Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H
2013-12-02
In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.
2013-01-01
Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
Characterization and nultivariate analysis of physical properties of processing peaches
USDA-ARS?s Scientific Manuscript database
Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...
Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions
NASA Technical Reports Server (NTRS)
Bole, Brian; Goebel, Kai; Vachtsevanos, George
2012-01-01
A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.
Lühnen, Julia; Mühlhauser, Ingrid; Richter, Tanja
2017-01-01
Background People living with dementia are often appointed a legal representative, to support and protect their ethical and legal rights to informed healthcare decisions. However, legal representatives usually have no qualifications in healthcare. Objective The aim of this study was to explore decision-making processes with participation of legal representatives and, resulting from this, to develop and pilot test an education program for legal representatives in Germany. Methods We conducted interviews with legal representatives and senior citizens about decision-making processes in healthcare, with special focus on percutaneous endoscopic gastrostomy, physical restraints, and prescription of antipsychotics for people with dementia. We generated a curriculum based on systematic literature searches and the results of these interviews. We tested the education program for comprehensibility, feasibility, usability, and acceptance. Results Personal interviews with voluntary ( n = 12) and professional ( n = 12) representatives, and senior citizens ( n = 14) were conducted. Preferences, attitudes, and wishes regarding percutaneous endoscopic gastrostomy, physical restraints, and antipsychotics, and the process of decision-making, were heterogeneous. A structural approach is lacking. The education program proxy-decison-making (PRODECIDE) comprises four modules: (A) decision-making processes and methods; (B-D) evidence-based knowledge about percutaneous endoscopic gastrostomy, physical restraints, and antipsychotics. We conducted eight trainings with 47 legal representatives. PRODECIDE was well accepted. Comprehensibility of contents and materials was rated high. The program seems feasible for implementation. Conclusion PRODECIDE seems suitable to improve the decision-making processes of legal representatives in Germany. Implementation will be appropriate if efficacy is proven; a randomized controlled trial is currently underway.
Exploring the implication of climate process uncertainties within the Earth System Framework
NASA Astrophysics Data System (ADS)
Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.
2011-12-01
Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).
Motivating Calculus-Based Kinematics Instruction with Super Mario Bros
ERIC Educational Resources Information Center
Nordine, Jeffrey C.
2011-01-01
High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of…
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, B.; Wood, R.T.
1997-04-22
A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, Brian; Wood, Richard T.
1997-01-01
A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.
Studies of Visual Attention in Physics Problem Solving
ERIC Educational Resources Information Center
Madsen, Adrian M.
2013-01-01
The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…
Formulating physical processes in a full-range model of soil water retention
NASA Astrophysics Data System (ADS)
Nimmo, J. R.
2016-12-01
Currently-used water retention models vary in how much their formulas correspond to controlling physical processes such as capillarity, adsorption, and air-trapping. In model development, realistic correspondence to physical processes has often been a lower priority than ease of use and compatibility with other models. For example, the wettest range is normally represented simplistically, as by a straight line of zero slope, or by default using the same formulation as for the middle range. The new model presented here recognizes dominant processes within three segments of the range from oven-dryness to saturation. The adsorption-dominated dry range is represented by a logarithmic relation used in earlier models. The middle range of capillary advance/retreat and Haines jumps is represented by a new adaptation of the lognormal distribution function. In the wet range, the expansion of trapped air in response to matric pressure change is important because (1) it displaces water, and (2) it triggers additional volume-adjusting processes such as the collapse of liquid bridges between air pockets. For this range, the model incorporates the Boyles' law inverse-proportionality of trapped air volume and pressure, amplified by an empirical factor to account for the additional processes. With their basis in processes, the model's parameters have a strong physical interpretation, and in many cases can be assigned values from knowledge of fundamental relationships or individual measurements. An advantage of the physically-plausible treatment of the wet range is that it avoids such problems as the blowing-up of derivatives on approach to saturation, enhancing the model's utility for important but challenging wet-range phenomena such as domain exchange between preferential flow paths and soil matrix. Further development might be able to accommodate hysteresis by a systematic adjustment of the relation between the wet and middle ranges.
On storm movement and its applications
NASA Astrophysics Data System (ADS)
Niemczynowicz, Janusz
Rainfall-runoff models applicable for design and analysis of sewage systems in urban areas are further developed in order to represent better different physical processes going on on an urban catchment. However, one important part of the modelling procedure, the generation of the rainfall input is still a weak point. The main problem is lack of adequate rainfall data which represent temporal and spatial variations of the natural rainfall process. Storm movement is a natural phenomenon which influences urban runoff. However, the rainfall movement and its influence on runoff generation process is not represented in presently available urban runoff simulation models. Physical description of the rainfall movement and its parameters is given based on detailed measurements performed on twelve gauges in Lund, Sweden. The paper discusses the significance of the rainfall movement on the runoff generation process and gives suggestions how the rainfall movement parameters may be used in runoff modelling.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
Consciousness and values in the quantum universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, H.P.
1985-01-01
Application of quantum mechanical description to neurophysiological processes appears to provide for a natural unification of the physical and humanistic sciences. The categories of thought used to represent physical and psychical processes become united, and the mechanical conception of man created by classical physics is replaced by a profoundly different quantum conception. This revised image of man allows human values to be rooted in contemporary science.
Composing Models of Geographic Physical Processes
NASA Astrophysics Data System (ADS)
Hofer, Barbara; Frank, Andrew U.
Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an…
What Does "Fast" Mean? Understanding the Physical World through Computational Representations
ERIC Educational Resources Information Center
Parnafes, Orit
2007-01-01
This article concerns the development of conceptual understanding of a physical phenomenon through the use of computational representations. It examines how students make sense of and interpret computational representations, and how their understanding of the represented physical phenomenon develops in this process. Eight studies were conducted,…
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Leifker, Daniel B.
1991-01-01
Current qualitative device and process models represent only the structure and behavior of physical systems. However, systems in the real world include goal-oriented activities that generally cannot be easily represented using current modeling techniques. An extension of a qualitative modeling system, known as functional modeling, which captures goal-oriented activities explicitly is proposed and how they may be used to support intelligent automation and fault management is shown.
Modeling socio-cultural processes in network-centric environments
NASA Astrophysics Data System (ADS)
Santos, Eunice E.; Santos, Eugene, Jr.; Korah, John; George, Riya; Gu, Qi; Kim, Keumjoo; Li, Deqing; Russell, Jacob; Subramanian, Suresh
2012-05-01
The major focus in the field of modeling & simulation for network centric environments has been on the physical layer while making simplifications for the human-in-the-loop. However, the human element has a big impact on the capabilities of network centric systems. Taking into account the socio-behavioral aspects of processes such as team building, group decision-making, etc. are critical to realistically modeling and analyzing system performance. Modeling socio-cultural processes is a challenge because of the complexity of the networks, dynamism in the physical and social layers, feedback loops and uncertainty in the modeling data. We propose an overarching framework to represent, model and analyze various socio-cultural processes within network centric environments. The key innovation in our methodology is to simultaneously model the dynamism in both the physical and social layers while providing functional mappings between them. We represent socio-cultural information such as friendships, professional relationships and temperament by leveraging the Culturally Infused Social Network (CISN) framework. The notion of intent is used to relate the underlying socio-cultural factors to observed behavior. We will model intent using Bayesian Knowledge Bases (BKBs), a probabilistic reasoning network, which can represent incomplete and uncertain socio-cultural information. We will leverage previous work on a network performance modeling framework called Network-Centric Operations Performance and Prediction (N-COPP) to incorporate dynamism in various aspects of the physical layer such as node mobility, transmission parameters, etc. We validate our framework by simulating a suitable scenario, incorporating relevant factors and providing analyses of the results.
Visell, Yon
2015-04-01
This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.
Distance-dependent processing of pictures and words.
Amit, Elinor; Algom, Daniel; Trope, Yaacov
2009-08-01
A series of 8 experiments investigated the association between pictorial and verbal representations and the psychological distance of the referent objects from the observer. The results showed that people better process pictures that represent proximal objects and words that represent distal objects than pictures that represent distal objects and words that represent proximal objects. These results were obtained with various psychological distance dimensions (spatial, temporal, and social), different tasks (classification and categorization), and different measures (speed of processing and selective attention). The authors argue that differences in the processing of pictures and words emanate from the physical similarity of pictures, but not words, to the referents. Consequently, perceptual analysis is commonly applied to pictures but not to words. Pictures thus impart a sense of closeness to the referent objects and are preferably used to represent such objects, whereas words do not convey proximity and are preferably used to represent distal objects in space, time, and social perspective.
NASA Astrophysics Data System (ADS)
Yakovlev, A. A.; Sorokin, V. S.; Mishustina, S. N.; Proidakova, N. V.; Postupaeva, S. G.
2017-01-01
The article describes a new method of search design of refrigerating systems, the basis of which is represented by a graph model of the physical operating principle based on thermodynamical description of physical processes. The mathematical model of the physical operating principle has been substantiated, and the basic abstract theorems relatively semantic load applied to nodes and edges of the graph have been represented. The necessity and the physical operating principle, sufficient for the given model and intended for the considered device class, were demonstrated by the example of a vapour-compression refrigerating plant. The example of obtaining a multitude of engineering solutions of a vapour-compression refrigerating plant has been considered.
Developing evidence-based physical therapy clinical practice guidelines.
Kaplan, Sandra L; Coulter, Colleen; Fetters, Linda
2013-01-01
Recommended strategies for developing evidence-based clinical practice guidelines (CPGs) are provided. The intent is that future CPGs developed with the support of the Section on Pediatrics of the American Physical Therapy Association would consistently follow similar developmental processes to yield consistent quality and presentation. Steps in the process of developing CPGs are outlined and resources are provided to assist CPG developers in carrying out their task. These recommended processes may also be useful to CPG developers representing organizations with similar structures, objectives, and resources.
Rieman, Bruce; Dunham, Jason B.; Clayton, James
2006-01-01
Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions. Two solutions have been proposed to guide management in the face of that uncertainty: the use of “natural variability” in key environmental patterns, processes, or disturbance as a reference; and the retention of some areas as essentially unmanaged reserves to conserve and represent as much biological diversity as possible. Both concepts are scale dependent because dominant processes or patterns that might be referenced will change with scale. Context and linkages across scales may be as important in structuring biological systems as conditions within habitats used by individual organisms. Both ideas view the physical environment as a template for expression, maintenance, and evolution of ecological diversity. To conserve or restore a diverse physical template it will be important to recognize the ecologically important differences in physical characteristics and processes among streams or watersheds that we might attempt to mimic in management or represent in conservation or restoration reserves.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.
Receptor signaling clusters in the immune synapse(in eng)
Dustin, Michael L.; Groves, Jay T.
2012-02-23
Signaling processes between various immune cells involve large-scale spatial reorganization of receptors and signaling molecules within the cell-cell junction. These structures, now collectively referred to as immune synapses, interleave physical and mechanical processes with the cascades of chemical reactions that constitute signal transduction systems. Molecular level clustering, spatial exclusion, and long-range directed transport are all emerging as key regulatory mechanisms. The study of these processes is drawing researchers from physical sciences to join the effort and represents a rapidly growing branch of biophysical chemistry. Furthermore, recent advances in physical and quantitative analyses of signaling within the immune synapses are reviewedmore » here.« less
Receptor signaling clusters in the immune synapse (in eng)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dustin, Michael L.; Groves, Jay T.
2012-02-23
Signaling processes between various immune cells involve large-scale spatial reorganization of receptors and signaling molecules within the cell-cell junction. These structures, now collectively referred to as immune synapses, interleave physical and mechanical processes with the cascades of chemical reactions that constitute signal transduction systems. Molecular level clustering, spatial exclusion, and long-range directed transport are all emerging as key regulatory mechanisms. The study of these processes is drawing researchers from physical sciences to join the effort and represents a rapidly growing branch of biophysical chemistry. Furthermore, recent advances in physical and quantitative analyses of signaling within the immune synapses are reviewedmore » here.« less
NASA Astrophysics Data System (ADS)
Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.
2015-12-01
Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.
Crystal Engineering: From Molecules to Products
ERIC Educational Resources Information Center
Doherty, Michael F.
2006-01-01
Particle production and solids processing are essential components of the contemporary process industries. Crystalline solids represent a large and important segment of this manufacturing sector. Chemical engineers, especially in the United States, have historically abandoned this subject, leaving it to pharmacists, physical chemists, material…
Social Distance Evaluation in Human Parietal Cortex
Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi
2009-01-01
Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791
The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.
2007-09-01
Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less
Design of an instrument to measure the quality of care in Physical Therapy.
Cavalheiro, Leny Vieira; Eid, Raquel Afonso Caserta; Talerman, Claudia; Prado, Cristiane do; Gobbi, Fátima Cristina Martorano; Andreoli, Paola Bruno de Araujo
2015-01-01
To design an instrument composed of domains that would demonstrate physical therapy activities and generate a consistent index to represent the quality of care in physical therapy. The methodology Lean Six Sigma was used to design the tool. The discussion involved seven different management groups staff. By means of brainstorming and Cause & Effect Matrix, we set up the process map. Five requirements composed the quality of care index in physical therapy, after application of the tool called Cause & Effect Matrix. The following requirements were assessed: physical therapist performance, care outcome indicator, adherence to physical therapy protocols, measure whether the prognosis and treatment outcome was achieved and Infrastructure. The proposed design allowed evaluating several items related to physical therapy service, enabling customization, reproducibility and benchmarking with other organizations. For management, this index provides the opportunity to identify areas for improvement and the strengths of the team and process of physical therapy care.
Casino physics in the classroom
NASA Astrophysics Data System (ADS)
Whitney, Charles A.
1986-12-01
This article describes a seminar on the elements of probability and random processes that is computer centered and focuses on Monte Carlo simulations of processes such as coin flips, random walks on a lattice, and the behavior of photons and atoms in a gas. Representative computer programs are also described.
Physics textbooks from the viewpoint of network structures
NASA Astrophysics Data System (ADS)
Králiková, Petra; Teleki, Aba
2017-01-01
We can observe self-organized networks all around us. These networks are, in general, scale invariant networks described by the Bianconi-Barabasi model. The self-organized networks (networks formed naturally when feedback acts on the system) show certain universality. These networks, in simplified models, have scale invariant distribution (Pareto distribution type I) and parameter α has value between 2 and 5. The textbooks are extremely important in the learning process and from this reason we studied physics textbook at the level of sentences and physics terms (bipartite network). The nodes represent physics terms, sentences, and pictures, tables, connected by links (by physics terms and transitional words and transitional phrases). We suppose that learning process are more robust and goes faster and easier if the physics textbook has a structure similar to structures of self-organized networks.
Every Equation Tells a Story: Using Equation Dictionaries in Introductory Geophysics
ERIC Educational Resources Information Center
Caplan-Auerbach, Jacqueline
2009-01-01
Many students view equations as a series of variables and operators into which numbers should be plugged rather than as representative of a physical process. To solve a problem they may simply look for an equation with the correct variables and assume it meets their needs, rather than selecting an equation that represents the appropriate physical…
ERIC Educational Resources Information Center
Heckler, Andrew F.; Scaife, Thomas M.
2015-01-01
We report on five experiments investigating response choices and response times to simple science questions that evoke student "misconceptions," and we construct a simple model to explain the patterns of response choices. Physics students were asked to compare a physical quantity represented by the slope, such as speed, on simple physics…
Valuing Puget Sound’s Valued Ecosystems Components
2007-07-01
communicate the value of Puget Sound nearshore restoration to managers and the public, and are intended to speak to ecological and societal values...list of VECs is meant to represent a cross-section of organisms and physical structures that occupy and interact with the physical processes found in...7 Applying Economic Valuation Techniques to Ecological Resources
ERIC Educational Resources Information Center
Wickrama, K. A. S.; Elder, Glen H.; Abraham, W. Todd
2007-01-01
Context and Purpose: This study's objectives are to: investigate potential additive and multiplicative influences of rurality and race/ethnicity on chronic physical illness in a nationally representative sample of youth; and examine intra-Latino processes using a Latino sub-sample. Specifically, we examine how rurality and individual psychosocial…
A New Learning Model on Physical Education: 5E Learning Cycle
ERIC Educational Resources Information Center
Senturk, Halil Evren; Camliyer, Huseyin
2016-01-01
Many fields of education at the moment, especially in physical and technological educations, use 5E learning cycle. The process is defined as five "E"s. These represent the verbs engage, explore, explain, elaborate and evaluate. The literature has been systematically reviewed and the results show that the 5E learning cycle is an untested…
Differences in Gender Performance on Competitive Physics Selection Tests
ERIC Educational Resources Information Center
Wilson, Kate; Low, David; Verdon, Matthew; Verdon, Alix
2016-01-01
We have investigated gender differences in performance over the past eight years on the Australian Science Olympiad Exam (ASOE) for physics,which is taken by nearly 1000 high school students each year. The ASOE, run by Australian Science Innovations (ASI), is the initial stage of the process of selection of teams to represent Australia at the…
Initialization and assimilation of cloud and rainwater in a regional model
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
The initialization and assimilation of cloud and rainwater quantities in a mesoscale regional model was examined. Forecasts of explicit cloud and rainwater are made using conservation equations. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. These physical processes, some of which are parameterized, represent source and sink in terms in the conservation equations. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed.
The software peculiarities of pattern recognition in track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkov, N.
The different kinds of nuclear track recognition algorithms are represented. Several complicated samples of use them in physical experiments are considered. The some processing methods of complicated images are described.
ERIC Educational Resources Information Center
Henderson, Charles; Dancy, Melissa; Niewiadomska-Bugaj, Magdalena
2012-01-01
During the fall of 2008 a web survey, designed to collect information about pedagogical knowledge and practices, was completed by a representative sample of 722 physics faculty across the United States (50.3% response rate). This paper presents partial results to describe how 20 potential predictor variables correlate with faculty knowledge about…
A Vision on the Status and Evolution of HEP Physics Software Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canal, P.; Elvira, D.; Hatcher, R.
2013-07-28
This paper represents the vision of the members of the Fermilab Scientific Computing Division's Computational Physics Department (SCD-CPD) on the status and the evolution of various HEP software tools such as the Geant4 detector simulation toolkit, the Pythia and GENIE physics generators, and the ROOT data analysis framework. The goal of this paper is to contribute ideas to the Snowmass 2013 process toward the composition of a unified document on the current status and potential evolution of the physics software tools which are essential to HEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-03-01
Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.
Microgravity Fluids for Biology, Workshop
NASA Technical Reports Server (NTRS)
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
Design of an instrument to measure the quality of care in Physical Therapy
Cavalheiro, Leny Vieira; Eid, Raquel Afonso Caserta; Talerman, Claudia; do Prado, Cristiane; Gobbi, Fátima Cristina Martorano; Andreoli, Paola Bruno de Araujo
2015-01-01
ABSTRACT Objective: To design an instrument composed of domains that would demonstrate physical therapy activities and generate a consistent index to represent the quality of care in physical therapy. Methods: The methodology Lean Six Sigma was used to design the tool. The discussion involved seven different management groups staff. By means of brainstorming and Cause & Effect Matrix, we set up the process map. Results: Five requirements composed the quality of care index in physical therapy, after application of the tool called Cause & Effect Matrix. The following requirements were assessed: physical therapist performance, care outcome indicator, adherence to physical therapy protocols, measure whether the prognosis and treatment outcome was achieved and Infrastructure. Conclusion: The proposed design allowed evaluating several items related to physical therapy service, enabling customization, reproducibility and benchmarking with other organizations. For management, this index provides the opportunity to identify areas for improvement and the strengths of the team and process of physical therapy care. PMID:26154548
Motivating Calculus-Based Kinematics Instruction with Super Mario Bros
NASA Astrophysics Data System (ADS)
Nordine, Jeffrey C.
2011-09-01
High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of doing real science.2 A challenge for physics teachers is to find instructional contexts that are meaningful, accessible, and motivating for students. Today's students are spending a growing fraction of their lives interacting with virtual environments, and these environments—physically realistic or not—can provide valuable contexts for physics explorations3-5 and lead to thoughtful discussions about decisions that programmers make when designing virtual environments. In this article, I describe a problem-based approach to calculus-based kinematics instruction that contextualizes students' learning within the Super Mario Bros. video game—a game that is more than 20 years old, but still remarkably popular with today's high school and college students.
Genomic perspectives in microbial oceanography.
DeLong, Edward F; Karl, David M
2005-09-15
The global ocean is an integrated living system where energy and matter transformations are governed by interdependent physical, chemical and biotic processes. Although the fundamentals of ocean physics and chemistry are well established, comprehensive approaches to describing and interpreting oceanic microbial diversity and processes are only now emerging. In particular, the application of genomics to problems in microbial oceanography is significantly expanding our understanding of marine microbial evolution, metabolism and ecology. Integration of these new genome-enabled insights into the broader framework of ocean science represents one of the great contemporary challenges for microbial oceanographers.
Rebar, Amanda L.; Ram, Nilam; Conroy, David E.
2014-01-01
Objective The Single-Category Implicit Association Test (SC-IAT) has been used as a method for assessing automatic evaluations of physical activity, but measurement artifact or consciously-held attitudes could be confounding the outcome scores of these measures. The objective of these two studies was to address these measurement concerns by testing the validity of a novel SC-IAT scoring technique. Design Study 1 was a cross-sectional study, and study 2 was a prospective study. Method In study 1, undergraduate students (N = 104) completed SC-IATs for physical activity, flowers, and sedentary behavior. In study 2, undergraduate students (N = 91) completed a SC-IAT for physical activity, self-reported affective and instrumental attitudes toward physical activity, physical activity intentions, and wore an accelerometer for two weeks. The EZ-diffusion model was used to decompose the SC-IAT into three process component scores including the information processing efficiency score. Results In study 1, a series of structural equation model comparisons revealed that the information processing score did not share variability across distinct SC-IATs, suggesting it does not represent systematic measurement artifact. In study 2, the information processing efficiency score was shown to be unrelated to self-reported affective and instrumental attitudes toward physical activity, and positively related to physical activity behavior, above and beyond the traditional D-score of the SC-IAT. Conclusions The information processing efficiency score is a valid measure of automatic evaluations of physical activity. PMID:25484621
Physical properties of five grain dust types.
Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J
1986-01-01
Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482
A Multi-Scale Integrated Approach to Representing Watershed Systems: Significance and Challenges
NASA Astrophysics Data System (ADS)
Kim, J.; Ivanov, V. Y.; Katopodes, N.
2013-12-01
A range of processes associated with supplying services and goods to human society originate at the watershed level. Predicting watershed response to forcing conditions has been of high interest to many practical societal problems, however, remains challenging due to two significant properties of the watershed systems, i.e., connectivity and non-linearity. Connectivity implies that disturbances arising at any larger scale will necessarily propagate and affect local-scale processes; their local effects consequently influence other processes, and often convey nonlinear relationships. Physically-based, process-scale modeling is needed to approach the understanding and proper assessment of non-linear effects between the watershed processes. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion and sediment transport, tRIBS-OFM-HRM (Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model-Hairsine and Rose Model). This coupled model offers the advantage of exploring the hydrological effects of watershed physical factors such as topography, vegetation, and soil, as well as their feedback mechanisms. Several examples investigating the effects of vegetation on flow movement, the role of soil's substrate on sediment dynamics, and the driving role of topography on morphological processes are illustrated. We show how this comprehensive modeling tool can help understand interconnections and nonlinearities of the physical system, e.g., how vegetation affects hydraulic resistance depending on slope, vegetation cover fraction, discharge, and bed roughness condition; how the soil's substrate condition impacts erosion processes with an non-unique characteristic at the scale of a zero-order catchment; and how topographic changes affect spatial variations of morphologic variables. Due to feedback and compensatory nature of mechanisms operating in different watershed compartments, our conclusion is that a key to representing watershed systems lies in an integrated, interdisciplinary approach, whereby a physically-based model is used for assessments/evaluations associated with future changes in landuse, climate, and ecosystems.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
Medical physics education from the view of the possible structural changes.
Ferencova, E; Kukurova, E
2001-01-01
Teaching subject physics at the university level represents a specific didactic transformation of the scientific field--physics. The determination of the content, extent, used methods, mutual relation to other subjects of curriculum as well as to the entrance knowledge of students are the most important parts of pedagogical activities in the educational process. Based on own experiences, successes and mistakes in teaching so-called medical physics the authors discuss didactic procedures which should support the interest and creativity of students. Some changes in the structure of physics education are recommended. The usefulness of the international collaboration in the framework of projects such as TEMPUS, ERASMUS is also remembered.
ERIC Educational Resources Information Center
Vowles, Kevin E.; McNeil, Daniel W.; Gross, Richard T.; McDaniel, Michael L.; Mouse, Angela; Bates, Mick; Gallimore, Paula; McCall, Cindy
2007-01-01
Psychosocial treatments for chronic pain are effective. There is a need, however, to understand the processes involved in determining how these treatments contribute to behavior change. Control and acceptance strategies represent two potentially important processes involved in treatment, although they differ significantly in approach. Results from…
Hydrological modelling in forested systems | Science ...
This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.
Schwartz, Carolyn E; Michael, Wesley; Rapkin, Bruce D
2017-11-01
We sought to understand what distinguishes people who confront health challenges but still manage to thrive. This study investigated whether resilience helps to explain the impact of health challenges on quality of life (QOL) outcomes, and how resilience relates to appraisal. A web-based survey of rare-disease panel participants included the Centers for Disease Control Healthy Days Core Module, the PROMIS-10, and comorbidities. The QOL Appraisal Profile-v2 assessed cognitive processes underlying QOL. Resilience was operationalized statistically using residual modeling, and hierarchical regressions tested the mediation hypothesis that resilience accounts for a significant amount of the relationship of appraisal to QOL. The study sample (n = 3,324; mean age 50; 86% female; 90% White) represented a range of diagnostic codes, with cancer and diseases of the nervous system being the most prevalent health conditions. After adjusting for comorbidities (catalysts), resilience was associated with better physical and emotional functioning, and different appraisal processes were associated with better or worse physical or emotional functioning. After controlling for catalysts, 62% of the association of Physical Functioning and 23% of the association between Emotional Functioning and appraisal were mediated by resilience. Physical and emotional resilience comprised some of the same appraisal processes, but physically resilient people were characterized by more appraisal processes than their emotionally resilient counterparts. Resilient people employ different appraisal processes than non-resilient people, and these processes differ for physical and emotional outcomes. Resilience was a stronger mediator of the relationship between physical rather than emotional functioning and appraisal.
Swisher, Laura Lee; Hiller, Peggy
2010-05-01
In June 2009, the House of Delegates (HOD) of the American Physical Therapy Association (APTA) passed a major revision of the APTA Code of Ethics for physical therapists and the Standards of Ethical Conduct for the Physical Therapist Assistant. The revised documents will be effective July 1, 2010. The purposes of this article are: (1) to provide a historical, professional, and theoretical context for this important revision; (2) to describe the 4-year revision process; (3) to examine major features of the documents; and (4) to discuss the significance of the revisions from the perspective of the maturation of physical therapy as a doctoring profession. PROCESS OF REVISION: The process for revision is delineated within the context of history and the Bylaws of APTA. FORMAT, STRUCTURE, AND CONTENT OF REVISED CORE ETHICS DOCUMENTS: The revised documents represent a significant change in format, level of detail, and scope of application. Previous APTA Codes of Ethics and Standards of Ethical Conduct for the Physical Therapist Assistant have delineated very broad general principles, with specific obligations spelled out in the Ethics and Judicial Committee's Guide for Professional Conduct and Guide for Conduct of the Physical Therapist Assistant. In contrast to the current documents, the revised documents address all 5 roles of the physical therapist, delineate ethical obligations in organizational and business contexts, and align with the tenets of Vision 2020. The significance of this revision is discussed within historical parameters, the implications for physical therapists and physical therapist assistants, the maturation of the profession, societal accountability and moral community, potential regulatory implications, and the inclusive and deliberative process of moral dialogue by which changes were developed, revised, and approved.
Predictors of Physical Altercation among Adolescents in Residential Substance Abuse Treatment
Crawley, Rachel D.; Becan, Jennifer Edwards; Knight, Danica Kalling; Joe, George W.; Flynn, Patrick M.
2014-01-01
This study tested the hypothesis that basic social information-processing components represented by family conflict, peer aggression, and pro-aggression cognitive scripts are related to aggression and social problems among adolescents in substance abuse treatment. The sample consisted of 547 adolescents in two community-based residential facilities. Correlation results indicated that more peer aggression is related to more pro-aggression scripts; scripts, peer aggression, and family conflict are associated with social problems; and in-treatment physical altercation involvement is predicted by higher peer aggression. Findings suggest that social information-processing components are valuable for treatment research. PMID:26622072
Random bits, true and unbiased, from atmospheric turbulence
Marangon, Davide G.; Vallone, Giuseppe; Villoresi, Paolo
2014-01-01
Random numbers represent a fundamental ingredient for secure communications and numerical simulation as well as to games and in general to Information Science. Physical processes with intrinsic unpredictability may be exploited to generate genuine random numbers. The optical propagation in strong atmospheric turbulence is here taken to this purpose, by observing a laser beam after a 143 km free-space path. In addition, we developed an algorithm to extract the randomness of the beam images at the receiver without post-processing. The numbers passed very selective randomness tests for qualification as genuine random numbers. The extracting algorithm can be easily generalized to random images generated by different physical processes. PMID:24976499
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2018-03-01
The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete. We complete it in three steps: (i) extending the representation to the process of setting the problem, (ii) relativizing the extended representation to the problem solver to whom the problem setting must be concealed, and (iii) symmetrizing the relativized representation for time reversal to represent the reversibility of the underlying physical process. The third steps projects the input state of the representation, where the problem solver is completely ignorant of the setting and thus the solution of the problem, on one where she knows half solution (half of the information specifying it when the solution is an unstructured bit string). Completing the physical representation shows that the number of computation steps (oracle queries) required to solve any oracle problem in an optimal quantum way should be that of a classical algorithm endowed with the advanced knowledge of half solution.
1988-03-01
structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN
Model-Based Reasoning in Upper-division Lab Courses
NASA Astrophysics Data System (ADS)
Lewandowski, Heather
2015-05-01
Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.
Viester, Laura; Verhagen, Evert A L M; Bongers, Paulien M; van der Beek, Allard J
2014-11-01
To evaluate the process of a health promotion program, aiming to improve physical activity levels and diet among construction workers. The process evaluation was conducted after the RE-AIM framework for the evaluation of the public health impact of health promotion interventions. Effectiveness was assessed on motivational stage-of-change, self-efficacy, and decisional balance for physical activity and dietary behavior. The external validity of the trial was satisfactory with representative reach of workers and adoption of workplace units in the participating construction company. The extent to which the program was implemented as intended was modest. The intervention was effective on participants' progress through stages of behavior change. Based on the RE-AIM dimensions, it is concluded that for construction workers, the program is feasible and potentially effective, but adjustments are required before widespread implementation.
Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2006-01-01
The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.
The soil management assessment framework: A potential soil health assessment tool
USDA-ARS?s Scientific Manuscript database
The Soil Management Assessment Framework (SMAF) was developed in the 1990s utilizing Systems Engineering and Ecology experiences with scoring functions to normalize disparate soil physical, chemical, and biological indicator data representing critical properties and processes associated with soil qu...
Lebreton, Florian; Routier, Guillaume; Héas, Stephane; Bodin, Dominique
2010-08-01
The article explores the process of "sportification"--i.e., processing physical activity in a sport regulated by a set of rules and standards, legitimized by supervisory institutions--from two originals practices, parkour and urban golf. To study these practices, we crossed the contributions of urban sociology and of the contemporary sociology of sport while respecting the methodological principles of qualitative sociology. A first point concerns the process of"sport" itself, its definition, its various stages, and the role played by communication of stakeholders on public space. The cultural mediation shows us how to institutionalize the movement that represents the "sports" resulted in the same time reconfiguration of physical practices themselves. Recent events illustrate the ongoing reconfiguration, we will detail them. Finally, we show the effects produced by the process on the definition of urban culture and sports: setting sight of activities, enhanced cooperation with the media-cultural, polarization between different types of practical in the case of parkour, around a confrontation between two of the founders.
Iberall, A. S.
1985-01-01
A groundwork is laid for a formulation of the modern human social system as a field continuum. As in a simple material physical field, the independent implied relationships of materials or processes in flux have to be based on local conservations of mass, energy, and momentum. In complex fields, the transport fluctuations of momentum are transformed into action modes (e.g., [unk] pdq = ΣHi = H, a characteristic quantum of action over a characteristic cycle time). In complex living systems, a fourth local conservation of population number, the demographic variable, has to be added as a renormalized variable. Modern man, settled in place via agriculture, urbanized, and engaged largely in trade and war, invents a fifth local conservation—value-in-trade, the economic variable. The potentials that drive these five fluxes are also enumerated. Among the more evident external and internal physical-chemical potentials, the driving potentials include a sheaf of internal potential-like components that represent the command-control system emergent as politics. In toto, culture represents the social solvent with the main processes of economics and politics being driven by a social pressure. PMID:16593594
A multilevel approach to modeling of porous bioceramics
NASA Astrophysics Data System (ADS)
Mikushina, Valentina A.; Sidorenko, Yury N.
2015-10-01
The paper is devoted to discussion of multiscale models of heterogeneous materials using principles. The specificity of approach considered is the using of geometrical model of composites representative volume, which must be generated with taking the materials reinforcement structure into account. In framework of such model may be considered different physical processes which have influence on the effective mechanical properties of composite, in particular, the process of damage accumulation. It is shown that such approach can be used to prediction the value of composite macroscopic ultimate strength. As an example discussed the particular problem of the study the mechanical properties of biocomposite representing porous ceramics matrix filled with cortical bones tissue.
Aerosol Chemical and Physical Characterization in Central Amazonia during the 2013 Dry Season
NASA Astrophysics Data System (ADS)
Artaxo, P.; Stern, R.; Brito, J.; Carbone, S.
2015-12-01
During the dry season, the central Amazon forest is highly influenced by forest fires transported through large distances, changing drastically the atmospheric composition even in remote places. This work focuses on a physical-chemical characterization of the aerosol population over a pristine site in Central Amazonia during the dry season. The submicrometer organic aerosols were measured with the Aerodyne ACSM (Aerosol Chemical Speciation Monitor, Aerodyne Inc). Optical properties, size distribution and other micro-physical characteristics were also analyzed. Other instruments were simultaneously used. The measurements were taken during the dry season of 2013 in the Cuieiras ecological reserve (ZF2), northwest of Manaus. The statistical analysis of the data was done with the PMF (Positive Matrix Factorization) technique, in which the organic aerosol was separated into different factors, and then its sources and forming processes were attributed. Results show that the mean aerosol loading was 5,91 μg m-3, from which 78% are of organic composition, 8.5% are sulfate, 6.5% are equivalent black carbon, 4% are ammonium and 3% are nitrate. The mass spectra variability can be explained by 3 factors only, determined with the PMF technique. They were identified as BBOA (Biomass Burning Organic Aerosol), representing 12% of the total organic mass, OOA (Oxygenated Organic Aerosol), representing 66% of the total organic mass and IEPOX-SOA (Isoprene derived Epoxydiol-Secondary Organic Aerosol), representing 21% of the total organic mass. Even in remote and pristine regions, Central Amazonia is highly impacted by biomass burning. Biogenic secondary organic aerosols are also present during the dry season, and the suppression of its wet deposition processes increases their concentration. The oxidation level and other physical-chemical characteristics indicate that the long range transport is responsible for the regional range of this impact.
A Review of Tensors and Tensor Signal Processing
NASA Astrophysics Data System (ADS)
Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.
Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
Causal tapestries for psychology and physics.
Sulis, William H
2012-04-01
Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.
Computing by physical interaction in neurons.
Aur, Dorian; Jog, Mandar; Poznanski, Roman R
2011-12-01
The electrodynamics of action potentials represents the fundamental level where information is integrated and processed in neurons. The Hodgkin-Huxley model cannot explain the non-stereotyped spatial charge density dynamics that occur during action potential propagation. Revealed in experiments as spike directivity, the non-uniform charge density dynamics within neurons carry meaningful information and suggest that fragments of information regarding our memories are endogenously stored in structural patterns at a molecular level and are revealed only during spiking activity. The main conceptual idea is that under the influence of electric fields, efficient computation by interaction occurs between charge densities embedded within molecular structures and the transient developed flow of electrical charges. This process of computation underlying electrical interactions and molecular mechanisms at the subcellular level is dissimilar from spiking neuron models that are completely devoid of physical interactions. Computation by interaction describes a more powerful continuous model of computation than the one that consists of discrete steps as represented in Turing machines.
On the quantum mechanics of consciousness, with application to anomalous phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahn, R.G.; Dunne, B.J.
1986-08-01
Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts andmore » formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrodinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition.« less
ActiveWV: a systematic approach to developing a physical activity plan for West Virginia.
Elliott, Eloise; Jones, Emily; Bulger, Sean
2014-03-01
Modeled after the National Physical Activity Plan (NPAP), ActiveWV 2015: The West Virginia Physical Activity Plan was developed to provide strategic direction for physical activity promotion within the state. The purpose of this manuscript is to describe the systematic approach taken in developing ActiveWV. Plan development began with establishing capacity and leadership among key stakeholders representing all societal sectors. A multiphase, statewide decision-making process allowed for input across sectors and geographic regions. The process results identified five priority areas that served as the conceptual framework for ActiveWV. Sector teams, comprised of key organization stakeholders across the eight sectors, finalized the sector-specific strategies and tactics using the NPAP evidence-based recommendations, results from a formalized strategic process, and the teams' expertise and experience. ActiveWV was officially released on January 19, 2012 at the State Capitol in Charleston, West Virginia. Community events throughout the state surrounded the release and celebrated West Virginia Physical Activity Day. Ongoing implementation and dissemination efforts are underway at state and local levels. As the NPAP calls for states and communities to develop plans that meet the needs of their particular context, other states may find the lessons learned from West Virginia helpful in the development process.
Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry
NASA Astrophysics Data System (ADS)
Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.
2018-04-01
The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.
Near Identifiability of Dynamical Systems
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.
NASA Astrophysics Data System (ADS)
Neu, J. L.; Prather, M. J.
2011-08-01
Uptake and removal of soluble trace gases and aerosols by precipitation represents a major uncertainty in the processes that control the vertical distribution of atmospheric trace species. Model representations of precipitation scavenging vary greatly in their complexity, and most are divorced from the physics of precipitation formation and transformation. Here, we describe a new large-scale precipitation scavenging algorithm, developed for the UCI chemistry-transport model (UCI-CTM), that represents a step toward a more physical treatment of scavenging through improvements in the formulation of the removal in sub-gridscale cloudy and ambient environments and their overlap within the column as well as ice phase uptake of soluble species. The UCI algorithm doubles the lifetime of HNO3 in the upper troposphere relative to a scheme with commonly made assumptions about cloud overlap and ice uptake, and provides better agreement with HNO3 observations. We find that the process of ice phase scavenging of HNO3 is a critical component of the tropospheric O3 budget, but that differences in the formulation of ice phase removal, while generating large relative differences in HNO3 abundance, have little impact on NOx and O3. The O3 budget is much more sensitive to the lifetime of HNO4, highlighting the need for better understanding of its interactions with ice and for additional observational constraints.
NASA Astrophysics Data System (ADS)
Neu, J. L.; Prather, M. J.
2012-04-01
Uptake and removal of soluble trace gases and aerosols by precipitation represents a major uncertainty in the processes that control the vertical distribution of atmospheric trace species. Model representations of precipitation scavenging vary greatly in their complexity, and most are divorced from the physics of precipitation formation and transformation. Here, we describe a new large-scale precipitation scavenging algorithm, developed for the UCI chemistry-transport model (UCI-CTM), that represents a step toward a more physical treatment of scavenging through improvements in the formulation of the removal in sub-gridscale cloudy and ambient environments and their overlap within the column as well as ice phase uptake of soluble species. The UCI algorithm doubles the lifetime of HNO3 in the upper troposphere relative to a scheme with commonly used fractional cloud cover assumptions and ice uptake determined by Henry's Law and provides better agreement with HNO3 observations. We find that the process of ice phase scavenging of HNO3 is a critical component of the tropospheric O3 budget, but that NOx and O3 mixing ratios are relatively insensitive to large differences in the removal rate. Ozone abundances are much more sensitive to the lifetime of HNO4, highlighting the need for better understanding of its interactions with ice and for additional observational constraints.
Stages of physical dependence in New Zealand smokers: Prevalence and correlates.
Walton, Darren; Newcombe, Rhiannon; Li, Judy; Tu, Danny; DiFranza, Joseph R
2016-12-01
Physically dependent smokers experience symptoms of wanting, craving or needing to smoke when too much time has passed since the last cigarette. There is interest in whether wanting, craving and needing represent variations in the intensity of a single physiological parameter or whether multiple physiological processes may be involved in the developmental progression of physical dependence. Our aim was to determine how a population of cigarette smokers is distributed across the wanting, craving and needing stages of physical dependence. A nationwide survey of 2594 New Zealanders aged 15years and over was conducted in 2014. The stage of physical dependence was assessed using the Levels of Physical Dependence measure. Ordinal logistic regression analysis was used to assess relations between physical dependence and other variables. Among 590 current smokers (weighted 16.2% of the sample), 22.3% had no physical dependence, 23.5% were in the Wanting stage, 14.4% in the Craving stage, and 39.8% in the Needing stage. The stage of physical dependence was predicted by daily cigarette consumption, and the time to first cigarette, but not by age, gender, ethnicity or socioeconomic status. Fewer individuals were in the craving stage than either the wanting or needing stages. The resulting inverted U-shaped curve with concentrations at either extreme is difficult to explain as a variation of a single biological parameter. The data support an interpretation that progression through the stages of wanting, craving and needing may involve more than one physiological process. Physical dependence to tobacco develops through a characteristic sequence of wanting, craving and needing which correspond to changes in addiction pathways in the brain. It is important to neuroscience research to determine if the development of physical dependence involves changes in a single brain process, or multiple processes. Our data suggests that more than one physiologic process is involved in the progression of physical dependence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Processes in scientific workflows for information seeking related to physical sample materials
NASA Astrophysics Data System (ADS)
Ramdeen, S.
2014-12-01
The majority of State Geological Surveys have repositories containing cores, cuttings, fossils or other physical sample material. State surveys maintain these collections to support their own research as well as the research conducted by external users from other organizations. This includes organizations such as government agencies (state and federal), academia, industry and the public. The preliminary results presented in this paper will look at the research processes of these external users. In particular: how they discover, access and use digital surrogates, which they use to evaluate and access physical items in these collections. Data such as physical samples are materials that cannot be completely replaced with digital surrogates. Digital surrogates may be represented as metadata, which enable discovery and ultimately access to these samples. These surrogates may be found in records, databases, publications, etc. But surrogates do not completely prevent the need for access to the physical item as they cannot be subjected to chemical testing and/or other similar analysis. The goal of this research is to document the various processes external users perform in order to access physical materials. Data for this study will be collected by conducting interviews with these external users. During the interviews, participants will be asked to describe the workflow that lead them to interact with state survey repositories, and what steps they took afterward. High level processes/categories of behavior will be identified. These processes will be used in the development of an information seeking behavior model. This model may be used to facilitate the development of management tools and other aspects of cyberinfrastructure related to physical samples.
Principles Supporting the Perceptional Teaching of Physics: A ``Practical Teaching Philosophy''
NASA Astrophysics Data System (ADS)
Kurki-Suonio, Kaarle
2011-03-01
This article sketches a framework of ideas developed in the context of decades of physics teacher-education that was entitled the "perceptional approach". Individual learning and the scientific enterprise are interpreted as different manifestations of the same process aimed at understanding the natural and social worlds. The process is understood to possess the basic nature of perception, where empirical meanings are first born and then conceptualised. The accumulation of perceived gestalts in the "structure of the mind" leads to structural perception and the generation of conceptual hierarchies, which form a general principle for the expansion of our understanding. The process undergoes hierarchical development from early sensory perception to individual learning and finally to science. The process is discussed in terms of a three-process dynamic. Scientific and technological processes are driven by the interaction of the mind and nature. They are embedded in the social process due to the interaction of individual minds. These sub-processes are defined by their aims: The scientific process affects the mind and aims at understanding; the technological process affects nature and aims at human well-being; and the social process aims at mutual agreement and cooperation. In hierarchical development the interaction of nature and the mind gets structured into a "methodical cycle" by procedures involving conscious activities. Its intuitive nature is preserved due to subordination of the procedures to empirical meanings. In physics, two dimensions of hierarchical development are distinguished: Unification development gives rise to a generalisation hierarchy of concepts; Quantification development transfers the empirical meanings to quantities, laws and theories representing successive hierarchical levels of quantitative concepts. Consequences for physics teaching are discussed in principle, and in the light of examples and experiences from physics teacher education.
NASA Astrophysics Data System (ADS)
Neill, Aaron; Reaney, Sim
2015-04-01
Fully-distributed, physically-based rainfall-runoff models attempt to capture some of the complexity of the runoff processes that operate within a catchment, and have been used to address a variety of issues including water quality and the effect of climate change on flood frequency. Two key issues are prevalent, however, which call into question the predictive capability of such models. The first is the issue of parameter equifinality which can be responsible for large amounts of uncertainty. The second is whether such models make the right predictions for the right reasons - are the processes operating within a catchment correctly represented, or do the predictive abilities of these models result only from the calibration process? The use of additional data sources, such as environmental tracers, has been shown to help address both of these issues, by allowing for multi-criteria model calibration to be undertaken, and by permitting a greater understanding of the processes operating in a catchment and hence a more thorough evaluation of how well catchment processes are represented in a model. Using discharge and oxygen-18 data sets, the ability of the fully-distributed, physically-based CRUM3 model to represent the runoff processes in three sub-catchments in Cumbria, NW England has been evaluated. These catchments (Morland, Dacre and Pow) are part of the of the River Eden demonstration test catchment project. The oxygen-18 data set was firstly used to derive transit-time distributions and mean residence times of water for each of the catchments to gain an integrated overview of the types of processes that were operating. A generalised likelihood uncertainty estimation procedure was then used to calibrate the CRUM3 model for each catchment based on a single discharge data set from each catchment. Transit-time distributions and mean residence times of water obtained from the model using the top 100 behavioural parameter sets for each catchment were then compared to those derived from the oxygen-18 data to see how well the model captured catchment dynamics. The value of incorporating the oxygen-18 data set, as well as discharge data sets from multiple as opposed to single gauging stations in each catchment, in the calibration process to improve the predictive capability of the model was then investigated. This was achieved by assessing by how much the identifiability of the model parameters and the ability of the model to represent the runoff processes operating in each catchment improved with the inclusion of the additional data sets with respect to the likely costs that would be incurred in obtaining the data sets themselves.
Socio-Economic Status (SES) Affects Infants' Selective Exploration
ERIC Educational Resources Information Center
Tacke, Nicholas F.; Bailey, Lillian S.; Clearfield, Melissa W.
2015-01-01
Infants change their behaviours in accordance with the objects they are exploring. They also tailor their exploratory actions to the physical context. This selectivity of exploratory actions represents a foundational cognitive skill that underlies higher-level cognitive processes. The present study compared the development of selective exploratory…
Robert R. Ziemer
1979-01-01
For years, the principal objective of evapotranspiration research has been to calculate the loss of water under varying conditions of climate, soil, and vegetation. The early simple empirical methods have generally been replaced by more detailed models which more closely represent the physical and biological processes involved. Monteith's modification of the...
NASA Astrophysics Data System (ADS)
Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb
2014-01-01
The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.
Characterization of process air emissions in automotive production plants.
D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W
2016-01-01
During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.
Method and apparatus for automated assembly
Jones, Rondall E.; Wilson, Randall H.; Calton, Terri L.
1999-01-01
A process and apparatus generates a sequence of steps for assembly or disassembly of a mechanical system. Each step in the sequence is geometrically feasible, i.e., the part motions required are physically possible. Each step in the sequence is also constraint feasible, i.e., the step satisfies user-definable constraints. Constraints allow process and other such limitations, not usually represented in models of the completed mechanical system, to affect the sequence.
Deciphering Martian climatic history using returned samples
NASA Technical Reports Server (NTRS)
Paige, D. A.; Krieger, D. B.; Brigham, C. A.
1988-01-01
By necessity, a Mars sample return mission must sample the upper few meters of the Martian surface. This material was subjected to a wide variety of physical processes. Presently, the most important processes are believed to be wind-driven erosion and deposition, and water ice accumulation at higher latitudes. A sample return mission represents an opportunity to better understand and quantify these important geological processes. By obtaining sample cores at key locations, it may be possible to interpret much of recent Martian climatic history.
NASA Astrophysics Data System (ADS)
Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael
2017-09-01
A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.
NASA Astrophysics Data System (ADS)
Sturm, Michael; Gems, Bernhard; Fuchs, Sven; Mazzorana, Bruno; Papathoma-Köhle, Maria; Aufleger, Markus
2016-04-01
In European mountain regions, losses due to torrential hazards are still considerable high despite the ongoing debate on an overall increasing or decreasing trend. Recent events in Austria severely revealed that due to technical and economic reasons, an overall protection of settlements in the alpine environment against torrential hazards is not feasible. On the side of the hazard process, events with unpredictable intensities may represent overload scenarios for existent protection structures in the torrent catchments. They bear a particular risk of significant losses in the living space. Although the importance of vulnerability is widely recognised, there is still a research gap concerning its assessment. Currently, potential losses at buildings due to torrential hazards and their comparison with reinstatement costs are determined by the use of empirical functions. Hence, relations of process intensities and the extent of losses, gathered by the analysis of historic hazard events and the information of object-specific restoration values, are used. This approach does not represent a physics-based and integral concept since relevant and often crucial processes, as the intrusion of the fluid-sediment-mixture into elements at risk, are not considered. Based on these findings, our work is targeted at extending these findings and models of present risk research in the context of an integral, more physics-based vulnerability analysis concept. Fluviatile torrential hazard processes and their impacts on the building envelope are experimentally modelled. Material intrusion processes are thereby explicitly considered. Dynamic impacts are gathered quantitatively and spatially distributed by the use of a large set of force transducers. The experimental tests are accomplished with artificial, vertical and skewed plates, including also openings for material intrusion. Further, the impacts on specific buildings within the test site of the work, the fan apex of the Schnannerbach torrent in Tyrol (Austria), are analysed in detail. A couple of buildings are entirely reconstructed within the physical scale model at the scale 1:30. They include basement and first floor and thereby all relevant openings on the building envelopes. The results from experimental modelling represent the data basis for further physics-based vulnerability analysis. Hence, the applied vulnerability analysis concept significantly extends the methods presently used in flood risk assessment. The results of the study are of basic importance for practical application, as they provide extensive information to support hazard zone mapping and management, as well as the planning of local technical protection measures.
Earthworms and post agricultural succession in the Neotropics
Grizelle Gonzalez; C.Y. Huang; S.C. Chang
2008-01-01
Earthworms are classified into endogeic, anecic, and epigeic species to represent soil, soil and litter, and litter feeders, respectively (Bouché 1977). Earthworms can alter soil physical properties and biogeochemical processes (e.g., Ewards and Bohlen 1996) according to their functionality. Endogeic earthworms alter soil properties primarily through changing soil...
Characteristics of the Creative Development Technologies Applying during the Work with Students
ERIC Educational Resources Information Center
Krinitsyna, Anastasiya Vyacheslavovna; Nikitin, Oleg Denisovich; Boyakova, Ekaterina Vyacheslavovna
2016-01-01
Present article explores the characteristics of the influence of creative influence technologies for school and college students on their professional and personal self-identification. The aim of the study is students' creative development, which represents the process of integration of mental, emotional and physical personality components, which…
Representing Energy. II. Energy Tracking Representations
ERIC Educational Resources Information Center
Scherr, Rachel E.; Close, Hunter G.; Close, Eleanor W.; Vokos, Stamatis
2012-01-01
The Energy Project at Seattle Pacific University has developed representations that embody the substance metaphor and support learners in conserving and tracking energy as it flows from object to object and changes form. Such representations enable detailed modeling of energy dynamics in complex physical processes. We assess student learning by…
Career Activities in Science: Grades 7-12.
ERIC Educational Resources Information Center
Sleep, Gerald; And Others
The curriculum guide attempts to assemble select activities that represent skills related to careers in science. These learning activities are designed to give junior and senior high school students opportunities to explore concepts and processes in many science-related careers. The broad areas covered are biology, chemistry, physics, and earth…
34 CFR 361.16 - Establishment of an independent commission or a state rehabilitation council.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-controlled by persons who— (A) Are individuals with physical or mental impairments that substantially limit...; (iii) Includes family members, advocates, or other representatives of individuals with mental... this part; and (C) Copies of due process hearing decisions issued under this part and transmitted in a...
Spanish Primary School Students' Knowledge of Invasion Games
ERIC Educational Resources Information Center
Moreno, David Sanchez-Mora; Lopez, Luis Miguel Garcia; Diaz, Maria Sagrario Del Valle; Martinez, Inmaculada Solera
2011-01-01
Background: Games represent a very important part of the physical education curriculum and the process by which they are learnt is very complex. Constructive teaching theories highlight the existence of knowledge prior to instruction that the pupil actively transforms through verbalisation and interaction with classmates. The results of research…
Identifiability Of Systems With Modeling Errors
NASA Technical Reports Server (NTRS)
Hadaegh, Yadolah " fred"
1988-01-01
Advances in theory of modeling errors reported. Recent paper on errors in mathematical models of deterministic linear or weakly nonlinear systems. Extends theoretical work described in NPO-16661 and NPO-16785. Presents concrete way of accounting for difference in structure between mathematical model and physical process or system that it represents.
Andújar-Montoya, María Dolores
2017-01-01
The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way. PMID:28737693
Andújar-Montoya, María Dolores; Marcos-Jorquera, Diego; García-Botella, Francisco Manuel; Gilart-Iglesias, Virgilio
2017-07-22
The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way.
Hoskinson, A-M; Caballero, M D; Knight, J K
2013-06-01
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.
Dynamic control of remelting processes
Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.
2000-01-01
An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.
Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich
2016-07-27
An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.
NASA Astrophysics Data System (ADS)
Walker, R. L., II; Knepley, M.; Aminzadeh, F.
2017-12-01
We seek to use the tools provided by the Portable, Extensible Toolkit for Scientific Computation (PETSc) to represent a multiphysics problem in a form that decouples the element definition from the fully coupled equation through the use of pointwise functions that imitate the strong form of the governing equation. This allows allows individual physical processes to be expressed as independent kernels that may be then coupled with the existing finite element framework, PyLith, and capitalizes upon the flexibility offered by the solver, data management, and time stepping algorithms offered by PETSc. To demonstrate a characteristic example of coupled geophysical simulation devised in this manner, we present a model of a synthetic poroelastic environment, with and without the consideration of inertial effects, with fluid initially represented as a single phase. Matrix displacement and fluid pressure serve as the desired unknowns, with the option for various model parameters represented as dependent variables of the central unknowns. While independent of PyLith, this model also serves to showcase the adaptability of physics kernels for synthetic forward modeling. In addition, we seek to expand the base case to demonstrate the impact of modeling fluid as single phase compressible versus a single incompressible phase. As a goal, we also seek to include multiphase fluid modeling, as well as capillary effects.
NASA Astrophysics Data System (ADS)
Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.
2015-07-01
Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
NASA Astrophysics Data System (ADS)
Naruse, Makoto; Yatsui, Takashi; Nomura, Wataru; Kawazoe, Tadashi; Aida, Masaki; Ohtsu, Motoichi
2013-02-01
Dressed-photon-phonon (DPP) etching is a disruptive technology in planarizing material surfaces because it completely eliminates mechanical contact processes. However, adequate metrics for evaluating the surface roughness and the underlying physical mechanisms are still not well understood. Here, we propose a two-dimensional hierarchical surface roughness measure, inspired by the Allan variance, that represents the effectiveness of DPP etching while conserving the original two-dimensional surface topology. Also, we build a simple physical model of DPP etching that agrees well with the experimental observations, which clearly shows the involvement of the intrinsic hierarchical properties of dressed photons, or optical near-fields, in the surface processing.
Coherent Manipulation of Phonons at the Nanoscale
NASA Astrophysics Data System (ADS)
Yu, Shangjie; Ouyang, Min
Phonons play a key role in almost every physical process, including for example dephasing phenomena of electronic quantum states, electric and heat transports. Therefore, understanding and even manipulating phonons represent a pre-requisite for tailoring phonons-mediated physical processes. In this talk, we will first present how to employ ultrafast optical spectroscopy to probe acoustic phonon modes in colloidal metallic nanoparticles. Furthermore, we have developed various phonon manipulation schemes that can be achieved by a train of optical pulses in time domain to allow selective control of phonon modes. Our theoretical modeling and simulation demonstrates an excellent agreement with experimental results, thus providing a future guideline on more complex phononic control at the nanoscale.
Associative Account of Self-Cognition: Extended Forward Model and Multi-Layer Structure
Sugiura, Motoaki
2013-01-01
The neural correlates of “self” identified by neuroimaging studies differ depending on which aspects of self are addressed. Here, three categories of self are proposed based on neuroimaging findings and an evaluation of the likely underlying cognitive processes. The physical self, representing self-agency of action, body-ownership, and bodily self-recognition, is supported by the sensory and motor association cortices located primarily in the right hemisphere. The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices. The social self, representing the self as a collection of context-dependent social-values, is supported by the ventral aspect of the medial prefrontal cortex and the posterior cingulate cortex. Despite differences in the underlying cognitive processes and neural substrates, all three categories of self are likely to share the computational characteristics of the forward model, which is underpinned by internal schema or learned associations between one’s behavioral output and the consequential input. Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error. In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self. PMID:24009578
Lagrangian particles with mixing. I. Simulating scalar transport
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2009-06-01
The physical similarity and mathematical equivalence of continuous diffusion and particle random walk forms one of the cornerstones of modern physics and the theory of stochastic processes. The randomly walking particles do not need to posses any properties other than location in physical space. However, particles used in many models dealing with simulating turbulent transport and turbulent combustion do posses a set of scalar properties and mixing between particle properties is performed to reflect the dissipative nature of the diffusion processes. We show that the continuous scalar transport and diffusion can be accurately specified by means of localized mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. Particles with scalar properties and localized mixing represent an alternative formulation for the process, which is selected to represent the continuous diffusion. Simulating diffusion by Lagrangian particles with mixing involves three main competing requirements: minimizing stochastic uncertainty, minimizing bias introduced by numerical diffusion, and preserving independence of particles. These requirements are analyzed for two limited cases of mixing between two particles and mixing between a large number of particles. The problem of possible dependences between particles is most complicated. This problem is analyzed using a coupled chain of equations that has similarities with Bogolubov-Born-Green-Kirkwood-Yvon chain in statistical physics. Dependences between particles can be significant in close proximity of the particles resulting in a reduced rate of mixing. This work develops further ideas introduced in the previously published letter [Phys. Fluids 19, 031702 (2007)]. Paper I of this work is followed by Paper II [Phys. Fluids 19, 065102 (2009)] where modeling of turbulent reacting flows by Lagrangian particles with localized mixing is specifically considered.
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.; Baker, Noel C.
2015-01-01
Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.
Singh, Jatinder; Schupf, Nicole; Boudreau, Robert; Matteini, Amy M; Prasad, Tanushree; Newman, Anne B; Liu, YongMei; Christensen, Kaare; Kammerer, Candace M
2015-12-01
One method by which to identify fundamental biological processes that may contribute to age-related disease and disability, instead of disease-specific processes, is to construct endophenotypes comprising linear combinations of physiological measures. Applying factor analyses methods to phenotypic data (2006-2009) on 28 traits representing 5 domains (cognitive, cardiovascular, metabolic, physical, and pulmonary) from 4,472 US and Danish individuals in 574 pedigrees from the Long Life Family Study (United States and Denmark), we constructed endophenotypes and assessed their relationship with mortality. The most dominant endophenotype primarily reflected the physical activity and pulmonary domains, was heritable, was significantly associated with mortality, and attenuated the association of age with mortality by 24.1%. Using data (1997-1998) on 1,794 Health, Aging and Body Composition Study participants from Memphis, Tennessee, and Pittsburgh, Pennsylvania, we obtained strikingly similar endophenotypes and relationships to mortality. We also reproduced the endophenotype constructs, especially the dominant physical activity and pulmonary endophenotype, within demographic subpopulations of these 2 cohorts. Thus, this endophenotype construct may represent an underlying phenotype related to aging. Additional genetic studies of this endophenotype may help identify genetic variants or networks that contribute to the aging process. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Levator claviculae muscle discovered during physical examination for cervical lymphadenopathy.
Rosenheimer, J L; Loewy, J; Lozanoff, S
2000-01-01
During a routine physical examination of an adult female with a history of breast cancer and cervical lymphadenopathy, a mass was noted in the right supraclavicular region. The mass was unilateral and easily palpable along the superior border near the median aspect of the clavicle. Plain film radiography, performed to determine whether the mass represented an enlarged jugulo-omohyoid lymph node, revealed an elongated opaque mass in this region. Computed tomographic (CT) and magnetic resonance (MR) images were subsequently obtained. Sequential axial CT scans revealed a cylindrical mass that appeared to be independent of contiguous muscles, including the sternocleidomastoid, anterior, and middle scalene muscles. This mass attached inferiorly to the clavicle and superiorly to the transverse process of the sixth cervical vertebra. Sagittal, coronal, and axial MR scans confirmed the presence of a well-defined superficial mass. It is concluded that the mass represents a levator claviculae (cleidocervical) muscle. This observation underscores the importance of understanding soft tissue variants that may be encountered during a routine physical examination. Copyright 2000 Wiley-Liss, Inc.
Théodore, Florence L; Moreno-Saracho, Jessica E; Bonvecchio, Anabelle; Morales-Ruán, María Del Carmen; Tolentino-Mayo, Lizbeth; López-Olmedo, Nancy; Shamah-Levy, Teresa; Rivera, Juan A
2018-01-01
Obesity is a serious problem among children in Mexico. In 2010, the government implemented a national food and physical activity policy in elementary schools, to prevent obesity. The goal of this study is to assess the implementation of this policy, using the logic model from a descriptive survey with national representativeness at the elementary school level and based on a stratified cluster design. We used a systematic random sampling of schools (n = 122), stratified into public and private. We administered questionnaires to 116 principals, 165 members of the Food and Physical Activity Committees, 132 food school food vendors, 119 teachers, 348 parents. This study evidences a significant deviation in implementation from what had been planned. Our lessons learned are the importance to: base the design/implementation of the policy on a theoretical framework, make programs appealing to stakeholders, select concrete and measurable objective or goals, and support stakeholders during the implementation process.
Using a Virtual Experiment to Analyze Infiltration Process from Point to Grid-cell Size Scale
NASA Astrophysics Data System (ADS)
Barrios, M. I.
2013-12-01
The hydrological science requires the emergence of a consistent theoretical corpus driving the relationships between dominant physical processes at different spatial and temporal scales. However, the strong spatial heterogeneities and non-linearities of these processes make difficult the development of multiscale conceptualizations. Therefore, scaling understanding is a key issue to advance this science. This work is focused on the use of virtual experiments to address the scaling of vertical infiltration from a physically based model at point scale to a simplified physically meaningful modeling approach at grid-cell scale. Numerical simulations have the advantage of deal with a wide range of boundary and initial conditions against field experimentation. The aim of the work was to show the utility of numerical simulations to discover relationships between the hydrological parameters at both scales, and to use this synthetic experience as a media to teach the complex nature of this hydrological process. The Green-Ampt model was used to represent vertical infiltration at point scale; and a conceptual storage model was employed to simulate the infiltration process at the grid-cell scale. Lognormal and beta probability distribution functions were assumed to represent the heterogeneity of soil hydraulic parameters at point scale. The linkages between point scale parameters and the grid-cell scale parameters were established by inverse simulations based on the mass balance equation and the averaging of the flow at the point scale. Results have shown numerical stability issues for particular conditions and have revealed the complex nature of the non-linear relationships between models' parameters at both scales and indicate that the parameterization of point scale processes at the coarser scale is governed by the amplification of non-linear effects. The findings of these simulations have been used by the students to identify potential research questions on scale issues. Moreover, the implementation of this virtual lab improved the ability to understand the rationale of these process and how to transfer the mathematical models to computational representations.
NASA Astrophysics Data System (ADS)
Solarz, R. W.
1985-02-01
Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.
Gary Achtemeier
2012-01-01
A cellular automata fire model represents âelementsâ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for âsuper-diffusiveâ fire spread and coupled surface-layer (2-m) fireâatmosphere processes. Pressure anomalies, which are integrals of the thermal...
An approach to define semantics for BPM systems interoperability
NASA Astrophysics Data System (ADS)
Rico, Mariela; Caliusco, María Laura; Chiotti, Omar; Rosa Galli, María
2015-04-01
This article proposes defining semantics for Business Process Management systems interoperability through the ontology of Electronic Business Documents (EBD) used to interchange the information required to perform cross-organizational processes. The semantic model generated allows aligning enterprise's business processes to support cross-organizational processes by matching the business ontology of each business partner with the EBD ontology. The result is a flexible software architecture that allows dynamically defining cross-organizational business processes by reusing the EBD ontology. For developing the semantic model, a method is presented, which is based on a strategy for discovering entity features whose interpretation depends on the context, and representing them for enriching the ontology. The proposed method complements ontology learning techniques that can not infer semantic features not represented in data sources. In order to improve the representation of these entity features, the method proposes using widely accepted ontologies, for representing time entities and relations, physical quantities, measurement units, official country names, and currencies and funds, among others. When the ontologies reuse is not possible, the method proposes identifying whether that feature is simple or complex, and defines a strategy to be followed. An empirical validation of the approach has been performed through a case study.
Picturing and modelling catchments by representative hillslopes
NASA Astrophysics Data System (ADS)
Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin
2016-04-01
Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically-based models can be parametrized based on comprehensive field data and a good perceptual model. Our results particularly indicate that the main challenge in understanding and modelling the seasonal water balance of a catchment is a proper representation of the phenological cycle of vegetation, not exclusively the structure of the subsurface and spatial variability of soil hydraulic parameters.
Fault-tolerant Control of a Cyber-physical System
NASA Astrophysics Data System (ADS)
Roxana, Rusu-Both; Eva-Henrietta, Dulf
2017-10-01
Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
Cyber / Physical Security Vulnerability Assessment Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Douglas G.; Simpkins, Bret E.
Abstract Both physical protection and cyber security domains offer solutions for the discovery of vulnerabilities through the use of various assessment processes and software tools. Each vulnerability assessment (VA) methodology provides the ability to identify and categorize vulnerabilities, and quantifies the risks within their own areas of expertise. Neither approach fully represents the true potential security risk to a site and/or a facility, nor comprehensively assesses the overall security posture. The technical approach to solving this problem was to identify methodologies and processes that blend the physical and cyber security assessments, and develop tools to accurately quantify the unaccounted formore » risk. SMEs from both the physical and the cyber security domains developed the blending methodologies, and cross trained each other on the various aspects of the physical and cyber security assessment processes. A local critical infrastructure entity volunteered to host a proof of concept physical/cyber security assessment, and the lessons learned have been leveraged by this effort. The four potential modes of attack an adversary can use in approaching a target are; Physical Only Attack, Cyber Only Attack, Physical Enabled Cyber Attack, and the Cyber Enabled Physical Attack. The Physical Only and the Cyber Only pathway analysis are two of the most widely analyzed attack modes. The pathway from an off-site location to the desired target location is dissected to ensure adversarial activity can be detected and neutralized by the protection strategy, prior to completion of a predefined task. This methodology typically explores a one way attack from the public space (or common area) inward towards the target. The Physical Enabled Cyber Attack and the Cyber Enabled Physical Attack are much more intricate. Both scenarios involve beginning in one domain to affect change in the other, then backing outward to take advantage of the reduced system effectiveness, before penetrating further into the defenses. The proper identification and assessment of the overlapping areas (and interaction between these areas) in the VA process is necessary to accurately assess the true risk.« less
Process evaluation results from the HEALTHY physical education intervention
Hall, William J.; Zeveloff, Abigail; Steckler, Allan; Schneider, Margaret; Thompson, Deborah; Pham, Trang; Volpe, Stella L.; Hindes, Katie; Sleigh, Adriana; McMurray, Robert G.
2012-01-01
Process evaluation is an assessment of the implementation of an intervention. A process evaluation component was embedded in the HEALTHY study, a primary prevention trial for Type 2 diabetes implemented over 3 years in 21 middle schools across the United States. The HEALTHY physical education (PE) intervention aimed at maximizing student engagement in moderate-to-vigorous physical activity through delivery of structured lesson plans by PE teachers. Process evaluation data collected via class observations and interventionist interviews assessed fidelity, dose delivered, implementor participation, dose received and barriers. Process evaluation results indicate a high level of fidelity in implementing HEALTHY PE activities and offering 225 min of PE every 10 school days. Concerning dose delivered, students were active for approximately 33 min of class, representing an average of 61% of the class time. Results also indicate that PE teachers were generally engaged in implementing the HEALTHY PE curriculum. Data on dose received showed that students were highly engaged with the PE intervention; however, student misbehavior was the most common barrier observed during classes. Other barriers included teacher disengagement, large classes, limited gym space and poor classroom management. Findings suggest that the PE intervention was generally implemented and received as intended despite several barriers. PMID:22156231
Process evaluation results from the HEALTHY physical education intervention.
Hall, William J; Zeveloff, Abigail; Steckler, Allan; Schneider, Margaret; Thompson, Deborah; Pham, Trang; Volpe, Stella L; Hindes, Katie; Sleigh, Adriana; McMurray, Robert G
2012-04-01
Process evaluation is an assessment of the implementation of an intervention. A process evaluation component was embedded in the HEALTHY study, a primary prevention trial for Type 2 diabetes implemented over 3 years in 21 middle schools across the United States. The HEALTHY physical education (PE) intervention aimed at maximizing student engagement in moderate-to-vigorous physical activity through delivery of structured lesson plans by PE teachers. Process evaluation data collected via class observations and interventionist interviews assessed fidelity, dose delivered, implementor participation, dose received and barriers. Process evaluation results indicate a high level of fidelity in implementing HEALTHY PE activities and offering 225 min of PE every 10 school days. Concerning dose delivered, students were active for approximately 33 min of class, representing an average of 61% of the class time. Results also indicate that PE teachers were generally engaged in implementing the HEALTHY PE curriculum. Data on dose received showed that students were highly engaged with the PE intervention; however, student misbehavior was the most common barrier observed during classes. Other barriers included teacher disengagement, large classes, limited gym space and poor classroom management. Findings suggest that the PE intervention was generally implemented and received as intended despite several barriers.
Tilson, Julie K; Marshall, Katie; Tam, Jodi J; Fetters, Linda
2016-04-22
A primary barrier to the implementation of evidence based practice (EBP) in physical therapy is therapists' limited ability to understand and interpret statistics. Physical therapists demonstrate limited skills and report low self-efficacy for interpreting results of statistical procedures. While standards for physical therapist education include statistics, little empirical evidence is available to inform what should constitute such curricula. The purpose of this study was to conduct a census of the statistical terms and study designs used in physical therapy literature and to use the results to make recommendations for curricular development in physical therapist education. We conducted a bibliometric analysis of 14 peer-reviewed journals associated with the American Physical Therapy Association over 12 months (Oct 2011-Sept 2012). Trained raters recorded every statistical term appearing in identified systematic reviews, primary research reports, and case series and case reports. Investigator-reported study design was also recorded. Terms representing the same statistical test or concept were combined into a single, representative term. Cumulative percentage was used to identify the most common representative statistical terms. Common representative terms were organized into eight categories to inform curricular design. Of 485 articles reviewed, 391 met the inclusion criteria. These 391 articles used 532 different terms which were combined into 321 representative terms; 13.1 (sd = 8.0) terms per article. Eighty-one representative terms constituted 90% of all representative term occurrences. Of the remaining 240 representative terms, 105 (44%) were used in only one article. The most common study design was prospective cohort (32.5%). Physical therapy literature contains a large number of statistical terms and concepts for readers to navigate. However, in the year sampled, 81 representative terms accounted for 90% of all occurrences. These "common representative terms" can be used to inform curricula to promote physical therapists' skills, competency, and confidence in interpreting statistics in their professional literature. We make specific recommendations for curriculum development informed by our findings.
NASA Astrophysics Data System (ADS)
Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac
2016-10-01
Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.
Parameter Estimation for Real Filtered Sinusoids
1997-09-01
Statistical Signal Processing: Detection, Estimation and Time Series Analysis. New York: Addison-Wesley, 1991. 74. Serway , Raymond A . Physics for...Dr. Yung Kee Yeo, Dean’s Representative Dr. Robert A . Calico, Jr., Dean Table of Contents Page List of Abbreviations...Contributions ....... ...................... 5-4 5.4 Summary ........ ............................. 5-6 Appendix A . Vector-Matrix Differentiation
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
Madill, Leanna; Hopper, Timothy F
2007-03-01
This study examines how 4 men from the same family, representing different generations, construct health from their perceptions of professional athletes. Many men are socialized and participate in sport discourses that promote certain truths about being a man that often have detrimental effects to their health. The capacity of research to inform men's construction of health is limited. In an attempt to engage male participants within the research process and cause a form of catalytic validity, transcripts from interviews with the men were analyzed, and thematic findings were represented in a poetic form and shared with the participants for discussion and refinement. The findings revealed how the male participants reiterated messages that the media promotes, such as the importance of physical and mental strength for a man. More significantly, the men became aware that they assumed a narrow definition of health portrayed by professional athletics that perpetuated a hegemonic masculinity. Reflections on changes in the men's lifestyle choices after engaging in the research process are offered in the conclusion.
Verification of Functional Fault Models and the Use of Resource Efficient Verification Tools
NASA Technical Reports Server (NTRS)
Bis, Rachael; Maul, William A.
2015-01-01
Functional fault models (FFMs) are a directed graph representation of the failure effect propagation paths within a system's physical architecture and are used to support development and real-time diagnostics of complex systems. Verification of these models is required to confirm that the FFMs are correctly built and accurately represent the underlying physical system. However, a manual, comprehensive verification process applied to the FFMs was found to be error prone due to the intensive and customized process necessary to verify each individual component model and to require a burdensome level of resources. To address this problem, automated verification tools have been developed and utilized to mitigate these key pitfalls. This paper discusses the verification of the FFMs and presents the tools that were developed to make the verification process more efficient and effective.
A compact physical model for the simulation of pNML-based architectures
NASA Astrophysics Data System (ADS)
Turvani, G.; Riente, F.; Plozner, E.; Schmitt-Landsiedel, D.; Breitkreutz-v. Gamm, S.
2017-05-01
Among emerging technologies, perpendicular Nanomagnetic Logic (pNML) seems to be very promising because of its capability of combining logic and memory onto the same device, scalability, 3D-integration and low power consumption. Recently, Full Adder (FA) structures clocked by a global magnetic field have been experimentally demonstrated and detailed characterizations of the switching process governing the domain wall (DW) nucleation probability Pnuc and time tnuc have been performed. However, the design of pNML architectures represent a crucial point in the study of this technology; this can have a remarkable impact on the reliability of pNML structures. Here, we present a compact model developed in VHDL which enables to simulate complex pNML architectures while keeping into account critical physical parameters. Therefore, such parameters have been extracted from the experiments, fitted by the corresponding physical equations and encapsulated into the proposed model. Within this, magnetic structures are decomposed into a few basic elements (nucleation centers, nanowires, inverters etc.) represented by the according physical description. To validate the model, we redesigned a FA and compared our simulation results to the experiment. With this compact model of pNML devices we have envisioned a new methodology which makes it possible to simulate and test the physical behavior of complex architectures with very low computational costs.
The Utility of a Physics Education in Science Policy
NASA Astrophysics Data System (ADS)
Roberts, Drew
2016-03-01
In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.
Informational technologies in modern educational structure
NASA Astrophysics Data System (ADS)
Fedyanin, A. B.
2017-01-01
The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.
Knowledge representation of rock plastic deformation
NASA Astrophysics Data System (ADS)
Davarpanah, Armita; Babaie, Hassan
2017-04-01
The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.
Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchheit, Thomas E.; Wilcox, Ian Zachary; Sandoval, Andrew J
This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction andmore » portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yueying; Kruger, Albert A.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamicmore » (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.« less
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaras, Nicolas J.
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
Object permanence in domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus).
Fiset, Sylvain; Plourde, Vickie
2013-05-01
Recent evidence suggests that phylogenetic constraints exerted on dogs by the process of domestication have altered the ability of dogs to represent the physical world and the displacement of objects. In this study, invisible (Experiment 1) and visible (Experiment 2) displacement problems were administered to determine whether domestic dogs' and gray wolves' cognitive capacities to infer the position of a hidden object differ. The results revealed that adult dogs and wolves performed similarly in searching for disappearing objects: Both species succeeded the visible displacement tasks but failed the invisible displacement problems. We conclude that physical cognition for finding hidden objects in domestic dogs and gray wolves is alike and unrelated to the process of domestication.
Women in Physics in Latin America: why so few in leadership positions?
NASA Astrophysics Data System (ADS)
Barbosa, Marcia
2008-04-01
Women are greatly under-represented in physics in Latin America. Among all sciences, physics is the field where the increase in the number of women has been particularly slow. Because of this imbalance, many bright young people do not receive the opportunity to learn about physics and to prepare themselves for a physics career, and others are discouraged from doing so. However, the problems is not only that girls are not attracted to go to physics, they few ones that decide to follow the career find difficulties in funding and in promotions. We show that women in Latin America leave physics disproportionately with each step of career advance. Moreover, we also show that in many cases the promotion process exclude women with the same abilities of men. But, why should we care about this problem? Why should women be in physics after all? Women that have a passion for physics should be able to make a living and have a successful career in this field. But, the need of gender balance in science, it is not only a equal opportunity issue. Physics need a greater participation of female researchers in order to survive. Science is changing and it is becoming more interdisciplinary. This evolution is only possible through diversity of thought and of strategies to approach problems. Therefore, excluding women more than limiting the available pool of talented people to half of humanity, we are limiting diversity. Finally, in a society where technology is becoming quite important and is governing our everyday life and where women are highly involved in the educational process, exposing women to science generates a more scientific literate public. We show that the implementation of a few affirmative action strategies bring more balance to the promotion process.
Biomorphodynamics: Physical-biological feedbacks that shape landscapes
Murray, A.B.; Knaapen, M.A.F.; Tal, M.; Kirwan, M.L.
2008-01-01
Plants and animals affect morphological evolution in many environments. The term "ecogeomorphology" describes studies that address such effects. In this opinion article we use the term "biomorphodynamics" to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems-inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the modeling of such emergent interactions. Copyright 2008 by the American Geophysical Union.
Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.
2013-01-01
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623
Multiscale analysis of information dynamics for linear multivariate processes.
Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele
2016-08-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.
Empathic and Self-Regulatory Processes Governing Doping Behavior
Boardley, Ian D.; Smith, Alan L.; Mills, John P.; Grix, Jonathan; Wynne, Ceri
2017-01-01
Evidence associating doping behavior with moral disengagement (MD) has accumulated over recent years. However, to date, research examining links between MD and doping has not considered key theoretically grounded influences and outcomes of MD. As such, there is a need for quantitative research in relevant populations that purposefully examines the explanatory pathways through which MD is thought to operate. Toward this end, the current study examined a conceptually grounded model of doping behavior that incorporated empathy, doping self-regulatory efficacy (SRE), doping MD, anticipated guilt and self-reported doping/doping susceptibility. Participants were specifically recruited to represent four key physical-activity contexts and consisted of team- (n = 195) and individual- (n = 169) sport athletes and hardcore- (n = 125) and corporate- (n = 121) gym exercisers representing both genders (nmale = 371; nfemale = 239); self-reported lifetime prevalence of doping across the sample was 13.6%. Each participant completed questionnaires assessing the aforementioned variables. Structural equation modeling indicated strong support for all study hypotheses. Specifically, we established: (a) empathy and doping SRE negatively predicted reported doping; (b) the predictive effects of empathy and doping SRE on reported doping were mediated by doping MD and anticipated guilt; (c) doping MD positively predicted reported doping; (d) the predictive effects of doping MD on reported doping were partially mediated by anticipated guilt. Substituting self-reported doping for doping susceptibility, multisample analyses then demonstrated these predictive effects were largely invariant between males and females and across the four physical-activity contexts represented. These findings extend current knowledge on a number of levels, and in doing so aid our understanding of key psychosocial processes that may govern doping behavior across key physical-activity contexts. PMID:29018370
Empathic and Self-Regulatory Processes Governing Doping Behavior.
Boardley, Ian D; Smith, Alan L; Mills, John P; Grix, Jonathan; Wynne, Ceri
2017-01-01
Evidence associating doping behavior with moral disengagement (MD) has accumulated over recent years. However, to date, research examining links between MD and doping has not considered key theoretically grounded influences and outcomes of MD. As such, there is a need for quantitative research in relevant populations that purposefully examines the explanatory pathways through which MD is thought to operate. Toward this end, the current study examined a conceptually grounded model of doping behavior that incorporated empathy, doping self-regulatory efficacy (SRE), doping MD, anticipated guilt and self-reported doping/doping susceptibility. Participants were specifically recruited to represent four key physical-activity contexts and consisted of team- ( n = 195) and individual- ( n = 169) sport athletes and hardcore- ( n = 125) and corporate- ( n = 121) gym exercisers representing both genders ( n male = 371; n female = 239); self-reported lifetime prevalence of doping across the sample was 13.6%. Each participant completed questionnaires assessing the aforementioned variables. Structural equation modeling indicated strong support for all study hypotheses. Specifically, we established: (a) empathy and doping SRE negatively predicted reported doping; (b) the predictive effects of empathy and doping SRE on reported doping were mediated by doping MD and anticipated guilt; (c) doping MD positively predicted reported doping; (d) the predictive effects of doping MD on reported doping were partially mediated by anticipated guilt. Substituting self-reported doping for doping susceptibility, multisample analyses then demonstrated these predictive effects were largely invariant between males and females and across the four physical-activity contexts represented. These findings extend current knowledge on a number of levels, and in doing so aid our understanding of key psychosocial processes that may govern doping behavior across key physical-activity contexts.
Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces
Kim, Minsu; Or, Dani
2016-01-01
Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803
ERIC Educational Resources Information Center
Subramony, Deepak Prem
Gutman's means-end theory, widely used in market research, identifies three levels of abstraction: attributes, consequences, and values--associated with the use of products, representing the process by which physical attributes of products gain personal meaning for users. The primary methodological manifestation of means-end theory is the…
Land Cover Change and Remote Sensing in the Classroom: An Exercise to Study Urban Growth
ERIC Educational Resources Information Center
Delahunty, Tina; Lewis-Gonzales, Sarah; Phelps, Jack; Sawicki, Ben; Roberts, Charles; Carpenter, Penny
2012-01-01
The processes and implications of urban growth are studied in a variety of disciplines as urban growth affects both the physical and human landscape. Remote sensing methods provide ways to visualize and mathematically represent urban growth; and resultant land cover change data enable both quantitative and qualitative analysis. This article helps…
NASA Astrophysics Data System (ADS)
Finlay, J. C.
2015-12-01
Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.
Framing curriculum discursively: theoretical perspectives on the experience of VCE physics
NASA Astrophysics Data System (ADS)
Hart, Christina
2002-10-01
The process of developing prescribed curricula has been subject to little empirical investigation, and there have been few attempts to develop theoretical frameworks for understanding the shape and content of particular subjects. This paper presents an account of the author's experience of developing a new course for school physics in the State of Victoria, Australia, at the end of the 1980s. The course was to represent a significant departure from traditional physics courses, and was intended to broaden participation and improve the quality of student learning. In the event the new course turned out to be very similar to traditional courses in Physics. The paper explores the reasons for this outcome. Some powerful discursive mechanisms are identified and some implications of post-structuralism for the theoretical understanding of curriculum are discussed.
PERSPECTIVE: Physical aspects of cancer invasion
NASA Astrophysics Data System (ADS)
Guiot, Caterina; Pugno, Nicola; Delsanto, Pier Paolo; Deisboeck, Thomas S.
2007-12-01
Invasiveness, one of the hallmarks of tumor progression, represents the tumor's ability to expand into the host tissue by means of several complex biochemical and biomechanical processes. Since certain aspects of the problem present a striking resemblance with well-known physical mechanisms, such as the mechanical insertion of a solid inclusion in an elastic material specimen (G Eaves 1973 The invasive growth of malignant tumours as a purely mechanical process J. Pathol. 109 233; C Guiot, N Pugno and P P Delsanto 2006 Elastomechanical model of tumor invasion Appl. Phys. Lett. 89 233901) or a water drop impinging on a surface (C Guiot, P P Delsanto and T S Deisboeck 2007 Morphological instability and cancer invasion: a 'splashing water drop' analogy Theor. Biol. Med. Model 4 4), we propose here an analogy between these physical processes and a cancer system's invasive branching into the surrounding tissue. Accounting for its solid and viscous properties, we then arrive, as a unifying model, to an analogy with a granular solid. While our model has been explicitly formulated for multicellular tumor spheroids in vitro, it should also contribute to a better understanding of tumor invasion in vivo.
Wickrama, K A S; Elder, Glen H; Todd Abraham, W
2007-01-01
This study's objectives are to: investigate potential additive and multiplicative influences of rurality and race/ethnicity on chronic physical illness in a nationally representative sample of youth; and examine intra-Latino processes using a Latino sub-sample. Specifically, we examine how rurality and individual psychosocial processes reflected by acculturation proxies (generational status and use of the English language at home) link to chronic physical illness of Latino youth. Finally, we examine whether these associations and the levels of chronic illness differ across Latino subgroups. Logistic-normal (binomial) modeling analyses examine multilevel influences on physical health using longitudinal data from a nationally representative sample (N = 13,905) of white, African American, Latino, Asian, and Native American adolescents between the ages of 12 and 19 participating in the National Longitudinal Study of Adolescent Health. Prevalence rates of certain chronic illnesses (obesity, asthma, and high cholesterol) among Latino adolescents exceed rates for the same illnesses among white adolescents. Comparisons between rural and non-rural youth reveal a rurality disadvantage in terms of any chronic illness likelihood among Latino, Asian, and Native American youth not evident among whites or African Americans. Among Latino youth (N = 2,505), Mexican Americans show lower health risk for any chronic illness compared to other Latino groups. However, third generation Latinos and those who primarily speak English at home experience higher risk for any chronic illness than do those of first or second generation status, with amplification of the risk linked to English use at home among Latino youth living in rural areas.
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
Theoretical model to explain the problem-solving process in physics
NASA Astrophysics Data System (ADS)
Lopez, Carlos
2011-03-01
This work reports a theoretical model developed with the aim to explain the mental mechanisms of knowledge building during the problem-solving process in physics using a hybrid approach of assimilation- formation of concepts. The model has been termed conceptual chains and represents graphic diagrams of conceptual dependency, which have yielded information about the background knowledge required during the learning process, as well as about the formation of diverse structures that correspond to distinct forms of networking concepts Additionally, the conceptual constructs of the model have been classified according to five types of knowledge. Evidence was found about the influence of these structures, as well as of the distinct types of knowledge about the degree of difficulty of the problems. I want to be grateful to Laureate International Universities, Baltimore M.D., USA, for the financing granted for the accomplishment of this work.
Goal-Function Tree Modeling for Systems Engineering and Fault Management
NASA Technical Reports Server (NTRS)
Johnson, Stephen B.; Breckenridge, Jonathan T.
2013-01-01
This paper describes a new representation that enables rigorous definition and decomposition of both nominal and off-nominal system goals and functions: the Goal-Function Tree (GFT). GFTs extend the concept and process of functional decomposition, utilizing state variables as a key mechanism to ensure physical and logical consistency and completeness of the decomposition of goals (requirements) and functions, and enabling full and complete traceabilitiy to the design. The GFT also provides for means to define and represent off-nominal goals and functions that are activated when the system's nominal goals are not met. The physical accuracy of the GFT, and its ability to represent both nominal and off-nominal goals enable the GFT to be used for various analyses of the system, including assessments of the completeness and traceability of system goals and functions, the coverage of fault management failure detections, and definition of system failure scenarios.
Strain-based diffusion solver for realistic representation of diffusion front in physical reactions
2017-01-01
When simulating fluids, such as water or fire, interacting with solids, it is a challenging problem to represent details of diffusion front in physical reaction. Previous approaches commonly use isotropic or anisotropic diffusion to model the transport of a quantity through a medium or long interface. We have identified unrealistic monotonous patterns with previous approaches and therefore, propose to extend these approaches by integrating the deformation of the material with the diffusion process. Specifically, stretching deformation represented by strain is incorporated in a divergence-constrained diffusion model. A novel diffusion model is introduced to increase the global rate at which the solid acquires relevant quantities, such as heat or saturation. This ensures that the equations describing fluid flow are linked to the change of solid geometry, and also satisfy the divergence-free condition. Experiments show that our method produces convincing results. PMID:28448591
Modulus spectroscopy of grain-grain boundary binary system
NASA Astrophysics Data System (ADS)
Cheng, Peng-Fei; Song, Jiang; Li, Sheng-Tao; Wang, Hui
2015-02-01
Understanding various polarization mechanisms in complex dielectric systems and specifying their physical origins are key issues in dielectric physics. In this paper, four different methods for representing dielectric properties were analyzed and compared. Depending on the details of the system under study, i.e., uniform or non-uniform, it was suggested that different representing approaches should be used to obtain more valuable information. Especially, for the grain-grain boundary binary non-uniform system, its dielectric response was analyzed in detail in terms of modulus spectroscopy (MS). Furthermore, it was found that through MS, the dielectric responses between uniform and non-uniform systems, grain and grain boundary, Maxwell-Wagner polarization and intrinsic polarization can be distinguished. Finally, with the proposed model, the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were studied. The colossal dielectric constant of CCTO at low frequency was attributed to the pseudo relaxation process of grain.
Workshop on Research for Space Exploration: Physical Sciences and Process Technology
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1998-01-01
This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.
Dynamics of assembly production flow
NASA Astrophysics Data System (ADS)
Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro
2015-06-01
Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.
Gaussian membership functions are most adequate in representing uncertainty in measurements
NASA Technical Reports Server (NTRS)
Kreinovich, V.; Quintana, C.; Reznik, L.
1992-01-01
In rare situations, like fundamental physics, we perform experiments without knowing what their results will be. In the majority of real-life measurement situations, we more or less know beforehand what kind of results we will get. Of course, this is not the precise knowledge of the type 'the result will be between alpha - beta and alpha + beta,' because in this case, we would not need any measurements at all. This is usually a knowledge that is best represented in uncertain terms, like 'perhaps (or 'most likely', etc.) the measured value x is between alpha - beta and alpha + beta.' Traditional statistical methods neglect this additional knowledge and process only the measurement results. So it is desirable to be able to process this uncertain knowledge as well. A natural way to process it is by using fuzzy logic. But, there is a problem; we can use different membership functions to represent the same uncertain statements, and different functions lead to different results. What membership function do we choose? In the present paper, we show that under some reasonable assumptions, Gaussian functions mu(x) = exp(-beta(x(exp 2))) are the most adequate choice of the membership functions for representing uncertainty in measurements. This representation was efficiently used in testing jet engines to airplanes and spaceships.
Extended forms of the second law for general time-dependent stochastic processes.
Ge, Hao
2009-08-01
The second law of thermodynamics represents a universal principle applicable to all natural processes, physical systems, and engineering devices. Hatano and Sasa have recently put forward an extended form of the second law for transitions between nonequilibrium stationary states [Phys. Rev. Lett. 86, 3463 (2001)]. In this paper we further extend this form to an instantaneous interpretation, which is satisfied by quite general time-dependent stochastic processes including master-equation models and Langevin dynamics without the requirements of the stationarity for the initial and final states. The theory is applied to several thermodynamic processes, and its consistence with the classical thermodynamics is shown.
A case study of the influences of audience and purpose on the composing processes of an engineer
NASA Technical Reports Server (NTRS)
Stalnaker, B. J.
1981-01-01
The design and preliminary findings of a study of composing processes (on the job) of engineers, managers, and scientists is presented. The influences of audience and purpose on the composing process of engineers was of concern; specifically, the cognitive processes, physical behaviors, and factors that influence the evoluton of a piece of writing. An overview of the study, related literature, outlines of research design, and preliminary findings from a case study of engineers are given. It is suggested that teaching be adapted to help students learn to represent rhetorical problems to guide composing for effective writing.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.; Farakhova, A. I.
2013-09-01
The process through which small droplets contained in emulsions are physically coagulated on the surface of random packing elements is considered. The theory of turbulent migration of a finely dispersed phase is used for determining the coagulation efficiency. Expressions for calculating coagulation efficiency and turbulent transfer rate are obtained by applying models of a turbulent boundary layer. An example of calculating the enlargement of water droplets in hydrocarbon medium represented by a wide fraction of light hydrocarbons (also known as natural gas liquid) is given. The process flowchart of a system for removing petroleum products from effluent waters discharged from the Kazan TETs-1 cogeneration station is considered. Replacement of the mechanical filter by a thin-layer settler with a coagulator is proposed.
Testing for multigroup equivalence of a measuring instrument: a walk through the process.
Byrne, Barbara M
2008-11-01
This article presents an overview and application of the steps taken in testing for the equivalence of a measuring instrument across one or more groups. Following a basic description of, and rationale underlying these steps, the process is illustrated with data comprising response scores to four nonacademic subscales (Physical SC [Ability], Physical SC [Appearance], Social SC [Peers], and Social SC [Parents]) of the Self Description Questionnaire-I for Australian (N = 497) and Nigerian (N = 439) adolescents. All tests for validity and equivalence are based on the analysis of covariance structures within the framework of CFA models using the EQS 6 program. Prospective impediments to equivalence are suggested and additional caveats proposed in the special case where the groups under study represent different cultures.
A study of kindergarten children's spatial representation in a mapping project
NASA Astrophysics Data System (ADS)
Davis, Genevieve A.; Hyun, Eunsook
2005-02-01
This phenomenological study examined kindergarten children's development of spatial representation in a year long mapping project. Findings and discussion relative to how children conceptualised and represented physical space are presented in light of theoretical notions advanced by Piaget, van Hiele, and cognitive science researchers Battista and Clements. Analyses of the processes the children used and their finished products indicate that children can negotiate meaning for complex systems of geometric concepts when given opportunities to debate, negotiate, reflect, evaluate and seek meaning for representing space. The complexity and "holistic" nature of spatial representation of young children emerged in this study.
Towards a physically-based multi-scale ecohydrological simulator for semi-arid regions
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; Josefik, Zoltan; Hinz, Christoph
2017-04-01
The use of numerical models as tools for describing and understanding complex ecohydrological systems has enabled to test hypothesis and propose fundamental, process-based explanations of the system system behaviour as a whole as well as its internal dynamics. Reaction-diffusion equations have been used to describe and generate organized pattern such as bands, spots, and labyrinths using simple feedback mechanisms and boundary conditions. Alternatively, pattern-matching cellular automaton models have been used to generate vegetation self-organization in arid and semi-arid regions also using simple description of surface hydrological processes. A key question is: How much physical realism is needed in order to adequately capture the pattern formation processes in semi-arid regions while reliably representing the water balance dynamics at the relevant time scales? In fact, redistribution of water by surface runoff at the hillslope scale occurs at temporal resolution of minutes while the vegetation development requires much lower temporal resolution and longer times spans. This generates a fundamental spatio-temporal multi-scale problem to be solved, for which high resolution rainfall and surface topography are required. Accordingly, the objective of this contribution is to provide proof-of-concept that governing processes can be described numerically at those multiple scales. The requirements for a simulating ecohydrological processes and pattern formation with increased physical realism are, amongst others: i. high resolution rainfall that adequately captures the triggers of growth as vegetation dynamics of arid regions respond as pulsed systems. ii. complex, natural topography in order to accurately model drainage patterns, as surface water redistribution is highly sensitive to topographic features. iii. microtopography and hydraulic roughness, as small scale variations do impact on large scale hillslope behaviour iv. moisture dependent infiltration as temporal dynamics of infiltration affects water storage under vegetation and in bare soil Despite the volume of research in this field, fundamental limitations still exist in the models regarding the aforementioned issues. Topography and hydrodynamics have been strongly simplified. Infiltration has been modelled as dependent on depth but independent of soil moisture. Temporal rainfall variability has only been addressed for seasonal rain. Spatial heterogenity of the topography as well as roughness and infiltration properties, has not been fully and explicitly represented. We hypothesize that physical processes must be robustly modelled and the drivers of complexity must be present with as much resolution as possible in order to provide the necessary realism to improve transient simulations, perhaps leading the way to virtual laboratories and, arguably, predictive tools. This work provides a first approach into a model with explicit hydrological processes represented by physically-based hydrodynamic models, coupled with well-accepted vegetation models. The model aims to enable new possibilities relating to spatiotemporal variability, arbitrary topography and representation of spatial heterogeneity, including sub-daily (in fact, arbitrary) temporal variability of rain as the main forcing of the model, explicit representation of infiltration processes, and various feedback mechanisms between the hydrodynamics and the vegetation. Preliminary testing strongly suggests that the model is viable, has the potential of producing new information of internal dynamics of the system, and allows to successfully aggregate many of the sources of complexity. Initial benchmarking of the model also reveals strengths to be exploited, thus providing an interesting research outlook, as well as weaknesses to be addressed in the immediate future.
NASA Astrophysics Data System (ADS)
2015-04-01
The International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 14-38-10210 and No. 14-02-20376.
NASA Astrophysics Data System (ADS)
2016-02-01
The International Scientific Conference "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held fourfold in Tomsk, Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), the island of Cyprus. The XI conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was also held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 15-02-20616.
The MCNP-DSP code for calculations of time and frequency analysis parameters for subcritical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentine, T.E.; Mihalczo, J.T.
1995-12-31
This paper describes a modified version of the MCNP code, the MCNP-DSP. Variance reduction features were disabled to have strictly analog particle tracking in order to follow fluctuating processes more accurately. Some of the neutron and photon physics routines were modified to better represent the production of particles. Other modifications are discussed.
Re-integrating Influence and Cyber Operations
2011-06-01
cognitive processing. This research shows that there is a need focus beyond the data itself, but the actual information that this data represents...Environment picture, which is broken down into three dimensions: Physical, Informational, and Cognitive . (Figure 2 Information Environment) (Joint...the overall infrastructure. The cognitive dimension is the knowledge and wisdom of an individual to make decisions. The informational dimension is
Bean, Corliss N; Forneris, Tanya; Halsall, Tanya
2014-01-01
Integrating a positive youth development framework into physical activity programming has become popular as it is believed that this integration can create the development of both physical and psychosocial skills. However, there has been a lack of intervention fidelity research within the field of positive youth development. The Girls Just Wanna Have Fun program was designed in response to increased calls for physical activity programs for female youth and is a theoretically-grounded physical activity-based life skills program that aims to empower female youth. The purpose of this paper was to provide a detailed description of the program and a process evaluation of the first year of program implementation. From interviews with youth and leaders, as well as documentation from the leaders' weekly online log of each implemented session, themes emerged regarding the successes. Findings from this study indicated that program goals were attained and it appears that the program was implemented, for the most part, as designed. The themes related to successes included using activities to facilitate relational time, providing intentional opportunities for leadership, having communicative program leaders who supported one another, and engaging youth in different types of physical activity. The themes related to challenges included difficulties with facility and transportation, some activities being too much like schoolwork, and social distractions and cliques. Included in the paper is a discussion of practical implications and recommendations for community programmers, as well as future directions for the program. Overall, this process evaluation represents an important step in responding to calls for increased evaluation in community-based programs and aids in understanding the process in which positive youth development programs can be effectively implemented.
Duda, Jeffrey J.; Beirne, Matthew M.; Larsen, Kimberly; Barry, Dwight; Stenberg, Karl; McHenry, Michael L.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
The removal of two long-standing dams on the Elwha River in Washington State will initiate a suite of biological and physical changes to the estuary at the river mouth. Estuaries represent a transition between freshwater and saltwater, have unique assemblages of plants and animals, and are a critical habitat for some salmon species as they migrate to the ocean. This chapter summarizes a number of studies in the Elwha River estuary, and focuses on physical and biological aspects of the ecosystem that are expected to change following dam removal. Included are data sets that summarize (1) water chemistry samples collected over a 16 month period; (2) beach seining activities targeted toward describing the fish assemblage of the estuary and migratory patterns of juvenile salmon; (3) descriptions of the aquatic and terrestrial invertebrate communities in the estuary, which represent an important food source for juvenile fish and are important water quality indicators; and (4) the diet and growth patterns of juvenile Chinook salmon in the lower Elwha River and estuary. These data represent baseline conditions of the ecosystem after nearly a century of changes due to the dams and will be useful in monitoring the changes to the river and estuary following dam removal.
Giddings, E.M.; Moorman, Michelle; Cuffney, Thomas F.; McMahon, Gerard; Harned, Douglas A.
2007-01-01
This report provides summarized physical, chemical, and biological data collected during a study of the effects of urbanization on stream ecosystems as part of the U.S. Geological Survey's National Water-Quality Assessment study. The purpose of this study was to examine differences in biological, chemical, and physical characteristics of streams across a gradient of urban intensity. Thirty sites were selected along an urbanization gradient that represents conditions in the North Carolina Piedmont ecoregion, including the cities of Raleigh, Durham, Cary, Greensboro, Winston-Salem, High Point, Asheboro, and Oxford. Data collected included streamflow variability, stream temperature, instream chemistry, instream aquatic habitat, and collections of the algal, macroinvertebrate, and fish communities. In addition, ancillary data describing land use, socioeconomic conditions, and urban infrastructure were compiled for each basin using a geographic information system analysis. All data were processed and summarized for analytical use and are presented in downloadable data tables, along with the methods of data collection and processing.
ERIC Educational Resources Information Center
Mäntylä, Terhi; Hämäläinen, Ari
2015-01-01
The language of physics is mathematics, and physics ideas, laws and models describing phenomena are usually represented in mathematical form. Therefore, an understanding of how to navigate between phenomena and the models representing them in mathematical form is important for a physics teacher so that the teacher can make physics understandable…
Graph modeling systems and methods
Neergaard, Mike
2015-10-13
An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.
NASA Astrophysics Data System (ADS)
Dugger, A. L.; Rafieeinasab, A.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L. R.; Pan, L.; Zhang, Y.; Sampson, K. M.; Cosgrove, B.
2016-12-01
Evaluation of physically-based hydrologic models applied across large regions can provide insight into dominant controls on runoff generation and how these controls vary based on climatic, biological, and geophysical setting. To make this leap, however, we need to combine knowledge of regional forcing skill, model parameter and physics assumptions, and hydrologic theory. If we can successfully do this, we also gain information on how well our current approximations of these dominant physical processes are represented in continental-scale models. In this study, we apply this diagnostic approach to a 5-year retrospective implementation of the WRF-Hydro community model configured for the U.S. National Weather Service's National Water Model (NWM). The NWM is a water prediction model in operations over the contiguous U.S. as of summer 2016, providing real-time estimates and forecasts out to 30 days of streamflow across 2.7 million stream reaches as well as distributed snowpack, soil moisture, and evapotranspiration at 1-km resolution. The WRF-Hydro system permits not only the standard simulation of vertical energy and water fluxes common in continental-scale models, but augments these processes with lateral redistribution of surface and subsurface water, simple groundwater dynamics, and channel routing. We evaluate 5 years of NLDAS-2 precipitation forcing and WRF-Hydro streamflow and evapotranspiration simulation across the contiguous U.S. at a range of spatial (gage, basin, ecoregion) and temporal (hourly, daily, monthly) scales and look for consistencies and inconsistencies in performance in terms of bias, timing, and extremes. Leveraging results from other CONUS-scale hydrologic evaluation studies, we translate our performance metrics into a matrix of likely dominant process controls and error sources (forcings, parameter estimates, and model physics). We test our hypotheses in a series of controlled model experiments on a subset of representative basins from distinct "problem" environments (Southeast U.S. Coastal Plain, Central and Coastal Texas, Northern Plains, and Arid Southwest). The results from these longer-term model diagnostics will inform future improvements in forcing bias correction, parameter calibration, and physics developments in the National Water Model.
NASA Astrophysics Data System (ADS)
Boisvert-Chouinard, J.; Halbe, J.; Baig, A. I.; Adamowski, J. F.
2014-12-01
The principles of Integrated Water Resource Management outline the importance of stakeholder participation in water management processes, but in practice, there is a lack of meaningful engagement in water planning and implementation, and participation is often limited to public consultation and education. When models are used to support water planning, stakeholders are usually not involved in their development and use, and the models commonly fail to represent important feedbacks between socio-economic and physical processes. This paper presents the development of holistic models of the Du Chêne basin in Quebec, and the Rechna Doab basin in Pakistan, that simulate socio-economic and physical processes related to, respectively, water quality management, and soil salinity management. The models each consists of two sub-components: a System Dynamics (SD) model, and a physically based model. The SD component was developed in collaboration with key stakeholders in the basins. The Du Chêne SD model was coupled with a Soil and Water Assessment Tool (SWAT) model, while the Rechna Doab SD model was coupled with SahysMod, a soil salinity model. The coupled models were used to assess the environmental and socio-economic impacts of different management scenarios proposed by stakeholders. Results indicate that coupled SD - physically-based models can be used as effective tools for participatory water planning and implementation. The participatory modeling process provides a structure for meaningful stakeholder engagement, and the models themselves can be used to transparently and coherently assess and compare different management options.
Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition
NASA Astrophysics Data System (ADS)
Ortiz-Suslow, David G.
The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of environmental conditions do not generalize to the coastal and extreme wind environments. This body of work represents a multi-faceted approach to understanding physical air-sea interactions in varied regimes and using a wide array of investigatory methods.
Investigating low flow process controls, through complex modelling, in a UK chalk catchment
NASA Astrophysics Data System (ADS)
Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas
2017-04-01
The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.
Advancing reservoir operation description in physically based hydrological models
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.
A process for the quantification of aircraft noise and emissions interdependencies
NASA Astrophysics Data System (ADS)
de Luis, Jorge
The main purpose of this dissertation is to develop a process to improve actual policy-making procedures in terms of aviation environmental effects. This research work expands current practices with physics based publicly available models. The current method uses solely information provided by industry members, and this information is usually proprietary, and not physically intuitive. The process herein proposed provides information regarding the interdependencies between the environmental effects of aircraft. These interdependencies are also tied to the actual physical parameters of the aircraft and the engine, making it more intuitive for decision-makers to understand the impacts to the vehicle due to different policy scenarios. These scenarios involve the use of fleet analysis tools in which the existing aircraft are used to predict the environmental effects of imposing new stringency levels. The aircraft used are reduced to a series of coefficients that represent their performance, in terms of flight characteristics, fuel burn, noise, and emissions. These coefficients are then utilized to model flight operations and calculate what the environmental impacts of those aircraft are. If a particular aircraft does not meet the stringency to be analyzed, a technology response is applied to it, in order to meet that stringency. Depending on the level of reduction needed, this technology response can have an effect on the fuel burn characteristic of the aircraft. Another important point of the current stringency analysis process is that it does not take into account both noise and emissions concurrently, but instead, it considers them separately, one at a time. This assumes that the interdependencies between the two do not exists, which is not realistic. The latest stringency process delineated in 2004 imposed a 2% fuel burn penalty for any required improvements on NOx, no matter the type of aircraft or engine, assuming that no company had the ability to produce a vehicle with similar characteristics. This left all the performance characteristics of the aircraft untouched, except for the fuel burn, including the noise performance. The proposed alternative is to create a fleet of replacement aircraft to the current fleet that does not meet stringency. These replacement aircraft represent the achievable physical limits for state of the art systems. In this research work, the interdependencies between NOx, noise, and fuel burn are not neglected, and it is in fact necessary to take all three into account, simultaneously, to capture the physical limits that can be attained during a stringency analysis. In addition, the replacement aircraft show the linkage between environmental effects and fundamental aircraft and engine characteristics, something that has been neglected in previous policy making procedures. Another aspect that has been ignored is the creation of the coefficients used for the fleet analyses. In current literature, a defined process for the creation of those coefficients does not exist, but this research work develops a process to do so and demonstrates that the characteristics of the aircraft can be propagated to the coefficients and to the fleet analysis tools. The implementation of the process proposed shows that, first, the environmental metrics can be linked to the physical attributes of the aircraft using non-proprietary, physics based tools, second, those interdependencies can be propagated to fleet level tools, and third, this propagation provides an improvement in the policy making process, by showing what needs to change in an aircraft to meet different stringency levels.
NASA Technical Reports Server (NTRS)
Miller, Ronald L.; Garcia-Pando, Carlos Perez; Perlwitz, Jan; Ginoux, Paul
2015-01-01
Past decades have seen an accelerating increase in computing efficiency, while climate models are representing a rapidly widening set of physical processes. Yet simulations of some fundamental aspects of climate like precipitation or aerosol forcing remain highly uncertain and resistant to progress. Dust aerosol modeling of soil particles lofted by wind erosion has seen a similar conflict between increasing model sophistication and remaining uncertainty. Dust aerosols perturb the energy and water cycles by scattering radiation and acting as ice nuclei, while mediating atmospheric chemistry and marine photosynthesis (and thus the carbon cycle). These effects take place across scales from the dimensions of an ice crystal to the planetary-scale circulation that disperses dust far downwind of its parent soil. Representing this range leads to several modeling challenges. Should we limit complexity in our model, which consumes computer resources and inhibits interpretation? How do we decide if a process involving dust is worthy of inclusion within our model? Can we identify a minimal representation of a complex process that is efficient yet retains the physics relevant to climate? Answering these questions about the appropriate degree of representation is guided by model evaluation, which presents several more challenges. How do we proceed if the available observations do not directly constrain our process of interest? (This could result from competing processes that influence the observed variable and obscure the signature of our process of interest.) Examples will be presented from dust modeling, with lessons that might be more broadly applicable. The end result will either be clinical depression or there assuring promise of continued gainful employment as the community confronts these challenges.
Vo, Phuong T; Bogg, Tim
2015-01-01
Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks - the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model - termed the Disposition-Belief-Motivation model- is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement.
Vo, Phuong T.; Bogg, Tim
2015-01-01
Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks – the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model – termed the Disposition-Belief-Motivation model– is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement. PMID:26300811
Effect of small scale transport processes on phytoplankton distribution in coastal seas.
Hernández-Carrasco, Ismael; Orfila, Alejandro; Rossi, Vincent; Garçon, Veronique
2018-06-05
Coastal ocean ecosystems are major contributors to the global biogeochemical cycles and biological productivity. Physical factors induced by the turbulent flow play a crucial role in regulating marine ecosystems. However, while large-scale open-ocean dynamics is well described by geostrophy, the role of multiscale transport processes in coastal regions is still poorly understood due to the lack of continuous high-resolution observations. Here, the influence of small-scale dynamics (O(3.5-25) km, i.e. spanning upper submesoscale and mesoscale processes) on surface phytoplankton derived from satellite chlorophyll-a (Chl-a) is studied using Lagrangian metrics computed from High-Frequency Radar currents. The combination of complementary Lagrangian diagnostics, including the Lagrangian divergence along fluid trajectories, provides an improved description of the 3D flow geometry which facilitates the interpretation of two non-exclusive physical mechanisms affecting phytoplankton dynamics and patchiness. Attracting small-scale fronts, unveiled by backwards Lagrangian Coherent Structures, are associated to negative divergence where particles and Chl-a standing stocks cluster. Filaments of positive divergence, representing large accumulated upward vertical velocities and suggesting accrued injection of subsurface nutrients, match areas with large Chl-a concentrations. Our findings demonstrate that an accurate characterization of small-scale transport processes is necessary to comprehend bio-physical interactions in coastal seas.
Rallis, Austin; Fercho, Kelene A; Bosch, Taylor J; Baugh, Lee A
2018-01-31
Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.
O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F
2017-08-31
In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.
Fate of Trace Metals in Anaerobic Digestion.
Fermoso, F G; van Hullebusch, E D; Guibaud, G; Collins, G; Svensson, B H; Carliell-Marquet, C; Vink, J P M; Esposito, G; Frunzo, L
2015-01-01
A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.
Physical and Chemical Processes in Turbulent Flames
2015-06-23
positive aerodynamics stretch, into a multitude of wrinkled flamelets possessing either positive or negative stretch, such that the intensified...flame surface, such as the flame surface area ratio, build up this global measure. The turbulent flame surface is typically highly wrinkled and folded...consider a filtered/average location of the flame positions to represent a smooth surface. The information contained in the wrinkled surface if
Random walk, diffusion and mixing in simulations of scalar transport in fluid flows
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2008-12-01
Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.
Electroweak Sudakov Corrections to New Physics Searches at the LHC
NASA Astrophysics Data System (ADS)
Chiesa, Mauro; Montagna, Guido; Barzè, Luca; Moretti, Mauro; Nicrosini, Oreste; Piccinini, Fulvio; Tramontano, Francesco
2013-09-01
We compute the one-loop electroweak Sudakov corrections to the production process Z(νν¯)+n jets, with n=1, 2, 3, in pp collisions at the LHC. It represents the main irreducible background to new physics searches at the energy frontier. The results are obtained at the leading and next-to-leading logarithmic accuracy by implementing the general algorithm of Denner and Pozzorini in the event generator for multiparton processes alpgen. For the standard selection cuts used by the ATLAS and CMS Collaborations, we show that the Sudakov corrections to the relevant observables can grow up to -40% at s=14TeV. We also include the contribution due to undetected real radiation of massive gauge bosons, to show to what extent the partial cancellation with the large negative virtual corrections takes place in realistic event selections.
SU-B-213-03: Evaluation of Graduate Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, B.
2015-06-15
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
SU-B-213-04: Evaluation of Residency Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reft, C.
2015-06-15
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
SU-B-213-06: Development of ABR Examination Questions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, J.
2015-06-15
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
SU-B-213-02: Development of CAMPEP Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, W.
2015-06-15
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkschall, G.
2015-06-15
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkschall, G.
2015-06-15
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
SU-B-213-05: Development of ABR Certification Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, J.
2015-06-15
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
Chaur, Manuel N; Collado, Daniel; Lehn, Jean-Marie
2011-01-03
The C=N group of hydrazones can undergo E/Z isomerization both photochemically and thermally, allowing the generation of a closed process that can be tuned by either of these two physical stimuli. On the other hand, hydrazine-exchange reactions enable a constitutional change in a given hydrazone. The two classes of processes: 1) configurational (physically stimulated) and 2) constitutional (chemically stimulated) give access to short-term and long-term information storage, respectively. Such transformations are reported herein for two hydrazones (bis-pyridyl hydrazone and 2-pyridinecarboxaldehyde phenylhydrazone) that undergo a closed, chemically or physically driven process, and, in addition, can be locked or unlocked at will by metal-ion coordination or removal. These features also extend to acyl hydrazones derived from 2-pyridinecarboxaldehyde. Similarly to the terpydine-like hydrazones, such acyl hydrazones can undergo both constitutional and configurational changes, as well as metal-ion coordination. All these types of hydrazones represent dynamic systems capable of acting as multiple state molecular devices, in which the presence of coordination sites furthermore allows the metal ion-controlled locking and unlocking of the interconversion of the different states. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cascade process modeling with mechanism-based hierarchical neural networks.
Cong, Qiumei; Yu, Wen; Chai, Tianyou
2010-02-01
Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.
NASA Astrophysics Data System (ADS)
Quaife, T. L.; Davenport, I. J.; Lines, E.; Styles, J.; Lewis, P.; Gurney, R. J.
2012-12-01
Satellite observations offer a spatially and temporally synoptic data source for constraining models of land surface processes, but exploitation of these data for such purposes has been largely ad-hoc to date. In part this is because traditional land surface models, and hence most land surface data assimilation schemes, have tended to focus on a specific component of the land surface problem; typically either surface fluxes of water and energy or biogeochemical cycles such as carbon and nitrogen. Furthermore the assimilation of satellite data into such models tends to be restricted to a single wavelength domain, for example passive microwave, thermal or optical, depending on the problem at hand. The next generation of land surface schemes, such as the Joint UK Land Environment Simulator (JULES) and the US Community Land Model (CLM) represent a broader range of processes but at the expense of increasing overall model complexity and in some cases reducing the level of detail in specific processes to accommodate this. Typically, the level of physical detail used to represent the interaction of electromagnetic radiation with the surface is not sufficient to enable prediction of intrinsic satellite observations (reflectance, brightness temperature and so on) and consequently these are not assimilated directly into the models. A seemingly attractive alternative is to assimilate high-level products derived from satellite observations but these are often only superficially related to the corresponding variables in land surface models due to conflicting assumptions between the two. This poster describes the water and energy balance modeling components of a project funded by the European Space Agency to develop a data assimilation scheme for the land surface and observation operators to translate between models and the intrinsic observations acquired by satellite missions. The rationale behind the design of the underlying process model is to represent the physics of the water and energy balance in as parsimonious manner as possible, using a force-restore approach, but describing the physics of electromagnetic radiation scattering at the surface sufficiently well that it is possible to assimilate the intrinsic observations made by remote sensing instruments. In this manner the initial configuration of the resulting scheme will be able to make optimal use of available satellite observations at arbitrary wavelengths and geometries. Model complexity can then be built up from this point whilst ensuring consistency with satellite observations.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin
2014-05-01
Preferential flow through macropores often determines hydrological characteristics - especially regarding runoff generation and fast transport of solutes. Macropore settings may yet be very different in nature and dynamics, depending on their origin. While biogenic structures follow activity cycles (e.g. earth worms) and population conditions (e.g. roots), pedogenic and geogenic structures may depend on water stress (e.g. cracks) or large events (e.g. flushed voids between skeleton and soil pipes) or simply persist (e.g. bedrock interface). On the one hand, such dynamic site characteristics can be observed in seasonal changes in its reaction to precipitation. On the other hand, sprinkling experiments accompanied by tracers or time-lapse 3D Ground-Penetrating-Radar are suitable tools to determine infiltration patterns and macropore configuration. However, model representation of the macropore-matrix system is still problematic, because models either rely on effective parameters (assuming well-mixed state) or on explicit advection strongly simplifying or neglecting interaction with the diffusive flow domain. Motivated by the dynamic nature of macropores, we present a novel model approach for interacting diffusive and advective water, solutes and energy transport in structured soils. It solely relies on scale- and process-aware observables. A representative set of macropores (data from sprinkling experiments) determines the process model scale through 1D advective domains. These are connected to a 2D matrix domain which is defined by pedo-physical retention properties. Water is represented as particles. Diffusive flow is governed by a 2D random walk of these particles while advection may take place in the macropore domain. Macropore-matrix interaction is computed as dissipation of the advective momentum of a particle by its experienced drag from the matrix domain. Through a representation of matrix and macropores as connected diffusive and advective domains for water transport we open up double domain concepts linking porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured. In addition, macropore and matrix domain settings may change over time based on physical and stochastic observations. The representativity concept allows scaleability from plotscale to the lower mesoscale.
Therapeutic considerations of sarcopenia in heart failure patients.
Saitoh, Masakazu; Ebner, Nicole; von Haehling, Stephan; Anker, Stefan D; Springer, Jochen
2018-02-01
Sarcopenia is a common feature, and affects 20-47% of patients with heart failure (HF). Sarcopenia is also an independent predictor of impaired functional capacity, even after adjusting for clinical relevant variables, which is associated with adverse outcome in patients with HF. Areas covered: Several different pathophysiological pathways are involved in sarcopenic processes including altered nutrient intake and absorption, hormonal factor, inflammatory processes, oxidative stress, cellular proteolysis, and unhealthy lifestyle. Nutritional therapy, physical activity and/or exercise training have been associated with improved muscle mass or physical performance in HF. Few studies reported beneficial effects for muscle mass and physical performance, in those who received angiotensin-converting enzyme (ACE) inhibitors, or/and beta-blocker. In addition, testosterone, selective androgen receptor modulators, ghrelin agonist and myostatin inhibitors are currently under study as possible future therapeutic options. Expert commentary: Regular and adequate level of physical activity and/or exercise training, and sufficient nutritional intake or special nutritional supplementation may represent the best strategy for prevention or delay of sarcopenia and worsening physical performance in patients with HF. Maximal tolerated dosages of standard therapies for HF such as ACE-inhibitors or beta-blockers are first-line strategy, however it is difficult to recommend other pharmacological agents as part of routine treatment of sarcopenia.
From physics to biology by extending criticality and symmetry breakings.
Longo, G; Montévil, M
2011-08-01
Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not "just" processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kvasz, Ladislav
The aim of the article is to provide teachers some ideas about the development of physical knowledge and to make them more receptive to the differences between their and the students thinking. I want to show, that these differences lie not only in the richness of experience, but also in the structure of this experience. I try to point to some of these differences lying in the content, form and meaningfulness. The article is based on an adapted version of Piaget's model of the growth of physical knowledge. The model represents the changes of semantic understanding, formal language and logical structure of a theory during its historical development. I illustrate the model on the development of classical mechanics, but similar changes can be found also in the history of electrodynamics or quantum mechanics. The central idea of the paper is to use this model of the historical development of physical knowledge in analysis of the cognitive processes in physics education.
Studying the unfolding process of protein G and protein L under physical property space
Zhao, Liling; Wang, Jihua; Dou, Xianghua; Cao, Zanxia
2009-01-01
Background The studies on protein folding/unfolding indicate that the native state topology is an important determinant of protein folding mechanism. The folding/unfolding behaviors of proteins which have similar topologies have been studied under Cartesian space and the results indicate that some proteins share the similar folding/unfolding characters. Results We construct physical property space with twelve different physical properties. By studying the unfolding process of the protein G and protein L under the property space, we find that the two proteins have the similar unfolding pathways that can be divided into three types and the one which with the umbrella-shape represents the preferred pathway. Moreover, the unfolding simulation time of the two proteins is different and protein L unfolding faster than protein G. Additionally, the distributing area of unfolded state ensemble of protein L is larger than that of protein G. Conclusion Under the physical property space, the protein G and protein L have the similar folding/unfolding behaviors, which agree with the previous results obtained from the studies under Cartesian coordinate space. At the same time, some different unfolding properties can be detected easily, which can not be analyzed under Cartesian coordinate space. PMID:19208146
Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
Scawn, Richard L; Foster, Alex; Lee, Bradford W; Kikkawa, Don O; Korn, Bobby S
2015-01-01
Additive manufacturing or 3D printing is the process by which three dimensional data fields are translated into real-life physical representations. 3D printers create physical printouts using heated plastics in a layered fashion resulting in a three-dimensional object. We present a technique for creating customised, inexpensive 3D orbit models for use in orbital surgical training using 3D printing technology. These models allow trainee surgeons to perform 'wet-lab' orbital decompressions and simulate upcoming surgeries on orbital models that replicate a patient's bony anatomy. We believe this represents an innovative training tool for the next generation of orbital surgeons.
The relative importance of physical and biological energy in landscape evolution
NASA Astrophysics Data System (ADS)
Turowski, J. M.; Schwanghart, W.
2017-12-01
Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary parameters needed to calculate the ratio (NPP, runoff, elevation) are available globally. We find that biological processes are more important in arid and semiarid regions. The wide-spread lack of water strongly limits the energy available for fluvial erosion, while biota are geomorphic engineers less sensitive to water shortage.
NASA Astrophysics Data System (ADS)
Giordano, V. M.; Ruta, B.
2016-01-01
Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization.
The Bilinear Product Model of Hysteresis Phenomena
NASA Astrophysics Data System (ADS)
Kádár, György
1989-01-01
In ferromagnetic materials non-reversible magnetization processes are represented by rather complex hysteresis curves. The phenomenological description of such curves needs the use of multi-valued, yet unambiguous, deterministic functions. The history dependent calculation of consecutive Everett-integrals of the two-variable Preisach-function can account for the main features of hysteresis curves in uniaxial magnetic materials. The traditional Preisach model has recently been modified on the basis of population dynamics considerations, removing the non-real congruency property of the model. The Preisach-function was proposed to be a product of two factors of distinct physical significance: a magnetization dependent function taking into account the overall magnetization state of the body and a bilinear form of a single variable, magnetic field dependent, switching probability function. The most important statement of the bilinear product model is, that the switching process of individual particles is to be separated from the book-keeping procedure of their states. This empirical model of hysteresis can easily be extended to other irreversible physical processes, such as first order phase transitions.
Process connectivity in a naturally prograding river delta
NASA Astrophysics Data System (ADS)
Sendrowski, Alicia; Passalacqua, Paola
2017-03-01
River deltas are lowland systems that can display high hydrological connectivity. This connectivity can be structural (morphological connections), functional (control of fluxes), and process connectivity (information flow from system drivers to sinks). In this work, we quantify hydrological process connectivity in Wax Lake Delta, coastal Louisiana, by analyzing couplings among external drivers (discharge, tides, and wind) and water levels recorded at five islands and one channel over summer 2014. We quantify process connections with information theory, a branch of mathematics concerned with the communication of information. We represent process connections as a network; variables serve as network nodes and couplings as network links describing the strength, direction, and time scale of information flow. Comparing process connections at long (105 days) and short (10 days) time scales, we show that tides exhibit daily synchronization with water level, with decreasing strength from downstream to upstream, and that tides transfer information as tides transition from spring to neap. Discharge synchronizes with water level and the time scale of its information transfer compares well to physical travel times through the system, computed with a hydrodynamic model. Information transfer and physical transport show similar spatial patterns, although information transfer time scales are larger than physical travel times. Wind events associated with water level setup lead to increased process connectivity with highly variable information transfer time scales. We discuss the information theory results in the context of the hydrologic behavior of the delta, the role of vegetation as a connector/disconnector on islands, and the applicability of process networks as tools for delta modeling results.
Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols
NASA Astrophysics Data System (ADS)
Bzdek, Bryan R.; Reid, Jonathan P.
2017-12-01
Aerosols are found in a wide diversity of contexts and applications, including the atmosphere, pharmaceutics, and industry. Aerosols are dispersions of particles in a gas, and the coupling of the two phases results in highly dynamic systems where chemical and physical properties like size, composition, phase, and refractive index change rapidly in response to environmental perturbations. Aerosol particles span a wide range of sizes from 1 nm to tens of micrometres or from small molecular clusters that may more closely resemble gas phase molecules to large particles that can have similar qualities to bulk materials. However, even large particles with finite volumes exhibit distinct properties from the bulk condensed phase, due in part to their higher surface-to-volume ratio and their ability to easily access supersaturated solute states inaccessible in the bulk. Aerosols represent a major challenge for study because of the facile coupling between the particle and gas, the small amounts of sample available for analysis, and the sheer breadth of operative processes. Time scales of aerosol processes can be as short as nanoseconds or as long as years. Despite their very different impacts and applications, fundamental chemical physics processes serve as a common theme that underpins our understanding of aerosols. This perspective article discusses challenges in the study of aerosols and highlights recent chemical physics advancements that have enabled improved understanding of these complex systems.
Does cost-benefit analysis or self-control predict involvement in two forms of aggression?
Archer, John; Fernández-Fuertes, Andrés A; Thanzami, Van Lal
2010-01-01
The main aim of this research was to assess the relative association between physical aggression and (1) self-control and (2) cost-benefit assessment, these variables representing the operation of impulsive and reflective processes. Study 1 involved direct and indirect aggression among young Indian men, and Study 2 physical aggression to dating partners among Spanish adolescents. In Study 1, perceived benefits and costs but not self-control were associated with direct aggression at other men, and the association remained when their close association with indirect aggression was controlled. In Study 2, benefits and self-control showed significant and independent associations (positive for benefits, negative for self-control) with physical aggression at other-sex partners. Although being victimized was also correlated in the same direction with self-control and benefits, perpetration and being victimized were highly correlated, and there was no association between being victimized and these variables when perpetration was controlled. These results support the theory that reflective (cost-benefit analyses) processes and impulsive (self-control) processes operate in parallel in affecting aggression. The finding that male adolescents perceived more costs and fewer benefits from physical aggression to a partner than female adolescents did is consistent with findings indicating greater social disapproval of men hitting women than vice versa, rather than with the view that male violence to women is facilitated by internalized patriarchal values. (c) 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Dębski, Wojciech
2017-04-01
The earthquake focus is the point where a rock under external stress starts to fracture. Understanding earthquake nucleation and earthquake dynamics requires thus understanding of fracturing of brittle materials. This, however, is a continuing problem and enduring challenge to geoscience. In spite of significant progress we still do not fully understand the failure of rock materials due to extreme stress concentration in natural condition. One of the reason of this situation is that information about natural or induced seismic events is still not sufficient for precise description of physical processes in seismic foci. One of the possibility of improving this situation is using numerical simulations - a powerful tool of contemporary physics. For this reason we used an advanced implementation of the Discrete Element Method (DEM). DEM's main task is to calculate physical properties of materials which are represented as an assembly of a great number of particles interacting with each other. We analyze the possibility of using DEM for describing materials during so called Brazilian Test. Brazilian Test is a testing method to obtain the tensile strength of brittle material. One of the primary reasons for conducting such simulations is to measure macroscopic parameters of the rock sample. We would like to report our efforts of describing the fracturing process during the Brazilian Test from the microscopic point of view and give an insight into physical processes preceding materials failure.
A Multi-Scale, Integrated Approach to Representing Watershed Systems
NASA Astrophysics Data System (ADS)
Ivanov, Valeriy; Kim, Jongho; Fatichi, Simone; Katopodes, Nikolaos
2014-05-01
Understanding and predicting process dynamics across a range of scales are fundamental challenges for basic hydrologic research and practical applications. This is particularly true when larger-spatial-scale processes, such as surface-subsurface flow and precipitation, need to be translated to fine space-time scale dynamics of processes, such as channel hydraulics and sediment transport, that are often of primary interest. Inferring characteristics of fine-scale processes from uncertain coarse-scale climate projection information poses additional challenges. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion, and sediment transport, tRIBS+VEGGIE-FEaST. The model targets to take the advantage of the current generation of wealth of data representing watershed topography, vegetation, soil, and landuse, as well as to explore the hydrological effects of physical factors and their feedback mechanisms over a range of scales. We illustrate how the modeling system connects precipitation-hydrologic runoff partition process to the dynamics of flow, erosion, and sedimentation, and how the soil's substrate condition can impact the latter processes, resulting in a non-unique response. We further illustrate an approach to using downscaled climate change information with a process-based model to infer the moments of hydrologic variables in future climate conditions and explore the impact of climate information uncertainty.
Wolf Creek Research Basin Cold REgion Process Studies - 1992-2003
NASA Astrophysics Data System (ADS)
Janowicz, R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S.
2004-12-01
The development of hydrological models in northern regions are complicated by cold region processes. Sparse vegetation influences snowpack accumulation, redistribution and melt, frozen ground effects infiltration and runoff and cold soils in the summer effect evapotranspiration rates. Situated in the upper Yukon River watershed, the 195 km2 Wolf Creek Research Basin was instrumented in 1992 to calibrate hydrologic flow models, and has since evolved into a comprehensive study of cold region processes and linkages, contributing significantly to hydrological and climate change modelling. Studies include those of precipitation distribution, snowpack accumulation and redistribution, energy balance, snowmelt infiltration, and water balance. Studies of the spatial variability of hydrometeorological data demonstrate the importance of physical parameters on their distribution and control on runoff processes. Many studies have also identified the complex interaction of several of the physical parameters, including topography, vegetation and frozen ground (seasonal or permafrost) as important. They also show that there is a fundamental, underlying spatial structure to the watershed that must be adequately represented in parameterization schemes for scaling and watershed modelling. The specific results of numerous studies are presented.
Epidemic models for phase transitions: application to a physical gel
NASA Astrophysics Data System (ADS)
Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.
2017-09-01
Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
Frontiers in Applied and Computational Mathematics 05’
2005-03-01
dynamics, forcing subsets to have the same oscillation numbers and interleaving spiking times . Our analysis follows the theory of coupled systems of...continuum is described by a continuous- time stochastic process, as are their internal dynamics. Soluble factors, such as cytokines, are represent- ed...scale of a partide pas- sage time through the reaction zone. Both are realistic for many systems of physical interest. A higher order theory includes
1993-03-15
1992, Journal of Applied Psychology ).] This study represented an attempt to extend and test the Ackerman (1988) theory of the cognitive ability...both the physical state of the test -taker (e.g., time-of-day, arousal level; see Revelle, Humphreys, Simon, & Gilliland, 1980) and the psychological ...little consideration in the psychology of individual differences. -. Test directions almost never tell the examinee how to approach the task. Theoretically
A theory of biological relativity: no privileged level of causation.
Noble, Denis
2012-02-06
Must higher level biological processes always be derivable from lower level data and mechanisms, as assumed by the idea that an organism is completely defined by its genome? Or are higher level properties necessarily also causes of lower level behaviour, involving actions and interactions both ways? This article uses modelling of the heart, and its experimental basis, to show that downward causation is necessary and that this form of causation can be represented as the influences of initial and boundary conditions on the solutions of the differential equations used to represent the lower level processes. These insights are then generalized. A priori, there is no privileged level of causation. The relations between this form of 'biological relativity' and forms of relativity in physics are discussed. Biological relativity can be seen as an extension of the relativity principle by avoiding the assumption that there is a privileged scale at which biological functions are determined.
A theory of biological relativity: no privileged level of causation
Noble, Denis
2012-01-01
Must higher level biological processes always be derivable from lower level data and mechanisms, as assumed by the idea that an organism is completely defined by its genome? Or are higher level properties necessarily also causes of lower level behaviour, involving actions and interactions both ways? This article uses modelling of the heart, and its experimental basis, to show that downward causation is necessary and that this form of causation can be represented as the influences of initial and boundary conditions on the solutions of the differential equations used to represent the lower level processes. These insights are then generalized. A priori, there is no privileged level of causation. The relations between this form of ‘biological relativity’ and forms of relativity in physics are discussed. Biological relativity can be seen as an extension of the relativity principle by avoiding the assumption that there is a privileged scale at which biological functions are determined. PMID:23386960
NASA Astrophysics Data System (ADS)
Alkhorayef, M.; Mansour, A.; Sulieman, A.; Alnaaimi, M.; Alduaij, M.; Babikir, E.; Bradley, D. A.
2017-12-01
Butylatedhydroxytoluene (BHT) rods represent a potential dosimeter in radiation processing, with readout via electron paramagnetic resonance (EPR) spectroscopy. Among the possible sources of uncertainty are those associated with the performance of the dosimetric medium and the conditions under which measurements are made, including sampling and environmental conditions. Present study makes estimate of the uncertainties, investigating physical response in different resonance regions. BHT, a white crystalline solid with a melting point of between 70-73 °C, was investigated using 60Co gamma irradiation over the dose range 0.1-100 kGy. The intensity of the EPR signal increases linearly in the range 0.1-35 kGy, the uncertainty budget for high doses being 3.3% at the 2σ confidence level. The rod form represents an excellent alternative dosimeter for high level dosimetry, of small uncertainty compared to powder form.
Statistical and engineering methods for model enhancement
NASA Astrophysics Data System (ADS)
Chang, Chia-Jung
Models which describe the performance of physical process are essential for quality prediction, experimental planning, process control and optimization. Engineering models developed based on the underlying physics/mechanics of the process such as analytic models or finite element models are widely used to capture the deterministic trend of the process. However, there usually exists stochastic randomness in the system which may introduce the discrepancy between physics-based model predictions and observations in reality. Alternatively, statistical models can be used to develop models to obtain predictions purely based on the data generated from the process. However, such models tend to perform poorly when predictions are made away from the observed data points. This dissertation contributes to model enhancement research by integrating physics-based model and statistical model to mitigate the individual drawbacks and provide models with better accuracy by combining the strengths of both models. The proposed model enhancement methodologies including the following two streams: (1) data-driven enhancement approach and (2) engineering-driven enhancement approach. Through these efforts, more adequate models are obtained, which leads to better performance in system forecasting, process monitoring and decision optimization. Among different data-driven enhancement approaches, Gaussian Process (GP) model provides a powerful methodology for calibrating a physical model in the presence of model uncertainties. However, if the data contain systematic experimental errors, the GP model can lead to an unnecessarily complex adjustment of the physical model. In Chapter 2, we proposed a novel enhancement procedure, named as “Minimal Adjustment”, which brings the physical model closer to the data by making minimal changes to it. This is achieved by approximating the GP model by a linear regression model and then applying a simultaneous variable selection of the model and experimental bias terms. Two real examples and simulations are presented to demonstrate the advantages of the proposed approach. Different from enhancing the model based on data-driven perspective, an alternative approach is to focus on adjusting the model by incorporating the additional domain or engineering knowledge when available. This often leads to models that are very simple and easy to interpret. The concepts of engineering-driven enhancement are carried out through two applications to demonstrate the proposed methodologies. In the first application where polymer composite quality is focused, nanoparticle dispersion has been identified as a crucial factor affecting the mechanical properties. Transmission Electron Microscopy (TEM) images are commonly used to represent nanoparticle dispersion without further quantifications on its characteristics. In Chapter 3, we developed the engineering-driven nonhomogeneous Poisson random field modeling strategy to characterize nanoparticle dispersion status of nanocomposite polymer, which quantitatively represents the nanomaterial quality presented through image data. The model parameters are estimated through the Bayesian MCMC technique to overcome the challenge of limited amount of accessible data due to the time consuming sampling schemes. The second application is to calibrate the engineering-driven force models of laser-assisted micro milling (LAMM) process statistically, which facilitates a systematic understanding and optimization of targeted processes. In Chapter 4, the force prediction interval has been derived by incorporating the variability in the runout parameters as well as the variability in the measured cutting forces. The experimental results indicate that the model predicts the cutting force profile with good accuracy using a 95% confidence interval. To conclude, this dissertation is the research drawing attention to model enhancement, which has considerable impacts on modeling, design, and optimization of various processes and systems. The fundamental methodologies of model enhancement are developed and further applied to various applications. These research activities developed engineering compliant models for adequate system predictions based on observational data with complex variable relationships and uncertainty, which facilitate process planning, monitoring, and real-time control.
Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level
NASA Astrophysics Data System (ADS)
Varfolomeeva, Vera V.; Terentev, Alexey V.
2018-01-01
Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.
NASA Astrophysics Data System (ADS)
Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele
2017-10-01
In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.
Classical Wave Model of Quantum-Like Processing in Brain
NASA Astrophysics Data System (ADS)
Khrennikov, A.
2011-01-01
We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ning
Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less
Methods for improved forewarning of condition changes in monitoring physical processes
Hively, Lee M.
2013-04-09
This invention teaches further improvements in methods for forewarning of critical events via phase-space dissimilarity analysis of data from biomedical equipment, mechanical devices, and other physical processes. One improvement involves objective determination of a forewarning threshold (U.sub.FW), together with a failure-onset threshold (U.sub.FAIL) corresponding to a normalized value of a composite measure (C) of dissimilarity; and providing a visual or audible indication to a human observer of failure forewarning and/or failure onset. Another improvement relates to symbolization of the data according the binary numbers representing the slope between adjacent data points. Another improvement relates to adding measures of dissimilarity based on state-to-state dynamical changes of the system. And still another improvement relates to using a Shannon entropy as the measure of condition change in lieu of a connected or unconnected phase space.
Lühnen, Julia; Haastert, Burkhard; Mühlhauser, Ingrid; Richter, Tanja
2017-09-15
In Germany, the guardianship system provides adults who are no longer able to handle their own affairs a court-appointed legal representative, for support without restriction of legal capacity. Although these representatives only rarely are qualified in healthcare, they nevertheless play decisive roles in the decision-making processes for people with dementia. Previously, we developed an education program (PRODECIDE) to address this shortcoming and tested it for feasibility. Typical, autonomy-restricting decisions in the care of people with dementia-namely, using percutaneous endoscopic gastrostomy (PEG) or physical restrains (PR), or the prescription of antipsychotic drugs (AP)-were the subject areas trained. The training course aims to enhance the competency of legal representatives in informed decision-making. In this study, we will evaluate the efficacy of the PRODECIDE education program. A randomized controlled trial with a six-month follow-up will be conducted to compare the PRODECIDE education program with standard care, enrolling legal representatives (N = 216). The education program lasts 10 h and comprises four modules: A, decision-making processes and methods; and B, C and D, evidence-based knowledge about PEG, PR and AP, respectively. The primary outcome measure is knowledge, which is operationalized as the understanding of decision-making processes in healthcare affairs and in setting realistic expectations about benefits and harms of PEG, PR and AP in people with dementia. Secondary outcomes are sufficient and sustainable knowledge and percentage of persons concerned affected by PEG, FEM or AP. A qualitative process evaluation will be performed. Additionally, to support implementation, a concept for translating the educational contents into e-learning modules will be developed. The study results will show whether the efficacy of the education program could justify its implementation into the regular training curricula for legal representatives. Additionally, it will determine whether an e-learning course provides a valuable backup or even alternative learning strategy. TRN: ISRCTN17960111 , Date: 01/06/2017.
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an opportunity to develop students' understanding of the nature and importance of experimental physics within the discipline as a whole. Here, we present and compare both a longitudinal and pseudolongitudinal analysis of students' responses to a research-based assessment targeting students' views about experimental physics—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS)—across multiple, required lab courses at a single institution. We find that, while pseudolongitudinal averages showed increases in students' E-CLASS scores in each consecutive course, analysis of longitudinal data indicates that this increase was not driven by a cumulative impact of laboratory instruction. Rather, the increase was driven by a selection effect in which students who persisted into higher-level lab courses already had more expertlike beliefs, attitudes, and expectations than their peers when they started the lower-level courses.
Detecting Anthropogenic Disturbance on Weathering and Erosion Processes
NASA Astrophysics Data System (ADS)
Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.
2014-12-01
Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.
Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Dawson, A.; Palmer, T.
2017-12-01
Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
NASA Astrophysics Data System (ADS)
Dennerl, Konrad
2010-12-01
Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.
Tomson, Tanja; Zary, Nabil
2014-01-01
Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance. PMID:25548733
Nifakos, Sokratis; Tomson, Tanja; Zary, Nabil
2014-01-01
Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance.
Rezende-Filho, Flávio Moura; da Fonseca, Lucas José Sá; Nunes-Souza, Valéria; Guedes, Glaucevane da Silva; Rabelo, Luiza Antas
2014-09-15
Teaching physiology, a complex and constantly evolving subject, is not a simple task. A considerable body of knowledge about cognitive processes and teaching and learning methods has accumulated over the years, helping teachers to determine the most efficient way to teach, and highlighting student's active participation as a means to improve learning outcomes. In this context, this paper describes and qualitatively analyzes an experience of a student-centered teaching-learning methodology based on the construction of physiological-physical models, focusing on their possible application in the practice of teaching physiology. After having Physiology classes and revising the literature, students, divided in small groups, built physiological-physical models predominantly using low-cost materials, for studying different topics in Physiology. Groups were followed by monitors and guided by teachers during the whole process, finally presenting the results in a Symposium on Integrative Physiology. Along the proposed activities, students were capable of efficiently creating physiological-physical models (118 in total) highly representative of different physiological processes. The implementation of the proposal indicated that students successfully achieved active learning and meaningful learning in Physiology while addressing multiple learning styles. The proposed method has proved to be an attractive, accessible and relatively simple approach to facilitate the physiology teaching-learning process, while facing difficulties imposed by recent requirements, especially those relating to the use of experimental animals and professional training guidelines. Finally, students' active participation in the production of knowledge may result in a holistic education, and possibly, better professional practices.
Vernieu, William S.
2013-01-01
This report presents the physical and chemical characteristics of water in Lake Powell and from Glen Canyon Dam releases from 1964 through 2012. These data are available in a several electronic formats. Data have been collected throughout this period by various offices of the Bureau of Reclamation and U.S. Geological Survey and are compiled to represent the existing body of chemical and physical information on Lake Powell and Glen Canyon Dam releases. From this record, further interpretation may be made concerning mixing processes in Lake Powell, the movement and fate of advective inflow currents, effects of climate and hydrological variations, and the effects of the operation and structure of Glen Canyon Dam on the quality of water in Lake Powell and from Glen Canyon Dam releases.
Cost decomposition of linear systems with application to model reduction
NASA Technical Reports Server (NTRS)
Skelton, R. E.
1980-01-01
A means is provided to assess the value or 'cst' of each component of a large scale system, when the total cost is a quadratic function. Such a 'cost decomposition' of the system has several important uses. When the components represent physical subsystems which can fail, the 'component cost' is useful in failure mode analysis. When the components represent mathematical equations which may be truncated, the 'component cost' becomes a criterion for model truncation. In this latter event component costs provide a mechanism by which the specific control objectives dictate which components should be retained in the model reduction process. This information can be valuable in model reduction and decentralized control problems.
NASA Astrophysics Data System (ADS)
Kropivnitskaya, Y. Y.; Tiampo, K. F.; Qin, J.; Bauer, M.
2015-12-01
Intensity is one of the most useful measures of earthquake hazard, as it quantifies the strength of shaking produced at a given distance from the epicenter. Today, there are several data sources that could be used to determine intensity level which can be divided into two main categories. The first category is represented by social data sources, in which the intensity values are collected by interviewing people who experienced the earthquake-induced shaking. In this case, specially developed questionnaires can be used in addition to personal observations published on social networks such as Twitter. These observations are assigned to the appropriate intensity level by correlating specific details and descriptions to the Modified Mercalli Scale. The second category of data sources is represented by observations from different physical sensors installed with the specific purpose of obtaining an instrumentally-derived intensity level. These are usually based on a regression of recorded peak acceleration and/or velocity amplitudes. This approach relates the recorded ground motions to the expected felt and damage distribution through empirical relationships. The goal of this work is to implement and evaluate streaming data processing separately and jointly from both social and physical sensors in order to produce near real-time intensity maps and compare and analyze their quality and evolution through 10-minute time intervals immediately following an earthquake. Results are shown for the case study of the M6.0 2014 South Napa, CA earthquake that occurred on August 24, 2014. The using of innovative streaming and pipelining computing paradigms through IBM InfoSphere Streams platform made it possible to read input data in real-time for low-latency computing of combined intensity level and production of combined intensity maps in near-real time. The results compare three types of intensity maps created based on physical, social and combined data sources. Here we correlate the count and density of Tweets with intensity level and show the importance of processing combined data sources at the earliest time stages after earthquake happens. This method can supplement existing approaches of intensity level detection, especially in the regions with high number of Twitter users and low density of seismic networks.
Satellite Observations and Chemistry Climate Models - A Meandering Path Towards Better Predictions
NASA Technical Reports Server (NTRS)
Douglass, Anne R.
2011-01-01
Knowledge of the chemical and dynamical processes that control the stratospheric ozone layer has grown rapidly since the 1970s, when ideas that depletion of the ozone layer due to human activity were put forth. The concept of ozone depletion due to anthropogenic chlorine increase is simple; quantification of the effect is much more difficult. The future of stratospheric ozone is complicated because ozone is expected to increase for two reasons: the slow decrease in anthropogenic chlorine due to the Montreal Protocol and its amendments and stratospheric cooling caused by increases in carbon dioxide and other greenhouse gases. Prediction of future ozone levels requires three-dimensional models that represent physical, photochemical and radiative processes, i.e., chemistry climate models (CCMs). While laboratory kinetic and photochemical data are necessary inputs for a CCM, atmospheric measurements are needed both to reveal physical and chemical processes and for comparison with simulations to test the conceptual model that CCMs represent. Global measurements are available from various satellites including but not limited to the LIMS and TOMS instruments on Nimbus 7 (1979 - 1993), and various instruments on the Upper Atmosphere Research Satellite (1991 - 2005), Envisat (2002 - ongoing), Sci-Sat (2003 - ongoing) and Aura (2004 - ongoing). Every successful satellite instrument requires a physical concept for the measurement, knowledge of physical chemical properties of the molecules to be measured, and stellar engineering to design an instrument that will survive launch and operate for years with no opportunity for repair but providing enough information that trend information can be separated from any instrument change. The on-going challenge is to use observations to decrease uncertainty in prediction. This talk will focus on two applications. The first considers transport diagnostics and implications for prediction of the eventual demise of the Antarctic ozone hole. The second focuses on the upper stratosphere, where ozone is predicted to increase both due to chlorine decrease and due to temperature decrease expected as a result of increased concentrations Of CO2 and other greenhouse gases. Both applications show how diagnostics developed from global observations are being used to explain why the ozone response varies among CCM predictions for stratospheric ozone in the 21st century.
Mathematics and Physics Studies - Multi-Project Support
1989-09-02
measurements). A quaternion form is used to represent any finite rotation of a rigid body as a rotation through some angle about a fixed axis (Euler’s...many - contractual issues. Drs. Edmond Murad (GL/PHK) and Roger Van Tassel (GL/OPB) provided important suggestions and feedback on the data processing...Orbital Maneuvering System (OMS) and the Reaction Control System (RCS) resemble plumes produced by targets/events of interest. Measurements from the IBSS
Addressing spiritual leadership: an organizational model.
Burkhart, Lisa; Solari-Twadell, P Ann; Haas, Sheila
2008-01-01
The Joint Commission requires health systems to address spiritual care. Research indicates that spirituality is associated with better physical, psychological, and social health and that culturally diverse populations and individuals at end-of-life often request spiritual care. The authors report the results of a consensus conference of 21 executives representing 10 large faith-based health systems who discussed the input, process, and outcomes of a corporate model for spiritual leadership. Specific initiatives are highlighted.
High Reynolds Number Liquid Flow Measurements
1988-08-01
25. .n Fig. 25, the dotted line represents data taken from Eckelmann’s study in the thick viscous sublaver of an oil channel. Scatter in the...measurements of the fundamental physical quantities are not only an essencial part in an understanding of multiphase flows but also in the measurement process...technique. One of the most yloei’ used techniques, however, is some form of flow visualization. This includes the use o: tufts, oil paint films
ERIC Educational Resources Information Center
Calbom, Linda
This testimony summarizes a report generated by the U.S. General Accounting Office concerned with internal control problems found in the U.S. Department of Education. Significant internal control weaknesses in the U.S. Department of Education's payment processes and poor physical control over its computer assets made the department vulnerable to…
Object segmentation controls image reconstruction from natural scenes
2017-01-01
The structure of the physical world projects images onto our eyes. However, those images are often poorly representative of environmental structure: well-defined boundaries within the eye may correspond to irrelevant features of the physical world, while critical features of the physical world may be nearly invisible at the retinal projection. The challenge for the visual cortex is to sort these two types of features according to their utility in ultimately reconstructing percepts and interpreting the constituents of the scene. We describe a novel paradigm that enabled us to selectively evaluate the relative role played by these two feature classes in signal reconstruction from corrupted images. Our measurements demonstrate that this process is quickly dominated by the inferred structure of the environment, and only minimally controlled by variations of raw image content. The inferential mechanism is spatially global and its impact on early visual cortex is fast. Furthermore, it retunes local visual processing for more efficient feature extraction without altering the intrinsic transduction noise. The basic properties of this process can be partially captured by a combination of small-scale circuit models and large-scale network architectures. Taken together, our results challenge compartmentalized notions of bottom-up/top-down perception and suggest instead that these two modes are best viewed as an integrated perceptual mechanism. PMID:28827801
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Pengchen; Settgast, Randolph R.; Johnson, Scott M.
2014-12-17
GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that hasmore » leveraged existing code capabilities and sta expertise to design new computational geosciences software.« less
Parameter extraction with neural networks
NASA Astrophysics Data System (ADS)
Cazzanti, Luca; Khan, Mumit; Cerrina, Franco
1998-06-01
In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs with desired characteristics. Using this method, we can extract optimum values for the parameters and determine the process latitude very quickly.
A few questions related to information and symmetries in physics
NASA Astrophysics Data System (ADS)
Darvas, G.
2017-01-01
Information exchange between inanimate objects (like individual physical particles, or systems) involves special approaches, due to the peculiarity that conscious information emitters/recipients are excluded from the process. This paper aims at answering a part of some questions arising by such approaches. One can ask the question, whether is it possible to speak about physical information when there is no live recipient to accept, evaluate, and use it? Can one speak about "physical information" (e.g., signal exchange) between inanimate physical objects at all? (cf., Feynman diagrams.) If yes, what is the nature of that information? Is (physical) information a passive phenomenon, or its existence presumes activity? What does a signal represent if it is not observed and used at the other end, and where is that other end when one can say that the signal in question was lost without observation or use? I try to illustrate my personal answers with a few examples quoted from the history of 20th c. physics. My answers to the questions are not intended to be revelations and to provide final solutions, rather they serve as arguments and indicate that nothing is closed, the discussion is open.
Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors
NASA Astrophysics Data System (ADS)
Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.
2016-12-01
The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.
Fundamental movement skills and physical activity among children with and without cerebral palsy.
Capio, Catherine M; Sit, Cindy H P; Abernethy, Bruce; Masters, Rich S W
2012-01-01
Fundamental movement skills (FMS) proficiency is believed to influence children's physical activity (PA), with those more proficient tending to be more active. Children with cerebral palsy (CP), who represent the largest diagnostic group treated in pediatric rehabilitation, have been found to be less active than typically developing children. This study examined the association of FMS proficiency with PA in a group of children with CP, and compared the data with a group of typically developing children. Five FMS (run, jump, kick, throw, catch) were tested using process- and product-oriented measures, and accelerometers were used to monitor PA over a 7-day period. The results showed that children with CP spent less time in moderate to vigorous physical activity (MVPA), but more time in sedentary behavior than typically developing children. FMS proficiency was negatively associated with sedentary time and positively associated with time spent in MVPA in both groups of children. Process-oriented FMS measures (movement patterns) were found to have a stronger influence on PA in children with CP than in typically developing children. The findings provide evidence that FMS proficiency facilitates activity accrual among children with CP, suggesting that rehabilitation and physical education programs that support FMS development may contribute to PA-related health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mineralogy of the Martian Surface: Crustal Composition to Surface Processes
NASA Technical Reports Server (NTRS)
Mustard, John F.
1997-01-01
The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.
Need for improvements in physical pretreatment of source-separated household food waste.
Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J
2013-03-01
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
How would photons describe natural phenomena based upon their physical experiences?
NASA Astrophysics Data System (ADS)
Roychoudhuri, Chandrasekhar
2013-10-01
The question posed in the title represents an impossible approach to scientific investigation, but the approach is like a subjectivist. Obviously, photons cannot express their views; neither can we ask directly any scientific questions to the photons. The purpose is to draw the attention of the reader that even our strongly mathematically driven scientific enterprise is full of subjectivism when we start dissecting our thinking process. First, we frame questions in our mind to understand a natural phenomenon we have been observing. Let us not forget that framing the question determine the answer. The answers guide us to frame the foundational hypotheses to build a theory to "explain" the phenomenon under study. Our mind is a product of biological evolutionary requirements; which is further re-programmed by strong human social cultures. In other words, human constructed theories cannot spontaneously become rigorously objective, unless we consciously make them so. We need to develop a methodology of scientific thinking that will automatically force us to make repeated iterative corrections in generating questions as objectively as possible. Those questions will then guide us to re-construct the foundational hypotheses and re-frame the working theories. We are proposing that we add Interaction Process Mapping Epistemology (IPM-E) as a necessary extra thinking tool; which will complement the prevailing Measurable Data Modeling Epistemology (MDM-E). We believe that ongoing interaction processes in nature represent reality ontology. So the iterative application of IPM-E, along with MDM-E, will keep us along the route of ontological reality. We apply this prescription to reveal the universal property, Non-Interaction of Waves, which we have been neglecting for centuries. Using this property, we demonstrate that a large number of ad hoc hypotheses from Classical-, QM-, Relativity- and Astro-Physics can be easily modified to make physics more causal and understandable through common sense logics.
Both sides now: the chemistry of clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, S.E.
1984-01-01
Two complementary approaches to the study of the oxidation of SO/sub 2/ and NO/sub x/ to sulfuric and nitric acids as it occurs in liquid-water clouds are presented. The first approach relies upon laboratory determination of fundamental physical and chemical properties and evaluation of rates of dissolution and reaction for representative reagent concentrations and physical situations. The second approach consists of measuring concentrations of relevant reagent and product species and other pertinent quantities in and about clouds and of drawing inferences from these measurements about the rate and extent of processes responsible for establishing cloudwater composition. Based on laboratory studiesmore » the following inferences may be drawn: aqueous-phase oxidation of SO/sub 2/ by H/sub 2/O/sub 2/ or O/sub 3/ is sufficiently rapid to contribute to cloudwater acidity for representative concentrations of these oxidants; however, the rate of the O/sub 3/ reaction decreases strongly with decreasing pH and is of relatively little importance below about pH 4.5. Despite strong thermochemical driving force for oxidation of NO/sub 2/ to nitric acid in cloudwater, this reaction appears to be negligibly slow for representative concentrations of NO/sub 2/, largely because of the low Henry's law solubility of this species in water. These inferences gain support from field measurements of the composition of liquid water stratiform clouds at various locations in the eastern United States, which indicate that the fractional uptake of SO/sub 2/ (as SO/sub 4//sup =/) by cloudwater is frequently high, whereas a corresponding high fractional uptake of NO/sub x/ as NO/sub 3//sup -/ is never observed. A mutual exclusivity of gaseous SO/sub 2/ and dissolved H/sub 2/O/sub 2/ in clouds supports the inference that reaction of these species in clouds is rapid and represents a major process for cloudwater acidification. 143 references, 35 figures, 2 tables.« less
On the quantum mechanics of consciousness, with application to anomalous phenomena
NASA Astrophysics Data System (ADS)
Jahn, Robert G.; Dunne, Brenda J.
1986-08-01
Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts and formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrödinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition. With these established, a number of the generic features of quantum mechanics, such as the wave/particle duality, and the uncertainty, indistinguishability, and exclusion principles, display metaphoric relevance to familiar individual and collective experiences. Similarly, such traditional quantum theoretic exercises as the central force field and atomic structure, covalent molecular bonds, barrier penetration, and quantum statistical collective behavior become useful analogies for representation of a variety of consciousness experiences, both normal and anomalous, and for the design of experiments to study these systematically.
PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation
NASA Astrophysics Data System (ADS)
Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi
2007-04-01
Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please enjoy the collection of papers in this proceeding. Also, please join us for COLA 2007, to be held in the Canary Islands, Spain (http://www.io.csic.es/cola07/index.php). Conference on Laser Ablation (COLA'05) September 11-16, 2005 Banff, Canada Supported by University of Toronto, Canada (UT) Pacific Northwest National Laboratory (PNNL) Sponsors Sponsorship from the following companies is gratefully acknowledged and appreciated AMBP Tech Corporation GSI Lumonics Amplitude Systèmes IMRA America, Inc. Andor Technologies Journal of Physics D: Applied Physics North Canadian Institute for Photonic Innovations LUMERA LASER GmbH Clark-MXR, Inc. Pascal Coherent, Lamdbda Physik, TuiLaser PVD Products, Inc. Continuum Staib Instruments, Inc. Cyber Laser Inc. Surface GAM LASER, Inc. International Steering Committee C. Afonso (Spain)W. Husinsky (Austria) D. Bäuerle (Austria)W. Kautek (Germany) I.W. Boyd (UK) H. Koinuma (Japan) E.B. Campbell (Sweden) H.U. Krebs (Germany) J.T. Dickinson (USA) D.H. Lowndes (USA) M. Dinescu (Romania) J.G. Lunney (Ireland) J.J. Dubowski (Canada) W. Marine (France) E. Fogarassy (France) K. Murakami (Japan) C. Fotakis (Greece) T. Okada (Japan) D. Geohegan (USA) R.E. Russo (USA) M. Gower (UK) J. Schou (Denmark) R.H. Haglund Jr. (USA) M. Stuke (Germany) R.R. Herman (Canada) K. Sugioka (Japan) W.P. Hess (USA) F. Traeger (Germany) J.S Horwitz (USA) A. Yabe (Japan) Local Organizing Committee Nikki Avery Pacific Northwest National Laboratory Ken Beck Pacific Northwest National Laboratory Jan J. Dubowski University of Alberta Robert Fedosejevs Université de Sherbrooke Alan Joly Pacific Northwest National Laboratory Michel Meunier École Polytechnique de Montréal Suwas Nikumb National Research Council Canada Ying Tsui University of Alberta Conference photograph.
NASA Technical Reports Server (NTRS)
Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)
2002-01-01
This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.
Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Jeffrey M.; Stapp, Henry P.; Beauregard, Mario
Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrectmore » for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, due to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analyzing human brain dynamics. The new framework, unlike its classical-physics-based predecessor is erected directly upon, and is compatible with, the prevailing principles of physics, and is able to represent more adequately than classical concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.« less
Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction
Schwartz, Jeffrey M; Stapp, Henry P; Beauregard, Mario
2005-01-01
Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function. PMID:16147524
A network of discrete events for the representation and analysis of diffusion dynamics.
Pintus, Alberto M; Pazzona, Federico G; Demontis, Pierfranco; Suffritti, Giuseppe B
2015-11-14
We developed a coarse-grained description of the phenomenology of diffusive processes, in terms of a space of discrete events and its representation as a network. Once a proper classification of the discrete events underlying the diffusive process is carried out, their transition matrix is calculated on the basis of molecular dynamics data. This matrix can be represented as a directed, weighted network where nodes represent discrete events, and the weight of edges is given by the probability that one follows the other. The structure of this network reflects dynamical properties of the process of interest in such features as its modularity and the entropy rate of nodes. As an example of the applicability of this conceptual framework, we discuss here the physics of diffusion of small non-polar molecules in a microporous material, in terms of the structure of the corresponding network of events, and explain on this basis the diffusivity trends observed. A quantitative account of these trends is obtained by considering the contribution of the various events to the displacement autocorrelation function.
NASA Astrophysics Data System (ADS)
Hardiman, B. S.; Atkins, J.; Dahlin, K.; Fahey, R. T.; Gough, C. M.
2016-12-01
Canopy physical structure - leaf quantity and arrangement - strongly affects light interception and distribution. As such, canopy physical structure is a key driver of forest carbon (C) dynamics. Terrestrial lidar systems (TLS) provide spatially explicit, quantitative characterizations of canopy physical structure at scales commensurate with plot-scale C cycling processes. As an example, previous TLS-based studies established that light use efficiency is positively correlated with canopy physical structure, influencing the trajectory of net primary production throughout forest development. Linking TLS measurements of canopy structure to multispectral satellite observations of forest canopies may enable scaling of ecosystem C cycling processes from leaves to continents. We will report on our study relating a suite of canopy structural metrics to well-established remotely sensed measurements (NDVI, EVI, albedo, tasseled cap indices, etc.) which are indicative of important forest characteristics (leaf area, canopy nitrogen, light interception, etc.). We used Landsat data, which provides observations at 30m resolution, a scale comparable to that of TLS. TLS data were acquired during 2009-2016 from forest sites throughout Eastern North America, comprised primarily of NEON and Ameriflux sites. Canopy physical structure data were compared with contemporaneous growing-season Landsat data. Metrics of canopy physical structure are expected to covary with forest composition and dominant PFT, likely influencing interaction strength between TLS and Landsat canopy metrics. More structurally complex canopies (those with more heterogeneous distributions of leaf area) are expected to have lower albedo, suggesting greater canopy light absorption (higher fAPAR) than simpler canopies. We expect that vegetation indices (NDVI, EVI) will increase with TLS metrics of spatial heterogeneity, and not simply quantity, of leaves, supporting our hypothesis that canopy light absorption is dependent on both leaf quantity and arrangement. Relating satellite observations of canopy properties to TLS metrics of canopy physical structure represents an important advance for modelling canopy energy balance and forest C cycling processes at large spatial scales.
NASA Astrophysics Data System (ADS)
Westlander, Meghan Joanne
Interactive engagement environments are critical to students' conceptual learning gains, and often the instructor is ultimately responsible for the creation of that environment in the classroom. When those instructors are graduate teaching assistants (GTAs), one of the primary ways in which they can promote interactive engagement is through their interactions with students. Much of the prior research on physics GTA-student interactions focuses on GTA training programs (e.g. Ezrailson (2004); Smith, Ward, and Rosenshein (1977)) or on GTAs' specific actions and beliefs (e.g. West, Paul, Webb, and Potter (2013); Goertzen (2010); Spike and Finkelstein (2012a)). Research on students' ideas and behaviors within and surrounding those interactions is limited but important to obtaining a more complete understanding of how GTAs promote an interactive environment. In order to begin understanding this area, I developed the Issues Framework to examine how GTA-student interactions are situated in students' processes during physics problem solving activities. Using grounded theory, the Issues Framework emerged from an analysis of the relationships between GTA-student interactions and the students procedures and expressions of physics content in and surrounding those interactions. This study is focused on introducing the Issues Framework and the insight it can provide into GTA-student interactions and students' processes. The framework is general in nature and has a visually friendly design making it a useful tool for consolidating complex data and quickly pattern-matching important pieces of a complex process. Four different categories of Issues emerged spanning the problem solving process: (1) Getting Started, (2) Solution Approach, (3) Unit Conversions, and (4) Other. The framework allowed for identification of the specific contents of the Issues in each category as well as revealing the common stories of students' processes and how the interactions were situated in those processes in each category. Through the stories, the Issues Framework revealed processes in which students often focused narrowly on procedures with the physics content expressed through their procedures and only sometimes through conceptual discussions. Interactions with the GTA affected changes in students' processes, typically leading students to correct their procedures. The interactions often focused narrowly on procedures as well but introduced conceptual discussions more often than students did surrounding the interactions. Comparing stories across GTAs instead of across categories revealed one GTA who, more often than other GTAs, used conceptual discussion and encouraged students' participation in the interactions. The Issues Framework still needs continued refinement and testing. However, it represents a significant step toward understanding GTA-student interactions from the perspective of students' processes in physics problem solving.
NASA Astrophysics Data System (ADS)
Bistrow, Van
What aren't we teaching about physics in the traditional lecture course? Plenty! By offering the Advanced Laboratory Course, we hope to shed light on the following questions: How do we develop a systematic process of doing experiments? How do we record procedures and results? How should we interpret theoretical concepts in the real world? What experimental and computational techniques are available for producing and analyzing data? With what degree of confidence can we trust our measurements and interpretations? How well does a theory represent physical reality? How do we collaborate with experimental partners? How do we best communicate our findings to others?These questions are of fundamental importance to experimental physics, yet are not generally addressed by reading textbooks, attending lectures or doing homework problems. Thus, to provide a more complete understanding of physics, we offer laboratory exercises as a supplement to the other modes of learning. The speaker will describe some examples of experiments, and outline the history, structure and student impressions of the Advanced Lab course at the University of Chicago Department of Physics.
The STRATAFORM Project: U.S. Geological Survey geotechnical studies
Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth
2001-01-01
This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts of the project.
Role of magnetic and diamagnetic interactions in molecular optics and scattering
NASA Astrophysics Data System (ADS)
Forbes, Kayn A.
2018-05-01
This paper aims to explicitly clarify the role and interpretation of diamagnetic interactions between molecules and light in quantum electrodynamics. In contrast to their electric and magnetic counterparts, the diamagnetic couplings between light and matter have received relatively little interest in the field of molecular optics. This intriguing disregard of an interaction term is puzzling. The diamagnetic couplings possess unique physical properties that warrant their inclusion in any multiphoton process, and the lack of gauge invariance for paramagnetic and diamagnetic susceptibilities necessitates their inclusion. Their role and importance within nonrelativistic molecular quantum electrodynamics in the Coulomb gauge is illuminated, and it is highlighted how for any multiphoton process their inclusion should be implicit. As an indicative example of the theory presented, the diamagnetic contributions to both forward and nonforward Rayleigh scattering are derived and put into context alongside the electric and magnetic molecular responses. The work represents clarification of diamagnetic couplings in molecular quantum electrodynamics, which subsequently should proffer the study of diamagnetic interactions in molecular optics due to their unique physical attributes and necessary inclusion in multiphoton processes.
Modeling Patient-Specific Deformable Mitral Valves.
Ginty, Olivia; Moore, John; Peters, Terry; Bainbridge, Daniel
2018-06-01
Medical imaging has advanced enormously over the last few decades, revolutionizing patient diagnostics and care. At the same time, additive manufacturing has emerged as a means of reproducing physical shapes and models previously not possible. In combination, they have given rise to 3-dimensional (3D) modeling, an entirely new technology for physicians. In an era in which 3D imaging has become a standard for aiding in the diagnosis and treatment of cardiac disease, this visualization now can be taken further by bringing the patient's anatomy into physical reality as a model. The authors describe the generalized process of creating a model of cardiac anatomy from patient images and their experience creating patient-specific dynamic mitral valve models. This involves a combination of image processing software and 3D printing technology. In this article, the complexity of 3D modeling is described and the decision-making process for cardiac anesthesiologists is summarized. The management of cardiac disease has been altered with the emergence of 3D echocardiography, and 3D modeling represents the next paradigm shift. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Forouzan, Mehdi M.; Chao, Chien-Wei; Bustamante, Danilo; Mazzeo, Brian A.; Wheeler, Dean R.
2016-04-01
The fabrication process of Li-ion battery electrodes plays a prominent role in the microstructure and corresponding cell performance. Here, a mesoscale particle dynamics simulation is developed to relate the manufacturing process of a cathode containing Toda NCM-523 active material to physical and structural properties of the dried film. Particle interactions are simulated with shifted-force Lennard-Jones and granular Hertzian functions. LAMMPS, a freely available particle simulator, is used to generate particle trajectories and resulting predicted properties. To make simulations of the full film thickness feasible, the carbon binder domain (CBD) is approximated with μm-scale particles, each representing about 1000 carbon black particles and associated binder. Metrics for model parameterization and validation are measured experimentally and include the following: slurry viscosity, elasticity of the dried film, shrinkage ratio during drying, volume fraction of phases, slurry and dried film densities, and microstructure cross sections. Simulation results are in substantial agreement with experiment, showing that the simulations reasonably reproduce the relevant physics of particle arrangement during fabrication.
Structural and parameteric uncertainty quantification in cloud microphysics parameterization schemes
NASA Astrophysics Data System (ADS)
van Lier-Walqui, M.; Morrison, H.; Kumjian, M. R.; Prat, O. P.; Martinkus, C.
2017-12-01
Atmospheric model parameterization schemes employ approximations to represent the effects of unresolved processes. These approximations are a source of error in forecasts, caused in part by considerable uncertainty about the optimal value of parameters within each scheme -- parameteric uncertainty. Furthermore, there is uncertainty regarding the best choice of the overarching structure of the parameterization scheme -- structrual uncertainty. Parameter estimation can constrain the first, but may struggle with the second because structural choices are typically discrete. We address this problem in the context of cloud microphysics parameterization schemes by creating a flexible framework wherein structural and parametric uncertainties can be simultaneously constrained. Our scheme makes no assuptions about drop size distribution shape or the functional form of parametrized process rate terms. Instead, these uncertainties are constrained by observations using a Markov Chain Monte Carlo sampler within a Bayesian inference framework. Our scheme, the Bayesian Observationally-constrained Statistical-physical Scheme (BOSS), has flexibility to predict various sets of prognostic drop size distribution moments as well as varying complexity of process rate formulations. We compare idealized probabilistic forecasts from versions of BOSS with varying levels of structural complexity. This work has applications in ensemble forecasts with model physics uncertainty, data assimilation, and cloud microphysics process studies.
Physical Modelling of the Effect of Slag and Top-Blowing on Mixing in the AOD Process
NASA Astrophysics Data System (ADS)
Haas, Tim; Visuri, Ville-Valtteri; Kärnä, Aki; Isohookana, Erik; Sulasalmi, Petri; Eriç, Rauf Hürman; Pfeifer, Herbert; Fabritius, Timo
The argon-oxygen decarburization (AOD) process is the most common process for refining stainless steel. High blowing rates and the resulting efficient mixing of the steel bath are characteristic of the AOD process. In this work, a 1:9-scale physical model was used to study mixing in a 150 t AOD vessel. Water, air and rapeseed oil were used to represent steel, argon and slag, respectively, while the dynamic similarity with the actual converter was maintained using the modified Froude number and the momentum number. Employing sulfuric acid as a tracer, the mixing times were determined on the basis of pH measurements according to the 97.5% criterion. The gas blowing rate and slag-steel volume ratio were varied in order to study their effect on the mixing time. The effect of top-blowing was also investigated. The results suggest that mixing time decreases as the modified Froude number of the tuyères increases and that the presence of a slag layer increases the mixing time. Furthermore, top-blowing was found to increase the mixing time both with and without the slag layer.
Forcing and Responses of the Surface Energy Budget at Summit, Greenland
NASA Astrophysics Data System (ADS)
Miller, Nathaniel B.
Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents physical processes and the ability to distinguish errors in forcing versus those in physical representation. Such relationships convey that all three models underestimate the response of surface temperatures to changes in radiative forcing. These results provide a method to expose model deficiencies and indicate the importance of representing surface, sub-surface and boundary-layer processes when portraying cloud impacts on surface temperature variability.
A stochastic diffusion process for Lochner's generalized Dirichlet distribution
Bakosi, J.; Ristorcelli, J. R.
2013-10-01
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability of N stochastic variables with Lochner’s generalized Dirichlet distribution as its asymptotic solution. Individual samples of a discrete ensemble, obtained from the system of stochastic differential equations, equivalent to the Fokker-Planck equation developed here, satisfy a unit-sum constraint at all times and ensure a bounded sample space, similarly to the process developed in for the Dirichlet distribution. Consequently, the generalized Dirichlet diffusion process may be used to represent realizations of a fluctuating ensemble of N variables subject to a conservation principle.more » Compared to the Dirichlet distribution and process, the additional parameters of the generalized Dirichlet distribution allow a more general class of physical processes to be modeled with a more general covariance matrix.« less
In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships
NASA Technical Reports Server (NTRS)
Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.
2012-01-01
Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.
Proactive Problem Avoidance and Quality of Service (QOS) Guarantees for Large Heterogeneous Networks
2002-03-01
host, and can be used to monitor and provide problem response data to multiple network elements. A blowup of the components of an RA is shown in...developed based on stati signal processing and learning. T ts to stical here are two salient features on the intelligent gents developed: (1) an...For multiple routers, the physical connections between interfaces along with the respective health of terface are represented. in In addition to
Barz, Milena; Lange, Daniela; Parschau, Linda; Lonsdale, Chris; Knoll, Nina; Schwarzer, Ralf
2016-01-01
Planning can bridge the gap between intentions and action, but what bridges the gap between planning and action? This study helps to answer the question by disentangling the interrelationships between self-efficacy, planning and preparatory behaviours in predicting physical activity. Preparatory behaviours are tested as a working mechanism of planning. Moreover, it is tested whether the utility of preparatory behaviours depends on an individual's level of self-efficacy. A survey assessed planning, self-efficacy and preparatory behaviours for physical activity. Adults (N = 166) provided data at two measurement points. In a longitudinal model, preparatory behaviours were specified as a mediator between planning and physical activity. Self-efficacy was specified as a possible moderator at two points in the model. Preparatory behaviours mediated the relationship between planning and physical activity. An interaction between self-efficacy and preparatory behaviours on physical activity was found, indicating that individuals with low self-efficacy beliefs were more active if they engaged more frequently in preparatory behaviours. Planning seems to stimulate preparatory behaviours, which in turn make future physical activity more likely. Furthermore, as performing preparatory behaviours represent a step forward towards the enactment of behavioural goals, preparatory behaviours may be particular beneficial for individuals afflicted by self-doubts regarding physical activity.
Cheetham, Marcus; Jancke, Lutz
2013-06-03
Mori's Uncanny Valley Hypothesis(1,2) proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings (3, 4, 5, 6). One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) (7). Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
NASA Astrophysics Data System (ADS)
Hong, Bo; Shen, Jian; Xu, Hongzhou
2018-01-01
The water exchange between the James River and the Elizabeth River, an estuary and sub-estuary system in the lower Chesapeake Bay, was investigated using a 3D numerical model. The conservative passive tracers were used to represent the dissolved substances (DS) discharged from the Elizabeth River. The approach enabled us to diagnose the underlying physical processes that control the expansion of the DS, which is representative of potential transport of harmful algae blooms, pollutants from the Elizabeth River to the James River without explicitly simulating biological processes. Model simulations with realistic forcings in 2005, together with a series of processoriented numerical experiments, were conducted to explore the correlations of the transport process and external forcing. Model results show that the upriver transport depends highly on the freshwater discharge on a seasonal scale and maximum upriver transport occurs in summer with a mean transport time ranging from 15-30 days. The southerly/easterly wind, low river discharge, and neap tidal condition all act to strengthen the upriver transport. On the other hand, the northerly/westerly wind, river pulse, water level pulse, and spring tidal condition act to inhibit the upriver transport. Tidal flushing plays an important role in transporting the DS during spring tide, which shortens the travel time in the lower James River. The multivariable regression analysis of volume mean subtidal DS concentration in the mesohaline portion of the James River indicates that DS concentration in the upriver area can be explained and well predicted by the physical forcings (r = 0.858, p = 0.00001).
Cheetham, Marcus; Jancke, Lutz
2013-01-01
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated. PMID:23770728
On Complex Networks Representation and Computation of Hydrologycal Quantities
NASA Astrophysics Data System (ADS)
Serafin, F.; Bancheri, M.; David, O.; Rigon, R.
2017-12-01
Water is our blue gold. Despite results of discovery-based science keep warning public opinion about the looming worldwide water crisis, water is still treated as a not worth taking resource. Could a different multi-scale perspective affect environmental decision-making more deeply? Can also a further pairing to a new graphical representation of processes interaction sway decision-making more effectively and public opinion consequently?This abstract introduces a complex networks driven way to represent catchments eco-hydrology and related flexible informatics to manage it. The representation is built upon mathematical category. A category is an algebraic structure that comprises "objects" linked by "arrows". It is an evolution of Petri Nets said Time Continuous Petri Nets (TCPN). It aims to display (water) budgets processes and catchment interactions using explicative and self-contained symbolism. The result improves readability of physical processes compared to current descriptions. The IT perspective hinges on the Object Modeling System (OMS) v3. The latter is a non-invasive flexible environmental modeling framework designed to support component-based model development. The implementation of a Directed Acyclic Graph (DAG) data structure, named Net3, has recently enhanced its flexibility. Net3 represents interacting systems as complex networks: vertices match up with any sort of time evolving quantity; edges correspond to their data (fluxes) interchange. It currently hosts JGrass-NewAge components, and those implementing travel time analysis of fluxes. Further bio-physical or management oriented components can be easily added.This talk introduces both graphical representation and related informatics exercising actual applications and examples.
Intimate Partner Violence and Children’s Attachment Representations during Middle Childhood
Gustafsson, Hanna C.; Brown, Geoffrey L.; Mills-Koonce, W. Roger; Cox, Martha. J.
2016-01-01
Despite long-standing hypotheses that intimate partner violence (IPV) may undermine children’s ability to form secure attachment representations, few studies have empirically investigated this association. Particularly lacking is research that examines IPV and attachment during middle childhood, a time when the way that children understand, represent, and process the behavior of others becomes particularly important. Using data from a sample of African American children living in rural, low-income communities (n = 98), the current study sought to address this gap by examining the association between physical IPV occurring early in children’s lives and their attachment security during the first grade. Results indicate that, even after controlling for child- and family-level covariates, physical IPV was associated with a greater likelihood of being rated insecurely attached. This effect was above and beyond the influence of maternal parenting behaviors, demonstrating a unique effect of physical IPV on children’s attachment representations during middle childhood. PMID:28781383
What should be our approach to understanding the universe?
NASA Astrophysics Data System (ADS)
Chang, Hui-Yiing
2006-10-01
Besides understanding the concepts of physics and learning to apply them to different contexts, it is most crucial that students examine the basis of their beliefs in these theories. It becomes necessary, then, to expand our conception considerably beyond the scope of the physics textbook. This process is possibly effectuated by gaining a representative understanding of the liberal arts through study of several areas, and self-expression of one's convictions. Respecting of differences is important, as well as the expectation that proposing of new ideas is often accompanied by conflict and disequilibrium within individuals and the community. In this session, we will discuss the approaches of significant ancient scientists and philosophers to understanding the universe, and trace the development to modern conventionally accepted theories. A higher goal of physics education is to produce ``reforming physicists'' that unravel the truth for the betterment of society.
Rohan, Amy L; Switzer, Jackson R; Flack, Kyle M; Hart, Ryan J; Sivaswamy, Swetha; Biddinger, Elizabeth J; Talreja, Manish; Verma, Manjusha; Faltermeier, Sean; Nielsen, Paul T; Pollet, Pamela; Schuette, George F; Eckert, Charles A; Liotta, Charles L
2012-11-01
Silylamine reversible ionic liquids were designed to achieve specific physical properties in order to address effective CO₂ capture. The reversible ionic liquid systems reported herein represent a class of switchable solvents where a relatively non-polar silylamine (molecular liquid) is reversibly transformed to a reversible ionic liquid (RevIL) by reaction with CO₂ (chemisorption). The RevILs can further capture additional CO₂ through physical absorption (physisorption). The effects of changes in structure on (1) the CO₂ capture capacity (chemisorption and physisorption), (2) the viscosity of the solvent systems at partial and total conversion to the ionic liquid state, (3) the energy required for reversing the CO₂ capture process, and (4) the ability to recycle the solvents systems are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intimate Partner Violence and Children's Attachment Representations during Middle Childhood.
Gustafsson, Hanna C; Brown, Geoffrey L; Mills-Koonce, W Roger; Cox, Martha J
2017-06-01
Despite long-standing hypotheses that intimate partner violence (IPV) may undermine children's ability to form secure attachment representations, few studies have empirically investigated this association. Particularly lacking is research that examines IPV and attachment during middle childhood, a time when the way that children understand, represent, and process the behavior of others becomes particularly important. Using data from a sample of African American children living in rural, low-income communities ( n = 98), the current study sought to address this gap by examining the association between physical IPV occurring early in children's lives and their attachment security during the first grade. Results indicate that, even after controlling for child- and family-level covariates, physical IPV was associated with a greater likelihood of being rated insecurely attached. This effect was above and beyond the influence of maternal parenting behaviors, demonstrating a unique effect of physical IPV on children's attachment representations during middle childhood.
Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Shin-itiro, E-mail: sgoto@ims.ac.jp
It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamicmore » variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.« less
Oral, Aydan; Juocevicius, Alvydas; Lukmann, Aet; Takáč, Peter; Tederko, Piotr; Hāznere, Ilze; Aguiar-Branco, Catarina; Lazovic, Milica; Negrini, Stefano; Varela Donoso, Enrique; Christodoulou, Nicolas
2018-05-02
Chronic respiratory conditions are among the top causes of death and disability. The aim of the paper is to improve Physical and Rehabilitation Medicine (PRM) physicians' professional practice for persons with chronic respiratory conditions in order to promote their functioning properties and to reduce activity limitations and/or participation restrictions. A systematic review of the literature and a Consensus procedure by means of a Delphi process has been performed involving the delegates of all European countries represented in the UEMS PRM Section. The systematic literature review is reported together with twenty-three recommendations resulting from the Delphi procedure. The professional role of PRM physicians having expertise in the rehabilitation of chronic respiratory conditions is to lead pulmonary rehabilitation programmes in multiprofessional teams, working in collaboration with other disciplines in a variety of settings to improve functioning of people with chronic respiratory conditions. This EBPP represents the official position of the European Union through the UEMS PRM Section and designates the professional role of PRM physicians for people with respiratory conditions.
Juocevicius, Alvydas; Oral, Aydan; Lukmann, Aet; Takáč, Peter; Tederko, Piotr; Hāznere, Ilze; Aguiar-Branco, Catarina; Lazovic, Milica; Negrini, Stefano; Varela Donoso, Enrique; Christodoulou, Nicolas
2018-05-02
Cardiovascular conditions are significant causes of mortality and morbidity leading to substantial disability. The aim of the paper is to improve Physical and Rehabilitation Medicine (PRM) physicians' professional practice for persons with cardiovascular conditions in order to promote their functioning properties and to reduce activity limitations and/or participation restrictions. A systematic review of the literature and a Consensus procedure by means of a Delphi process has been performed involving the delegates of all European countries represented in the UEMS PRM Section. The systematic literature review is reported together with thirty recommendations resulting from the Delphi procedure. The professional role of PRM physicians having expertise in the rehabilitation of cardiovascular conditions is to lead cardiac rehabilitation programmes in multiprofessional teams, working in collaboration with other disciplines in a variety of settings to improve functioning of people with cardiovascular conditions. This EBPP represents the official position of the European Union through the UEMS PRM Section and designates the professional role of PRM physicians in persons with cardiovascular conditions.
Modeling Common-Sense Decisions
NASA Astrophysics Data System (ADS)
Zak, Michail
This paper presents a methodology for efficient synthesis of dynamical model simulating a common-sense decision making process. The approach is based upon the extension of the physics' First Principles that includes behavior of living systems. The new architecture consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. The autonomy of the decision making process is achieved by a feedback from mental to motor dynamics. This feedback replaces unavailable external information by an internal knowledgebase stored in the mental model in the form of probability distributions.
Mechanics of Hydraulic Fractures
NASA Astrophysics Data System (ADS)
Detournay, Emmanuel
2016-01-01
Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.
NASA Technical Reports Server (NTRS)
Hudson, Nicolas; Lin, Ying; Barengoltz, Jack
2010-01-01
A method for evaluating the probability of a Viable Earth Microorganism (VEM) contaminating a sample during the sample acquisition and handling (SAH) process of a potential future Mars Sample Return mission is developed. A scenario where multiple core samples would be acquired using a rotary percussive coring tool, deployed from an arm on a MER class rover is analyzed. The analysis is conducted in a structured way by decomposing sample acquisition and handling process into a series of discrete time steps, and breaking the physical system into a set of relevant components. At each discrete time step, two key functions are defined: The probability of a VEM being released from each component, and the transport matrix, which represents the probability of VEM transport from one component to another. By defining the expected the number of VEMs on each component at the start of the sampling process, these decompositions allow the expected number of VEMs on each component at each sampling step to be represented as a Markov chain. This formalism provides a rigorous mathematical framework in which to analyze the probability of a VEM entering the sample chain, as well as making the analysis tractable by breaking the process down into small analyzable steps.
Physical-chemical quality of onion analyzed under drying temperature
NASA Astrophysics Data System (ADS)
Djaeni, M.; Arifin, U. F.; Sasongko, S. B.
2017-03-01
Drying is one of conventional processes to enhance shelf life of onion. However, the active compounds such as vitamin and anthocyanin (represented in red color), degraded due to the introduction of heat during the process. The objective of this research was to evaluate thiamine content as well as color in onion drying under different temperature. As an indicator, the thiamine and color was observed every 30 minutes for 2 hours. Results showed that thiamine content and color were sensitvely influenced by the temperature change. For example, at 50°C for 2 hours drying process, the thiamine degradation was 55.37 %, whereas, at 60°C with same drying time, the degradation was 74.01%. The quality degradation also increased by prolonging drying time.
Graphene nanoribbons: Relevance of etching process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.
2015-05-14
Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less
Physical Exercise Restores the Generation of Newborn Neurons in an Animal Model of Chronic Epilepsy
Mendonça, Fabricio N.; Santos, Luiz E. C.; Rodrigues, Antônio M.; Gomes da Silva, Sérgio; Arida, Ricardo M.; da Silveira, Gilcélio A.; Scorza, Fulvio A.; Almeida, Antônio-Carlos G.
2017-01-01
Neurogenesis impairment is associated with the chronic phase of the epilepsy in humans and also observed in animal models. Recent studies with animal models have shown that physical exercise is capable of improving neurogenesis in adult subjects, alleviating cognitive impairment and depression. Here, we show that there is a reduction in the generation of newborn granule cells in the dentate gyrus of adult rats subjected to a chronic model of epilepsy during the postnatal period of brain development. We also show that the physical exercise was capable to restore the number of newborn granule cells in this animals to the level observed in the control group. Notably, a larger number of newborn granule cells exhibiting morphological characteristics indicative of correct targeting into the hippocampal circuitry and the absence of basal dendrite projections was also observed in the epileptic animals subjected to physical exercise compared to the epileptic animals. The results described here could represent a positive interference of the physical exercise on the neurogenesis process in subjects with chronic epilepsy. The results may also help to reinterpret the benefits of the physical exercise in alleviating symptoms of depression and cognitive dysfunction. PMID:28298884
Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model
NASA Technical Reports Server (NTRS)
Hildreth, W. W. (Principal Investigator)
1981-01-01
A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.
Study of energy parameters of machine parts of water-ice jet cleaning applications
NASA Astrophysics Data System (ADS)
Prezhbilov, A. N.; Burnashov, M. A.
2018-03-01
The reader will achieve a benchmark understanding of the essence of cleaning for the removal of contaminants from machine elements by means of cryo jet/water-ice jet with particles prepared beforehand. This paper represents the classification of the most common contaminants appearing on the surfaces of machine elements after a long-term service. The conceptual contribution of the paper is to represent a thermo-physical model of contaminant removal by means of a water ice jet. In conclusion, it is evident that this study has shown the dependencies between the friction force of an ice particle with an obstacle (contamination), a dimensional change of an ice particle in the cleaning process and the quantity of heat transmitted to an ice particle.
NASA Astrophysics Data System (ADS)
Holburn, E. R.; Bledsoe, B. P.; Poff, N. L.; Cuhaciyan, C. O.
2005-05-01
Using over 300 R/EMAP sites in OR and WA, we examine the relative explanatory power of watershed, valley, and reach scale descriptors in modeling variation in benthic macroinvertebrate indices. Innovative metrics describing flow regime, geomorphic processes, and hydrologic-distance weighted watershed and valley characteristics are used in multiple regression and regression tree modeling to predict EPT richness, % EPT, EPT/C, and % Plecoptera. A nested design using seven ecoregions is employed to evaluate the influence of geographic scale and environmental heterogeneity on the explanatory power of individual and combined scales. Regression tree models are constructed to explain variability while identifying threshold responses and interactions. Cross-validated models demonstrate differences in the explanatory power associated with single-scale and multi-scale models as environmental heterogeneity is varied. Models explaining the greatest variability in biological indices result from multi-scale combinations of physical descriptors. Results also indicate that substantial variation in benthic macroinvertebrate response can be explained with process-based watershed and valley scale metrics derived exclusively from common geospatial data. This study outlines a general framework for identifying key processes driving macroinvertebrate assemblages across a range of scales and establishing the geographic extent at which various levels of physical description best explain biological variability. Such information can guide process-based stratification to avoid spurious comparison of dissimilar stream types in bioassessments and ensure that key environmental gradients are adequately represented in sampling designs.
NASA Astrophysics Data System (ADS)
Martin, G. M.; Peyrillé, P.; Roehrig, R.; Rio, C.; Caian, M.; Bellon, G.; Codron, F.; Lafore, J.-P.; Poan, D. E.; Idelkadi, A.
2017-03-01
Vertical and horizontal distributions of diabatic heating in the West African monsoon (WAM) region as simulated by four model families are analyzed in order to assess the physical processes that affect the WAM circulation. For each model family, atmosphere-only runs of their CMIP5 configurations are compared with more recent configurations which are on the development path toward CMIP6. The various configurations of these models exhibit significant differences in their heating/moistening profiles, related to the different representation of physical processes such as boundary layer mixing, convection, large-scale condensation and radiative heating/cooling. There are also significant differences in the models' simulation of WAM rainfall patterns and circulations. The weaker the radiative cooling in the Saharan region, the larger the ascent in the rainband and the more intense the monsoon flow, while the latitude of the rainband is related to heating in the Gulf of Guinea region and on the northern side of the Saharan heat low. Overall, this work illustrates the difficulty experienced by current climate models in representing the characteristics of monsoon systems, but also that we can still use them to understand the interactions between local subgrid physical processes and the WAM circulation. Moreover, our conclusions regarding the relationship between errors in the large-scale circulation of the WAM and the structure of the heating by small-scale processes will motivate future studies and model development.
How conduit models can be used to interpret volcano monitoring data
NASA Astrophysics Data System (ADS)
Thomas, M. E.; Neuberg, J. W.; Karl, S.; Collinson, A.; Pascal, K.
2012-04-01
During the last decade there have been major advances in the field of volcano monitoring, but to be able to take full advantage of these advances it is vital to link the monitoring data with the physical processes that give rise to the recorded signals. To obtain a better understanding of these physical processes it is necessary to understand the conditions of the system at depth. This can be achieved through numerical modelling. We present the results of conduit models representative of a silicic volcanic system and demonstrate how processes identified and interpreted from these models may manifest in the recorded monitoring data. Links are drawn to seismicity, deformation, and gas emissions. A key point is how these data compliment each other, and through utilising conduit models we are able to interpret how these different data may be recorded in response to a particular process. This is an invaluable tool as it is far easier to draw firm conclusions on what is happening at a volcano if there are several different data sets that suggest the same processes are occurring. Some of these interpretations appear useful in forecasting potentially catastrophic changes in eruptive behaviour, such as a dome collapse leading to violent explosive behaviour, and the role of monitoring data in this capacity will also be addressed.
Jiang, Xianan; Waliser, Duane E.; Xavier, Prince K.; ...
2015-05-27
Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. Here, it is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models but notmore » in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high- and low-rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Finally, results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.« less
NASA Astrophysics Data System (ADS)
Sposini, Vittoria; Chechkin, Aleksei V.; Seno, Flavio; Pagnini, Gianni; Metzler, Ralf
2018-04-01
A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time-dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.
Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight
NASA Astrophysics Data System (ADS)
Urzay, Javier
2018-01-01
Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.
Exploring physics concepts among novice teachers through CMAP tools
NASA Astrophysics Data System (ADS)
Suprapto, N.; Suliyanah; Prahani, B. K.; Jauhariyah, M. N. R.; Admoko, S.
2018-03-01
Concept maps are graphical tools for organising, elaborating and representing knowledge. Through Cmap tools software, it can be explored the understanding and the hierarchical structuring of physics concepts among novice teachers. The software helps physics teachers indicated a physics context, focus questions, parking lots, cross-links, branching, hierarchy, and propositions. By using an exploratory quantitative study, a total 13-concept maps with different physics topics created by novice physics teachers were analysed. The main differences of scoring between lecturer and peer-teachers’ scoring were also illustrated. The study offered some implications, especially for physics educators to determine the hierarchical structure of the physics concepts, to construct a physics focus question, and to see how a concept in one domain of knowledge represented on the map is related to a concept in another domain shown on the map.
NASA Astrophysics Data System (ADS)
Hogan, W. J.
2004-12-01
The Third International Conference on Inertial Fusion Sciences and Applications (IFSA2003) was held in Monterey, CA, USA, on 7--12 September 2003. The goal of IFSA2003 was to bring together scientists and engineers in the fields of inertial fusion sciences, high energy density physics, inertial fusion energy (IFE) and other related research and applications. By all measures IFSA2003 was a resounding success. IFSA2003 was hosted by the University of California, which was supported in organizing the conference by seven institutions: General Atomics, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Naval Research Laboratory, Sandia National Laboratory and the University of Rochester, Laboratory for Laser Energetics. IFSA2003 was the largest IFSA conference yet with 405 participants from 17 countries. Approximately 430 papers were presented and 236 appeared in the Proceedings, published in July 2004 by the American Nuclear Society [1]. A subset of the Nuclear Fusion Board of Editors, those who work on inertial confinement fusion (ICF), recommended creating this special issue of Nuclear Fusion by selecting a representative cross-section of the papers presented at IFSA2003. Authors of the selected papers were asked to expand their papers and make them suitable for publication in it Nuclear Fusion. Nineteen papers are presented in this special issue. They represent a cross-section of the papers presented at IFSA2003. However, there was no attempt to represent the `feel' of the conference by having the same fraction of papers on each topic as existed at IFSA. There were far more detailed scientific papers at IFSA than are presented in this special issue. However, in the interest of giving the reader a cross-section of the papers and showing the entire breadth of ICF research going on, we have biased the selection process toward review papers. The first three papers here are based upon the keynote talks at IFSA2003 and are, therefore, overviews of all ICF research being done in the Americas, Asia, and Europe. The next two papers are also reviews but of a different sort. The Teller Medal is awarded at the IFSA conferences for pioneering work and leadership in inertial fusion and high energy density science. The two recipients for 2003 were H. Takabe of the Institute of Laser Engineering at Osaka University and L. Suter of Lawrence Livermore National Laboratory. These awardees were asked to deliver the two Teller Lectures at IFSA based upon the work for which they were being honoured. The papers presented here are expansions of those two review talks. Suter chose to focus his review on his recent work on ignition physics for targets driven by 0.54 m light. This is of interest because large facilities like the National Ignition Facility (NIF) will deliver much more energy in the frequency doubled wavelength than in the frequency tripled one. Takabe, on the other hand chose to give a historical perspective of his lifelong work. The other 14 papers were selected to represent a cross-section of the research being conducted in the science and engineering of inertial fusion. The papers by Haan et al and Holstein et al represent some of the recent progress in target design calculations for the ignition first experiments. Haan presents his team's work on indirect drive ignition targets (driven by 0.35 m) intended for the National Ignition Facility (NIF) when all the beamlines are activated. Holstein does the same for targets being design for the Laser MegaJoule (LMJ). Suter's paper, presented earlier as a Teller Lecture also falls into this ignition target physics category. The next four papers look at some of the exciting high energy density physics being studied in ICF facilities around the world. Glenzer et al looks at stimulated light scattering processes in hot dense plasmas. Pukhov et al look at relativistic laser-plasma interactions that produce energetic particles and x-rays. Peyrusse et al examine atomic physics and radiative processes in hot dense plasmas. Koenig et al examine ways to simulate planetary physics processes using high pressures generated in laser driven shocks. Non-laser approaches to inertial fusion were also fully represented at IFSA2003. The paper by Lebedev et al shows important physics developments in Z-pinch plasmas. Sharp et al present chamber transport modelling for heavy ion fusion drivers. Technology development studies were also well represented at IFSA2003. There was a special session on facility and driver developments that contained several papers. Presented here are the papers by Miller et al on the NIF, Danson et al on the Vulcan petawatt facility, and Myers et al on KrF lasers for IFE. A paper by Goodin et al shows progress in finding cost effective target manufacturing methods for IFE. Finally, there were many papers at IFSA2003 that focused upon the very promising but more immature field of fast ignition. Barty et al give an overview of the development issues for short pulse lasers that will be essential if fast ignition is to become mainstream. A paper by Kodama et al looks at target physics using cone focus targets. Fast ignition lasers and innovative target physics within this concept were a `hot topic' at IFSA2003. The IFSA conferences have become the principal forum for the exchange of research results in inertial fusion and high energy and density science. There is a unique blend of science and technology. All fields of inertial fusion are represented. This special issue is a snapshot and a cross-section of the field at this time. We hope the reader is encouraged to look into more of the papers in areas that interest them. References [1] Inertial Fusion Sciences and Applications: State of the Art 2003 ed B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi American Nuclear Society (July 2004) These IFSA2003 proceedings may be purchased on-line at http://www.ans.org.
Method and apparatus for automatically detecting patterns in digital point-ordered signals
Brudnoy, David M.
1998-01-01
The present invention is a method and system for detecting a physical feature of a test piece by detecting a pattern in a signal representing data from inspection of the test piece. The pattern is detected by automated additive decomposition of a digital point-ordered signal which represents the data. The present invention can properly handle a non-periodic signal. A physical parameter of the test piece is measured. A digital point-ordered signal representative of the measured physical parameter is generated. The digital point-ordered signal is decomposed into a baseline signal, a background noise signal, and a peaks/troughs signal. The peaks/troughs from the peaks/troughs signal are located and peaks/troughs information indicating the physical feature of the test piece is output.
Method and apparatus for automatically detecting patterns in digital point-ordered signals
Brudnoy, D.M.
1998-10-20
The present invention is a method and system for detecting a physical feature of a test piece by detecting a pattern in a signal representing data from inspection of the test piece. The pattern is detected by automated additive decomposition of a digital point-ordered signal which represents the data. The present invention can properly handle a non-periodic signal. A physical parameter of the test piece is measured. A digital point-ordered signal representative of the measured physical parameter is generated. The digital point-ordered signal is decomposed into a baseline signal, a background noise signal, and a peaks/troughs signal. The peaks/troughs from the peaks/troughs signal are located and peaks/troughs information indicating the physical feature of the test piece is output. 14 figs.
Brunetto, Gustavo; Bastos de Melo, George Wellington; Terzano, Roberto; Del Buono, Daniele; Astolfi, Stefania; Tomasi, Nicola; Pii, Youry; Mimmo, Tanja; Cesco, Stefano
2016-11-01
Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming
2015-06-01
Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.
Analogue modeling for science outreach: glacier flows at Antarctic National Museum, Italy
NASA Astrophysics Data System (ADS)
Zeoli, A.; Corti, G.; Folco, L.; Ossola, C.
2012-12-01
Comprehension of internal deformation and of ice flow in the Antarctic ice sheet in relation with the bedrock topography and with the thickness variation induced by climatic variations represent an important target for the scientific community. Analogue modelling technique aims to analyze geological or geomorphological processes through physical models built at a reduced geometrical scale in laboratory and deformed at reasonable scale of times. Corti et al. (2003 and 2008) have shown that this technique could also be used successfully for ice flow dynamic. Moreover, this technique gives a three-dimensional view of the processes. The models, that obviously simplify the geometry and rheology of natural processes, represent a geometrically, cinematically, dynamically and rheologically scaled analogue of the natural glacial environment. Following a procedure described in previous papers, proper materials have been selected to simulate the rheological behaviour of ice. In particular, during the experiments a Polydimethilsyloxane (PDMS) has been used to simulate glacial flow. PDMS is a transparent Newtonian silicone with a viscosity of 1.4 104 Pa s and a density of 965 kg m-3 (see material properties in Weijermars, 1986). The scaling of the model to natural conditions let to obtain reliable results for a correct comparison with the glacial processes under investigation. Models have been built with a with a geometrical scaling ratio of ~1.5 10-5, such that 1 cm in the model represents ~700 m in nature. The physical models have been deformed in terrestrial gravity field by allowing the PDMS to flow inside a Plexiglas box. In particular, the silicone has been poured inside the Plexiglas box and allowed to settle in order to obtain a flat free surface; the box has been then inclined of some degrees in order to allow the silicone to flow. Several boxes illustrating different glacial processes have been realized; each of them could be easily performed in short time and in standard laboratories. One of the main aims of the Antarctic National Museum in Siena (Italy) is to establish a strategy to deliver results to a broader scientific community. Time and spatial small scale of the experiments lead the analogue modeling technique easy to be shown to non-technical audiences through direct participation during Museum visits. All these experiments engage both teachers and students from primary and secondary schools and the general public.
Griffin-Blake, C Shannon; DeJoy, David M
2006-01-01
To compare the effectiveness of stage-matched vs. social-cognitive physical activity interventions in a work setting. Both interventions were designed as minimal-contact, self-help programs suitable for large-scale application. Randomized trial. Participants were randomized into one of the two intervention groups at baseline; the follow-up assessment was conducted 1 month later. A large, public university in the southeastern region of the United States. Employees from two academic colleges within the participating institution were eligible to participate: 366 employees completed the baseline assessment; 208 of these completed both assessments (baseline and follow-up) and met the compliance criteria. Printed, self-help exercise booklets (12 to 16 pages in length) either (1) matched to the individual's stage of motivational readiness for exercise adoption at baseline or (2) derived from social-cognitive theory but not matched by stage. Standard questionnaires were administered to assess stage of motivational readiness for physical activity; physical activity participation; and exercise-related processes of change, decisional balance, self-efficacy, outcome expectancy, and goal satisfaction. The two interventions were equally effective in moving participants to higher levels of motivational readiness for regular physical activity. Among participants not already in maintenance at baseline, 34.9% in the stage-matched condition progressed, while 33.9% in the social-cognitive group did so (chi2 = not significant). Analyses of variance showed that the two treatment groups did not differ in terms of physical activity participation, cognitive and behavioral process use, decisional balance, or the other psychological constructs. For both treatment groups, cognitive process use remained high across all stages, while behavioral process use increased at the higher stages. The pros component of decisional balance did not vary across stage, whereas cons decreased significantly between preparation and action. Minimal-contact, one-shot physical activity interventions delivered at work can help people increase their participation in regular physical activity. Stage matching may not necessarily add value to interventions that otherwise make good use of behavior change theory. The findings also reinforce the importance of barrier reduction in long-term adherence. A limiting factor in this study is that employees in the earliest stage of change (precontemplation) were not well-represented in the sample.
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-10-01
We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
Un Jalón, Un Volteón, y Otra Vez: High-Risk Crack Smoking Paraphernalia in México City.
Valdez, Avelardo; Nowotny, Kathryn M; Negi, Nalini; Mora, Eduardo Zafra; Cepeda, Alice
2016-01-01
During the past decade, crack smoking has increased in Mexico among poor urban populations. Despite this increasing prevalence, little is known about the types of paraphernalia used and related sharing practices and physical harms. Data come from in-depth semi-structured interviews and observations with 156 current crack smokers in Mexico City. Findings reveal a complex, crack-smoking process in Mexico City that represents an interconnected structure of paraphernalia items and pipes that could contribute to detrimental health consequences. Specifically, we identify essential paraphernalia items that make the smoking of crack possible; describe the homemade construction of two categories of pipes; and detail the sharing practices and physical harms associated with these paraphernalia. Results point towards a smoking process that is embedded in impoverished urban neighborhoods sustained by an accessible street-level crack market. Discussed are the policy and intervention implications associated with reducing crack-related health consequences in Mexico and other Latin American countries.
Un Jalón, Un Volteón, y Otra Vez: High-Risk Crack Smoking Paraphernalia in México City
Valdez, Avelardo; Cepeda, Alice; Nowotny, Kathryn M.; Mora, Eduardo Zafra; Negi, Nalini
2016-01-01
During the past decade, crack smoking has increased in Mexico among poor urban populations. Despite this increasing prevalence, little is known about the types of paraphernalia used and related sharing practices and physical harms. Data come from in-depth semi-structured interviews and observations with 156 current crack smokers in Mexico City. Findings reveal a complex, crack-smoking process in Mexico City that represents an interconnected structure of paraphernalia items and pipes that could contribute to detrimental health consequences. Specifically, we identify essential paraphernalia items that make the smoking of crack possible; describe the home- made construction of two categories of pipes; and the sharing practices and physical harms associated with these paraphernalia. Results point towards a smoking process that is embedded in impoverished urban neighborhoods sustained by an accessible street-level crack market. Discussed are the policy and intervention implications associated with reducing crack related health consequences in Mexico and other Latin American countries. PMID:27356211
Evolutionary preferences for physical formidability in leaders.
Murray, Gregg R
2014-01-01
This research uses evolutionary theory to evaluate followers' preferences for physically formidable leaders and to identify conditions that stimulate those preferences. It employs a population-based survey experiment (N ≥ 760), which offers the advantages to internal validity of experiments and external validity of a highly heterogeneous sample drawn from a nationally representative subject pool. The theoretical argument proffered here is followers tend to prefer leaders with greater physical formidability because of evolutionary adaptations derived from humans' violent ancestral environment. In this environment, individuals who allied with and ultimately followed physically powerful partners were more likely to acquire and retain important resources necessary for survival and reproduction because the presence of the physically powerful partner cued opponents to avoid a challenge for the resources or risk a costly confrontation. This argument suggests and the results indicate that threatening (war) and nonthreatening (peace, cooperation, and control) stimuli differentially motivate preferences for physically formidable leaders. In particular, the findings suggest threatening conditions lead to preferences for leaders with more powerful physical attributes, both anthropometric (i.e., weight, height, and body mass index) and perceptual (i.e., attributes of being "physically imposing or intimidating" and "physically strong"). Overall, this research offers a theoretical framework from which to understand this otherwise seemingly irrational phenomenon. Further, it advances the emerging but long-neglected investigation of biological effects on political behavior and has implications for a fundamental process in democratic society, leader selection.
Solar Orbiter: Exploring the Sun-Heliosphere Connection
NASA Technical Reports Server (NTRS)
Mueller, D.; Marsden, R. G.; St.Cyr, O. C.; Gilbert, H. R.
2013-01-01
The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015 - 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.
Solar Orbiter Exploring the Sun-Heliosphere Connection
NASA Technical Reports Server (NTRS)
Mueller, Daniel; Marsden, Richard George; Cyr, O. C. St.; Gilbert, Holly Robin
2012-01-01
The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015 - 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.
Perfect relativistic magnetohydrodynamics around black holes in horizon penetrating coordinates
NASA Astrophysics Data System (ADS)
Cherubini, Christian; Filippi, Simonetta; Loppini, Alessandro; Moradi, Rahim; Ruffini, Remo; Wang, Yu; Xue, She-Sheng
2018-03-01
Plasma accreting processes on black holes represent a central problem for relativistic astrophysics. In this context, here we specifically revisit the classical Ruffini-Wilson work developed for analytically modeling via geodesic equations the accretion of perfect magnetized plasma on a rotating Kerr black hole. Introducing the horizon penetrating coordinates found by Doran 25 years later, we revisit the entire approach studying Maxwell invariants, electric and magnetic fields, volumetric charge density and electromagnetic total energy. We finally discuss the physical implications of this analysis.
Nakamura, Priscila M; Papini, Camila B; Teixeira, Inaian P; Chiyoda, Alberto; Luciano, Eliete; Cordeira, Kelly Lynn; Kokubun, Eduardo
2015-01-01
Interventions in primary health care settings have been effective in increasing physical fitness. In 2001, the Programa de Exercício Físico em Unidades de Saúde (Physical Exercise in Health Primary Care Program-PEHPCP) was launched in Rio Claro City, Brazil. The intervention consisted of biweekly, 60-minute group sessions in all primary health care settings in the city. This study evaluated the effect of PEHPCP on physical fitness and on the aging process after a decade of ongoing implementation. There were 409 women (50 ± 26 y old) and 31 men (64 ± 10 y old) who were eligible for this study. Every 4 months, participants completed the American Alliance for Health, Physical Education, Recreation and Dance standardized tests. Program participation was associated with a reduced effect, compared with baseline, of the natural decline of physical fitness caused by aging, as represented by changes in the following measures: coordination test time, -0.44 seconds; agility and dynamic balance test time; -1.81 seconds; aerobic capacity test time, 3.57 seconds; and muscle strength exercises, +0.60 repetitions. No significant effect on flexibility was found. The PEHPCP showed potential in improving muscle strength, coordination, aerobic capacity, and agility and dynamic balance in participants and in maintaining flexibility in participants.
[Improvement of physical fitness as anti-aging intervention].
Castillo Garzón, Manuel J; Ortega Porcel, Francisco B; Ruiz Ruiz, Jonatan
2005-02-05
Several recent important studies have clearly shown that a low physical fitness represents a potent risk factor and even a predictor of both cardiovascular and all-causes morbidity and mortality. As a consequence, physical fitness assessment should be performed at the clinical level since, when properly assessed, it is a highly valuable health and life expectancy indicator. Based on the results of fitness assessment in a particular person and knowing his/her life style and daily physical activity, an individually adapted training program can be prescribed. This training program will allow that person to develop his/her maximal physical potential while improving his/her physical and mental health and attenuating the deleterious consequences of aging. In fact, physical exercise is today proposed as a highly effective means to treat and prevent major morbidity and mortality causes in industrialized countries. Most of these causes are associated with the aging process. In order to be effective, this type of intervention should be directed to improve the aerobic capacity and strength. In addition, it should be complemented with work directed to improve the general coordination and flexibility. Finally, diet optimization and use of nutritional supplements and legal ergogenic aids are key elements to improve the functional capacity and health, all of which is synonymous of anti-aging interventions.
Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems
NASA Astrophysics Data System (ADS)
Travers, M.; Shin, Y.-J.; Jennings, S.; Cury, P.
2007-12-01
End-to-end models that represent ecosystem components from primary producers to top predators, linked through trophic interactions and affected by the abiotic environment, are expected to provide valuable tools for assessing the effects of climate change and fishing on ecosystem dynamics. Here, we review the main process-based approaches used for marine ecosystem modelling, focusing on the extent of the food web modelled, the forcing factors considered, the trophic processes represented, as well as the potential use and further development of the models. We consider models of a subset of the food web, models which represent the first attempts to couple low and high trophic levels, integrated models of the whole ecosystem, and size spectrum models. Comparisons within and among these groups of models highlight the preferential use of functional groups at low trophic levels and species at higher trophic levels and the different ways in which the models account for abiotic processes. The model comparisons also highlight the importance of choosing an appropriate spatial dimension for representing organism dynamics. Many of the reviewed models could be extended by adding components and by ensuring that the full life cycles of species components are represented, but end-to-end models should provide full coverage of ecosystem components, the integration of physical and biological processes at different scales and two-way interactions between ecosystem components. We suggest that this is best achieved by coupling models, but there are very few existing cases where the coupling supports true two-way interaction. The advantages of coupling models are that the extent of discretization and representation can be targeted to the part of the food web being considered, making their development time- and cost-effective. Processes such as predation can be coupled to allow the propagation of forcing factors effects up and down the food web. However, there needs to be a stronger focus on enabling two-way interaction, carefully selecting the key functional groups and species, reconciling different time and space scales and the methods of converting between energy, nutrients and mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Cul, G.D.; Toth, L.M.; Bond, W.D.
The concern that there might be some physical-chemical process which would lead to a separation of the poisoning actinides ({sup 232}Th, {sup 238}U) from the fissionable ones ({sup 239}Pu, {sup 235}U) in waste storage tanks at Oak Ridge National Laboratory has led to a paper study of potential separations processes involving these elements. At the relatively high pH values (>8), the actinides are normally present as precipitated hydroxides. Mechanisms that might then selectively dissolve and reprecipitate the actinides through thermal processes or additions of reagents were addressed. Although redox reactions, pH changes, and complexation reactions were all considered, only themore » last type was regarded as having any significant probability. Furthermore, only carbonate accumulation, through continual unmonitored air sparging of the tank contents, could credibly account for gross transport and separation of the actinide components. From the large amount of equilibrium data in the literature, concentration differences in Th, U, and Pu due to carbonate complexation as a function of pH have been presented to demonstrate this phenomenon. While the carbonate effect does represent a potential separations process, control of long-term air sparging and solution pH, accompanied by routine determinations of soluble carbonate concentration, should ensure that this separations process does not occur.« less
Petroleum storage tank cleaning using commercial microbial culture products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, D.R.; Entzeroth, L.C.; Timmis, A.
1995-12-31
The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during themore » treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.« less
NASA Astrophysics Data System (ADS)
Jiao, Yang; Lau, Timothy; Hatzikirou, Haralampos; Meyer-Hermann, Michael; Corbo, Joseph C.; Torquato, Salvatore
2014-02-01
Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their photoreceptor patterns are not perfectly regular. By analyzing the chicken cone photoreceptor system consisting of five different cell types using a variety of sensitive microstructural descriptors, we find that the disordered photoreceptor patterns are "hyperuniform" (exhibiting vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified in a unique subset of physical systems, but had never been observed in any living organism. Remarkably, the patterns of both the total population and the individual cell types are simultaneously hyperuniform. We term such patterns "multihyperuniform" because multiple distinct subsets of the overall point pattern are themselves hyperuniform. We have devised a unique multiscale cell packing model in two dimensions that suggests that photoreceptor types interact with both short- and long-ranged repulsive forces and that the resultant competition between the types gives rise to the aforementioned singular spatial features characterizing the system, including multihyperuniformity. These findings suggest that a disordered hyperuniform pattern may represent the most uniform sampling arrangement attainable in the avian system, given intrinsic packing constraints within the photoreceptor epithelium. In addition, they show how fundamental physical constraints can change the course of a biological optimization process. Our results suggest that multihyperuniform disordered structures have implications for the design of materials with novel physical properties and therefore may represent a fruitful area for future research.
A process-based hierarchical framework for monitoring glaciated alpine headwaters
Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.
2012-01-01
Recent studies have demonstrated the geomorphic complexity and wide range of hydrologic regimes found in alpine headwater channels that provide complex habitats for aquatic taxa. These geohydrologic elements are fundamental to better understand patterns in species assemblages and indicator taxa and are necessary to aquatic monitoring protocols that aim to track changes in physical conditions. Complex physical variables shape many biological and ecological traits, including life history strategies, but these mechanisms can only be understood if critical physical variables are adequately represented within the sampling framework. To better align sampling design protocols with current geohydrologic knowledge, we present a conceptual framework that incorporates regional-scale conditions, basin-scale longitudinal profiles, valley-scale glacial macroform structure, valley segment-scale (i.e., colluvial, alluvial, and bedrock), and reach-scale channel types. At the valley segment- and reach-scales, these hierarchical levels are associated with differences in streamflow and sediment regime, water source contribution and water temperature. Examples of linked physical-ecological hypotheses placed in a landscape context and a case study using the proposed framework are presented to demonstrate the usefulness of this approach for monitoring complex temporal and spatial patterns and processes in glaciated basins. This approach is meant to aid in comparisons between mountain regions on a global scale and to improve management of potentially endangered alpine species affected by climate change and other stressors.
Dynamic Emulation Modelling (DEMo) of large physically-based environmental models
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.
2012-12-01
In environmental modelling large, spatially-distributed, physically-based models are widely adopted to describe the dynamics of physical, social and economic processes. Such an accurate process characterization comes, however, to a price: the computational requirements of these models are considerably high and prevent their use in any problem requiring hundreds or thousands of model runs to be satisfactory solved. Typical examples include optimal planning and management, data assimilation, inverse modelling and sensitivity analysis. An effective approach to overcome this limitation is to perform a top-down reduction of the physically-based model by identifying a simplified, computationally efficient emulator, constructed from and then used in place of the original model in highly resource-demanding tasks. The underlying idea is that not all the process details in the original model are equally important and relevant to the dynamics of the outputs of interest for the type of problem considered. Emulation modelling has been successfully applied in many environmental applications, however most of the literature considers non-dynamic emulators (e.g. metamodels, response surfaces and surrogate models), where the original dynamical model is reduced to a static map between input and the output of interest. In this study we focus on Dynamic Emulation Modelling (DEMo), a methodological approach that preserves the dynamic nature of the original physically-based model, with consequent advantages in a wide variety of problem areas. In particular, we propose a new data-driven DEMo approach that combines the many advantages of data-driven modelling in representing complex, non-linear relationships, but preserves the state-space representation typical of process-based models, which is both particularly effective in some applications (e.g. optimal management and data assimilation) and facilitates the ex-post physical interpretation of the emulator structure, thus enhancing the credibility of the model to stakeholders and decision-makers. Numerical results from the application of the approach to the reduction of 3D coupled hydrodynamic-ecological models in several real world case studies, including Marina Reservoir (Singapore) and Googong Reservoir (Australia), are illustrated.
Real-Time Joint Streaming Data Processing from Social and Physical Sensors
NASA Astrophysics Data System (ADS)
Kropivnitskaya, Y. Y.; Qin, J.; Tiampo, K. F.; Bauer, M.
2014-12-01
The results of the technological breakthroughs in computing that have taken place over the last few decades makes it possible to achieve emergency management objectives that focus on saving human lives and decreasing economic effects. In particular, the integration of a wide variety of information sources, including observations from spatially-referenced physical sensors and new social media sources, enables better real-time seismic hazard analysis through distributed computing networks. The main goal of this work is to utilize innovative computational algorithms for better real-time seismic risk analysis by integrating different data sources and processing tools into streaming and cloud computing applications. The Geological Survey of Canada operates the Canadian National Seismograph Network (CNSN) with over 100 high-gain instruments and 60 low-gain or strong motion seismographs. The processing of the continuous data streams from each station of the CNSN provides the opportunity to detect possible earthquakes in near real-time. The information from physical sources is combined to calculate a location and magnitude for an earthquake. The automatically calculated results are not always sufficiently precise and prompt that can significantly reduce the response time to a felt or damaging earthquake. Social sensors, here represented as Twitter users, can provide information earlier to the general public and more rapidly to the emergency planning and disaster relief agencies. We introduce joint streaming data processing from social and physical sensors in real-time based on the idea that social media observations serve as proxies for physical sensors. By using the streams of data in the form of Twitter messages, each of which has an associated time and location, we can extract information related to a target event and perform enhanced analysis by combining it with physical sensor data. Results of this work suggest that the use of data from social media, in conjunction with the development of innovative computing algorithms, when combined with sensor data can provide a new paradigm for real-time earthquake detection in order to facilitate rapid and inexpensive natural risk reduction.
Latin American Study of Nutrition and Health (ELANS): rationale and study design.
Fisberg, M; Kovalskys, I; Gómez, G; Rigotti, A; Cortés, L Y; Herrera-Cuenca, M; Yépez, M C; Pareja, R G; Guajardo, V; Zimberg, I Z; Chiavegatto Filho, A D P; Pratt, M; Koletzko, B; Tucker, K L
2016-01-30
Obesity is growing at an alarming rate in Latin America. Lifestyle behaviours such as physical activity and dietary intake have been largely associated with obesity in many countries; however studies that combine nutrition and physical activity assessment in representative samples of Latin American countries are lacking. The aim of this study is to present the design rationale of the Latin American Study of Nutrition and Health/Estudio Latinoamericano de Nutrición y Salud (ELANS) with a particular focus on its quality control procedures and recruitment processes. The ELANS is a multicenter cross-sectional nutrition and health surveillance study of a nationally representative sample of urban populations from eight Latin American countries (Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Perú and Venezuela). A standard study protocol was designed to evaluate the nutritional intakes, physical activity levels, and anthropometric measurements of 9000 enrolled participants. The study was based on a complex, multistage sample design and the sample was stratified by gender, age (15 to 65 years old) and socioeconomic level. A small-scale pilot study was performed in each country to test the procedures and tools. This study will provide valuable information and a unique dataset regarding Latin America that will enable cross-country comparisons of nutritional statuses that focus on energy and macro- and micronutrient intakes, food patterns, and energy expenditure. Clinical Trials NCT02226627.
NASA Astrophysics Data System (ADS)
Anh, Kim Tran; Vu, Thi Bich; Nguyen, Ngoc Toan; Do, Tran Cat; Vo, Thach Son
2013-03-01
More and more females are studying physics and applying their physics knowledge in Vietnam. Women are well represented in physics in Vietnam, occupy high positions in the field, and win many national and international science awards. Overwhelmingly, women in physics in Vietnam have happy families with children who love physics.
The physical hydrogeology of ore deposits
Ingebritsen, Steven E.; Appold, M.S.
2012-01-01
Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.
Stevelink, S A M; Malcolm, E M; Mason, C; Jenkins, S; Sundin, J; Fear, N T
2015-01-01
Background Having a visual, hearing or physical impairment (defined as problems in body function or structure) may adversely influence the mental well-being of military personnel. This paper reviews the existing literature regarding the prevalence of mental health problems among (ex-)military personnel who have a permanent, predominantly, physical impairment. Method Multiple electronic literature databases were searched for relevant studies (EMBASE (1980–January 2014), MEDLINE (1946–January 2014), PsycINFO (2002–January 2014), Web of Science (1975–January 2014)). Results 25 papers were included in the review, representing 17 studies. Studies conducted among US military personnel (n=8) were most represented. A range of mental health disorders were investigated; predominately post-traumatic stress disorder (PTSD), but also depression, anxiety disorder (excluding PTSD), psychological distress and alcohol misuse. The findings indicate that mental health disorders including PTSD (range 2–59%), anxiety (range 16.1–35.5%), depression (range 9.7–46.4%) and psychological distress (range 13.4–36%) are frequently found whereby alcohol misuse was least common (range 2.2–26.2%). Conclusions Common mental health disorders were frequently identified among (ex-)military personnel with a physical impairment. Adequate care and support is necessary during the impairment adaptation process to facilitate the psychosocial challenges (ex-)military personnel with an impairment face. Future research should be directed into factors impacting on the mental well-being of (ex-)military personnel with an impairment, how prevalence rates vary across impairment types and to identify and act on specific needs for care and support. PMID:25227569
Psychological determinants of adolescent exercise adherence.
Douthitt, V L
1994-01-01
The purpose of this study was to identify some psychological determinants of exercise adherence on which public school physical education programs may have an impact. Data were collected twice, once representing a structured physical education classroom setting (N = 132), and later representing an unstructured summer vacation exercise setting (N = 110). Male and female physical education students at a large suburban high school completed five questionnaires which represented four psychological variables (self-motivation, perceived control, personality/sport congruence, and perceived self-competency), and one physical activity variable (exercise adherence) in both of the two data-collection periods. The results indicated that Perceived Romantic Appeal was predictive of male exercise adherence while Perceived Athletic Competency, Perceived Global Self-Worth, and Perceived Physical Appearance were predictive of female exercise adherence. None of the psychological predictor variables was significant for competitive subjects in either exercise setting, yet Perceived Romantic Appeal and Personality/Sport Congruence were predictive of noncompetitive subjects' exercise adherence in the structured and unstructured settings, respectively.
Guildford, Beth J; Jacobs, Clair M; Daly-Eichenhardt, Aisling; Scott, Whitney; McCracken, Lance M
2016-01-01
Physical functioning is a recommended outcome domain for pain management programmes. It can be assessed by self-report and by direct assessment of performance. Although physical performance measures may provide unique and useful information about patient functioning over and above self-report measures, it is not entirely clear which of the many possible performances to assess. This study investigated a battery of three directly assessed physical performance measures and their relationship to three currently used self-report measures of general health and functioning. The three performance measures were sensitive to treatment; patients performed significantly better on all three measures following completion of the pain management programme. The three performance measures were shown to represent a single underlying dimension, and there was a significant degree of overlap between them. The performance measures were shown to be relevant in explaining variation in the self-report measures, as well as to offer a clinically relevant different dimension of assessment to self-report. Future research could focus on developing performance-based measures that capture quality of movement and that are sensitive to relevant processes of therapeutic change. PMID:28386404
Cyber-physical networking for wireless mesh infrastructures
NASA Astrophysics Data System (ADS)
Mannweiler, C.; Lottermann, C.; Klein, A.; Schneider, J.; Schotten, H. D.
2012-09-01
This paper presents a novel approach for cyber-physical network control. "Cyber-physical" refers to the inclusion of different parameters and information sources, ranging from physical sensors (e.g. energy, temperature, light) to conventional network information (bandwidth, delay, jitter, etc.) to logical data providers (inference systems, user profiles, spectrum usage databases). For a consistent processing, collected data is represented in a uniform way, analyzed, and provided to dedicated network management functions and network services, both internally and, through an according API, to third party services. Specifically, in this work, we outline the design of sophisticated energy management functionalities for a hybrid wireless mesh network (WLAN for both backhaul traffic and access, GSM for access only), disposing of autonomous energy supply, in this case solar power. Energy consumption is optimized under the presumption of fluctuating power availability and considerable storage constraints, thus influencing, among others, handover and routing decisions. Moreover, advanced situation-aware auto-configuration and self-adaptation mechanisms are introduced for an autonomous operation of the network. The overall objective is to deploy a robust wireless access and backbone infrastructure with minimal operational cost and effective, cyber-physical control mechanisms, especially dedicated for rural or developing regions.
SPEAK Out! Day with Future Teachers Taking the Lead
ERIC Educational Resources Information Center
Watterson, Thomas; Wells, Gayle; Claxton, David; Grube, Dan
2018-01-01
Each year, health and physical education representatives converge at our nation's capital for the SHAPE America SPEAK Out! Day to advocate for health and physical education and its current initiatives. This endeavor has grown to include over 200 representatives from 46 different states. In recent years, this program has become very successful in…
NASA Astrophysics Data System (ADS)
Morace, A.; Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Alpinaniz, J.; Brabetz, C.; Schaumann, G.; Volpe, L.
2017-02-01
Understanding the dynamics of rapidly varying electromagnetic fields in intense short pulse laser plasma interactions is of key importance to understand the mechanisms at the basis of a wide variety of physical processes, from high energy density physics and fusion science to the development of ultrafast laser plasma devices to control laser-generated particle beams. Target normal sheath accelerated (TNSA) proton radiography represents an ideal tool to diagnose ultrafast electromagnetic phenomena, providing 2D spatially and temporally resolved radiographs with temporal resolution varying from 2-3 ps to few tens of ps. In this work we introduce the proton radiography technique and its application to diagnose the spatial and temporal evolution of electromagnetic fields in laser-driven capacitor coil targets.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Chirstopher O.; Kleb, Bil
2010-01-01
This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, William L.
2013-01-01
This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintain ability by eliminating the requirement for problem dependent recompilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil
2011-01-01
This users manual provides in-depth information concerning installation and execution of Laura, version 5. Laura is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 Laura code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, Laura now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.
Hybrid Vlasov simulations for alpha particles heating in the solar wind
NASA Astrophysics Data System (ADS)
Perrone, Denise; Valentini, Francesco; Veltri, Pierluigi
2011-06-01
Heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. To address this problem, we propose the use of a low-noise hybrid-Vlasov code in four dimensional phase space (1D in physical space and 3D in velocity space) configuration. We trigger a turbulent cascade injecting the energy at large wavelengths and analyze the role of kinetic effects along the development of the energy spectra. Following the evolution of both proton and α distribution functions shows that both the ion species significantly depart from the maxwellian equilibrium, with the appearance of beams of accelerated particles in the direction parallel to the background magnetic field.
Pulsed-discharge carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Willetts, David V.
1990-01-01
The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.
Larval Transport on the Atlantic Continental Shelf of North America: a Review
NASA Astrophysics Data System (ADS)
Epifanio, C. E.; Garvine, R. W.
2001-01-01
This review considers transport of larval fish and crustaceans on the continental shelf. Previous reviews have contained only limited treatments of the physical processes involved. The present paper provides a physical background that is considerably more comprehensive. It includes a discussion of three principal forcing agents: (1) wind stress; (2) tides propagating from the deep ocean; and (3) differences in density associated with the buoyant outflow of estuaries, surface heat flux, or the interaction of coastal and oceanic water masses at the seaward margin of the shelf. The authors discuss the effects of these forcing agents on transport of larvae in the Middle Atlantic and South Atlantic Bights along the east coast of North America. The discussion concentrates on three species (blue crab, menhaden, bluefish) that have been the subject of a very recent multi-disciplinary study. Taken as a whole, the reproductive activities of these three species span the entire year and utilize the entire shelf, from the most seaward margin to the estuarine nursery. The blue crab is representative of species affected by physical processes occurring during summer and early autumn on the inner and mid-shelf. Menhaden are impacted by processes occurring in winter on the outer and mid-shelf. Bluefish are influenced primarily by processes occurring during early spring at the outer shelf margin near the western boundary current. The authors conclude that alongshore wind stress and density differences, i.e. buoyancy-driven flow, are the primary agents of larval transport in the region. Circulation associated with the western boundary current is only important at the shelf margin and tidally driven processes are generally inconsequential.
Klingaman, Nicholas P.; Woolnough, Steven J.; Jiang, Xianan; ...
2015-04-10
Here, many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of the three components of a model evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20 day hindcasts, initialized daily during two MJO events in winter 2009–2010. The 13 models exhibit a range of skill:more » several have accurate forecasts to 20 days lead, while others perform similarly to statistical models (8–11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to midlevel moistening at moderate rainfall and upper level moistening for heavy rainfall. The midlevel moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.« less
NASA Astrophysics Data System (ADS)
Baldi, Livio; Bez, Roberto; Sandhu, Gurtej
2014-12-01
Memory is a key component of any data processing system. Following the classical Turing machine approach, memories hold both the data to be processed and the rules for processing them. In the history of microelectronics, the distinction has been rather between working memory, which is exemplified by DRAM, and storage memory, exemplified by NAND. These two types of memory devices now represent 90% of all memory market and 25% of the total semiconductor market, and have been the technology drivers in the last decades. Even if radically different in characteristics, they are however based on the same storage mechanism: charge storage, and this mechanism seems to be near to reaching its physical limits. The search for new alternative memory approaches, based on more scalable mechanisms, has therefore gained new momentum. The status of incumbent memory technologies and their scaling limitations will be discussed. Emerging memory technologies will be analyzed, starting from the ones that are already present for niche applications, and which are getting new attention, thanks to recent technology breakthroughs. Maturity level, physical limitations and potential for scaling will be compared to existing memories. At the end the possible future composition of memory systems will be discussed.
NASA Astrophysics Data System (ADS)
Levchenko, Igor; Bazaka, Kateryna; Baranov, Oleg; Sankaran, R. Mohan; Nomine, Alexandre; Belmonte, Thierry; Xu, Shuyan
2018-06-01
This focused review aims to reveal and illustrate some unique features of processes triggered by high-density energy applied to liquids and gas-liquid interfaces and to highlight a wide spectrum of their technological applications capable of producing various advantageous effects, ranging from nanosynthesis to biological and medical applications. Plasma, electric discharges, laser, and ultrasound power effects were selected as representative examples of high-density energy and liquid interactions, yet the available possibilities are not limited by these quite different types of power and thus the reader could extrapolate the outlined features and effects to other kinds of powerful impacts. The basic physical mechanisms are briefly reviewed with the aim to familiarize the readers with the potential capabilities of high-density energy processes in liquids. These will be of direct interest to researchers tasked with the development, optimization, and characterization of processes and highly reactive environments for highly controlled transformation of matter in abiotic and biological systems. It could also be highly useful for under- and post-graduate students specializing in the related fields and general physical audience involved in various plasma, materials, energy conversion, and other concurrent research activities.
Sparking young minds with Moon rocks and meteorites
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Lindstrom, Marilyn M.
1993-01-01
What could be more exciting than seeing pieces of other worlds? The Apollo program left a legacy of astounding accomplishments and precious samples. Part of the thrill of those lunar missions is brought to schools by the lunar sample educational disks, which contain artifacts of six piloted trips to the Moon. Johnson Space Center (JSC) is preparing 100 new educational disks containing pieces of meteorites collected in Antarctica. These represent chunks of several different asteroids, that were collected in one of the most remote, forbidding environments on Earth. These pieces of the Moon and asteroids represent the products of basic planetary processes (solar nebular processes, initial differentiation, volcanism, and impact), and, in turn, these processes are controlled by basic physical and chemical processes (energy, energy transfer, melting, buoyancy, etc.). Thus, the lunar and meteorite sample disks have enormous educational potential. New educational materials are being developed to accompany the disks. Present materials are not as effective as they could be, especially in relating samples to processes and to other types of data such as spectral studies and photogeology. Furthermore, the materials are out of date. New background materials will be produced for teachers, assembling slide sets with extensive captions, and devising numerous hands-on classroom activities to do while the disks are at a school and before and after they arrive. The classroom activities will be developed by teams of experienced teachers working with lunar and meteorite experts.
Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abat, E.; Abbott, B.
2011-11-28
The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. Inmore » this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of the expression 'CSC studies' ('computing system commissioning'), which is occasionally referred to in these volumes. The work reported does generally assume that the detector is fully operational, and in this sense represents an idealised detector: establishing the best performance of the ATLAS detector with LHC proton-proton collisions is a challenging task for the future. The results summarised here therefore represent the best estimate of ATLAS capabilities before real operational experience of the full detector with beam. Unless otherwise stated, simulations also do not include the effect of additional interactions in the same or other bunch-crossings, and the effect of neutron background is neglected. Thus simulations correspond to the low-luminosity performance of the ATLAS detector. This report is broadly divided into two parts: firstly the performance for identification of physics objects is examined in detail, followed by a detailed assessment of the performance of the trigger system. This part is subdivided into chapters surveying the capabilities for charged particle tracking, each of electron/photon, muon and tau identification, jet and missing transverse energy reconstruction, b-tagging algorithms and performance, and finally the trigger system performance. In each chapter of the report, there is a further subdivision into shorter notes describing different aspects studied. The second major subdivision of the report addresses physics measurement capabilities, and new physics search sensitivities. Individual chapters in this part discuss ATLAS physics capabilities in Standard Model QCD and electroweak processes, in the top quark sector, in b-physics, in searches for Higgs bosons, supersymmetry searches, and finally searches for other new particles predicted in more exotic models.« less
Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.
2016-01-01
Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679
ERIC Educational Resources Information Center
Hills, Laura
2007-01-01
Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…
Klein, Fabian; Iffland, Benjamin; Schindler, Sebastian; Wabnitz, Pascal; Neuner, Frank
2015-12-01
Recent studies have shown that the perceptual processing of human faces is affected by context information, such as previous experiences and information about the person represented by the face. The present study investigated the impact of verbally presented information about the person that varied with respect to affect (neutral, physically threatening, socially threatening) and reference (self-referred, other-referred) on the processing of faces with an inherently neutral expression. Stimuli were presented in a randomized presentation paradigm. Event-related potential (ERP) analysis demonstrated a modulation of the evoked potentials by reference at the EPN (early posterior negativity) and LPP (late positive potential) stage and an enhancing effect of affective valence on the LPP (700-1000 ms) with socially threatening context information leading to the most pronounced LPP amplitudes. We also found an interaction between reference and valence with self-related neutral context information leading to more pronounced LPP than other related neutral context information. Our results indicate an impact of self-reference on early, presumably automatic processing stages and also a strong impact of valence on later stages. Using a randomized presentation paradigm, this study confirms that context information affects the visual processing of faces, ruling out possible confounding factors such as facial configuration or conditional learning effects.
Characteristic time scales for diffusion processes through layers and across interfaces
NASA Astrophysics Data System (ADS)
Carr, Elliot J.
2018-04-01
This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.
Characteristic time scales for diffusion processes through layers and across interfaces.
Carr, Elliot J
2018-04-01
This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.
Atrial Model Development and Prototype Simulations: CRADA Final Report on Tasks 3 and 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, T.; Zhang, X.; Villongco, C.
2016-10-28
The goal of this CRADA was to develop essential tools needed to simulate human atrial electrophysiology in 3-dimensions using an anatomical image-based anatomy and physiologically detailed human cellular model. The atria were modeled as anisotropic, representing the preferentially longitudinal electrical coupling between myocytes. Across the entire anatomy, cellular electrophysiology was heterogeneous, with left and right atrial myocytes defined differently. Left and right cell types for the “control” case of sinus rhythm (SR) was compared with remodeled electrophysiology and calcium cycling characteristics of chronic atrial fibrillation (cAF). The effects of Isoproterenol (ISO), a beta-adrenergic agonist that represents the functional consequences ofmore » PKA phosphorylation of various ion channels and transporters, was also simulated in SR and cAF to represent atrial activity under physical or emotional stress. Results and findings from Tasks 3 & 4 are described. Tasks 3 and 4 are, respectively: Input parameters prepared for a Cardioid simulation; Report including recommendations for additional scenario development and post-processing analytic strategy.« less
Large eddy simulation modeling of particle-laden flows in complex terrain
NASA Astrophysics Data System (ADS)
Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.
2017-12-01
The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.
Summary of sessions on nuclear astrophysics
NASA Astrophysics Data System (ADS)
Rolfs, C.
In the minds of some there exists the patronizing belief that nuclear physics is a mature science. The same is not believed about nuclear astrophysics, which has been an active branch of astrophysics for over fifty years, but is now in the midst of an exciting revival in experimental and theoretical research around the world. The ultimate goal is to understand how nuclear processes generate the energy of stars over their lifetimes and, in doing so, synthesize heavier elements from the primordial hydrogen and helium produced in the Big Bang, which led to the expanding universe. Impressive progress has been made in this goal and this was rewarded. However, there are major puzzles, such as the solar neutrino problem to name just one, which challenge the fundaments of the field. To solve these problems, new nuclear physics data are needed employing novel experimental techniques such as radioactive ion beams and underground accelerator facilities. Without such new data, much of the work done so far will - in an optimistic view - be incomplete and - in a pessimistic view - be possibly wrong. Thus, new data do not represent a fine structure information or a cleaning-up job, but they represent the major next step in this exciting field&
Lawler, Margaret; Heary, Caroline; Nixon, Elizabeth
2017-08-17
Neglecting to take account of the underlying context or type of physical activity (PA) that underpins overall involvement has resulted in a limited understanding of adolescents' PA participation. The purpose of the present research was to identify male and female adolescents' leisure time PA patterns and examine whether psychological processes derived from self-determination theory differ as a function of the pattern of PA undertaken. Nine hundred ninety-five students (61.2% females, 38.8% males; M age = 13.72 years, SD = 1.25) from eight secondary schools in Dublin, Ireland completed a physical activity recall 7 day diary and measures of intrinsic motivation, competence, relatedness, autonomy and autonomy support. Based on the diary five binary indicators of physical activity were derived reflecting recommended levels of MVPA on a minimum of 3 days, at least three sessions of non-organized physical activity (e.g. jog), team sport, individual sport, and organized non-sport physical activity (e.g. dance). Latent class analysis was used to identify subgroups of adolescents that engaged in similar patterns of physical activity. Profiles of physical activity participation were subsequently compared on motivational characteristics using Kruskal-Wallis tests. Latent class analysis revealed six distinct classes for girls (Organized Run/Swim & Dance/Gym; Organized Dance; Leisure Active Team Sport; Active Individual Sport; Walk/Run/Outdoor games; Non-Participation) and five for boys (Leisure Active Gym; Leisure Active Individual Sport; Active Team Sport; Active Mixed Type; Non-Participation). Significant differences were found between the classes. Girls characterized by participation in team or individual sport, and boys represented by team sport participation demonstrated significantly higher self-determined motivational characteristics relative to other profiles of physical activity. This research offers a nuanced insight into the underlying type of activities that constitute overall patterns of PA among adolescent boys and girls and further reveals that psychological processes vary dependent on the profile of physical activity undertaken. The findings may be useful for informing interventions aimed at promoting physical activity among young people.
Evolutionary Computing Methods for Spectral Retrieval
NASA Technical Reports Server (NTRS)
Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna
2009-01-01
A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.
Guzman, Karen; Bartlett, John
2012-01-01
Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article describes an exercise that was developed to illustrate the process of translation using simple objects to represent complex molecules. Animations, 3D physical models, computer simulations, laboratory experiments and classroom lectures are also used to reinforce the students' understanding of translation, but by focusing on the simple manipulatives in this exercise, students are better able to visualize concepts that can elude them when using the other methods. The translation exercise is described along with suggestions for background material, questions used to evaluate student comprehension and tips for using the manipulatives to identify common misconceptions. Copyright © 2012 Wiley Periodicals, Inc.
Differences in Physical Activity Levels between Urban and Rural School Children in Cyprus
ERIC Educational Resources Information Center
Loucaides, Constantinos A.; Chedzoy, Sue M.; Bennett, Neville
2004-01-01
This study attempted to examine differences in physical activity levels between urban and rural primary school children. The sample consisted of 256 Greek-Cypriot children and their parents from two schools representing urban areas and three schools representing rural areas. Children's activity levels were assessed for 4 weekdays in the winter and…
Quantization of charged fields in the presence of critical potential steps
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2016-02-01
QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.
NASA Astrophysics Data System (ADS)
Sklar, L. S.; Mahmoudi, M.
2016-12-01
Landscape evolution models rarely represent sediment size explicitly, despite the importance of sediment size in regulating rates of bedload sediment transport, river incision into bedrock, and many other processes in channels and on hillslopes. A key limitation has been the lack of a general model for predicting the size of sediments produced on hillslopes and supplied to channels. Here we present a framework for such a model, as a first step toward building a `geomorphic transport law' that balances mechanistic realism with computational simplicity and is widely applicable across diverse landscapes. The goal is to take as inputs landscape-scale boundary conditions such as lithology, climate and tectonics, and predict the spatial variation in the size distribution of sediments supplied to channels across catchments. The model framework has two components. The first predicts the initial size distribution of particles produced by erosion of bedrock underlying hillslopes, while the second accounts for the effects of physical and chemical weathering during transport down slopes and delivery to channels. The initial size distribution can be related to the spacing and orientation of fractures within bedrock, which depend on the stresses and deformation experienced during exhumation and on rock resistance to fracture propagation. Other controls on initial size include the sizes of mineral grains in crystalline rocks, the sizes of cemented particles in clastic sedimentary rocks, and the potential for characteristic size distributions produced by tree throw, frost cracking, and other erosional processes. To model how weathering processes transform the initial size distribution we consider the effects of erosion rate and the thickness of soil and weathered bedrock on hillslope residence time. Residence time determines the extent of size reduction, for given values of model terms that represent the potential for chemical and physical weathering. Chemical weathering potential is parameterized in terms of mean annual precipitation and temperature, and the fraction of soluble minerals. Physical weathering potential can be parameterized in terms of topographic attributes, including slope, curvature and aspect. Finally, we compare model predictions with field data from Inyo Creek in the Sierra Nevada Mtns, USA.
NASA Astrophysics Data System (ADS)
Furbish, D. J.; Roering, J. J.
2013-12-01
Recent discussions of local versus nonlocal sediment transport on hillslopes offer a lens for considering uncertainty in formulations of transport rates that are aimed at characterizing patchy, intermittent sediment motions in steeplands. Here we describe a general formulation for transport that is based on a convolution integral of the factors controlling the entrainment and disentrainment of sediment particles on a hillslope. In essence, such a formulation represents a ';flux' version of the Master equation, a general probabilistic (kinematic) formulation of mass conservation. As such, with the relevant physics invoked to represent entrainment and disentrainment, a nonlocal formulation quite happily accommodates local transport (and looks/behaves like a local formulation), as well as nonlocal transport, depending on the characteristic length scale of particle motions relative to the length scale at which the factors controlling particle transport are defined or measured. Nonetheless, nonlocal formulations of the sediment flux have mostly (but not entirely) outpaced experimental and field-based observations needed to inform the theory. At risk is bringing to bear a sophisticated mathematics that is not supported by our uncertain understanding of the processes involved. Experimental and field-based measurements of entrainment rates and particle travel distances are difficult to obtain, notably given the intermittency of many hillslope transport processes and the slow rates of change in hillslope morphology. A ';test' of a specific nonlocal formulation applied to hillslope evolution must therefore in part rest on consistency between measured hillslope configurations and predicted (i.e., modeled) hillslope configurations predicated on the proposed nonlocal formulation, assuming sufficient knowledge of initial and boundary conditions. On the other hand, because of its probabilistic basis, the formulation is in principle well suited to the task of describing transport relevant to geomorphic timescales -- in view of the stochastic nature of the transport processes occurring over these timescales and the uncertainty of our understanding of the physics involved. Moreover, in its basic form, the nonlocal formulation of the sediment flux is such that appropriate physics can be readily embedded within it as we learn more. And, the formulation is space-time averaged in a way that accommodates discontinuous (patchy, intermittent) sediment motions.
Digital system for structural dynamics simulation
NASA Technical Reports Server (NTRS)
Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.
1982-01-01
State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.
Rizzo, Christie J.; Esposito-Smythers, Christianne; Spirito, Anthony; Thompson, Ariel
2010-01-01
The presence of dating violence victimization as well as its relation to psychiatric diagnosis and cognitive processes was examined in a sample of 155 adolescents hospitalized in a psychiatric facility. Participants and their parents completed semi-structured diagnostic interviews. Participants also completed self-report measures of dating violence victimization and cognitive functioning. Seventy-seven percent of adolescents who had initiated dating reported psychological, physical, and/or sexual abuse by a dating partner over the past year. Victims of psychological abuse alone as well as physical and/or sexual violence endorsed higher rates of major depressive disorder compared to non-victims. Physical/sexual dating violence victims also endorsed significantly higher rates of PTSD and alcohol use disorders, more frequent co-occurrence of externalizing and internalizing disorders, and more frequent negative cognitive biases, relative to non-victimized adolescents. Findings suggest that psychiatrically hospitalized adolescents with dating violence histories represent a subgroup of adolescent inpatients with a particularly serious clinical picture. PMID:20824193
Atomic and molecular far-infrared lines from high redshift galaxies
NASA Astrophysics Data System (ADS)
Vallini, L.
2015-03-01
The advent of Atacama Large Millimeter-submillimeter Array (ALMA), with its unprecedented sensitivity, makes it possible the detection of far-infrared (FIR) metal cooling and molecular lines from the first galaxies that formed after the Big Bang. These lines represent a powerful tool to shed light on the physical properties of the interstellar medium (ISM) in high-redshift sources. In what follows we show the potential of a physically motivated theoretical approach that we developed to predict the ISM properties of high redshift galaxies. The model allows to infer, as a function of the metallicity, the luminosities of various FIR lines observable with ALMA. It is based on high resolution cosmological simulations of star-forming galaxies at the end of the Epoch of Reionization (z˜eq6) , further implemented with sub-grid physics describing the cooling and the heating processes that take place in the neutral diffuse ISM. Finally we show how a different approach based on semi-analytical calculations can allow to predict the CO flux function at z>6.
NASA Astrophysics Data System (ADS)
Junk, S.
2016-08-01
Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.
Overview of Icing Physics Relevant to Scaling
NASA Technical Reports Server (NTRS)
Anderson, David N.; Tsao, Jen-Ching
2005-01-01
An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading edge heat balance have also been used for convenience. By equating scale expressions for these parameters to the values to be simulated a set of equations is produced which can be solved for the scale test conditions. Studies in the past few years have shown that at least one parameter in addition to those mentioned above is needed to describe surface-water effects, and some of the traditional parameters may not be as significant as once thought. Insight into the importance of each parameter, and the physical processes it represents, can be made by viewing whether ice shapes change, and the extent of the change, when each parameter is varied. Experimental evidence is presented to establish the importance of each of the traditionally used parameters and to identify the possible form of a new similarity parameter to be used for scaling.
Measurement theory in local quantum physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, Kazuya, E-mail: okamura@math.cm.is.nagoya-u.ac.jp; Ozawa, Masanao, E-mail: ozawa@is.nagoya-u.ac.jp
In this paper, we aim to establish foundations of measurement theory in local quantum physics. For this purpose, we discuss a representation theory of completely positive (CP) instruments on arbitrary von Neumann algebras. We introduce a condition called the normal extension property (NEP) and establish a one-to-one correspondence between CP instruments with the NEP and statistical equivalence classes of measuring processes. We show that every CP instrument on an atomic von Neumann algebra has the NEP, extending the well-known result for type I factors. Moreover, we show that every CP instrument on an injective von Neumann algebra is approximated bymore » CP instruments with the NEP. The concept of posterior states is also discussed to show that the NEP is equivalent to the existence of a strongly measurable family of posterior states for every normal state. Two examples of CP instruments without the NEP are obtained from this result. It is thus concluded that in local quantum physics not every CP instrument represents a measuring process, but in most of physically relevant cases every CP instrument can be realized by a measuring process within arbitrary error limits, as every approximately finite dimensional von Neumann algebra on a separable Hilbert space is injective. To conclude the paper, the concept of local measurement in algebraic quantum field theory is examined in our framework. In the setting of the Doplicher-Haag-Roberts and Doplicher-Roberts theory describing local excitations, we show that an instrument on a local algebra can be extended to a local instrument on the global algebra if and only if it is a CP instrument with the NEP, provided that the split property holds for the net of local algebras.« less
Children's organized physical activity patterns from childhood into adolescence.
Findlay, Leanne C; Garner, Rochelle E; Kohen, Dafna E
2009-11-01
Few longitudinal studies of physical activity have included young children or used nationally representative datasets. The purpose of the current study was to explore patterns of organized physical activity for Canadian children aged 4 through 17 years. Data from 5 cycles of the National Longitudinal Survey of Children and Youth were analyzed separately for boys (n = 4463) and girls (n = 4354) using multiple trajectory modeling. Boys' and girls' organized physical activity was best represented by 3 trajectory groups. For boys, these groups were labeled: high stable, high decreasing, and low decreasing participation. For girls, these groups were labeled: high decreasing, moderate stable, and low decreasing participation. Risk factors (parental education, household income, urban/rural dwelling, and single/dual parent) were explored. For boys and girls, having a parent with postsecondary education and living in a higher income household were associated with a greater likelihood of weekly participation in organized physical activity. Living in an urban area was also significantly associated with a greater likelihood of weekly participation for girls. Results suggest that Canadian children's organized physical activity is best represented by multiple patterns of participation that tend to peak in middle childhood and decline into adolescence.
New physical concepts for cell amoeboid motion.
Evans, E
1993-01-01
Amoeboid motion of cells is an essential mechanism in the function of many biological organisms (e.g., the regiment of scavenger cells in the immune defense system of animals). This process involves rapid chemical polymerization (with numerous protein constituents) to create a musclelike contractile network that advances the cell over the surface. Significant progress has been made in the biology and biochemistry of motile cells, but the physical dynamics of cell spreading and contraction are not well understood. The reason is that general approaches are formulated from complex mass, momentum, and chemical reaction equations for multiphase-multicomponent flow with the nontrivial difficulty of moving boundaries. However, there are strong clues to the dynamics that allow bold steps to be taken in simplifying the physics of motion. First, amoeboid cells often exhibit exceptional kinematics, i.e., steady advance and retraction of local fixed-shape patterns. Second, recent evidence has shown that cell projections "grow" by polymerization along the advancing boundary of the cell. Together, these characteristics represent a local growth process pinned to the interfacial contour of a contractile network. As such, the moving boundary becomes tractable, but subtle features of the motion lead to specific requirements for the chemical nature of the boundary polymerization process. To demonstrate these features, simple examples for limiting conditions of substrate interaction (i.e., "strong" and "weak" adhesion) are compared with data from experimental studies of yeast particle engulfment by blood granulocytes and actin network dynamics in fishscale keratocytes. Images FIGURE 2 FIGURE 4 PMID:8494986
New physical concepts for cell amoeboid motion.
Evans, E
1993-04-01
Amoeboid motion of cells is an essential mechanism in the function of many biological organisms (e.g., the regiment of scavenger cells in the immune defense system of animals). This process involves rapid chemical polymerization (with numerous protein constituents) to create a musclelike contractile network that advances the cell over the surface. Significant progress has been made in the biology and biochemistry of motile cells, but the physical dynamics of cell spreading and contraction are not well understood. The reason is that general approaches are formulated from complex mass, momentum, and chemical reaction equations for multiphase-multicomponent flow with the nontrivial difficulty of moving boundaries. However, there are strong clues to the dynamics that allow bold steps to be taken in simplifying the physics of motion. First, amoeboid cells often exhibit exceptional kinematics, i.e., steady advance and retraction of local fixed-shape patterns. Second, recent evidence has shown that cell projections "grow" by polymerization along the advancing boundary of the cell. Together, these characteristics represent a local growth process pinned to the interfacial contour of a contractile network. As such, the moving boundary becomes tractable, but subtle features of the motion lead to specific requirements for the chemical nature of the boundary polymerization process. To demonstrate these features, simple examples for limiting conditions of substrate interaction (i.e., "strong" and "weak" adhesion) are compared with data from experimental studies of yeast particle engulfment by blood granulocytes and actin network dynamics in fishscale keratocytes.
Semantic modeling of plastic deformation of polycrystalline rock
NASA Astrophysics Data System (ADS)
Babaie, Hassan A.; Davarpanah, Armita
2018-02-01
We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.
A Low Power, Parallel Wearable Multi-Sensor System for Human Activity Evaluation.
Li, Yuecheng; Jia, Wenyan; Yu, Tianjian; Luan, Bo; Mao, Zhi-Hong; Zhang, Hong; Sun, Mingui
2015-04-01
In this paper, the design of a low power heterogeneous wearable multi-sensor system, built with Zynq System-on-Chip (SoC), for human activity evaluation is presented. The powerful data processing capability and flexibility of this SoC represent significant improvements over our previous ARM based system designs. The new system captures and compresses multiple color images and sensor data simultaneously. Several strategies are adopted to minimize power consumption. Our wearable system provides a new tool for the evaluation of human activity, including diet, physical activity and lifestyle.
Homogeneous and heterogeneous chemistry along air parcel trajectories
NASA Technical Reports Server (NTRS)
Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.
1990-01-01
The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.
Socio-economic vulnerability to natural hazards - proposal for an indicator-based model
NASA Astrophysics Data System (ADS)
Eidsvig, U.; McLean, A.; Vangelsten, B. V.; Kalsnes, B.; Ciurean, R. L.; Argyroudis, S.; Winter, M.; Corominas, J.; Mavrouli, O. C.; Fotopoulou, S.; Pitilakis, K.; Baills, A.; Malet, J. P.
2012-04-01
Vulnerability assessment, with respect to natural hazards, is a complex process that must consider multiple dimensions of vulnerability, including both physical and social factors. Physical vulnerability refers to conditions of physical assets, and may be modeled by the intensity and magnitude of the hazard, the degree of physical protection provided by the natural and built environment, and the physical robustness of the exposed elements. Social vulnerability refers to the underlying factors leading to the inability of people, organizations, and societies to withstand impacts from the natural hazards. Social vulnerability models can be used in combination with physical vulnerability models to estimate both direct losses, i.e. losses that occur during and immediately after the impact, as well as indirect losses, i.e. long-term effects of the event. Direct impact of a landslide typically includes casualties and damages to buildings and infrastructure while indirect losses may e.g. include business closures or limitations in public services. The direct losses are often assessed using physical vulnerability indicators (e.g. construction material, height of buildings), while indirect losses are mainly assessed using social indicators (e.g. economical resources, demographic conditions). Within the EC-FP7 SafeLand research project, an indicator-based method was proposed to assess relative socio-economic vulnerability to landslides. The indicators represent the underlying factors which influence a community's ability to prepare for, deal with, and recover from the damage associated with landslides. The proposed model includes indicators representing demographic, economic and social characteristics as well as indicators representing the degree of preparedness and recovery capacity. Although the model focuses primarily on the indirect losses, it could easily be extended to include more physical indicators which account for the direct losses. Each indicator is individually ranked from 1 (lowest vulnerability) to 5 (highest vulnerability) and weighted, based on its overall degree of influence. The indicator weights range from 1 (least influential) to 3 (most influential) and have been selected on the basis of expert judgment. The final vulnerability score is taken as the weighted average of the individual indicators. The method was applied for locations in Norway, Greece, France, Andorra and Romania. The purpose of the case studies was to compare vulnerability levels and to test and possibly improve the methodology. In the case studies, similar vulnerability scores were obtained for the locations in Norway, Andorra and France. A higher vulnerability score was obtained for the location in Greece, while the highest vulnerability score was obtained for the location in Romania. The higher score for the locations in Greece and Romania are mainly due to economic conditions and conditions regarding preparedness and recovery.
NASA Astrophysics Data System (ADS)
Tan, Z.; Schneider, T.; Teixeira, J.; Lam, R.; Pressel, K. G.
2014-12-01
Sub-grid scale (SGS) closures in current climate models are usually decomposed into several largely independent parameterization schemes for different cloud and convective processes, such as boundary layer turbulence, shallow convection, and deep convection. These separate parameterizations usually do not converge as the resolution is increased or as physical limits are taken. This makes it difficult to represent the interactions and smooth transition among different cloud and convective regimes. Here we present an eddy-diffusivity mass-flux (EDMF) closure that represents all sub-grid scale turbulent, convective, and cloud processes in a unified parameterization scheme. The buoyant updrafts and precipitative downdrafts are parameterized with a prognostic multiple-plume mass-flux (MF) scheme. The prognostic term for the mass flux is kept so that the life cycles of convective plumes are better represented. The interaction between updrafts and downdrafts are parameterized with the buoyancy-sorting model. The turbulent mixing outside plumes is represented by eddy diffusion, in which eddy diffusivity (ED) is determined from a turbulent kinetic energy (TKE) calculated from a TKE balance that couples the environment with updrafts and downdrafts. Similarly, tracer variances are decomposed consistently between updrafts, downdrafts and the environment. The closure is internally coupled with a probabilistic cloud scheme and a simple precipitation scheme. We have also developed a relatively simple two-stream radiative scheme that includes the longwave (LW) and shortwave (SW) effects of clouds, and the LW effect of water vapor. We have tested this closure in a single-column model for various regimes spanning stratocumulus, shallow cumulus, and deep convection. The model is also run towards statistical equilibrium with climatologically relevant large-scale forcings. These model tests are validated against large-eddy simulation (LES) with the same forcings. The comparison of results verifies the capacity of this closure to realistically represent different cloud and convective processes. Implementation of the closure in an idealized GCM allows us to study cloud feedbacks to climate change and to study the interactions between clouds, convections, and the large-scale circulation.
Wabnitz, Pascal; Martens, Ulla; Neuner, Frank
2016-01-01
Social anxiety disorder (SAD) is associated with heightened sensitivity to threat cues, typically represented by emotional facial expressions. To examine if this bias can be transferred to a general hypersensitivity or whether it is specific to disorder relevant cues, we investigated electrophysiological correlates of emotional word processing (alpha activity and event-related potentials) in 20 healthy participants and 20 participants with SAD. The experimental task was a silent reading of neutral, positive, physically threatening and socially threatening words (the latter were abusive swear words) while responding to a randomly presented dot. Subsequently, all participants were asked to recall as many words as possible during an unexpected recall test. Participants with SAD showed blunted sensory processing followed by a rapid processing of emotional words during early stages (early posterior negativity - EPN). At later stages, all participants showed enhanced processing of negative (physically and socially threatening) compared to neutral and positive words (N400). Moreover, at later processing stages alpha activity was increased specifically for negative words in participants with SAD but not in healthy controls. Recall of emotional words for all subjects was best for socially threatening words, followed by negative and positive words irrespective of social anxiety. The present findings indicate that SAD is associated with abnormalities in emotional word processing characterised by early hypervigilance to emotional cues followed by cognitive avoidance at later processing stages. Most importantly, the specificity of these attentional biases seems to change as a function of time with a general emotional bias at early and a more specific bias at later processing stages.
NASA Astrophysics Data System (ADS)
Duerbeck, H. W.; Heck, A.; Houziaux, L.
These are the timely and well-edited proceedings of a colloquium dealing with the present state and the future of "communication'' in astronomy. While communication in the past was mainly restricted to printed journals, conferences and colloquia, things have changed dramatically in the last decades. Journals have gone online, and runs of paper copies are slowly declining. 25 astronomers and representatives of various publishing institutions met in Brussels in June 2007 to discuss the future and the different options of information communication and -exchange. 16 contributions are supplemented by summaries of discussions held at the meeting. After a general overview of one of the organizers, who has played a key role in various aspects of information exchange, several representatives discuss future plans of their publications: K.B. Marvel presents the AAS journals (ApJ parts I and II, ApJS, AJ, which are just being transferred from the University of Chicago Press to Institute of Physics Publishing). P. Murdin represents the RAS and its main journal, the MNRAS. "Open Access'' is of course one of the key words of this conference. Producing a journal (either on paper or electronically) is expensive. For the AAS journals, these costs are shared between authors andsubscribers. Future plans are to abandon "paper copies'' at all, although "printable pages'' will continue to be provided. For MNRAS, it is the subscribers who pay. And if it would have "open access'', authors would have to be charged for publication.Some research funding agencies demand that scientific results that they have sponsored should appear online, and freely available (at least after a certaintime). Various approaches were outlined by representatives of publishers (Wiley-Blackwell, Springer, Elsevier, EDP Sciences). S. Plaszczynski introduced a project for "open access'' in the field of high energy physics. To replace "repositories'' and collections of "preprints'' that may have never made it to the pages of journals for various reasons, a SCOAP model was initiated. This "Sponsoring Consortium for Open Access Publishing in Particle Physics'' will be a global network of funding agencies, laboratories and libraries that will provide the necessary funding for publishing material in the main journals for high energy physics (involving four publishers). M. Kurtz outlined the "Open access policy'' of Smithsonian/NASA Astrophysics Data System (ADS), while T. Mahoney voiced some caution, since open access may lead to a deterioration or even collapse of the publication process. W. B. Burton and H. A. Abt discussed long-term trends in research literature, while C. Madsen and L. L. Christensen discussed aspects of communication of specialists with politicians and the public. We could only give a brief summary of this book. Many thought-provoking ideas simply defied being abstracted. Anyone who is interested in the publication process in astronomy and its aspects in the future will find a lot of interesting reading in these proceedings.
Skeptical notes on a physics of passage.
Huggett, Nick
2014-10-01
This paper investigates the mathematical representation of time in physics. In existing theories, time is represented by the real numbers, hence their formal properties represent properties of time: these are surveyed. The central question of the paper is whether the existing representation of time is adequate, or whether it can or should be supplemented: especially, do we need a physics incorporating some kind of "dynamical passage" of time? The paper argues that the existing mathematical framework is resistant to such changes, and might have to be rejected by anyone seeking a physics of passage. Then it rebuts two common arguments for incorporating passage into physics, especially the claim that it is an element of experience. Finally, the paper investigates whether, as has been claimed, causal set theory provides a physics of passage. © 2014 New York Academy of Sciences.
The relationship between housing conditions and health status of rooming house residents in Toronto.
Hwang, Stephen W; Martin, Rochelle E; Tolomiczenko, George S; Hulchanski, J David
2003-01-01
Rooming houses are an important source of housing for low-income Canadians. Little information is available on the relationship between housing conditions and health status in this vulnerable population. Interviews were conducted with a representative sample of 295 residents in 171 rooming houses in Toronto. Health status was assessed using the SF-36. The physical attractiveness of each rooming house was rated using the Multiphasic Environmental Assessment Procedure. Associations between the health status of residents and the physical attractiveness and organizational characteristics of rooming houses were examined. Rooming house residents aged 35 years and older had significantly poorer health status than their counterparts in the Canadian general population. Eight of the ten dimensions of individual health status assessed by the SF-36 were significantly correlated with the physical attractiveness of the rooming house in which the individual lived. However, there was no significant association between residents' health status and the rooming house's non-profit status, provision of meals, or the presence of an on-site landlord. Rooming house residents suffer from a high prevalence of ill health. Residents reporting worst health are concentrated in rooming houses in the poorest physical condition. This relationship may be mediated by selection processes that place the sickest individuals in the lowest-quality rooming houses, and/or by a direct effect of adverse housing conditions on health status. Further research is needed to elucidate these processes and to improve the health of this vulnerable population.
Application of the epidemiological model in studying human error in aviation
NASA Technical Reports Server (NTRS)
Cheaney, E. S.; Billings, C. E.
1981-01-01
An epidemiological model is described in conjunction with the analytical process through which aviation occurrence reports are composed into the events and factors pertinent to it. The model represents a process in which disease, emanating from environmental conditions, manifests itself in symptoms that may lead to fatal illness, recoverable illness, or no illness depending on individual circumstances of patient vulnerability, preventive actions, and intervention. In the aviation system the analogy of the disease process is the predilection for error of human participants. This arises from factors in the operating or physical environment and results in errors of commission or omission that, again depending on the individual circumstances, may lead to accidents, system perturbations, or harmless corrections. A discussion of the previous investigations, each of which manifests the application of the epidemiological method, exemplifies its use and effectiveness.
Differences in gender performance on competitive physics selection tests
NASA Astrophysics Data System (ADS)
Wilson, Kate; Low, David; Verdon, Matthew; Verdon, Alix
2016-12-01
[This paper is part of the Focused Collection on Gender in Physics.] We have investigated gender differences in performance over the past eight years on the Australian Science Olympiad Exam (ASOE) for physics, which is taken by nearly 1000 high school students each year. The ASOE, run by Australian Science Innovations (ASI), is the initial stage of the process of selection of teams to represent Australia at the Asian and International Physics Olympiads. Students taking the exam are generally in their penultimate year of school and selected by teachers as being high performing in physics. Together with the overall differences in facility, we have investigated how the content and presentation of multiple-choice questions (MCQs) affects the particular answers selected by male and female students. Differences in the patterns of responses by male and female students indicate that males and females might be modeling situations in different ways. Some strong patterns were found in the gender gaps when the questions were categorized in five broad dimensions: content, process required, difficulty, presentation, and context. Almost all questions saw male students performing better, although gender differences were relatively small for questions with a more abstract context. Male students performed significantly better on most questions with a concrete context, although notable exceptions were found, including two such questions where female students performed better. Other categories that showed consistently large gaps favoring male students include questions with projectile motion and other two-dimensional motion or forces content, and processes involving interpreting diagrams. Our results have important implications, suggesting that we should be able to reduce the gender gaps in performance on MCQ tests by changing the way information is presented and setting questions in contexts that are less likely to favor males over females. This is important as MCQ tests are frequently used as diagnostic tests and aptitude tests as well as to assess learning.
Allostatic load and comorbidities: A mitochondrial, epigenetic, and evolutionary perspective.
Juster, Robert-Paul; Russell, Jennifer J; Almeida, Daniel; Picard, Martin
2016-11-01
Stress-related pathophysiology drives comorbid trajectories that elude precise prediction. Allostatic load algorithms that quantify biological "wear and tear" represent a comprehensive approach to detect multisystemic disease processes of the mind and body. However, the multiple morbidities directly or indirectly related to stress physiology remain enigmatic. Our aim in this article is to propose that biological comorbidities represent discrete pathophysiological processes captured by measuring allostatic load. This has applications in research and clinical settings to predict physical and psychiatric comorbidities alike. The reader will be introduced to the concepts of allostasis, allostasic states, allostatic load, and allostatic overload as they relate to stress-related diseases and the proposed prediction of biological comorbidities that extend rather to understanding psychopathologies. In our transdisciplinary discussion, we will integrate perspectives related to (a) mitochondrial biology as a key player in the allostatic load time course toward diseases that "get under the skin and skull"; (b) epigenetics related to child maltreatment and biological embedding that shapes stress perception throughout lifespan development; and (c) evolutionary drivers of distinct personality profiles and biobehavioral patterns that are linked to dimensions of psychopathology.
Spatial and Temporal Scales of Surface Water-Groundwater Interactions
NASA Astrophysics Data System (ADS)
Boano, F.
2016-12-01
The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.
Finsler Geometry of Nonlinear Elastic Solids with Internal Structure
2017-01-01
should enable regularized numerical solutions with discretization -size independence for representation of materials demonstrating softening, e.g...additional possibility of a discrete larger void/cavity forming at the core of the sphere. In the second case, comparison with the classical...core of the domain. This hollow sphere physically represents a discrete cavity, while the constant field ξH physically represents a continuous
An integrated brain-behavior model for working memory.
Moser, D A; Doucet, G E; Ing, A; Dima, D; Schumann, G; Bilder, R M; Frangou, S
2017-12-05
Working memory (WM) is a central construct in cognitive neuroscience because it comprises mechanisms of active information maintenance and cognitive control that underpin most complex cognitive behavior. Individual variation in WM has been associated with multiple behavioral and health features including demographic characteristics, cognitive and physical traits and lifestyle choices. In this context, we used sparse canonical correlation analyses (sCCAs) to determine the covariation between brain imaging metrics of WM-network activation and connectivity and nonimaging measures relating to sensorimotor processing, affective and nonaffective cognition, mental health and personality, physical health and lifestyle choices derived from 823 healthy participants derived from the Human Connectome Project. We conducted sCCAs at two levels: a global level, testing the overall association between the entire imaging and behavioral-health data sets; and a modular level, testing associations between subsets of the two data sets. The behavioral-health and neuroimaging data sets showed significant interdependency. Variables with positive correlation to the neuroimaging variate represented higher physical endurance and fluid intelligence as well as better function in multiple higher-order cognitive domains. Negatively correlated variables represented indicators of suboptimal cardiovascular and metabolic control and lifestyle choices such as alcohol and nicotine use. These results underscore the importance of accounting for behavioral-health factors in neuroimaging studies of WM and provide a neuroscience-informed framework for personalized and public health interventions to promote and maintain the integrity of the WM network.Molecular Psychiatry advance online publication, 5 December 2017; doi:10.1038/mp.2017.247.
Kelaiditi, E; Cesari, M; Canevelli, M; van Kan, G Abellan; Ousset, P-J; Gillette-Guyonnet, S; Ritz, P; Duveau, F; Soto, M E; Provencher, V; Nourhashemi, F; Salvà, A; Robert, P; Andrieu, S; Rolland, Y; Touchon, J; Fitten, J L; Vellas, B
2013-09-01
The frailty syndrome has recently attracted attention of the scientific community and public health organizations as precursor and contributor of age-related conditions (particularly disability) in older persons. In parallel, dementia and cognitive disorders also represent major healthcare and social priorities. Although physical frailty and cognitive impairment have shown to be related in epidemiological studies, their pathophysiological mechanisms have been usually studied separately. An International Consensus Group on "Cognitive Frailty" was organized by the International Academy on Nutrition and Aging (I.A.N.A) and the International Association of Gerontology and Geriatrics (I.A.G.G) on April 16th, 2013 in Toulouse (France). The present report describes the results of the Consensus Group and provides the first definition of a "Cognitive Frailty" condition in older adults. Specific aim of this approach was to facilitate the design of future personalized preventive interventions in older persons. Finally, the Group discussed the use of multidomain interventions focused on the physical, nutritional, cognitive and psychological domains for improving the well-being and quality of life in the elderly. The consensus panel proposed the identification of the so-called "cognitive frailty" as an heterogeneous clinical manifestation characterized by the simultaneous presence of both physical frailty and cognitive impairment. In particular, the key factors defining such a condition include: 1) presence of physical frailty and cognitive impairment (CDR=0.5); and 2) exclusion of concurrent AD dementia or other dementias. Under different circumstances, cognitive frailty may represent a precursor of neurodegenerative processes. A potential for reversibility may also characterize this entity. A psychological component of the condition is evident and concurs at increasing the vulnerability of the individual to stressors.
Parnell, Daniel; Pringle, Andy; McKenna, Jim; Zwolinsky, Stephen; Rutherford, Zoe; Hargreaves, Jackie; Trotter, Lizzie; Rigby, Michael; Richardson, David
2015-03-05
Older adults (OA) represent a core priority group for physical activity and Public Health policy. As a result, significant interest is placed on how to optimise adherence to interventions promoting these approaches. Extra Time (ET) is an example of a national programme of physical activity interventions delivered in professional football clubs for OA aged 55+ years. This paper aims to examine the outcomes from ET, and unpick the processes by which these outcomes were achieved. This paper represents a secondary analysis of data collected during the evaluation of ET. From the 985 OA reached by ET, n=486 adopted the programme and completed post-intervention surveys (typically 12 weeks). We also draw on interview data with 18 ET participants, and 7 staff who delivered the programme. Data were subject to thematic analysis to generate overarching and sub themes. Of the 486 participants, the majority 95%, (n= 462) were White British and 59.7% (n=290) were female. Most adopters (65.4%/n=318) had not participated in previous interventions in the host clubs. Social interaction was the most frequently reported benefit of participation (77.2%, n=375). While the reach of the club badge was important in letting people know about the programme, further work enhanced adoption and satisfaction. These factors included (i) listening to participants, (ii) delivering a flexible age-appropriate programme of diverse physical and social activities, (iii) offering activities which satisfy energy drives and needs for learning and (iv) extensive opportunities for social engagement. Findings emerging from this study indicate that physical activity and health interventions delivered through professional football clubs can be effective for engaging OA.
Stevelink, S A M; Malcolm, E M; Mason, C; Jenkins, S; Sundin, J; Fear, N T
2015-04-01
Having a visual, hearing or physical impairment (defined as problems in body function or structure) may adversely influence the mental well-being of military personnel. This paper reviews the existing literature regarding the prevalence of mental health problems among (ex-)military personnel who have a permanent, predominantly, physical impairment. Multiple electronic literature databases were searched for relevant studies (EMBASE (1980-January 2014), MEDLINE (1946-January 2014), PsycINFO (2002-January 2014), Web of Science (1975-January 2014)). 25 papers were included in the review, representing 17 studies. Studies conducted among US military personnel (n=8) were most represented. A range of mental health disorders were investigated; predominately post-traumatic stress disorder (PTSD), but also depression, anxiety disorder (excluding PTSD), psychological distress and alcohol misuse. The findings indicate that mental health disorders including PTSD (range 2-59%), anxiety (range 16.1-35.5%), depression (range 9.7-46.4%) and psychological distress (range 13.4-36%) are frequently found whereby alcohol misuse was least common (range 2.2-26.2%). Common mental health disorders were frequently identified among (ex-)military personnel with a physical impairment. Adequate care and support is necessary during the impairment adaptation process to facilitate the psychosocial challenges (ex-)military personnel with an impairment face. Future research should be directed into factors impacting on the mental well-being of (ex-)military personnel with an impairment, how prevalence rates vary across impairment types and to identify and act on specific needs for care and support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Prevalence and Correlates of Physical Fitness Testing in U.S. Schools--2000
ERIC Educational Resources Information Center
Morrow, James R., Jr.; Fulton, Janet E.; Brener, Nancy D.; Kohl, Harold W., III
2008-01-01
Because of the perceived lack of youth physical fitness and/or concerns for increased obesity, physical education teachers are interested in youth fitness and physical activity levels. Statewide mandates are being developed that require school-based teachers to complete physical fitness testing. Data from the nationally representative School…
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder…
Chappell, Jackie; Hawes, Nick
2012-01-01
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571
DNA as information: at the crossroads between biology, mathematics, physics and chemistry
2016-01-01
On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems—or parts of them—within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. PMID:26857674
Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review.
Wang, Jianlong; Wang, Shizong
2016-11-01
The pharmaceutical and personal care products (PPCPs) are emerging pollutants which might pose potential hazards to environment and health. These pollutants are becoming ubiquitous in the environments because they cannot be effectively removed by the conventional wastewater treatment plants due to their toxic and recalcitrant performance. The presence of PPCPs has received increasing attention in recent years, resulting in great concern on their occurrence, transformation, fate and risk in the environments. A variety of technologies, including physical, biological and chemical processes have been extensively investigated for the removal of PPCPs from wastewater. In this paper, the classes, functions and the representatives of the frequently detected PPCPs in aquatic environments were summarized. The analytic methods for PPCPs were briefly introduced. The removal efficiency of PPCPs by wastewater treatment plants was analyzed and discussed. The removal of PPCPs from wastewater by physical, chemical and biological processes was analyzed, compared and summarized. Finally, suggestions are made for future study of PPCPs. This review can provide an overview for the removal of PPCPs from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.
2012-09-24
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less
Chappell, Jackie; Hawes, Nick
2012-10-05
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.
Environmental influences on food choice, physical activity and energy balance.
Popkin, Barry M; Duffey, Kiyah; Gordon-Larsen, Penny
2005-12-15
In this paper, the environment is defined as the macro- and community-level factors, including physical, legal and policy factors, that influence household and individual decisions. Thus, environment is conceived as the external context in which household and individual decisions are made. This paper reviews the literature on the ways the environment affects diet, physical activity, and obesity. Other key environmental factors discussed include economic, legal, and policy factors. Behind the major changes in diet and physical activity in the US and globally lie large shifts in food production, processing, and distribution systems as well as food shopping and eating options, resulting in the increase in availability of energy-dense foods. Similarly, the ways we move at home, work, leisure, and travel have shifted markedly, resulting in substantial reductions in energy expenditure. Many small area studies have linked environmental shifts with diet and activity changes. This paper begins with a review of environmental influences on diet and physical activity, and includes the discussion of two case studies on environmental influences on physical activity in a nationally representative sample of US adolescents. The case studies illustrate the important role of physical activity resources and the inequitable distribution of such activity-related facilities and resources, with high minority, low educated populations at strong disadvantage. Further, the research shows a significant association of such facilities with individual-level health behavior. The inequity in environmental supports for physical activity may underlie health disparities in the US population.
Planar Multipol-Resonance-Probe: A Spectral Kinetic Approach
NASA Astrophysics Data System (ADS)
Friedrichs, Michael; Gong, Junbo; Brinkmann, Ralf Peter; Oberrath, Jens; Wilczek, Sebastian
2016-09-01
Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP (pMRP). Introducing the spectral kinetic formalism leads to a reduced simulation-circle compared to particle-in-cell simulations. The model of the pMRP is implemented and first simulation results are presented.
Quark contact interactions at the LHC
NASA Astrophysics Data System (ADS)
Bazzocchi, F.; De Sanctis, U.; Fabbrichesi, M.; Tonero, A.
2012-06-01
Quark contact interactions are an important signal of new physics. We introduce a model in which the presence of a symmetry protects these new interactions from giving large corrections in flavor changing processes at low energies. This minimal model provides the basic set of operators which must be considered to contribute to the high-energy processes. To discuss their experimental signature in jet pairs produced in proton-proton collisions, we simplify the number of possible operators down to two. We show (for a representative integrated luminosity of 200pb-1 at s=7TeV) how the presence of two operators significantly modifies the bound on the characteristic energy scale of the contact interactions, which is obtained by keeping a single operator.
Computer simulation of surface and film processes
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Halicioglu, M. T.
1983-01-01
Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Garratt, M. W.
1977-01-01
A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.
NASA Astrophysics Data System (ADS)
Coon, E.; Jan, A.; Painter, S. L.; Moulton, J. D.; Wilson, C. J.
2017-12-01
Many permafrost-affected regions in the Arctic manifest a polygonal patterned ground, which contains large carbon stores and is vulnerability to climate change as warming temperatures drive melting ice wedges, polygon degradation, and thawing of the underlying carbon-rich soils. Understanding the fate of this carbon is difficult. The system is controlled by complex, nonlinear physics coupling biogeochemistry, thermal-hydrology, and geomorphology, and there is a strong spatial scale separation between microtopograpy (at the scale of an individual polygon) and the scale of landscape change (at the scale of many thousands of polygons). Physics-based models have come a long way, and are now capable of representing the diverse set of processes, but only on individual polygons or a few polygons. Empirical models have been used to upscale across land types, including ecotypes evolving from low-centered (pristine) polygons to high-centered (degraded) polygon, and do so over large spatial extent, but are limited in their ability to discern causal process mechanisms. Here we present a novel strategy that looks to use physics-based models across scales, bringing together multiple capabilities to capture polygon degradation under a warming climate and its impacts on thermal-hydrology. We use fine-scale simulations on individual polygons to motivate a mixed-dimensional strategy that couples one-dimensional columns representing each individual polygon through two-dimensional surface flow. A subgrid model is used to incorporate the effects of surface microtopography on surface flow; this model is described and calibrated to fine-scale simulations. And critically, a subsidence model that tracks volume loss in bulk ice wedges is used to alter the subsurface structure and subgrid parameters, enabling the inclusion of the feedbacks associated with polygon degradation. This combined strategy results in a model that is able to capture the key features of polygon permafrost degradation, but in a simulation across a large spatial extent of polygonal tundra.
NASA Technical Reports Server (NTRS)
Weekes, Trevor C.
1998-01-01
There are few things more intriguing in high energy astrophysics than the study of the highest energy particles in the universe. Where and how these particles achieve their extreme energies is of interest not only to the astrophysicist but also to the particle physicist. At GeV and TeV energies the problem is manageable since the physics is known and the acceleration processes feasible. But the energy spectrum extends to 10(exp 20)Ev and there the problem of their origin is both more difficult and interesting; in fact at these high energies we do not even know what the particles are. The study of the origin and distribution of relativistic particles in the universe has been a challenge for more than 80 years but it is only in recent years that the technology has become available to really address the question. Although something can be learned from studies of composition and energy spectrum, the origins (and thence the acceleration mechanisms) can only come from the direct study of the neutral particle component (in this respect the highest energy particles are effectively neutral since they are virtually undeflected). The feasible channels of investigation are therefore the study of the arrival directions of: (1) TeV photons (covered by the following U.S. experiments: STACEE, Whipple/VERITAS, MILAGRO and, to some extent, by EGRET/GLAST); (2) neutrinos of TeV energy and above (AMANDA/KM3); (3) the highest energy cosmic rays (HiRes, Auger). While these studies represent a form of astronomy they are the astronomy of the extraordinary universe, the universe populated by the most dynamic and physically exciting objects, the universe of the high energy astrophysicist whose cosmic laboratories represent conditions beyond anything that can be duplicated in a terrestrial laboratory. This extraordinary astronomy may say little about the normal evolution of stars and galaxies but it opens windows into cosmic particle acceleration where new and strange physical processes take place.
Development of lightweight reinforced plastic laminates for spacecraft interior applications
NASA Technical Reports Server (NTRS)
Hertz, J.
1975-01-01
Lightweight, Kevlar - reinforced laminating systems that are non-burning, generate little smoke in the space shuttle environment, and are physically equivalent to the fiberglass/polyimide system used in the Apollo program for non-structural cabin panels, racks, etc. Resin systems representing five generic classes were screened as matrices for Kevlar 49 reinforced laminates. Of the systems evaluated, the polyimides were the most promising with the phenolics a close second. Skybond 703 was selected as the most promising resin candidate. With the exception of compression strength, all program goals of physical and mechanical properties were exceeded. Several prototype space shuttle mobility and translation handrail segments were manufactured using Kevlar/epoxy and Kevlar-graphite/epoxy. This application shows significant weight savings over the baseline aluminum configuration used previous. The hybrid Kevlar-graphite/epoxy is more suitable from a processing standpoint.
NASA Astrophysics Data System (ADS)
Rahman, M. S.; Pota, H. R.; Mahmud, M. A.; Hossain, M. J.
2016-05-01
This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.
MOOSE: A parallel computational framework for coupled systems of nonlinear equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derek Gaston; Chris Newman; Glen Hansen
Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less
The Future of Nearshore Processes Research: U.S. Integrated Coastal Research Program
NASA Astrophysics Data System (ADS)
Elko, N.; Feddersen, F.; Foster, D. L.; Hapke, C. J.; Holman, R. A.; McNinch, J.; Mulligan, R. P.; Ozkan-Haller, H. T.; Plant, N. G.; Raubenheimer, B.
2016-02-01
The authors, representing the acting Nearshore Advisory Council, have developed an implementation plan for a U.S. Nearshore Research Program based on the 2015 Future of Nearshore Processes report that was authored by the nearshore community. The objectives of the plan are to link research programs across federal agencies, NGOs, industry, and academia into an integrated national program and to increase academic and NGO participation in federal agency nearshore processes research. A primary recommendation is interagency collaboration to build a research program that will coordinate and fund U.S. nearshore processes research across three broad research themes: 1) long-term coastal evolution due to natural and anthropogenic processes; 2) extreme events; and 3) physical, biological and chemical processes impacting human and ecosystem health. The plan calls for a new program to be developed by an executive committee of federal agency leaders, NGOs, and an academic representative, created similarly to the existing NOPP program. This leadership will be established prior to the 2016 Ocean Sciences meeting and will have agreed on responsibilities and a schedule for development of the research program. To begin to understand the scope of today's U.S. coastal research investment, a survey was distributed to ten federal agency R&D program heads. Six of the ten agencies indicated that they fund coastal research, with a combined annual coastal research budget of nearly 100 million (NSF has not responded). The priority of the three research themes were ranked nearly equally and potential research support ranged from 15-19 million for each theme, with approximately 12 million as direct contribution to academic research. Beyond addressing our fundamental science questions, it is critical that the nearshore community stay organized to represent academic interests on the new executive committee. The program goal is the integration of academic, NGO, and federal agencies.
Quantifying Biofilm in Porous Media Using Rock Physics Models
NASA Astrophysics Data System (ADS)
Alhadhrami, F. M.; Jaiswal, P.; Atekwana, E. A.
2012-12-01
Biofilm formation and growth in porous rocks can change their material properties such as porosity, permeability which in turn will impact fluid flow. Finding a non-intrusive method to quantify biofilms and their byproducts in rocks is a key to understanding and modeling bioclogging in porous media. Previous geophysical investigations have documented that seismic techniques are sensitive to biofilm growth. These studies pointed to the fact that microbial growth and biofilm formation induces heterogeneity in the seismic properties. Currently there are no rock physics models to explain these observations and to provide quantitative interpretation of the seismic data. Our objectives are to develop a new class of rock physics model that incorporate microbial processes and their effect on seismic properties. Using the assumption that biofilms can grow within pore-spaces or as a layer coating the mineral grains, P-wave velocity (Vp) and S-wave (Vs) velocity models were constructed using travel-time and waveform tomography technique. We used generic rock physics schematics to represent our rock system numerically. We simulated the arrival times as well as waveforms by treating biofilms either as fluid (filling pore spaces) or as part of matrix (coating sand grains). The preliminary results showed that there is a 1% change in Vp and 3% change in Vs when biofilms are represented discrete structures in pore spaces. On the other hand, a 30% change in Vp and 100% change in Vs was observed when biofilm was represented as part of matrix coating sand grains. Therefore, Vp and Vs changes are more rapid when biofilm grows as grain-coating phase. The significant change in Vs associated with biofilms suggests that shear velocity can be used as a diagnostic tool for imaging zones of bioclogging in the subsurface. The results obtained from this study have significant implications for the study of the rheological properties of biofilms in geological media. Other applications include assessing biofilms used as barriers in CO2 sequestration studies as well as assisting in evaluating microbial enhanced oil recovery methods (MEOR), where microorganisms are used to plug highly porous rocks for efficient oil production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.
Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated bymore » high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images were in general agreement with real human images. The Singlet approach offered more realistic contrast as compared to the Doublet approach, but at the expense of air bubbles and air pockets that formed during the filling process. Conclusions: The presented physical breast phantoms and their matching virtual breast phantoms offer realistic breast anatomy, patient variability, and ease of use, making them a potential candidate for performing both system quality control testing and virtual clinical trials.« less
Kuh, Diana; Bassey, E Joan; Butterworth, Suzanne; Hardy, Rebecca; Wadsworth, Michael E J
2005-02-01
Understanding the health, behavioral, and social factors that influence physical performance in midlife may provide clues to the origins of frailty in old age and the future health of elderly populations. The authors evaluated muscle strength, postural control, and chair rise performance in a large representative prospective cohort of 53-year-old British men and women in relation to functional limitations, body size, health and activity, and socioeconomic conditions. Nurses interviewed 2984 men and women in their own homes in England, Scotland, and Wales and conducted physical examinations in 2956 of them. Objective measures were height, weight, and three physical performance tests: handgrip strength, one-legged standing balance time, and time to complete 10 chair rises. Functional limitations (difficulties walking, stair climbing, gripping, and falls), health status, physical activity, and social class were obtained using a structured questionnaire. Those with the worst scores on the physical performance tests had higher rates of functional limitations for both upper and lower limbs. Women had much weaker handgrip strength, somewhat poorer balance time, and only slightly poorer chair rise time compared with men. In women, health problems and low levels of physical activity contributed to poor physical performance on all three measures. In men, physical activity was the predominant influence. Heavier weight and poorer socioeconomic conditions contributed to poorer balance and chair rise times. In this representative middle-aged group, physical performance levels varied widely, and women were seriously disadvantaged compared with men. In general, physical performance was worse for men and women living in poorer socioeconomic conditions with greater body weight, poorer health status, and inactive lifestyles. These findings support recommendations for controlling excess body weight, effective health interventions, and the maintenance of active lifestyles during aging.
Cup Stacking: Does It Deserve a Place in Physical Education Curricula?
ERIC Educational Resources Information Center
Udermann, Brian E.; Murray, Steven R.
2006-01-01
Cup stacking has become commonplace in today's physical education nomenclature. Proponents make claims that cup stacking improves cognitive, affective, and psychomotor abilities. At physical education conferences, scores of professional physical educators eagerly watch cup stacking representatives construct and deconstruct a variety of pyramids…
Physical activity and BMI in a nationally representative sample of children and adolescents.
Chung, Arlene E; Skinner, Asheley Cockrell; Steiner, Michael J; Perrin, Eliana M
2012-02-01
To examine objectively measured physical activity levels by age, sex, and BMI for children and adolescents in a nationally representative sample. Data were from the 2003-2004 and 2005-2006 National Health and Nutrition Examination Surveys, which included physical activity assessment by accelerometer and measured height and weight. The authors calculated minutes of moderate and vigorous activity. Boys were more active than girls, and activity levels were lower at older ages. Younger children met daily recommendations for physical activity, whereas older children, especially girls, did not. Typically, weight status was inversely related to activity, though differences were less apparent among boys. Underweight children were not always more active than heavier peers.
On the Concept of Information and Its Role in Nature
NASA Astrophysics Data System (ADS)
Roederer, Juan G.
2003-03-01
In this article we address some fundamental questions concerning information: Can the existing laws of physics adequately deal with the most striking property of information, namely to cause specific changes in the structure and energy flows of a complex system, without the information in itself representing fields, forces or energy in any of their characteristic forms? Or is information irreducible to the laws of physics and chemistry? Are information and complexity related concepts? Does the Universe, in its evolution, constantly generate new information? Or are information and information-processing exclusive attributes of living systems, related to the very definition of life? If that were the case, what happens with the physical meanings of entropy in statistical mechanics or wave function in quantum mechanics? How many distinct classes of information and information processing do exist in the biological world? How does information appear in Darwinian evolution? Does the human brain have unique properties or capabilities in terms of information processing? In what ways does information processing bring about human self-consciousness? We shall introduce the meaning of "information" in a way that is detached from human technological systems and related algorithms and semantics, and that is not based on any mathematical formula. To accomplish this we turn to the concept of interaction as the basic departing point, and identify two fundamentally different classes, with information and information-processing appearing as the key discriminator: force-field driven interactions between elementary particles and ensembles of particles in the macroscopic physical domain, and information-based interactions between certain kinds of complex systems that form the biological domain. We shall show that in an abiotic world, information plays no role; physical interactions just happen, they are driven by energy exchange between the interacting parts and do not require any operations of information processing. Information only enters the non-living physical world when a living thing interacts with it-and when a scientist extracts information through observation and measurement. But for living organisms, information is the very essence of their existence: to maintain a long-term state of unstable thermodynamic equilibrium with its surroundings, consistently increase its organization and reproduce, an organism has to rely on information-based interactions in which form or pattern, not energy, is the controlling factor. This latter class comprises biomolecular information processes controlling the metabolism, growth, multiplication and differentiation of cells, and neural information processes controlling animal behavior and intelligence. The only way new information can appear is through the process of biological evolution and, in the short term, through sensory acquisition and the manipulation of images in the nervous system. Non-living informational systems such as books, computers, AI systems and other artifacts, as well as living organisms that are the result of breeding or cloning, are planned by human beings and will not be considered here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weizhao; Ren, Huaqing; Wang, Zequn
2016-10-19
An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterizemore » the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.« less
The health consequences of using physical restraints in nursing homes.
Castle, Nicholas G; Engberg, John
2009-11-01
Using a national longitudinal sample of nursing homes residents (N = 264,068), we examine whether physical restraint use contributes to subsequent physical or psychological health decline. The minimum data set, the on-line survey certification and recording system, and the area resource file were the data sources used. This data represented the period of 2004 and 2005. To control for the difference in characteristics between residents who were subsequently physically restrained and who were not, we use a propensity score matching method. For all outcomes examined (except depression), that is, behavior issues, cognitive performance, falls, walking dependence, activities of daily living, pressure ulcers, and contractures, were all significantly worse for restrained residents compared with matched residents who were not restrained. Physical restraint use represents poor clinical practice, and the benefits to residents of further reducing physical restraint use in nursing homes are substantial.
Coupled ocean-shelf ecosystem modelling of northern North Atlantic
NASA Astrophysics Data System (ADS)
Harle, J.; Holt, J. T.; Butenschön, M.; Allen, J. I.
2016-02-01
The biogeochemistry and ecosystems of the open-ocean and shelf seas are intimately connected. For example Northwest European continental shelf receives a substantial fraction of its nutrients from the wider North Atlantic and exports carbon at depth, sequestering it from atmospheric exchange. In the EC FP7 EuroBasin project (Holt et al 2014) we have developed a 1/12 degree basin-scale NEMO-ERSEM model with specific features relevant to shelf seas (e.g. tides and advanced vertical mixing schemes). This model is eddy resolving in the open-ocean, and resolves barotropic scales on-shelf. We use this model to explore the interaction between finely resolved physical processes and the ecosystem. Here we focus on shelf-sea processes and the connection between the shelf seas and open-ocean, and compare results with a 1/4 degree (eddy permitting) model that does not include shelf sea processes. We find tidal mixing fronts and river plume are well represented in the 1/12 degree model. Using approaches developed for the NW Shelf (Holt et al 2012), we provide estimates of across-shelf break nutrient fluxes to the seas surrounding this basin, and relate these fluxes and their interannual variability to the physical processes driving ocean-shelf exchange. Holt, J., et al, 2012. Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences 9, 97-117. Holt, J., et al, 2014. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to Fish and Coasts to Ocean. Progress in Oceanography doi:10.1016/j.pocean.2014.04.024.
An operational mesoscale ensemble data assimilation and prediction system: E-RTFDDA
NASA Astrophysics Data System (ADS)
Liu, Y.; Hopson, T.; Roux, G.; Hacker, J.; Xu, M.; Warner, T.; Swerdlin, S.
2009-04-01
Mesoscale (2-2000 km) meteorological processes differ from synoptic circulations in that mesoscale weather changes rapidly in space and time, and physics processes that are parameterized in NWP models play a great role. Complex interactions of synoptic circulations, regional and local terrain, land-surface heterogeneity, and associated physical properties, and the physical processes of radiative transfer, cloud and precipitation and boundary layer mixing, are crucial in shaping regional weather and climate. Mesoscale ensemble analysis and prediction should sample the uncertainties of mesoscale modeling systems in representing these factors. An innovative mesoscale Ensemble Real-Time Four Dimensional Data Assimilation (E-RTFDDA) and forecasting system has been developed at NCAR. E-RTFDDA contains diverse ensemble perturbation approaches that consider uncertainties in all major system components to produce multi-scale continuously-cycling probabilistic data assimilation and forecasting. A 30-member E-RTFDDA system with three nested domains with grid sizes of 30, 10 and 3.33 km has been running on a Department of Defense high-performance computing platform since September 2007. It has been applied at two very different US geographical locations; one in the western inter-mountain area and the other in the northeastern states, producing 6 hour analyses and 48 hour forecasts, with 4 forecast cycles a day. The operational model outputs are analyzed to a) assess overall ensemble performance and properties, b) study terrain effect on mesoscale predictability, c) quantify the contribution of different ensemble perturbation approaches to the overall forecast skill, and d) assess the additional contributed skill from an ensemble calibration process based on a quantile-regression algorithm. The system and the results will be reported at the meeting.
NASA Astrophysics Data System (ADS)
Parise, M.; Lollino, P.
2011-11-01
Natural and anthropogenic caves may represent a potential hazard for the built environment, due to the occurrence of instability within caves, that may propagate upward and eventually reach the ground surface, inducing the occurrence of sinkholes. In particular, when caves are at shallow depth, the effects at the ground surface may be extremely severe. Apulia region (southern Italy) hosts many sites where hazard associated with sinkholes is very serious due to presence of both natural karst caves and anthropogenic cavities, the latter being mostly represented by underground quarries. The Pliocene-Pleistocene calcarenite (a typical soft rock) was extensively quarried underground, by digging long and complex networks of tunnels. With time, these underground activities have progressively been abandoned and their memory lost, so that many Apulian towns are nowadays located just above the caves, due to urban expansion in the last decades. Therefore, a remarkable risk exists for society, which should not be left uninvestigated. The present contribution deals with the analysis of the most representative failure mechanisms observed in the field for such underground instability processes and the factors that seem to influence the processes, as for example those causing weathering of the rock and the consequent degradation of its physical and mechanical properties. Aimed at exploring the progression of instability of the cavities, numerical analyses have been developed by using both the finite element method for geological settings represented by continuous soft rock mass, and the distinct element method for jointed rock mass conditions. Both the effects of local instability processes occurring underground and the effects of the progressive enlargement of the caves on the overall stability of the rock mass have been investigated, along with the consequent failure mechanisms. In particular, degradation processes of the rock mass, as a consequence of wetting and weathering phenomena in the areas surrounding the caves, have been simulated. The results obtained from the numerical simulations have then been compared with what has been observed during field surveys and a satisfactory agreement between the numerical simulations and the instability processes, as detected in situ, has been noticed.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas
Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.
2009-01-01
BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626
Towards a Tropical Pacific Observing System for 2020 and Beyond.
NASA Astrophysics Data System (ADS)
Hill, K. L.; Kessler, W. S.; Smith, N.
2016-02-01
The international TPOS 2020 Project arose out of a review workshop in January 2014, following challenges sustaining TAO-TRITON array in 2012, with the aim of rethinking the tropical Pacific arrays in light of new scientific understanding and new ocean technology since its original design in the 1980s-90s. Observing and understanding ENSO remains a fundamental motivation, extending to biogeochemical phenomena, to processes on smaller scales that rectify into the low frequency, and, to the interaction of the coupled boundary layers of the upper ocean and lower atmosphere. Our primary customers remain the operational prediction centers and we will design an array to support research into physical processes, especially those not well represented in current-generation models. Current-generation forecast systems (data assimilation and the model physics) do not make effective-enough use of observations, thus the modeling centers are well-represented in the TPOS 2020 structure and our sampling is targeted to where the forecasts systems need guidance for improvement While we advocate evolution of the present arrays, the long climate records built up at mooring sites, repeated ship surveys, and island stations are fundamental to detecting and diagnosing both natural climate variability and detecting climate change signatures. Task teams have been established in specific topic areas. These will report in mid-2016, when a plan for the revised arrays will be presented to the agencies and governments, for completion of the evolution by 2020.This presentation will discuss the motivation, guiding principles, and potential changes of direction for the tropical Pacific observing system.
[Dr James Lovelock and story about GAIA hypothesis].
Gajić, Vladimir
2011-01-01
Gaia is the Anglo-Saxon term for the Hellenic term Gea or Ge, which means Earth. The GAIA hypothesis was launched almost 40 years ago by the famous chemist James Lovelock, who was engaged by the National Aeronautics and Space Administration (NASA) to create a sensitive instrument for searching forms of extraterrestrial life on other planets. Then he published the book The ages of GAIA, which perturbed the world's scientific public of those days. Lovelock struck upon this idea in the late sixties of the past century, during the space race with Russians, when he was hired hy the National Aeronautics and Space Administration to conduct a series of experiments to find and explore life forms on the planet Mars. Experiments executed by the American module Viking failed to trace any life form, as Lovelock had predicted. He called it a dead equilibrium. Then he turned to Earth, whose perspective is totally different from its first neighbors. Venus and Mars, and is far from a dead equilibrium. DAISYWORLD: In this hypothesis. Lovelock represents Earth as one living, giant super organism, composed of all living creatures and its material environnent. In that super organisnm, the level of oxygen, weather conditions, ocean salinity and so on are under constant influence of physical, chemical and biological processes, which provide the existence for such life forms on Earth. Dr James Lovelock represents a pioneer of climatology, and his hypothesis gives a unique insight into the correlation of dynamic processes on our planet, no matter whether they are of physical or biological nature.
Observation and Modeling of Clear Air Turbulence (CAT) over Europe
NASA Astrophysics Data System (ADS)
Sprenger, M.; Mayoraz, L.; Stauch, V.; Sharman, B.; Polymeris, J.
2012-04-01
CAT represents a very relevant phenomenon for aviation safety. It can lead to passenger injuries, causes an increase in fuel consumption and, under severe intensity, can involve structural damages to the aircraft. The physical processes causing CAT remain at present not fully understood. Moreover, because of its small scale, CAT cannot be represented in numerical weather prediction (NWP) models. In this study, the physical processes related to CAT and its representation in NWP models is further investigated. First, 134 CAT events over Europe are extracted from a flight monitoring data base (FDM), run by the SWISS airline and containing over 100'000 flights. The location, time, and meteorological parameters along the turbulent spots are analysed. Furthermore, the 7-km NWP model run by the Swiss National Weather Service (Meteoswiss) is used to calculate model-based CAT indices, e.g. Richardson number, Ellrod & Knapp turbulence index and a complex/combined CAT index developed at NCAR. The CAT indices simulated with COSMO-7 is then compared to the observed CAT spots, hence allowing to assess the model's performance, and potential use in a CAT warning system. In a second step, the meteorological conditions associated with CAT are investigated. To this aim, CAT events are defined as coherent structures in space and in time, i.e. their dimension and life cycle is studied, in connection with jet streams and upper-level fronts. Finally, in a third step the predictability of CAT is assessed, by comparing CAT index predictions based on different lead times of the NWP model COSMO-7
NASA Astrophysics Data System (ADS)
Haskell, William Z.; Fleming, John C.
2018-07-01
Net community production (NCP) represents the amount of biologically-produced organic carbon that is available to be exported out of the surface ocean and is typically estimated using measurements of the O2/Ar ratio in the surface mixed layer under the assumption of negligible vertical transport. However, physical processes can significantly bias NCP estimates based on this in-situ tracer. It is actively debated whether discrepancies between O2/Ar-based NCP and carbon export estimates are due to differences in the location of biological production and export, or the result of physical biases. In this study, we calculate export production across the euphotic depth during two months of upwelling in Southern California in 2014, based on an estimate of the consumption rate of dissolved organic carbon (DOC) and the dissolved: total organic carbon consumption ratio below the euphotic depth. This estimate equals the concurrent O2/Ar-based NCP estimates over the same period that are corrected for physical biases, but is significantly different than NCP estimated without a correction for vertical transport. This comparison demonstrates that concurrent physical transport estimates would significantly improve O2/Ar-based estimates of NCP, particularly in settings with vertical advection. Potential approaches to mitigate this bias are discussed.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Research.
In the 1973-74 North Carolina State Assessment approximately 2,500 third-graders took a health test and a physical education test. The students were randomly selected to represent the third-grade population in the state as a whole and in the three geographic regions: Mountains, Piedmont, and Costal Plains. Both sexes were about evenly represented.…
Climate Process Team "Representing calving and iceberg dynamics in global climate models"
NASA Astrophysics Data System (ADS)
Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.
2016-12-01
Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL global climate model. The simulation results show that the Antarctic iceberg calving-size distribution affects iceberg trajectories, determines where iceberg meltwater enters the ocean and the increased ice-berg freshwater transport leads to increased sea-ice growth around much of the East Antarctic coastline.
Modeling winter hydrological processes under differing climatic conditions: Modifying WEPP
NASA Astrophysics Data System (ADS)
Dun, Shuhui
Water erosion is a serious and continuous environmental problem worldwide. In cold regions, soil freeze and thaw has great impacts on infiltration and erosion. Rain or snowmelt on a thawing soil can cause severe water erosion. Of equal importance is snow accumulation and snowmelt, which can be the predominant hydrological process in areas of mid- to high latitudes and forested watersheds. Modelers must properly simulate winter processes to adequately represent the overall hydrological outcome and sediment and chemical transport in these areas. Modeling winter hydrology is presently lacking in water erosion models. Most of these models are based on the functional Universal Soil Loss Equation (USLE) or its revised forms, e.g., Revised USLE (RUSLE). In RUSLE a seasonally variable soil erodibility factor (K) was used to account for the effects of frozen and thawing soil. Yet the use of this factor requires observation data for calibration, and such a simplified approach cannot represent the complicated transient freeze-thaw processes and their impacts on surface runoff and erosion. The Water Erosion Prediction Project (WEPP) watershed model, a physically-based erosion prediction software developed by the USDA-ARS, has seen numerous applications within and outside the US. WEPP simulates winter processes, including snow accumulation, snowmelt, and soil freeze-thaw, using an approach based on mass and energy conservation. However, previous studies showed the inadequacy of the winter routines in the WEPP model. Therefore, the objectives of this study were: (1) To adapt a modeling approach for winter hydrology based on mass and energy conservation, and to implement this approach into a physically-oriented hydrological model, such as WEPP; and (2) To assess this modeling approach through case applications to different geographic conditions. A new winter routine was developed and its performance was evaluated by incorporating it into WEPP (v2008.9) and then applying WEPP to four study sites at different spatial scales under different climatic conditions, including experimental plots in Pullman, WA and Morris, MN, two agricultural drainages in Pendleton, OR, and a forest watershed in Mica Creek, ID. The model applications showed promising results, indicating adequacy of the mass- and energy-balance-based approach for winter hydrology simulation.
NASA Astrophysics Data System (ADS)
Xiao, H.; Wu, J.-L.; Wang, J.-X.; Sun, R.; Roy, C. J.
2016-11-01
Despite their well-known limitations, Reynolds-Averaged Navier-Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has potential implications in many fields in which the governing equations are well understood but the model uncertainty comes from unresolved physical processes.
Automatic determination of fault effects on aircraft functionality
NASA Technical Reports Server (NTRS)
Feyock, Stefan
1989-01-01
The problem of determining the behavior of physical systems subsequent to the occurrence of malfunctions is discussed. It is established that while it was reasonable to assume that the most important fault behavior modes of primitive components and simple subsystems could be known and predicted, interactions within composite systems reached levels of complexity that precluded the use of traditional rule-based expert system techniques. Reasoning from first principles, i.e., on the basis of causal models of the physical system, was required. The first question that arises is, of course, how the causal information required for such reasoning should be represented. The bond graphs presented here occupy a position intermediate between qualitative and quantitative models, allowing the automatic derivation of Kuipers-like qualitative constraint models as well as state equations. Their most salient feature, however, is that entities corresponding to components and interactions in the physical system are explicitly represented in the bond graph model, thus permitting systematic model updates to reflect malfunctions. Researchers show how this is done, as well as presenting a number of techniques for obtaining qualitative information from the state equations derivable from bond graph models. One insight is the fact that one of the most important advantages of the bond graph ontology is the highly systematic approach to model construction it imposes on the modeler, who is forced to classify the relevant physical entities into a small number of categories, and to look for two highly specific types of interactions among them. The systematic nature of bond graph model construction facilitates the process to the point where the guidelines are sufficiently specific to be followed by modelers who are not domain experts. As a result, models of a given system constructed by different modelers will have extensive similarities. Researchers conclude by pointing out that the ease of updating bond graph models to reflect malfunctions is a manifestation of the systematic nature of bond graph construction, and the regularity of the relationship between bond graph models and physical reality.
NASA Astrophysics Data System (ADS)
Murphy, J.; Lammers, R. B.; Prousevitch, A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Kliskey, A. D.; Alessa, L.
2015-12-01
Water Management in the U.S. Southwest is under increasing scrutiny as many areas endure persistent drought. The impact of these prolonged dry conditions is a product of regional climate and hydrological conditions, but also of a highly engineered water management infrastructure and a complex web of social arrangements whereby water is allocated, shared, exchanged, used, re-used, and finally consumed. We coupled an agent-based model with a regional hydrological model to understand the dynamics in one richly studied and highly populous area: southern Arizona, U.S.A., including metropolitan Phoenix and Tucson. There, multiple management entities representing an array of municipalities and other water providers and customers, including private companies and Native American tribes are enmeshed in a complex legal and economic context in which water is bought, leased, banked, and exchanged in a variety of ways and on multiple temporal and physical scales. A recurrent question in the literature of adaptive management is the impact of management structure on overall system performance. To explore this, we constructed an agent-based model to capture this social complexity, and coupled this with a physical hydrological model that we used to drive the system under a variety of water stress scenarios and to assess the regional impact of the social system's performance. We report the outcomes of ensembles of runs in which varieties of alternative policy constraints and management strategies are considered. We hope to contribute to policy discussions in this area and connected and legislatively similar areas (such as California) as current conditions change and existing legal and policy structures are revised. Additionally, we comment on the challenges of integrating models that ostensibly are in different domains (physical and social) but that independently represent a system in which physical processes and human actions are closely intertwined and difficult to disentangle.
Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan
2017-01-01
The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…
ERIC Educational Resources Information Center
Lynch, Timothy; Soukup, Gregory J.
2016-01-01
The title "physical education" (PE) is the traditional taxonomy used to represent the education discipline. Health and physical education (HPE) is regarded to be an all-encompassing health-dimensional title that has been recently embraced by various education systems around the world. Hence, it can be argued that PE and HPE are often…
Consumers' ratings of the natural and unnatural qualities of foods.
Evans, Greg; de Challemaison, Blandine; Cox, David N
2010-06-01
An investigation sought to understand what consumers perceive by the term natural. The aim was to test eight hypotheses on food ingredients and processes used for manufactured food. A representative sample (n=190, aged 18-65 years), rated 50 food exemplars for naturalness (0-100 scale). Data were analysed by repeated measures ANOVA. Results support three hypotheses: chemical changes were more potent than physical changes; there was a minimal effect of mixing like entities and the more processing the greater the effect on consumer's deviation away from natural. Two hypotheses were validated conditionally: contagion accounts for naturalness reduction but is independent of dose above a certain level; E-numbers were always perceived to be less natural than the same preservatives described by chemical and common names; however, there were gender and some education interaction effects. The hypothesis that addition has a greater effect than removal was only partially validated. There was no evidence found to support the hypotheses that process has more effect than content, or that novel ingredients have a greater effect than 'known' ingredients, however, this result may have been confounded. The implications for new manufactured food products, suggested by the results, are that products with physical changes, less processing, with like ingredients and described using common named descriptors for ingredients would be perceived to be more natural. Copyright 2010 Elsevier Ltd. All rights reserved.
The Development and Content of the "2008 Physical Activity Guidelines for Americans"
ERIC Educational Resources Information Center
Buchner, David M.
2014-01-01
The U.S. Department of Health and Human Services' "2008 Physical Activity Guidelines for Americans" represents a major milestone in public health efforts to address inactivity. These comprehensive federal physical activity guidelines affirm the strong scientific evidence for the health benefits of regular physical activity. The…
Top 10 Reasons for Quality Physical Education
ERIC Educational Resources Information Center
Le Masurier, Guy; Corbin, Charles B.
2006-01-01
Substantial scientific evidence supports the role of physical activity in disease prevention and healthy lifestyle promotion, and quality physical education represents our best opportunity to provide all children with experiences that promote physical activity now and for a lifetime. The purpose of this article is to document the need for quality…
High Assurance Control of Cyber-Physical Systems with Application to Unmanned Aircraft Systems
NASA Astrophysics Data System (ADS)
Kwon, Cheolhyeon
With recent progress in the networked embedded control technology, cyber attacks have become one of the major threats to Cyber-Physical Systems (CPSs) due to their close integration of physical processes, computational resources, and communication capabilities. While CPSs have various applications in both military and civilian uses, their on-board automation and communication afford significant advantages over a system without such abilities, but these benefits come at the cost of possible vulnerability to cyber attacks. Traditionally, most cyber security studies in CPSs are mainly based on the computer security perspective, focusing on issues such as the trustworthiness of data flow, without rigorously considering the system's physical processes such as real-time dynamic behaviors. While computer security components are key elements in the hardware/software layer, these methods alone are not sufficient for diagnosing the healthiness of the CPSs' physical behavior. In seeking to address this problem, this research work proposes a control theoretic perspective approach which can accurately represent the interactions between the physical behavior and the logical behavior (computing resources) of the CPS. Then a controls domain aspect is explored extending beyond just the logical process of the CPS to include the underlying physical behavior. This approach will allow the CPS whose physical operations are robust/resilient to the damage caused by cyber attacks, successfully complementing the existing CPS security architecture. It is important to note that traditional fault-tolerant/robust control methods could not be directly applicable to achieve resiliency against malicious cyber attacks which can be designed sophisticatedly to spoof the security/safety monitoring system (note this is different from common faults). Thus, security issues at this layer require different risk management to detect cyber attacks and mitigate their impact within the context of a unified physical and logical process model of the CPS. Specifically, three main tasks are discussed in this presentation: (i) we first investigate diverse granularity of the interactions inside the CPS and propose feasible cyber attack models to characterize the compromised behavior of the CPS with various measures, from its severity to detectability; (ii) based on this risk information, our approach to securing the CPS addresses both monitoring of and high assurance control design against cyber attacks by developing on-line safety assessment and mitigation algorithms; and (iii) by extending the developed theories and methods from a single CPS to multiple CPSs, we examine the security and safety of multi-CPS network that are strongly dependent on the network topology, cooperation protocols between individual CPSs, etc. The effectiveness of the analytical findings is demonstrated and validated with illustrative examples, especially unmanned aircraft system (UAS) applications.
Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R
2017-01-01
Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.
Development of DKB ETL module in case of data conversion
NASA Astrophysics Data System (ADS)
Kaida, A. Y.; Golosova, M. V.; Grigorieva, M. A.; Gubin, M. Y.
2018-05-01
Modern scientific experiments involve the producing of huge volumes of data that requires new approaches in data processing and storage. These data themselves, as well as their processing and storage, are accompanied by a valuable amount of additional information, called metadata, distributed over multiple informational systems and repositories, and having a complicated, heterogeneous structure. Gathering these metadata for experiments in the field of high energy nuclear physics (HENP) is a complex issue, requiring the quest for solutions outside the box. One of the tasks is to integrate metadata from different repositories into some kind of a central storage. During the integration process, metadata taken from original source repositories go through several processing steps: metadata aggregation, transformation according to the current data model and loading it to the general storage in a standardized form. The R&D project of ATLAS experiment on LHC, Data Knowledge Base, is aimed to provide fast and easy access to significant information about LHC experiments for the scientific community. The data integration subsystem, being developed for the DKB project, can be represented as a number of particular pipelines, arranging data flow from data sources to the main DKB storage. The data transformation process, represented by a single pipeline, can be considered as a number of successive data transformation steps, where each step is implemented as an individual program module. This article outlines the specifics of program modules, used in the dataflow, and describes one of the modules developed and integrated into the data integration subsystem of DKB.
Novak, Colleen M; Burghardt, Paul R; Levine, James A
2012-03-01
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Levine, James A.
2015-01-01
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems—including those related to the stress response, mood, and reward, and those responsive to growth factors—that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
Sharp, Marilyn A; Cohen, Bruce S; Boye, Michael W; Foulis, Stephen A; Redmond, Jan E; Larcom, Kathleen; Hydren, Jay R; Gebhardt, Deborah L; Canino, Maria C; Warr, Bradley J; Zambraski, Edward J
2017-11-01
In 2013, the U.S. Army began developing physical tests to predict a recruit's ability to perform the critical, physically demanding tasks (CPDTs) of combat arms jobs previously not open to women. The purpose of this paper is to describe the methodology and results of analyses of the accuracy and inclusiveness of the critical physically demanding task list. While the job analysis included seven combat arms jobs, only data from the 19D Cavalry Scout occupation are presented as the process was similar for all seven jobs. Job analysis METHODS: As the foundation, senior subject matter experts from each job reviewed materials and reached consensus on the CPDTs and performance standards for each job. The list was reviewed by Army leadership and provided to the researchers. The job analysis consisted of reviewing job and task related documents and field manuals, observing >900 soldiers performing the 32 CPDTs, conducting two focus groups for each job, and analyzing responses to widely distributed job analysis questionnaires. Of the 32 CPDTs identified for seven combat jobs, nine were relevant to 19D soldiers. Focus group discussions and job analysis questionnaire results supported the tasks and standards identified by subject matter experts while also identifying additional tasks. The tasks identified by subject matter experts were representative of the physically demanding aspects of the 19D occupation. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Tinoco, R. O.; Goldstein, E. B.; Coco, G.
2016-12-01
We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.
NASA Astrophysics Data System (ADS)
Zollweg, J. A.
2017-10-01
Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time intervals. However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning. We live in a world of objects: cars, buildings, farms, etc. On a stormy day, we don't see millions of cubes of atmosphere; we see a thunderstorm `object'. Temporally, we don't see the properties of those individual cubes changing, we see the thunderstorm as a whole evolving and moving. There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of relevant spatiotemporal objects, thereby matching the human brain's perception of the world. This presentation reveals an efficient algorithm and system to extract the objects/features from raster-formatted remotely-sensed data. The system makes use of the Python object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the GeoJSON standard geographic object data format. The example presented will show how thunderstorms can be identified and characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA's High-Resolution Rapid Refresh v2 (HRRRv2) data stream.
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.
2015-10-01
The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.
Midlife Physical Activity and Mobility in Older Age
Patel, Kushang V.; Coppin, Antonia K.; Manini, Todd M.; Lauretani, Fulvio; Bandinelli, Stefania; Ferrucci, Luigi; Guralnik, Jack M.
2009-01-01
Background Among older adults, loss of mobility represents a critical stage in the disablement process, whereby the risk for disability is significantly increased. Physical activity is a modifiable risk factor that is associated with reduced risk of losing mobility in older adulthood; however, few studies have examined physical activity performed earlier in life in relation to mobility later in life. Methods Data from a population-based study of 1155 adults aged 65 years and older living in the Chianti region of Italy in 1998–2000 were analyzed in 2005 and 2006. Participants retrospectively recalled their physical activity levels in midlife and underwent mobility testing and medical examination. Two objective mobility outcomes were examined as a function of past physical activity: the Short Physical Performance Battery (SPPB) and the ability to walk 400 meters. Results Older Italian adults (mean age 74.8, standard deviation 7.3) who engaged in higher levels of physical activity in midlife were significantly more likely to perform better on the SPPB than individuals who were less physically active in midlife. In addition, failure to complete the 400-meter walk test was significantly less likely among physically active men (Level II) (odds ratio [OR]=0.37, 95% confidence interval [CI]=0.15–0.93) and very active men (Level III) (OR=0.23, 95% CI=0.09–0.63) when compared to men who were less active (Level I) in the past (p for trend, 0.008). These associations remained after adjustment for demographic factors, medical conditions, and physiologic impairments. Conclusions Older adults who reported higher levels of physical activity in midlife had better mobility in old age than less physically active ones. PMID:16905032
Turning Equations Into Stories: Using "Equation Dictionaries" in an Introductory Geophysics Class
NASA Astrophysics Data System (ADS)
Caplan-Auerbach, J.
2008-12-01
To students with math fear, equations can be intimidating and overwhelming. This discomfort is reflected in some of the frequent questions heard in introductory geophysics: "which equation should I use?" and "does T stand for travel time or period?" Questions such as these indicate that many students view equations as a series of variables and operators rather than as a representation of a physical process. To solve a problem they may simply look for an equation with the correct variables and assume that it meets their needs, rather than selecting an equation that represents the appropriate physical process. These issues can be addressed by encouraging students to think of equations as stories, and to describe them in prose. This is the goal of the Equation Dictionary project, used in Western Washington University's introductory geophysics course. Throughout the course, students create personal equation dictionaries, adding an entry each time an equation is introduced. Entries consist of (a) the equation itself, (b) a brief description of equation variables, (c) a prose description of the physical process described by the equation, and (d) any additional notes that help them understand the equation. Thus, rather than simply writing down the equations for the velocity of body waves, a student might write "The speed of a seismic body wave is controlled by the material properties of the medium through which it passes." In a study of gravity a student might note that the International Gravity Formula describes "the expected value of g at a given latitude, correcting for Earth's shape and rotation." In writing these definitions students learn that equations are simplified descriptions of physical processes, and that understanding the process is more useful than memorizing a sequence of variables. Dictionaries also serve as formula sheets for exams, which encourages students to write definitions that are meaningful to them, and to organize their thoughts clearly. Finally, instructor review of the dictionaries is an excellent way to identify student misconceptions and learn how well they understand derivations and lectures.
NASA Astrophysics Data System (ADS)
Costa, D.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Lundquist, J. D.; Luce, C. H.; Musselman, K. N.; Wayand, N. E.; Ou, M.; Lapo, K. E.
2016-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
NASA Astrophysics Data System (ADS)
Faria, Ana; Bateira, Carlos; Laura, Soares; Fernandes, Joana; Gonçalves, José; Marques, Fernando
2016-04-01
The work focuses the evaluation of landslide susceptibility in Douro Region agricultural terraces, supported by dry stone walls and earth embankments, using two physically based models. The applied models, SHALSTAB (Montgomery et al.,1994; Dietrich et al., 1995) and SINMAP (PACK et al., 2005), combine an infinite slope stability model with a steady state hydrological model, and both use the following geophysical parameters: cohesion, friction angle, specific weight and soil thickness. The definition of the contributing areas is different in both models. The D∞ methodology used by SINMAP model suggests a great influence of the terraces morphology, providing a much more diffuse flow on the internal flow modelling. The MD8 used in SHALSTAB promotes an important degree of flow concentration, representing an internal flow based on preferential paths of the runoff as the areas more susceptible to saturation processes. The model validation is made through the contingency matrix method (Fawcett, 2006; Raia et al., 2014) and implies the confrontation with the inventory of past landslides. The True Positive Rate shows that SHALSTAB classifies 77% of the landslides on the high susceptibility areas, while SINMAP reaches 90%. The SINMAP has a False Positive Rate (represents the percentage of the slipped area that is classified as unstable but without landslides) of 83% and the SHALSTAB has 67%. The reliability (analyzes the areas that were correctly classified on the total area) of SHALSTAB is better (33% against 18% of SINMAP). Relative to Precision (refers to the ratio of the slipped area correctly classified over the whole area classified as unstable) SHALSTAB has better results (0.00298 against 0.00283 of SINMAP). It was elaborate the index TPR/FPR and better results obtained by SHALSTAB (1.14 against 1.09 of SINMAP). SHALSTAB shows a better performance in the definition of susceptibility most prone areas to instability processes. One of the reasons for the difference of predictive capacity of the models is related with the construction methods of contributory areas. The SHALSTAB susceptibility map shows better discrimination of the unstable areas, which is important to the estates decision makers in order to organize the priority of the hazard mitigation process. References Dietrich, W. E.; Reiss, R.; Hsu, M-L.; Montgomery, D.(1995) - A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes. ISSN 1099-1085. Vol. 9, n.° 3-4, pp.383-400. Fawcett, T.(2006) - An introduction to ROC analysis. Pattern Recognition Letters. ISSN 0167-8655. Vol. 27, n.° 8, pp.861-874. Montgomery, David R.; Dietrich, William E.- A physically based model for the topographic control on shallow landsliding. Water Resources Research. ISSN 1944-7973. Vol. 30, n.° 4 (1994), p.1153-1171. Raia, S., [et al.]- Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development. ISSN 1991-959X. Vol. 7, n.° 2 (2014), p.495-514.
Coccaro, Emil F; Fanning, Jennifer R; Fisher, Eliana; Couture, Laurel; Lee, Royce J
2017-02-01
A computerized version of an assessment of Social-Emotional Information Processing (SEIP) using audio-video film stimuli instead of written narrative vignettes was developed for use in adult participants. This task allows for an assessment of encoding or relevant/irrelevant social-emotional information, attribution bias, and endorsement of appropriate, physically aggressive, and relationally aggressive responses to aversive social-emotional stimuli. The psychometric properties of this Video-SEIP (V-SEIP) assessment were examined in 75 healthy controls (HC) and in 75 individuals with DSM-5 Intermittent Explosive Disorder (IED) and were also compared with the original questionnaire (SEIP-Q) version of the task (HC=26; IED=26). Internal consistency, inter-rater reliability, and test-retest properties of the V-SEIP were good to excellent. In addition, IED participants displayed reduced encoding of relevant information from the film clips, elevated hostile attribution bias, elevated negative emotional response, and elevated endorsement of physically aggressive and relationally aggressive responses to the ambiguous social-emotional stimuli presented in the V-SEIP. These data indicate that the V-SEIP represents a valid and comprehensive alternative to the paper-and-pencil assessment of social-emotional information processing biases in adults. Copyright © 2016. Published by Elsevier B.V.
The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael
Despite the huge extent of the ocean’s surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean’s surface, in particular involvingmore » the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.« less
The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer
Engel, Anja; Bange, Hermann W.; Cunliffe, Michael; ...
2017-05-30
Despite the huge extent of the ocean’s surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean’s surface, in particular involvingmore » the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.« less
Magnetoreception in birds: different physical processes for two types of directional responses
Wiltschko, Roswitha; Stapput, Katrin; Ritz, Thorsten; Thalau, Peter; Wiltschko, Wolfgang
2007-01-01
Migratory orientation in birds involves an inclination compass based on radical-pair processes. Under certain light regimes, however, “fixed-direction” responses are observed that do not undergo the seasonal change between spring and autumn typical for migratory orientation. To identify the underlying transduction mechanisms, we analyzed a fixed-direction response under a combination of 502 nm turquoise and 590 nm yellow light, with migratory orientation under 565 nm green light serving as the control. High-frequency fields, diagnostic for a radical-pair mechanism, disrupted migratory orientation without affecting fixed-direction responses. Local anaesthesia of the upper beak where magnetite is found in birds, in contrast, disrupted the fixed-direction response without affecting migratory orientation. The two types of responses are thus based on different physical principles, with the compass response based on a radical pair mechanism and the fixed-direction responses probably originating in magnetite-based receptors in the upper beak. Directional input from these receptors seems to affect the behavior only when the regular inclination compass does not work properly. Evolutionary considerations suggest that magnetite-based receptors may represent an ancient mechanism that, in birds, has been replaced by the modern inclination compass based on radical-pair processes now used for directional orientation. PMID:19404459
Burden of physical inactivity and hospitalization costs due to chronic diseases
Bielemann, Renata Moraes; da Silva, Bruna Gonçalves Cordeiro; Coll, Carolina de Vargas Nunes; Xavier, Mariana Otero; da Silva, Shana Ginar
2015-01-01
OBJECTIVE To evaluate the physical inactivity-related inpatient costs of chronic non-communicable diseases. METHODS This study used data from 2013, from Brazilian Unified Health System, regarding inpatient numbers and costs due to malignant colon and breast neoplasms, cerebrovascular diseases, ischemic heart diseases, hypertension, diabetes, and osteoporosis. In order to calculate the share physical inactivity represents in that, the physical inactivity-related risks, which apply to each disease, were considered, and physical inactivity prevalence during leisure activities was obtained from Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey). The analysis was stratified by genders and residing country regions of subjects who were 40 years or older. The physical inactivity-related hospitalization cost regarding each cause was multiplied by the respective share it regarded to. RESULTS In 2013, 974,641 patients were admitted due to seven different causes in Brazil, which represented a high cost. South region was found to have the highest patient admission rate in most studied causes. The highest prevalences for physical inactivity were observed in North and Northeast regions. The highest inactivity-related share in men was found for osteoporosis in all regions (≈ 35.0%), whereas diabetes was found to have a higher share regarding inactivity in women (33.0% to 37.0% variation in the regions). Ischemic heart diseases accounted for the highest total costs that could be linked to physical inactivity in all regions and for both genders, being followed by cerebrovascular diseases. Approximately 15.0% of inpatient costs from Brazilian Unified Health System were connected to physical inactivity. CONCLUSIONS Physical inactivity significantly impacts the number of patient admissions due to the evaluated causes and through their resulting costs, with different genders and country regions representing different shares. PMID:26487291
Burden of physical inactivity and hospitalization costs due to chronic diseases.
Bielemann, Renata Moraes; Silva, Bruna Gonçalves Cordeiro da; Coll, Carolina de Vargas Nunes; Xavier, Mariana Otero; Silva, Shana Ginar da
2015-01-01
To evaluate the physical inactivity-related inpatient costs of chronic non-communicable diseases. This study used data from 2013, from Brazilian Unified Health System, regarding inpatient numbers and costs due to malignant colon and breast neoplasms, cerebrovascular diseases, ischemic heart diseases, hypertension, diabetes, and osteoporosis. In order to calculate the share physical inactivity represents in that, the physical inactivity-related risks, which apply to each disease, were considered, and physical inactivity prevalence during leisure activities was obtained from Pesquisa Nacional por Amostra de Domicílio(Brazil's National Household Sample Survey). The analysis was stratified by genders and residing country regions of subjects who were 40 years or older. The physical inactivity-related hospitalization cost regarding each cause was multiplied by the respective share it regarded to. In 2013, 974,641 patients were admitted due to seven different causes in Brazil, which represented a high cost. South region was found to have the highest patient admission rate in most studied causes. The highest prevalences for physical inactivity were observed in North and Northeast regions. The highest inactivity-related share in men was found for osteoporosis in all regions (≈ 35.0%), whereas diabetes was found to have a higher share regarding inactivity in women (33.0% to 37.0% variation in the regions). Ischemic heart diseases accounted for the highest total costs that could be linked to physical inactivity in all regions and for both genders, being followed by cerebrovascular diseases. Approximately 15.0% of inpatient costs from Brazilian Unified Health System were connected to physical inactivity. Physical inactivity significantly impacts the number of patient admissions due to the evaluated causes and through their resulting costs, with different genders and country regions representing different shares.
Wheelwright, S; Baron-Cohen, S
2001-06-01
In the first edition of this journal, we published a paper reporting that fathers and grandfathers of children with autism were over-represented in the field of engineering. This result was interpreted as providing supporting evidence for the folk-psychology/folk-physics theory of autism. After carrying out further analyses on the same data, Jarrold and Routh found that fathers of children with autism were also over-represented in accountancy and science. They suggested that these results could either provide additional support for the folk-psychology/folk-physics theory or be accounted for by an over-representation of professionals amongst the fathers of children with autism. Here we present evidence that engineers are still over-represented among fathers of children with autism, even taking into account the professional bias.
An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo
2007-01-01
Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, H., E-mail: hengxiao@vt.edu; Wu, J.-L.; Wang, J.-X.
Despite their well-known limitations, Reynolds-Averaged Navier–Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations.more » Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has potential implications in many fields in which the governing equations are well understood but the model uncertainty comes from unresolved physical processes. - Highlights: • Proposed a physics–informed framework to quantify uncertainty in RANS simulations. • Framework incorporates physical prior knowledge and observation data. • Based on a rigorous Bayesian framework yet fully utilizes physical model. • Applicable for many complex physical systems beyond turbulent flows.« less
de los Santos, E. Fong; Evans, Suzanne; Ford, Eric C.; Gaiser, James E.; Hayden, Sandra E.; Huffman, Kristina E.; Johnson, Jennifer L.; Mechalakos, James G.; Stern, Robin L.; Terezakis, Stephanie; Thomadsen, Bruce R.; Pronovost, Peter J.; Fairobent, Lynne A.
2015-01-01
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. PMID:26103502
Fong de Los Santos, Luis E; Evans, Suzanne; Ford, Eric C; Gaiser, James E; Hayden, Sandra E; Huffman, Kristina E; Johnson, Jennifer L; Mechalakos, James G; Stern, Robin L; Terezakis, Stephanie; Thomadsen, Bruce R; Pronovost, Peter J; Fairobent, Lynne A
2015-05-08
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States.The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner.Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.The following terms are used in the AAPM practice guidelines:Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.
Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S
2011-02-01
Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.
Das, Indra J.; Feygelman, Vladimir; Fraass, Benedick A.; Kry, Stephen F.; Marshall, Ingrid R.; Mihailidis, Dimitris N.; Ouhib, Zoubir; Ritter, Timothy; Snyder, Michael G.; Fairobent, Lynne
2015-01-01
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. PMID:26699330
Smilowitz, Jennifer B; Das, Indra J; Feygelman, Vladimir; Fraass, Benedick A; Kry, Stephen F; Marshall, Ingrid R; Mihailidis, Dimitris N; Ouhib, Zoubir; Ritter, Timothy; Snyder, Michael G; Fairobent, Lynne
2015-09-08
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines:• Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.• Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
Seibert, J Anthony; Clements, Jessica B; Halvorsen, Per H; Herman, Michael G; Martin, Melissa C; Palta, Jatinder; Pfeiffer, Douglas E; Pizzutiello, Robert J; Schueler, Beth A; Shepard, S Jeff; Fairobrent, Lynne A
2015-05-08
The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States.The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner.Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.The following terms are used in the AAPM practice guidelines:Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline.Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.
NASA Astrophysics Data System (ADS)
Hernandez, K. F.; Shah-Fairbank, S.
2016-12-01
The San Dimas Experimental Forest has been designated as a research area by the United States Forest Service for use as a hydrologic testing facility since 1933 to investigate watershed hydrology of the 27 square mile land. Incorporation of a computer model provides validity to the testing of the physical model. This study focuses on San Dimas Experimental Forest's Bell Canyon, one of the triad of watersheds contained within the Big Dalton watershed of the San Dimas Experimental Forest. A scaled physical model was constructed of Bell Canyon to highlight watershed characteristics and each's effect on runoff. The physical model offers a comprehensive visualization of a natural watershed and can vary the characteristics of rainfall intensity, slope, and roughness through interchangeable parts and adjustments to the system. The scaled physical model is validated and calibrated through a HEC-HMS model to assure similitude of the system. Preliminary results of the physical model suggest that a 50-year storm event can be represented by a peak discharge of 2.2 X 10-3 cfs. When comparing the results to HEC-HMS, this equates to a flow relationship of approximately 1:160,000, which can be used to model other return periods. The completion of the Bell Canyon physical model can be used for educational instruction in the classroom, outreach in the community, and further research using the model as an accurate representation of the watershed present in the San Dimas Experimental Forest.
Finding Lagrangian Structures via the Application of Braid Theory
2010-10-16
the horizontal plane is the physical domain and the vertical axis is time. These three dimensional...three dimensional strands are projected onto the plane containing the x-axis and time then Figure 2a becomes Figure 2b. The collection of strands make...trajectories shown in the physical plane . An “x” represents the initial condition of the trajectory and a dot represents the current position. (b) The
Breakage mechanics—Part I: Theory
NASA Astrophysics Data System (ADS)
Einav, Itai
2007-06-01
Different measures have been suggested for quantifying the amount of fragmentation in randomly compacted crushable aggregates. A most effective and popular measure is to adopt variants of Hardin's [1985. Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177-1192] definition of relative breakage ' Br'. In this paper we further develop the concept of breakage to formulate a new continuum mechanics theory for crushable granular materials based on statistical and thermomechanical principles. Analogous to the damage internal variable ' D' which is used in continuum damage mechanics (CDM), here the breakage internal variable ' B' is adopted. This internal variable represents a particular form of the relative breakage ' Br' and measures the relative distance of the current grain size distribution from the initial and ultimate distributions. Similar to ' D', ' B' varies from zero to one and describes processes of micro-fractures and the growth of surface area. However, unlike damage that is most suitable to tensioned solid-like materials, the breakage is aimed towards compressed granular matter. While damage effectively represents the opening of micro-cavities and cracks, breakage represents comminution of particles. We term the new theory continuum breakage mechanics (CBM), reflecting the analogy with CDM. A focus is given to developing fundamental concepts and postulates, and identifying the physical meaning of the various variables. In this part of the paper we limit the study to describe an ideal dissipative process that includes breakage without plasticity. Plastic strains are essential, however, in representing aspects that relate to frictional dissipation, and this is covered in Part II of this paper together with model examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; ...
2017-06-15
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less
Recent advances in understanding secondary organic aerosol: Implications for global climate forcing
NASA Astrophysics Data System (ADS)
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi
2017-06-01
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.
Identification of Threshold Concepts for Biochemistry
Green, David; Lewis, Jennifer E.; Lin, Sara; Minderhout, Vicky
2014-01-01
Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for biochemistry was modeled on extensive work related to TCs across a range of disciplines and included faculty workshops and student interviews. Using an iterative process, we prioritized five concepts on which to focus future development of instructional materials. Broadly defined, the concepts are steady state, biochemical pathway dynamics and regulation, the physical basis of interactions, thermodynamics of macromolecular structure formation, and free energy. The working list presented here is not intended to be exhaustive, but rather is meant to identify a subset of TCs for biochemistry for which instructional and assessment tools for undergraduate biochemistry will be developed. PMID:25185234
2D modeling of direct laser metal deposition process using a finite particle method
NASA Astrophysics Data System (ADS)
Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.
2018-05-01
Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.
Space environment and lunar surface processes, 2
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1982-01-01
The top few millimeters of a surface exposed to space represents a physically and chemically active zone with properties different from those of a surface in the environment of a planetary atmosphere. To meet the need or a quantitative synthesis of the various processes contributing to the evolution of surfaces of the Moon, Mercury, the asteroids, and similar bodies, (exposure to solar wind, solar flare particles, galactic cosmic rays, heating from solar radiation, and meteoroid bombardment), the MESS 2 computer program was developed. This program differs from earlier work in that the surface processes are broken down as a function of size scale and treated in three dimensions with good resolution on each scale. The results obtained apply to the development of soil near the surface and is based on lunar conditions. Parameters can be adjusted to describe asteroid regoliths and other space-related bodies.
Work environment risk factors for injuries in wood processing.
Holcroft, Christina A; Punnett, Laura
2009-01-01
The reported injury rate for wood product manufacturing in Maine, 1987-2004, was almost twice the state-wide average for all jobs. A case-control study was conducted in wood processing plants to determine preventable risk factors for injury. A total of 157 cases with injuries reported to workers' compensation and 251 controls were interviewed. In multivariable analyses, variables associated with injury risk were high physical workload, machine-paced work or inability to take a break, lack of training, absence of a lockout/tagout program, low seniority, and male gender. Different subsets of these variables were significant when acute incidents and overexertions were analyzed separately and when all injuries were stratified by industry sub-sector. Generalizability may be limited somewhat by non-representative participation of workplaces and individuals. Nevertheless, these findings provide evidence that many workplace injuries occurring in wood processing could be prevented by application of ergonomics principles and improved work organization.
NASA Astrophysics Data System (ADS)
Arnold, Frank; Schlager, Hans; Simgen, Hardy; Aufmhoff, Heinfried; Baumann, Robert; Lindemann, Sigfried; Rauch, Ludwig; Kaether, Frank; Pirjolla, Liisa; Schumann, Ulrich
2013-04-01
The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of Xe-133 rich planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO2, NOx, HNO3,NOy), which were found to have increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important influence of East-Asian cyclone induced pollutants transport to the TIL, particularly influencing aerosol formation in the TIL.
Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey
2018-01-01
The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922
The dynamics of meaningful social interactions and the emergence of collective knowledge
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-01-01
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games. PMID:26174482
Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S
2015-01-01
Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.
Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui
2017-11-15
The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.
2016-04-01
The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.
NASA Technical Reports Server (NTRS)
Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.
2003-01-01
Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.
Hybridization Reveals the Evolving Genomic Architecture of Speciation
Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.
2014-01-01
SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670
The dynamics of meaningful social interactions and the emergence of collective knowledge
NASA Astrophysics Data System (ADS)
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-07-01
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.
Variance change point detection for fractional Brownian motion based on the likelihood ratio test
NASA Astrophysics Data System (ADS)
Kucharczyk, Daniel; Wyłomańska, Agnieszka; Sikora, Grzegorz
2018-01-01
Fractional Brownian motion is one of the main stochastic processes used for describing the long-range dependence phenomenon for self-similar processes. It appears that for many real time series, characteristics of the data change significantly over time. Such behaviour one can observe in many applications, including physical and biological experiments. In this paper, we present a new technique for the critical change point detection for cases where the data under consideration are driven by fractional Brownian motion with a time-changed diffusion coefficient. The proposed methodology is based on the likelihood ratio approach and represents an extension of a similar methodology used for Brownian motion, the process with independent increments. Here, we also propose a statistical test for testing the significance of the estimated critical point. In addition to that, an extensive simulation study is provided to test the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Camacho Suarez, V. V.; Shucksmith, J.; Schellart, A.
2016-12-01
Analytical and numerical models can be used to represent the advection-dispersion processes governing the transport of pollutants in rivers (Fan et al., 2015; Van Genuchten et al., 2013). Simplifications, assumptions and parameter estimations in these models result in various uncertainties within the modelling process and estimations of pollutant concentrations. In this study, we explore both: 1) the structural uncertainty due to the one dimensional simplification of the Advection Dispersion Equation (ADE) and 2) the parameter uncertainty due to the semi empirical estimation of the longitudinal dispersion coefficient. The relative significance of these uncertainties has not previously been examined. By analysing both the relative structural uncertainty of analytical solutions of the ADE, and the parameter uncertainty due to the longitudinal dispersion coefficient via a Monte Carlo analysis, an evaluation of the dominant uncertainties for a case study in the river Chillan, Chile is presented over a range of spatial scales.
The dynamics of meaningful social interactions and the emergence of collective knowledge.
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-07-15
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions &Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor's expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.
Evaluation of Cirrus Cloud Simulations using ARM Data-Development of Case Study Data Set
NASA Technical Reports Server (NTRS)
Starr, David OC.; Demoz, Belay; Wang, Yansen; Lin, Ruei-Fong; Lare, Andrew; Mace, Jay; Poellot, Michael; Sassen, Kenneth; Brown, Philip
2002-01-01
Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.
Transgenerational effects of maternal depression on affect recognition in children.
Kluczniok, Dorothea; Hindi Attar, Catherine; Fydrich, Thomas; Fuehrer, Daniel; Jaite, Charlotte; Domes, Gregor; Winter, Sibylle; Herpertz, Sabine C; Brunner, Romuald; Boedeker, Katja; Bermpohl, Felix
2016-01-01
The association between maternal depression and adverse emotional and behavioral outcomes in children is well established. One associated factor might be altered affect recognition which may be transmitted transgenerationally. Individuals with history of depression show biased recognition of sadness. Our aim was to investigate parallels in maternal and children's affect recognition with remitted depressed mothers. 60 Mother-child dyads completed an affect recognition morphing task. We examined two groups of remitted depressed mothers, with and without history of physical or sexual abuse, and a group of healthy mothers without history of physical or sexual abuse. Children were between 5 and 12 years old. Across groups, mothers identified happy faces fastest. Mothers with remitted depression showed a higher accuracy and response bias for sadness. We found corresponding results in their children. Maternal and children's bias and accuracy for sadness were positively correlated. Effects of remitted depression were found independent of maternal history of physical or sexual abuse. Our sample size was relatively small and further longitudinal research is needed to investigate how maternal and children's affect recognition are associated with behavioral and emotional outcomes in the long term. Our data suggest a negative processing bias in mothers with remitted depression which might represent both the perpetuation of and vulnerability to depression. Children of remitted depressed mothers appear to be exposed to this processing bias outside acute depressive episodes. This may promote the development of a corresponding processing bias in the children and could make children of depressed mothers more vulnerable to depressive disorders themselves. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierron-Bohnes, Véronique
We present six associations and entities working in France on issues of women in physics: the Women and Physics Commission, French Physical Society; Women in Nuclear (WiN) France; Women and Science Association; Mission for the Place of Women at CNRS; Parity, Diversity, and Women Network, CEA; and the Network of University Equality-Diversity Representatives.
Validation of the Military Entrance Physical Strength Capacity Test. Technical Report 610.
ERIC Educational Resources Information Center
Myers, David C.; And Others
A battery of physical ability tests was validated using a predictive, criterion-related strategy. The battery was given to 1,003 female soldiers and 980 male soldiers before they had begun Army Basic Training. Criterion measures which represented physical competency in Basic Training (physical proficiency tests, sick call, profiles, and separation…
The methodology of semantic analysis for extracting physical effects
NASA Astrophysics Data System (ADS)
Fomenkova, M. A.; Kamaev, V. A.; Korobkin, D. M.; Fomenkov, S. A.
2017-01-01
The paper represents new methodology of semantic analysis for physical effects extracting. This methodology is based on the Tuzov ontology that formally describes the Russian language. In this paper, semantic patterns were described to extract structural physical information in the form of physical effects. A new algorithm of text analysis was described.
Ellis, Michael J; Leddy, John; Willer, Barry
2016-01-01
Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach.
Ellis, Michael J.; Leddy, John; Willer, Barry
2016-01-01
Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach. PMID:27605923
Hess, Ricarda; Jaeschke, Anna; Neubert, Holger; Hintze, Vera; Moeller, Stephanie; Schnabelrauch, Matthias; Wiesmann, Hans-Peter; Hart, David A; Scharnweber, Dieter
2012-12-01
In vivo, bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo-like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone-co-lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lyerly, Jordan E; Huber, Larissa R; Warren-Findlow, Jan; Racine, Elizabeth F; Dmochowski, Jacek
2014-04-01
To examine the association between breakfast skipping and physical activity among US adolescents aged 12-19 years. A cross-sectional study of nationally representative 2007-2008 National Health and Nutrition Examination Survey (NHANES) data. Breakfast skipping was assessed by two 24 h dietary recalls. Physical activity was self-reported by participants and classified based on meeting national recommendations for physical activity for the appropriate age group. Multiple logistic regression analysis was used to model the association between breakfast skipping and physical activity while controlling for confounders. A total of 936 adolescents aged 12-19 years in the USA. After adjusting for family income, there was no association between breakfast skipping and meeting physical activity guidelines for age among adolescents aged 12-19 years (OR = 0.95, 95% CI 0.56, 1.32). Findings from the study differ from previous research findings on breakfast skipping and physical activity. Therefore, further research that uses large, nationally representative US samples and national recommended guidelines for physical activity is needed.
On a New Theory of the System of Reference
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2003-04-01
A new theory of the system of reference is suggested. It represents the new point of view which has arisen from the critical analysis of the foundations of physics (in particular, the theory of relativity and quantum mechanics), mathematics, cosmology and philosophy. The main idea following from the analysis is that the correct concept of system of reference represents a key to comprehension of many basic logic errors which are in modern physics. The starting point of the theory is represented by the philosophical (dialectical materialistic) principles, in particular, the gnosiological principle. (The gnosiological principle is briefly formulated as follows. The purpose of a science is to know the laws of the Nature. The law is a form of scientific knowledge of the essence and the phenomenon. The essence is the internal basis of the phenomenon, and the phenomenon is the manifestation of the essence. Human practice is a basis of knowledge and a criterion of truth). These principles lead to the following statements. (1) The reality is the dialectical unity of the opposites: the objective reality and the non-objective (subjective) reality. (2) The system mankind + means of knowledge belongs to the subjective reality and is called system of reference. In this wide sense, the system of reference is the universal informational gnostic basis (i.e. the system consisting of natural objects and processes, of constructed devices and instruments, of sum of human knowledge and skills) created and used by mankind for the purpose of knowledge of the world. (3) The opposites are bounds of each other. Hence, the principle of objectivity of the physical laws is formulated as follows: the objective physical laws must not contain mentions of system of reference (in particular, references to procedure of measurement or of calculation). (4) The main informational property of the unitary system set of researches physical objects + system of reference is that the system of reference determines (measures, calculates) the parameters of the subsystem set of researched physical objects (for example, the coordinates x_M, y_M, zM of the object M); the parameters characterize the system of reference (for example, the system of coordinates). (5) The main gnostic property of the unitary system set of researches physical objects + system of reference is that the system of reference defines (formulates) the physical laws (i.e. creates the theories); the physical laws characterize the system of reference. (6) The parameters which take on values independently of existence of the researched physical objects characterize the system of reference. For example, the clock C, a part of the system of reference S, determines (but it does not measure!) the time t_C; the time tC characterizes the clock C. If all clocks have been synchronized, the universal time tS characterizes the system of reference S. (7) Researched physical object M and a clock are mutually independent objects. Hence, the coordinates x_M, y_M, zM and the time tS are mutually independent parameters. (8) The informational one-to-one correspondence between motion of object M and physical clock-process in clock is established (is defined) by man. For example, it has a form: dx_M/dtS ≡ v_x_M. Consequences: (a) information about the world is an ordered information because the system of reference S is an ordered and universal system. This information is an objective one if it does not depend on a system of reference; (b) mathematical operations on physical quantities with the coordinates and with the time are allowed by the laws of logic because the set of researches physical objects + system of reference is a unitary system; (c) the principle of existence and of transformation of coordinates: there are no coordinates and no transformation of coordinates in general, and there exist the coordinates x_M, y_M, zM and transformation of the coordinates x_M, y_M, zM of the object M only; (d) the special and general theories of relativity are an erroneous theories because their foundations, firstly, do not satisfy the principle of objectivity of the physical laws, secondly, they contradict the principle of transformation of coordinates and, thirdly, they assume mutual dependence between the researched physical object and a clock (i.e. between coordinates and time); (e) quantum mechanics does not satisfy the principle of objectivity of the physical laws.
Trindade, Inês A; Ferreira, Cláudia; Pinto-Gouveia, José
2018-02-01
This study thus aims to test differences between patients with inflammatory bowel disease (IBD) regarding IBD symptomatology, cognitive fusion, and psychological and physical health, as well as to explore whether the maladaptive emotion regulation process of cognitive fusion longitudinally impacts on the baseline and evolution of these outcomes over a period of 18 months. Participants include 116 IBD patients with a mean age of 36.76 (SD = 11.39) of both genders (69.83% females) that completed the self-report measures of interest in three different times, equally spaced 9 months apart, over a period of 18 months. Latent growth curve models were conducted using structural equation modelling to estimate the growth trajectory of the variables in study. Inflammatory bowel disease symptomatology and cognitive fusion's levels were negatively associated with psychological health and physical health's baseline levels. Furthermore, IBD symptomatology did not influence the growth of psychological health, while cognitive fusion did (β = .30, p = .007). The same result was found for physical health (β = .26, p = .024). These findings indicate that individuals with higher levels of cognitive fusion present lower levels of psychological health and physical health that tend to further decrease over the time through the effects of this maladaptive emotion regulation process. This study implies that it is of crucial importance to include psychotherapeutic interventions in the health care of patients with IBD. If successful, these interventions could represent decreases in the cost of IBD treatment and in the use of drugs with adverse side effects, in addition to improving patients' mental health and quality of life. Further implications for clinical and research work are discussed. Statement of contribution What is already known on this subject? Research has demonstrated the impact of emotion regulation on both physical and mental health. Nevertheless, the longitudinal effects of the specific emotion regulation process of cognitive fusion on physical and psychological health have never been explored. Additionally, no study has yet examined the causal role of emotion regulation in evolution of physical health in inflammatory bowel disease (IBD). What does this study add? Cognitive fusion longitudinally impacted on IBD patients' physical and mental health. These variables were measured over a period of 18 months. Treatment for IBD should include interventions aiming to diminish maladaptive emotion regulation. © 2017 The British Psychological Society.
Onsomu, Elijah O; Abuya, Benta A; Okech, Irene N; Rosen, David L; Duren-Winfield, Vanessa; Simmons, Amber C
2015-01-01
The prevalence of both domestic violence (DV) and HIV among Kenyan women is known to be high, but the relationship between them is unknown. Nationally representative cross-sectional data from married and formerly married (MFM) women responding to the Kenya Demographic and Health Survey 2008/2009 were analyzed adjusting for complex survey design. Multivariable logistic regressions were used to assess the covariate-adjusted associations between HIV serostatus and any reported DV as well as four constituent DV measures: physical, emotional, sexual, and aggravated bodily harm, adjusting for covariates entered into each model using a forward stepwise selection process. Covariates of a priori interest included those representing marriage history, risky sexual behavior, substance use, perceived HIV risk, and sociodemographic characteristics. The prevalence of HIV among MFM women was 10.7% (any DV: 13.1%, no DV: 8.6%); overall prevalence of DV was 43.4%. Among all DV measures, only physical DV was associated with HIV (11.9%; adjusted odds ratio: 2.01, p <.05). Efforts by the government and women's groups to monitor and improve policies to reduce DV, such as the Sexual Offences Act of 2006, are urgently needed to curb HIV, as are policies that seek to provide DV counseling and treatment to MFM women.
Russo, Rennie; Coultas, David; Ashmore, Jamile; Peoples, Jennifer; Sloan, John; Jackson, Bradford E; Uhm, Minyong; Singh, Karan P; Blair, Steven N; Bae, Sejong
2015-03-01
To describe the recruitment methods, study participation rate, and baseline characteristics of a representative sample of outpatients with COPD eligible for pulmonary rehabilitation participating in a trial of a lifestyle behavioral intervention to increase physical activity. A patient registry was developed for recruitment using an administrative database from primary care and specialty clinics of an academic medical center in northeast Texas for a parallel group randomized trial. The registry was comprised of 5582 patients and over the course of the 30 month recruitment period 325 patients were enrolled for an overall study participation rate of 35.1%. After a 6-week COPD self-management education period provided to all enrolled patients, 305 patients were randomized into either usual care (UC; n=156) or the physical activity self-management intervention (PASM; n=149). There were no clinically significant differences in demographics, clinical characteristics, or health status indicators between the randomized groups. The results of this recruitment process demonstrate the successful use of a patient registry for enrolling a representative sample of outpatients eligible for pulmonary rehabilitation with COPD from primary and specialty care. Moreover, this approach to patient recruitment provides a model for future studies utilizing administrative databases and electronic health records. Published by Elsevier Inc.
Abuya, Benta A; Okech, Irene N; Rosen, David L; Duren-Winfield, Vanessa; Simmons, Amber C
2014-01-01
The prevalence of both domestic violence (DV) and HIV among Kenyan women is known to be high, but the relationship between them is unknown. Nationally representative cross-sectional data from married and formerly married (MFM) women responding to the Kenya Demographic and Health Survey 2008/2009 were analyzed adjusting for complex survey design. Multivariable logistic regressions were used to assess the covariate-adjusted associations between HIV serostatus and any reported DV as well as four constituent DV measures: physical, emotional, sexual, and aggravated bodily harm, adjusting for co-variates entered into each model using a forward stepwise selection process. Co-variates of a priori interest included those representing marriage history, risky sexual behavior, substance use, perceived HIV risk, and socio-demographic characteristics. The prevalence of HIV among MFM women was 10.7% (any DV: 13.1%, no DV: 8.6%); overall prevalence of DV was 43.4%. Among all DV measures, only physical DV was associated with HIV (11.9%; adjusted odds ratio: 2.01, p < 0.05). Efforts by the government and women's groups to monitor and improve policies to reduce DV, such as the Sexual Offences Act of 2006, are urgently needed to curb HIV, as are policies that seek to provide DV counseling and treatment to MFM women. PMID:25127397