; Crook, Derrick W; Smith, E Grace; Walker, A Sarah
2018-06-06
Contact tracing requires reliable identification of closely related bacterial isolates. When we noticed the reporting of artefactual variation between M. tuberculosis isolates during routine next generation sequencing of Mycobacterium spp, we investigated its basis in 2,018 consecutive M. tuberculosis isolates. In the routine process used, clinical samples were decontaminated and inoculated into broth cultures; from positive broth cultures DNA was extracted, sequenced, reads mapped, and consensus sequences determined. We investigated the process of consensus sequence determination, which selects the most common nucleotide at each position. Having determined the high-quality read depth and depth of minor variants across 8,006 M. tuberculosis genomic regions, we quantified the relationship between the minor variant depth and the amount of non-Mycobacterial bacterial DNA, which originates from commensal microbes killed during sample decontamination. In the presence of non-Mycobacterial bacterial DNA, we found significant increases in minor variant frequencies of more than 1.5 fold in 242 regions covering 5.1% of the M. tuberculosis genome. Included within these were four high variation regions strongly influenced by the amount of non-Mycobacterial bacterial DNA. Excluding these four regions from pairwise distance comparisons reduced biologically implausible variation from 5.2% to 0% in an independent validation set derived from 226 individuals. Thus, we have demonstrated an approach identifying critical genomic regions contributing to clinically relevant artefactual variation in bacterial similarity searches. The approach described monitors the outputs of the complex multi-step laboratory and bioinformatics process, allows periodic process adjustments, and will have application to quality control of routine bacterial genomics. Copyright © 2018 Wyllie et al.
Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Aberg, Karolina A; Kumar, Gaurav; Nerella, Sri; Xie, Linying; Collins, Ann L; Crowley, James J; Quakenbush, Corey R; Hillard, Christopher E; Gao, Guimin; Shabalin, Andrey A; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; Maes, Hermine; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J
2016-05-01
Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\\CHRNA3\\CHRNB4, CHRNB3\\CHRNA6 and EGLN2\\CYP2A6. Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. We employed targeted capture of the CHRNA5\\CHRNA3\\CHRNB4, CHRNB3\\CHRNA6, and EGLN2\\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78×) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6. Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2. We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
McClay, Joseph L.; Adkins, Daniel E.; Aberg, Karolina A.; Kumar, Gaurav; Nerella, Sri; Xie, Linying; Collins, Ann L.; Crowley, James J.; Quakenbush, Corey R.; Hillard, Christopher E.; Gao, Guimin; Shabalin, Andrey A.; Peterson, Roseann E.; Copeland, William E.; Silberg, Judy L.; Maes, Hermine; Sullivan, Patrick F.; Costello, Elizabeth J.; van den Oord, Edwin J.
2016-01-01
Abstract Introduction: Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\\CHRNA3\\CHRNB4 , CHRNB3\\CHRNA6 and EGLN2\\CYP2A6 . Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. Methods: We employed targeted capture of the CHRNA5\\CHRNA3\\CHRNB4 , CHRNB3\\CHRNA6 , and EGLN2\\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78×) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. Results: In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6 . Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2 . Conclusions: We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up. PMID:26283763
Kumar Singh, Amit; Sangwan, Naseer; Sharma, Anukriti; Gupta, Vipin; Khurana, J. P.
2013-01-01
Here, we report the draft genome sequence (4.2 Mb) of Sphingobium quisquiliarum strain P25T, a natural lin (genes involved in degradation of hexachlorocyclohexane [HCH] isomers) variant genotype, isolated from a heavily contaminated (450 mg HCH/g of soil) HCH dumpsite. PMID:24029763
Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P
2018-03-01
Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.
NDP gene mutations in 14 French families with Norrie disease.
Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul
2003-12-01
Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.
Identification of pathogen genomic variants through an integrated pipeline
2014-01-01
Background Whole-genome sequencing represents a powerful experimental tool for pathogen research. We present methods for the analysis of small eukaryotic genomes, including a streamlined system (called Platypus) for finding single nucleotide and copy number variants as well as recombination events. Results We have validated our pipeline using four sets of Plasmodium falciparum drug resistant data containing 26 clones from 3D7 and Dd2 background strains, identifying an average of 11 single nucleotide variants per clone. We also identify 8 copy number variants with contributions to resistance, and report for the first time that all analyzed amplification events are in tandem. Conclusions The Platypus pipeline provides malaria researchers with a powerful tool to analyze short read sequencing data. It provides an accurate way to detect SNVs using known software packages, and a novel methodology for detection of CNVs, though it does not currently support detection of small indels. We have validated that the pipeline detects known SNVs in a variety of samples while filtering out spurious data. We bundle the methods into a freely available package. PMID:24589256
Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues
Kukurba, Kimberly R.; Zhang, Rui; Li, Xin; Smith, Kevin S.; Knowles, David A.; How Tan, Meng; Piskol, Robert; Lek, Monkol; Snyder, Michael; MacArthur, Daniel G.; Li, Jin Billy; Montgomery, Stephen B.
2014-01-01
Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. PMID:24786518
Carr, Ian M; Morgan, Joanne; Watson, Christopher; Melnik, Svitlana; Diggle, Christine P; Logan, Clare V; Harrison, Sally M; Taylor, Graham R; Pena, Sergio D J; Markham, Alexander F; Alkuraya, Fowzan S; Black, Graeme C M; Ali, Manir; Bonthron, David T
2013-07-01
Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis. © 2013 WILEY PERIODICALS, INC.
Miller, Michelle E; Allen, Victoria M; Brock, Jo-Ann K
2018-03-01
Fetal echogenic bowel (echogenic bowel) is associated with cystic fibrosis (CF), with a reported incidence ranging from 1% to 13%. Prenatal testing for CF in the setting of echogenic bowel can be done by screening parental or fetal samples for pathogenic CFTR variants. If only one pathogenic variant is identified, sequencing of the CFTR gene can be undertaken, to identify a second pathogenic variant not covered in the standard screening panel. Full gene sequencing, however, also introduces the potential to identify variants of uncertain significance (VUSs) that can create counselling challenges and cause parental anxiety. To provide accurate counselling for families in the study population, the incidence of CF associated with echogenic bowel and the carrier frequency of CFTR variants were investigated. All pregnancies for which CF testing was undertaken for the indication of echogenic bowel (from Nova Scotia and Prince Edward Island) were identified (January 2007-July 2017). The CFTR screening and sequencing results were reviewed, and fetal outcomes related to CF were assessed. A total of 463 pregnancies with echogenic bowel were tested. Four were confirmed to be affected with CF, giving an incidence of 0.9% in this cohort. The carrier frequency of CF among all parents in the cohort was 5.0% (1 in 20); however, when excluding parents of affected fetuses, the carrier frequency for the population was estimated at 4.1% (1 in 25). CFTR gene sequencing identified an additional VUS in two samples. The incidence of CF in pregnancies with echogenic bowel in Nova Scotia and Prince Edward Island is 0.9%, with an estimated population carrier frequency of 4.1%. These results provide the basis for improved counselling to assess the risk of CF in the pregnancy, after parental carrier screening, using Bayesian probability. Counselling regarding VUSs should be undertaken before gene sequencing. Copyright © 2017 Society of Obstetricians and Gynaecologists of Canada. Published by Elsevier Inc. All rights reserved.
Regularized rare variant enrichment analysis for case-control exome sequencing data.
Larson, Nicholas B; Schaid, Daniel J
2014-02-01
Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.
Qing, Jie; Yan, Denise; Zhou, Yuan; Liu, Qiong; Wu, Weijing; Xiao, Zian; Liu, Yuyuan; Liu, Jia; Du, Lilin; Xie, Dinghua; Liu, Xue Zhong
2014-01-01
Inherited deafness has been shown to have high genetic heterogeneity. For many decades, linkage analysis and candidate gene approaches have been the main tools to elucidate the genetics of hearing loss. However, this associated study design is costly, time-consuming, and unsuitable for small families. This is mainly due to the inadequate numbers of available affected individuals, locus heterogeneity, and assortative mating. Exome sequencing has now become technically feasible and a cost-effective method for detection of disease variants underlying Mendelian disorders due to the recent advances in next-generation sequencing (NGS) technologies. In the present study, we have combined both the Deafness Gene Mutation Detection Array and exome sequencing to identify deafness causative variants in a large Chinese composite family with deaf by deaf mating. The simultaneous screening of the 9 common deafness mutations using the allele-specific PCR based universal array, resulted in the identification of the 1555A>G in the mitochondrial DNA (mtDNA) 12S rRNA in affected individuals in one branch of the family. We then subjected the mutation-negative cases to exome sequencing and identified novel causative variants in the MYH14 and WFS1 genes. This report confirms the effective use of a NGS technique to detect pathogenic mutations in affected individuals who were not candidates for classical genetic studies. PMID:25289672
Cruchaga, Carlos; Haller, Gabe; Chakraverty, Sumitra; Mayo, Kevin; Vallania, Francesco L M; Mitra, Robi D; Faber, Kelley; Williamson, Jennifer; Bird, Tom; Diaz-Arrastia, Ramon; Foroud, Tatiana M; Boeve, Bradley F; Graff-Radford, Neill R; St Jean, Pamela; Lawson, Michael; Ehm, Margaret G; Mayeux, Richard; Goate, Alison M
2012-01-01
Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09 × 10⁻⁵; OR = 2.21; 95%CI = 1.49-3.28) or an unselected population of 12,481 samples (p = 6.82 × 10⁻⁵; OR = 2.19; 95%CI = 1.347-3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.
Wright, Caroline F; McRae, Jeremy F; Clayton, Stephen; Gallone, Giuseppe; Aitken, Stuart; FitzGerald, Tomas W; Jones, Philip; Prigmore, Elena; Rajan, Diana; Lord, Jenny; Sifrim, Alejandro; Kelsell, Rosemary; Parker, Michael J; Barrett, Jeffrey C; Hurles, Matthew E; FitzPatrick, David R; Firth, Helen V
2018-01-11
PurposeGiven the rapid pace of discovery in rare disease genomics, it is likely that improvements in diagnostic yield can be made by systematically reanalyzing previously generated genomic sequence data in light of new knowledge.MethodsWe tested this hypothesis in the United Kingdom-wide Deciphering Developmental Disorders study, where in 2014 we reported a diagnostic yield of 27% through whole-exome sequencing of 1,133 children with severe developmental disorders and their parents. We reanalyzed existing data using improved variant calling methodologies, novel variant detection algorithms, updated variant annotation, evidence-based filtering strategies, and newly discovered disease-associated genes.ResultsWe are now able to diagnose an additional 182 individuals, taking our overall diagnostic yield to 454/1,133 (40%), and another 43 (4%) have a finding of uncertain clinical significance. The majority of these new diagnoses are due to novel developmental disorder-associated genes discovered since our original publication.ConclusionThis study highlights the importance of coupling large-scale research with clinical practice, and of discussing the possibility of iterative reanalysis and recontact with patients and health professionals at an early stage. We estimate that implementing parent-offspring whole-exome sequencing as a first-line diagnostic test for developmental disorders would diagnose >50% of patients.GENETICS in MEDICINE advance online publication, 11 January 2018; doi:10.1038/gim.2017.246.
Novel GREM1 Variations in Sub-Saharan African Patients With Cleft Lip and/or Cleft Palate.
Gowans, Lord Jephthah Joojo; Oseni, Ganiyu; Mossey, Peter A; Adeyemo, Wasiu Lanre; Eshete, Mekonen A; Busch, Tamara D; Donkor, Peter; Obiri-Yeboah, Solomon; Plange-Rhule, Gyikua; Oti, Alexander A; Owais, Arwa; Olaitan, Peter B; Aregbesola, Babatunde S; Oginni, Fadekemi O; Bello, Seidu A; Audu, Rosemary; Onwuamah, Chika; Agbenorku, Pius; Ogunlewe, Mobolanle O; Abdur-Rahman, Lukman O; Marazita, Mary L; Adeyemo, A A; Murray, Jeffrey C; Butali, Azeez
2018-05-01
Cleft lip and/or cleft palate (CL/P) are congenital anomalies of the face and have multifactorial etiology, with both environmental and genetic risk factors playing crucial roles. Though at least 40 loci have attained genomewide significant association with nonsyndromic CL/P, these loci largely reside in noncoding regions of the human genome, and subsequent resequencing studies of neighboring candidate genes have revealed only a limited number of etiologic coding variants. The present study was conducted to identify etiologic coding variants in GREM1, a locus that has been shown to be largely associated with cleft of both lip and soft palate. We resequenced DNA from 397 sub-Saharan Africans with CL/P and 192 controls using Sanger sequencing. Following analyses of the sequence data, we observed 2 novel coding variants in GREM1. These variants were not found in the 192 African controls and have never been previously reported in any public genetic variant database that includes more than 5000 combined African and African American controls or from the CL/P literature. The novel variants include p.Pro164Ser in an individual with soft palate cleft only and p.Gly61Asp in an individual with bilateral cleft lip and palate. The proband with the p.Gly61Asp GREM1 variant is a van der Woude (VWS) case who also has an etiologic variant in IRF6 gene. Our study demonstrated that there is low number of etiologic coding variants in GREM1, confirming earlier suggestions that variants in regulatory elements may largely account for the association between this locus and CL/P.
Hwang, Sang Mee; Lee, Ki Chan; Lee, Min Seob; Park, Kyoung Un
2018-01-01
Transition to next generation sequencing (NGS) for BRCA1 / BRCA2 analysis in clinical laboratories is ongoing but different platforms and/or data analysis pipelines give different results resulting in difficulties in implementation. We have evaluated the Ion Personal Genome Machine (PGM) Platforms (Ion PGM, Ion PGM Dx, Thermo Fisher Scientific) for the analysis of BRCA1 /2. The results of Ion PGM with OTG-snpcaller, a pipeline based on Torrent mapping alignment program and Genome Analysis Toolkit, from 75 clinical samples and 14 reference DNA samples were compared with Sanger sequencing for BRCA1 / BRCA2 . Ten clinical samples and 14 reference DNA samples were additionally sequenced by Ion PGM Dx with Torrent Suite. Fifty types of variants including 18 pathogenic or variants of unknown significance were identified from 75 clinical samples and known variants of the reference samples were confirmed by Sanger sequencing and/or NGS. One false-negative results were present for Ion PGM/OTG-snpcaller for an indel variant misidentified as a single nucleotide variant. However, eight discordant results were present for Ion PGM Dx/Torrent Suite with both false-positive and -negative results. A 40-bp deletion, a 4-bp deletion and a 1-bp deletion variant was not called and a false-positive deletion was identified. Four other variants were misidentified as another variant. Ion PGM/OTG-snpcaller showed acceptable performance with good concordance with Sanger sequencing. However, Ion PGM Dx/Torrent Suite showed many discrepant results not suitable for use in a clinical laboratory, requiring further optimization of the data analysis for calling variants.
Arias-Pulido, Hugo; Peyton, Cheri L; Torrez-Martínez, Norah; Anderson, D Nelson; Wheeler, Cosette M
2005-07-20
While HPV 16 variant lineages have been well characterized, the knowledge about HPV 18 variants is limited. In this study, HPV 18 nucleotide variations in the E2 hinge region were characterized by sequence analysis in 47 control and 51 tumor specimens. Fifty of these specimens were randomly selected for sequencing of an LCR-E6 segment and 20 samples representative of LCR-E6 and E2 sequence variants were examined across the L1 region. A total of 2770 nucleotides per HPV 18 variant genome were considered in this study. HPV 18 variant nucleotides were linked among all gene segments analyzed and grouped into three main branches: Asian-American (AA), European (E), and African (Af). These three branches were equally distributed among controls and cases and when stratified by Hispanic and non-Hispanic ethnicities. Among invasive cervical cancer cases, no significant differences in the three HPV variant branches were observed among ethnic groups or when stratified by histopathology (squamous vs. adenocarcinoma). The Af branch showed the greatest nucleotide variability when compared to the HPV 18 reference sequence and was more closely related to HPV 45 than either AA or E branches. Our data also characterize nucleotide and amino acid variations in the L1 capsid gene among HPV 18 variants, which may be relevant to vaccine strategies and subsequent studies of naturally occurring HPV 18 variants. Several novel HPV 18 nucleotide variations were identified in this study.
Unlocking hidden genomic sequence
Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.
2004-01-01
Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330
Steinberg, Karyn Meltz; Ramachandran, Dhanya; Patel, Viren C; Shetty, Amol C; Cutler, David J; Zwick, Michael E
2012-09-28
Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3' UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects.
2012-01-01
Background Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. Methods We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. Results We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3’ UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. Conclusions These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects. PMID:23020841
Amicarelli, Giulia; Adlerstein, Daniel; Shehi, Erlet; Wang, Fengfei; Makrigiorgos, G Mike
2006-10-01
Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled "amplifier", and an "anchor". The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. The system detected and genotyped KRAS sequence variants down to approximately 0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.
Reuter, Miriam S.; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K.C.; Trost, Brett; Paton, Tara A.; Pereira, Sergio L.; Herbrick, Jo-Anne; Wintle, Richard F.; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R.; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W.L.; Wang, Zhuozhi; Patel, Rohan V.; Pellecchia, Giovanna; Wei, John; Strug, Lisa J.; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M.; Bassett, Anne S.; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D.; Stavropoulos, Dimitri J.; Bowdin, Sarah; Hildebrandt, Matthew R.; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M. Stephen; Monfared, Nasim; Hosseini, S. Mohsen; Joseph-George, Ann M.; Keeley, Fred W.; Cook, Ryan A.; Fiume, Marc; Lee, Hin C.; Marshall, Christian R.; Davies, Jill; Hazell, Allison; Buchanan, Janet A.; Szego, Michael J.; Scherer, Stephen W.
2018-01-01
BACKGROUND: The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. METHODS: Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. RESULTS: Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set (n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants — associated with cancer, cardiac or neurodegenerative phenotypes — remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. INTERPRETATION: Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. PMID:29431110
Zeil, Catharina; Widmann, Michael; Fademrecht, Silvia; Vogel, Constantin; Pleiss, Jürgen
2016-05-01
The Lactamase Engineering Database (www.LacED.uni-stuttgart.de) was developed to facilitate the classification and analysis of TEM β-lactamases. The current version contains 474 TEM variants. Two hundred fifty-nine variants form a large scale-free network of highly connected point mutants. The network was divided into three subnetworks which were enriched by single phenotypes: one network with predominantly 2be and two networks with 2br phenotypes. Fifteen positions were found to be highly variable, contributing to the majority of the observed variants. Since it is expected that a considerable fraction of the theoretical sequence space is functional, the currently sequenced 474 variants represent only the tip of the iceberg of functional TEM β-lactamase variants which form a huge natural reservoir of highly interconnected variants. Almost 50% of the variants are part of a quartet. Thus, two single mutations that result in functional enzymes can be combined into a functional protein. Most of these quartets consist of the same phenotype, or the mutations are additive with respect to the phenotype. By predicting quartets from triplets, 3,916 unknown variants were constructed. Eighty-seven variants complement multiple quartets and therefore have a high probability of being functional. The construction of a TEM β-lactamase network and subsequent analyses by clustering and quartet prediction are valuable tools to gain new insights into the viable sequence space of TEM β-lactamases and to predict their phenotype. The highly connected sequence space of TEM β-lactamases is ideally suited to network analysis and demonstrates the strengths of network analysis over tree reconstruction methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W
2018-02-05
The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.
Enfissi, Antoine; Joffret, Marie-Line; Delaune, Déborah; Delpeyroux, Francis; Rousset, Dominique; Bessaud, Maël
2018-06-13
In 2017, numerous cases of acute haemorrhagic conjunctivitis (AHC) were reported in the Caribbean and in South America. Preliminary reports identified adenoviruses and enteroviruses in some patient samples but, until now, none of the etiologic agents have been fully characterized. We report the full-length genomic sequences of 4 coxsackievirus A24 (CV-A24) isolates collected from AHC patients in French Guiana during this outbreak (May and June 2017). These isolates are very closely related and belong to the genotype IV of CV-A24 variant, which consists of strains sampled worldwide during AHC outbreaks in the 2000s and 2010s. No recombination events were detected within the genomic sequences, indicating that members of this genotype have continuously circulated worldwide for more than 10 years without undergoing recombination with other enteroviruses. This unusual trait could be due to their ocular tropism that could impede genetic exchanges between these viruses and other enteroviruses, which replicate mainly in the gut. © 2018 S. Karger AG, Basel.
Takeda, Jun-ichi; Suzuki, Yutaka; Nakao, Mitsuteru; Barrero, Roberto A.; Koyanagi, Kanako O.; Jin, Lihua; Motono, Chie; Hata, Hiroko; Isogai, Takao; Nagai, Keiichi; Otsuki, Tetsuji; Kuryshev, Vladimir; Shionyu, Masafumi; Yura, Kei; Go, Mitiko; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Wiemann, Stefan; Nomura, Nobuo; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi
2006-01-01
We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56 419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37 670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants. PMID:16914452
Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma.
Deml, Brett; Reis, Linda M; Lemyre, Emmanuelle; Clark, Robin D; Kariminejad, Ariana; Semina, Elena V
2016-04-01
Anophthalmia and microphthalmia (A/M) are developmental ocular malformations defined as the complete absence or reduction in size of the eye. A/M is a highly heterogeneous disorder with SOX2 and FOXE3 playing major roles in dominant and recessive pedigrees, respectively; however, the majority of cases lack a genetic etiology. We analyzed 28 probands affected with A/M spectrum (without mutations in SOX2/FOXE3) by whole-exome sequencing. Analysis of 83 known A/M factors identified pathogenic/likely pathogenic variants in PAX6, OTX2 and NDP in three patients. A novel heterozygous likely pathogenic variant in PAX6, c.767T>C, p.(Val256Ala), was identified in two brothers with bilateral microphthalmia, coloboma, primary aphakia, iris hypoplasia, sclerocornea and congenital glaucoma; the unaffected mother appears to be a mosaic carrier. While A/M has been reported as a rare feature, this is the first report of congenital primary aphakia in association with PAX6 and the identified allele represents the first variant in the PAX6 homeodomain to be associated with A/M. A novel pathogenic variant in OTX2, c.651delC, p.(Thr218Hisfs*76), in a patient with syndromic bilateral anophthalmia and a hemizygous pathogenic variant in NDP, c.293 C>T, p.(Pro98Leu), in two brothers with isolated bilateral microphthalmia and sclerocornea were also identified. Pathogenic/likely pathogenic variants were not discovered in the 25 remaining A/M cases. This study underscores the utility of whole-exome sequencing for identification of causative mutations in highly variable ocular phenotypes as well as the extreme genetic heterogeneity of A/M conditions.
Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma
Deml, Brett; Reis, Linda M; Lemyre, Emmanuelle; Clark, Robin D; Kariminejad, Ariana; Semina, Elena V
2016-01-01
Anophthalmia and microphthalmia (A/M) are developmental ocular malformations defined as the complete absence or reduction in size of the eye. A/M is a highly heterogeneous disorder with SOX2 and FOXE3 playing major roles in dominant and recessive pedigrees, respectively; however, the majority of cases lack a genetic etiology. We analyzed 28 probands affected with A/M spectrum (without mutations in SOX2/FOXE3) by whole-exome sequencing. Analysis of 83 known A/M factors identified pathogenic/likely pathogenic variants in PAX6, OTX2 and NDP in three patients. A novel heterozygous likely pathogenic variant in PAX6, c.767T>C, p.(Val256Ala), was identified in two brothers with bilateral microphthalmia, coloboma, primary aphakia, iris hypoplasia, sclerocornea and congenital glaucoma; the unaffected mother appears to be a mosaic carrier. While A/M has been reported as a rare feature, this is the first report of congenital primary aphakia in association with PAX6 and the identified allele represents the first variant in the PAX6 homeodomain to be associated with A/M. A novel pathogenic variant in OTX2, c.651delC, p.(Thr218Hisfs*76), in a patient with syndromic bilateral anophthalmia and a hemizygous pathogenic variant in NDP, c.293 C>T, p.(Pro98Leu), in two brothers with isolated bilateral microphthalmia and sclerocornea were also identified. Pathogenic/likely pathogenic variants were not discovered in the 25 remaining A/M cases. This study underscores the utility of whole-exome sequencing for identification of causative mutations in highly variable ocular phenotypes as well as the extreme genetic heterogeneity of A/M conditions. PMID:26130484
Horvath, Anelia; Korde, Larissa; Greene, Mark H.; Libe, Rosella; Osorio, Paulo; Faucz, Fabio Rueda; Raffin-Sanson, Marie Laure; Tsang, Kit Man; Drori-Herishanu, Limor; Patronas, Yianna; Remmers, Elaine F; Nikita, Maria-Elena; Moran, Jason; Greene, Joseph; Nesterova, Maria; Merino, Maria; Bertherat, Jerome; Stratakis, Constantine A.
2009-01-01
Inactivating germline mutations in phosphodiesterase 11A (PDE11A) have been implicated in adrenal tumor susceptibility. PDE11A is highly-expressed in endocrine steroidogenic tissues, especially the testis, and mice with inactivated Pde11a exhibit male infertility, a known testicular germ cell tumor (TGCT) risk factor. We sequenced the PDE11A gene-coding region in 95 patients with TGCT from 64 unrelated kindreds. We identified 8 non-synonymous substitutions in 20 patients from 15 families: four (R52T; F258Y; G291R; V820M) were newly-recognized, three (R804H; R867G; M878V) were functional variants previously implicated in adrenal tumor predisposition, and one (Y727C) was a known polymorphism. We compared the frequency of these variants in our patients to unrelated controls that had been screened and found negative for any endocrine diseases: only the two previously-reported variants, R804H and R867G, known to be frequent in general population, were detected in these controls. The frequency of all PDE11A-gene variants (combined) was significantly higher among patients with TGCT (P=0.0002), present in 19% of the families of our cohort. Most variants were detected in the general population, but functional studies showed that all these mutations reduced PDE activity, and that PDE11A protein expression was decreased (or absent) in TGCT samples from carriers. This is the first demonstration of a PDE gene’s involvement in TGCT, although the cAMP signaling pathway has been investigated extensively in other reproductive organs and their diseases. In conclusion, we report that PDE11A-inactivating sequence variants may modify the risk of familial and bilateral TGCT. PMID:19549888
Easton, Douglas F; Lesueur, Fabienne; Decker, Brennan; Michailidou, Kyriaki; Li, Jun; Allen, Jamie; Luccarini, Craig; Pooley, Karen A; Shah, Mitul; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Ahmad, Jamil; Thompson, Ella R; Damiola, Francesca; Pertesi, Maroulio; Voegele, Catherine; Mebirouk, Noura; Robinot, Nivonirina; Durand, Geoffroy; Forey, Nathalie; Luben, Robert N; Ahmed, Shahana; Aittomäki, Kristiina; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Beckman, Matthias W; Benitez, Javier; Van Den Berg, David; Blot, William J; Bogdanova, Natalia V; Bojesen, Stig E; Brenner, Hermann; Chang-Claude, Jenny; Chia, Kee Seng; Choi, Ji-Yeob; Conroy, Don M; Cox, Angela; Cross, Simon S; Czene, Kamila; Darabi, Hatef; Devilee, Peter; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flyger, Henrik; Fostira, Florentia; García-Closas, Montserrat; Giles, Graham G; Glendon, Gord; González-Neira, Anna; Guénel, Pascal; Haiman, Christopher A; Hall, Per; Hart, Steven N; Hartman, Mikael; Hooning, Maartje J; Hsiung, Chia-Ni; Ito, Hidemi; Jakubowska, Anna; James, Paul A; John, Esther M; Johnson, Nichola; Jones, Michael; Kabisch, Maria; Kang, Daehee; Kosma, Veli-Matti; Kristensen, Vessela; Lambrechts, Diether; Li, Na; Lindblom, Annika; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Matsuo, Keitaro; Meindl, Alfons; Mitchell, Gillian; Muir, Kenneth; Nevelsteen, Ines; van den Ouweland, Ans; Peterlongo, Paolo; Phuah, Sze Yee; Pylkäs, Katri; Rowley, Simone M; Sangrajrang, Suleeporn; Schmutzler, Rita K; Shen, Chen-Yang; Shu, Xiao-Ou; Southey, Melissa C; Surowy, Harald; Swerdlow, Anthony; Teo, Soo H; Tollenaar, Rob A E M; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Verhoef, Senno; Wong-Brown, Michelle; Zheng, Wei; Zheng, Ying; Nevanlinna, Heli; Scott, Rodney J; Andrulis, Irene L; Wu, Anna H; Hopper, John L; Couch, Fergus J; Winqvist, Robert; Burwinkel, Barbara; Sawyer, Elinor J; Schmidt, Marjanka K; Rudolph, Anja; Dörk, Thilo; Brauch, Hiltrud; Hamann, Ute; Neuhausen, Susan L; Milne, Roger L; Fletcher, Olivia; Pharoah, Paul D P; Campbell, Ian G; Dunning, Alison M; Le Calvez-Kelm, Florence; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia
2016-01-01
Background BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. Methods We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. Results The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). Conclusions These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels. PMID:26921362
Yang, Jinliang; Jiang, Haiying; Yeh, Cheng-Ting; Yu, Jianming; Jeddeloh, Jeffrey A; Nettleton, Dan; Schnable, Patrick S
2015-11-01
Although approaches for performing genome-wide association studies (GWAS) are well developed, conventional GWAS requires high-density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP-GWAS (extreme-phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well-characterized kernel row number trait, which was selected to enable comparisons between the results of XP-GWAS and conventional GWAS. An exome-sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait-associated variants were significantly enriched in regions identified by conventional GWAS. XP-GWAS was able to resolve several linked QTL and detect trait-associated variants within a single gene under a QTL peak. XP-GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorell, Kaisa; Hosseini, Shaghayegh; Palacios Gonzales, Reyna Victoria Palacios
In this study, Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk. The complete genomes ofmore » fifty-two Nicaraguan H. pylorii isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed. The Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South-and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates. In conclusion, the discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.« less
Cheng, Fu Bo; Ozelius, Laurie J; Wan, Xin Hua; Feng, Jia Chun; Ma, Ling Yan; Yang, Ying Mai; Wang, Lin
2012-02-01
Mutations in the THAP1 gene were recently identified as the cause of DYT6 primary dystonia. More than 40 mutations in this gene have been described in different populations. However, no previous report has identified sequence variations that affect the transcript process of the THAP1 gene. In addition, the mutation frequency in Chinese early-onset primary dystonia has not been well characterized. One hundred and two unrelated patients with non-DYT1 early-onset primary dystonia (age at onset <26 years), family members of participants with mutations, and 200 neurologically normal controls were screened for THAP1 gene mutations. The effects of the identified mutations on RNA expression were analyzed using semi-quantitative real-time PCR. Seven sequence variants (c.63_66del TTTC, c.161G>T, c.224A>T, c.267G>A, c.339T>C, c.449A>C, and c.539T>C) were identified in this group of patients (6.9%). In this cohort, 15 subjects (seven unrelated patients and eight family members) were detected to have THAP1 sequence variants. Among these 15 subjects, 11 were manifested (penetrance of DYT6 was 73.3%) and seven presented with craniocervical involvement (63.6%). However, one patient manifested paroxysmal headshake, and one presented with essential hand tremor. Semi-quantitative real-time PCR indicated that a novel silent mutation (c.267G>A) decreased the expression of THAP1 in human lymphocytes. Our findings indicated that THAP1 sequence variants are not common in non-DYT1 early-onset primary dystonia in China and that the clinical manifestation may vary. One silent mutation (c.267G>A) was shown to affect THAP1 expression.
Suzuki, Y; Matsushita, S; Kubota, H; Kobayashi, M; Murauchi, K; Higuchi, Y; Kato, R; Hirai, A; Sadamasu, K
2016-09-01
Staphylocoagulase, an extracellular protein secreted by Staphylococcus aureus, has been used as an epidemiological marker. At least 12 serotypes and 24 genotypes subdivided on the basis of nucleotide sequence have been reported to date. In this study, we identified a novel staphylocoagulase nucleotide sequence, coa310, from staphylococcal food poisoning isolates that had the ability to coagulate plasma, but could not be typed using the conventional method. The protein encoded by coa310 contained the six fundamental conserved domains of staphylocoagulase. The full-length nucleotide sequence of coa310 shared the highest similarity (77·5%) with that of staphylocoagulase-type (SCT) XIa. The sequence of the D1 region, which would be responsible for the determination of SCT, shared the highest similarity (91·8%) with that of SCT XIa. These results suggest that coa310 is a novel variant of SCT XI. Moreover, we demonstrated that coa310 encodes a functioning coagulase, by confirming the coagulating activity of the recombinant protein expressed from coa310. This is the first study to directly demonstrate that Coa310, a putative SCT XI, has coagulating activity. These findings may be useful for the improvement of the staphylocoagulase-typing method, including serotyping and genotyping. This is the first study to identify a novel variant of staphylocoagulase type XI based on its nucleotide sequence and to demonstrate coagulating activity in the variant using a recombinant protein. Elucidation of the variety of staphylocoagulases will provide suggestions for further improvement of the staphylocoagulase-typing method and contribute to our understanding of the epidemiologic characterization of Staphylococcus aureus. © 2016 The Society for Applied Microbiology.
Zhou, Jie; Kherani, Femida; Bardakjian, Tanya M.; Katowitz, James; Hughes, Nkecha; Schimmenti, Lisa A.; Schneider, Adele
2008-01-01
Purpose Mutations in the SOX2 and CHX10 genes have been reported in patients with anophthalmia and/or microphthalmia. In this study, we evaluated 34 anophthalmic/microphthalmic patient DNA samples (two sets of siblings included) for mutations and sequence variants in SOX2 and CHX10. Methods Conformational sensitive gel electrophoresis (CSGE) was used for the initial SOX2 and CHX10 screening of 34 affected individuals (two sets of siblings), five unaffected family members, and 80 healthy controls. Patient samples containing heteroduplexes were selected for sequence analysis. Base pair changes in SOX2 and CHX10 were confirmed by sequencing bidirectionally in patient samples. Results Two novel heterozygous mutations and two sequence variants (one known) in SOX2 were identified in this cohort. Mutation c.310 G>T (p. Glu104X), found in one patient, was in the region encoding the high mobility group (HMG) DNA-binding domain and resulted in a change from glutamic acid to a stop codon. The second mutation, noted in two affected siblings, was a single nucleotide deletion c.549delC (p. Pro184ArgfsX19) in the region encoding the activation domain, resulting in a frameshift and premature termination of the coding sequence. The shortened protein products may result in the loss of function. In addition, a novel nucleotide substitution c.*557G>A was identified in the 3′-untranslated region in one patient. The relationship between the nucleotide change and the protein function is indeterminate. A known single nucleotide polymorphism (c. *469 C>A, SNP rs11915160) was also detected in 2 of the 34 patients. Screening of CHX10 identified two synonymous sequence variants, c.471 C>T (p.Ser157Ser, rs35435463) and c.579 G>A (p. Gln193Gln, novel SNP), and one non-synonymous sequence variant, c.871 G>A (p. Asp291Asn, novel SNP). The non-synonymous polymorphism was also present in healthy controls, suggesting non-causality. Conclusions These results support the role of SOX2 in ocular development. Loss of SOX2 function results in severe eye malformation. CHX10 was not implicated with microphthalmia/anophthalmia in our patient cohort. PMID:18385794
Marshall, Deborah A; Gonzalez, Juan Marcos; Johnson, F Reed; MacDonald, Karen V; Pugh, Amy; Douglas, Michael P; Phillips, Kathryn A
2016-12-01
Whole-genome sequencing (WGS) can be used as a powerful diagnostic tool as well as for screening, but it may lead to anxiety, unnecessary testing, and overtreatment. Current guidelines suggest reporting clinically actionable secondary findings when diagnostic testing is performed. We examined preferences for receiving WGS results. A US nationally representative survey (n = 410 adults) was used to rank preferences for who decides (an expert panel, your doctor, you) which WGS results are reported. We estimated the value of information about variants with varying levels of clinical usefulness by using willingness to pay contingent valuation questions. The results were as follows: 43% preferred to decide themselves what information is included in the WGS report. 38% (95% confidence interval (CI): 33-43%) would not pay for actionable variants, and 3% (95% CI: 1-5%) would pay more than $1,000. 55% (95% CI: 50-60%) would not pay for variants for which medical treatment is currently unclear, and 7% (95% CI: 5-9%) would pay more than $400. Most people prefer to decide what WGS results are reported. Despite valuing actionable information more, some respondents perceive that genetic information could negatively impact them. Preference heterogeneity for WGS information should be considered in the development of policies, particularly to integrate patient preferences with personalized medicine and shared decision making.Genet Med 18 12, 1295-1302.
Possible role of rare variants in Trace amine associated receptor 1 in schizophrenia.
John, Jibin; Kukshal, Prachi; Bhatia, Triptish; Chowdari, K V; Nimgaonkar, V L; Deshpande, S N; Thelma, B K
2017-11-01
Schizophrenia (SZ) is a chronic mental illness with behavioral abnormalities. Recent common variant based genome wide association studies and rare variant detection using next generation sequencing approaches have identified numerous variants that confer risk for SZ, but etiology remains unclear propelling continuing investigations. Using whole exome sequencing, we identified a rare heterozygous variant (c.545G>T; p.Cys182Phe) in Trace amine associated receptor 1 gene (TAAR1 6q23.2) in three affected members in a small SZ family. The variant predicted to be damaging by 15 prediction tools, causes breakage of a conserved disulfide bond in this G-protein-coupled receptor. On screening this intronless gene for additional variant(s) in ~800 sporadic SZ patients, we identified six rare protein altering variants (MAF<0.001) namely p.Ser47Cys, p.Phe51Leu, p.Tyr294Ter, p.Leu295Ser in four unrelated north Indian cases (n=475); p.Ala109Thr and p.Val250Ala in two independent Caucasian/African-American patients (n=310). Five of these variants were also predicted to be damaging. Besides, a rare synonymous variant was observed in SZ patients. These rare variants were absent in north Indian healthy controls (n=410) but significantly enriched in patients (p=0.036). Conversely, three common coding SNPs (rs8192621, rs8192620 and rs8192619) and a promoter SNP (rs60266355) tested for association with SZ in the north Indian cohort were not significant (P>0.05). TAAR1 is a modulator of monoaminergic pathways and interacts with AKT signaling pathways. Substantial animal model based pharmacological and functional data implying its relevance in SZ are also available. However, this is the first report suggestive of the likely contribution of rare variants in this gene to SZ. Copyright © 2017 Elsevier B.V. All rights reserved.
Linkage disequilibrium among commonly genotyped SNP and variants detected from bull sequence
USDA-ARS?s Scientific Manuscript database
Genomic prediction utilizing causal variants could increase selection accuracy above that achieved with SNP genotyped by commercial assays. A number of variants detected from sequencing influential sires are likely to be causal, but noticable improvements in prediction accuracy using imputed sequen...
Ionita-Laza, Iuliana; Ottman, Ruth
2011-11-01
The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as Alzheimer's disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio, sequencing unselected affected individuals may be preferable.
Matsuo, Kumihiro; Tanahashi, Yusuke; Mukai, Tokuo; Suzuki, Shigeru; Tajima, Toshihiro; Azuma, Hiroshi; Fujieda, Kenji
2016-07-01
Dual oxidase 2 (DUOX2) mutations are a cause of dyshormonogenesis (DH) and have been identified in patients with permanent congenital hypothyroidism (PH) and with transient hypothyroidism (TH). We aimed to elucidate the prevalence and phenotypical variations of DUOX2 mutations. Forty-eight Japanese DH patients were enroled and analysed for sequence variants of DUOX2, DUOXA2, and TPO using polymerase chain reaction-amplified direct sequencing. Fourteen sequence variants of DUOX2, including 10 novel variants, were identified in 11 patients. DUOX2 variants were more prevalent (11/48, 22.9%) than TPO (3/48, 6.3%) (p=0.020). The prevalence of DUOX2 variants in TH was slightly, but not significantly, higher than in PH. Furthermore, one patient had digenic heterozygous sequence variants of both DUOX2 and TPO. Our results suggest that DUOX2 mutations might be the most common cause of both PH and TH, and that phenotypes of these mutations might be milder than those of other causes.
Deep whole-genome sequencing of 90 Han Chinese genomes.
Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen
2017-09-01
Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000 Genomes Project, as well as to other human genome projects. © The Authors 2017. Published by Oxford University Press.
Ilin, Aleksandr I; Kulmanov, Murat E; Korotetskiy, Ilya S; Islamov, Rinat A; Akhmetova, Gulshara K; Lankina, Marina V; Reva, Oleg N
2017-01-01
Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis . Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion phenomenon is hereby introduced.
Yilmaz, Huseyin; Altan, Eda; Cizmecigil, Utku Y; Gurel, Aydin; Ozturk, Gulay Yuzbasioglu; Bamac, Ozge Erdogan; Aydin, Ozge; Britton, Paul; Monne, Isabella; Cetinkaya, Burhan; Morgan, Kenton L; Faburay, Bonto; Richt, Juergen A; Turan, Nuri
2016-09-01
The avian coronavirus infectious bronchitis virus (AvCoV-IBV) is recognized as an important global pathogen because new variants are a continuous threat to the poultry industry worldwide. This study investigates the genetic origin and diversity of AvCoV-IBV by analysis of the S1 sequence derived from 49 broiler flocks and 14 layer flocks in different regions of Turkey. AvCoV-IBV RNA was detected in 41 (83.6%) broiler flocks and nine (64.2%) of the layer flocks by TaqMan real-time RT-PCR. In addition, AvCoV-IBV RNA was detected in the tracheas 27/30 (90%), lungs 31/49 (62.2%), caecal tonsils 7/22 (31.8%), and kidneys 4/49 (8.1%) of broiler flocks examined. Pathologic lesions, hemorrhages, and mononuclear infiltrations were predominantly observed in tracheas and to a lesser extent in the lungs and a few in kidneys. A phylogenetic tree based on partial S1 sequences of the detected AvCoV-IBVs (including isolates) revealed that 1) viruses detected in five broiler flocks were similar to the IBV vaccines Ma5, H120, M41; 2) viruses detected in 24 broiler flocks were similar to those previously reported from Turkey and to Israel variant-2 strains; 3) viruses detected in seven layer flocks were different from those found in any of the broiler flocks but similar to viruses previously reported from Iran, India, and China (similar to Israel variant-1 and 4/91 serotypes); and 4) that the AVCoV-IBV, Israeli variant-2 strain, found to be circulating in Turkey appears to be undergoing molecular evolution. In conclusion, genetically different AvCoV-IBV strains, including vaccine-like strains, based on their partial S1 sequence, are circulating in broiler and layer chicken flocks in Turkey and the Israeli variant-2 strain is undergoing evolution.
Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility.
Bacchelli, Elena; Battaglia, Agatino; Cameli, Cinzia; Lomartire, Silvia; Tancredi, Raffaella; Thomson, Susanne; Sutcliffe, James S; Maestrini, Elena
2015-04-01
Chromosome 15q13.3 recurrent microdeletions are causally associated with a wide range of phenotypes, including autism spectrum disorder (ASD), seizures, intellectual disability, and other psychiatric conditions. Whether the reciprocal microduplication is pathogenic is less certain. CHRNA7, encoding for the alpha7 subunit of the neuronal nicotinic acetylcholine receptor, is considered the likely culprit gene in mediating neurological phenotypes in 15q13.3 deletion cases. To assess if CHRNA7 rare variants confer risk to ASD, we performed copy number variant analysis and Sanger sequencing of the CHRNA7 coding sequence in a sample of 135 ASD cases. Sequence variation in this gene remains largely unexplored, given the existence of a fusion gene, CHRFAM7A, which includes a nearly identical partial duplication of CHRNA7. Hence, attempts to sequence coding exons must distinguish between CHRNA7 and CHRFAM7A, making next-generation sequencing approaches unreliable for this purpose. A CHRNA7 microduplication was detected in a patient with autism and moderate cognitive impairment; while no rare damaging variants were identified in the coding region, we detected rare variants in the promoter region, previously described to functionally reduce transcription. This study represents the first sequence variant analysis of CHRNA7 in a sample of idiopathic autism. © 2015 Wiley Periodicals, Inc.
A generic assay for whole-genome amplification and deep sequencing of enterovirus A71
Tan, Le Van; Tuyen, Nguyen Thi Kim; Thanh, Tran Tan; Ngan, Tran Thuy; Van, Hoang Minh Tu; Sabanathan, Saraswathy; Van, Tran Thi My; Thanh, Le Thi My; Nguyet, Lam Anh; Geoghegan, Jemma L.; Ong, Kien Chai; Perera, David; Hang, Vu Thi Ty; Ny, Nguyen Thi Han; Anh, Nguyen To; Ha, Do Quang; Qui, Phan Tu; Viet, Do Chau; Tuan, Ha Manh; Wong, Kum Thong; Holmes, Edward C.; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier
2015-01-01
Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples. PMID:25704598
Kittichotirat, Weerayuth; Patumcharoenpol, Preecha; Rujirawat, Thidarat; Lohnoo, Tassanee; Yingyong, Wanta; Krajaejun, Theerapong
2017-12-01
Pythium insidiosum is a unique oomycete microorganism, capable of infecting humans and animals. The organism can be phylogenetically categorized into three distinct clades: Clade-I (strains from the Americas); Clade-II (strains from Asia and Australia), and Clade-III (strains from Thailand and the United States). Two draft genomes of the P. insidiosum Clade-I strain CDC-B5653 and Clade-II strain Pi-S are available in the public domain. The genome of P. insidiosum from the distinct Clade-III, which is distantly-related to the other two clades, is lacking. Here, we report the draft genome sequence of the P. insidiosum strain Pi45 (also known as MCC13; isolated from a Thai patient with pythiosis; accession numbers BCFM01000001-BCFM01017277) as a representative strain of the phylogenetically-distinct Clade-III. We also report a genome-scale data set of sequence variants (i.e., SNPs and INDELs) found in P. insidiosum (accessible online at the Mendeley database: http://dx.doi.org/10.17632/r75799jy6c.1).
Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families
Ullah, Asmat; Umair, Muhammad; Yousaf, Maryam; Khan, Sher Alam; Nazim-ud-din, Muhammad; Shah, Khadim; Ahmad, Farooq; Azeem, Zahid; Ali, Ghazanfar; Alhaddad, Bader; Rafique, Afzal; Jan, Abid; Haack, Tobias B.; Strom, Tim M.; Meitinger, Thomas; Ghous, Tahseen
2017-01-01
Purpose To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin. Methods Linkage in two families (A and B) was established to BBS7 on chromosome 4q27, in family C to BBS8 on chromosome 14q32.1, and in family D to BBS10 on chromosome 12q21.2. Family E was investigated directly with exome sequence analysis. Results Sanger sequencing revealed two novel mutations and three previously reported mutations in the BBS genes. These mutations include two deletions (c.580_582delGCA, c.1592_1597delTTCCAG) in the BBS7 gene, a missense mutation (p.Gln449His) in the BBS8 gene, a frameshift mutation (c.271_272insT) in the BBS10 gene, and a nonsense mutation (p.Ser40*) in the MKKS (BBS6) gene. Conclusions Two novel mutations and three previously reported variants, identified in the present study, further extend the body of evidence implicating BBS6, BBS7, BBS8, and BBS10 in causing BBS. PMID:28761321
Maselli, Ricardo A; Arredondo, Juan; Vázquez, Jessica; Chong, Jessica X; Bamshad, Michael J; Nickerson, Deborah A; Lara, Marian; Ng, Fiona; Lo, Victoria L; Pytel, Peter; McDonald, Craig M
2017-08-01
Defects in genes encoding the isoforms of the laminin alpha subunit have been linked to various phenotypic manifestations, including brain malformations, muscular dystrophy, ocular defects, cardiomyopathy, and skin abnormalities. We report here a severe defect of neuromuscular transmission in a consanguineous patient with a homozygous variant in the laminin alpha-5 subunit gene (LAMA5). The variant c.8046C>T (p.Arg2659Trp) is rare and has a predicted deleterious effect. The affected individual, who also carries a rare homozygous sequence variant in LAMA1, had muscle weakness, myopia, and facial tics. Magnetic resonance imaging of brain showed mild volume loss and periventricular T2 prolongation. Repetitive nerve stimulation revealed 50% decrement of compound muscle action potential amplitudes and 250% facilitation immediately after exercise, Endplate studies identified a profound reduction of the endplate potential quantal content and endplates with normal postsynaptic folding that were denuded or partially occupied by small nerve terminals. Expression studies revealed that p.Arg2659Trp caused decreased binding of laminin alpha-5 to SV2A and impaired laminin-521 cell-adhesion and cell projection support in primary neuronal cultures. In summary, this report describing severe neuromuscular transmission failure in a patient with a LAMA5 mutation expands the list of phenotypes associated with defects in genes encoding alpha-laminins. © 2017 Wiley Periodicals, Inc.
Efficient analysis of mouse genome sequences reveal many nonsense variants
Steeland, Sophie; Timmermans, Steven; Van Ryckeghem, Sara; Hulpiau, Paco; Saeys, Yvan; Van Montagu, Marc; Vandenbroucke, Roosmarijn E.; Libert, Claude
2016-01-01
Genetic polymorphisms in coding genes play an important role when using mouse inbred strains as research models. They have been shown to influence research results, explain phenotypical differences between inbred strains, and increase the amount of interesting gene variants present in the many available inbred lines. SPRET/Ei is an inbred strain derived from Mus spretus that has ∼1% sequence difference with the C57BL/6J reference genome. We obtained a listing of all SNPs and insertions/deletions (indels) present in SPRET/Ei from the Mouse Genomes Project (Wellcome Trust Sanger Institute) and processed these data to obtain an overview of all transcripts having nonsynonymous coding sequence variants. We identified 8,883 unique variants affecting 10,096 different transcripts from 6,328 protein-coding genes, which is about 28% of all coding genes. Because only a subset of these variants results in drastic changes in proteins, we focused on variations that are nonsense mutations that ultimately resulted in a gain of a stop codon. These genes were identified by in silico changing the C57BL/6J coding sequences to the SPRET/Ei sequences, converting them to amino acid (AA) sequences, and comparing the AA sequences. All variants and transcripts affected were also stored in a database, which can be browsed using a SPRET/Ei M. spretus variants web tool (www.spretus.org), including a manual. We validated the tool by demonstrating the loss of function of three proteins predicted to be severely truncated, namely Fas, IRAK2, and IFNγR1. PMID:27147605
Johnston, Jennifer J; Lee, Chanjae; Wentzensen, Ingrid M; Parisi, Melissa A; Crenshaw, Molly M; Sapp, Julie C; Gross, Jeffrey M; Wallingford, John B; Biesecker, Leslie G
2017-07-01
Disruption of normal ciliary function results in a range of diseases collectively referred to as ciliopathies. Here we report a child with a phenotype that overlapped with Joubert, oral-facial-digital, and Pallister-Hall syndromes including brain, limb, and craniofacial anomalies. We performed exome-sequence analysis on a proband and both parents, filtered for putative causative variants, and Sanger-verified variants of interest. Identified variants in CLUAP1 were functionally analyzed in a Xenopus system to determine their effect on ciliary function. Two variants in CLUAP1 were identified through exome-sequence analysis, Chr16:g.3558407T>G, c.338T>G, p.(Met113Arg) and Chr16:g.3570011C>T, c.688C>T, p.(Arg230Ter). These variants were rare in the Exome Aggregation Consortium (ExAC) data set of 65,000 individuals (one and two occurrences, respectively). Transfection of mutant CLUAP1 constructs into Xenopus embryos showed reduced protein levels p.(Arg230Ter) and reduced intraflagellar transport p.(Met113Arg). The genetic data show that these variants are present in an affected child, are rare in the population, and result in reduced, but not absent, intraflagellar transport. We conclude that biallelic mutations in CLUAP1 resulted in this novel ciliopathy syndrome in the proband. © 2017 Johnston et al.; Published by Cold Spring Harbor Laboratory Press.
Johnston, Jennifer J.; Lee, Chanjae; Wentzensen, Ingrid M.; Parisi, Melissa A.; Crenshaw, Molly M.; Sapp, Julie C.; Gross, Jeffrey M.; Wallingford, John B.; Biesecker, Leslie G.
2017-01-01
Disruption of normal ciliary function results in a range of diseases collectively referred to as ciliopathies. Here we report a child with a phenotype that overlapped with Joubert, oral–facial–digital, and Pallister–Hall syndromes including brain, limb, and craniofacial anomalies. We performed exome-sequence analysis on a proband and both parents, filtered for putative causative variants, and Sanger-verified variants of interest. Identified variants in CLUAP1 were functionally analyzed in a Xenopus system to determine their effect on ciliary function. Two variants in CLUAP1 were identified through exome-sequence analysis, Chr16:g.3558407T>G, c.338T>G, p.(Met113Arg) and Chr16:g.3570011C>T, c.688C>T, p.(Arg230Ter). These variants were rare in the Exome Aggregation Consortium (ExAC) data set of 65,000 individuals (one and two occurrences, respectively). Transfection of mutant CLUAP1 constructs into Xenopus embryos showed reduced protein levels p.(Arg230Ter) and reduced intraflagellar transport p.(Met113Arg). The genetic data show that these variants are present in an affected child, are rare in the population, and result in reduced, but not absent, intraflagellar transport. We conclude that biallelic mutations in CLUAP1 resulted in this novel ciliopathy syndrome in the proband. PMID:28679688
Incidental and clinically actionable genetic variants in 1005 whole exomes and genomes from Qatar.
Jain, Abhinav; Gandhi, Shrey; Koshy, Remya; Scaria, Vinod
2018-03-20
Incidental findings in genomic data have been studied in great detail in the recent years, especially from population-scale data sets. However, little is known about the frequency of such findings in ethnic groups, specifically the Middle East, which were not previously covered in global sequencing studies. The availability of whole exome and genome data sets for a highly consanguineous Arab population from Qatar motivated us to explore the incidental findings in this population-scale data. The sequence data of 1005 Qatari individuals were systematically analyzed for incidental genetic variants in the 59 genes suggested by the American College of Medical Genetics and Genomics. We identified four genetic variants which were pathogenic or likely pathogenic. These variants occurred in six individuals, suggesting a frequency of 0.59% in the population, much lesser than that previously reported from European and African populations. Our analysis identified a variant in RYR1 gene associated with Malignant Hyperthermia that has significantly higher frequency in the population compared to global frequencies. Evaluation of the allele frequencies of these variants suggested enrichment in sub-populations, especially in individuals of Sub-Saharan African ancestry. The present study thereby provides the information on pathogenicity and frequency, which could aid in genomic medicine. To the best of our knowledge, this is the first comprehensive analysis of incidental genetic findings in any Arab population and suggests ethnic differences in incidental findings.
Stokowy, Tomasz; Garbulowski, Mateusz; Fiskerstrand, Torunn; Holdhus, Rita; Labun, Kornel; Sztromwasser, Pawel; Gilissen, Christian; Hoischen, Alexander; Houge, Gunnar; Petersen, Kjell; Jonassen, Inge; Steen, Vidar M
2016-10-01
The search for causative genetic variants in rare diseases of presumed monogenic inheritance has been boosted by the implementation of whole exome (WES) and whole genome (WGS) sequencing. In many cases, WGS seems to be superior to WES, but the analysis and visualization of the vast amounts of data is demanding. To aid this challenge, we have developed a new tool-RareVariantVis-for analysis of genome sequence data (including non-coding regions) for both germ line and somatic variants. It visualizes variants along their respective chromosomes, providing information about exact chromosomal position, zygosity and frequency, with point-and-click information regarding dbSNP IDs, gene association and variant inheritance. Rare variants as well as de novo variants can be flagged in different colors. We show the performance of the RareVariantVis tool in the Genome in a Bottle WGS data set. https://www.bioconductor.org/packages/3.3/bioc/html/RareVariantVis.html tomasz.stokowy@k2.uib.no Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lim, Hassol; Park, Young-Mi; Lee, Jong-Keuk; Taek Lim, Hyun
2016-10-01
To present an efficient and successful application of a single-exome sequencing study in a family clinically diagnosed with X-linked retinitis pigmentosa. Exome sequencing study based on clinical examination data. An 8-year-old proband and his family. The proband and his family members underwent comprehensive ophthalmologic examinations. Exome sequencing was undertaken in the proband using Agilent SureSelect Human All Exon Kit and Illumina HiSeq 2000 platform. Bioinformatic analysis used Illumina pipeline with Burrows-Wheeler Aligner-Genome Analysis Toolkit (BWA-GATK), followed by ANNOVAR to perform variant functional annotation. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation. Analysis of exome sequence data identified a novel frameshift mutation in RP2 gene resulting in a premature stop codon (c.665delC, p.Pro222fsTer237). Sanger sequencing revealed this mutation co-segregated with the disease phenotype in the child's family. We identified a novel causative mutation in RP2 from a single proband's exome sequence data analysis. This study highlights the effectiveness of the whole-exome sequencing in the genetic diagnosis of X-linked retinitis pigmentosa, over the conventional sequencing methods. Even using a single exome, exome sequencing technology would be able to pinpoint pathogenic variant(s) for X-linked retinitis pigmentosa, when properly applied with aid of adequate variant filtering strategy. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
BigQ: a NoSQL based framework to handle genomic variants in i2b2.
Gabetta, Matteo; Limongelli, Ivan; Rizzo, Ettore; Riva, Alberto; Segagni, Daniele; Bellazzi, Riccardo
2015-12-29
Precision medicine requires the tight integration of clinical and molecular data. To this end, it is mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center (Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to use existing clinical data for discovery research that can help the definition of precision medicine interventions when coupled with genetic data. i2b2 can be significantly advanced by designing efficient management solutions of Next Generation Sequencing data. We developed BigQ, an extension of the i2b2 framework, which integrates patient clinical phenotypes with genomic variant profiles generated by Next Generation Sequencing. A visual programming i2b2 plugin allows retrieving variants belonging to the patients in a cohort by applying filters on genomic variant annotations. We report an evaluation of the query performance of our system on more than 11 million variants, showing that the implemented solution scales linearly in terms of query time and disk space with the number of variants. In this paper we describe a new i2b2 web service composed of an efficient and scalable document-based database that manages annotations of genomic variants and of a visual programming plug-in designed to dynamically perform queries on clinical and genetic data. The system therefore allows managing the fast growing volume of genomic variants and can be used to integrate heterogeneous genomic annotations.
Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children.
Wang, Ying; Dang, Xiqiang; He, Qingnan; Zhen, Yan; He, Xiaoxie; Yi, Zhuwen; Zhu, Kuichun
2017-08-20
Approximately 20% of children with idiopathic nephrotic syndrome do not respond to steroid therapy. More than 30 genes have been identified as disease-causing genes for the steroid-resistant nephrotic syndrome (SRNS). Few reports were from the Chinese population. The coding regions of genes commonly associated with SRNS were analyzed to characterize the gene mutation spectrum in children with SRNS in central China. The first phase study involved 38 children with five genes (NPHS1, NPHS2, PLCE1, WT1, and TRPC6) by Sanger sequencing. The second phase study involved 33 children with 17 genes by next generation DNA sequencing (NGS. 22 new patients, and 11 patients from first phase study but without positive findings). Overall deleterious or putatively deleterious gene variants were identified in 19 patients (31.7%), including four NPHS1 variants among five patients and three PLCE1 variants among four other patients. Variants in COL4A3, COL4A4, or COL4A5 were found in six patients. Eight novel variants were identified, including two in NPHS1, two in PLCE1, one in NPHS2, LAMB2, COL4A3, and COL4A4, respectively. 55.6% of the children with variants failed to respond to immunosuppressive agent therapy, while the resistance rate in children without variants was 44.4%. Our results show that screening for deleterious variants in some common genes in children clinically suspected with SRNS might be helpful for disease diagnosis as well as prediction of treatment efficacy and prognosis. Copyright © 2017 Elsevier B.V. All rights reserved.
A programmable method for massively parallel targeted sequencing
Hopmans, Erik S.; Natsoulis, Georges; Bell, John M.; Grimes, Susan M.; Sieh, Weiva; Ji, Hanlee P.
2014-01-01
We have developed a targeted resequencing approach referred to as Oligonucleotide-Selective Sequencing. In this study, we report a series of significant improvements and novel applications of this method whereby the surface of a sequencing flow cell is modified in situ to capture specific genomic regions of interest from a sample and then sequenced. These improvements include a fully automated targeted sequencing platform through the use of a standard Illumina cBot fluidics station. Targeting optimization increased the yield of total on-target sequencing data 2-fold compared to the previous iteration, while simultaneously increasing the percentage of reads that could be mapped to the human genome. The described assays cover up to 1421 genes with a total coverage of 5.5 Megabases (Mb). We demonstrate a 10-fold abundance uniformity of greater than 90% in 1 log distance from the median and a targeting rate of up to 95%. We also sequenced continuous genomic loci up to 1.5 Mb while simultaneously genotyping SNPs and genes. Variants with low minor allele fraction were sensitively detected at levels of 5%. Finally, we determined the exact breakpoint sequence of cancer rearrangements. Overall, this approach has high performance for selective sequencing of genome targets, configuration flexibility and variant calling accuracy. PMID:24782526
Takeoka, Kayo; Okumura, Atsuko; Honjo, Gen; Ohno, Hitoshi
2014-01-01
In anaplastic large cell lymphoma (ALCL), the anaplastic lymphoma kinase (ALK) gene is rearranged with diverse partners due to variant translocations/inversions. Case 1 was a 39-year-old man who developed multiple tumors in the mediastinum, psoas muscle, lung, and lymph nodes. A biopsy specimen of the inguinal node was effaced by large tumor cells expressing CD30, epithelial membrane antigen, and cytoplasmic ALK, which led to a diagnosis of ALK(+) ALCL. Case 2 was a 51-year-old man who was initially diagnosed with undifferentiated carcinoma. He developed multiple skin tumors eight years after his initial presentation, and was finally diagnosed with ALK(+) ALCL. He died of therapy-related acute myeloid leukemia. G-banding and fluorescence in situ hybridization using an ALK break-apart probe revealed the rearrangement of ALK and suggested variant translocation in both cases. We applied an inverse cDNA polymerase chain reaction (PCR) strategy to identify the partner of ALK. Nucleotide sequencing of the PCR products and a database search revealed that the sequences of ATIC in case 1 and TRAF1 in case 2 appeared to follow those of ALK. We subsequently confirmed ATIC-ALK and TRAF1-ALK fusions by reverse transcriptase PCR and nucleotide sequencing. We successfully determined the partner gene of ALK in two cases of ALK(+) ALCL. ATIC is the second most common partner of variant ALK rearrangements, while the TRAF1-ALK fusion gene was first reported in 2013, and this is the second reported case of ALK(+) ALCL carrying TRAF1-ALK.
Al-Muhaizea, Mohammad A; AlMutairi, Faten; Almass, Rawan; AlHarthi, Safinaz; Aldosary, Mazhor S; Alsagob, Maysoon; AlOdaib, Ali; Colak, Dilek; Kaya, Namik
2018-06-01
The objective of this study was the identification of likely genes and mutations associated with an autosomal recessive (AR) rare spinocerebellar ataxia (SCA) phenotype in two patients with infantile onset, from a consanguineous family. Using genome-wide SNP screening, autozygosity mapping, targeted Sanger sequencing and nextgen sequencing, family segregation analysis, and comprehensive neuropanel, we discovered a novel mutation in SPTBN2. Next, we utilized multiple sequence alignment of amino acids from various species as well as crystal structures provided by protein data bank (PDB# 1WYQ and 1WJM) to model the mutation site and its effect on β-III-spectrin. Finally, we used various bioinformatic classifiers to determine pathogenicity of the missense variant. A comprehensive clinical and diagnostic workup including radiological exams were performed on the patients as part of routine patient care. The homozygous missense variant (c.1572C>T; p.R414C) detected in exon 2 was fully segregated in the family and absent in a large ethnic cohort as well as publicly available data sets. Our comprehensive targeted sequencing approaches did not reveal any other likely candidate variants or mutations in both patients. The two male siblings presented with delayed motor milestones and cognitive and learning disability. Brain MRI revealed isolated cerebellar atrophy more marked in midline inferior vermis at ages of 3 and 6.5 years. Sequence alignments of the amino acids for β-III-spectrin indicated that the arginine at 414 is highly conserved among various species and located towards the end of first spectrin repeat domain. Inclusive bioinformatic analysis predicted that the variant is to be damaging and disease causing. In addition to the novel mutation, a brief literature review of the previously reported mutations as well as clinical comparison of the cases were also presented. Our study reviews the previously reported SPTBN2 mutations and cases. Moreover, the novel mutation, p.R414C, adds up to the literature for the infantile-onset form of autosomal recessive ataxia associated with SPTBN2. Previously, few SPTBN2 recessive mutations have been reported in humans. Animal models especially the β-III -/- mouse model provided insights into early coordination and gait deficit suggestive of loss-of-function. It is expected to see more recessive SPTBN2 mutations appearing in the literature during the upcoming years.
A novel PTCH1 mutation underlies non-syndromic cleft lip and/or palate in a Han Chinese family.
Zhao, Huaxiang; Zhong, Wenjie; Leng, Chuntao; Zhang, Jieni; Zhang, Mengqi; Huang, Wenbin; Zhang, Yunfan; Li, Weiran; Jia, Peizeng; Lin, Jiuxiang; Maimaitili, Gulibaha; Chen, Feng
2018-06-16
Cleft lip and/or palate (CL/P) is the most common craniofacial congenital disease, and it has a complex aetiology. This study aimed to identify the causative gene mutation of a Han Chinese family with CL/P. Whole exome sequencing was conducted on the proband and her mother, who exhibited the same phenotype. A Mendelian dominant inheritance model, allele frequency, mutation regions, functional prediction and literature review were used to screen and filter the variants. The candidate was validated by Sanger sequencing. Conservation analysis and homology modelling were conducted. A heterozygous missense mutation c.1175C>T in the PTCH1 gene predicting p.Ala392Val was identified. This variant has not been reported and was predicted to be deleterious. Sanger sequencing verified the variant and the dominant inheritance model in the family. The missense alteration affects an amino acid that is evolutionarily conserved in the first extracellular loop of the PTCH1 protein. The local structure of the mutant protein was significantly altered according to homology modelling. Our findings suggest that c.1175C>T in PTCH1 (NM_000264) may be the causative mutation of this pedigree. Our results add to the evidence that PTCH1 variants play a role in the pathogenesis of orofacial clefts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy.
Sturm, Amy C; Kline, Crystal F; Glynn, Patric; Johnson, Benjamin L; Curran, Jerry; Kilic, Ahmet; Higgins, Robert S D; Binkley, Philip F; Janssen, Paul M L; Weiss, Raul; Raman, Subha V; Fowler, Steven J; Priori, Silvia G; Hund, Thomas J; Carnes, Cynthia A; Mohler, Peter J
2015-05-26
Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Vassiliki, Kokkinou; George, Koutsodontis; Polixeni, Stamatiou; Christoforos, Giatzakis; Minas, Aslanides Ioannis; Stavrenia, Koukoula; Ioannis, Datseris
2018-01-01
Aim To evaluate the frequency and pattern of disease-associated mutations of ABCA4 gene among Greek patients with presumed Stargardt disease (STGD1). Materials and Methods A total of 59 patients were analyzed for ABCA4 mutations using the ABCR400 microarray and PCR-based sequencing of all coding exons and flanking intronic regions. MLPA analysis as well as sequencing of two regions in introns 30 and 36 reported earlier to harbor deep intronic disease-associated variants was used in 4 selected cases. Results An overall detection rate of at least one mutant allele was achieved in 52 of the 59 patients (88.1%). Direct sequencing improved significantly the complete characterization rate, that is, identification of two mutations compared to the microarray analysis (93.1% versus 50%). In total, 40 distinct potentially disease-causing variants of the ABCA4 gene were detected, including six previously unreported potentially pathogenic variants. Among the disease-causing variants, in this cohort, the most frequent was c.5714+5G>A representing 16.1%, while p.Gly1961Glu and p.Leu541Pro represented 15.2% and 8.5%, respectively. Conclusions By using a combination of methods, we completely molecularly diagnosed 48 of the 59 patients studied. In addition, we identified six previously unreported, potentially pathogenic ABCA4 mutations. PMID:29854428
Hasumi, Hisashi; Furuya, Mitsuko; Tatsuno, Kenji; Yamamoto, Shogo; Baba, Masaya; Hasumi, Yukiko; Isono, Yasuhiro; Suzuki, Kae; Jikuya, Ryosuke; Otake, Shinji; Muraoka, Kentaro; Osaka, Kimito; Hayashi, Narihiko; Makiyama, Kazuhide; Miyoshi, Yasuhide; Kondo, Keiichi; Nakaigawa, Noboru; Kawahara, Takashi; Izumi, Koji; Teranishi, Junichi; Yumura, Yasushi; Uemura, Hiroji; Nagashima, Yoji; Metwalli, Adam R; Schmidt, Laura S; Aburatani, Hiroyuki; Linehan, W Marston; Yao, Masahiro
2018-05-14
Birt-Hogg-Dubé (BHD) syndrome is a hereditary kidney cancer syndrome, which predisposes patients to develop kidney cancer, cutaneous fibrofolliculomas and pulmonary cysts. The responsible gene FLCN is a tumor suppressor for kidney cancer which plays an important role in energy homeostasis through the regulation of mitochondrial oxidative metabolism. However, the process by which FLCN-deficiency leads to renal tumorigenesis is unclear. In order to clarify molecular pathogenesis of BHD-associated kidney cancer, we conducted whole-exome sequencing analysis using next-generation sequencing technology as well as metabolite analysis using LC/MS and GC/MS. Whole-exome sequencing analysis of BHD-associated kidney cancer revealed that copy number variations (CNV) of BHD-associated kidney cancer are considerably different from those already reported in sporadic cases. In somatic variant analysis, very few variants were commonly observed in BHD-associated kidney cancer; however, variants in chromatin remodeling genes were frequently observed in BHD-associated kidney cancer (17/29 tumors, 59%). Metabolite analysis of BHD-associated kidney cancer revealed metabolic reprogramming towards upregulated redox regulation which may neutralize reactive oxygen species potentially produced from mitochondria with increased respiratory capacity under FLCN-deficiency. BHD-associated kidney cancer displays unique molecular characteristics which are completely different from sporadic kidney cancer, providing mechanistic insight into tumorigenesis under FLCN-deficiency as well as a foundation for development of novel therapeutics for kidney cancer.
Biswas, Subhajit; Jackson, Philippa; Shannon, Rebecca; Dulwich, Katherine; Sukla, Soumi; Dixon, Ronald A
This molecular study is the first report, to the best of our knowledge, on identification of norovirus, NoV GII.4 Sydney 2012 variants, from blue mussels collected from UK coastal waters. Blue mussels (three pooled samples from twelve mussels) collected during the 2013 summer months from UK coastal sites were screened by RT-PCR assays. PCR products of RdRP gene for noroviruses were purified, sequenced and subjected to phylogenetic analysis. All the samples tested positive for NoVs. Sequencing revealed that the NoV partial RdRP gene sequences from two pooled samples clustered with the pandemic "GII.4 Sydney variants" whilst the other pooled sample clustered with the NoV GII.2 variants. This molecular study indicated mussel contamination with pathogenic NoVs even during mid-summer in UK coastal waters which posed potential risk of NoV outbreaks irrespective of season. As the detection of Sydney 2012 NoV from our preliminary study of natural coastal mussels interestingly corroborated with NoV outbreaks in nearby areas during the same period, it emphasizes the importance of environmental surveillance work for forecast of high risk zones of NoV outbreaks. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Feliubadaló, Lídia; Lopez-Doriga, Adriana; Castellsagué, Ester; del Valle, Jesús; Menéndez, Mireia; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Gómez, Carolina; Campos, Olga; Pineda, Marta; González, Sara; Moreno, Victor; Brunet, Joan; Blanco, Ignacio; Serra, Eduard; Capellá, Gabriel; Lázaro, Conxi
2013-01-01
Next-generation sequencing (NGS) is changing genetic diagnosis due to its huge sequencing capacity and cost-effectiveness. The aim of this study was to develop an NGS-based workflow for routine diagnostics for hereditary breast and ovarian cancer syndrome (HBOCS), to improve genetic testing for BRCA1 and BRCA2. A NGS-based workflow was designed using BRCA MASTR kit amplicon libraries followed by GS Junior pyrosequencing. Data analysis combined Variant Identification Pipeline freely available software and ad hoc R scripts, including a cascade of filters to generate coverage and variant calling reports. A BRCA homopolymer assay was performed in parallel. A research scheme was designed in two parts. A Training Set of 28 DNA samples containing 23 unique pathogenic mutations and 213 other variants (33 unique) was used. The workflow was validated in a set of 14 samples from HBOCS families in parallel with the current diagnostic workflow (Validation Set). The NGS-based workflow developed permitted the identification of all pathogenic mutations and genetic variants, including those located in or close to homopolymers. The use of NGS for detecting copy-number alterations was also investigated. The workflow meets the sensitivity and specificity requirements for the genetic diagnosis of HBOCS and improves on the cost-effectiveness of current approaches. PMID:23249957
Aykut, Ayça; Onay, Hüseyin; Durmaz, Asude; Karaca, Emin; Vergin, Canan; Aydınok, Yeşim; Özkınay, Ferda
2015-07-01
The Agean is one of the regions in Turkey where thalassemias and abnormal hemoglobins (Hbs) are prevalent. Combined heterozygosity of thalassemia mutations with a variety of structural Hb variants lead to an extremely wide spectrum of clinical and hematological phenotypes which is of importance for prenatal diagnosis. One hundred and seventeen patients and carriers diagnosed by hemoglobin electrophoresis (HPLC), at risk for abnormal hemoglobinopathies were screened for mutational analysis of the beta-globin gene. The full coding the 5' UTR, and the 3' UTR sequences of beta-globin gene (GenBank accession no. U01317) were amplified and sequenced. In this study, a total of 118 (12.24%) structural Hb variant alleles were identified in 1341 mutated beta-chain alleles in Medical Genetics Department of Ege University between January 2006 and November 2013. Here, we report the mutation spectrum of abnormal Hbs associated with the beta-globin gene in Aegean region of Turkey. In the present study, the Hb Hinsdale and Hb Andrew-Minneapolis variants are demonstrated for the first time in the Turkish population.
Caro-Llopis, Alfonso; Rosello, Monica; Orellana, Carmen; Oltra, Silvestre; Monfort, Sandra; Mayo, Sonia; Martinez, Francisco
2016-12-01
Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Gao, Li; Bin, Lianghua; Rafaels, Nicholas M; Huang, Lili; Potee, Joseph; Ruczinski, Ingo; Beaty, Terri H; Paller, Amy S; Schneider, Lynda C; Gallo, Rich; Hanifin, Jon M; Beck, Lisa A; Geha, Raif S; Mathias, Rasika A; Barnes, Kathleen C; Leung, Donald Y M
2015-12-01
A subset of atopic dermatitis is associated with increased susceptibility to eczema herpeticum (ADEH+). We previously reported that common single nucleotide polymorphisms (SNPs) in the IFN-γ (IFNG) and IFN-γ receptor 1 (IFNGR1) genes were associated with the ADEH+ phenotype. We sought to interrogate the role of rare variants in interferon pathway genes for the risk of ADEH+. We performed targeted sequencing of interferon pathway genes (IFNG, IFNGR1, IFNAR1, and IL12RB1) in 228 European American patients with AD selected according to their eczema herpeticum status, and severity was measured by using the Eczema Area and Severity Index. Replication genotyping was performed in independent samples of 219 European American and 333 African American subjects. Functional investigation of loss-of-function variants was conducted by using site-directed mutagenesis. We identified 494 single nucleotide variants encompassing 105 kb of sequence, including 145 common, 349 (70.6%) rare (minor allele frequency <5%), and 86 (17.4%) novel variants, of which 2.8% were coding synonymous, 93.3% were noncoding (64.6% intronic), and 3.8% were missense. We identified 6 rare IFNGR1 missense variants, including 3 damaging variants (Val14Met [V14M], Val61Ile, and Tyr397Cys [Y397C]) conferring a higher risk for ADEH+ (P = .031). Variants V14M and Y397C were confirmed to be deleterious, leading to partial IFNGR1 deficiency. Seven common IFNGR1 SNPs, along with common protective haplotypes (2-7 SNPs), conferred a reduced risk of ADEH+ (P = .015-.002 and P = .0015-.0004, respectively), and both SNP and haplotype associations were replicated in an independent African American sample (P = .004-.0001 and P = .001-.0001, respectively). Our results provide evidence that both genetic variants in the gene encoding IFNGR1 are implicated in susceptibility to the ADEH+ phenotype. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong
2018-01-01
Background Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. Material/Methods Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. Results From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10−4). Conclusions This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations. PMID:29505555
Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong
2018-03-05
BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10^-4). CONCLUSIONS This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.
Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup
2010-01-01
Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.
Burroughs, Richard E J; Penzhorn, Barend L; Wiesel, Ingrid; Barker, Nancy; Vorster, Ilse; Oosthuizen, Marinda C
2017-02-01
The objective of our study was identification and molecular characterization of piroplasms and rickettsias occurring in brown (Parahyaena brunnea) and spotted hyaenas (Crocuta crocuta) from various localities in Namibia and South Africa. Whole blood (n = 59) and skin (n = 3) specimens from brown (n = 15) and spotted hyaenas (n = 47) were screened for the presence of Babesia, Theileria, Ehrlichia and Anaplasma species using the reverse line blot (RLB) hybridization technique. PCR products of 52/62 (83.9%) of the specimens hybridized only with the Theileria/Babesia genus-specific probes and not with any of the species-specific probes, suggesting the presence of a novel species or variant of a species. No Ehrlichia and/or Anaplasma species DNA could be detected. A parasite 18S ribosomal RNA gene of brown (n = 3) and spotted hyaena (n = 6) specimens was subsequently amplified and cloned, and the recombinants were sequenced. Homologous sequence searches of databases indicated that the obtained sequences were most closely related to Babesia lengau, originally described from cheetahs (Acinonyx jubatus). Observed sequence similarities were subsequently confirmed by phylogenetic analyses which showed that the obtained hyaena sequences formed a monophyletic group with B. lengau, B abesia conradae and sequences previously isolated from humans and wildlife in the western USA. Within the B. lengau clade, the obtained sequences and the published B. lengau sequences were grouped into six distinct groups, of which groups I to V represented novel B. lengau genotypes and/or gene variants. We suggest that these genotypes cannot be classified as new Babesia species, but rather as variants of B. lengau. This is the first report of occurrence of piroplasms in brown hyaenas.
Rossi, Massimiliano; Chatron, Nicolas; Labalme, Audrey; Ville, Dorothée; Carneiro, Maryline; Edery, Patrick; des Portes, Vincent; Lemke, Johannes R; Sanlaville, Damien; Lesca, Gaetan
2017-02-01
We report on two consanguineous sibs affected with severe intellectual disability and autistic features due to a homozygous missense variant of GRIN1. Massive parallel sequencing was performed using a gene panel including 450 genes related to intellectual disability and autism spectrum disorders. We found a homozygous missense variation of GRIN1 (c.679G>C; p.(Asp227His)) in the two affected sibs, which was inherited from both unaffected heterozygous parents. Heterozygous variants of GRIN1, encoding the GluN1 subunit of the NMDA receptor, have been reported in patients with neurodevelopmental disorders including epileptic encephalopathy, severe intellectual disability, and movement disorders. The p.(Asp227His) variant is located in the same aminoterminal protein domain as the recently published p.(Arg217Trp), which was found at the homozygous state in two patients with a similar phenotype of severe intellectual disability and autistic features but without epilepsy. In silico predictions were consistent with a deleterious effect. The present findings further expand the clinical spectrum of GRIN1 variants and support the existence of hypomorphic variants causing severe neurodevelopmental impairment with autosomal recessive inheritance.
GWASeq: targeted re-sequencing follow up to GWAS.
Salomon, Matthew P; Li, Wai Lok Sibon; Edlund, Christopher K; Morrison, John; Fortini, Barbara K; Win, Aung Ko; Conti, David V; Thomas, Duncan C; Duggan, David; Buchanan, Daniel D; Jenkins, Mark A; Hopper, John L; Gallinger, Steven; Le Marchand, Loïc; Newcomb, Polly A; Casey, Graham; Marjoram, Paul
2016-03-03
For the last decade the conceptual framework of the Genome-Wide Association Study (GWAS) has dominated the investigation of human disease and other complex traits. While GWAS have been successful in identifying a large number of variants associated with various phenotypes, the overall amount of heritability explained by these variants remains small. This raises the question of how best to follow up on a GWAS, localize causal variants accounting for GWAS hits, and as a consequence explain more of the so-called "missing" heritability. Advances in high throughput sequencing technologies now allow for the efficient and cost-effective collection of vast amounts of fine-scale genomic data to complement GWAS. We investigate these issues using a colon cancer dataset. After QC, our data consisted of 1993 cases, 899 controls. Using marginal tests of associations, we identify 10 variants distributed among six targeted regions that are significantly associated with colorectal cancer, with eight of the variants being novel to this study. Additionally, we perform so-called 'SNP-set' tests of association and identify two sets of variants that implicate both common and rare variants in the etiology of colorectal cancer. Here we present a large-scale targeted re-sequencing resource focusing on genomic regions implicated in colorectal cancer susceptibility previously identified in several GWAS, which aims to 1) provide fine-scale targeted sequencing data for fine-mapping and 2) provide data resources to address methodological questions regarding the design of sequencing-based follow-up studies to GWAS. Additionally, we show that this strategy successfully identifies novel variants associated with colorectal cancer susceptibility and can implicate both common and rare variants.
López-Romero, Ricardo; Iglesias-Chiesa, Candela; Alatorre, Brenda; Vázquez, Karla; Piña-Sánchez, Patricia; Alvarado, Isabel; Lazos, Minerva; Peralta, Raúl; González-Yebra, Beatriz; Romero, Anae; Salcedo, Mauricio
2013-01-01
The role of human papillomavirus (HPV) infection in penile carcinoma (PeC) is currently reported and about half of the PeC is associated with HPV16 and 18. We used a PCR-based strategy by using HPV general primers to analyze 86 penile carcinomas paraffin-embedded tissues. Some clinical data, the histological subtype, growth pattern, and differentiation degree were also collected. The amplified fragments were then sequenced to confirm the HPV type and for HPV16/18 variants. DNA samples were also subjected to relative real time PCR for hTERC gene copy number. Some clinical data were also collected. Global HPV frequency was 77.9%. Relative contributions was for HPV16 (85%), 31 (4.4%), 11 (4.4%), 58, 33, 18, and 59 (1.4% each one). Sequence analysis of HPV16 identified European variants and Asian-American (AAb-c) variants in 92% and in 8% of the samples, respectively. Furthermore hTERC gene amplification was observed in only 17% of the cases. Our results suggest that some members of HPV A9 group (represented by HPV16, 58, and 31) are the most frequent among PeC patients studied with an important contribution from HPV16 European variant. The hTERC gene amplification could be poorly related to penile epithelial tissue.
López-Romero, Ricardo; Iglesias-Chiesa, Candela; Alatorre, Brenda; Vázquez, Karla; Piña-Sánchez, Patricia; Alvarado, Isabel; Lazos, Minerva; Peralta, Raúl; González-Yebra, Beatriz; Romero, AnaE; Salcedo, Mauricio
2013-01-01
The role of human papillomavirus (HPV) infection in penile carcinoma (PeC) is currently reported and about half of the PeC is associated with HPV16 and 18. We used a PCR-based strategy by using HPV general primers to analyze 86 penile carcinomas paraffin-embedded tissues. Some clinical data, the histological subtype, growth pattern, and differentiation degree were also collected. The amplified fragments were then sequenced to confirm the HPV type and for HPV16/18 variants. DNA samples were also subjected to relative real time PCR for hTERC gene copy number. Some clinical data were also collected. Global HPV frequency was 77.9%. Relative contributions was for HPV16 (85%), 31 (4.4%), 11 (4.4%), 58, 33, 18, and 59 (1.4% each one). Sequence analysis of HPV16 identified European variants and Asian-American (AAb-c) variants in 92% and in 8% of the samples, respectively. Furthermore hTERC gene amplification was observed in only 17% of the cases. Our results suggest that some members of HPV A9 group (represented by HPV16, 58, and 31) are the most frequent among PeC patients studied with an important contribution from HPV16 European variant. The hTERC gene amplification could be poorly related to penile epithelial tissue. PMID:23826423
Structural analysis of an HLA-B27 functional variant, B27d detected in American blacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojo, S.; Aparicio, P.; Hansen, J.A.
1987-11-15
The structure of a new functional variant B27d has been established by comparative peptide mapping and radiochemical sequencing. This analysis complete the structural characterization of the six know histocompatibility leukocyte antigen (HLA)-B27 subtypes. The only detected amino acid change between the main HLA-B27.1 subtype and B27d is that of Try/sub 59/ to His/sub 59/. Position 59 has not been previously found to vary among class I HLA or H-2 antigens. Such substitution accounts for the reported isoelectric focusing pattern of this variant. HLA-B27d is the only B27 variant found to differ from other subtypes by a single amino acid replacement.more » The nature of the change is compatible with its origin by a point mutation from HLB-B27.1. Because B27d was found only American blacks and in no other ethnic groups, it is suggested that this variant originated as a result of a mutation of the B27.1 gene that occurred within the black population. Structural analysis of B27d was done by comparative mapping. Radiochemical sequencing was carried out with /sup 14/C-labeled and /sup 3/H-labeled amino acids.« less
Identification of a novel valosin-containing protein polymorphism in late-onset Alzheimer's disease.
Kaleem, M; Zhao, A; Hamshere, M; Myers, A J
2007-01-01
Recently, mutations in the valosin-containing protein gene (VCP) were found to be causative for a rare form of dementia [Watts GDJ, et al.: Nat Genet 2004;36:377-381]. This gene lies within a region on the genome that has been linked to late onset Alzheimer's disease (LOAD) [Myers A, et al.: Am J Med Genet 2002;114:233-242]. In this study, we investigated whether variation within VCP could account for the LOAD linkage peak on chromosome 9. We sequenced 188 individuals from the set of sibling pairs we had used to obtain the linkage results for chromosome 9 to look for novel polymorphisms that could explain the linkage signal. Any variant that was found was then typed in 2 additional sets of neuropathologically confirmed samples to look for associations with Alzheimer's disease. We found 2 variants when we sequenced VCP. One was a novel rare variant (R92H) and the other is already reported within the publicly available databases (rs10972300). Neither explained the chromosome 9 linkage signal for LOAD. We have found a novel rare variant within the VCP gene, but we did not find a variant that could explain the linkage signal for LOAD on chromosome 9. Copyright (c) 2007 S. Karger AG, Basel.
Low, Karen J; Ansari, Morad; Abou Jamra, Rami; Clarke, Angus; El Chehadeh, Salima; FitzPatrick, David R; Greenslade, Mark; Henderson, Alex; Hurst, Jane; Keller, Kory; Kuentz, Paul; Prescott, Trine; Roessler, Franziska; Selmer, Kaja K; Schneider, Michael C; Stewart, Fiona; Tatton-Brown, Katrina; Thevenon, Julien; Vigeland, Magnus D; Vogt, Julie; Willems, Marjolaine; Zonana, Jonathan; Study, D D D; Smithson, Sarah F
2017-01-01
PUF60 encodes a nucleic acid-binding protein, a component of multimeric complexes regulating RNA splicing and transcription. In 2013, patients with microdeletions of chromosome 8q24.3 including PUF60 were found to have developmental delay, microcephaly, craniofacial, renal and cardiac defects. Very similar phenotypes have been described in six patients with variants in PUF60, suggesting that it underlies the syndrome. We report 12 additional patients with PUF60 variants who were ascertained using exome sequencing: six through the Deciphering Developmental Disorders Study and six through similar projects. Detailed phenotypic analysis of all patients was undertaken. All 12 patients had de novo heterozygous PUF60 variants on exome analysis, each confirmed by Sanger sequencing: four frameshift variants resulting in premature stop codons, three missense variants that clustered within the RNA recognition motif of PUF60 and five essential splice-site (ESS) variant. Analysis of cDNA from a fibroblast cell line derived from one of the patients with an ESS variants revealed aberrant splicing. The consistent feature was developmental delay and most patients had short stature. The phenotypic variability was striking; however, we observed similarities including spinal segmentation anomalies, congenital heart disease, ocular colobomata, hand anomalies and (in two patients) unilateral renal agenesis/horseshoe kidney. Characteristic facial features included micrognathia, a thin upper lip and long philtrum, narrow almond-shaped palpebral fissures, synophrys, flared eyebrows and facial hypertrichosis. Heterozygote loss-of-function variants in PUF60 cause a phenotype comprising growth/developmental delay and craniofacial, cardiac, renal, ocular and spinal anomalies, adding to disorders of human development resulting from aberrant RNA processing/spliceosomal function. PMID:28327570
Kan, Mengyuan; Auer, Paul L; Wang, Gao T; Bucasas, Kristine L; Hooker, Stanley; Rodriguez, Alejandra; Li, Biao; Ellis, Jaclyn; Adrienne Cupples, L; Ida Chen, Yii-Der; Dupuis, Josée; Fox, Caroline S; Gross, Myron D; Smith, Joshua D; Heard-Costa, Nancy; Meigs, James B; Pankow, James S; Rotter, Jerome I; Siscovick, David; Wilson, James G; Shendure, Jay; Jackson, Rebecca; Peters, Ulrike; Zhong, Hua; Lin, Danyu; Hsu, Li; Franceschini, Nora; Carlson, Chris; Abecasis, Goncalo; Gabriel, Stacey; Bamshad, Michael J; Altshuler, David; Nickerson, Deborah A; North, Kari E; Lange, Leslie A; Reiner, Alexander P; Leal, Suzanne M
2016-01-01
Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10−8) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10−4) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response. PMID:26757982
Kan, Mengyuan; Auer, Paul L; Wang, Gao T; Bucasas, Kristine L; Hooker, Stanley; Rodriguez, Alejandra; Li, Biao; Ellis, Jaclyn; Adrienne Cupples, L; Ida Chen, Yii-Der; Dupuis, Josée; Fox, Caroline S; Gross, Myron D; Smith, Joshua D; Heard-Costa, Nancy; Meigs, James B; Pankow, James S; Rotter, Jerome I; Siscovick, David; Wilson, James G; Shendure, Jay; Jackson, Rebecca; Peters, Ulrike; Zhong, Hua; Lin, Danyu; Hsu, Li; Franceschini, Nora; Carlson, Chris; Abecasis, Goncalo; Gabriel, Stacey; Bamshad, Michael J; Altshuler, David; Nickerson, Deborah A; North, Kari E; Lange, Leslie A; Reiner, Alexander P; Leal, Suzanne M
2016-08-01
Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10(-8)) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10(-4)) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response.
Teng, S; Thomson, P A; McCarthy, S; Kramer, M; Muller, S; Lihm, J; Morris, S; Soares, D C; Hennah, W; Harris, S; Camargo, L M; Malkov, V; McIntosh, A M; Millar, J K; Blackwood, D H; Evans, K L; Deary, I J; Porteous, D J; McCombie, W R
2018-05-01
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWER across ), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWER across P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWER across P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.
Morak, Monika; Ibisler, Ayseguel; Keller, Gisela; Jessen, Ellen; Laner, Andreas; Gonzales-Fassrainer, Daniela; Locher, Melanie; Massdorf, Trisari; Nissen, Anke M; Benet-Pagès, Anna; Holinski-Feder, Elke
2018-04-01
Germline defects in MLH1 , MSH2 , MSH6 and PMS2 predisposing for Lynch syndrome (LS) are mainly based on sequence changes, whereas a constitutional epimutation of MLH1 (CEM) is exceptionally rare. This abnormal MLH1 promoter methylation is not hereditary when arising de novo, whereas a stably heritable and variant-induced CEM was described for one single allele. We searched for MLH1 promoter variants causing a germline or somatic methylation induction or transcriptional repression. We analysed the MLH1 promoter sequence in five different patient groups with colorectal cancer (CRC) (n=480) composed of patients with i) CEM (n=16), ii) unsolved loss of MLH1 expression in CRC (n=37), iii) CpG-island methylator-phenotype CRC (n=102), iv) patients with LS (n=83) and v) MLH1-proficient CRC (n=242) as controls. 1150 patients with non-LS tumours also served as controls to correctly judge the results. We detected 10 rare MLH1 promoter variants. One novel, complex MLH1 variant c.-63_-58delins18 is present in a patient with CRC with CEM and his sister, both showing a complete allele-specific promoter methylation and transcriptional silencing. The other nine promoter variants detected in 17 individuals were not associated with methylation. For four of these, a normal, biallelic MLH1 expression was found in the patients' cDNA. We report the second promoter variant stably inducing a hereditary CEM. Concerning the classification of promoter variants, we discuss contradictory results from the literature for two variants, describe classification discrepancies between existing rules for five variants, suggest the (re-)classification of five promoter variants to (likely) benign and regard four variants as functionally unclear. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Qian, Maoxiang; Cao, Xueyuan; Devidas, Meenakshi; Yang, Wenjian; Cheng, Cheng; Dai, Yunfeng; Carroll, Andrew; Heerema, Nyla A.; Zhang, Hui; Moriyama, Takaya; Gastier-Foster, Julie M.; Xu, Heng; Raetz, Elizabeth; Larsen, Eric; Winick, Naomi; Bowman, W. Paul; Martin, Paul L.; Mardis, Elaine R.; Fulton, Robert; Zambetti, Gerard; Borowitz, Michael; Wood, Brent; Nichols, Kim E.; Carroll, William L.; Pui, Ching-Hon; Mullighan, Charles G.; Evans, William E.; Hunger, Stephen P.; Relling, Mary V.; Loh, Mignon L.
2018-01-01
Purpose Germline TP53 variation is the genetic basis of Li-Fraumeni syndrome, a highly penetrant cancer predisposition condition. Recent reports of germline TP53 variants in childhood hypodiploid acute lymphoblastic leukemia (ALL) suggest that this type of leukemia is another manifestation of Li-Fraumeni syndrome; however, the pattern, prevalence, and clinical relevance of TP53 variants in childhood ALL remain unknown. Patients and Methods Targeted sequencing of TP53 coding regions was performed in 3,801 children from the Children’s Oncology Group frontline ALL clinical trials, AALL0232 and P9900. TP53 variant pathogenicity was evaluated according to experimentally determined transcriptional activity, in silico prediction of damaging effects, and prevalence in non-ALL control populations. TP53 variants were analyzed for their association with ALL presenting features and treatment outcomes. Results We identified 49 unique nonsilent rare TP53 coding variants in 77 (2.0%) of 3,801 patients sequenced, of which 22 variants were classified as pathogenic. TP53 pathogenic variants were significantly over-represented in ALL compared with non-ALL controls (odds ratio, 5.2; P < .001). Children with TP53 pathogenic variants were significantly older at ALL diagnosis (median age, 15.5 years v 7.3 years; P < .001) and were more likely to have hypodiploid ALL (65.4% v 1.2%; P < .001). Carrying germline TP53 pathogenic variants was associated with inferior event-free survival and overall survival (hazard ratio, 4.2 and 3.9; P < .001 and .001, respectively). In particular, children with TP53 pathogenic variants were at a dramatically higher risk of second cancers than those without pathogenic variants, with 5-year cumulative incidence of 25.1% and 0.7% (P < .001), respectively. Conclusion Loss-of-function germline TP53 variants predispose children to ALL and to adverse treatment outcomes with ALL therapy, particularly the risk of second malignant neoplasms. PMID:29300620
Evidence for two transferrin loci in the Salmo trutta genome.
Rozman, T; Dovc, P; Marić, S; Kokalj-Vokac, N; Erjavec-Skerget, A; Rab, P; Snoj, A
2008-12-01
To determine the organization of transferrin (TF) locus in the Salmo trutta genome, partial DNA and cDNA sequencing, fluorescent in situ hybridization (FISH) and Salmo salar BAC analysis were performed. TF expression levels and copy number prediction were assessed using real-time PCR. In addition to two previously reported DNA TF variant sequences of S. trutta and Salmo marmoratus (TF1), two novel variant sequences (TF2) were revealed in both species. Variant-specific sequence tags, characterizing two variants for each TF type (TF1 and TF2), were identified in genomic clones from each of the F1 hybrids between S. trutta and S. marmoratus. These clearly documented double heterozygote status at the TF loci. The real-time PCR data showed that each of the two TF types (TF1 and TF2) existed in one copy only and that the transcription of TF2 was considerably lower compared with TF1. Using FISH, hybridization signals were observed on two medium-sized acrocentric chromosomes of S. trutta karyotype. A TF type-specific PCR followed by a restriction analysis revealed the presence of two TF loci in the majority of analysed BAC clones. It was concluded that the TF gene is duplicated in the genome of S. trutta, and that the two TF loci are located adjacent to one another on the same chromosome. The differing transcription levels of TF1 and TF2 appear to depend on the corresponding promoter activity, which at least for TF2 seems to vary between different Salmo congeners.
Yebra, Gonzalo; de Mulder, Miguel; Holguín, África
2013-01-01
Background The HIV epidemic is increasing in Equatorial Guinea (GQ), West Central Africa, but few studies have reported its HIV molecular epidemiology. We aimed to describe the HIV-1 group M (HIV-1M) variants and drug-resistance mutations in GQ using sequences sampled in this country and in Spain, a frequent destination of Equatoguinean migrants. Methods We collected 195 HIV-1M pol sequences from Equatoguinean subjects attending Spanish clinics during 1997-2011, and 83 additional sequences sampled in GQ in 1997 and 2008 from GenBank. All (n = 278) were re-classified using phylogeny and tested for drug-resistance mutations. To evaluate the origin of CRF02_AG in GQ, we analyzed 2,562 CRF02_AG sequences and applied Bayesian MCMC inference (BEAST program). Results Most Equatoguinean patients recruited in Spain were women (61.1%) or heterosexuals (87.7%). In the 278 sequences, the variants found were CRF02_AG (47.8%), A (13.7%), B (7.2%), C (5.8%), G (5.4%) and others (20.1%). We found 6 CRF02_AG clusters emerged from 1983.9 to 2002.5 with origin in GQ (5.5 sequences/cluster). Transmitted drug-resistance (TDR) rate among naïve patients attended in Spain (n = 144) was 4.7%: 3.4% for PI (all with M46IL), 1.8% for NRTI (all with M184V) and 0.9% for NNRTI (Y188L). Among pre-treated patients, 9/31 (29%) presented any resistance, mainly affecting NNRTI (27.8%). Conclusions We report a low (<5%) TDR rate among naïve, with PI as the most affected class. Pre-treated patients also showed a low drug-resistance prevalence (29%) maybe related to the insufficient treatment coverage in GQ. CRF02_AG was the prevalent HIV-1M variant and entered GQ through independent introductions at least since the early 1980s. PMID:23717585
USDA-ARS?s Scientific Manuscript database
Fine-mapping of causal variants is becoming feasible for complex traits in livestock GWAS, as an increasing number of animals are sequenced. Imputation has been routinely applied to ascertain sequence variants in large genotyped populations based on small reference populations of sequenced animals. ...
USDA-ARS?s Scientific Manuscript database
Major whole genome sequencing projects promise to identify rare and causal variants within livestock species; however, the efficient selection of animals for sequencing remains a major problem within these surveys. The goal of this project was to develop a library of high accuracy genetic variants f...
USDA-ARS?s Scientific Manuscript database
Imputation has been routinely applied to ascertain sequence variants in large genotyped populations based on reference populations of sequenced animals. With the implementation of the 1000 Bull Genomes Project and increasing numbers of animals sequenced, fine-mapping of causal variants is becoming f...
Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis.
Gang, Qiang; Bettencourt, Conceição; Machado, Pedro M; Brady, Stefen; Holton, Janice L; Pittman, Alan M; Hughes, Deborah; Healy, Estelle; Parton, Matthew; Hilton-Jones, David; Shieh, Perry B; Needham, Merrilee; Liang, Christina; Zanoteli, Edmar; de Camargo, Leonardo Valente; De Paepe, Boel; De Bleecker, Jan; Shaibani, Aziz; Ripolone, Michela; Violano, Raffaella; Moggio, Maurizio; Barohn, Richard J; Dimachkie, Mazen M; Mora, Marina; Mantegazza, Renato; Zanotti, Simona; Singleton, Andrew B; Hanna, Michael G; Houlden, Henry
2016-11-01
Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4.0%). Two variants, the SQSTM1 p.G194R and the VCP p.R159C, were significantly overrepresented in this sIBM cohort compared with controls. Five of these variants had been previously reported in patients with degenerative diseases. The messenger RNA levels of major histocompatibility complex genes were upregulated, this elevation being more pronounced in SQSTM1 patient group. We report for the first time potentially pathogenic SQSTM1 variants and expand the spectrum of VCP variants in sIBM. These data suggest that defects in neurodegenerative pathways may confer genetic susceptibility to sIBM and reinforce the mechanistic overlap in these neurodegenerative disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Gutiérrez-Gil, Beatriz; Esteban-Blanco, Cristina; Wiener, Pamela; Chitneedi, Praveen Krishna; Suarez-Vega, Aroa; Arranz, Juan-Jose
2017-11-07
With the aim of identifying selection signals in three Merino sheep lines that are highly specialized for fine wool production (Australian Industry Merino, Australian Merino and Australian Poll Merino) and considering that these lines have been subjected to selection not only for wool traits but also for growth and carcass traits and parasite resistance, we contrasted the OvineSNP50 BeadChip (50 K-chip) pooled genotypes of these Merino lines with the genotypes of a coarse-wool breed, phylogenetically related breed, Spanish Churra dairy sheep. Genome re-sequencing datasets of the two breeds were analyzed to further explore the genetic variation of the regions initially identified as putative selection signals. Based on the 50 K-chip genotypes, we used the overlapping selection signals (SS) identified by four selection sweep mapping analyses (that detect genetic differentiation, reduced heterozygosity and patterns of haplotype diversity) to define 18 convergence candidate regions (CCR), five associated with positive selection in Australian Merino and the remainder indicating positive selection in Churra. Subsequent analysis of whole-genome sequences from 15 Churra and 13 Merino samples identified 142,400 genetic variants (139,745 bi-allelic SNPs and 2655 indels) within the 18 defined CCR. Annotation of 1291 variants that were significantly associated with breed identity between Churra and Merino samples identified 257 intragenic variants that caused 296 functional annotation variants, 275 of which were located across 31 coding genes. Among these, four synonymous and four missense variants (NPR2_His847Arg, NCAPG_Ser585Phe, LCORL_Asp1214Glu and LCORL_Ile1441Leu) were included. Here, we report the mapping and genetic variation of 18 selection signatures that were identified between Australian Merino and Spanish Churra sheep breeds, which were validated by an additional contrast between Spanish Merino and Churra genotypes. Analysis of whole-genome sequencing datasets allowed us to identify divergent variants that may be viewed as candidates involved in the phenotypic differences for wool, growth and meat production/quality traits between the breeds analyzed. The four missense variants located in the NPR2, NCAPG and LCORL genes may be related to selection sweep regions previously identified and various QTL reported in sheep in relation to growth traits and carcass composition.
Negishi, Yuya; Mizobuchi, Kei; Urashima, Mitsuyoshi; Nakano, Tadashi
2017-01-01
Purpose To report the spectrum of ABCC6 variants in Japanese patients with angioid streaks (AS). Patients and Methods This was a single-center cohort study. The medical records of 20 patients with AS from 18 unrelated Japanese families were retrospectively reviewed. Screening of the ABCC6 gene (exons 1 to 31) was performed using PCR-based Sanger sequencing. Results Eight ABCC6 variants were identified as candidate disease-causing variants. These eight variants included five known variants (p.Q378X, p.R419Q, p.V848CfsX83, p.R1114C, and p.R1357W), one previously reported variant (p.N428S) of unknown significance, and two novel variants (c.1939C>T [p.H647Y] and c.3374C>T [p.S1125F]); the three latter variants were determined to be variants of significance. The following four variants were frequently identified: p.V848CfsX83 (14/40 alleles, 35.0%), p.Q378X (7/40 alleles, 17.5%), p.R1357W (6/40 alleles, 15.0%), and p.R419Q (4/40 alleles, 10.0%). The ABCC6 variants were identified in compound heterozygous or homozygous states in 13 of 18 probands. Two families showed a pseudodominant inheritance pattern. Pseudoxanthoma elasticum was seen in 15 of 17 patients (88.2%) who underwent dermatological examination. Conclusions We identified disease-causing ABCC6 variants that were in homozygous or compound heterozygous states in 13 of 18 families (72.2%). Our results indicated that ABCC6 variants play a significant role in patients with AS in the Japanese population. PMID:28912966
STAG3 truncating variant as the cause of primary ovarian insufficiency
Le Quesne Stabej, Polona; Williams, Hywel J; James, Chela; Tekman, Mehmet; Stanescu, Horia C; Kleta, Robert; Ocaka, Louise; Lescai, Francesco; Storr, Helen L; Bitner-Glindzicz, Maria; Bacchelli, Chiara; Conway, Gerard S
2016-01-01
Primary ovarian insufficiency (POI) is a distressing cause of infertility in young women. POI is heterogeneous with only a few causative genes having been discovered so far. Our objective was to determine the genetic cause of POI in a consanguineous Lebanese family with two affected sisters presenting with primary amenorrhoea and an absence of any pubertal development. Multipoint parametric linkage analysis was performed. Whole-exome sequencing was done on the proband. Linkage analysis identified a locus on chromosome 7 where exome sequencing successfully identified a homozygous two base pair duplication (c.1947_48dupCT), leading to a truncated protein p.(Y650Sfs*22) in the STAG3 gene, confirming it as the cause of POI in this family. Exome sequencing combined with linkage analyses offers a powerful tool to efficiently find novel genetic causes of rare, heterogeneous disorders, even in small single families. This is only the second report of a STAG3 variant; the first STAG3 variant was recently described in a phenotypically similar family with extreme POI. Identification of an additional family highlights the importance of STAG3 in POI pathogenesis and suggests it should be evaluated in families affected with POI. PMID:26059840
Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan
2017-01-01
PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.
Identification of a new variant of Chlamydia trachomatis in Mexico.
Escobedo-Guerra, Marcos R; Katoku-Herrera, Mitzuko; Lopez-Hurtado, Marcela; Villagrana-Zesati, Jesus Roberto; de Haro-Cruz, María de J; Guerra-Infante, Fernando M
2018-04-07
Chlamydia trachomatis is one of the main etiological agents of sexually transmitted infections worldwide. In 2006, a Swedish variant of C. trachomatis (Swedish-nvCT), which has a deletion of 377bp in the plasmid, was reported. In Latin America, Swedish-nvCT infections have not been reported. We investigated the presence of Swedish-nvCT in women with infertility in Mexico. Swedish-nvCT was searched in 69C. trachomatis positive samples from 2339 endocervical specimens. We designed PCR primers to identify the deletion in the plasmid in the ORF1, and the presence of a repeated 44bp in the ORF3. The sample with the deletion was genotyped with the genes of the major outer membrane protein A (ompA) and the polymorphic membrane protein (pmpH). The deletion was detected in one of the 69 samples positive C. trachomatis of 2339 endocervical exudates. The nucleotide sequence analysis of the ompA shows a high degree of similarity with the Swedish nvCT (98%), however the variant found belongs to serovar D. The nucleotide sequence of the pmpH gene associates to the variant found in the genitourinary pathotype of the Swedish-nvCT but in different clusters. Our results revealed the presence of a new variant of C. trachomatis in Mexican patients. This variant found in Mexico belongs to serovar D based on the in silico analysis of the ompA and pmpH genes and differs to the Swedish-nvCT (serovars E). For these variants of C. trachomatis that have been found it is necessary to carry out a more detailed analysis, although the role of this mutation has not been demonstrated in the pathogenesis. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Barbato, Ersilia; Traversa, Alice; Guarnieri, Rosanna; Giovannetti, Agnese; Genovesi, Maria Luce; Magliozzi, Maria Rosa; Paolacci, Stefano; Ciolfi, Andrea; Pizzi, Simone; Di Giorgio, Roberto; Tartaglia, Marco; Pizzuti, Antonio; Caputo, Viviana
2018-07-01
The aim of this study was the clinical and molecular characterization of a family segregating a trait consisting of a phenotype specifically involving the maxillary canines, including agenesis, impaction and ectopic eruption, characterized by incomplete penetrance and variable expressivity. Clinical standardized assessment of 14 family members and a whole-exome sequencing (WES) of three affected subjects were performed. WES data analyses (sequence alignment, variant calling, annotation and prioritization) were carried out using an in-house implemented pipeline. Variant filtering retained coding and splice-site high quality private and rare variants. Variant prioritization was performed taking into account both the disruptive impact and the biological relevance of individual variants and genes. Sanger sequencing was performed to validate the variants of interest and to carry out segregation analysis. Prioritization of variants "by function" allowed the identification of multiple variants contributing to the trait, including two concomitant heterozygous variants in EDARADD (c.308C>T, p.Ser103Phe) and COL5A1 (c.1588G>A, p.Gly530Ser), specifically associated with a more severe phenotype (i.e. canine agenesis). Differently, heterozygous variants in genes encoding proteins with a role in the WNT pathway were shared by subjects showing a phenotype of impacted/ectopic erupted canines. This study characterized the genetic contribution underlying a complex trait consisting of isolated canine anomalies in a medium-sized family, highlighting the role of WNT and EDA cell signaling pathways in tooth development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K
2016-01-01
Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.
Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease.
Ognenovski, Mikhail; Renauer, Paul; Gensterblum, Elizabeth; Kötter, Ina; Xenitidis, Theodoros; Henes, Jörg C; Casali, Bruno; Salvarani, Carlo; Direskeneli, Haner; Kaufman, Kenneth M; Sawalha, Amr H
2016-05-01
Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice donor variant that may introduce a deleterious intron retention and result in a noncoding transcript variant. We used whole exome sequencing in BD for the first time and identified 2 rare putative protein-damaging genetic variants associated with this disease. These genetic variants might influence cytoskeletal regulation and DNA repair mechanisms in BD and might provide further insight into increased leukocyte tissue infiltration and the role of oxidative stress in BD. © 2016, American College of Rheumatology.
Swartz, Jonathan M; Ciarlo, Ryan; Guo, Michael H; Abrha, Aser; Weaver, Benjamin; Diamond, David A; Chan, Yee-Ming; Hirschhorn, Joel N
2017-01-01
A variant in steroidogenic factor-1 (SF-1, encoded by the gene NR5A1), p.Arg92Trp, has recently been reported in multiple families with 46,XX ovotesticular or testicular disorders of sex development (DSD). This amino acid change impacts the DNA-binding domain and perturbs gonadal differentiation pathways. Whole-exome sequencing was performed on a 46,XX subject with ovotesticular DSD. Exome results identified a heterozygous NR5A1 variant, p.Arg92Gln, in the 46,XX ovotesticular DSD proband. This arginine-to-glutamine change has been previously reported in the homozygous state in a 46,XY patient with gonadal and adrenal dysgenesis, though 46,XY and 46,XX heterozygous carriers of this variant have not been previously reported to have any clinical phenotype. The NR5A1 p.Arg92Gln variant, which has thus far only been seen in a family with 46,XY DSD, most likely contributes to the ovotesticular DSD in this case. In light of the recent reports of unrelated 46,XX subjects with testicular or ovotesticular DSD with the NR5A1 variant p.Arg92Trp, it appears that other mutations in the DNA binding domain have the potential to impact the factors determining testicular and ovarian differentiation. This case demonstrates the variability of phenotypes with the same genotype and broadens our understanding of the role of SF-1 in gonadal differentiation. © 2016 S. Karger AG, Basel.
Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choe, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B; Gupta, Neha; Kohane, Isaac S; Green, Robert C; Kong, Sek Won
2014-08-01
As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates. © 2014 WILEY PERIODICALS, INC.
Weerakkody, Ruwan A; Vandrovcova, Jana; Kanonidou, Christina; Mueller, Michael; Gampawar, Piyush; Ibrahim, Yousef; Norsworthy, Penny; Biggs, Jennifer; Abdullah, Abdulshakur; Ross, David; Black, Holly A; Ferguson, David; Cheshire, Nicholas J; Kazkaz, Hanadi; Grahame, Rodney; Ghali, Neeti; Vandersteen, Anthony; Pope, F Michael; Aitman, Timothy J
2016-11-01
Ehlers-Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort. We developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing. Twenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up. Unbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype-phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119-1127.
Lange, Leslie A.; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M.; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M.; Smith, Joshua D.; Turner, Emily H.; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A.; Holmen, Oddgeir L.; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A.; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C.; Correa, Adolfo; Griswold, Michael E.; Jakobsdottir, Johanna; Smith, Albert V.; Schreiner, Pamela J.; Feitosa, Mary F.; Zhang, Qunyuan; Huffman, Jennifer E.; Crosby, Jacy; Wassel, Christina L.; Do, Ron; Franceschini, Nora; Martin, Lisa W.; Robinson, Jennifer G.; Assimes, Themistocles L.; Crosslin, David R.; Rosenthal, Elisabeth A.; Tsai, Michael; Rieder, Mark J.; Farlow, Deborah N.; Folsom, Aaron R.; Lumley, Thomas; Fox, Ervin R.; Carlson, Christopher S.; Peters, Ulrike; Jackson, Rebecca D.; van Duijn, Cornelia M.; Uitterlinden, André G.; Levy, Daniel; Rotter, Jerome I.; Taylor, Herman A.; Gudnason, Vilmundur; Siscovick, David S.; Fornage, Myriam; Borecki, Ingrid B.; Hayward, Caroline; Rudan, Igor; Chen, Y. Eugene; Bottinger, Erwin P.; Loos, Ruth J.F.; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M.; Gabriel, Stacey B.; O’Donnell, Christopher J.; Post, Wendy S.; North, Kari E.; Reiner, Alexander P.; Boerwinkle, Eric; Psaty, Bruce M.; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P.; Cupples, L. Adrienne; Kooperberg, Charles; Wilson, James G.; Nickerson, Deborah A.; Abecasis, Goncalo R.; Rich, Stephen S.; Tracy, Russell P.; Willer, Cristen J.; Gabriel, Stacey B.; Altshuler, David M.; Abecasis, Gonçalo R.; Allayee, Hooman; Cresci, Sharon; Daly, Mark J.; de Bakker, Paul I.W.; DePristo, Mark A.; Do, Ron; Donnelly, Peter; Farlow, Deborah N.; Fennell, Tim; Garimella, Kiran; Hazen, Stanley L.; Hu, Youna; Jordan, Daniel M.; Jun, Goo; Kathiresan, Sekar; Kang, Hyun Min; Kiezun, Adam; Lettre, Guillaume; Li, Bingshan; Li, Mingyao; Newton-Cheh, Christopher H.; Padmanabhan, Sandosh; Peloso, Gina; Pulit, Sara; Rader, Daniel J.; Reich, David; Reilly, Muredach P.; Rivas, Manuel A.; Schwartz, Steve; Scott, Laura; Siscovick, David S.; Spertus, John A.; Stitziel, Nathaniel O.; Stoletzki, Nina; Sunyaev, Shamil R.; Voight, Benjamin F.; Willer, Cristen J.; Rich, Stephen S.; Akylbekova, Ermeg; Atwood, Larry D.; Ballantyne, Christie M.; Barbalic, Maja; Barr, R. Graham; Benjamin, Emelia J.; Bis, Joshua; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer; Budoff, Matthew; Burke, Greg; Buxbaum, Sarah; Carr, Jeff; Chen, Donna T.; Chen, Ida Y.; Chen, Wei-Min; Concannon, Pat; Crosby, Jacy; Cupples, L. Adrienne; D’Agostino, Ralph; DeStefano, Anita L.; Dreisbach, Albert; Dupuis, Josée; Durda, J. Peter; Ellis, Jaclyn; Folsom, Aaron R.; Fornage, Myriam; Fox, Caroline S.; Fox, Ervin; Funari, Vincent; Ganesh, Santhi K.; Gardin, Julius; Goff, David; Gordon, Ora; Grody, Wayne; Gross, Myron; Guo, Xiuqing; Hall, Ira M.; Heard-Costa, Nancy L.; Heckbert, Susan R.; Heintz, Nicholas; Herrington, David M.; Hickson, DeMarc; Huang, Jie; Hwang, Shih-Jen; Jacobs, David R.; Jenny, Nancy S.; Johnson, Andrew D.; Johnson, Craig W.; Kawut, Steven; Kronmal, Richard; Kurz, Raluca; Lange, Ethan M.; Lange, Leslie A.; Larson, Martin G.; Lawson, Mark; Lewis, Cora E.; Levy, Daniel; Li, Dalin; Lin, Honghuang; Liu, Chunyu; Liu, Jiankang; Liu, Kiang; Liu, Xiaoming; Liu, Yongmei; Longstreth, William T.; Loria, Cay; Lumley, Thomas; Lunetta, Kathryn; Mackey, Aaron J.; Mackey, Rachel; Manichaikul, Ani; Maxwell, Taylor; McKnight, Barbara; Meigs, James B.; Morrison, Alanna C.; Musani, Solomon K.; Mychaleckyj, Josyf C.; Nettleton, Jennifer A.; North, Kari; O’Donnell, Christopher J.; O’Leary, Daniel; Ong, Frank; Palmas, Walter; Pankow, James S.; Pankratz, Nathan D.; Paul, Shom; Perez, Marco; Person, Sharina D.; Polak, Joseph; Post, Wendy S.; Psaty, Bruce M.; Quinlan, Aaron R.; Raffel, Leslie J.; Ramachandran, Vasan S.; Reiner, Alexander P.; Rice, Kenneth; Rotter, Jerome I.; Sanders, Jill P.; Schreiner, Pamela; Seshadri, Sudha; Shea, Steve; Sidney, Stephen; Silverstein, Kevin; Smith, Nicholas L.; Sotoodehnia, Nona; Srinivasan, Asoke; Taylor, Herman A.; Taylor, Kent; Thomas, Fridtjof; Tracy, Russell P.; Tsai, Michael Y.; Volcik, Kelly A.; Wassel, Chrstina L.; Watson, Karol; Wei, Gina; White, Wendy; Wiggins, Kerri L.; Wilk, Jemma B.; Williams, O. Dale; Wilson, Gregory; Wilson, James G.; Wolf, Phillip; Zakai, Neil A.; Hardy, John; Meschia, James F.; Nalls, Michael; Singleton, Andrew; Worrall, Brad; Bamshad, Michael J.; Barnes, Kathleen C.; Abdulhamid, Ibrahim; Accurso, Frank; Anbar, Ran; Beaty, Terri; Bigham, Abigail; Black, Phillip; Bleecker, Eugene; Buckingham, Kati; Cairns, Anne Marie; Caplan, Daniel; Chatfield, Barbara; Chidekel, Aaron; Cho, Michael; Christiani, David C.; Crapo, James D.; Crouch, Julia; Daley, Denise; Dang, Anthony; Dang, Hong; De Paula, Alicia; DeCelie-Germana, Joan; Drumm, Allen DozorMitch; Dyson, Maynard; Emerson, Julia; Emond, Mary J.; Ferkol, Thomas; Fink, Robert; Foster, Cassandra; Froh, Deborah; Gao, Li; Gershan, William; Gibson, Ronald L.; Godwin, Elizabeth; Gondor, Magdalen; Gutierrez, Hector; Hansel, Nadia N.; Hassoun, Paul M.; Hiatt, Peter; Hokanson, John E.; Howenstine, Michelle; Hummer, Laura K.; Kanga, Jamshed; Kim, Yoonhee; Knowles, Michael R.; Konstan, Michael; Lahiri, Thomas; Laird, Nan; Lange, Christoph; Lin, Lin; Lin, Xihong; Louie, Tin L.; Lynch, David; Make, Barry; Martin, Thomas R.; Mathai, Steve C.; Mathias, Rasika A.; McNamara, John; McNamara, Sharon; Meyers, Deborah; Millard, Susan; Mogayzel, Peter; Moss, Richard; Murray, Tanda; Nielson, Dennis; Noyes, Blakeslee; O’Neal, Wanda; Orenstein, David; O’Sullivan, Brian; Pace, Rhonda; Pare, Peter; Parker, H. Worth; Passero, Mary Ann; Perkett, Elizabeth; Prestridge, Adrienne; Rafaels, Nicholas M.; Ramsey, Bonnie; Regan, Elizabeth; Ren, Clement; Retsch-Bogart, George; Rock, Michael; Rosen, Antony; Rosenfeld, Margaret; Ruczinski, Ingo; Sanford, Andrew; Schaeffer, David; Sell, Cindy; Sheehan, Daniel; Silverman, Edwin K.; Sin, Don; Spencer, Terry; Stonebraker, Jackie; Tabor, Holly K.; Varlotta, Laurie; Vergara, Candelaria I.; Weiss, Robert; Wigley, Fred; Wise, Robert A.; Wright, Fred A.; Wurfel, Mark M.; Zanni, Robert; Zou, Fei; Nickerson, Deborah A.; Rieder, Mark J.; Green, Phil; Shendure, Jay; Akey, Joshua M.; Bustamante, Carlos D.; Crosslin, David R.; Eichler, Evan E.; Fox, P. Keolu; Fu, Wenqing; Gordon, Adam; Gravel, Simon; Jarvik, Gail P.; Johnsen, Jill M.; Kan, Mengyuan; Kenny, Eimear E.; Kidd, Jeffrey M.; Lara-Garduno, Fremiet; Leal, Suzanne M.; Liu, Dajiang J.; McGee, Sean; O’Connor, Timothy D.; Paeper, Bryan; Robertson, Peggy D.; Smith, Joshua D.; Staples, Jeffrey C.; Tennessen, Jacob A.; Turner, Emily H.; Wang, Gao; Yi, Qian; Jackson, Rebecca; Peters, Ulrike; Carlson, Christopher S.; Anderson, Garnet; Anton-Culver, Hoda; Assimes, Themistocles L.; Auer, Paul L.; Beresford, Shirley; Bizon, Chris; Black, Henry; Brunner, Robert; Brzyski, Robert; Burwen, Dale; Caan, Bette; Carty, Cara L.; Chlebowski, Rowan; Cummings, Steven; Curb, J. David; Eaton, Charles B.; Ford, Leslie; Franceschini, Nora; Fullerton, Stephanie M.; Gass, Margery; Geller, Nancy; Heiss, Gerardo; Howard, Barbara V.; Hsu, Li; Hutter, Carolyn M.; Ioannidis, John; Jiao, Shuo; Johnson, Karen C.; Kooperberg, Charles; Kuller, Lewis; LaCroix, Andrea; Lakshminarayan, Kamakshi; Lane, Dorothy; Lasser, Norman; LeBlanc, Erin; Li, Kuo-Ping; Limacher, Marian; Lin, Dan-Yu; Logsdon, Benjamin A.; Ludlam, Shari; Manson, JoAnn E.; Margolis, Karen; Martin, Lisa; McGowan, Joan; Monda, Keri L.; Kotchen, Jane Morley; Nathan, Lauren; Ockene, Judith; O’Sullivan, Mary Jo; Phillips, Lawrence S.; Prentice, Ross L.; Robbins, John; Robinson, Jennifer G.; Rossouw, Jacques E.; Sangi-Haghpeykar, Haleh; Sarto, Gloria E.; Shumaker, Sally; Simon, Michael S.; Stefanick, Marcia L.; Stein, Evan; Tang, Hua; Taylor, Kira C.; Thomson, Cynthia A.; Thornton, Timothy A.; Van Horn, Linda; Vitolins, Mara; Wactawski-Wende, Jean; Wallace, Robert; Wassertheil-Smoller, Sylvia; Zeng, Donglin; Applebaum-Bowden, Deborah; Feolo, Michael; Gan, Weiniu; Paltoo, Dina N.; Sholinsky, Phyliss; Sturcke, Anne
2014-01-01
Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. PMID:24507775
Lange, Leslie A; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M; Smith, Joshua D; Turner, Emily H; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-Ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A; Holmen, Oddgeir L; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C; Correa, Adolfo; Griswold, Michael E; Jakobsdottir, Johanna; Smith, Albert V; Schreiner, Pamela J; Feitosa, Mary F; Zhang, Qunyuan; Huffman, Jennifer E; Crosby, Jacy; Wassel, Christina L; Do, Ron; Franceschini, Nora; Martin, Lisa W; Robinson, Jennifer G; Assimes, Themistocles L; Crosslin, David R; Rosenthal, Elisabeth A; Tsai, Michael; Rieder, Mark J; Farlow, Deborah N; Folsom, Aaron R; Lumley, Thomas; Fox, Ervin R; Carlson, Christopher S; Peters, Ulrike; Jackson, Rebecca D; van Duijn, Cornelia M; Uitterlinden, André G; Levy, Daniel; Rotter, Jerome I; Taylor, Herman A; Gudnason, Vilmundur; Siscovick, David S; Fornage, Myriam; Borecki, Ingrid B; Hayward, Caroline; Rudan, Igor; Chen, Y Eugene; Bottinger, Erwin P; Loos, Ruth J F; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M; Gabriel, Stacey B; O'Donnell, Christopher J; Post, Wendy S; North, Kari E; Reiner, Alexander P; Boerwinkle, Eric; Psaty, Bruce M; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P; Cupples, L Adrienne; Kooperberg, Charles; Wilson, James G; Nickerson, Deborah A; Abecasis, Goncalo R; Rich, Stephen S; Tracy, Russell P; Willer, Cristen J
2014-02-06
Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Rare variants in RTEL1 are associated with familial interstitial pneumonia.
Cogan, Joy D; Kropski, Jonathan A; Zhao, Min; Mitchell, Daphne B; Rives, Lynette; Markin, Cheryl; Garnett, Errine T; Montgomery, Keri H; Mason, Wendi R; McKean, David F; Powers, Julia; Murphy, Elissa; Olson, Lana M; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R; Lancaster, Lisa H; Steele, Mark P; Brown, Kevin K; Schwarz, Marvin I; Fingerlin, Tasha E; Schwartz, David A; Lawson, William E; Loyd, James E; Zhao, Zhongming; Phillips, John A; Blackwell, Timothy S
2015-03-15
Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.
Al-Allaf, Faisal A; Athar, Mohammad; Abduljaleel, Zainularifeen; Taher, Mohiuddin M; Khan, Wajahatullah; Ba-Hammam, Faisal A; Abalkhail, Hala; Alashwal, Abdullah
2015-07-01
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). It is an autosomal dominant disease, caused by variants in Ldlr, ApoB or Pcsk9, which results in high levels of LDL-cholesterol (LDL-C) leading to early coronary heart disease. Sequencing whole genome for screening variants for FH are not suitable due to high cost. Hence, in this study we performed targeted customized sequencing of FH 12 genes (Ldlr, ApoB, Pcsk9, Abca1, Apoa2, Apoc3, Apon2, Arh, Ldlrap1, Apoc2, ApoE, and Lpl) that have been implicated in the homozygous phenotype of a proband pedigree to identify candidate variants by NGS Ion torrent PGM. Only three genes (Ldlr, ApoB, and Pcsk9) were found to be highly associated with FH based on the variant rate. The results showed that seven deleterious variants in Ldlr, ApoB, and Pcsk9 genes were pathological and were clinically significant based on predictions identified by SIFT and PolyPhen. Targeted customized sequencing is an efficient technique for screening variants among targeted FH genes. Final validation of seven deleterious variants conducted by capillary resulted to only one novel variant in Ldlr gene that was found in exon 14 (c.2026delG, p. Gly676fs). The variant found in Ldlr gene was a novel heterozygous variant derived from a male in the proband. Copyright © 2015 Elsevier B.V. All rights reserved.
Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.
Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard
2017-04-01
To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.
Process of labeling specific chromosomes using recombinant repetitive DNA
Moyzis, R.K.; Meyne, J.
1988-02-12
Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.
LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias.
Johansen, Christopher T; Dubé, Joseph B; Loyzer, Melissa N; MacDonald, Austin; Carter, David E; McIntyre, Adam D; Cao, Henian; Wang, Jian; Robinson, John F; Hegele, Robert A
2014-04-01
We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.
LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias[S
Johansen, Christopher T.; Dubé, Joseph B.; Loyzer, Melissa N.; MacDonald, Austin; Carter, David E.; McIntyre, Adam D.; Cao, Henian; Wang, Jian; Robinson, John F.; Hegele, Robert A.
2014-01-01
We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues. PMID:24503134
DeBoever, Christopher; Reid, Erin G.; Smith, Erin N.; Wang, Xiaoyun; Dumaop, Wilmar; Harismendy, Olivier; Carson, Dennis; Richman, Douglas; Masliah, Eliezer; Frazer, Kelly A.
2013-01-01
Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples. PMID:24023918
Inferring Short-Range Linkage Information from Sequencing Chromatograms
Beggel, Bastian; Neumann-Fraune, Maria; Kaiser, Rolf; Verheyen, Jens; Lengauer, Thomas
2013-01-01
Direct Sanger sequencing of viral genome populations yields multiple ambiguous sequence positions. It is not straightforward to derive linkage information from sequencing chromatograms, which in turn hampers the correct interpretation of the sequence data. We present a method for determining the variants existing in a viral quasispecies in the case of two nearby ambiguous sequence positions by exploiting the effect of sequence context-dependent incorporation of dideoxynucleotides. The computational model was trained on data from sequencing chromatograms of clonal variants and was evaluated on two test sets of in vitro mixtures. The approach achieved high accuracies in identifying the mixture components of 97.4% on a test set in which the positions to be analyzed are only one base apart from each other, and of 84.5% on a test set in which the ambiguous positions are separated by three bases. In silico experiments suggest two major limitations of our approach in terms of accuracy. First, due to a basic limitation of Sanger sequencing, it is not possible to reliably detect minor variants with a relative frequency of no more than 10%. Second, the model cannot distinguish between mixtures of two or four clonal variants, if one of two sets of linear constraints is fulfilled. Furthermore, the approach requires repetitive sequencing of all variants that might be present in the mixture to be analyzed. Nevertheless, the effectiveness of our method on the two in vitro test sets shows that short-range linkage information of two ambiguous sequence positions can be inferred from Sanger sequencing chromatograms without any further assumptions on the mixture composition. Additionally, our model provides new insights into the established and widely used Sanger sequencing technology. The source code of our method is made available at http://bioinf.mpi-inf.mpg.de/publications/beggel/linkageinformation.zip. PMID:24376502
Common and rare variants associated with kidney stones and biochemical traits
Oddsson, Asmundur; Sulem, Patrick; Helgason, Hannes; Edvardsson, Vidar O.; Thorleifsson, Gudmar; Sveinbjörnsson, Gardar; Haraldsdottir, Eik; Eyjolfsson, Gudmundur I.; Sigurdardottir, Olof; Olafsson, Isleifur; Masson, Gisli; Holm, Hilma; Gudbjartsson, Daniel F.; Thorsteinsdottir, Unnur; Indridason, Olafur S.; Palsson, Runolfur; Stefansson, Kari
2015-01-01
Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10−10) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10−8). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10−5) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10−5) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism. PMID:26272126
Common and rare variants associated with kidney stones and biochemical traits.
Oddsson, Asmundur; Sulem, Patrick; Helgason, Hannes; Edvardsson, Vidar O; Thorleifsson, Gudmar; Sveinbjörnsson, Gardar; Haraldsdottir, Eik; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Masson, Gisli; Holm, Hilma; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Indridason, Olafur S; Palsson, Runolfur; Stefansson, Kari
2015-08-14
Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR)=1.21, P=5.8 × 10(-10)) and a suggestive association at CASR (rs7627468[A], OR=1.16, P=2.0 × 10(-8)). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR=2.38, P=2.8 × 10(-5)) and TRPV5 p.Leu530Arg (OR=3.62, P=4.1 × 10(-5)) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism.
The genetic architecture of type 2 diabetes.
Fuchsberger, Christian; Flannick, Jason; Teslovich, Tanya M; Mahajan, Anubha; Agarwala, Vineeta; Gaulton, Kyle J; Ma, Clement; Fontanillas, Pierre; Moutsianas, Loukas; McCarthy, Davis J; Rivas, Manuel A; Perry, John R B; Sim, Xueling; Blackwell, Thomas W; Robertson, Neil R; Rayner, N William; Cingolani, Pablo; Locke, Adam E; Tajes, Juan Fernandez; Highland, Heather M; Dupuis, Josee; Chines, Peter S; Lindgren, Cecilia M; Hartl, Christopher; Jackson, Anne U; Chen, Han; Huyghe, Jeroen R; van de Bunt, Martijn; Pearson, Richard D; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M; Gamazon, Eric R; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A; Below, Jennifer E; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L; Pasko, Dorota; Parker, Stephen C J; Varga, Tibor V; Green, Todd; Beer, Nicola L; Day-Williams, Aaron G; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F; Han, Bok-Ghee; Jenkinson, Christopher P; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C Y; Palmer, Nicholette D; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D; Neale, Benjamin M; Purcell, Shaun; Butterworth, Adam S; Howson, Joanna M M; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K L; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H T; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E; Rybin, Denis; Farook, Vidya S; Fowler, Sharon P; Freedman, Barry I; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; van der Schouw, Yvonne T; Loh, Marie; Musani, Solomon K; Puppala, Sobha; Scott, William R; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C; Mangino, Massimo; Bonnycastle, Lori L; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L; Herder, Christian; Groves, Christopher J; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A; Doney, Alex S F; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeriya; Hollensted, Mette; Jørgensen, Marit E; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H; Stirrups, Kathleen; Wood, Andrew R; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N A; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M; Syvänen, Ann-Christine; Bergman, Richard N; Bharadwaj, Dwaipayan; Bottinger, Erwin P; Cho, Yoon Shin; Chandak, Giriraj R; Chan, Juliana C N; Chia, Kee Seng; Daly, Mark J; Ebrahim, Shah B; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A; Lehman, Donna M; Jia, Weiping; Ma, Ronald C W; Pollin, Toni I; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J F; Small, Kerrin S; Ried, Janina S; DeFronzo, Ralph A; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R; Gloyn, Anna L; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D; Hattersley, Andrew T; Bowden, Donald W; Collins, Francis S; Atzmon, Gil; Chambers, John C; Spector, Timothy D; Laakso, Markku; Strom, Tim M; Bell, Graeme I; Blangero, John; Duggirala, Ravindranath; Tai, E Shyong; McVean, Gilean; Hanis, Craig L; Wilson, James G; Seielstad, Mark; Frayling, Timothy M; Meigs, James B; Cox, Nancy J; Sladek, Rob; Lander, Eric S; Gabriel, Stacey; Burtt, Noël P; Mohlke, Karen L; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Florez, Jose C; Scott, Laura J; Morris, Andrew P; Kang, Hyun Min; Boehnke, Michael; Altshuler, David; McCarthy, Mark I
2016-08-04
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
The genetic architecture of type 2 diabetes
Ma, Clement; Fontanillas, Pierre; Moutsianas, Loukas; McCarthy, Davis J; Rivas, Manuel A; Perry, John R B; Sim, Xueling; Blackwell, Thomas W; Robertson, Neil R; Rayner, N William; Cingolani, Pablo; Locke, Adam E; Tajes, Juan Fernandez; Highland, Heather M; Dupuis, Josee; Chines, Peter S; Lindgren, Cecilia M; Hartl, Christopher; Jackson, Anne U; Chen, Han; Huyghe, Jeroen R; van de Bunt, Martijn; Pearson, Richard D; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M; Gamazon, Eric R; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A; Below, Jennifer E; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L; Pasko, Dorota; Parker, Stephen C J; Varga, Tibor V; Green, Todd; Beer, Nicola L; Day-Williams, Aaron G; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F; Han, Bok-Ghee; Jenkinson, Christopher P; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C Y; Palmer, Nicholette D; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D; Neale, Benjamin M; Purcell, Shaun; Butterworth, Adam S; Howson, Joanna M M; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K L; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H T; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E; Rybin, Denis; Farook, Vidya S; Fowler, Sharon P; Freedman, Barry I; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; van der Schouw, Yvonne T; Loh, Marie; Musani, Solomon K; Puppala, Sobha; Scott, William R; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C; Mangino, Massimo; Bonnycastle, Lori L; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L; Herder, Christian; Groves, Christopher J; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A; Doney, Alex S F; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeriya; Hollensted, Mette; Jørgensen, Marit E; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H; Stirrups, Kathleen; Wood, Andrew R; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N A; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M; Syvänen, Ann-Christine; Bergman, Richard N; Bharadwaj, Dwaipayan; Bottinger, Erwin P; Cho, Yoon Shin; Chandak, Giriraj R; Chan, Juliana C N; Chia, Kee Seng; Daly, Mark J; Ebrahim, Shah B; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A; Lehman, Donna M; Jia, Weiping; Ma, Ronald C W; Pollin, Toni I; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J F; Small, Kerrin S; Ried, Janina S; DeFronzo, Ralph A; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R; Gloyn, Anna L; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D; Hattersley, Andrew T; Bowden, Donald W; Collins, Francis S; Atzmon, Gil; Chambers, John C; Spector, Timothy D; Laakso, Markku; Strom, Tim M; Bell, Graeme I; Blangero, John; Duggirala, Ravindranath; Tai, E Shyong; McVean, Gilean; Hanis, Craig L; Wilson, James G; Seielstad, Mark; Frayling, Timothy M; Meigs, James B; Cox, Nancy J; Sladek, Rob; Lander, Eric S; Gabriel, Stacey; Burtt, Noël P; Mohlke, Karen L; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Florez, Jose C; Scott, Laura J; Morris, Andrew P; Kang, Hyun Min; Boehnke, Michael; Altshuler, David; McCarthy, Mark I
2016-01-01
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes. PMID:27398621
Patiño, Liliana Catherine; Battu, Rajani; Ortega-Recalde, Oscar; Nallathambi, Jeyabalan; Anandula, Venkata Ramana; Renukaradhya, Umashankar; Laissue, Paul
2014-01-01
The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.
MYO7A and USH2A gene sequence variants in Italian patients with Usher syndrome.
Sodi, Andrea; Mariottini, Alessandro; Passerini, Ilaria; Murro, Vittoria; Tachyla, Iryna; Bianchi, Benedetta; Menchini, Ugo; Torricelli, Francesca
2014-01-01
To analyze the spectrum of sequence variants in the MYO7A and USH2A genes in a group of Italian patients affected by Usher syndrome (USH). Thirty-six Italian patients with a diagnosis of USH were recruited. They received a standard ophthalmologic examination, visual field testing, optical coherence tomography (OCT) scan, and electrophysiological tests. Fluorescein angiography and fundus autofluorescence imaging were performed in selected cases. All the patients underwent an audiologic examination for the 0.25-8,000 Hz frequencies. Vestibular function was evaluated with specific tests. DNA samples were analyzed for sequence variants of the MYO7A gene (for USH1) and the USH2A gene (for USH2) with direct sequencing techniques. A few patients were analyzed for both genes. In the MYO7A gene, ten missense variants were found; three patients were compound heterozygous, and two were homozygous. Thirty-four USH2A gene variants were detected, including eight missense variants, nine nonsense variants, six splicing variants, and 11 duplications/deletions; 19 patients were compound heterozygous, and three were homozygous. Four MYO7A and 17 USH2A variants have already been described in the literature. Among the novel mutations there are four USH2A large deletions, detected with multiplex ligation dependent probe amplification (MLPA) technology. Two potentially pathogenic variants were found in 27 patients (75%). Affected patients showed variable clinical pictures without a clear genotype-phenotype correlation. Ten variants in the MYO7A gene and 34 variants in the USH2A gene were detected in Italian patients with USH at a high detection rate. A selective analysis of these genes may be valuable for molecular analysis, combining diagnostic efficiency with little time wastage and less resource consumption.
Higher criticism approach to detect rare variants using whole genome sequencing data
2014-01-01
Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we develop a strategy to apply the HC approach to WGS data that contains rare variants as the majority. By using Genetic Analysis Workshop 18 "dose" genetic data with simulated phenotypes, we assess the performance of HC under a variety of strategies for grouping variants and collapsing rare variants. The HC approach is compared with the minimal p-value method and the sequence kernel association test. The results show that the HC approach is preferred for detecting weak genetic effects. PMID:25519367
Brezovský, Jan
2016-01-01
An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools’ predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To enable comprehensive evaluation of variants, the predictions are complemented with annotations from eight databases. The web server is freely available to the community at http://loschmidt.chemi.muni.cz/predictsnp2. PMID:27224906
Bendl, Jaroslav; Musil, Miloš; Štourač, Jan; Zendulka, Jaroslav; Damborský, Jiří; Brezovský, Jan
2016-05-01
An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools' predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To enable comprehensive evaluation of variants, the predictions are complemented with annotations from eight databases. The web server is freely available to the community at http://loschmidt.chemi.muni.cz/predictsnp2.
Paris, Liliana P; Usui, Yoshihiko; Serino, Josefina; Sá, Joaquim; Friedlander, Martin
2015-01-01
Wolfram syndrome type 1 is a rare, autosomal recessive, neurodegenerative disorder that is diagnosed when insulin-dependent diabetes of non-auto-immune origin and optic atrophy are concomitantly present. Wolfram syndrome is also designated by DIDMOAD that stands for its most frequent manifestations: diabetes insipidus, diabetes mellitus, optic atrophy and deafness. With disease progression, patients also commonly develop severe neurological and genito-urinary tract abnormalities. When compared to the general type 1 diabetic population, patients with Wolfram Syndrome have been reported to have a form of diabetes that is more easily controlled and with less microvascular complications, such as diabetic retinopathy. We report a case of Wolfram syndrome in a 16-year-old male patient who presented with progressive optic atrophy and severe diabetes with very challenging glycemic control despite intensive therapy since diagnosis at the age of 6. Despite inadequate metabolic control he did not develop any diabetic microvascular complications during the 10-year follow-up period. To further investigate potential causes for this metabolic idiosyncrasy, we performed genetic analyses that revealed a novel combination of homozygous sequence variants that are likely the cause of the syndrome in this family. The identified genotype included a novel sequence variant in the Wolfram syndrome type 1 gene along with a previously described one, which had initially been associated with isolated low frequency sensorineural hearing loss (LFSNHL). Interestingly, our patient did not show any abnormal findings with audiometry testing. PMID:26819810
Masingue, Marion; Perrot, Jimmy; Carlier, Robert-Yves; Piguet-Lacroix, Guenaelle; Latour, Philippe; Stojkovic, Tanya
2018-05-01
Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.
Epitaxial Nucleation on Rationally Designed Peptide Functionalized Interface
2011-07-19
of 17 amino acid peptides. In this report, we focus on the findings from several variants of these sequences, including the role of charge...separation and histidine-gold coordination. We find that these 17 amino acid peptide sequences behave robustly, where periodicity appears to dominate the...26,27 Secondary structure propensity refers to the intrinsic inclination of individual amino acids to a given secondary structure, where side-group
Abu-Farha, Mohamed; Melhem, Motasem; Abubaker, Jehad; Behbehani, Kazem; Alsmadi, Osama; Elkum, Naser
2016-02-11
ANGPTL8 (betatrophin) has been recently identified as a regulator of lipid metabolism through its interaction with ANGPTL3. A sequence variant in ANGPTL8 has been shown to associate with lower level of Low Density Lipoprotein (LDL) and High Density Lipoprotein (HDL). The objective of this study is to identify sequence variants in ANGPTL8 gene in Arabs and investigate their association with ANGPTL8 plasma level and clinical parameters. A cross sectional study was designed to examine the level of ANGPTL8 in 283 non-diabetic Arabs, and to identify its sequence variants using Sanger sequencing and their association with various clinical parameters. Using Sanger sequencing, we sequenced the full ANGPTL8 gene in 283 Arabs identifying two single nucleotide polymorphisms (SNPs) Rs.892066 and Rs.2278426 in the coding region. Our data shows for the first time that Arabs with the heterozygote form of (c.194C > T Rs.2278426) had higher level of Fasting Blood Glucose (FBG) compared to the CC homozygotes. LDL and HDL level in these subjects did not show significant difference between the two subgroups. Circulation level of ANGPTL8 did not vary between the two forms. No significant changes were observed between the various forms of Rs.892066 variant and FBG, LDL or HDL. Our data shows for the first time that heterozygote form of ANGPTL8 Rs.2278426 variant was associated with higher FBG level in Arabs highlighting the importance of these variants in controlling the function of betatrophin.
Jiang, Yue; Turinsky, Andrei L.; Brudno, Michael
2015-01-01
With the development of High-Throughput Sequencing (HTS) thousands of human genomes have now been sequenced. Whenever different studies analyze the same genome they usually agree on the amount of single-nucleotide polymorphisms, but differ dramatically on the number of insertion and deletion variants (indels). Furthermore, there is evidence that indels are often severely under-reported. In this manuscript we derive the total number of indel variants in a human genome by combining data from different sequencing technologies, while assessing the indel detection accuracy. Our estimate of approximately 1 million indels in a Yoruban genome is much higher than the results reported in several recent HTS studies. We identify two key sources of difficulties in indel detection: the insufficient coverage, read length or alignment quality; and the presence of repeats, including short interspersed elements and homopolymers/dimers. We quantify the effect of these factors on indel detection. The quality of sequencing data plays a major role in improving indel detection by HTS methods. However, many indels exist in long homopolymers and repeats, where their detection is severely impeded. The true number of indel events is likely even higher than our current estimates, and new techniques and technologies will be required to detect them. PMID:26130710
Wang, Xueling; Lin, Xiao-Jiang; Tang, Xiangrong; Chai, Yong-Chuan; Yu, De-Hong; Chen, Dong-Ye; Wu, Hao
2017-11-01
The purpose of this study was to identify the genetic causes of a family presenting with multiple symptoms overlapping Usher syndrome type II (USH2) and Waardenburg syndrome type IV (WS4). Targeted next-generation sequencing including the exon and flanking intron sequences of 79 deafness genes was performed on the proband. Co-segregation of the disease phenotype and the detected variants were confirmed in all family members by PCR amplification and Sanger sequencing. The affected members of this family had two different recessive disorders, USH2 and WS4. By targeted next-generation sequencing, we identified that USH2 was caused by a novel missense mutation, p.V4907D in GPR98; whereas WS4 due to p.V185M in EDNRB. This is the first report of homozygous p.V185M mutation in EDNRB in patient with WS4. This study reported a Chinese family with multiple independent and overlapping phenotypes. In condition, molecular level analysis was efficient to identify the causative variant p.V4907D in GPR98 and p.V185M in EDNRB, also was helpful to confirm the clinical diagnosis of USH2 and WS4. Copyright © 2017 Elsevier B.V. All rights reserved.
Guillen-Ahlers, Hector; Erbe, Christy B; Chevalier, Frédéric D; Montoya, Maria J; Zimmerman, Kip D; Langefeld, Carl D; Olivier, Michael; Runge, Christina L
2018-04-19
Sensorineural hearing loss (SNHL) is a common form of hearing loss that can be inherited or triggered by environmental insults; auditory neuropathy spectrum disorder (ANSD) is a SNHL subtype with unique diagnostic criteria. The genetic factors associated with these impairments are vast and diverse, but causal genetic factors are rarely characterized. A family dyad, both cochlear implant recipients, presented with a hearing history of bilateral, progressive SNHL, and ANSD. Whole-exome sequencing was performed to identify coding sequence variants shared by both family members, and screened against genes relevant to hearing loss and variants known to be associated with SNHL and ANSD. Both family members are successful cochlear implant users, demonstrating effective auditory nerve stimulation with their devices. Genetic analyses revealed a mutation (rs35725509) in the TMTC2 gene, which has been reported previously as a likely genetic cause of SNHL in another family of Northern European descent. This study represents the first confirmation of the rs35725509 variant in an independent family as a likely cause for the complex hearing loss phenotype (SNHL and ANSD) observed in this family dyad. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
Identification of missing variants by combining multiple analytic pipelines.
Ren, Yingxue; Reddy, Joseph S; Pottier, Cyril; Sarangi, Vivekananda; Tian, Shulan; Sinnwell, Jason P; McDonnell, Shannon K; Biernacka, Joanna M; Carrasquillo, Minerva M; Ross, Owen A; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hudson, Matthew; Mainzer, Liudmila Sergeevna; Asmann, Yan W
2018-04-16
After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. Identification of the complete variant set from sequencing data is the prerequisite of genetic association analyses. The current analytic practice of calling genetic variants from sequencing data using a single bioinformatics pipeline is no longer adequate with the increasingly large projects. The number and percentage of quality variants that passed quality filters but are missed by the one-pipeline approach rapidly increased with sample size.
Variation in GIGYF2 is not associated with Parkinson disease.
Nichols, W C; Kissell, D K; Pankratz, N; Pauciulo, M W; Elsaesser, V E; Clark, K A; Halter, C A; Rudolph, A; Wojcieszek, J; Pfeiffer, R F; Foroud, T
2009-06-02
A recent study reported that mutations in a gene on chromosome 2q36-37, GIGYF2, result in Parkinson disease (PD). We have previously reported linkage to this chromosomal region in a sample of multiplex PD families, with the strongest evidence of linkage obtained using the subset of the sample having the strongest family history of disease and meeting the strictest diagnostic criteria. We have tested whether mutations in GIGYF2 may account for the previously observed linkage finding. We sequenced the GIGYF2 coding region in 96 unrelated patients with PD used in our original study that contributed to the chromosome 2q36-37 linkage signal. Subsequently, we genotyped the entire sample of 566 multiplex PD kindreds as well as 1,447 controls to test whether variants in GIGYF2 are causative or increase susceptibility for PD. We detected three novel variants as well as one of the previously reported seven variants in a total of five multiple PD families; however, there was no consistent evidence that these variants segregated with PD in these families. We also did not find a significant increase in risk for PD among those inheriting variants in GIGYF2 (p = 0.28). We believe that variation in a gene other than GIGYF2 accounts for the previously reported linkage finding on chromosome 2q36-37.
Nance, D; Campbell, R A; Rowley, J W; Downie, J M; Jorde, L B; Kahr, W H; Mereby, S A; Tolley, N D; Zimmerman, G A; Weyrich, A S; Rondina, M T
2016-11-01
Essentials Co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. We determined pathogenic variants in a three-generational pedigree with excessive bleeding. Bleeding occurred with concurrent variants in prostaglandin synthase-1 (PTGS-1) and factor VIII. The PTGS-1 variant was associated with functional defects in the arachidonic acid pathway. Background Inherited human variants that concurrently cause disorders of primary hemostasis and coagulation are uncommon. Nevertheless, rare cases of co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. Objective We prospectively sought to determine pathogenic variants in a three-generational pedigree with excessive bleeding. Patients/methods Platelet number, size and light transmission aggregometry to multiple agonists were evaluated in pedigree members. Transmission electron microscopy determined platelet morphology and granule content. Thromboxane release studies and light transmission aggregometry in the presence or absence of prostaglandin G 2 assessed specific functional defects in the arachidonic acid pathway. Whole exome sequencing (WES) and targeted nucleotide sequence analysis identified potentially deleterious variants. Results Pedigree members with excessive bleeding had impaired platelet aggregation with arachidonic acid, epinephrine and low-dose ADP, as well as reduced platelet thromboxane B 2 release. Impaired platelet aggregation in response to 2MesADP was rescued with prostaglandin G 2 , a prostaglandin intermediate downstream of prostaglandin synthase-1 (PTGS-1) that aids in the production of thromboxane. WES identified a non-synonymous variant in the signal peptide of PTGS-1 (rs3842787; c.50C>T; p.Pro17Leu) that completely co-segregated with disease phenotype. A variant in the F8 gene causing hemophilia A (rs28935203; c.5096A>T; p.Y1699F) was also identified. Individuals with both variants had more severe bleeding manifestations than characteristic of mild hemophilia A alone. Conclusion We provide the first report of co-existing variants in both F8 and PTGS-1 genes in a three-generation pedigree. The PTGS-1 variant was associated with specific functional defects in the arachidonic acid pathway and more severe hemorrhage. © 2016 International Society on Thrombosis and Haemostasis.
Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E
2016-06-20
Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa.
Lakshmikumaran, M; Negi, M S
1994-03-01
Restriction enzyme analysis of the rRNA genes of Eruca sativa indicated the presence of many length variants within a single plant and also between different cultivars which is unusual for most crucifers studied so far. Two length variants of the rDNA intergenic spacer (IGS) from a single individual E. sativa (cv. Itsa) plant were cloned and characterized. The complete nucleotide sequences of both the variants (3 kb and 4 kb) were determined. The intergenic spacer contains three families of tandemly repeated DNA sequences denoted as A, B and C. However, the long (4 kb) variant shows the presence of an additional repeat, denoted as D, which is a duplication of a 224 bp sequence just upstream of the putative transcription initiation site. Repeat units belonging to the three different families (A, B and C) were in the size range of 22 to 30 bp. Such short repeat elements are present in the IGS of most of the crucifers analysed so far. Sequence analysis of the variants (3 kb and 4 kb) revealed that the length heterogeneity of the spacer is located at three different regions and is due to the varying copy numbers of repeat units belonging to families A and B. Length variation of the spacer is also due to the presence of a large duplication (D repeats) in the 4 kb variant which is absent in the 3 kb variant. The putative transcription initiation site was identified by comparisons with the rDNA sequences from other plant species.
NGS testing for cardiomyopathy: Utility of adding RASopathy-associated genes.
Ceyhan-Birsoy, Ozge; Miatkowski, Maya M; Hynes, Elizabeth; Funke, Birgit H; Mason-Suares, Heather
2018-04-25
RASopathies include a group of syndromes caused by pathogenic germline variants in RAS-MAPK pathway genes and typically present with facial dysmorphology, cardiovascular disease, and musculoskeletal anomalies. Recently, variants in RASopathy-associated genes have been reported in individuals with apparently nonsyndromic cardiomyopathy, suggesting that subtle features may be overlooked. To determine the utility and burden of adding RASopathy-associated genes to cardiomyopathy panels, we tested 11 RASopathy-associated genes by next-generation sequencing (NGS), including NGS-based copy number variant assessment, in 1,111 individuals referred for genetic testing for hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM). Disease-causing variants were identified in 0.6% (four of 692) of individuals with HCM, including three missense variants in the PTPN11, SOS1, and BRAF genes. Overall, 36 variants of uncertain significance (VUSs) were identified, averaging ∼3VUSs/100 cases. This study demonstrates that adding a subset of the RASopathy-associated genes to cardiomyopathy panels will increase clinical diagnoses without significantly increasing the number of VUSs/case. © 2018 Wiley Periodicals, Inc.
Koboldt, Daniel C.; Kanchi, Krishna L.; Gui, Bin; Larson, David E.; Fulton, Robert S.; Isaacs, William B.; Kraja, Aldi; Borecki, Ingrid B.; Jia, Li; Wilson, Richard K.; Mardis, Elaine R.; Kibel, Adam S.
2016-01-01
Background Common variants have been associated with prostate cancer risk. Unfortunately, few are reproducibly linked to aggressive disease, the phenotype of greatest clinical relevance. One possible explanation is that rare genetic variants underlie a significant proportion of the risk for aggressive disease. Method To identify such variants, we performed a two staged approach using whole exome sequencing followed by targeted sequencing of 800 genes in 652 aggressive prostate cancer patients and 752 disease-free controls in both African and European Americans. In each population, we tested rare variants for association using two gene-based aggregation tests. We established a study-wide significance threshold of 3.125 × 10−5 to correct for multiple testing. Results TET2 in African-Americans was associated with aggressive disease with 24.4% of cases harboring a rare deleterious variant compared to 9.6% of controls (FET p = 1.84×10−5, OR=3.0; SKAT-O p= 2.74×10−5). We report 8 additional genes with suggestive evidence of association, including the DNA repair genes PARP2 and MSH6. Finally, we observed an excess of rare truncation variants in 5 genes including the DNA repair genes MSH6, BRCA1 and BRCA2. This adds to the growing body of evidence that DNA repair pathway defects may influence susceptibility to aggressive prostate cancer. Conclusion Our findings suggest that rare variants influence risk of clinically relevant prostate cancer and, if validated, could serve to identify men for screening, prophylaxis and treatment. Impact This study provides evidence that rare variants in TET2 may help identify African-American men at increased risk for clinically relevant prostate cancer. PMID:27486019
Comprehensive analysis of the mutation spectrum in 301 German ALS families.
Müller, Kathrin; Brenner, David; Weydt, Patrick; Meyer, Thomas; Grehl, Torsten; Petri, Susanne; Grosskreutz, Julian; Schuster, Joachim; Volk, Alexander E; Borck, Guntram; Kubisch, Christian; Klopstock, Thomas; Zeller, Daniel; Jablonka, Sibylle; Sendtner, Michael; Klebe, Stephan; Knehr, Antje; Günther, Kornelia; Weis, Joachim; Claeys, Kristl G; Schrank, Berthold; Sperfeld, Anne-Dorte; Hübers, Annemarie; Otto, Markus; Dorst, Johannes; Meitinger, Thomas; Strom, Tim M; Andersen, Peter M; Ludolph, Albert C; Weishaupt, Jochen H
2018-04-12
Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions. Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families. 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1 , whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes. We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
VaDiR: an integrated approach to Variant Detection in RNA.
Neums, Lisa; Suenaga, Seiji; Beyerlein, Peter; Anders, Sara; Koestler, Devin; Mariani, Andrea; Chien, Jeremy
2018-02-01
Advances in next-generation DNA sequencing technologies are now enabling detailed characterization of sequence variations in cancer genomes. With whole-genome sequencing, variations in coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its general use in research. Whole-exome sequencing is used to characterize sequence variations in coding regions, but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional limitations include uncertainty in assigning the functional significance of the mutations when these mutations are observed in the non-coding region or in genes that are not expressed in cancer tissue. We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing datasets with a method called Variant Detection in RNA(VaDiR) that integrates 3 variant callers, namely: SNPiR, RVBoost, and MuTect2. The combination of all 3 methods, which we called Tier 1 variants, produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA level. We also found that the integration of Tier 1 variants with those called by MuTect2 and SNPiR produced the highest recall with acceptable precision. Finally, we observed a higher rate of mutation discovery in genes that are expressed at higher levels. Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal validation of DNA-based mutation discovery by providing complementary sequence variation analysis from paired RNA/DNA sequencing datasets.
Gao, Li; Rafaels, Nicholas M; Huang, Lili; Potee, Joseph; Ruczinski, Ingo; Beaty, Terri H.; Paller, Amy S.; Schneider, Lynda C.; Gallo, Rich; Hanifin, Jon M.; Beck, Lisa A.; Geha, Raif S.; Mathias, Rasika A.; Leung, Donald Y. M.
2015-01-01
Background A subset of atopic dermatitis (AD) is associated with increased susceptibility to eczema herpeticum (ADEH+). We previously reported that common single nucleotide polymorphisms (SNPs) in interferon-gamma (IFNG) and receptor 1 (IFNGR1) were associated with ADEH+ phenotype. Objective To interrogate the role of rare variants in IFN-pathway genes for risk of ADEH+. Methods We performed targeted sequencing of interferon-pathway genes (IFNG, IFNGR1, IFNAR1 and IL12RB1) in 228 European American (EA) AD patients selected according to their EH status and severity measured by Eczema Area and Severity Index (EASI). Replication genotyping was performed in independent samples of 219 EA and 333 African Americans (AA). Functional investigation of ‘loss-of-function’ variants was conducted using site-directed mutagenesis. Results We identified 494 single nucleotide variants (SNVs) encompassing 105kb of sequence, including 145 common, 349 (70.6%) rare (minor allele frequency (MAF) <5%) and 86 (17.4%) novel variants, of which 2.8% were coding-synonymous, 93.3% were non-coding (64.6% intronic), and 3.8% were missense. We identified six rare IFNGR1 missense including three damaging variants (Val14Met (V14M), Val61Ile and Tyr397Cys (Y397C)) conferring a higher risk for ADEH+ (P=0.031). Variants V14M and Y397C were confirmed to be deleterious leading to partial IFNGR1 deficiency. Seven common IFNGR1 SNPs, along with common protective haplotypes (2 to 7-SNPs) conferred a reduced risk of ADEH+ (P=0.015-0.002, P=0.0015-0.0004, respectively), and both SNP and haplotype associations were replicated in an independent AA sample (P=0.004-0.0001 and P=0.001-0.0001, respectively). Conclusion Our results provide evidence that both genetic variants in the gene encoding IFNGR1 are implicated in susceptibility to the ADEH+ phenotype. CAPSULE SUMMARY We provided the first evidence that rare functional IFNGR1 mutations contribute to a defective systemic IFN-γ immune response that accounts for the propensity of AD patients to disseminated viral skin infections. PMID:26343451
Bentley, Amy R.; Chen, Guanjie; Shriner, Daniel; Doumatey, Ayo P.; Zhou, Jie; Huang, Hanxia; Mullikin, James C.; Blakesley, Robert W.; Hansen, Nancy F.; Bouffard, Gerard G.; Cherukuri, Praveen F.; Maskeri, Baishali; Young, Alice C.; Adeyemo, Adebowale; Rotimi, Charles N.
2014-01-01
Although a considerable proportion of serum lipids loci identified in European ancestry individuals (EA) replicate in African Americans (AA), interethnic differences in the distribution of serum lipids suggest that some genetic determinants differ by ethnicity. We conducted a comprehensive evaluation of five lipid candidate genes to identify variants with ethnicity-specific effects. We sequenced ABCA1, LCAT, LPL, PON1, and SERPINE1 in 48 AA individuals with extreme serum lipid concentrations (high HDLC/low TG or low HDLC/high TG). Identified variants were genotyped in the full population-based sample of AA (n = 1694) and tested for an association with serum lipids. rs328 (LPL) and correlated variants were associated with higher HDLC and lower TG. Interestingly, a stronger effect was observed on a “European” vs. “African” genetic background at this locus. To investigate this effect, we evaluated the region among West Africans (WA). For TG, the effect size among WA was the same in AA with only African local ancestry (2–3% lower TG), while the larger association among AA with local European ancestry matched previous reports in EA (10%). For HDLC, there was no association with rs328 in AA with only African local ancestry or in WA, while the association among AA with European local ancestry was much greater than what has been observed for EA (15 vs. ∼5 mg/dl), suggesting an interaction with an environmental or genetic factor that differs by ethnicity. Beyond this ancestry effect, the importance of African ancestry-focused, sequence-based work was also highlighted by serum lipid associations of variants that were in higher frequency (or present only) among those of African ancestry. By beginning our study with the sequence variation present in AA individuals, investigating local ancestry effects, and seeking replication in WA, we were able to comprehensively evaluate the role of a set of candidate genes in serum lipids in AA. PMID:24603370
Whole exome sequencing of rare variants in EIF4G1 and VPS35 in Parkinson disease
Nuytemans, Karen; Bademci, Guney; Inchausti, Vanessa; Dressen, Amy; Kinnamon, Daniel D.; Mehta, Arpit; Wang, Liyong; Züchner, Stephan; Beecham, Gary W.; Martin, Eden R.; Scott, William K.
2013-01-01
Objective: Recently, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) have been identified as 2 causal Parkinson disease (PD) genes. We used whole exome sequencing for rapid, parallel analysis of variations in these 2 genes. Methods: We performed whole exome sequencing in 213 patients with PD and 272 control individuals. Those rare variants (RVs) with <5% frequency in the exome variant server database and our own control data were considered for analysis. We performed joint gene-based tests for association using RVASSOC and SKAT (Sequence Kernel Association Test) as well as single-variant test statistics. Results: We identified 3 novel VPS35 variations that changed the coded amino acid (nonsynonymous) in 3 cases. Two variations were in multiplex families and neither segregated with PD. In EIF4G1, we identified 11 (9 nonsynonymous and 2 small indels) RVs including the reported pathogenic mutation p.R1205H, which segregated in all affected members of a large family, but also in 1 unaffected 86-year-old family member. Two additional RVs were found in isolated patients only. Whereas initial association studies suggested an association (p = 0.04) with all RVs in EIF4G1, subsequent testing in a second dataset for the driving variant (p.F1461) suggested no association between RVs in the gene and PD. Conclusions: We confirm that the specific EIF4G1 variation p.R1205H seems to be a strong PD risk factor, but is nonpenetrant in at least one 86-year-old. A few other select RVs in both genes could not be ruled out as causal. However, there was no evidence for an overall contribution of genetic variability in VPS35 or EIF4G1 to PD development in our dataset. PMID:23408866
Rare variants and autoimmune disease.
Massey, Jonathan; Eyre, Steve
2014-09-01
The study of rare variants in monogenic forms of autoimmune disease has offered insight into the aetiology of more complex pathologies. Research in complex autoimmune disease initially focused on sequencing candidate genes, with some early successes, notably in uncovering low-frequency variation associated with Type 1 diabetes mellitus. However, other early examples have proved difficult to replicate, and a recent study across six autoimmune diseases, re-sequencing 25 autoimmune disease-associated genes in large sample sizes, failed to find any associated rare variants. The study of rare and low-frequency variation in autoimmune diseases has been made accessible by the inclusion of such variants on custom genotyping arrays (e.g. Immunochip and Exome arrays). Whole-exome sequencing approaches are now also being utilised to uncover the contribution of rare coding variants to disease susceptibility, severity and treatment response. Other sequencing strategies are starting to uncover the role of regulatory rare variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Diroma, Maria Angela; Santorsola, Mariangela; Guttà, Cristiano; Gasparre, Giuseppe; Picardi, Ernesto; Pesole, Graziano; Attimonelli, Marcella
2014-01-01
Motivation: The increasing availability of mitochondria-targeted and off-target sequencing data in whole-exome and whole-genome sequencing studies (WXS and WGS) has risen the demand of effective pipelines to accurately measure heteroplasmy and to easily recognize the most functionally important mitochondrial variants among a huge number of candidates. To this purpose, we developed MToolBox, a highly automated pipeline to reconstruct and analyze human mitochondrial DNA from high-throughput sequencing data. Results: MToolBox implements an effective computational strategy for mitochondrial genomes assembling and haplogroup assignment also including a prioritization analysis of detected variants. MToolBox provides a Variant Call Format file featuring, for the first time, allele-specific heteroplasmy and annotation files with prioritized variants. MToolBox was tested on simulated samples and applied on 1000 Genomes WXS datasets. Availability and implementation: MToolBox package is available at https://sourceforge.net/projects/mtoolbox/. Contact: marcella.attimonelli@uniba.it Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25028726
Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee
2015-09-21
Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.
USDA-ARS?s Scientific Manuscript database
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a mor...
Furniss, Dominic; Lettice, Laura A.; Taylor, Indira B.; Critchley, Paul S.; Giele, Henk; Hill, Robert E.; Wilkie, Andrew O.M.
2008-01-01
A locus for triphalangeal thumb, variably associated with pre-axial polydactyly, was previously identified in the zone of polarizing activity regulatory sequence (ZRS), a long range limb-specific enhancer of the Sonic Hedgehog (SHH) gene at human chromosome 7q36.3. Here, we demonstrate that a 295T>C variant in the human ZRS, previously thought to represent a neutral polymorphism, acts as a dominant allele with reduced penetrance. We found this variant in three independently ascertained probands from southern England with triphalangeal thumb, demonstrated significant linkage of the phenotype to the variant (LOD = 4.1), and identified a shared microsatellite haplotype around the ZRS, suggesting that the probands share a common ancestor. An individual homozygous for the 295C allele presented with isolated bilateral triphalangeal thumb resembling the heterozygous phenotype, suggesting that the variant is largely dominant to the wild-type allele. As a functional test of the pathogenicity of the 295C allele, we utilized a mutated ZRS construct to demonstrate that it can drive ectopic anterior expression of a reporter gene in the developing mouse forelimb. We conclude that the 295T>C variant is in fact pathogenic and, in southern England, appears to be the most common cause of triphalangeal thumb. Depending on the dispersal of the founding mutation, it may play a wider role in the aetiology of this disorder. PMID:18463159
Li, Yantao; Fu, Tuo; Liu, Tao; Guo, Huaizu; Guo, Qingcheng; Xu, Jin; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Li, Bohua; Guo, Yajun; Hou, Sheng; Wang, Hao
2016-07-01
Nivolumab is a therapeutic fully human IgG4 antibody to programmed death 1 (PD-1). In this study, a nivolumab biosimilar, which was produced in our laboratory, was analyzed and characterized. Sequence variants that contain undesired amino acid sequences may cause concern during biosimilar bioprocess development. We found that low levels of sequence variants were detected in the heavy chain of the nivolumab biosimilar by ultra performance liquid chromatography (UPLC) and tandem mass spectrometry. It was further identified with UPLC-MS/MS by IdeS or trypsin digestion. The sequence variant was confirmed through addition of synthetic mutant peptide. Subsequently, the mixing base signal of normal and mutant sequence was detected through DNA sequencing. The relative levels of mutant A424V in the Fc region of the heavy chain have been detected and demonstrated to be 12.25% and 13.54%, via base peak intensity (BPI) and UV chromatography of the tryptic peptide mapping, respectively. A424V variant was also quantified by real-time PCR (RT-PCR) at the DNA and RNA level, which was 19.2% and 16.8%, respectively. The relative content of the mutant was consistent at the DNA, RNA and protein level, indicating that the A424V mutation may have little influence at transcriptional or translational levels. These results demonstrate that orthogonal state-of-the-art techniques such as LC- UV- MS and RT-PCR should be implemented to characterize recombinant proteins and cell lines for development of biosimilars. Our study suggests that it is important to establish an integrated and effective analytical method to monitor and characterize sequence variants during antibody drug development, especially for antibody biosimilar products.
Wik, Lotta; Mikko, Sofia; Klingeborn, Mikael; Stéen, Margareta; Simonsson, Magnus; Linné, Tommy
2012-01-01
The prion protein (PrP) sequence of European moose, reindeer, roe deer and fallow deer in Scandinavia has high homology to the PrP sequence of North American cervids. Variants in the European moose PrP sequence were found at amino acid position 109 as K or Q. The 109Q variant is unique in the PrP sequence of vertebrates. During the 1980s a wasting syndrome in Swedish moose, Moose Wasting Syndrome (MWS), was described. SNP analysis demonstrated a difference in the observed genotype proportions of the heterozygous Q/K and homozygous Q/Q variants in the MWS animals compared with the healthy animals. In MWS moose the allele frequencies for 109K and 109Q were 0.73 and 0.27, respectively, and for healthy animals 0.69 and 0.31. Both alleles were seen as heterozygotes and homozygotes. In reindeer, PrP sequence variation was demonstrated at codon 176 as D or N and codon 225 as S or Y. The PrP sequences in roe deer and fallow deer were identical with published GenBank sequences. PMID:22441661
Sun, Hokeun; Wang, Shuang
2014-08-15
Existing association methods for rare variants from sequencing data have focused on aggregating variants in a gene or a genetic region because of the fact that analysing individual rare variants is underpowered. However, these existing rare variant detection methods are not able to identify which rare variants in a gene or a genetic region of all variants are associated with the complex diseases or traits. Once phenotypic associations of a gene or a genetic region are identified, the natural next step in the association study with sequencing data is to locate the susceptible rare variants within the gene or the genetic region. In this article, we propose a power set-based statistical selection procedure that is able to identify the locations of the potentially susceptible rare variants within a disease-related gene or a genetic region. The selection performance of the proposed selection procedure was evaluated through simulation studies, where we demonstrated the feasibility and superior power over several comparable existing methods. In particular, the proposed method is able to handle the mixed effects when both risk and protective variants are present in a gene or a genetic region. The proposed selection procedure was also applied to the sequence data on the ANGPTL gene family from the Dallas Heart Study to identify potentially susceptible rare variants within the trait-related genes. An R package 'rvsel' can be downloaded from http://www.columbia.edu/∼sw2206/ and http://statsun.pusan.ac.kr. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin
2016-10-01
Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
2011-01-01
One hundred and four scrapie positive and 77 negative goats from 34 Greek mixed flocks were analysed by prion protein gene sequencing and 17 caprine scrapie isolates from 11 flocks were submitted to molecular isolate typing. For the first time, the protective S146 variant was reported in Greece, while the protective K222 variant was detected in negative but also in five scrapie positive goats from heavily infected flocks. By immunoblotting six isolates, including two goat flockmates carrying the K222 variant, showed molecular features slightly different from all other Greek and Italian isolates co-analysed, possibly suggesting the presence of different scrapie strains in Greece. PMID:21961834
Fragkiadaki, Eirini G; Vaccari, Gabriele; Ekateriniadou, Loukia V; Agrimi, Umberto; Giadinis, Nektarios D; Chiappini, Barbara; Esposito, Elena; Conte, Michela; Nonno, Romolo
2011-09-30
One hundred and four scrapie positive and 77 negative goats from 34 Greek mixed flocks were analysed by prion protein gene sequencing and 17 caprine scrapie isolates from 11 flocks were submitted to molecular isolate typing. For the first time, the protective S146 variant was reported in Greece, while the protective K222 variant was detected in negative but also in five scrapie positive goats from heavily infected flocks. By immunoblotting six isolates, including two goat flockmates carrying the K222 variant, showed molecular features slightly different from all other Greek and Italian isolates co-analysed, possibly suggesting the presence of different scrapie strains in Greece.
Peeling skin syndrome associated with novel variant in FLG2 gene.
Alfares, Ahmed; Al-Khenaizan, Sultan; Al Mutairi, Fuad
2017-12-01
Peeling skin syndrome is a rare genodermatosis characterized by variably pruritic superficial generalized peeling of the skin with several genes involved until now little is known about the association between FLG2 and peeling skin syndrome. We describe multiple family members from a consanguineous Saudi family with peeling skin syndrome. Next Generation Sequencing identifies a cosegregating novel variant in FLG2 c.632C>G (p.Ser211*) as a likely etiology in this family. Here, we reported on the clinical manifestation of homozygous loss of function variant in FLG2 as a disease-causing gene for peeling skin syndrome and expand the dermatology findings. © 2017 Wiley Periodicals, Inc.
Standish, Kristopher A; Carland, Tristan M; Lockwood, Glenn K; Pfeiffer, Wayne; Tatineni, Mahidhar; Huang, C Chris; Lamberth, Sarah; Cherkas, Yauheniya; Brodmerkel, Carrie; Jaeger, Ed; Smith, Lance; Rajagopal, Gunaretnam; Curran, Mark E; Schork, Nicholas J
2015-09-22
Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads associated with NGS technologies requires care and sophistication in order to draw compelling inferences about phenotypic consequences of variation in human genomes. It has been shown that different approaches to variant calling from NGS data can lead to different conclusions. Ensuring appropriate accuracy and quality in variant calling can come at a computational cost. We describe our experience implementing and evaluating a group-based approach to calling variants on large numbers of whole human genomes. We explore the influence of many factors that may impact the accuracy and efficiency of group-based variant calling, including group size, the biogeographical backgrounds of the individuals who have been sequenced, and the computing environment used. We make efficient use of the Gordon supercomputer cluster at the San Diego Supercomputer Center by incorporating job-packing and parallelization considerations into our workflow while calling variants on 437 whole human genomes generated as part of large association study. We ultimately find that our workflow resulted in high-quality variant calls in a computationally efficient manner. We argue that studies like ours should motivate further investigations combining hardware-oriented advances in computing systems with algorithmic developments to tackle emerging 'big data' problems in biomedical research brought on by the expansion of NGS technologies.
Rare Variants in RTEL1 Are Associated with Familial Interstitial Pneumonia
Cogan, Joy D.; Zhao, Min; Mitchell, Daphne B.; Rives, Lynette; Markin, Cheryl; Garnett, Errine T.; Montgomery, Keri H.; Mason, Wendi R.; McKean, David F.; Powers, Julia; Murphy, Elissa; Olson, Lana M.; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R.; Lancaster, Lisa H.; Steele, Mark P.; Brown, Kevin K.; Schwarz, Marvin I.; Fingerlin, Tasha E.; Schwartz, David A.; Lawson, William E.; Loyd, James E.; Zhao, Zhongming; Phillips, John A.; Blackwell, Timothy S.
2015-01-01
Rationale: Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. Objectives: To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Methods: Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. Measurements and Main Results: We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Conclusions: Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis. PMID:25607374
Almontashiri, Naif A M; Alswaid, Abdulrahman; Oza, Andrea; Al-Mazrou, Khalid A; Elrehim, Omnia; Tayoun, Ahmad Abou; Rehm, Heidi L; Amr, Sami S
2018-01-01
Purpose Hearing loss is more prevalent in the Saudi Arabian population than in other populations; however, the full range of genetic etiologies in this population is unknown. We report the genetic findings from 33 Saudi hearing-loss probands of tribal ancestry, with predominantly prelingual severe to profound hearing loss. Methods Testing was performed over the course of 2012–2016, and involved initial GJB2 sequence and GJB6-D13S1830 deletion screening, with negative cases being reflexed to a next-generation sequencing panel with 70, 71, or 87 hearing-loss genes. Results A “positive” result was reached in 63% of probands, with two recurrent OTOF variants (p.Glu57* and p.Arg1792His) accountable for a third of all “positive” cases. The next most common cause was pathogenic variants in MYO7A and SLC26A4, each responsible for three “positive” cases. Interestingly, only one “positive” diagnosis had a DFNB1-related cause, due to a homozygous GJB6-D13S1830 deletion, and no sequence variants in GJB2 were detected. Conclusion Our findings implicate OTOF as a potential major contributor to hearing loss in the Saudi population, while highlighting the low contribution of GJB2, thus offering important considerations for clinical testing strategies for Saudi patients. Further screening of Saudi patients is needed to characterize the genetic spectrum in this population. PMID:29048421
Forouzanfar, Narjes; Baranova, Ancha; Milanizadeh, Saman; Heravi-Moussavi, Alireza; Jebelli, Amir; Abbaszadegan, Mohammad Reza
2017-05-01
Esophageal squamous cell carcinoma is one of the deadliest of all the cancers. Its metastatic properties portend poor prognosis and high rate of recurrence. A more advanced method to identify new molecular biomarkers predicting disease prognosis can be whole exome sequencing. Here, we report the most effective genetic variants of the Notch signaling pathway in esophageal squamous cell carcinoma susceptibility by whole exome sequencing. We analyzed nine probands in unrelated familial esophageal squamous cell carcinoma pedigrees to identify candidate genes. Genomic DNA was extracted and whole exome sequencing performed to generate information about genetic variants in the coding regions. Bioinformatics software applications were utilized to exploit statistical algorithms to demonstrate protein structure and variants conservation. Polymorphic regions were excluded by false-positive investigations. Gene-gene interactions were analyzed for Notch signaling pathway candidates. We identified novel and damaging variants of the Notch signaling pathway through extensive pathway-oriented filtering and functional predictions, which led to the study of 27 candidate novel mutations in all nine patients. Detection of the trinucleotide repeat containing 6B gene mutation (a slice site alteration) in five of the nine probands, but not in any of the healthy samples, suggested that it may be a susceptibility factor for familial esophageal squamous cell carcinoma. Noticeably, 8 of 27 novel candidate gene mutations (e.g. epidermal growth factor, signal transducer and activator of transcription 3, MET) act in a cascade leading to cell survival and proliferation. Our results suggest that the trinucleotide repeat containing 6B mutation may be a candidate predisposing gene in esophageal squamous cell carcinoma. In addition, some of the Notch signaling pathway genetic mutations may act as key contributors to esophageal squamous cell carcinoma.
Krause, William C.; Shafi, Ayesha A.; Nakka, Manjula; Weigel, Nancy L.
2014-01-01
Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. PMID:25008967
Lou, Haiyi; Lu, Yan; Lu, Dongsheng; Fu, Ruiqing; Wang, Xiaoji; Feng, Qidi; Wu, Sijie; Yang, Yajun; Li, Shilin; Kang, Longli; Guan, Yaqun; Hoh, Boon-Peng; Chung, Yeun-Jun; Jin, Li; Su, Bing; Xu, Shuhua
2015-01-01
Tibetan high-altitude adaptation (HAA) has been studied extensively, and many candidate genes have been reported. Subsequent efforts targeting HAA functional variants, however, have not been that successful (e.g., no functional variant has been suggested for the top candidate HAA gene, EPAS1). With WinXPCNVer, a method developed in this study, we detected in microarray data a Tibetan-enriched deletion (TED) carried by 90% of Tibetans; 50% were homozygous for the deletion, whereas only 3% carried the TED and 0% carried the homozygous deletion in 2,792 worldwide samples (p < 10−15). We employed long PCR and Sanger sequencing technologies to determine the exact copy number and breakpoints of the TED in 70 additional Tibetan and 182 diverse samples. The TED had identical boundaries (chr2: 46,694,276–46,697,683; hg19) and was 80 kb downstream of EPAS1. Notably, the TED was in strong linkage disequilibrium (LD; r2 = 0.8) with EPAS1 variants associated with reduced blood concentrations of hemoglobin. It was also in complete LD with the 5-SNP motif, which was suspected to be introgressed from Denisovans, but the deletion itself was absent from the Denisovan sequence. Correspondingly, we detected that footprints of positive selection for the TED occurred 12,803 (95% confidence interval = 12,075–14,725) years ago. We further whole-genome deep sequenced (>60×) seven Tibetans and verified the TED but failed to identify any other copy-number variations with comparable patterns, giving this TED top priority for further study. We speculate that the specific patterns of the TED resulted from its own functionality in HAA of Tibetans or LD with a functional variant of EPAS1. PMID:26073780
A Common Mutation in DEFB126 Causes Impaired Sperm Function and Subfertility
Tollner, Theodore L.; Venners, Scott A.; Hollox, Edward J.; Yudin, Ashley I.; Liu, Xue; Tang, Genfu; Xing, Houxun; Kays, Robert J.; Lau, Tsang; Overstreet, James W.; Xu, Xiping; Bevins, Charles L.; Cherr, Gary N.
2013-01-01
A glycosylated polypeptide, β-defensin 126 (DEFB126), derived from the epididymis and adsorbed onto the sperm surface, has been implicated in immunoprotection and efficient movement of sperm in mucosal fluids of the female reproductive tract. Here, we report a sequence variant in DEFB126 that has a 2-nucleotide deletion in the open reading frame, which generates a non-stop mRNA. The allele frequency of this variant sequence is high in both a European (0.47) and a Chinese (0.45) population cohort. Binding of the Agaricus bisporus lectin to the sperm surface glycocalyx was significantly lower in men with the homozygous variant (del/del) genotype than in those with either a del/wt or wt/wt genotype, suggesting an altered sperm glycocalyx with fewer O-linked oligosaccharides in del/del men. Moreover, sperm from the del/del donors exhibited an 84% reduction in the rate of penetration of a hyaluronic acid (HA) gel, a surrogate for cervical mucus, compared to the other genotypes. This reduction in sperm performance in HA gels was not a result of decreased progressive motility (average curvilinear velocity) or morphological deficits. However, DEFB126 genotype and lectin binding were highly correlated with performance in the penetration assays. In a prospective cohort study of newly married couples who were trying to conceive by natural means, couples were less likely to become pregnant and took longer to achieve a live birth if the male partner was homozygous for the variant sequence. This common sequence variation in DEFB126, and its apparent cause of impaired reproductive function, provides an opportunity to better understand, clinically evaluate, and possibly treat human infertility. PMID:21775668
Thomson, P A; Parla, J S; McRae, A F; Kramer, M; Ramakrishnan, K; Yao, J; Soares, D C; McCarthy, S; Morris, S W; Cardone, L; Cass, S; Ghiban, E; Hennah, W; Evans, K L; Rebolini, D; Millar, J K; Harris, S E; Starr, J M; MacIntyre, D J; McIntosh, A M; Watson, J D; Deary, I J; Visscher, P M; Blackwood, D H; McCombie, W R; Porteous, D J
2014-06-01
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Clinical evaluation incorporating a personal genome
Ashley, Euan A.; Butte, Atul J.; Wheeler, Matthew T.; Chen, Rong; Klein, Teri E.; Dewey, Frederick E.; Dudley, Joel T.; Ormond, Kelly E.; Pavlovic, Aleksandra; Hudgins, Louanne; Gong, Li; Hodges, Laura M.; Berlin, Dorit S.; Thorn, Caroline F.; Sangkuhl, Katrin; Hebert, Joan M.; Woon, Mark; Sagreiya, Hersh; Whaley, Ryan; Morgan, Alexander A.; Pushkarev, Dmitry; Neff, Norma F; Knowles, Joshua W.; Chou, Mike; Thakuria, Joseph; Rosenbaum, Abraham; Zaranek, Alexander Wait; Church, George; Greely, Henry T.; Quake, Stephen R.; Altman, Russ B.
2010-01-01
Background The cost of genomic information has fallen steeply but the path to clinical translation of risk estimates for common variants found in genome wide association studies remains unclear. Since the speed and cost of sequencing complete genomes is rapidly declining, more comprehensive means of analyzing these data in concert with rare variants for genetic risk assessment and individualisation of therapy are required. Here, we present the first integrated analysis of a complete human genome in a clinical context. Methods An individual with a family history of vascular disease and early sudden death was evaluated. Clinical assessment included risk prediction for coronary artery disease, screening for causes of sudden cardiac death, and genetic counselling. Genetic analysis included the development of novel methods for the integration of whole genome sequence data including 2.6 million single nucleotide polymorphisms and 752 copy number variations. The algorithm focused on predicting genetic risk of genes associated with known Mendelian disease, recognised drug responses, and pathogenicity for novel variants. In addition, since integration of risk ratios derived from case control studies is challenging, we estimated posterior probabilities from age and sex appropriate prior probability and likelihood ratios derived for each genotype. In addition, we developed a visualisation approach to account for gene-environment interactions and conditionally dependent risks. Findings We found increased genetic risk for myocardial infarction, type II diabetes and certain cancers. Rare variants in LPA are consistent with the family history of coronary artery disease. Pharmacogenomic analysis suggested a positive response to lipid lowering therapy, likely clopidogrel resistance, and a low initial dosing requirement for warfarin. Many variants of uncertain significance were reported. Interpretation Although challenges remain, our results suggest that whole genome sequencing can yield useful and clinically relevant information for individual patients, especially for those with a strong family history of significant disease. PMID:20435227
Day-Williams, Aaron G.; McLay, Kirsten; Drury, Eleanor; Edkins, Sarah; Coffey, Alison J.; Palotie, Aarno; Zeggini, Eleftheria
2011-01-01
Pooled sequencing can be a cost-effective approach to disease variant discovery, but its applicability in association studies remains unclear. We compare sequence enrichment methods coupled to next-generation sequencing in non-indexed pools of 1, 2, 10, 20 and 50 individuals and assess their ability to discover variants and to estimate their allele frequencies. We find that pooled resequencing is most usefully applied as a variant discovery tool due to limitations in estimating allele frequency with high enough accuracy for association studies, and that in-solution hybrid-capture performs best among the enrichment methods examined regardless of pool size. PMID:22069447
Chromosome specific repetitive DNA sequences
Moyzis, Robert K.; Meyne, Julianne
1991-01-01
A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays.
Kalita, Cynthia A; Moyerbrailean, Gregory A; Brown, Christopher; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger
2018-03-01
The majority of the human genome is composed of non-coding regions containing regulatory elements such as enhancers, which are crucial for controlling gene expression. Many variants associated with complex traits are in these regions, and may disrupt gene regulatory sequences. Consequently, it is important to not only identify true enhancers but also to test if a variant within an enhancer affects gene regulation. Recently, allele-specific analysis in high-throughput reporter assays, such as massively parallel reporter assays (MPRAs), have been used to functionally validate non-coding variants. However, we are still missing high-quality and robust data analysis tools for these datasets. We have further developed our method for allele-specific analysis QuASAR (quantitative allele-specific analysis of reads) to analyze allele-specific signals in barcoded read counts data from MPRA. Using this approach, we can take into account the uncertainty on the original plasmid proportions, over-dispersion, and sequencing errors. The provided allelic skew estimate and its standard error also simplifies meta-analysis of replicate experiments. Additionally, we show that a beta-binomial distribution better models the variability present in the allelic imbalance of these synthetic reporters and results in a test that is statistically well calibrated under the null. Applying this approach to the MPRA data, we found 602 SNPs with significant (false discovery rate 10%) allele-specific regulatory function in LCLs. We also show that we can combine MPRA with QuASAR estimates to validate existing experimental and computational annotations of regulatory variants. Our study shows that with appropriate data analysis tools, we can improve the power to detect allelic effects in high-throughput reporter assays. http://github.com/piquelab/QuASAR/tree/master/mpra. fluca@wayne.edu or rpique@wayne.edu. Supplementary data are available online at Bioinformatics. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Analysis of selected genes associated with cardiomyopathy by next-generation sequencing.
Szabadosova, Viktoria; Boronova, Iveta; Ferenc, Peter; Tothova, Iveta; Bernasovska, Jarmila; Zigova, Michaela; Kmec, Jan; Bernasovsky, Ivan
2018-02-01
As the leading cause of congestive heart failure, cardiomyopathy represents a heterogenous group of heart muscle disorders. Despite considerable progress being made in the genetic diagnosis of cardiomyopathy by detection of the mutations in the most prevalent cardiomyopathy genes, the cause remains unsolved in many patients. High-throughput mutation screening in the disease genes for cardiomyopathy is now possible because of using target enrichment followed by next-generation sequencing. The aim of the study was to analyze a panel of genes associated with dilated or hypertrophic cardiomyopathy based on previously published results in order to identify the subjects at risk. The method of next-generation sequencing by IlluminaHiSeq 2500 platform was used to detect sequence variants in 16 individuals diagnosed with dilated or hypertrophic cardiomyopathy. Detected variants were filtered and the functional impact of amino acid changes was predicted by computational programs. DNA samples of the 16 patients were analyzed by whole exome sequencing. We identified six nonsynonymous variants that were shown to be pathogenic in all used prediction softwares: rs3744998 (EPG5), rs11551768 (MGME1), rs148374985 (MURC), rs78461695 (PLEC), rs17158558 (RET) and rs2295190 (SYNE1). Two of the analyzed sequence variants had minor allele frequency (MAF)<0.01: rs148374985 (MURC), rs34580776 (MYBPC3). Our data support the potential role of the detected variants in pathogenesis of dilated or hypertrophic cardiomyopathy; however, the possibility that these variants might not be true disease-causing variants but are susceptibility alleles that require additional mutations or injury to cause the clinical phenotype of disease must be considered. © 2017 Wiley Periodicals, Inc.
Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian
2015-07-14
The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.
Fidantsef, Ana; Lamsa, Michael; Gorre-Clancy, Brian
2014-10-07
The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.
Fidantsef, Ana [Davis, CA; Lamsa, Michael [Davis, CA; Gorre-Clancy, Brian [Elk Grove, CA
2009-12-29
The present invention relates to variants of a parent beta-glucosidase, comprising a substitution at one or more positions corresponding to positions 142, 183, 266, and 703 of amino acids 1 to 842 of SEQ ID NO: 2 or corresponding to positions 142, 183, 266, and 705 of amino acids 1 to 844 of SEQ ID NO: 70, wherein the variant has beta-glucosidase activity. The present invention also relates to nucleotide sequences encoding the variant beta-glucosidases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.
Tey, S; Ahmad-Annuar, A; Drew, A P; Shahrizaila, N; Nicholson, G A; Kennerson, M L
2016-08-01
The cytoplasmic dynein-dynactin genes are attractive candidates for neurodegenerative disorders given their functional role in retrograde transport along neurons. The cytoplasmic dynein heavy chain (DYNC1H1) gene has been implicated in various neurodegenerative disorders, and dynactin 1 (DCTN1) genes have been implicated in a wide spectrum of disorders including motor neuron disease, Parkinson's disease, spinobulbar muscular atrophy and hereditary spastic paraplegia. However, the involvement of other dynactin genes with inherited peripheral neuropathies (IPN) namely, hereditary sensory neuropathy, hereditary motor neuropathy and Charcot-Marie-Tooth disease is under reported. We screened eight genes; DCTN1-6 and ACTR1A and ACTR1B in 136 IPN patients using whole-exome sequencing and high-resolution melt (HRM) analysis. Eight non-synonymous variants (including one novel variant) and three synonymous variants were identified. Four variants have been reported previously in other studies, however segregation analysis within family members excluded them from causing IPN in these families. No variants of disease significance were identified in this study suggesting the dynactin genes are unlikely to be a common cause of IPNs. However, with the ease of querying gene variants from exome data, these genes remain worthwhile candidates to assess unsolved IPN families for variants that may affect the function of the proteins. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nanayakkara, Shanika; Senevirathna, S T M L D; Parahitiyawa, Nipuna B; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Hitomi, Toshiaki; Kobayashi, Hatasu; Harada, Kouji H; Koizumi, Akio
2015-09-01
The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.
Rodriguez-Flores, Juan L.; Fakhro, Khalid; Hackett, Neil R.; Salit, Jacqueline; Fuller, Jennifer; Agosto-Perez, Francisco; Gharbiah, Maey; Malek, Joel A.; Zirie, Mahmoud; Jayyousi, Amin; Badii, Ramin; Al-Marri, Ajayeb Al-Nabet; Chouchane, Lotfi; Stadler, Dora J.; Hunter-Zinck, Haley; Mezey, Jason G.; Crystal, Ronald G.
2013-01-01
Exome sequencing of families of related individuals has been highly successful in identifying genetic polymorphisms responsible for Mendelian disorders. Here, we demonstrate the value of the reverse approach, where we use exome sequencing of a sample of unrelated individuals to analyze allele frequencies of known causal mutations for Mendelian diseases. We sequenced the exomes of 100 individuals representing the three major genetic subgroups of the Qatari population (Q1 Bedouin, Q2 Persian-South Asian, Q3 African) and identified 37 variants in 33 genes with effects on 36 clinically significant Mendelian diseases. These include variants not present in 1000 Genomes and variants at high frequency when compared to 1000 Genomes populations. Several of these Mendelian variants were only segregating in one Qatari subpopulation, where the observed subpopulation specificity trends were confirmed in an independent population of 386 Qataris. Pre-marital genetic screening in Qatar tests for only 4 out of the 37, such that this study provides a set of Mendelian disease variants with potential impact on the epidemiological profile of the population that could be incorporated into the testing program if further experimental and clinical characterization confirms high penetrance. PMID:24123366
Constable, Fiona E.; Nancarrow, Narelle; Plummer, Kim M.; Rodoni, Brendan
2017-01-01
PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored. PMID:28632759
ERIC Educational Resources Information Center
Noell, George H.; Gresham, Frank M.
2001-01-01
Describes design logic and potential uses of a variant of the multiple-baseline design. The multiple-baseline multiple-sequence (MBL-MS) consists of multiple-baseline designs that are interlaced with one another and include all possible sequences of treatments. The MBL-MS design appears to be primarily useful for comparison of treatments taking…
Lu, Zen H; Brown, Alexander; Wilson, Alison D; Calvert, Jay G; Balasch, Monica; Fuentes-Utrilla, Pablo; Loecherbach, Julia; Turner, Frances; Talbot, Richard; Archibald, Alan L; Ait-Ali, Tahar
2014-03-04
Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.
A rare variant of the mtDNA HVS1 sequence in the hairs of Napoléon's family.
Lucotte, Gérard
2010-10-04
This paper describes the finding of a rare variant in the sequence of the hypervariable segment (HVS1) of mitochondrial (mtDNA) extracted from two preserved hairs, authenticated as belonging to the French Emperor Napoléon I (Napoléon Bonaparte). This rare variant is a mutation that changes the base C to T at position 16,184 (16184C→T), and it constitutes the only mutation found in this HVS1 sequence. This mutation is rare, because it was not found in a reference database (P < 0.05). In a personal database (M. Pala) comprising 37,000 different sequences, the 16184C→T mutation was found in only three samples, thus in this database the mutation frequency was 0.00008%. This mutation 16184C→T was also the only variant found subsequently in the HVS1 sequences of mtDNAs extracted from Napoléon's mother (Letizia) and from his youngest sister (Caroline), confirming that this mutation is maternally inherited. This 16184C→T variant could be used for genetic verification to authenticate any doubtful material and determine whether it should indeed be attributed to Napoléon.
A rare variant of the mtDNA HVS1 sequence in the hairs of Napoléon's family
2010-01-01
This paper describes the finding of a rare variant in the sequence of the hypervariable segment (HVS1) of mitochondrial (mtDNA) extracted from two preserved hairs, authenticated as belonging to the French Emperor Napoléon I (Napoléon Bonaparte). This rare variant is a mutation that changes the base C to T at position 16,184 (16184C→T), and it constitutes the only mutation found in this HVS1 sequence. This mutation is rare, because it was not found in a reference database (P < 0.05). In a personal database (M. Pala) comprising 37,000 different sequences, the 16184C→T mutation was found in only three samples, thus in this database the mutation frequency was 0.00008%. This mutation 16184C→T was also the only variant found subsequently in the HVS1 sequences of mtDNAs extracted from Napoléon's mother (Letizia) and from his youngest sister (Caroline), confirming that this mutation is maternally inherited. This 16184C→T variant could be used for genetic verification to authenticate any doubtful material and determine whether it should indeed be attributed to Napoléon. PMID:21092341
Jang, Mi Ae; Lee, Chang Woo; Kim, Jin Kyung; Ki, Chang Seok
2015-11-01
Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous congenital anomaly. Mutations in the NIPBL gene account for a half of the affected individuals. We describe a family with CdLS carrying a novel pathogenic variant of the SMC1A gene identified by exome sequencing. The proband was a 3-yr-old boy presenting with a developmental delay. He had distinctive facial features without major structural anomalies and tested negative for the NIPBL gene. His younger sister, mother, and maternal grandmother presented with mild mental retardation. By exome sequencing of the proband, a novel SMC1A variant, c.3178G>A, was identified, which was expected to cause an amino acid substitution (p.Glu1060Lys) in the highly conserved coiled-coil domain of the SMC1A protein. Sanger sequencing confirmed that the three female relatives with mental retardation also carry this variant. Our results reveal that SMC1A gene defects are associated with milder phenotypes of CdLS. Furthermore, we showed that exome sequencing could be a useful tool to identify pathogenic variants in patients with CdLS.
Giorgio, Elisa; Ciolfi, Andrea; Biamino, Elisa; Caputo, Viviana; Di Gregorio, Eleonora; Belligni, Elga Fabia; Calcia, Alessandro; Gaidolfi, Elena; Bruselles, Alessandro; Mancini, Cecilia; Cavalieri, Simona; Molinatto, Cristina; Cirillo Silengo, Margherita; Ferrero, Giovanni Battista; Tartaglia, Marco; Brusco, Alfredo
2016-07-01
Whole exome sequencing (WES) is a powerful tool to identify clinically undefined forms of intellectual disability/developmental delay (ID/DD), especially in consanguineous families. Here we report the genetic definition of two sporadic cases, with syndromic ID/DD for whom array-Comparative Genomic Hybridization (aCGH) identified a de novo copy number variant (CNV) of uncertain significance. The phenotypes included microcephaly with brachycephaly and a distinctive facies in one proband, and hypotonia in the legs and mild ataxia in the other. WES allowed identification of a functionally relevant homozygous variant affecting a known disease gene for rare syndromic ID/DD in each proband, that is, c.1423C>T (p.Arg377*) in the Trafficking Protein Particle Complex 9 (TRAPPC9), and c.154T>C (p.Cys52Arg) in the Very Low Density Lipoprotein Receptor (VLDLR). Four mutations affecting TRAPPC9 have been previously reported, and the present finding further depicts this syndromic form of ID, which includes microcephaly with brachycephaly, corpus callosum hypoplasia, facial dysmorphism, and overweight. VLDLR-associated cerebellar hypoplasia (VLDLR-CH) is characterized by non-progressive congenital ataxia and moderate-to-profound intellectual disability. The c.154T>C (p.Cys52Arg) mutation was associated with a very mild form of ataxia, mild intellectual disability, and cerebellar hypoplasia without cortical gyri simplification. In conclusion, we report two novel cases with rare causes of autosomal recessive ID, which document how interpreting de novo array-CGH variants represents a challenge in consanguineous families; as such, clinical WES should be considered in diagnostic testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Li, Niu; Song, Aiyun; Ding, Lixia; Zhu, Hua; Li, Guoqiang; Miao, Yan; Wang, Jian; Li, Benshang; Chen, Jing
2018-07-01
Fanconi anemia (FA) is a rare autosomal recessive or X-linked disorder with highly variable clinical manifestations and an incidence of ∼1 to 5 in 1 million births. To date, 15 bona fide FA genes have been reported to be responsible for the known FA complementation groups and the FANCA gene accounts for almost 60%. In the present study, we report a special Chinese family, which has 2 children with classic FA characteristics. Via 2-step analysis of the whole-exome sequencing data and verification using multiplex ligation-dependent probe amplification test, one child was found to have a novel compound heterozygous mutation of a splicing variant (c.1471-1G>A) and a large intragenic deletion (exons 23-30 del) of the FANCA gene. The other child had the same splicing variant and another novel large deletion (exons 1-18 del) in the FANCA gene. Clone sequencing showed the c.1471-1G>A variant generate an altered transcript with 1 cryptic splice site in intron 15, resulting in a premature termination codon (p.Val490HisfsX6). This study not only shows the complexity of FA molecular diagnosis via comprehensively studying the FA pathogenic genes and the mutational spectrum, but also has significant reference value for the future molecular diagnosis of FA.
Son, Mike S.; Megli, Christina J.; Kovacikova, Gabriela; Qadri, Firdausi; Taylor, Ronald K.
2011-01-01
Vibrio cholerae serogroup O1, the causative agent of the diarrheal disease cholera, is divided into two biotypes: classical and El Tor. Both biotypes produce the major virulence factors toxin-coregulated pilus (TCP) and cholera toxin (CT). Although possessing genotypic and phenotypic differences, El Tor biotype strains displaying classical biotype traits have been reported and subsequently were dubbed El Tor variants. Of particular interest are reports of El Tor variants that produce various levels of CT, including levels typical of classical biotype strains. Here, we report the characterization of 10 clinical isolates from the International Centre for Diarrhoeal Disease Research, Bangladesh, and a representative strain from the 2010 Haiti cholera outbreak. We observed that all 11 strains produced increased CT (2- to 10-fold) compared to that of wild-type El Tor strains under in vitro inducing conditions, but they possessed various TcpA and ToxT expression profiles. Particularly, El Tor variant MQ1795, which produced the highest level of CT and very high levels of TcpA and ToxT, demonstrated hypervirulence compared to the virulence of El Tor wild-type strains in the infant mouse cholera model. Additional genotypic and phenotypic tests were conducted to characterize the variants, including an assessment of biotype-distinguishing characteristics. Notably, the sequencing of ctxB in some El Tor variants revealed two copies of classical ctxB, one per chromosome, contrary to previous reports that located ctxAB only on the large chromosome of El Tor biotype strains. PMID:21880975
Volaki, Konstantina; Pampanos, Andreas; Kitsiou-Tzeli, Sophia; Vrettou, Christina; Oikonomakis, Vasilis; Sofocleous, Christalena; Kanavakis, Emmanuel
2013-10-01
Molecular and neurobiological evidence for the involvement of neuroligins (particularly NLGN3 and NLGN4X genes) in autistic disorder is accumulating. However, previous mutation screening studies on these two genes have yielded controversial results. The present study explores, for the first time, the contribution of NLGN3 and NLGN4X genetic variants in Greek patients with autistic disorder. We analyzed the full exonic sequence of NLGN3 and NLGN4X genes in 40 patients strictly fulfilling the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. criteria for autistic disorder. We identified nine nucleotide changes in NLGN4X--one probable causative mutation (p.K378R) previously reported by our research group, one novel variant (c.-206G>C), one nonvalidated single nucleotide polymorphism (SNP, rs111953947), and six known human SNPs reported in the SNP database--and one known human SNP in NLGN3 also reported in the SNP database. The variants identified are expected to be benign. However, they should be investigated in the context of variants in interacting cellular pathways to assess their contribution to the etiology of autism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ilho; Kim, Jiyeon; Park, Joong-Yeol
2013-05-01
Although clusterin (CLU) was originally identified as a secreted glycoprotein that plays cytoprotective role, several intracellular CLU variants have been recently identified in the diverse pathological conditions. The mechanistic basis of these variants is now believed to be alternative splicing and retrotranslocation. Here, we uncovered, an unglycosylated and signal sequence-unprocessed, CLU variant in the cytosol. This variant proved to be a product that cotranslationally rerouted to the cytosol during translocation. Cytosolic CLU was prone to aggregation at peri-nuclear region of cells and induced cell death. Signal sequence is shown to be an important determinant for cytosolic CLU generation and aggregation.more » These results provide not only a new mechanistic insight into the cytosolic CLU generation but also an idea for therapeutic mislocalization of CLU as a strategy for cancer treatment. - Highlights: ► Intracellular CLU variants have been recently identified in the diverse pathological conditions. ► Translocation of clusterin is less efficient than that of Prl. ► We identified a new cytotoxic clusterin variant whose signal sequence was unprocessed. ► This variant proved to be a product that cotranslationally rerouted to cytosol.« less
AmpliVar: mutation detection in high-throughput sequence from amplicon-based libraries.
Hsu, Arthur L; Kondrashova, Olga; Lunke, Sebastian; Love, Clare J; Meldrum, Cliff; Marquis-Nicholson, Renate; Corboy, Greg; Pham, Kym; Wakefield, Matthew; Waring, Paul M; Taylor, Graham R
2015-04-01
Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data. © 2015 WILEY PERIODICALS, INC.
Saitoh, Eiichi; Sega, Takuya; Imai, Akane; Isemura, Satoko; Kato, Tetsuo; Ochiai, Akihito; Taniguchi, Masayuki
2018-04-01
The NCBI gene database and human-transcriptome database for alternative splicing were used to determine the expression of mRNAs for P-B (SMR3B) and variant form of P-B. The translational product from the former mRNA was identified as the protein named P-B, whereas that from the latter has not yet been elucidated. In the present study, we investigated the expression of P-B and its variant form at the protein level. To identify the variant protein of P-B, (1) cationic proteins with a higher isoelectric point in human pooled whole saliva were purified by a two dimensional liquid chromatography; (2) the peptide fragments generated from the in-solution of all proteins digested with trypsin separated and analyzed by MALDI-TOF-MS; and (3) the presence or absence of P-B in individual saliva was examined by 15% SDS-PAGE. The peptide sequences (I 37 PPPYSCTPNMNNCSR 52 , C 53 HHHHKRHHYPCNYCFCYPK 72 , R 59 HHYPCNYCFCYPK 72 and H 60 HYPCNYCFCYPK 72 ) present in the variant protein of P-B were identified. The peptide sequence (G 6 PYPPGPLAPPQPFGPGFVPPPPPPPYGPGR 36 ) in P-B (or the variant) and sequence (I 37 PPPPPAPYGPGIFPPPPPQP 57 ) in P-B were identified. The sum of the sequences identified indicated a 91.23% sequence identity for P-B and 79.76% for the variant. There were cases in which P-B existed in individual saliva, but there were cases in which it did not exist in individual saliva. The variant protein is produced by excising a non-canonical intron (CC-AC pair) from the 3'-noncoding sequence of the PBII gene. Both P-B and the variant are subject to proteolysis in the oral cavity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choi, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B.; Gupta, Neha; Kohane, Isaac S.; Green, Robert C.; Kong, Sek Won
2014-01-01
As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous SNVs; 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and ensemble genotyping would be essential to minimize false positive DNM candidates. PMID:24829188
Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui
2016-01-01
The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.
Jørgensen, Agnete; Fagerheim, Toril; Rand-Hendriksen, Svend; Lunde, Per I; Vorren, Torgrim O; Pepin, Melanie G; Leistritz, Dru F; Byers, Peter H
2015-01-01
Vascular Ehlers–Danlos Syndrome (vEDS), also known as EDS type IV, is considered to be an autosomal dominant disorder caused by sequence variants in COL3A1, which encodes the chains of type III procollagen. We identified a family in which there was marked clinical variation with the earliest death due to extensive aortic dissection at age 15 years and other family members in their eighties with no complications. The proband was born with right-sided clubfoot but was otherwise healthy until he died unexpectedly at 15 years. His sister, in addition to signs consistent with vascular EDS, had bilateral frontal and parietal polymicrogyria. The proband and his sister each had two COL3A1 sequence variants, c.1786C>T, p.(Arg596*) in exon 26 and c.3851G>A, p.(Gly1284Glu) in exon 50 on different alleles. Cells from the compound heterozygote produced a reduced amount of type III procollagen, all the chains of which had abnormal electrophoretic mobility. Biallelic sequence variants have a significantly worse outcome than heterozygous variants for either null mutations or missense mutations, and frontoparietal polymicrogyria may be an added phenotype feature. This genetic constellation provides a very rare explanation for marked intrafamilial clinical variation due to sequence variants in COL3A1. PMID:25205403
Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.
Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E
2013-02-12
High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.
VIPER: a web application for rapid expert review of variant calls.
Wöste, Marius; Dugas, Martin
2018-06-01
With the rapid development in next-generation sequencing, cost and time requirements for genomic sequencing are decreasing, enabling applications in many areas such as cancer research. Many tools have been developed to analyze genomic variation ranging from single nucleotide variants to whole chromosomal aberrations. As sequencing throughput increases, the number of variants called by such tools also grows. Often employed manual inspection of such calls is thus becoming a time-consuming procedure. We developed the Variant InsPector and Expert Rating tool (VIPER) to speed up this process by integrating the Integrative Genomics Viewer into a web application. Analysts can then quickly iterate through variants, apply filters and make decisions based on the generated images and variant metadata. VIPER was successfully employed in analyses with manual inspection of more than 10 000 calls. VIPER is implemented in Java and Javascript and is freely available at https://github.com/MarWoes/viper. marius.woeste@uni-muenster.de. Supplementary data are available at Bioinformatics online.
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-01-01
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an α-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display β-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a β-sheet structure. Dynamic light scattering revealed that the presence of β-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation. PMID:20172856
Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard
2010-04-23
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.
Variant of TREM2 Associated with the Risk of Alzheimer’s Disease
Jonsson, Thorlakur; Stefansson, Hreinn; Steinberg, Stacy; Jonsdottir, Ingileif; Jonsson, Palmi V.; Snaedal, Jon; Bjornsson, Sigurbjorn; Huttenlocher, Johanna; Levey, Allan I.; Lah, James J.; Rujescu, Dan; Hampel, Harald; Giegling, Ina; Andreassen, Ole A.; Engedal, Knut; Ulstein, Ingun; Djurovic, Srdjan; Ibrahim-Verbaas, Carla; Hofman, Albert; Ikram, M. Arfan; van Duijn, Cornelia M; Thorsteinsdottir, Unnur; Kong, Augustine; Stefansson, Kari
2013-01-01
BACKGROUND Sequence variants, including the ε4 allele of apolipoprotein E, have been associated with the risk of the common late-onset form of Alzheimer’s disease. Few rare variants affecting the risk of late-onset Alzheimer’s disease have been found. METHODS We obtained the genome sequences of 2261 Icelanders and identified sequence variants that were likely to affect protein function. We imputed these variants into the genomes of patients with Alzheimer’s disease and control participants and then tested for an association with Alzheimer’s disease. We performed replication tests using case–control series from the United States, Norway, the Netherlands, and Germany. We also tested for a genetic association with cognitive function in a population of unaffected elderly persons. RESULTS A rare missense mutation (rs75932628-T) in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2), which was predicted to result in an R47H substitution, was found to confer a significant risk of Alzheimer’s disease in Iceland (odds ratio, 2.92; 95% confidence interval [CI], 2.09 to 4.09; P = 3.42×10−10). The mutation had a frequency of 0.46% in controls 85 years of age or older. We observed the association in additional sample sets (odds ratio, 2.90; 95% CI, 2.16 to 3.91; P = 2.1×10−12 in combined discovery and replication samples). We also found that carriers of rs75932628-T between the ages of 80 and 100 years without Alzheimer’s disease had poorer cognitive function than noncarriers (P = 0.003). CONCLUSIONS Our findings strongly implicate variant TREM2 in the pathogenesis of Alzheimer’s disease. Given the reported antiinflammatory role of TREM2 in the brain, the R47H substitution may lead to an increased predisposition to Alzheimer’s disease through impaired containment of inflammatory processes. (Funded by the National Institute on Aging and others.) PMID:23150908
Easton, Douglas F; Lesueur, Fabienne; Decker, Brennan; Michailidou, Kyriaki; Li, Jun; Allen, Jamie; Luccarini, Craig; Pooley, Karen A; Shah, Mitul; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Ahmad, Jamil; Thompson, Ella R; Damiola, Francesca; Pertesi, Maroulio; Voegele, Catherine; Mebirouk, Noura; Robinot, Nivonirina; Durand, Geoffroy; Forey, Nathalie; Luben, Robert N; Ahmed, Shahana; Aittomäki, Kristiina; Anton-Culver, Hoda; Arndt, Volker; Baynes, Caroline; Beckman, Matthias W; Benitez, Javier; Van Den Berg, David; Blot, William J; Bogdanova, Natalia V; Bojesen, Stig E; Brenner, Hermann; Chang-Claude, Jenny; Chia, Kee Seng; Choi, Ji-Yeob; Conroy, Don M; Cox, Angela; Cross, Simon S; Czene, Kamila; Darabi, Hatef; Devilee, Peter; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flyger, Henrik; Fostira, Florentia; García-Closas, Montserrat; Giles, Graham G; Glendon, Gord; González-Neira, Anna; Guénel, Pascal; Haiman, Christopher A; Hall, Per; Hart, Steven N; Hartman, Mikael; Hooning, Maartje J; Hsiung, Chia-Ni; Ito, Hidemi; Jakubowska, Anna; James, Paul A; John, Esther M; Johnson, Nichola; Jones, Michael; Kabisch, Maria; Kang, Daehee; Kosma, Veli-Matti; Kristensen, Vessela; Lambrechts, Diether; Li, Na; Lindblom, Annika; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Matsuo, Keitaro; Meindl, Alfons; Mitchell, Gillian; Muir, Kenneth; Nevelsteen, Ines; van den Ouweland, Ans; Peterlongo, Paolo; Phuah, Sze Yee; Pylkäs, Katri; Rowley, Simone M; Sangrajrang, Suleeporn; Schmutzler, Rita K; Shen, Chen-Yang; Shu, Xiao-Ou; Southey, Melissa C; Surowy, Harald; Swerdlow, Anthony; Teo, Soo H; Tollenaar, Rob A E M; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine; Verhoef, Senno; Wong-Brown, Michelle; Zheng, Wei; Zheng, Ying; Nevanlinna, Heli; Scott, Rodney J; Andrulis, Irene L; Wu, Anna H; Hopper, John L; Couch, Fergus J; Winqvist, Robert; Burwinkel, Barbara; Sawyer, Elinor J; Schmidt, Marjanka K; Rudolph, Anja; Dörk, Thilo; Brauch, Hiltrud; Hamann, Ute; Neuhausen, Susan L; Milne, Roger L; Fletcher, Olivia; Pharoah, Paul D P; Campbell, Ian G; Dunning, Alison M; Le Calvez-Kelm, Florence; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia
2016-05-01
BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
González-Domenech, Carmen M; Viciana, Isabel; Delaye, Luis; Mayorga, María Luisa; Palacios, Rosario; de la Torre, Javier; Jarilla, Francisco; Castaño, Manuel; Del Arco, Alfonso; Clavijo, Encarnación; Santos, Jesús
2018-01-01
CRF19_cpx is a complex circulating recombination form (CRF) of HIV-1. We describe the characteristics of an outbreak of the CRF19_cpx variant among treatment-naïve patients in southern Spain. The study was undertaken at the Virgen de la Victoria Hospital, a reference centre for the analysis of HIV-1 genotype in Malaga (Spain). Subtyping was performed through REGA v3.0 and the relationship of our CRF19_cpx sequences, among themselves and regarding other reference sequences from the same variant, was defined by phylogenetic analysis. We used PhyML program to perform a reconstruction of the phylogeny by Maximum Likelihood method as well as further confirmation of the transmission clusters by Bayesian inference. Additionally, we collected demographic, clinical and immunovirological data. Between 2011 and 2016, we detected 57 treatment-naïve patients with the CRF19_cpx variant. Of these, 55 conformed a very well-defined transmission cluster, phylogenetically close to CRF19_cpx sequences from the United Kingdom. The origin of this subtype in Malaga was dated between 2007 and 2010. Over 50% of the patients presented the non-nucleoside reverse transcriptase inhibitor G190A resistance mutation. This variant was mostly represented by young adult Spanish men who had sex with men. Almost half of them were recent seroconverters, though a similar percentage was diagnosed at a late state of HIV infection. Five cases of AIDS and one non-AIDS defined death occurred during follow-up. The majority of patients treated with first-line combination antiretroviral therapy (ART) responded. We report the largest HIV-1 CRF19_cpx cohort of treatment-naïve patients outside Cuba, almost all emerging as an outbreak in the South of Spain. Half the cases had the G190A resistance mutation. Unlike previous studies, the variant from Malaga seems less pathogenic, with few AIDS events and an excellent response to ART.
Haller, Gabe; Kapoor, Manav; Budde, John; Xuei, Xiaoling; Edenberg, Howard; Nurnberger, John; Kramer, John; Brooks, Andy; Tischfield, Jay; Almasy, Laura; Agrawal, Arpana; Bucholz, Kathleen; Rice, John; Saccone, Nancy; Bierut, Laura; Goate, Alison
2014-02-01
Previous findings have demonstrated that variants in nicotinic receptor genes are associated with nicotine, alcohol and cocaine dependence. Because of the substantial comorbidity, it has often been unclear whether a variant is associated with multiple substances or whether the association is actually with a single substance. To investigate the possible contribution of rare variants to the development of substance dependencies other than nicotine dependence, specifically alcohol and cocaine dependence, we undertook pooled sequencing of the coding regions and flanking sequence of CHRNA5, CHRNA3, CHRNB4, CHRNA6 and CHRNB3 in 287 African American and 1028 European American individuals from the Collaborative Study of the Genetics of Alcoholism (COGA). All members of families for whom any individual was sequenced (2504 African Americans and 7318 European Americans) were then genotyped for all variants identified by sequencing. For each gene, we then tested for association using FamSKAT. For European Americans, we find increased DSM-IV cocaine dependence symptoms (FamSKAT P = 2 × 10(-4)) and increased DSM-IV alcohol dependence symptoms (FamSKAT P = 5 × 10(-4)) among carriers of missense variants in CHRNB3. Additionally, one variant (rs149775276; H329Y) shows association with both cocaine dependence symptoms (P = 7.4 × 10(-5), β = 2.04) and alcohol dependence symptoms (P = 2.6 × 10(-4), β = 2.04). For African Americans, we find decreased cocaine dependence symptoms among carriers of missense variants in CHRNA3 (FamSKAT P = 0.005). Replication in an independent sample supports the role of rare variants in CHRNB3 and alcohol dependence (P = 0.006). These are the first results to implicate rare variants in CHRNB3 or CHRNA3 in risk for alcohol dependence or cocaine dependence.
A Bioinformatics Workflow for Variant Peptide Detection in Shotgun Proteomics*
Li, Jing; Su, Zengliu; Ma, Ze-Qiang; Slebos, Robbert J. C.; Halvey, Patrick; Tabb, David L.; Liebler, Daniel C.; Pao, William; Zhang, Bing
2011-01-01
Shotgun proteomics data analysis usually relies on database search. However, commonly used protein sequence databases do not contain information on protein variants and thus prevent variant peptides and proteins from been identified. Including known coding variations into protein sequence databases could help alleviate this problem. Based on our recently published human Cancer Proteome Variation Database, we have created a protein sequence database that comprehensively annotates thousands of cancer-related coding variants collected in the Cancer Proteome Variation Database as well as noncancer-specific ones from the Single Nucleotide Polymorphism Database (dbSNP). Using this database, we then developed a data analysis workflow for variant peptide identification in shotgun proteomics. The high risk of false positive variant identifications was addressed by a modified false discovery rate estimation method. Analysis of colorectal cancer cell lines SW480, RKO, and HCT-116 revealed a total of 81 peptides that contain either noncancer-specific or cancer-related variations. Twenty-three out of 26 variants randomly selected from the 81 were confirmed by genomic sequencing. We further applied the workflow on data sets from three individual colorectal tumor specimens. A total of 204 distinct variant peptides were detected, and five carried known cancer-related mutations. Each individual showed a specific pattern of cancer-related mutations, suggesting potential use of this type of information for personalized medicine. Compatibility of the workflow has been tested with four popular database search engines including Sequest, Mascot, X!Tandem, and MyriMatch. In summary, we have developed a workflow that effectively uses existing genomic data to enable variant peptide detection in proteomics. PMID:21389108
Comparative oncology DNA sequencing of canine T cell lymphoma via human hotspot panel
Beheshti, Afshin; Pilichowska, Monika; Burgess, Kristine; Ricks-Santi, Luisel; McNiel, Elizabeth; London, Cheryl B.; Ravi, Dashnamoorthy; Evens, Andrew M.
2018-01-01
T-cell lymphoma (TCL) is an uncommon and aggressive form of human cancer. Lymphoma is the most common hematopoietic tumor in canines (companion animals), with TCL representing approximately 30% of diagnoses. Collectively, the canine is an appealing model for cancer research given the spontaneous occurrence of cancer, intact immune system, and phytogenetic proximity to humans. We sought to establish mutational congruence of the canine with known human TCL mutations in order to identify potential actionable oncogenic pathways. Following pathologic confirmation, DNA was sequenced in 16 canine TCL (cTCL) cases using a custom Human Cancer Hotspot Panel of 68 genes commonly mutated in human TCL. Sequencing identified 4,527,638 total reads with average length of 229 bases containing 346 unique variants and 1,474 total variants; each sample had an average of 92 variants. Among these, there were 258 germline and 32 somatic variants. Among the 32 somatic variants there were 8 missense variants, 1 splice junction variant and the remaining were intron or synonymous variants. A frequency of 4 somatic mutations per sample were noted with >7 mutations detected in MET, KDR, STK11 and BRAF. Expression of these associated proteins were also detected via Western blot analyses. In addition, Sanger sequencing confirmed three variants of high quality (MYC, MET, and TP53 missense mutation). Taken together, the mutational spectrum and protein analyses showed mutations in signaling pathways similar to human TCL and also identified novel mutations that may serve as drug targets as well as potential biomarkers. PMID:29854308
First detection of canine parvovirus type 2b from diarrheic dogs in Himachal Pradesh.
Sharma, Shalini; Dhar, Prasenjit; Thakur, Aneesh; Sharma, Vivek; Sharma, Mandeep
2016-09-01
The present study was conducted to detect the presence of canine parvovirus (CPV) among diarrheic dogs in Himachal Pradesh and to identify the most prevalent antigenic variant of CPV based on molecular typing and sequence analysis of VP2 gene. A total of 102 fecal samples were collected from clinical cases of diarrhea or hemorrhagic gastroenteritis from CPV vaccinated or non-vaccinated dogs. Samples were tested using CPV-specific polymerase chain reaction (PCR) targeting VP2 gene, multiplex PCR for detection of CPV-2a and CPV-2b antigenic variants, and a PCR for the detection of CPV-2c. CPV-2b isolate was cultured on Madin-Darby canine kidney (MDCK) cell lines and sequenced using VP2 structural protein gene. Multiple alignment and phylogenetic analysis was done using ClustalW and MEGA6 and inferred using the Neighbor-Joining method. No sample was found positive for the original CPV strain usually present in the vaccine. However, about 50% (52 out of 102) of the samples were found to be positive with CPV-2ab PCR assay that detects newer variants of CPV circulating in the field. In addition, multiplex PCR assay that identifies both CPV-2ab and CPV-2b revealed that CPV-2b was the major antigenic variant present in the affected dogs. A PCR positive isolate of CPV-2b was adapted to grow in MDCK cells and produced characteristic cytopathic effect after 5 th passage. Multiple sequence alignment of VP2 structural gene of CPV-2b isolate (Accession number HG004610) used in the study was found to be similar to other sequenced isolates in NCBI sequence database and showed 98-99% homology. This study reports the first detection of CPV-2b in dogs with hemorrhagic gastroenteritis in Himachal Pradesh and absence of other antigenic types of CPV. Further, CPV-specific PCR assay can be used for rapid confirmation of circulating virus strains under field conditions.
Narravula, Alekhya; Garber, Kathryn B; Askree, S Hussain; Hegde, Madhuri; Hall, Patricia L
2017-01-01
As exome and genome sequencing using high-throughput sequencing technologies move rapidly into the diagnostic process, laboratories and clinicians need to develop a strategy for dealing with uncertain findings. A commitment must be made to minimize these findings, and all parties may need to make adjustments to their processes. The information required to reclassify these variants is often available but not communicated to all relevant parties. To illustrate these issues, we focused on three well-characterized monogenic, metabolic disorders included in newborn screens: classic galactosemia, caused by GALT variants; phenylketonuria, caused by PAH variants; and medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, caused by ACADM variants. In 10 years of clinical molecular testing, we have observed 134 unique GALT variants, 46 of which were variants of uncertain significance (VUS). In PAH, we observed 132 variants, including 17 VUS, and for ACADM, we observed 64 unique variants, of which 33 were uncertain. After this review, 17 VUS (37%; 7 in ACADM, 9 in GALT, and 1 in PAH) were reclassified from uncertain (6 to benign or likely benign and 11 to pathogenic or likely pathogenic). We identified common types of missing information that would have helped make a definitive classification and categorized this information by ease and cost to obtain.Genet Med 19 1, 77-82.
Sanderson, Saskia C; Linderman, Michael D; Suckiel, Sabrina A; Zinberg, Randi; Wasserstein, Melissa; Kasarskis, Andrew; Diaz, George A; Schadt, Eric E
2017-02-01
Providing ostensibly healthy individuals with personal results from whole-genome sequencing could lead to improved health and well-being via enhanced disease risk prediction, prevention, and diagnosis, but also poses practical and ethical challenges. Understanding how individuals react psychologically and behaviourally will be key in assessing the potential utility of personal whole-genome sequencing. We conducted an exploratory longitudinal cohort study in which quantitative surveys and in-depth qualitative interviews were conducted before and after personal results were returned to individuals who underwent whole-genome sequencing. The participants were offered a range of interpreted results, including Alzheimer's disease, type 2 diabetes, pharmacogenomics, rare disease-associated variants, and ancestry. They were also offered their raw data. Of the 35 participants at baseline, 29 (82.9%) completed the 6-month follow-up. In the quantitative surveys, test-related distress was low, although it was higher at 1-week than 6-month follow-up (Z=2.68, P=0.007). In the 6-month qualitative interviews, most participants felt happy or relieved about their results. A few were concerned, particularly about rare disease-associated variants and Alzheimer's disease results. Two of the 29 participants had sought clinical follow-up as a direct or indirect consequence of rare disease-associated variants results. Several had mentioned their results to their doctors. Some participants felt having their raw data might be medically useful to them in the future. The majority reported positive reactions to having their genomes sequenced, but there were notable exceptions to this. The impact and value of returning personal results from whole-genome sequencing when implemented on a larger scale remains to be seen.
Sanderson, Saskia C; Linderman, Michael D; Suckiel, Sabrina A; Zinberg, Randi; Wasserstein, Melissa; Kasarskis, Andrew; Diaz, George A; Schadt, Eric E
2017-01-01
Providing ostensibly healthy individuals with personal results from whole-genome sequencing could lead to improved health and well-being via enhanced disease risk prediction, prevention, and diagnosis, but also poses practical and ethical challenges. Understanding how individuals react psychologically and behaviourally will be key in assessing the potential utility of personal whole-genome sequencing. We conducted an exploratory longitudinal cohort study in which quantitative surveys and in-depth qualitative interviews were conducted before and after personal results were returned to individuals who underwent whole-genome sequencing. The participants were offered a range of interpreted results, including Alzheimer's disease, type 2 diabetes, pharmacogenomics, rare disease-associated variants, and ancestry. They were also offered their raw data. Of the 35 participants at baseline, 29 (82.9%) completed the 6-month follow-up. In the quantitative surveys, test-related distress was low, although it was higher at 1-week than 6-month follow-up (Z=2.68, P=0.007). In the 6-month qualitative interviews, most participants felt happy or relieved about their results. A few were concerned, particularly about rare disease-associated variants and Alzheimer's disease results. Two of the 29 participants had sought clinical follow-up as a direct or indirect consequence of rare disease-associated variants results. Several had mentioned their results to their doctors. Some participants felt having their raw data might be medically useful to them in the future. The majority reported positive reactions to having their genomes sequenced, but there were notable exceptions to this. The impact and value of returning personal results from whole-genome sequencing when implemented on a larger scale remains to be seen. PMID:28051073
A novel isoform of vertebrate ancient opsin in a smelt fish, Plecoglossus altivelis.
Minamoto, Toshifumi; Shimizu, Isamu
2002-01-11
Vertebrate ancient (VA) opsin of nonvisual pigment in fishes was reported to exist in two isoforms, i.e., short and long variants with an unusual predicted amino acid sequence length compared to vertebrate visual opsins. Here we cloned an isoform (Pal-VAM) of VA opsin showing the usual opsin length in addition to the long type isoform (Pal-VAL) from a smelt fish, Plecoglossus altivelis. Pal-VAM and Pal-VAL were composed of 346 and 387 amino acids, respectively. The deduced amino acid sequences of these variants were identical to each other within the first 342 residues, but they showed divergence in the carboxyl-terminal sequence. Pal-VAL corresponded to the long isoform found in zebrafish and carp, and Pal-VAM was identified as a new type of VA opsin variant. Southern blotting experiments indicated that the VA opsin gene of the smelt is present as a single copy, and RT-PCR analysis revealed that Pal-VAM and Pal-VAL mRNA were expressed in both the eyes and brain. In situ hybridization showed that Pal-VAM and Pal-VAL mRNA are expressed in amacrine cells in the retina. Pal-VAM is a new probably functional nonvisual photoreceptive molecule in fish. (c)2002 Elsevier Science.
Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population
Li, Dan; Wang, Siying; Ye, Hongfei; Tang, Yating; Qiu, Xiaodi; Fan, Qi; Rong, Xianfang; Liu, Xin; Chen, Yuhong; Yang, Jin
2016-01-01
Purpose This study aimed to investigate the genetic effects underlying non-familial sporadic congenital cataract (SCC). Methods We collected DNA samples from 74 patients with SCC and 20 patients with traumatic cataract (TC) in an age-matched group and performed genomic sequencing of 61 lens-related genes with target region capture and next-generation sequencing (NGS). The suspected SCC variants were validated with MassARRAY and Sanger sequencing. DNA samples from 103 healthy subjects were used as additional controls in the confirmation examination. Results By filtering against common variants in public databases and those associated with TC cases, we identified 23 SCC-specific variants in 17 genes from 19 patients, which were predicted to be functional. These mutations were further confirmed by examination of the 103 healthy controls. Among the mutated genes, CRYBB3 had the highest mutation frequency with mutations detected four times in four patients, followed by EPHA2, NHS, and WDR36, the mutation of which were detected two times in two patients. We observed that the four patients with CRYBB3 mutations had three different cataract phenotypes. Conclusions From this study, we concluded the clinical and genetic heterogeneity of SCC. This is the first study to report broad spectrum genotyping for patients with SCC. PMID:27307692
Genetic Diversity in Oxytocin Ligands and Receptors in New World Monkeys
Ren, Dongren; Lu, Guoqing; Moriyama, Hideaki; Mustoe, Aaryn C.; Harrison, Emily B.; French, Jeffrey A.
2015-01-01
Oxytocin (OXT) is an important neurohypophyseal hormone that influences wide spectrum of reproductive and social processes. Eutherian mammals possess a highly conserved sequence of OXT (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly). However, in this study, we sequenced the coding region for OXT in 22 species covering all New World monkeys (NWM) genera and clades, and characterize five OXT variants, including consensus mammalian Leu8-OXT, major variant Pro8-OXT, and three previously unreported variants: Ala8-OXT, Thr8-OXT, and Phe2-OXT. Pro8-OXT shows clear structural and physicochemical differences from Leu8-OXT. We report multiple predicted amino acid substitutions in the G protein-coupled OXT receptor (OXTR), especially in the critical N-terminus, which is crucial for OXT recognition and binding. Genera with same Pro8-OXT tend to cluster together on a phylogenetic tree based on OXTR sequence, and we demonstrate significant coevolution between OXT and OXTR. NWM species are characterized by high incidence of social monogamy, and we document an association between OXTR phylogeny and social monogamy. Our results demonstrate remarkable genetic diversity in the NWM OXT/OXTR system, which can provide a foundation for molecular, pharmacological, and behavioral studies of the role of OXT signaling in regulating complex social phenotypes. PMID:25938568
Lee, Lobin A; Arvai, Kevin J; Jones, Dan
2015-07-01
As DNA sequencing of multigene panels becomes routine for cancer samples in the clinical laboratory, an efficient process for classifying variants has become more critical. Determining which germline variants are significant for cancer disposition and which somatic mutations are integral to cancer development or therapy response remains difficult, even for well-studied genes such as BRCA1 and TP53. We compare and contrast the general principles and lines of evidence commonly used to distinguish the significance of cancer-associated germline and somatic genetic variants. The factors important in each step of the analysis pipeline are reviewed, as are some of the publicly available annotation tools. Given the range of indications and uses of cancer sequencing assays, including diagnosis, staging, prognostication, theranostics, and residual disease detection, the need for flexible methods for scoring of variants is discussed. The usefulness of protein prediction tools and multimodal risk-based or Bayesian approaches are highlighted. Using TET2 variants encountered in hematologic neoplasms, several examples of this multifactorial approach to classifying sequence variants of unknown significance are presented. Although there are still significant gaps in the publicly available data for many cancer genes that limit the broad application of explicit algorithms for variant scoring, the elements of a more rigorous model are outlined. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Xu, Shuhua
2015-01-01
Noncoding DNA sequences (NCS) have attracted much attention recently due to their functional potentials. Here we attempted to reveal the functional roles of noncoding sequences from the point of view of natural selection that typically indicates the functional potentials of certain genomic elements. We analyzed nearly 37 million single nucleotide polymorphisms (SNPs) of Phase I data of the 1000 Genomes Project. We estimated a series of key parameters of population genetics and molecular evolution to characterize sequence variations of the noncoding genome within and between populations, and identified the natural selection footprints in NCS in worldwide human populations. Our results showed that purifying selection is prevalent and there is substantial constraint of variations in NCS, while positive selectionis more likely to be specific to some particular genomic regions and regional populations. Intriguingly, we observed larger fraction of non-conserved NCS variants with lower derived allele frequency in the genome, indicating possible functional gain of non-conserved NCS. Notably, NCS elements are enriched for potentially functional markers such as eQTLs, TF motif, and DNase I footprints in the genome. More interestingly, some NCS variants associated with diseases such as Alzheimer's disease, Type 1 diabetes, and immune-related bowel disorder (IBD) showed signatures of positive selection, although the majority of NCS variants, reported as risk alleles by genome-wide association studies, showed signatures of negative selection. Our analyses provided compelling evidence of natural selection forces on noncoding sequences in the human genome and advanced our understanding of their functional potentials that play important roles in disease etiology and human evolution. PMID:26053627
Ortega-Recalde, Oscar; Nallathambi, Jeyabalan; Anandula, Venkata Ramana; Renukaradhya, Umashankar; Laissue, Paul
2014-01-01
The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease. PMID:25333361
Cornes, Belinda K; Brody, Jennifer A; Nikpoor, Naghmeh; Morrison, Alanna C; Chu, Huan; Ahn, Byung Soo; Wang, Shuai; Dauriz, Marco; Barzilay, Joshua I; Dupuis, Josée; Florez, Jose C; Coresh, Josef; Gibbs, Richard A; Kao, W H Linda; Liu, Ching-Ti; McKnight, Barbara; Muzny, Donna; Pankow, James S; Reid, Jeffrey G; White, Charles C; Johnson, Andrew D; Wong, Tien Y; Psaty, Bruce M; Boerwinkle, Eric; Rotter, Jerome I; Siscovick, David S; Sladek, Robert; Meigs, James B
2014-06-01
Common variation at the 11p11.2 locus, encompassing MADD, ACP2, NR1H3, MYBPC3, and SPI1, has been associated in genome-wide association studies with fasting glucose and insulin (FI). In the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study, we sequenced 5 gene regions at 11p11.2 to identify rare, potentially functional variants influencing fasting glucose or FI levels. Sequencing (mean depth, 38×) across 16.1 kb in 3566 individuals without diabetes mellitus identified 653 variants, 79.9% of which were rare (minor allele frequency <1%) and novel. We analyzed rare variants in 5 gene regions with FI or fasting glucose using the sequence kernel association test. At NR1H3, 53 rare variants were jointly associated with FI (P=2.73×10(-3)); of these, 7 were predicted to have regulatory function and showed association with FI (P=1.28×10(-3)). Conditioning on 2 previously associated variants at MADD (rs7944584, rs10838687) did not attenuate this association, suggesting that there are >2 independent signals at 11p11.2. One predicted regulatory variant, chr11:47227430 (hg18; minor allele frequency=0.00068), contributed 20.6% to the overall sequence kernel association test score at NR1H3, lies in intron 2 of NR1H3, and is a predicted binding site for forkhead box A1 (FOXA1), a transcription factor associated with insulin regulation. In human HepG2 hepatoma cells, the rare chr11:47227430 A allele disrupted FOXA1 binding and reduced FOXA1-dependent transcriptional activity. Sequencing at 11p11.2-NR1H3 identified rare variation associated with FI. One variant, chr11:47227430, seems to be functional, with the rare A allele reducing transcription factor FOXA1 binding and FOXA1-dependent transcriptional activity. © 2014 American Heart Association, Inc.
Large-scale whole-genome sequencing of the Icelandic population.
Gudbjartsson, Daniel F; Helgason, Hannes; Gudjonsson, Sigurjon A; Zink, Florian; Oddson, Asmundur; Gylfason, Arnaldur; Besenbacher, Soren; Magnusson, Gisli; Halldorsson, Bjarni V; Hjartarson, Eirikur; Sigurdsson, Gunnar Th; Stacey, Simon N; Frigge, Michael L; Holm, Hilma; Saemundsdottir, Jona; Helgadottir, Hafdis Th; Johannsdottir, Hrefna; Sigfusson, Gunnlaugur; Thorgeirsson, Gudmundur; Sverrisson, Jon Th; Gretarsdottir, Solveig; Walters, G Bragi; Rafnar, Thorunn; Thjodleifsson, Bjarni; Bjornsson, Einar S; Olafsson, Sigurdur; Thorarinsdottir, Hildur; Steingrimsdottir, Thora; Gudmundsdottir, Thora S; Theodors, Asgeir; Jonasson, Jon G; Sigurdsson, Asgeir; Bjornsdottir, Gyda; Jonsson, Jon J; Thorarensen, Olafur; Ludvigsson, Petur; Gudbjartsson, Hakon; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Arnar, David O; Magnusson, Olafur Th; Kong, Augustine; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Sulem, Patrick; Stefansson, Kari
2015-05-01
Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity.
A gene variation of 14-3-3 zeta isoform in rat hippocampus.
Murakami, K; Situ, S Y; Eshete, F
1996-11-14
A variant form of 14-3-3 zeta was isolated from the rat hippocampal cDNA library. The cloned cDNA is 1687 bp in length and it contains an entire ORF (nt = 63-797) with 245 amino acids that is characteristic to 14-3-3 zeta subtype. By comparing with reported sequences of 14-3-3 zeta, we found three nucleotide substitutions within the coding sequence in our clone; C<-->T transition at nt = 325 and G<-->C transversions at nt = 387 and 388. Both are missense mutations, leading ACG (Thr) to ATG (Met) and CGT (Arg) to GCT (Ala) conversions at residue 88 and 109, respectively. Our results show that at least three different genetic variants of 14-3-3 zeta are present in rat species which results in protein variations. Such mutation in the amino acid sequence is an important indication of the diverse functions of this protein and may also contribute to the recent contradictory observations regarding the role of the 14-3-3 zeta subtype.
Bouwman, Aniek C; Veerkamp, Roel F
2014-10-03
The aim of this study was to determine the consequences of splitting sequencing effort over multiple breeds for imputation accuracy from a high-density SNP chip towards whole-genome sequence. Such information would assist for instance numerical smaller cattle breeds, but also pig and chicken breeders, who have to choose wisely how to spend their sequencing efforts over all the breeds or lines they evaluate. Sequence data from cattle breeds was used, because there are currently relatively many individuals from several breeds sequenced within the 1,000 Bull Genomes project. The advantage of whole-genome sequence data is that it carries the causal mutations, but the question is whether it is possible to impute the causal variants accurately. This study therefore focussed on imputation accuracy of variants with low minor allele frequency and breed specific variants. Imputation accuracy was assessed for chromosome 1 and 29 as the correlation between observed and imputed genotypes. For chromosome 1, the average imputation accuracy was 0.70 with a reference population of 20 Holstein, and increased to 0.83 when the reference population was increased by including 3 other dairy breeds with 20 animals each. When the same amount of animals from the Holstein breed were added the accuracy improved to 0.88, while adding the 3 other breeds to the reference population of 80 Holstein improved the average imputation accuracy marginally to 0.89. For chromosome 29, the average imputation accuracy was lower. Some variants benefitted from the inclusion of other breeds in the reference population, initially determined by the MAF of the variant in each breed, but even Holstein specific variants did gain imputation accuracy from the multi-breed reference population. This study shows that splitting sequencing effort over multiple breeds and combining the reference populations is a good strategy for imputation from high-density SNP panels towards whole-genome sequence when reference populations are small and sequencing effort is limiting. When sequencing effort is limiting and interest lays in multiple breeds or lines this provides imputation of each breed.
Shum, Bennett O V; Henner, Ilya; Belluoccio, Daniele; Hinchcliffe, Marcus J
2017-07-01
The sensitivity and specificity of next-generation sequencing laboratory developed tests (LDTs) are typically determined by an analyte-specific approach. Analyte-specific validations use disease-specific controls to assess an LDT's ability to detect known pathogenic variants. Alternatively, a methods-based approach can be used for LDT technical validations. Methods-focused validations do not use disease-specific controls but use benchmark reference DNA that contains known variants (benign, variants of unknown significance, and pathogenic) to assess variant calling accuracy of a next-generation sequencing workflow. Recently, four whole-genome reference materials (RMs) from the National Institute of Standards and Technology (NIST) were released to standardize methods-based validations of next-generation sequencing panels across laboratories. We provide a practical method for using NIST RMs to validate multigene panels. We analyzed the utility of RMs in validating a novel newborn screening test that targets 70 genes, called NEO1. Despite the NIST RM variant truth set originating from multiple sequencing platforms, replicates, and library types, we discovered a 5.2% false-negative variant detection rate in the RM truth set genes that were assessed in our validation. We developed a strategy using complementary non-RM controls to demonstrate 99.6% sensitivity of the NEO1 test in detecting variants. Our findings have implications for laboratories or proficiency testing organizations using whole-genome NIST RMs for testing. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Sequencing Structural Variants in Cancer for Precision Therapeutics.
Macintyre, Geoff; Ylstra, Bauke; Brenton, James D
2016-09-01
The identification of mutations that guide therapy selection for patients with cancer is now routine in many clinical centres. The majority of assays used for solid tumour profiling use DNA sequencing to interrogate somatic point mutations because they are relatively easy to identify and interpret. Many cancers, however, including high-grade serous ovarian, oesophageal, and small-cell lung cancer, are driven by somatic structural variants that are not measured by these assays. Therefore, there is currently an unmet need for clinical assays that can cheaply and rapidly profile structural variants in solid tumours. In this review we survey the landscape of 'actionable' structural variants in cancer and identify promising detection strategies based on massively-parallel sequencing. Copyright © 2016 Elsevier Ltd. All rights reserved.
The UK10K project identifies rare variants in health and disease.
Walter, Klaudia; Min, Josine L; Huang, Jie; Crooks, Lucy; Memari, Yasin; McCarthy, Shane; Perry, John R B; Xu, ChangJiang; Futema, Marta; Lawson, Daniel; Iotchkova, Valentina; Schiffels, Stephan; Hendricks, Audrey E; Danecek, Petr; Li, Rui; Floyd, James; Wain, Louise V; Barroso, Inês; Humphries, Steve E; Hurles, Matthew E; Zeggini, Eleftheria; Barrett, Jeffrey C; Plagnol, Vincent; Richards, J Brent; Greenwood, Celia M T; Timpson, Nicholas J; Durbin, Richard; Soranzo, Nicole
2015-10-01
The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.
Salehipour, Pouya; Nematzadeh, Mahsa; Mobasheri, Maryam Beigom; Afsharpad, Mandana; Mansouri, Kamran; Modarressi, Mohammad Hossein
2017-09-01
Testis specific gene antigen 10 (TSGA10) is a cancer testis antigen involved in the process of spermatogenesis. TSGA10 could also play an important role in the inhibition of angiogenesis by preventing nuclear localization of HIF-1α. Although it has been shown that TSGA10 messenger RNA (mRNA) is mainly expressed in testis and some tumors, the transcription pattern and regulatory mechanisms of this gene remain largely unknown. Here, we report that human TSGA10 comprises at least 22 exons and generates four different transcript variants. It was identified that using two distinct promoters and splicing of exons 4 and 7 produced these transcript variants, which have the same coding sequence, but the sequence of 5'untanslated region (5'UTR) is different between them. This is significant because conserved regulatory RNA elements like upstream open reading frame (uORF) and putative internal ribosome entry site (IRES) were found in this region which have different combinations in each transcript variant and it may influence translational efficiency of them in normal or unusual environmental conditions like hypoxia. To indicate the transcription pattern of TSGA10 in breast cancer, expression of identified transcript variants was analyzed in 62 breast cancer samples. We found that TSGA10 tends to express variants with shorter 5'UTR and fewer uORF elements in breast cancer tissues. Our study demonstrates for the first time the expression of different TSGA10 transcript variants in testis and breast cancer tissues and provides a first clue to a role of TSGA10 5'UTR in regulation of translation in unusual environmental conditions like hypoxia. Copyright © 2017. Published by Elsevier B.V.
Malone, Andrew F; Funk, Steven D; Alhamad, Tarek; Miner, Jeffrey H
2017-06-01
Many COL4A5 splice region variants have been described in patients with X-linked Alport syndrome, but few have been confirmed by functional analysis to actually cause defective splicing. We sought to demonstrate that a novel COL4A5 splice region variant in a family with Alport syndrome is pathogenic using functional studies. We also describe an alternative method of diagnosis. Targeted next-generation sequencing results of an individual with Alport syndrome were analyzed and the results confirmed by Sanger sequencing in family members. A splicing reporter minigene assay was used to examine the variant's effect on splicing in transfected cells. Plucked hair follicles from patients and controls were examined for collagen IV proteins using immunofluorescence microscopy. A novel splice region mutation in COL4A5, c.1780-6T>G, was identified and segregated with disease in this family. This variant caused frequent skipping of exon 25, resulting in a frameshift and truncation of collagen α5(IV) protein. We also developed and validated a new approach to characterize the expression of collagen α5(IV) protein in the basement membranes of plucked hair follicles. Using this approach we demonstrated reduced collagen α5(IV) protein in affected male and female individuals in this family, supporting frequent failure of normal splicing. Differing normal to abnormal transcript ratios in affected individuals carrying splice region variants may contribute to variable disease severity observed in Alport families. Examination of plucked hair follicles in suspected X-linked Alport syndrome patients may offer a less invasive alternative method of diagnosis and serve as a pathogenicity test for COL4A5 variants of uncertain significance.
Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy
Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...
2014-09-01
Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less